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Abstract  

 

Acute myeloid leukemia (AML) develops as the consequence of a series of genetic changes in a 

hematopoietic precursor cell, that alter normal hematopoietic growth and differentiation, resulting in an 

accumulation of large numbers of abnormal, immature myeloid cells in the bone marrow and peripheral 

blood. The deceivingly homogeneous, undifferentiated morphology of the leukemic blasts is now known to 

mask a heterogeneous collection of cells that recapitulate the hierarchy of precursor cells that characterize 

the normal process of blood-cell differentiation. Leukemia-initiating cell (LIC) properties occur in a self-

renewing non-hematopoietic stem cell progenitor cell population, preceded by the expansion of a pre-

leukemic long-term hematopoietic stem cell (LT-HSC). The WNT/β-catenin pathway has been show to play a 

critical role in the regulation of cell proliferation, differentiation, and apoptosis of different malignant entities. 

Previous results obtained by our research team provided direct evidence that the WNT/β-catenin signaling is 

diffusely activated in the AC133+ AML population, with a specific transcriptional signature involving over-

expression of the WNT pathway agonists and down-modulation of the major antagonists. Appling the new in 

situ technique on AML bone marrow sections, we confirmed a dramatic increase of WNT10B expression and 

protein release within the microenvironment in the large majority of sample. Conversely, the activation of 

WNT signaling, marked by expression of the dephosphorylated β-catenin, was restricted only to a smaller 

subpopulation of AC133bright cells.  

Focusing our attention on the major locus associated to the regenerative function, in the actual study we 

performed a 5’-RACE analysis on WNT10B mRNA, evidencing the presence of a non-physiological transcript 

variant named WNT10BIVS1, retaining 77 nucleotide of IVS1 and lacking exon1. In order to provide accurate 

quantification of mRNA levels of WNT10B and the related WNT10BIVS1 transcript variant and to analyze the 

clinical relevance of their expression, we carried out the gene expression analysis by Droplet DigitalTM PCR 

on mononucleated cells derived from 125 AML patients. Analyzing patients according to specific genetic or 

risk profiles, we demonstrated that canonical WNT10B mRNA was highly expressed in all de novo AML 

patients here examined, representing the gene with the highest expression in leukemic patients among all 

the genes actually known. Furthermore, non-physiological WNT10BIVS1 variant was highly expressed in all 

non-favorable risk de novo AML, whereas it has non-detectable levels in core-binding factor AML, acute 

promyelocytic leukemia, and therapy-related disease.  

The results presented here provided a compelling evidence that regeneration-associated WNT signaling 

exceeds the homeostatic range in the majority of human AML cases. These newly discovered genetic 

abnormalities WNT10B / WNT10BIVS1 seem to be associated with clinical, morphologic, and phenotypic 

features that allow identification of specific leukemic entity. Finally, we presented distinct molecular 

signatures capable of distinguish with extremely high accuracy de novo AML patients from both favorable-

risk and therapy-related patients, using a non-time consuming and inexpensive test. These findings, if 

confirmed in a larger population of patients, may help in refine diagnostic or prognostic criteria for previously 

described neoplasms, and to introduce newly recognized disease entities possibly characterized by distinct 

causative pathogenic mechanisms.  
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1.1. LEUKEMIA INITIATING CELL 

 

Acute myeloid leukemia (AML) consists of a group of relatively well-defined hematopoietic neoplasms 

involving precursor cells committed to the myeloid line of cellular development. AML develops as the 

consequence of a series of genetic changes in a hematopoietic precursor cell. These changes alter normal 

hematopoietic growth and differentiation, resulting in an accumulation of large numbers of abnormal, 

immature myeloid cells in the bone marrow and peripheral blood. These cells are capable of dividing and 

proliferating, but cannot differentiate into mature hematopoietic cells. 

 

Cell of origin: normal counterpart 

Leukemia is a heterogenous group of diseases characterized by clonal cells that exhibit maturation defects 

that correspond to stages in hematopoietic differentiation. Hematopoietic stem cells are multipotent and have 

the capacity to differentiate into the cells of all 10 blood lineages (ie, erythrocytes, platelets, neutrophils, 

eosinophils, basophils, monocytes, T and B lymphocytes, natural killer cells, and dendritic cells). In order to 

sustain hematopoiesis, stem cells are part of a developmental hierarchy capable of three basic functions: 

1. maintenance in a non-cycling state 

2. self-renewal, allowing production of additional stem cells 

3. production of committed progenitor cells 

These progenitor cells commit to subsets of myeloid and lymphoid lineages, and ultimately to single 

developmental pathways, resulting in the expression of the terminally differentiated stage of each cell type 

(see Figure 1 ) [1,2].  

Normal hematopoiesis is a dynamic, highly regulated process controlled by the combined effects of growth 

factors that permit cellular proliferation, and nuclear transcription factors that activate specific genetic 

programs, resulting in commitment to a specific lineage and in terminal differentiation (see Figure 2 ) . Many 

of the regulatory growth factors and a number of specific transcription factors have been identified that play 

critical roles in lineage commitment, and in the subsequent development of the mature lymphoid and myeloid 

(erythroid,granulocytic/monocytic, and megakaryocytic) lineages [3,4]. 

A number of genes encoding these transcription factors are involved in recurring chromosomal 

translocations seen in AML, suggesting that the AML variants arise because the translocations result in 

significant alterations in regulatory processes controlling growth and differentiation programs [5].  
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Figure 1  - Regulation of hematopoiesis via growth factors a nd cytokines 

 

Hierarchical relationships of multipotent hematopoietic stem cells, progenitors, and mature cells of the myelopoietic, 
erythrocyte, and platelet lineages together with major growth factors, cytokines, and their actions.  

LTR-HSC: long-term repopulating hematopoietic stem cell; STR-HSC: short-term repopulating hematopoietic stem cell; 
SCF: stem cell factor: IL: interleukin; CMP: common myeloid progenitor; CLP: common lymphoid progenitor; MEP: 
megakaryocyte-erythroid progenitor; GMP: granulocyte-myeloid progenitor; CFU: colony-forming unit; BFU: blast-forming 
unit; Epo: erythropoietin; Tpo: thrombopoietin; G-CSF: granulocyte colony-stimulating factor; M-CSF: 
monocyte/macrophage colongy-stimulating factor; GM-CSF: granulocyte-macrophage colony-stimulating factor; TNF: 
tumor necrosis factor.  

Reproduced from: Sieff CA, Zon LI. Anatomy and Physiology of Hematopoiesis. Elsevier, Philadelphia 2009.  



 

Figure 2  - Transcription factors essential for normal hematopo ietic development 

The primitive hematopoietic stem cell gives rise to nucleated erythroid cells at the yolk sac stage of development. 
Subsequently, multilineage hematopoiesis is thought to be derived from the the definitive hematopoietic stem cell. 

Reproduced from: Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive 
haematopoiesis. Nature 1997; 386:488. 

 

Clonality 

AML is a clonal process that develops from a single transformed hematopoietic progenitor cell. It is believed 

that virtually all cases of AML are preceded by a premalignant proliferative disorder characterized by clonal 

hematopoiesis. Three large sequencing studies identified clonal hematopoiesis in approximately 4 percent of 

the general population and the incidence inc

percent of persons 70 to 79 years; 12 percent of persons 80 to 89 years; and 18 percent of persons 90 years 

or older [6-8]. Clonal hematopoiesis most commonly involved a mutation in DNMT3A, TET2, or ASXL1, 

mutations that are associated with myeloid malignancies. While clonal hematopoiesis was associated with 

an increased risk of hematologic cancer, the absolute risk of progression was very small.

Studies of isoenzyme restriction in leukemic myeloblasts of females heterozygous for the A and B isoforms 

of glucose 6-phosphate dehydrogenase (G6PD) have demonstrated t

locus is on a portion of the X chromosome that undergoes inactivation in XX somatic cells (Lyonization). 

Approximately one-half of the cells in normal somatic tissue will have randomly inactivated one or the other 

of the X chromosomes, allowing expression of the A and B isoforms in approximately equal amounts. Cells 

of clonal origin, however, express only one type of G6PD. In each of the G6PD heterozygous females with 

AML, both types of enzyme were found in normal tissues, 

leukemic myeloblasts [9-11]. Similar conclusions were reached using X

standard cytogenetics, and fluorescence in situ hybridization (FISH) [
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increased risk of hematologic cancer, the absolute risk of progression was very small.
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half of the cells in normal somatic tissue will have randomly inactivated one or the other 

chromosomes, allowing expression of the A and B isoforms in approximately equal amounts. Cells 

of clonal origin, however, express only one type of G6PD. In each of the G6PD heterozygous females with 

AML, both types of enzyme were found in normal tissues, but only a single type was observed in the 

]. Similar conclusions were reached using X-linked recombinant DNA probes, 

standard cytogenetics, and fluorescence in situ hybridization (FISH) [12-14].  
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Leukemic stem cells 

AML is a heterogenous disease with leukemic cells of different subtypes resembling normal cells at various 

stages of maturation. However, there is growing information to support that all leukemias, including AML, 

appear to be maintained by a pool of self-renewing malignant cells. Based on their ability to serially transfer 

the disease upon xenotransplantation into immunodeficient mice, it has been hypothesized that limited 

numbers of cells within the bulk population of leukemic cells have the capacity to function as stem cells that 

maintain the potential for unlimited self-renewal [15]. These leukemic stem cells (LSC, also leukemia-

initiating cells ) may be more immature than the majority of circulating leukemic cells, and are thought to 

have originated from cells with existing self-renewal capacity or from progenitors that have re-acquired this 

stem cell-like property. According to this hypothesis, the majority of leukemia cells do not have unlimited self-

renewal and exhibit some features of partial differentiation depending on the genetic aberration present.  
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1.2.  ACUTE MYELOID LEUKEMIA: STATE OF THE ART 

 

Two models have been proposed to explain the heterogeneity of AML observed at the molecular, 

cytogenetic, phenotypic, and clinical level: transformation to leukemia occurring at one of several 

developmental stages, or transformation to leukemia occurring within primitive multipotent cells. 

 

1. Transformation at one of several developmental stages 

This model proposes that any cell type within the stem cell/progenitor cell hierarchy, from primitive 

multipotent stem cell to lineage-committed progenitor cell, is susceptible to leukemic transformation, resulting 

in the expansion of abnormal cells that exhibit different stages of differentiation. For AML, this model predicts 

that the phenotype of the leukemic stem cells restricted to the granulocytic-monocytic series differs from that 

of cells with involvement of erythroid, megakaryocytic, and granulocytic-monocytic lineages (see Figure 1 ). 

The correlation between specific cytogenetic and molecular genetic aberrations and the morphologic 

appearance of leukemic cells might suggest that the transforming event occurs at different stages of myeloid 

differentiation. This hypothesis is underscored by the French-American-British (FAB) classification for AML, 

which distinguishes different subtypes of AML based upon the stage of apparent differentiation (see Table 

1). Support for this model includes flow cytometric/molecular analyses of the leukemic cell in acute 

promyelocytic leukemia (APL) that suggest that the leukemic cell arises in a committed lineage-

restricted, CD34+/CD38+ progenitor cell [16]. 

 

2. Transformation within primitive multipotent cells 

A second model proposes that mutations responsible for leukemic transformation and progression occur only 

in primitive multipotent stem cells, with disease heterogeneity resulting from a variable ability of these 

primitive stem cells to differentiate and acquire specific phenotypic lineage markers [17,18]. 

Hematopoietic stem cells express a characteristic cell surface antigen (CD34), and can be further subdivided 

by the expression of additional cell surface antigens, including CD38 and HLA-DR (see Figure 3 ) [19-22]: 

� CD34+/CD38-/HLA-DR- cells are multipotential hematopoietic stem cells, give rise to mixed-lineage 

granulocytic-erythroid-megakaryocytic colonies in culture, can repopulate immune deficient mice with 

normal hematopoietic cells in vivo, and demonstrate self-renewal capacity, as assessed by their 

ability to be serially transplanted into secondary recipient mice. There are data to suggest that, in 

some cases of AML, the leukemic stem cell may be quite similar to normal hematopoietic stem cells. 

� CD34+/CD38+/HLA-DR+ cells define a committed population of myeloid progenitor cells.  
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Table 1 - French-American-British (FAB) classification of acute myeloid leukemia 

FAB type 
% Blasts  

(all cells) 

% Blasts  

(NEC) 

Erythroid 

progenitors 
Morphology Cytochemistry 

M0 >30 >90 <50 
Blasts resemble L2 variant of ALL 
Cytoplasmic granules and Auer rods are not seen 

MPO+ <3% 
SBB+ 

M1 >30 >90 <50 
>30% type 1 and type 2 blasts 
<10% differentiated myeloid cells 
Auer rods seen in about 50 percent of cases 

MPO+ >3% 
SBB+ 

M2 >30 >30-89 <50 
>30% type 1 and type 2 blasts 
>10% differentiated myeloid cells 
 Auer rods seen in about 70 percent of cases 

MPO+  
SBB+  
NSE+ <20% 
PAS– 

M3 >30* >30-89 <50 
>20% abnormal hypergranular progranulocytes 
Blast count may be <30% 
Auer rods and faggot cells seen in virtually all cases 

MPO+  
SBB+  
PAS–  
NSE± 

M3V >30* >30-89 <50 
>20% abnormal hypogranular progranulocytes 
Blast count may be <30% 
Auer rods and faggot cells seen in virtually all cases 

MPO+  
SBB+  
PAS–  
NSE± 

M4 >30 >30-79 <50 

>20% promonocytes and monocytes 
>20% granulocytic cells 
Peripheral monocytosis (>5 x 109) 
Auer rods seen in about 65% of cases 

MPO+ >20% 
NSE+ 

M4eo >30 >30-79 <50 >5% eosinophils and cells with mixed basophilic and 
eosinophilic granules, plus M4 features 

MPO+ >20%  
NSE+ 

M5a  >80 <50 >80% of nonerythroid cells are monoblasts 
Auer rods usually not seen NSE+ 

M5b  >80 <50 

>80% of nonerythroid cells are monocytes, 
promonocytes, and monoblasts 
Auer rods can be seen in a minor population of 
myeloblasts (30% of cases) 

NSE+ 

M6  >30 >50 
Erythroid predominance and dysplasia 
>30% blasts among non-erythroid cells 
Auer rods present in blasts in 60% of cases 

PAS+ (erythroid 
cells); blasts are 
MPO+ 

M7 >30  <50 
Blasts with cytoplasmic blebbing ± platelet shedding 
Marrow fibrosis 
Auer rods are not seen 

Platelet MPO+ 
on EM 

NEC: nonerythroid cells; MPO: myeloperoxidase; SBB: Sudan black; NSA: nonspecific esterase; PAS: periodic acid-Schiff. 
* Abnormal progranulocytes and blasts. 

 

 

 

 



 

Figure 3  - Stem cell properties 

Schematic view of some general properties and assays for the heterogeneous cells that compromise the stem cell and 
progenitor cell compartments. Reproduce from: UpToDate Topic 4493 Version 30.0 Graphic 77910 Version 4.0

 

 

Cytogenetic and FISH studies of sorted stem cell compartments from patients with AML evolving from a prior 

myelodysplastic syndrome and patients with de novo AML have shown that the characteristic cytogenetic 

abnormality from both groups was present in the

Similar findings were noted in patients with the 5q

disorders with differing risks of leukemic transformation. 

More compelling evidence comes from studies in which purified ste

subjects and those with AML were transplanted into mice with severe combined 

(SCID). These experiments have detected approximately one SCID mouse leukemia

105 AML cells, which can repopulate immune deficient mice with leukemic cells phenotypically identical to 

those of the AML patient from which they were derived [

Using a non-obese diabetic (NOD)/SCID

fraction [15]. This was consistent regardless of the AML subtype, lineage markers, or percentage of leukemic 

blast cells expressing the CD34 antigen. The SL

for maintenance of the leukemic clone. The uniformit

that the leukemia initiating transformation and progression

and not in committed progenitors.  
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sorted stem cell compartments from patients with AML evolving from a prior 

myelodysplastic syndrome and patients with de novo AML have shown that the characteristic cytogenetic 

abnormality from both groups was present in the CD34+/CD38- multipotential stem cell compartment [

Similar findings were noted in patients with the 5q- syndrome [26] and monosomy 7

disorders with differing risks of leukemic transformation.  

More compelling evidence comes from studies in which purified stem cell subpopulations from normal 

subjects and those with AML were transplanted into mice with severe combined immunodeficiency disease 

. These experiments have detected approximately one SCID mouse leukemia

which can repopulate immune deficient mice with leukemic cells phenotypically identical to 

those of the AML patient from which they were derived [25,28,29]. 

(NOD)/SCID mouse [30], SL-ICs were found to reside only in the

]. This was consistent regardless of the AML subtype, lineage markers, or percentage of leukemic 

blast cells expressing the CD34 antigen. The SL-ICs also demonstrated self-renewal capacity, a requirement 

for maintenance of the leukemic clone. The uniformity of the leukemic stem cell phenotype strongly suggests 

that the leukemia initiating transformation and progression-associated genetic events occur in primitive cells 
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Two-hit hypothesis of leukemogenesis 

Progression to acute leukemia may require a series of genetic events beginning with clonal expansion of a 

transformed leukemic stem cell [31-33]. The specific mutational event(s) required for this progression are not 

currently well defined.  

The "two-hit hypothesis" of leukemogenesis implies that AML is the consequence of at least two mutations, 

one conferring a proliferative advantage (class I mutations) and another impairing hematopoietic 

differentiation (class II mutations) [34]. Type I mutations include those of FLT3-ITD, K-RAS mutations, and 

KIT mutations, while mutations in CEBPA are type II abnormalities [35].  

Important insights have been obtained from human leukemias: 

� A variety of clonality studies have shown that patients with AML in clinical remission may still have 

clonal, rather than polyclonal, hematopoiesis [12,36-38]. Such clonal remission may represent the 

presence of a "preleukemic stem cell" that has undergone an initial transforming event but has not 

acquired the additional mutation(s) essential to progression to overt leukemia. In these cases, it is 

presumed that the transformed, overtly leukemic cell probably represented a subclone of the original 

"preleukemic stem cell" which secondarily acquired the additional genetic mutations required for the 

definitive block in differentiation and manifestation of the leukemic phenotype. 

� On average, AML clones have 8 to 13 mutations found within the coding regions of the genome. The 

accumulation of these lesions in a step-wise process within a hematopoietic stem cell was 

demonstrated in a study that compared gene mutations found in de novo AML with patient-matched 

residual non-leukemic hematopoietic stem cells in long-term survivors [39], and it suggests that 

several hits are required for the development of AML. 

� Whole genome or whole exome sequencing of 200 cases of de novo AML reported an average of 13 

gene mutations per tumor [40]. Of these, each tumor had an average of five genes known to be one 

of a group of 23 genes recurrently mutated in AML that can be broadly grouped into nine categories 

of genes thought to be involved in leukemogenesis. Mutations were found in genes associated with 

transcription-factor fusions (18%), nucleophosmin (27%), tumor suppression (16%), DNA-

methylation (44%), signaling (59%), chromatin-modification (30%), myeloid transcription factor 

(22%), the cohesin-complex (13%), and the spliceosome complex (14%). Some mutation pairs 

occurred more commonly than expected (eg, NPM1 and FLT3), suggesting synergy, while others 

were mutually exclusive, suggesting duplicative pathways.  

� In one study of seven patients with AML that had evolved from MDS, approximately 85 percent of 

bone marrow cells were clonal at the time of MDS diagnosis [41]. Whole genome sequencing of 

paired skin and bone marrow samples identified 11 recurrently mutated genes. Genotyping of bone 

marrow samples from the same patients collected at the time of AML diagnosis identified those 

mutations that were present at the time of MDS diagnosis (ie, NPM1, RUNX1, SMC3, STAG2, TP53, 

U2AF1, UMODL1, and ZSWIM4) and those that developed subsequently (ie, CDH23, PTPN11, 

WT1). 
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Consistent with the two-hit theory, expression of a chimeric protein represents only one of the genetic 

modifications necessary for the development of cancer and leukemia, and that the affected cell requires 

additional mutational events  in order to express the transformed phenotype.  

As an example, the presence of cells with the RUNX1/RUNX1T1 fusion transcript may not be sufficient, in 

itself, to result in AML, and may require a "second hit" for the development of AML: 

� Remission bone marrow samples from patients with de novo AML (FAB -M2) with t(8;21)(q22;q22) 

and the RUNX1/RUNX1T1 fusion transcript have been found to harbor the aberrant fusion transcript 

for as many as 8 years following cessation of all chemotherapy [42]. 

� The RUNX1/RUNX1T1 fusion transcript has been detected in bone marrow samples from patients in 

remission following allogeneic bone marrow transplantation for AML [43]. 

 

Mechanisms of genetic damage  

Genetic changes associated with leukemogenesis can occur following chemotherapy, ionizing radiation, 

chemical exposure, and infection with retroviruses. In addition, certain familial disorders are associated with 

an increased incidence of acute myeloid leukemia (AML). However, it must be emphasized that the vast 

majority of patients with de novo AML show no evidence of any of these risk factors, and the etiologic factors 

contributing to the development of AML remain unknown. Interestingly, in a series of 127 patients with a 

previous primary malignancy and secondary AML, 30 percent did not receive any chemotherapy or radiation 

treatment prior to the development of AML [44]. 

Chemotherapy-induced AML.  The development of myelodysplastic syndromes (MDS) and AML following 

chemotherapy for a variety of malignancies (eg, breast cancer, etc) is an unfortunate complication of curative 

treatment strategies [45]. This identification of an increasing incidence of therapy-related AML (t-AML) in an 

attempt to improve cure rates emphasizes the critical importance of understanding the underlying 

pathogenetic mechanisms for development of t-AML [46,47].  

t-AML typically develops following alkylating agent-induced damage, at a median of three to five years 

following therapy for the primary malignancy and is usually associated with an antecedent myelodysplastic 

disorder [48]. This latency period suggests that multiple mutational events are involved in the development of 

the malignant phenotype [31]. 

� Clonal chromosomal abnormalities have been reported in the majority of cases of t-AML, the most 

frequently reported abnormalities involving complete loss or interstitial deletions of the long arm of 

chromosomes 7 and/or 5. 

� Other therapy-related leukemias are associated with rearrangements of the MLL gene in 

chromosome band 11q23. AML associated with 11q23 often develops after treatment with drugs that 

target DNA-topoisomerase II (eg, epipodophyllotoxins, anthracyclines) with a very short latency of 12 

to 18 months following treatment, and are not typically associated with an antecedent 

myelodysplastic syndrome [49-52].  
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Ionizing radiation.  Ionizing radiation shares with alkylating agents the ability to damage DNA, usually by 

inducing double strand breaks that may cause the mutations, deletions, or translocations required for 

hematopoietic stem cell transformation [45,53]. As examples, an increased incidence of AML, which may 

have been directly proportional to the radiation exposure [54], has been noted in atomic bomb survivors [55] 

as well as in radiologists and radiologic technologists chronically exposed to high levels of radiation in the 

period before 1950 [56]. Ionizing radiation used in the treatment of malignancies (eg, Hodgkin lymphoma, 

breast cancer, uterine cancer, lung cancer) has also been linked to the development of AML [57].  

Chemical exposure.  Exposure to high levels of benzene has been associated with a higher risk of 

developing AML [58,59]. Relatively low-level exposure to benzene by petroleum distribution workers has 

been associated with an increased risk of developing myelodysplastic syndrome, but not AML [60,61]. The 

risk of developing a myeloid malignancy after benzene exposure appears to be dose-related and it is 

unknown whether there is any safe threshold for benzene exposure [62]. Polymorphisms resulting in 

inactivation of NAD(P)H:quinone oxidoreductase 1 (NQO1), an enzyme which detoxifies quinones and 

reduces oxidative stress, have been associated with an increased risk of de novo [63] and therapy-related 

acute leukemia [64], as well as a greater risk of benzene-induced hematotoxicity and leukemia [65]. For de 

novo AML, the most significant effect of low or null NQO1 activity was observed among patients with 

chromosomal translocations and inversions (odds ratio: 2.4), and was especially high for those with inv(16) 

(odds ratio: 8.1) [63]. 

Infections.  In a number of animal models, retroviruses have been demonstrated to play an important role in 

leukemogenesis, and the human T-lymphotropic virus type I (HTLV-I) is associated with adult T cell 

leukemia-lymphoma [66]. In AML, however, despite extensive investigation, there has been no clear 

association of a retrovirus with leukemogenesis [67].  
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1.2.1.  Molecular genetics of acute myeloid leukemi a 

Acute myeloid leukemia develops as the consequence of a series of genetic changes in a hematopoietic 

precursor cell. These changes alter normal hematopoietic growth and differentiation, resulting in an 

accumulation of large numbers of abnormal, immature myeloid cells in the bone marrow and peripheral 

blood. These cells are capable of dividing and proliferating, but cannot differentiate into mature 

hematopoietic cells. Similar to other malignancies, the genetic alterations in AML include mutation of 

oncogenes as well as the loss of tumor suppressor genes. In contrast to most solid tumors, many 

hematologic malignancies are associated with a single characteristic cytogenetic abnormality and specific 

cytogenetic abnormalities identified by karyotype analysis have considerable prognostic significance for 

patients with AML and affect treatment planning.  

 

1.2.1.1.  Cytogenetics in acute myeloid leukemia 

Cytogenetic analysis of metaphase cells is a key component to the evaluation of all patients with newly 

diagnosed or suspected AML. The malignant cells in most patients with AML have non-random, acquired 

clonal chromosomal abnormalities. The principal classes of cytogenetic alterations are: 

� chromosomal translocation (t): process by which a break in at least two different chromosomes 

occurs, with exchange of genetic material. Reciprocal translocation refers to an exchange between 

two or more chromosomes in which there is no obvious overall loss of chromosomal material. 

� chromosomal inversion (inv ): two breaks in the same chromosome with rotation of the intervening 

material.  

� chromosomal deletion (del ): loss of chromosomal material. An interstitial deletion results from two 

breaks in a single chromosome with the loss of intervening material.  

� monosomy: a form of genetic loss in which an entire chromosome is lost. 

 

Using standard banding techniques, 50 to 60% of patients with AML de novo have abnormal karyotypes 

[68]. The most common karyotype results are: 

� normal      (41%) 

� t(15;17)(q24.1;q21.1) and variants   (13%) 

� trisomy 8      (10%) 

� t(8;21)(q22;q22) and variants    (7%) 

� 11q rearrangements     (6%) 

� inv(16)(p13.1q22)/t(16;16)(p13.1;q22)   (5%) 

In some cases, specific cytogenetic abnormalities are closely, and sometimes uniquely, associated with 

morphologically and clinically distinct subsets of the disease. As such, the 2008 WHO classification of tumors 

of the hematopoietic and lymphoid tissues uses genetic findings in addition to morphologic, 

immunophenotypic, and clinical features to define distinct subtypes of AML. In addition to establishing the 

type of AML, specific cytogenetic abnormalities have diagnostic, prognostic, and therapeutic importance (see 

below, “Classification of acute myeloid leukemia” ).  
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1.2.1.2. Gene mutations 

Gene sequencing studies have shown that, on average, de novo AML cases contain more than 10 significant 

gene mutations, many of which can be broadly grouped into 9 categories of genes thought to effect 

leukemogenesis [69]:  

1. DNA-methylation 

2. tumor suppression 

3. transcription-factor fusions 

4. nucleophosmin 

5. signaling 

6. chromatin-modification 

7. myeloid transcription factor 

8. cohesin complex 

9. spliceosome complex  

The most common genes mutated and the prognostic significance in adult patients with AML are reported in 

Table 2 [70-72]. Abnormalities in FLT3, NPM1, KIT, and CEBPA have been the most widely studied. Other 

gene mutations, such as those involving WT1 (Wilms tumor 1), meningioma 1 (MN1), RUNX1, TET2, IDH1, 

IDH2, ASXL1, DNMT3A, or RAS, may also have prognostic significance, but need further confirmation in 

prospective studies. 

 

Table 2 - Molecular markers in acute myeloid leukemia 

Gene 
Frequency in 
de-novo AML 

Frequency in  
CN AML 

Associations Esclusions 
Prognostic 
significance 

FLT3-ITD 20 - 25% 30 - 35% APL, t(6;9),NPM1  --- Adverse in CN AML 

FLT3-TKD 5% 14% NPM1  --- Controversial 

NPM1 35% 50% FLT3-ITD, FLT3-TKD, 
DNMT3A, IDH1,IDH2 

Biallelic CEBPA Favorable in CN AML 

CEBPA  7% 8 - 19% FLT3-ITD NPM1 
Biallelic favorable  in 
CN AML 

KIT 6% 25% CBF AML Other karyotypes Adverse in CBF AML 

DNMT3A 14 - 22% 20 - 33% NPM1, FLT3 CEBPA, MLL r 
Possibly adverse in 
CN AML 

TET2 8 - 12% 23% --- IDH1, IDH2 Controversial 

IDH1, IDH2 8 - 16% 30% NPM1, FLT3 TET2, WT1 Controversial 

ASXL1  5 - 30% 10% --- Possibly CEBPA Adverse in CN AML 

CBF: core-binding factor; CN: cytogenetically normal; APL: acute promyelocytic leukemia 
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FLT3. FLT3 (FMS-like tyrosine kinase 3) is a transmembrane tyrosine kinase receptor that stimulates cell 

proliferation upon activation.  

There are two main types of FLT3 mutations. The most common are internal tandem duplications (ITD) of 

different length, that result in ligand-independent activation of the FLT3 receptor and a proliferative signal 

[73-76]. Alternatively, point mutations in the activating loop of the kinase domain (TKD) of FLT3 may result in 

tyrosine kinase activation of FLT3 [77]. Internal transmembrane duplications of the FLT3 gene (FLT3-

ITD) are quite common in AML, particularly in patients with normal karyotypes. It has been proposed 

that FLT3-ITD mutational status is the primary predictor of poorer survival among patients with intermediate-

risk AML by karyotype analysis [78-83], with an estimated 2-year progression-free survival rates of 20% and 

4-year overall survival of approximately 20% [84]. In contrast, the FLT3-TKD mutations do not appear to be 

associated with the same poor outcome as FLT3-ITD [85].  

 

NPM1. Nucleophosmin (NPM1) is a ubiquitously expressed phosphoprotein that normally shuttles between 

the nucleus and cytoplasm. It is involved in ribosomal protein assembly and transport and the regulation the 

tumor suppressor ARF (cyclin-dependent kinase inhibitor 2A). Abnormalities in the nucleophosmin (NPM1) 

gene are found in approximately 25 and 50 percent of patients with de novo AML or de novo normal 

karyotype AML, respectively. Mutation of NPM1 in AML impairs its transport to the nucleus such that it is 

retained in the cytoplasm [86]. Younger and older patients with NPM1 mutation without FLT3-ITD 

demonstrated improved outcomes, although the mechanism for increased chemosensitivity is not known 

[68,82,87-91].  

 

CEBPA.  The CCAAT/enhancer binding protein alpha (CEBPA) gene encodes a transcription factor 

essential for myeloid differentiation [92-93]. CEBPA mutations can be found in approximately 7 percent of 

patients with newly diagnosed AML [83,94] and in 8 to 19 percent of patients with cytogenetically normal 

AML [70]. Patients with cytogenetically normal AML, double mutations of CEBPA (either two different 

mutations or one homozygous mutation) and negative for FLT3-ITD mutations have a significantly longer 

median overall survival that is independent of other high-risk molecular features [82,94-100].  

 

KIT. Mutations of the KIT gene can be detected in approximately 6% of newly diagnosed AML and in 20 to 

30 percent of patients with AML and either t(8;21) or inv(16). While some studies suggest that KIT gene 

mutations confer a higher risk of relapse and adversely affect overall survival in core-binding factor AML 

[101-102], others suggest that this negative prognostic effect is only seen among AML with t(8;21) [83,103-

104].  

 

Gene expression profiling. Several studies have analyzed leukemia cells from patients with AML and have 

identified gene signatures that may be used to distinguish subsets with different outcomes [105-107]. 

Subgroups with different gene expression profiles have been found in patients with normal cytogenetics, as 

well as those with well defined cytogenetic changes, such as t(8;21) and inv(16), while other groups, such as 
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t(15;17), appeared to be more homogeneous in their signature [108-109]. There was still a wide range of 

outcomes in the prognostic groupings defined by GEP and gene profiling in AML cannot as yet be used as a 

predictor in individual patients. However, these initial GEP data confirm the importance of cytogenetic 

subgroups of AML as relatively homogeneous diseases, since leukemias with distinct translocations tend to 

have very similar gene expression patterns [110], and may contribute to subdivide the large group of patients 

with normal karyotypes into different biological subsets with different outcomes [111]. Furthermore, GEP data 

suggest the role of a leukemic stem cell in the pathogenesis of AML [112]. 
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1.2.2. Classification of acute myeloid leukemia 

 

Classification of the acute leukemias has traditionally relied upon the French-American-British (FAB) 

morphologic classification system, reflecting the predominant cell type and relating that cell to its presumed 

normal counterpart (see Table 1 ) [113,114]. Actually, AML is classified using the World Health Organization 

(WHO) classification system based upon a combination of morphology, immunophenotype, genetics, and 

clinical features [115,116].  

There are four main groups of AML recognized in the 2008 WHO classification system (see Table 3 ):  

� AML with recurrent genetic abnormalities 

� AML with myelodysplasia-related features 

� Therapy-related AML 

� AML, not otherwise specified 

 

Table 3 - WHO classification of acute myeloid leukemia 

AML with recurrent genetic abnormalities % of AML 

 AML with t(8;21)(q22;q22); RUNX1-RUNX1T1 7 

 AML with inv(16)(p13q22) or t(16;16)(p13;q22); CEFB-MYH11 5 

 Acute promyelocytic leukemia with t(15;17)(q22;q12); PML-RARA 13 

 AML with t(9;11)(p22;q23); MLLT3-MLL 6 

 AML with t(6;9)(p23;q34); DEK-NUP214 1 

 AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 1 

 AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1 <0.5 

 AML with mutated NPM1 (provisional entity) 30 

 AML with mutated CEBPA (provisional entity) 6-15 

AML with myelodysplasia-related features  

Therapy related AML  

AML, not otherwise specified % of AML (% of AML, NOS) 

 AML with minimal differentiation (M0) <5 (6) 

 AML without maturation (M1) 5-10 (25) 

 AML with maturation (M2) 10-14 (28) 

 Acute myelomonocytic leukemia (M4) 5-10 (21) 

 Acute monoblastic/acute monocytic leukemia (M5) 5-10 (15) 

 Acute erythroid leukemia (M6) <5 (4) 

 Acute megakaryoblastic leukemia (M7) <1 (1) 

 Acute basophilic leukemia <1 

 Acute panmyelosis with myelofibrosis <1 
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1.2.2.1. AML with recurrent genetic abnormalities 

This group includes seven specific AML subtypes with defined structural abnormalities (see Figure 4 ) and 

two provisional entities identified at the molecular level (mutated NPM1 and mutated CEBPA).  

� AML with the t(8;21)(q22;q22);RUNX1-RUNX1T1  is seen in approximately 7 percent of adults with 

newly diagnosed AML. This translocation juxtaposes the RUNX1 (previously AML1 or core binding 

factor alpha-2) gene on chromosome 21 with the RUNX1T1 (previously ETO or MTG8) gene on 

chromosome 8 to form a RUNX1/RUNX1T1 chimeric product. RUNX1 heterodimerizes with another 

protein, core binding factor beta (CBFB), to form a transcription factor. 

The RUNX1/CBFB transcription factor binds directly to an enhancer core motif that is present in the 

transcriptional regulatory regions of a number of genes that are critical to hematopoietic stem and 

progenitor cell growth, differentiation, and function. Leukemogenesis by RUNX1-RUNX1T1 probably 

results from both altered transcriptional regulation of normal RUNX1 target genes and activation of 

new target genes that prevent programmed cell death and/or cellular differentiation pathways. Cases 

of AML with the t(8;21) have a morphologically distinct phenotype, characterized by myeloblasts with 

basophilic cytoplasm, indented nuclei, and prominent Auer rods. It portends a favorable prognosis in 

adults. 

 

� AML with the inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11  represents approximately 5 

percent of newly diagnosed AML and typically demonstrates monocytic and granulocytic 

differentiation with abnormal eosinophils in the bone marrow. The inversion breakpoint at 16q22 

occurs near the end of the coding region of the core binding factor beta (CBFB) gene, which 

encodes one subunit of the heterodimeric RUNX1/CBFB transcription factor. This transcription factor 

binds directly to an enhancer core motif that is present in the transcriptional regulatory regions of a 

number of genes that are critical to myeloid cell growth, differentiation, and function. A smooth 

muscle myosin heavy chain gene (MYH11) is interrupted by the breakpoint on 16p. A fusion protein 

is produced containing the 5' region of CBFB (165 of 182 amino acids), including the domain that 

heterodimerizes with RUNX1, fused to the 3' portion of MYH11. The resultant CBFB/MYH11 fusion 

protein appears to act by disrupting the function of the RUNX1/CBFB transcription factor, resulting in 

the repression of transcription. Patients with inv(16) or t(16;16) generally have a good response to 

intensive chemotherapy. 

 

� the balanced  translocation t(15;17)(q24.1;q21.1)  is seen in 13 percent of newly diagnosed AML  

and it is highly specific for acute promyelocytic leukemia (APL). The breakpoint on chromosome 17 

occurs within the first intron of the alpha retinoic acid receptor gene (RARA) in most patients, 

whereas the break on chromosome 15 occurs within the PML gene. The translocation results in 

a PML/RARA fusion gene that contains most of the PML coding sequences, and the DNA binding 

and ligand binding domains of the RARA gene. The PML/RARA fusion protein shows reduced 

sensitivity to retinoic acid in terms of dissociation of N-CoR, a ubiquitous nuclear protein that 

mediates transcriptional repression. This could lead to persistent transcriptional repression, thereby 

preventing differentiation of promyelocytes. APL is a unique clinicopathological entity characterized 
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by the infiltration of the bone marrow by promyelocytes, often with a folded, reniform or bilobed 

nucleus, in association with clinical or laboratory evidence of disseminated intravascular coagulation 

and fibrinolysis. APL represents a medical emergency with a high rate of early mortality, often due to 

hemorrhage from disseminated intravascular coagulation. It is critical to start treatment as the 

diagnosis is suspected based upon cytologic criteria, and before definitive cytogenetic confirmation 

of the diagnosis. Patients with APL have an excellent prognosis when appropriate treatment is 

begun promptly. Several variant chromosome translocation involving RARA, but not PML have been 

identified in APL, such as the t(5;17), and t(11;17).  

 

� Rearrangements of 11q  are seen in approximately 6 percent of young adults with newly diagnosed 

AML. There are over 100 different recurring rearrangements that involve 11q23, with many different 

translocation partners in AML, especially the monoblastic and myelomonocytic types. Translocations 

of 11q23 involve the KMT2A gene (lysine (K)-specific methyltransferase 2A, previously called mixed-

lineage, leukemia [MLL]). All known breakpoints fall within an 8.3 kb breakpoint cluster region of the 

gene encompassing exons 5 to 11. KMT2A is a DNA-binding protein that methylates histone H3 

lysine 4 (H3K4), and positively regulates gene expression by binding to open chromatin structures at 

the active promoter regions of various genes, including multiple Hox genes, that are important in 

hematopoietic and lymphoid cell development, including myelomonocytic differentiation. 

Translocations of KMT2A result in the formation of a chimeric gene on the derivative 11 

chromosome, consisting of the 5' region of KMT2A and the 3' region of the partner gene from the 

other chromosome, with subsequent expression of fusion mRNAs. The most common translocation 

involves KMT2A and the MLLT3 (AF9) gene at 9p22 in the t(9;11)(p22;q23). The t(9;11) 

translocation can present with a high white count, disseminated intravascular coagulation, and 

gingival or skin infiltration. Morphologically, monoblasts and promonocytes usually predominate.  In 

general, patients with t(9;11)(p22;q23); KMT2A-MLLT3 tend to have an intermediate response to 

standard therapy, while leukemia patients with other 11q23/KMT2A rearrangements have a very 

dismal prognosis. 

 

� AML with t(6;9)(p23;q34); DEK-NUP214  is seen in approximately 1 percent of patients with newly 

diagnosed AML. The translocation results in the juxtaposition of DEK on chromosome 6 with 

NUP214 (also known as CAN) on chromosome 9. This results in the creation of a nucleoporin fusion 

protein that acts as a transcription factor and also alters nuclear transport. This subtype of AML 

typically presents with basophilia, pancytopenia, single or multilineage dysplasia with circulating 

monoblasts and promonocytes. Patients with the t(6;9)(p23;q34) typically have a poor outcome with 

standard therapy, which may be a result of the lesion itself or may reflect the higher than normal 

prevalence of FLT3 internal tandem duplications mutations (70%), which are known to convey a poor 

prognosis. 

 

� AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2);RPN1-EVI1  account for approximately 1 percent of 

AML cases. Cytogenetic abnormalities of 3q are associated with thrombocytosis in the peripheral 

blood and increased atypical megakaryocytes in the bone marrow of patients with AML. These 
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abnormalities are seen in de novo AML and in therapy-related MDS/AML and are associated with a 

poor response to therapy. The specific cytogenetic abnormalities involve bands 3q21 and 3q26.2 

simultaneously, and they include the inv(3)(q21q26.2), t(3;3)(q21;q26.2), and the 

ins(5;3)(q14;q21q26.2) (insertion of chromosomal material from 3q into 5q). These abnormalities 

result in the activation of the MECOM (EVI1) gene, located at 3q26.2. MECOM encodes a zinc-finger 

transcription factor that interacts with a number of transcriptional and epigenetic regulators 

(CREBBP, CTBP, HDAC, KAT2B [P/CAF], SMAD3, GATA1, GATA2, DNMT3A, and DNMT3B), and 

mediates chromatin modifications and DNA hypermethylation. Depending on its binding partners, 

MECOM can act as a transcriptional activator to promote the proliferation of hematopoietic stem 

cells (eg, when bound to GATA2) or as a transcriptional repressor inhibiting erythroid differentiation 

(eg, when bound to GATA1). Abnormal expression of MECOM has also been detected in patients 

with myeloid leukemia and a normal karyotype, suggesting that inappropriate activation of this gene 

occurs through various mechanisms. 

 

� AML with the t(1;22)(p13;q13);RBM15-MKL1  is a rare entity accounting for <0.5 percent of cases of 

newly diagnosed AML. It is typically a megakaryoblastic process occurring in infants, who present 

with marked hepatosplenomegaly, anemia, thrombocytopenia, and a moderately elevated white cell 

count,  and sometimes it can present as a mass and mimic sarcoma. This translocation involves the 

RNA-binding motif protein-15 (RBM15, also known as OTT) and a DNA binding motif protein known 

as megakaryocyte leukemia-1 (MKL1, also known as MAL). MKL1 is involved in the normal 

production of platelets. The role of the resultant chimeric protein in leukemogenesis is poorly 

understood, but may include the modulation of chromatin organization, HOX-induced differentiation, 

or extracellular signalling pathways. The prognostic significance of the t(1;22)(p13;q13) with modern 

therapy is unclear.  
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Figure 4  - Recurring chromosomal abnormalities in acute mye loid leukemia 

 
Reproduce from: UpToDate Topic 4544 Version 19.0 Graphic 53821 Version 8.0. 

 
 

1.2.2.2. AML with myelodysplasia-related features 

 AML with myelodysplasia (MDS)-related features (previously called AML with multilineage dysplasia) is 

defined by cases that fit the criteria for a diagnosis of AML (≥20 percent blasts), without a history of prior 

cytotoxic therapy for an unrelated disease, with one or more of the following three characteristics associated 

with myelodysplasia; 

� AML that evolves from previously documented myelodysplastic syndrome 

� AML that demonstrates MDS-related cytogenetic abnormalities, such as monosomy 5 or del(5q), 

monosomy 7 or del(7q), isochromosome 17p 

� AML with morphologically identified multilineage dysplasia, defined as dysplasia present in ≥50 

percent of cells in two or more hematopoietic lineages 
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Patients with AML who have a prior history of MDS or have MDS-related cytogenetic abnormalities have a 

poor outcome with conventional therapy. Such patients frequently demonstrate multilineage dysplasia. In 

contrast, the identification of multilineage dysplasia in the absence of these two features may not predict a 

poor outcome. 

 

1.2.2.3. Therapy-related myeloid neoplasm 

Persons who are exposed to cytotoxic agents are at risk of developing acute myeloid leukemia (t-AML), 

myelodysplastic syndrome (t-MDS), and myelodysplastic syndrome/myeloproliferative neoplasms (t-

MDS/MPN). These conditions lie along a continuum of disease and are categorized by the 2008 WHO 

classification system as therapy-related myeloid neoplasms (t-MN) [116]. This is a heterogeneous and poorly 

defined group of patients who have a shorter median survival than patients with de novo AML, MDS, or 

MDS/MPN. 

The diagnosis of therapy-related myeloid neoplasm (t-MN) is made when evaluation of the peripheral blood 

and bone marrow demonstrates morphologic, immunophenotypic, and cytogenetic changes consistent with 

the diagnosis of AML, MDS, or MDS/MPN in a patient with prior exposure to cytotoxic agents. Therapy-

related myeloid neoplasms account for approximately 10 to 20 percent of all cases of AML, MDS, 

and MDS/MPN [117]. The incidence among patients treated with cytotoxic agents varies according to the 

underlying disease, specific agents, timing of exposure, and dose [118,119]. Patients can present at any 

age, but the median age at diagnosis is 61 years [120,121]. The proportion of patients with a prior 

hematologic malignancy or a prior solid tumor is approximately equal and accounts for the large majority of 

cases. Five to 20 percent of patients will have a history of exposure to cytotoxic therapy for benign disorders 

while a similar proportion will have undergone an autologous hematopoietic cell transplantation (HCT). 

Several cytotoxic agents have been implicated (see Table 4 ). The latency period between first exposure to a 

cytotoxic agent and the development of t-MN ranges from one to 10 years and varies by cytotoxic agent: 

� t-MN after exposure to alkylating agents or radiation therapy typically presents after a latency period 

of approximately 5 to 7 years. Two-thirds of these patients are first recognized by evidence of 

myelodysplasia (usually trilineage dysplasia), marrow failure, and pancytopenia. The chromosomal 

abnormalities seen in these t-MNs often involve complex abnormalities and monosomies such as -5 

or -7 that have been associated with unfavorable risk 

� t-MN that develops after the use of topoisomerase II inhibitors has a considerably shorter latency 

period of one to three years and most often presents with overt leukemia and rarely with MDS 

or MDS/MPN. The cytogenetic alterations typically apparent in these t-MNs often involve 11q23 

abnormalities, such as t(9;11), or 21q22 abnormalities, such as t(8;21) or t(3;21) 

The latency periods with other agents are not as clear. In addition, patients often have a history of exposure 

to multiple agents making the responsible factor difficult to determine. 
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Clonal chromosomal abnormalities are usually present in t-MDS prior to the evolution to leukemia, and these 

changes are often multiple and complex.  Multiple clinical and biological subsets of t-MN have been 

recognized, and these are correlated with the specific therapy administered for the primary disease. 

 

Table 4 - Cytotoxic agents implicated in therapy-related m yeloid neoplasm  

Class Agent 

Alkylating agents 

melphalan, cyclophosphamide, nitrogen mustard, chlorambucil, busulfan, 
carboplatin, cisplatin, dacarbazine, procarbazine, carmustine, mitomycin C, 
thioTEPA, lomustine, bendamustine, and others 

Topoisomerase II inhibitors 
etoposide, teniposide, doxorubicin, daunorubicin, mitoxantrone, epirubicin, 
amsacrine, and actinomycin 

Antimetabolites thiopurines, mycophenolate, and fludarabine 

Antitubulin agents (usually in 
combination with other agents) 

vincristine, vinblastine, vindesine, paclitaxel, and docetaxel 

Ionizing radiation therapy  given as large fields that include the bone marrow 

 

Alkylating agents and/or radiation therapy. Following alkylating agents and/or radiation therapy the most 

common type of t-MN is due to damage from alkylating agents. The alkylating agents react directly with DNA, 

inducing t-MN with unbalanced aberrations, primarily loss of chromosome material. Involvement of 

chromosomes 5 and/or 7 are characteristic of this subtype of therapy-related disease [122-128], and may be 

related to polymorphisms in enzymes responsible for modifying host responses to damage caused by 

leukemogens such as benzene and alkylating agents [129-131]. 

In a series of 306 patients with t-MN, 92 percent had clonal cytogenetic abnormalities and an abnormal 

karyotype with loss of all or part of chromosomes 5 and/or 7 was observed in 93 percent [127]: 

� Normal karyotype     8% 

� Abnormalities of chromosomes 5 and/or 7  70% 

o -7 or del(7q)     50% 

o del(5q)/t(5q)     43% 

Some specific translocations also occur in t-MN following multiagent chemotherapy, as chromosomal 

rearrangements at 11p15 (NUP98 gene, which encodes a component of the nucleoporin complex) [132,133] 

or mutations and loss of heterozygosity of the TP53 tumor suppressor gene located on chromosome band 

17p13 [134]. Mutations of TP53 are associated with abnormalities of chromosome 5 and a complex 

karyotype. 
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DNA topoisomerase II inhibitors . The second subtype of t-MN occurs in patients who have been treated 

with chemotherapeutic drugs that inhibit DNA topoisomerase II (eg, etoposide, teniposide, doxorubicin, 

mitoxantrone, epirubicin, dexrazoxane). 

Balanced translocations occur in this type of t-MN, and most often involve the KMT2A gene at 11q23 or the 

RUNX1 gene at 21q22 [122,125,128,135,136]. Another recurring translocation that also involves the KMT2A 

gene, t(11;16)(q23;p13.3), has been described only in t-MN following exposure to a topoisomerase II 

inhibitor [137,138]. Patients with this translocation may present with a MDS, which is rarely seen with other 

11q23 translocations [138]. The fusion gene with t(11;16)(q23;p13.3) consists of KMT2A fused to the gene 

that encodes CREB-binding protein (CREBBP or CBP) [137]. The fusion product retains the histone 

acetyltransferase domain of CREB binding protein; this may promote leukemogenesis by inducing histone 

acetylation of genomic regions targeted by KMT2A [139]. Topoisomerase II inhibitor therapy has also been 

associated with t(15;17)(q24.1;q21.1) and acute promyelocytic leukemia [140-143], as well as t(4;11) and 

acute lymphoblastic leukemia [144]. 

 

Mechanisms of dysplasia and leukemogenesis   

The high frequency of loss of 5q and/or 7q in t-MN due to alkylating agents and/or radiation therapy suggests 

that critical genes located at these sites are related to myelodysplasia and myeloid leukemogenesis 

[145,146]. 

del(5q).  Cytogenetic and molecular analysis of MDS, AML and t-AML with a del(5q) has resulted in 

the identification of a region of approximately 1 Mb that is deleted in all patients (referred to as the commonly 

deleted segment) proposed to contain critically important genes [146-149]. A second, distal commonly 

deleted segment has been identified in 5q32-q33.1 in patients with MDS with an isolated del(5q) (5q- 

syndrome) [150]. A number of genes located on 5q including RPS14, miR-145/46a, EGR1, NPM1, APC, and 

CTNNA1 have been implicated in the development of myeloid disorders due to a gene dosage effect [151].   

The gene encoding RPS14 located in 5q32, which is required for the processing of 18S pre-rRNA, was 

identified as a candidate disease gene in the 5q- syndrome [152]. Downregulation of RPS14 in CD34+ bone 

marrow cells blocks the differentiation of erythroid cells, and increases apoptosis in differentiating erythroid 

cells in vitro. Other studies have shown haploinsufficiency of two micro-RNAs (miRNAs), miR-145 and miR-

146a, that are abundant in hematopoietic stem/progenitor cells (HSPCs), are encoded by sequences near 

the RPS14 gene, and cooperate with loss of RPS14. The Toll-interleukin-1 receptor domain-containing 

adaptor protein (TIRAP) and tumor necrosis factor receptor-associated factor-6 (TRAF6) are respective 

targets of these miRNAs, implicating inappropriate activation of innate immune signals in the pathogenesis of 

the 5q- syndrome [153,154]. 

Other genes located on 5q that are deleted in MDS, AML, or therapy-related MDS/AML with a del(5q) 

include EGR1, NPM1, CTNNA1, and APC. Loss of function of Apc (adenomatosis polyposis coli gene, Apc 

tumor suppressor gene) in animal models produces a condition simulating MDS [155]. Similarly, loss of 
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function of Egr1 cooperates with mutations induced by alkylating agents to induce myeloid neoplasms in 

mouse models [156]. Loss of expression of the alpha-catenin (CTNNA1) gene in hematopoietic stem and 

progenitor cells, as a result of chromosomal deletion or epigenetic silencing, may also contribute to 

transformation of myeloid cells in AML patients with a del(5q) [157]. Although Npm1 heterozygous 

mice (Npm1+/-) develop erythroid dysplasia and dysplastic megakaryocytes, the role of NPM1 in the 

pathogenesis of MDS/AML is unclear, since NPM1 is neither deleted in many patients with a del(5q), nor 

have mutations been identified in the remaining allele [158]. These results provided support to the current 

model that the cooperative loss of multiple genes on 5q is required for the pathogenesis of myeloid disorders 

with a del(5q). 

del(7q)  — To determine the location of genes on 7q that may be involved in myelodysplasia and 

myeloid leukemogenesis, the breakpoints and the extent of the del(7q) were evaluated in 55 patients with 

primary MDS or de novo AML and in 26 patients with t-MN [159]. This analysis suggested that there may be 

two distinct deleted segments of chromosome 7. The majority of patients had proximal breakpoints in q11.2-

22 and distal breakpoints in q22-36. The smallest overlapping deleted segment was within q22. A minority of 

patients had involvement of q31-36, with a commonly deleted segment consisting of q32-33. 

FISH was used to define the deleted segment at 7q22 [159]. The commonly deleted segment was 2 to 3 Mb; 

a slightly more distal, but an overlapping, commonly deleted segment was identified in 7q in another report 

[160]. An overlapping, but slightly proximal, commonly deleted segment was identified, which contains the 

gene encoding the transcription factor CUX1, hypothesized to act as a tumor suppressor by regulating genes 

that promote hematopoiesis [161]. Patients with de novo or therapy-related malignant myeloid disorders with 

del(7q) demonstrate haploinsufficiency for CUX1. Further study is needed to determine whether 

haploinsufficiency of CUX1 is sufficient for the development of myeloid malignancies, or whether 

haploinsufficiency of additional genes on 7q are necessary. Patients with the less frequent loss of band 7q32 

have a very poor prognosis, suggesting that critical genes may be present at this site [162]. 

Microarray-based studies of MDS and myeloproliferative neoplasma (MPN) have implicated another region 

on 7q, band 7q36, in the pathogenesis of these diseases. These studies revealed the presence of acquired 

uniparental disomy (aUPD, or acquired copy-neutral loss of homozygosity) in some cases. Further analysis 

led to the identification of rare patients with microdeletions and the subsequent identification of mutations in 

the EZH2 gene within the deleted segment. Homozygous EZH2 mutations are found in approximately 75 

percent of patients with aUPD, and in 12 percent of patients with MDS/MPN (both monoallelic and biallelic 

mutations were detected) [163,164]. Notably, these patients typically do not have cytogenetically visible 

abnormalities of chromosome 7. EZH2 encodes the catalytic subunit of the polycomb repressive complex 2 

(PRC2), a highly conserved histone H3 lysine 27 (H3K27) methyltransferase that influences stem cell 

renewal by epigenetic repression of genes involved in cell fate decisions. EZH2 was previously reported to 

be an oncogene in epithelial tumors, such as breast cancer; however, the mutations identified 

in MDS/MPN result in loss of function of the histone methyltransferase activity, suggesting that EZH2 acts as 

a tumor suppressor for myeloid malignancies. 
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1.2.2.4. AML, not otherwise specified 

In addition to AML with recurring balanced translocations, and chromosomal gains and losses described 

above, about 40 to 50 percent of de novo AML and up to 10 percent of t-AML will have a normal karyotype 

by conventional cytogenetic analysis. This is a very heterogeneous group of patients with variable age, 

morphological features, and clinical course [68,111]. In a study of 5876 young adults with newly diagnosed 

de novo or secondary AML, 41 percent of patients had a normal karyotype [68]. These patients had rates of 

complete remission and 10-year survival of 90 percent and 38 percent, respectively. 

These cases of AML that do not meet the criteria for the categories described above are classified as AML, 

not otherwise specified (NOS). These cases are further subclassified by morphology that is similar to that 

used in the previous FAB classification system (see Table 1 ). This subclassification of patients with AML, 

NOS does not provide additional prognostic information. 

Using genomic microarray analysis, and other molecular techniques, many novel gene mutations have been 

identified in normal karyotype AML. These include FLT3-ITD/TKD and KMT2A-PTD, as well as mutations of 

NPM1, NRAS CEBPA, BAALC, and WT1. Identification of these mutations provides new insights into the 

pathogenesis of this group of AML with a normal karyotype, and it also is important in further clarifying 

prognosis. 
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1.2.3. Prognosis in Acute Myeloid Leukemia 

 

Karyotype analysis with metaphase cytogenetics is a key component of the initial evaluation of a patient with 

AML and specific cytogenetic abnormalities in AML have considerable prognostic significance and affect 

treatment planning (see Table 5 ). The value of risk stratification by karyotype has been illustrated in several 

analyses of patients enrolled in prospective clinical trials. The largest studies were cooperative group efforts 

from the Medical Research Council (MRC), the Southwest Oncology Group/Eastern Cooperative Oncology 

Group (SWOG/ECOG), and the Cancer and Leukemia Group B (CALGB). All studies confirmed earlier 

results from other groups attesting to the importance of pre-treatment karyotype (see Figure 5 ) [68,165-171]. 

 

Figure 5  - Overall survival in AML patients according to cy togenetic risk categories (CALGB 8641) 

 

See Reference 169 (Byrd JC, Blood 2002). Favorable risk (median survival 7.6 years): t(8;21); inv(16) or t(16;16); 
del(9q). Intermediate risk (median survival 1.3 years): normal karyotype; -Y; del(5q); loss of 7q; t(9;11); +11; del(11q); 
abn(12p); +13; del(20q); +21. Adverse risk (median survival 0.5 years): complex karyotype (≥3 abnormalities); inv(3) or 
t(3;3); t(6;9); t(6;11); -7; +8 (sole abnormality); +8 with one other abnormality other than t(8;21), t(9;11), inv(16), or 
t(16;16); t(11;19)(q23;p13.1). 

 

The specifics regarding what constitutes favorable, intermediate, and unfavorable risk have varied among 

the cooperative groups. While there has been general agreement that t(8;21), inv(16), and t(15;17) predict a 

good outcome, there has been disagreement regarding what abnormalities determine an unfavorable risk 

and how additional chromosomal abnormalities impact the prognostic value of known markers. 
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Table 5 - Recurring karyotypic abnormalities in acute myel oid leukemia  

Cytogenetic Affected genes Clinical features Prognosis Incidence 

t(8;21) RUNX1/RUNX1T1 

Younger adults (average age 30 years) 

AML with maturation (FAB M2) 

Auer rods usually present 

Favorable 5 to 7% 

t(15;17) PML/RARA 

Younger adults (average age 40 years) 

Atypical promyelocytes with bilobed nucleus 

and granules (APL, FAB M3) 

Disseminated intravascular coagulation  

Favorable 5 to 8% 

t(11;17) ZBTB16/RARA 

Similar to APL but with sparser granules, lack 

of faggot cells, and absence of the typical 

bilobed nucleus 

Poor response to ATRA <1% 

abn(16q22) CBFB/MYH11 

Younger adults (average age 40 years) 

Acute myelomonocytic leukemia (M4) with 

eosinophilia 

Favorable 5% 

abn(11q23) 
MLL and many 

partners 

Older adults (average age >50 years) 

Acute monoblastic/monocytic leukemia (M5) 

Hyperleukocytosis and extramedullary disease 

common 

Poor, except t(9;11) 3% 

+8 --- 

Older adults (average age >60 years) 

Varied morphology 

Often associated with other chromosomal 

additions and deletions 

Poor 3 to 10% 

del 5, del 7, 5q-, 

7q-, or 

combinations 

--- 

Older adults (average age >60 years) 

Varied morphology, common in acute erythroid 

leukemia (M6) 

Common in secondary AML and MDS 

Poor 15 to 20% 

Inv 3 RPN1/MECOM 

Abnormal megakaryocytes and increased 

platelet count 

Other abnormalities common (del 5,7) 

Poor <1% 

abn(p17) TP53 

Younger adults (average age <60 years) 

Varied morphology 

Other abnormalities common (del 5,7, complex 

karyotype) 

Poor 5% 

+13 --- 
Older adults (average age >60 years) 

Varied morphology and hybrid features 
Poor 1 to 2% 

t(6;9)(p2;q34) DEK/NUP214 

AML with maturation (M2) and acute 

myelomonocytic leukemia ( M4) with 

prominent basophilia 

Poor 1 to 2% 

t(9;22) BCR/ABL1 

Older adults (average age >50 years) 

Usually AML with minimal differentiation (M1), 

prominent splenomegaly, possible 

transformation of unrecognized CML 

Poor 1% 

t(1;22) RBM15/MKL1 

Infants (aged 0 to 3 years) 

Often acute megakaryoblastic leukemia (M7), 

prominent organomegaly 

Poor <1% 

t(8;16) KAT6A/CREBBP 

Acute myelomonocytic leukemia (M4) and 

acute monoblastic and monocytic leukemia 

(M5), erythrophagocytosis 

Poor <1% 
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1.2.3.1.  Medical Research Council classification  

In the hierarchical Medical Research Council (MRC) cytogenetic classification system, which was developed 

more than a decade ago by the analysis of a cohort of 1612 children and younger adults (< 55 years), 3 

cytogenetic risk groups were distinguished [172,173]. Patients with t(15;17), t(8;21), and inv(16), irrespective 

of the presence of additional cytogenetic changes, were assigned to the “favorable risk” group; patients 

lacking any of these aberrations and found to have abn(3q), del(5q), -5/-7, or complex karyotype (ie, 5 or 

more unrelated cytogenetic abnormalities) were defined as “adverse risk.” The remaining patients, that is, 

those with normal karyotype and other structural or numerical abnormalities, comprised the “intermediate-

risk” group. More recently, information from 5876 adults with newly diagnosed de novo (93%) or secondary 

AML enrolled on prospective MRC trials [68] was used to modify the MRC’s prior stratification system (see 

Table 6 ). Using these definitions, rates of OS at 10 years were 69, 38, 33, and 12 percent for patients with 

favorable risk, normal karyotype, intermediate risk, and adverse risk, respectively. 

 

Table 6 - Prognostic value of Medical Research Council cla ssification 

Risk group Subsets 
Incidence 

(%) 
10yOS  

(%) 

Favorable  

t(15;17)(q22;q21); PML-RARA 

16 69 t(8;21)(q22;q22); RUNX1-RUNX1T1 

inv(16)(p13.1q22) / t(16;16)(p13.1;q22);CBFB-MYH11 

Intermediate Abnormalities not described in favorable or unfavorable 59 35 

Adverse 

abn(3q)  [excluding t(3;5)(q21-25;q31-35)] 

25 12 

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 

add(5q), del(5q), -5, 

-7, add(7q)/del(7q), 

t(6;11)(q27;q23) 

t(10;11)(p11_13;q23) 

t(11q23) [excluding t(9;11)(p21-22;q23) and t(11;19)(q23;p13)] 

t(9;22)(q34;q11) 

-17/abn(17p), 

Complex (≥4 unrelated abnormalities) 

*: Irrespective of additional cytogenetic abnormalities 
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1.2.3.2.  European LeukemiaNet classification 

The European LeukemiaNet (ELN) classification system integrates cytogenetic and molecular features (ie, 

FLT3-ITD, CEBPA, and NPM1) in AML to divide cases into four prognostic risk groups. In an analysis of 818 

younger adults (<60 years) and 732 older adults with primary AML treated within cooperative group trials, the 

ELN classification prognostic groups had significantly different rates of complete remission (CR), disease-

free survival (DFS), and overall survival (OS) at three years (see Table 7 ) [174]. 

 

Table 7 - Prognostic value of European LeukemiaNet classif ication 

Risk group Subsets CR (%) 3yDFS (%) 3yOS (%) 

Favorable 

t(8;21)(q22;q22); RUNX1-RUNX1T1 

Y:   96 
 

O:   83 

Y:   55 
 

O:   24 

Y:   66 
 

O:   33 

inv(16)(p13.1q22) / t(16;16)(p13.1;q22);CBFB-MYH11 

Mutated NPM1 without FLT3-ITD (normal karyotype) 

Mutated CEBPA (normal karyotype) 

Intermediate-I* 

Mutated NPM1 and FLT3-ITD (normal karyotype) 

Y:   76 
 

O:   61 

Y:   23 
 

O:   10 

Y:   28 
 

O:   11 
Wild-type NPM1 and FLT3-ITD (normal karyotype) 

Wild-type NPM1 without FLT3-ITD (normal karyotype) 

Intermediate-II 
t(9;11)(p22;q23); MLLT3-MLL Y:   79 

 
O:   63 

Y:   34 
 

O:   11 

Y:   45 
 

O:   16 Cytogenetic abnormalities not classified as favorable or 
adverse 

Adverse 

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 

Y:   50 
 

O:   39 

Y:   10 
 

O:   6 

Y:   12 
 

O:   3 

t(6;9)(p23;q34); DEK-NUP214 

t(v;11)(v;q23); MLL rearranged 

–5 or del(5q); –7; abnl(17p); complex karyotype∆ 

CR: complete remission; DFS: disease-free survival; OS: overall survival; Y: younger patients; O: older patients. 

* Includes all AMLs with normal karyotype except for those included in the favorable subgroup 

∆ Three or more chromosome abnormalities in the absence of one of the WHO designated recurring translocations or 
inversions, that is, t(15;17), t(8;21), inv(16) or t(16;16), t(9;11), t(v;11)(v;q23), t(6;9), inv(3) or t(3;3) 
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1.2.3.3. National Comprehensive Cancer Network clas sification 

The National Comprehensive Cancer Network (NCCN) risk classifications vary slightly from those of the 

MRC or ELN group. The main differences between NCCN and ELN classification are that NCCN has 

continued to place normal karyotype AML with FLT3-ITD mutation in the unfavorable risk group rather than 

in the intermediate risk group, and that patients with the favorable-risk CBF-AML [eg, t(8;21) or 

inv(16)/t(16;16)] with the presence of c-KIT mutation are considered in the intermediate risk group because 

of an higher risk of relapse  (see Table 8 ) [175]. 

 

Table 8 - Prognostic value of National Comprehensive Cance r Network classification 

Risk group Subsets 

Favorable  

t(15;17)(q22;q21); PML-RARA 

t(8;21)(q22;q22); RUNX1-RUNX1T1 without c-KIT mutation 

inv(16)(p13.1q22) / t(16;16)(p13.1;q22);CBFB-MYH11 without c-KIT mutation 

Normal kariotype with NPM1 mutation in the absence of FLT3-ITD mutation 

Normal kariotype with biallelic CEBPA mutation in the absence of FLT3-ITD mutation 

Intermediate 

Normal karyotype 

+8 alone 

t(9;11)(p22;q23); MLLT3-MLL 

t(8;21) or inv(16) / t(16;16) with c-KIT mutation 

Other non defined 

Adverse 

-5, del(5q), - 7, del(7q) 

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 

t(11q23) [excluding t(9;11)(p21-22;q23)] 

t(9;22)(q34;q11) 

t(6;9)(p23;q34); DEK-NUP214 

Monosomal karyotype * 

Complex (≥3 clonal chromosomal abnormalities) 

Normal karyotype with FLT3-ITD mutation 

*: monosomal karyotype is defined as at least two autosomal monosomies or a single autosomal monosomy in the 
presence of one or more structural cytogenetic abnormalities 
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1.3.  WNT SIGNALING PATHWAY AND ACUTE MYELOID LEUKEMIA 

 

Wnt/β-catenin signaling directs cell proliferation and cell fate during embryonic development and adult 

homeostasis. Wnt proteins were originally identified in Drosophila [176] and mice [177], which were called 

Wingless(Wg) and Int1, hence the name Wnt . In humans there are 19 secreted Wnt ligands acting both on 

the secreting cell and neighbouring cells and 10 frizzled receptors that can activate the canonical (Wnt/β-

catenin), or non-canonical (Wnt/PCP or Wnt/Ca+) Wnt pathways. In the absence of Wnt ligand or presence 

of Wnt antagonists, the axin/adenomatous polyposis coli (APC)/casein kinase 1 (CK1)/glycogen synthase 

kinase 3 (GSK3) protein complex binds and phosphorylates β-catenin resulting in ubiquitination and 

proteosomal degradation of β-catenin. The pathway is activated when a Wnt ligand binds to the 

transmembrane domain receptor of the Frizzled family (FZD) and its co-receptor low-density lipoprotein 

receptor-related protein 5 or 6 (LRP5/6). FZD receptors are seven-pass transmembrane receptors which 

have cycteine-rich domains (CRD) in their N-terminus. Through the CRD, FZD receptor binds Wnt ligands. 

After an activating Wnt signal the protein Dishevelled (Dvl) is recruited to the receptor complex and the 

cytoplasmic tail of LRP5/6 is phosphorylated by CK1 and GSK3β. This provides a docking site for Axin1, 

which is then recruited to the receptor complex.  Nonphosphorylated active β-catenin is then accumulated 

and transported to the nucleus. β-catenin forms complexes with the TCF/LEF transcription factors. In the 

absence of β-catenin TCF forms a transcriptional repressor complex with Groucho. Groucho is physically 

displaced by β- catenin and Pygopus and Legless are recruited to assemble a transcriptional activator 

complex. β-catenin is rapidly turned over by ubiquitination and degradation by the proteasome pathway 

under unstimulated conditions. This requires phosphorylation of β-catenin by a “degradation complex” 

consisting of APC, Axin, GSK3, and CK1, followed by binding of β -Trcp. Several Wnt inhibitors have been 

identified such as the extracellular Dickkopfs (DKK), secreted Frizzled-related proteins (SFRP1-5) and Wnt 

inhibitory factor 1 (WIF1) that prevent ligand-receptor interactions [178]. Intracellular inhibitors are DACT that 

interacts with Dvl [179], Wilms tumour protein 1 (WT1) that promote β-catenin ubiquitination and 

degradation, the nuclear proteins SRY-box containing genes (SOX) and the transcriptional repressor 

Hypermethylated in cancer 1 (HIC1) that interacts with the β-catenin/TCF/LEF complex, inhibiting 

transcription of Wnt target genes [180]. Furthermore, menin encoded by the MEN1 (Multiple endocrine 

neoplasia type 1) gene, inhibits the transcriptional activity of β-catenin by transporting β-catenin out of the 

nucleus [181].  

 

1.3.1.  Wnt/ β-catenin signaling pathway 

Wnt proteins are characterized by a high number of conserved cysteine residues and are glycosylated and 

lipid modified at two conserved residues, which makes Wnt proteins highly hydrophobic. The palmitate is 

added in the endoplasmatic reticulum by the protein Porcupine (Porc) and is essential for signaling.  Wnt 

proteins bind to the extracellular N-terminal cysteine-rich domain of the Frizzled (Fz) receptor, which is in a 

complex with the low density lipoprotein receptor‐related protein 5 or 6 (LRP5/6). After an activating Wnt 
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signal the protein Dvl is recruited to the receptor complex and the cytoplasmic tail of LRP5/6 is 

phosphorylated by CK1 and GSK3β. This provides a docking site for Axin1, which is then recruited to the 

receptor complex. Axin1 is sequestered and assembly of the destruction complex is disrupted. β‐catenin will 

accumulate in the cytoplasm and translocate to the nucleus, where it initiates transcription by activating T 

cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. In the absence of β ‐catenin TCF forms 

a transcriptional repressor complex with Groucho. Groucho is physically displaced by β‐ catenin and 

Pygopus and Legless are recruited to assemble a transcriptional activator complex [182-185]. β‐catenin is 

rapidly turned over by ubiquitination and degradation by the proteasome pathway under unstimulated 

conditions. This requires phosphorylation of β‐catenin by a “degradation complex” consisting of APC, Axin, 

GSK3, and CK1, followed by binding of β -Trcp [186,187]. Wnt ligands interact with the cell surface receptor, 

Frizzled (FZD). The initial connection between seven‐transmembrane-span proteins of the Fz family and Wnt 

proteins came from studies in Drosophila cell culture. FZD receptors are seven-pass transmembrane 

receptors which have cycteine-rich domains in their N‐terminus. Through the CRD, FZD receptor binds Wnt 

ligands. In general, it is thought that a monomeric FZD receptor transmit signals downstream upon binding 

with Wnt ligand, however, the crystallographic resolution of the structure of the mouse FZD8 and sFRP3 

CRD domains suggested that CRDs might be able to homodimerise or heterodimerise. Furthermore, there 

are reports showing that dimerisation of FZD receptor activates the Wnt/β‐catenin pathway and that FZD 

form specific homo‐and hetero‐oligomers. These reports suggest the wide possibility of the signal 

transmission mechanism downstream of FZD receptor. Upon the binding of Wnt to FZD receptor, the 

intracellular amino sequences, K‐T-X-X‐X‐W directly binds to Dishevelled proteins. There are 10 reported 

human frizzled receptors. Phylogenetically, the Frizzled receptors fall into four groups [188]. 

In the late 1980s, β‐catenin was independently discovered twice, on the basis of its different functions: 

structural and signalling. The group of Rolf Kemler isolated β‐ catenin, together with two other molecules (α-

catenin and γ‐catenin/plakoglobin), as proteins associated with E‐cadherin, the key molecule of 

Ca2‐dependent cell adhesion. These proteins were named catenins to reflect their linking of E‐cadherin to 

cytoskeletal structures [189]. The signalling potential of β‐catenin was exposed through its Drosophila 

orthologue Armadillo: the armadillo gene was discovered in the seminal screens for mutations affecting 

segmentation of the Drosophila embryo [190]. This finding was a key step in the subsequent characterization 

of the Wnt/β‐catenin (or Wingless/ Armadillo, respectively) signalling cascade, and of the functions and 

mutual interactions of its individual components. Finally in the mid- 1990’s several groups independently 

found that the signalling function of β- catenin/Armadillo in the nucleus is mediated via TCF/LEF transcription 

factors, which in association with β‐catenin trigger Wnt‐mediated transcription [191-195]. The β‐catenin 

protein (781 aa residues in humans) consists of a central region (residues 141–664) made up of 12 imperfect 

Armadillo repeats (R1–12) that are flanked by distinct N‐ and C‐terminal domains, NTD and CTD, 

respectively. A specific conserved helix (Helix‐C) is located proximally to the CTD, adjacent to the last ARM 

repeat (residues 667–683) [196]. The NTD and the CTD may be structurally flexible, whereas the central 

region forms a relatively rigid scaffold. This scaffold serves as an interaction platform for many β-catenin 

binding partners, at the membrane, in cytosol, and in the nucleus [197]. Free β‐catenin is recognized by the 

key scaffold molecules Axin and APC, both of which can directly interact with β-catenin and also inter se. 

The scaffold establishes a platform for 68 associated kinases to phosphorylate β‐catenin [198,199]. CK1a 
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phosphorylates β-catenin and therefore the scaffolding proteins Axin and APC are essential for the 

GSK3‐mediated phosphorylation of β‐catenin: although GSK3 can modify a plethora of different proteins 

within a cell as a free molecule, it modifies β‐catenin only if it is associated with Axin and APC [200,201]. 

APC contributes to the establishment of the destruction complex, and stabilizes β‐catenin’s phosphorylation 

status. If N-terminally phosphorylated β-catenin is not associated with APC, after leaving the destruction 

complex, then it is immediately dephosphorylated by PP2A [202]. Activation of Wnt signalling leads to the 

disassembly of the β-catenin destruction complex and GSK3 activity is blocked. β‐Catenin can dynamically 

shuttle between the cytoplasm and nucleus. Surprisingly, it does not contain any classical nuclear 

localization signal (NLS) or nuclear export signal (NES) within its polypeptide sequence. Indeed nuclear 

import of β-catenin was shown to occur importin-karyopterin independently [203]. Recently, β‐catenin was 

shown to directly interact with different nuclear pore complex components (NPCs) [204,205]. By transiently 

and sequentially binding to different NPCs, β-catenin could pass through the nuclear pores. nucleus  Once in 

the nucleus β-catenin can activate transcription of Wnt/β‐catenin target genes. Hence, β‐catenin initiates 

transcription onlyas a member of bipartite or multimeric complexes wherein one partner provides association 

with specific responseelements on target genes (e.g., Wnt response elements, WREs) and β‐catenin acts as 

the central transcriptional activator. TCF/Lef transcription factors serve as the main nuclear partners of β 

catenin guiding it to specific DNA loci. Within the coactivator complex, β‐catenin functions as a scaffold to 

link the LEF-1/TCF proteins to specific chromatin remodeling complexes, as well as to the Wnt coactivators, 

Bcl-9/Lgs and Pygopus. Bcl‐9/Lgs and Pygopus are implicated in nuclear localization of β‐catenin [206] as 

well as transcription [207,208].  

 

1.3.2.  Induction of WNT signaling pathway in AML 

Aberrant activation of Wnt/β-catenin signaling has been linked to several cancers, including the progression 

of AML and other haematological malignancies [209,210]. Several studies pointed out the important role of 

the Wnt signaling in regulating mitotic divisions of hematopoietic stem cells (HSCs) [211]. The requirement of 

WNT signalling activity in HSC self-renewal and bone marrow repopulation has been indicated by the 

positive effect of WNT activation on hematopoietic stem cells (HSC) recovery in transplantation studies 

[211,212] and that WNT activation through TCF / β -catenin signalling was necessary for optimal HSC 

formation [213] and HSC integrity [214].  The control of self-renewal is mediated by WNT proteins produced 

by stromal cells and the niche and, in some cases, from the same HSCs through a paracrine/autocrine 

mechanism. Wnt pathway dysregulation exists in myeloid leukemias [211]; indeed, a Wnt pathway 

requirement for leukemia-initiating cell development in AML has emerged in a mouse model [215]. 

 

1.3.3.  WNT signaling in long-term reconstituting A C133bright  leukemia cells 

Acute myeloid leukemia is a genetically heterogeneous clonal disorder characterized by two molecularly 

distinct self-renewing leukemic stem cell (LSC) populations most closely related to normal progenitors and 

organized as a hierarchy. Ample evidence exists in mouse models that AML develops through the stepwise 
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acquisition of collaborating genetic and epigenetic changes in self-renewing LICs, which exhibit a committed 

myeloid immunophenotype and give rise to nonleukemogenic progeny in a myeloid-restricted hierarchy [216-

218]. Leukemia-initiating cells are restricted only to the CD34+CD38- population. The AC133 antigen (a 

glycosylation-dependent epitope of CD133) defines a desirable population of stem and progenitor cells 

containing in turn all the CD34brightCD38- progenitors, as well as the CD34brightCD38+ cells committed to the 

granulocytic/monocytic lineage [219]. According to literature’s data, the AC133 antigen expression is 

restricted to a rare cell population with long-term reconstituting activity, ranging from 20% to 60% of all 

CD34+ cells, and resulting barely detectable in CD34- Lin- cells. In a previous study [220], our research team 

demonstrated the clonogenic ability of AC133+ selected cell in qualitative terms (as capacity to produce 

colony forming-units granulocyte/macrophage and/or burst-forming units-erythroid in presence of appropriate 

stimulation) as well as in quantitative term (comparing the results with those obtained from unsorted bone 

marrow mononuclear cells).  

In order to highlight the de-regulated pathways involved in the maintenance of a self-renewing state in LICs, 

in a previous study our research team performed a genome-wide functional enrichment analysis on gene 

expression microarray data of AC133+ cells isolated from 33 newly diagnosed unselected non-promyelocytic 

AML patients and 10 healthy donors [221]. The functional enrichment methods selected the term “WNT 

receptor signaling pathway” (GO:0016055) as the most specific self-renewal associated dysregulated 

pathway in AC133+ AML cells. Among the 103 differentially expressed Wnt genes identified, genes shown to 

be highly AML-specific include the WNT ligands WNT2B, WNT6, WNT10A, and WNT10B [222], the WNT/β-

catenin signaling agonists including SMYD3 [223], DKK2 [224], SOX4 [225], PROP-1 [226], and PYGO2 

[227,228], antagonists including WIF-1 [229], KLHL12 [230], LRP6 [231], KREMEN1 [232], E2F1 [233], 

DACT1 [234], and HBP1 [235], and the deregulated WNT targets including STAT3, MYCN, ABCC4, DLX3, 

MARK4, RUNX2, CD24, and CD44 [236]. Notably, WNT2B, WNT6, WNT10A, and WNT10B, known to 

promote hematopoietic tissue regeneration [222], are the WNT mediators specifically upregulated in the 

AC133+ AML cells. Collectively, these data were consistent with ligand-dependent activation of the 

regeneration-associated WNT pathway [222,237].  

 

1.3.4.  Qualitative evaluation of WNT10B and detect ion of AC133 bright subpopulation 

According to these data, indicating transcriptional activation of canonical WNTs, we investigated how 

expression of WNT is related to AML phenotype through new in situ approaches. The attention was placed 

on WNT10B, a well-known hematopoietic stem cell regenerative-associated molecule, which was the only 

one to be expressed by all AML patients. In situ mRNA detection by target-primed Rolling Circle 

Amplification (RCA) analysis detected WNT10B-related transcript in bone marrow (BM) sections obtained 

from two randomly selected AML patients at diagnosis, with β‐actin as reference transcript in consecutive 

sections.  

Visualization by using high-performance fluorescence microscopy showed a diffuse localization pattern in the 

tissues (see Figure 6 ), and signal distribution and RCP quantification showed a β-actin/WNT10B ratio close 

to 1, suggesting a constitutive activation of WNT10B transcription in the BM. In addition, we analyzed 

transcriptional activation of canonical WNTs focusing on genes that have been shown to be potent regulators 
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of stem cell functions. N-terminally dephosphorylated β-catenin (ABC) was increasingly accumulated as 

determined by immunoblot analysis. Remarkably, we confirmed a dramatic increase in WNT10B expression 

in all patient samples, except for the only patient affected by therapy-related AML. 

Figure 6  - WNT10B mRNA in situ detection 

 

Detection with padlock probe and target-primed rolling circle amplification of individual WNT10B transcripts on BM slides 

from AML patients. WNT10B RCPs are shown in green (Cy5, while red RCPs represent β-actin transcripts in consecutive 

sections. Cell nuclei are shown in blue. Images were acquired with x20 magnification. Scale bar, 10 µm.  

 

To better elucidate the impact of the broad WNT10B overexpression on the leukemic microenvironment, we 

examined its expression in histologic preparations of BM from five randomly selected AML patients at 

diagnosis. The AC133 immunostaining revealed islands of highly positive cells (AC133bright) in an estimated 

proportion of 8% of cells, amid AC133dim or negative tumor blasts (Figure 7 ). These AC133bright showed a 

small diameter of the nuclei (8-10 µm) and a clonal appearance with an increased nuclear/cytoplasmatic 

ratio. The double immunostaining for WNT10B and ABC confirmed that WNT10B was expressed by a high 

proportion of leukemic cells, as well as in interstitial spaces, suggesting its secretion and release in the BM 

microenvironment (Figure 8D ). In order to define the spatial relationship between AC133 and ABC positive 

cells in AML bone marrow cell population, we performed a double immunostaining AC133/ABC (Figure 9 ). 

We observed a stringent correlation between AC133 and ABC signal, suggesting that the WNT signal 

responsiveness function is strictly associated to AC133bright cells. Using ImageJ, we noted that there are two 

types of signal positivity: the AC133 signals were localized around the membrane perimeter, while the ABC 

signals defined the cytoplasmatic area. While WNT10B is diffusely expressed at mRNA and protein levels on 

both leukemic blasts and stromal-like cells (Figure 8A/8D ), activation of WNT signaling marked by 

expression of the dephosphorylated β-catenin (ABC) was restricted to the smaller population of AC133bright 

leukemic cells (Figure 8B/8C ), likely induced through an autocrine/paracrine mechanism (Figure 8B/8D ).  
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Figure 7  - Detection of AC133 bright cells 

 

AC133 direct immunostaining on two bone marrow sections derived from AML patients, AML9 (A) and AML63 (B). The 

green signals, obtained with hybridization antibody labeled with dye 488 nm, define the AC133-positive cells. Two types 

of AC133-positive cells can be observed: a rare group of cells characterized by high bright positivity, and other cells 

showing a dim cytoplasmatic signal. Cell nuclei are shown in blue. Scale bar 10 µm. (Unpublished data, corollaries of 

[221]) 
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Figure 8  - β-Catenin activation in the subpopulation of AC133 bright  AML cells expressing WNT10B 

 

(A) Representative immunostaining micrographs show green fluorescence of cells expressing AC133 in a BM section. 

Cell nuclei are shown in blue. Scale bar represents 10 µm. (B) Co-staining of BM from adjacent serial section for 

expression of ABC (green) and WNT10B (red). Cell nuclei are shown in blue. (C) False color maps of ABC/WNT10B 

double positive cells (blue). (D) Morphologic detail of cells showing intense specific staining for ABC (top panels) and 

WNT10B (bottom panels).  
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Figure 9  - AC133bright  as marker of WNT signaling activation 

 

Double immunostaining for AC133 and ABC detection, on bone marrow section derived from AML9 patient. Cell nuclei 

are shown in blue. Scale bar 10 µm. (Unpublished data, corollaries of [221 ]) 

 

We established a primary AC133+ cell culture (termed A46) selected from a 66-year-old male at diagnosis of 

AML-M2 with diploid karyotype and a dominant CD133.1+CD34+CD38-CD45+CD117+ blast population. 

Comparative immunostaining and conditioned medium analysis of AC133-selected A46 leukemic and normal 

cells revealed that AC133+ A46 cells synthesize and secrete WNT ligands, whereas normal BM-derived 

AC133+ cells resulted negative. Subsequently, we showed a dramatic increase of WNT10B expression and 

protein release within the microenvironment in the large majority of samples from AML patients recruited to 

this study, with the exception of a therapy-related AML patient. In accordance with previous reports [238], we 

have not detected WNT10B gene expression in normal AC133+ hematopoietic cells.  

Leukemic stem cell functional activity in AC133+ cells was tested and significant levels of engraftment were 

found upon transplantation of A46 cells into sublethally irradiated Rag2-/-γc-/- mice. Then, we explored the 

physiological relevance of tumor-derived WNT signals by using the developing zebrafish as a biosensor. We 

hypothesized that WNT-secreting A46 cells transplanted into developing zebrafish embryos might act as 

ectopic sources of maternal WNT ligands. Consistent with our hypothesis, A46 cells retained a dorsal 

organizer-inducing activity with developement of ectopic axial structures, possibly correlated with their strong 

WNT signaling activation (see Figure 10 ). Conversely, control embryos grafted with normal AC133+ cells did 

not display alterations of the normal phenotype.  
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Figure 10  – AC133+ A46 AML cells induce ectopic gene express ion and secondary body axis 

formation upon transplantation in zebrafish embryos  

 

 Bright-field microscopy of a 24-hpf zebrafish embryo injected with A46 AML cells (lateral view). The arrowhead and the 

dotted line indicate the secondary trunk/tail induced by A46 cells. Scale bars represent 150 µm. 

These findings provided direct evidence that the WNT/β-catenin signaling is diffusely activated and exceeds 

the homeostatic range in the majority of human AML cases, with a specific transcriptional signature involving 

overexpression of the WNT pathway agonists and down-modulation of the major antagonists.  
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2.  MATERIALS AND METHODS  
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2.1.  Study population 

 

2.1.1. Patients’ characteristics and data collectio n 

One hundred twenty-five patients with untreated AML were included in this study. Patients’ characteristics 

are shown in Table 9 . Each patient gave his/her informed consent for collection of clinical data, the 

cryopreservation of bone marrow samples and the performance of DNA-analysis for scientific purposes, in 

accordance with institutional guidelines. Bone marrow samples from each patient were collected and 

cryopreserved at diagnosis and then centrally analyzed at the University of Milan, Italy.  

For each patient, data regarding history, haematologic parameters, bone marrow morphology, 

immunophenotype, cytogenetic, molecular analysis, and diagnosis of extra-medullary leukemia were 

recorded. Treatment schedule and outcome data were available for 116 out of 125 patients. Patients’ data 

were periodically updated, centrally verified for consistency and completeness and subsequently submitted 

for statistical analysis. The study design adhered to the Declaration of Helsinki and approval for this study 

was obtained from the Niguarda Hospital Review Board.  

 

2.1.2.  Definitions and criteria for treatment resp onse  

Complete remission (CR) was defined as less than 5% of bone marrow blasts, regression of extramedullary 

disease, transfusion independency with peripheral neutrophil count greater than 1 000/µL and platelet count 

greater than 100 000/µL and disappearance of the cytogenetic and molecular markers [239,240]. Recurrent 

disease is defined as the reappearance of ≥ 5% blasts in the bone marrow or in the peripheral blood or as 

the appearance of a new extramedullary site of diseas in patients with a previously documented CR. 

Extramedullary disease was defined as any leukemic collection outside the bone marrow and its presence 

was documented either by histological, cytological or radiological criteria. 

Overall survival (OS) was calculated from the date of diagnosis until death, where all living patients were 

censored at the time of last contact. The duration of CR was calculated from the date of the first CR until the 

date of the first relapse. Relapse-free survival (RFS) was calculated from the date of the first CR until the 

date of the first relapse, where patients were censored at the time of last contact or death not due to 

recurrent disease. 
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Table 9 - Clinical and genetic characteristics at presenta tion 

Characteristics  

Patients, no. 125 

 Median age, years (range) 51  (15 - 76) 

 No. men/no. women 67/58 

 Median WBC, x 109/L (range) 16.3  (0.3 - 345) 

 Median Hb, g/dl (range) 8.8  (4.2 - 12.0) 

 Median PLT, x 109/L (range) 34.5  (7 - 296) 

 Median LDH, U/L (range) 792  (172 - 1500) 

 Median marrow blast, % (range) 75.0 (20 - 98) 

 Median peripheral blast, % (range) 58.0 (0 - 97) 

 Extramedullary disease, no. (%) 12 (9.6) 

Cytogenetic features   

 Without additional abnormalities, no. (%) 48 (38.4) 

 No. Abnormalities, no. (%) 13 (10.4) 

 Structure abnormalities, no. (%) 64 (51.2) 

  t(8;21) 18 

  inv(16)/t(16;16) 24 

  t(15;17) or variant 8 

Mutational status  

 FLT3-ITD mutated cases, no. (%) 15/86 (17.4) 

 FLT3-TKD mutated cases, no. (%) 5/83 (6.0) 

 NPM1 mutated cases, no. (%) 20/46  (43.5) 

 Biallelic CEBPA mutated cases, no. (%) 2/11 (--) 

Classification   

 de novo AML, no. 112 

 AML with myelodysplasia-related features, no. 6 

 Therapy-related AML, no. 7 

 

 

2.1.3.  Statistical analyses 

All collected variables were submitted to usual descriptive methods. In particular, for continuous variables 

the distribution was firstly evaluated by the Shapiro-Wilk test, so that normally distributed variables were 

summarized with mean and standard deviation, while non-normal variables were summarized with median 

and range. The Pearson’s chi-square test with Yates’ correction for continuity and the Fisher’s exact test (if 

applicable) were used to check the association between categorical data, after cross-tabulation. 

Comparisons of normally distributed continuous variables were carried out by Student’s t-test or by Welch 

test (in the case of non-homogeneous variances between groups, previously verified by Levene’s test). The 

Kruskal-Wallis test and the Mann-Whitney U-test were used for comparison of continuous non-normally 

distributed variables.  
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The survival analysis was carried out using the Kaplan-Meier product limit method, followed by the logrank 

test, to evaluate the possible differences in survival between groups. Cox univariate and multivariate 

regression models were also used to analyse the effects of continuous variables on survivorship. The 

optimal multivariate model was chosen using a backward stepwise elimination after inserting all variables 

showing p < .20 at univariate analysis.  

The receiver operating characteristics curve (ROC) was traced to analyse the role of WNT transcript levels 

on survivorship and to search for an optimal cut-off value for WNT transcript itself. For all possible cut-off 

points, the total accuracy was considered together with sensitivity, specificity, positive predictive value and 

negative predictive value; however, the choice was made according to Youden. 

Statistical analysis was done using MedCal 9.3.7.0. Statistical significance was assumed for all tests with p 

<.05. 

 

 

2.2. Single cell analysis: mRNA in situ detection a nd Droplet Digital PCR 

At present, cell and tissue analysis of cellular pathways altered in disease, including transcripts, and protein 

levels, localizations, modifications and dynamic interactions, offer insights into the molecular basis of 

disease, and it will also provide a basis for directed biomarker discovery efforts and for identifying promising 

drug targets. Therefore, the single cell analysis of tumor specimens may allow the identification of cancer 

sub-clones that is a prerequisite for a more advanced and personalized therapeutic approaches. Advanced 

methods for single cell analysis have been developed to obtain comprehensive biological information from a 

snapshot of individual cells, and to pinpoint any essential disease related alterations in cellular pathways.  

The study of cell-to-cell variation has now become an important focus of biological and clinical research. In 

fact, when addressing cell-to-cell variation, single-cell analyses are necessary in order to study and 

characterize the intrinsic heterogeneity of cell populations, which are masked in bulk measurements [241-

243]. Single-cell analyses carried out in situ enable the identification and discrimination of cells within a 

microenvironment, thereby identifying subpopulations of cells with a particular expression profile or signaling 

activity status from the bulk of others in the original environment. Then, gene expression and protein analysis 

are pushed to include four foundamental parameters: analytical resolution, throughput, multiplexibility and 

spatial resolution.  

 

mRNA in situ detection  

Taking this issues into consideration, in situ analyses of mRNA and protein complexes can achieve precise 

and spatial localization within morphological preserved cells or tissues as they occur in their natural situation. 

Spatial resolution is an intrinsic property of in situ techniques because the molecular reactions are performed 

directly on the tissue section and the spatial information is readily visible. The concept with padlock probes 

was invented two decades ago and is an extension of the oligonucleotide ligation assay (OLA) [244], offering 

highly selective detection of DNA and RNA in solution and in situ. First, padlock probes are linear 

oligonucleotides of approximately 70 to 100 nucleotides in length with target- complementary 5´- and 3´- 

ends which constitute dual target recognition when both probe arms must hybridize correctly to the target. 
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This property allows for highly multiplex assays with limited cross-reactivity between probes [245-247]. 

Secondly, when the padlock probes hybridize to their correct target the ends of the padlock probe are 

brought together in a head to tail orientation, with only a nick in between. The nicks can be sealed by a DNA 

ligase creating circles that are locked onto the target strands as padlocks [248]. Only a perfect match in the 

junction enables ligation, which creates a circular DNA molecule that subsequently can be detected. RCA, 

also known as rolling circle replication (RCR), is an isothermal amplification technique of circular DNA 

molecules that creates long single stranded DNA molecules with tandem repeats of complements of the 

original circles [249]. Thus, RCA generates copies at a rate that is linear over time unlike PCR that proceed 

in an exponential fashion. Since the contiguous rolling circle products (RCPs) will by nature collapse into 

micrometer-sized DNA-bundles, RCA is highly suitable for localized detection. RCA consists of an isothermal 

amplification of a circular single-stranded DNA molecule. A 100 nt-long circle is replicated several hundred 

times per hour thanks to the high processivity of this polymerase (1x103 nt/min) [250]. Some of the 

characteristics of this mechanism make RCA an exquisite signal amplification system, especially for in situ 

applications The RCPs become detectable in a fluorescence microscope by the local enrichment of short 

fluorescent probes that hybridize to the detection sites of the coiled RCPs [251]. A great advantage with the 

appearance of single RCPs, being distinct bright signals representing individual molecules, is that it permits 

exact quantification of detected targets in a solution or in situ. 

 

Droplet Digital PCR  

The concept of digital PCR was first described in 1992 by Sykes et al., who recognized that the combination 

of limiting dilution, end-point PCR, and Poisson statistics could yield an absolute measure of nucleic acid 

concentration (252). Subsequently, Vogelstein and Kinzler at Johns Hopkins University developed a method 

whereby a sample is diluted and partitioned to the extent that single template molecules can be amplified 

individually, each in a separate partition, and the products detected using fluorescent probes (253). The term 

“digital PCR” was coined to describe this novel method. Digital PCR improves upon the sensitivity of real-

time PCR and enables the detection of rare events such as single-nucleotide mutations in a population of 

wild-type sequences. In conventional real-time PCR, the signal from wild-type sequences can dominate and 

obscure the signal from the rare sequence. By minimizing the effects of competition between targets, digital 

PCR overcomes the difficulties inherent to amplifying rare sequences, and allows for sensitive and precise 

absolute quantification of nucleic acids. 

A critical step in digital PCR is sample partitioning (ie, the division of each sample into discrete subunits) 

prior to amplification by PCR. The sample is prepared in a manner similar to that for real-time PCR but is 

then separated into thousands of partitions, each ideally containing either zero or at most a few template 

molecules. Each partition behaves as an individual PCR reaction and, as with real-time PCR, fluorescent 

probes are used to identify amplified target DNA. Each partition can then be readily analyzed after 

amplification to determine whether or not it contains the target sequence. Samples containing amplified 

product are considered positive (fluorescent), and those without product, and thus with little or no 

fluorescence, are negative. The ratio of positives to negatives in each sample is the basis of quantification. 

Unlike real-time PCR, digital PCR does not rely on the number of amplification cycles to determine the initial 
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amount of template nucleic acid in each sample; rather, it relies on Poisson statistics to determine the 

absolute template quantity. 

The unique sample partitioning step of digital PCR, paired with Poisson statistical data analysis, allows 

higher precision than traditional PCR and real-time PCR methods. Accordingly, digital PCR is particularly 

well suited for applications that require the detection of small amounts of input nucleic acid or finer resolution 

of target amounts among samples, for example, rare sequence detection, copy number variation analysis, 

and gene expression analysis of the rare targets [254].  

 

2.2.1.  mRNA in situ  detection 

In situ detection of individual mRNA molecules was performed as described. Bone marrow biopsies of AML 

patients, previously embedded in paraffin blocks, were cut in 5 µm thick sections and mounted on slides. 

Slides were dewaxed as follows: twice in 100% xylene for 15 minutes and 10 minutes, twice in 100% EtOH 

for 2 minutes, twice in 95% EtOH for 2 minutes, twice in 70 % EtOH for 2 minutes, and washed in DEPC-

H2O for 5 minutes and in DEPC-PBS for 2 minutes. Tissue fixation was performed in 3.7% (w/v) 

paraformaldehyde in PBS for 10 minutes at room temperature. After a wash in DEPC‐PBS for 2 minutes, the 

tissue sections were then permeabilized with 2 mg/ml pepsin (Sigma Aldrich, St. Louis, US) in 0.1 M HCl at 

37° C for 2 minutes. Slides were washed in DEPC‐H2O for 5 minutes, in DEPC‐PBS for 2 minutes and then 

fixed in 3.7% (w/v) paraformaldehyde in PBS for 10 minutes at room temperature. Tissue sections were then 

dehydrated through a series of 70%, 85% and 100% ethanol for 1 minutes each. Molecular reactions were 

carried out with a reaction volume of 100 µl in secure‐seals (13 mm in diameter, 0.8 mm deep; Grace Bio-

Labs) mounted over the tissue. One µM of locked nucleic acid (LNA)-modified cDNA primer (Exiqon, 

Vedbaek, Denmark; see Table 10a ) was added to the slide with 10 U/µl of M‐MULV reverse transcriptase 

(Fermentas), 500 nM dNTPs (Invitrogen), 0.2 µg/µl BSA (New England Biolabs, NEB) and 1 U/ µl RiboLock 

RNase Inhibitor (Fermentas) in the M‐MULV reaction buffer. Slides were incubated for 3 hours at 37° C. 

After incubation, slides were washed in PBS-T (DEPC‐PBS with 0.05% Tween20), followed by a post-fixation 

step in 3.7% (w/v) paraformaldehyde in DEPC‐PBS for 30 min at room temperature. After post‐fixation the 

sample were washed twice in DEPC PBS-T. To make the target cDNA strands available for padlock probe 

hybridization, the RNA portion of the created RNA‐DNA hybrids was degradated with RNaseH (Fermentas). 

Ligation was then carried out with 0.1 µM of the β‐actin padlock probe, WNT10B padlock probe and 

WNT10BIVS1 padlock probe (Sigma-Aldrich, St Louis, MO; see Table 10b) and in a mix of 0.5 U/µl Ampligase 

(Epicentre), 0.4 U/µl RNase H (Fermentas), 1 U/µl RiboLock RNase Inhibitor (Fermentas), Ampligase buffer, 

50 mM KCl and 20% formamide. Incubation was performed first at 37° C for 30 minutes, followed by 45 

minutes at 45° C. After ligation reaction, the slides were washed twice in DEPC-PBS with 0.05% Tween20. 

Rolling Circle Amplification (RCA) was performed with 1 U/µl DNA Polymerase (Fermentas) in the supplied 

reaction buffer, 1 U/µl RNase Inhibitor (Fermentas), 250 µM dNTPS (Invitrogen), 0.2 µg/µl BSA (NEB) and 

5% glycerol. Incubation was carried out for 5 hours at 37° C, and it was followed by a twice wash in PBS-T. 

Rolling Circle Particles (RCPs) were visualized using 100 nM of detection probe (Sigma-Aldrich; see Table 

10c) in 2X SSC and 20% formamide at 37° C for 20 minutes. Slides were then washed in DEPC-PBS. Nuclei 

were counterstained with 100 ng/ml Hoechst 33258 (Sigma‐Aldrich). The Secure-seals were removed and 
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the slides were dehydrated using a series of 70%, 85% and 99.5% ethanol for 3 minutes each. The dry 

slides were mounted with Invitrogen Slowfade. Images of bone marrow tissue slides were acquired using an 

Axioplan II epifluorescence microscope (Zeiss) equipped with a 100 W mercury lamp, a CCD camera (HRM, 

Zeiss), and a computer-controlled filter wheel with excitation and emission filters for visualization of DAPI, 

Cy3, and Cy5.A x20 (Plan Apocromat, Zeiss) and x40 (Plan Neofluar, Zeiss) objective were used for 

capturing the images. Images were collected using the Axiovision software (release 4.3, Zeiss). Exposure 

times for slides images were 520–680 ms (at 20X magnification), 320–480 ms (X40) for DAPI; 300 ms (x20), 

650 ms (Å~40) for Cy3; 250 ms (Å~20), 580 ms (Å~40) for Cy5. Images were collected as z-stacks to ensure 

that all RCPs were acquired, with a maximum intensity project created in Axiovision. For quantification, the 

numbers of 153 RCPs and cell nuclei in images were counted digitally using CellProfiler 

(www.cellprofiler.org) on three x20 microscope images. The total number of RCPs was divided by the 

number of nuclei for each image. The average for each sample was then calculated from the result of the 

five images and is reported as RCPs per cell. The threshold for different color channels was set with ImageJ 

1.41 . 

 

Table 10 – Primer, padlock probe and detection probe for mR NA in situ  detection 

A. LNA PRIMERS 

β-actin 

5′-C+TG+AC+CC+AT+GCCCACCATCACGCCC-3′ 

WNT10B 

5′-C+A+G+G+C+CGGACAGCGTCAAGCACACG-3′ 

 

B. PADLOCK PROBES 

β-actin 

5′-[Phos] 
GCCGGCTTCGCGGGCGACGATTCCTCTATGATTACTGACCTATGCGTCTATTTAGTGGAGCCTCTTCTTTACGGCGC

CGGCATGTGCAAG-3’ 

WNT10B 

5′-[Phos] 
ACCGTGCCTGTCGGACCCTCCTCTATGATTACTGACCTAAGTCGGAAGTACTACTCTCTTCTTCTTTTAGTGAAGCCC

AGGCAACCCA-3′ 

WNT10BIVS1 

5’-[Phos] 
AGTCTCCCGTCCCGCAGGTCTCCTCTATGATTACTGACCTATGCGTCTATTTAGTGTATCCTCTTCTTTCTATTCCTG

AACCCGCATCA-3’ 
 

C. DETECTION PROBES 

β-actin , CY3 

5′-[Cy3]-TGCGTCTATTTAGTGGAGCC-3’ 

WNT10B, CY5 

5′-[Cy5]-AGTCGGAAGTACTACTCTCT-3′ 
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FLUOROPHORES λ ABSORPTION λ EMISSION 

HOECHST 33258 346 nm 460 nm 

CY3 550 nm 570 nm 

CY5 622/36 nm 667/30 nm 

 

2.2.2.  RNA isolation  

Total RNA for expression profiling analysis was extracted using RNAqueus 4PCR kit (Ambion, Austin TX) 

from mononucleated cells derived AML samples. 500 µL of Lysis/Binding Solution was added to a sample 

and vortexed vigorously; an equal volume of 64% Ethanol was added to the lysate and the tube was inverted 

several times. The samples were applied to columns, spun for 30 seconds at 10,000 RCF, and the flow 

through was discarded. 700 µL of Wash Solution #1 was added, centrifuged, the flow through was then 

discarded. Then 500 µL of Wash Solution #2/3, was added and centrifuged and the flow thought was 

subsequently discarded. This process was repeated with another 500 µL of Wash Solution #2/3. RNA was 

eluted with 50 µL of preheated Elution Solution, and centrifuged at 10,000 RCF for 30 seconds, and eluted 

again with 15 µL of Elution Solution. Solution was then treated with 7.5 µL of 10x DNase1 buffer and 1.0 µL 

of DNase1 enzyme to destroy residual DNA. The product was then incubated for 30 minutes at 37º C before 

8.0 µL of DNase1 inactivation reagent was added and incubated for 2 minutes at room temperature. The 

tube was then spun down at 10,000 RCF for 1 minute to pellet the inactivation reagent. 

 

2.2.3.  RNA quality evaluation 

Integrity of RNA samples extracted from dried blood spots was checked using Experion™ (Bio-Rad, USA). 

Experion system was included with automated electrophoresis station, priming station, vortex station for RNA 

analysis and RNA std sens analysis kit which included with chips and reagents for standard-sensitivity RNA. 

Following procedure performed for RNA analysis using the Experion system. In order to avoid any 

contamination during RNA integrity analysis, electrodes of the Experion system were cleaned using Experion 

electrode cleaner (800 µl) in the first step. After repeating this step for one more time, electrodes were rinsed 

with DEPC treated water (500 µl) for 5 minutes using electrode cleaning chip. At the end lid was kept open 

for 60 second to evaporate remaining water on electrodes. RNA stain, RNA loading buffer and RNA gel from 

the RNA std sens kit were removed from 4˚ C and equilibrated at room temperature for 20 minutes. RNA 

stain was wrapped in aluminum foil to avoid its light sensitive degradation. RNA gel was filtered from filter 

tube at 2000 RPM for 10 minutes. Filtered gel (65 µl) was taken into RNase-free microfuge tube and mixed 

with RNA stain (1 µl). RNA ladder was removed from -20˚ C and thawed it on ice for 10 minutes. RNA ladder 

(1 µl) and RNA samples (3 µl) was taken into RNase-free microfuge tube. RNA ladder and RNA samples 

were denatured at 70˚ C for 2 minutes. Ladder and samples were immediately placed on ice for 5 minutes, 

spun down for 2-5 seconds and stored on ice until needed. Gel-stain solution (9 µl) was taken in well labeled 

as GS on RNA std sens chip without forming any air bubble. Chip was primed by setting appropriate 
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pressure for sufficient time on priming station. Chip was inspected for any air bubbles in micro 133 channels 

and for incomplete priming. Gel-stain solution (9 µl) was taken other well labeled GS. Filtered gel (9 µl) was 

taken to well labeled as G. Loading buffer (5 µl) was taken to each sample well 1-12 including ladder well. 

RNA ladder (1 µl) was taken to the well labeled as L. RNA samples were taken to all wells numbered as 1-

12. Chip was placed tightly and vortexed for 60 seconds on vortex station. Primed chip loaded with RNA 

samples and ladder was then kept on electrophoresis station for 5 minutes and electrophoresis run was 

started. The use of a RNA ladder as a mass and size standard during electrophoresis allows the estimation 

of the RNA band sizes. After completion of the run, electrodes were cleaned using DEPC water (800 µl) filled 

in a cleaning chip. Electropherograms generated were analyzed by Experion software version 3.2. Integrity 

of the RNA may be assessed by visualization of the 18S and 28S ribosomal RNA bands. The intact RNA 

preparation shows high 18S and 28S rRNA peaks as well as a small amount of 5S RNA. 

 

2.2.4.  Droplet Digital PCR  

In our study, Droplet Digital PCR (ddPCR) experiments were performed using primers and probes listed in 

Table 11 . We performed the experiment on Bio-Rad’s QX100 ddPCR system and the reaction mixtures in a 

final 20 µl volume consisted of 10 µl of 2x One-Step RT-ddPCR Supermix (Bio-Rad, CA, USA), 1 mM 

Manganese Acetate solution (Bio-Rad, CA, USA), 0.5  µM of forward and reverse primers, 0.25  µM probes. 

The 0.1 mM RNA, extracted using the RNAqueous-4PCR kit following the manufacturer's instructions 

(Ambion, Austin, TX-Thermo Fisher Scientific), was denatured at 95° C for 5 minutes and kept on ice prior 

addition to the reaction. The 20 µL ddPCR reaction mixture was then loaded into the Bio-Rad DG8 droplet 

generator cartridge (Bio-Rad, CA, USA). Then, each oil well was filled with 70 µl of droplet generation oil 

(Bio-Rad, CA, USA) and the prepared cartridge was then loaded into the QX100 droplet generator (Bio-Rad, 

CA, USA). The generated droplets were transferred to a 96-well PCR plate, that was sealed with a BioRad 

pierceable foil heat seal, and then samples were amplified on the T100 BioRad thermal cycler. The thermal 

cycling conditions consisted of 30 minutes reverse transcription at 60° C, 5 minutes initial denaturation at 95° 

C, followed by 40 cycles of a two-step thermal profile of 30 seconds denaturation at 94° C and 60 seconds 

annealing-elongation at 60° C and a final 10 minutes denaturation step at 98° C. Then plates were 

transferred to the QX 100 droplet reader (Bio-Rad, CA, USA) and ddPCR data were analyzed with 

QuantaSoft analysis software (version 1.7.4). 

The TaqMan® probe specific for WNT10B ties transcript exon 1 and it is marked by FAM fluorophore (λabs = 

495 nm and λem = 520 - 495 nm), while the TaqMan® probe specific for WNT10BIVS1 ties transcript at intron 1 

and is marked by the fluorophore HEX (λabs = 530 nm and λem = 560). The fraction of drops at high 

fluorescence intensity, distinct from the weak background signal due to imperfect quenching of the TaqMan® 

probes, was used to calculate by Poisson statistics the concentration of target in the original sample: 

 
M = average number of target molecules per droplet 

P = number of positive droplet 

R = number of analyzed droplet 
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Therefore, it is possible to derive the concentration of copies of target per microliter by multiplying M for 

1000/Vd, where Vd is the volume of each drop, and further calculate the concentration of the target in the 

initial solution by multiplying the concentration for the dilution factor (D) used. 

 

Table 11 – Primer and TaqMan ® probes in Droplet Digital PCR  

PRIMER PRIMER SEQUENCE 

Forward WNT10B 5’-GCAGCACTAGTGAAGCCCAG-3’ 

Forward WNT10BIVS1 5’-CCTGAACCCGCATCAAGTCTC-3’ 

Reverse 5’-ATCTCATTGCTTAGAGCCCGAC-3’ 

 

TARGET TAQMAN® SEQUENCE 

Forward WNT10B 5’-[6FAM]CACCCAAACCACTGGAGTCCTGATCG[BHQ1]-3’ 

Forward WNT10BIVS1 5’-[HEX]TCTCCCGTCCCGCAGGTCCTGATCG[BHQ1]-3’ 
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3.  RESULTS 
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3.1.  Identification of WNT10B IVS1 transcript variant  

 

 

3.1.1. Characterization of 5' region of WNT10B 

In order to understand the cause of the highly WNT10B regenerative molecule expression in the leukemia 

environment, we performed a deeply characterization of the WNT10B mRNA using 5’ Rapid Amplification of 

cDNA Ends (5’-RACE). As the first step, we set up the 5’-RACE that was carried out on RNA extracted from 

AML46 patient. A gene-specific oligonucleotide that hybridizes to a known sequence within a characterized 

coding region is used to prime reverse transcription. Using a GSP2 primer, designed on WNT10B exon2, we 

obtained a product that was approximately 120bp long. To characterize the RACE product generated, the 

product was cloned into the pCR®IITOPO® vector (Invitrogen), and inserts were analysed by EcoRI 

restriction digest. Inserts that correlated in size with the PCR products generated by 5’-RACE were 

sequenced. We obtained three different results: 

� clones 8-11: the correct canonical WNT10B sequence 

� clones 1-4 and 31: characterized by the presence of 21bp at the beginning of WNT10B transcript 

� clones 18-27: characterized by an Intron Retention IVS1 region of 77nt and by a stop of cDNA after 

the IVS1 sequence with the absence of exon 1 (clones 18 and 27 were sequenced using universal 

primer M13 Fw and M13 Rw, and analyzed using BLAST and ASAPII (http://blast.ncbi.nlm.nih.gov; 

http://www.bioinformatics.ucla.edu/ASAP2) 

 

The molecular evaluation by 5’-RACE PCR of WNT10B transcript evidenced the presence of a non-

physiological transcript variant, termed WNT10BIVS1, characterized by the absence of exon 1 and partial 

retention of 77 nucleotides of intervening sequence 1 (see Figure 11 ). In order to characterize the 

WNT10BIVS1 region, we performed in silico analysis using free software as ASPIC 

(http://www.caspur.it/ASPIC/) and ESEFInder (http://exon.cshl.edu/ESE/). The in silico analysis, using our 

region as a “query”, demonstrate that the Exon2-IVS1 splicing junction is correct, and that the end of the 

WNT10BIVS1 region corresponds with the end of the transcript. It’s interesting to note that the ATG site, is 

localized in the WNT10B exon 2, suggesting that this alteration doesn’t involve the protein expression. Then, 

the nature of the WNT10BIVS1 transcript remain unclear, but it will be the object for the future perspectives. 
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Figure 11  - Scheme of WNT10B and WNT10B IVS1 variant transcript 

 

 

 

3.1.2.  WNT10B and WNT10B IVS1 expression in AML cell line and patients samples 

In order to define the distribution and localization of WNT10BIVS1, we performed the mRNA in situ detection 

on AML46 spotted and fixed cells s, and on bone marrow biopsies. In our previous work [221], we 

demonstrated through establishment of a primary AC133+ AML cell culture (A46) that leukemia cells 

synthesize and secrete WNT ligands, increasing the levels of dephosphorylated β-catenin in vivo. Besides, 

the results of our experiments indicate that AC133 is expressed on AML-LSC in the A46 primary cells, 

suggesting that regeneration-associated Wnt expression signature is enriched in primary human AML LSC-

containing fraction. Considering this background data, we performed the mRNA in situ detection on A46 

cells, derived from AML46 patient (see Figure 12 ). 

 

Figure 12  – β‐‐‐‐actin mRNA in situ detection on AML46 cells 

 

β-actin RCPs are shown in green. Nuclei are shown in blue. Scale bar 10 µm. 
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In order to define the ratio between WNT10B and WNT10BIVS1, we set up the double detection in situ for 

both molecules. Using one common LNA primer for retrotranscription, we detected WNT10B and 

WNT10BIVS1 through two specific padlock probe (see Figure 13 ).  

Figure 13  - WNT10B and WNT10B IVS1 detection in situ  on AML46 cells  

 

mRNA in situ detection of WNT10B and WNT10BIVS1 molecules on A46 cells. There are represented four fields 

(A,B,C,D). Cell nuclei are shown in blue. WNT10B RCPs are shown in green and WNT10BIVS1 are shown in red. Scale 

bare 10 µm. 

It is of notice that RCPs counting of WNT10B and WNT10BIVS1 showed a ratio close to 1, suggesting a 

balance expression of this two expressed isoforms of transcript (see Figure 14 ). 

Figure 14  - RCPs counting of WNT10B and WNT10B IVS1 on A46 cell line 
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In order to observe and evaluate the localization and distribution of WNT10BIVS1 in the AML bone marrow 

context, we performed the mRNA in situ detection of WNT10B and WNT10BIVS1 mRNA molecules. We 

planned the experiments using only one LNA primer, mapped to WNT10B exon3 and two Padlock Probes: 

the WNT10B mRNA was detected by a Padlock probe designed on the exon 1, while WNT10BIVS1 was 

detected with a Padlock probe designed on IVS1-exon2 junction (see Figure 15). 

 

Figure 15  - WNT10B and WNT10B IVS1 detection in situ  on bone marrow biopsy  

 

mRNA in situ detection of WNT10B and WNT10BIVS1 molecules on AML9 bone marrow biopsy. WNT10B RCPs are 

shown in green, WNT10BIVS1 RCPs are shown in red. Cell nuclei are shown in blue. Scale bare 20 µm.  

 

Comparing the WNT10BIVS1 with the WNT10B mRNA distribution, we can note that the ratio results equal 

to 0.8 (see Figure 16) , suggesting that there is a bslance between WNT10B and WNT10BIVS1 expression.  

 

 

Figure 16  - RCPs counting of WNT10B and WNT10B IVS1 on AML9 bone marrow biopsy  
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3.2.  Droplet Digital TM PCR  analysis 

 

Absolute quantification of mRNA levels of WNT10B and related WNT10BIVS1 transcript variant were obtained 

as described by Droplet DigitalTM PCR on mononucleated cells derived from the study cohort of 125 AML 

patients. Results are reported in Table 12. 

 

Table 12 - mRNA levels of WNT10B and WNT10B IVS1 transcript variant by Droplet Digital TM PCR 

Code WNT10B WNT10B IVS1 Code WNT10B WNT10B IVS1 Code WNT10B WNT10B IVS1 Code WNT10B WNT10B IVS1 

1 100000 96450 41 100000 98700 209 8940 28 250 6530 9610 
2 7343 6234 42 9567 6532 210 6650 14 256 100000 50 
3 6174 5678 43 9878 6123 211 8350 61 257 18300 9871 
4 3043 1204 44 9981 60 212 8680 64 258 6220 9815 
5 5822 4768 46 100000 100000 213 5170 72 260 10400 9126 
6 5253 3349 48 9998 9538 214 7880 39 262 10300 10100 
9 100000 100000 49 100000 99878 215 8920 33 264 8765 5349 

10 7368 6523 50 9912 8139 216 100000 73 265 5790 10329 
11 6642 6123 51 100000 100000 217 10500 32 269 8630 11231 
12 7833 7655 52 9569 9324 218 10400 0 270 100000 11197 
13 4639 2234 53 9876 9123 219 10500 0 272 8100 22 
14 9733 9756 54 9878 3767 220 100000 45 273 6040 34 
16 7696 7645 55 3192 3120 221 100000 36 276 100000 69 
17 8733 8567 57 8213 5987 222 5860 32 279 13127 33 
18 8343 8276 59 100000 98567 223 6990 65 TR1 123 32 
19 5342 5304 60 100000 86549 224 7900 19 TR2 35 3 
20 9838 9815 61 9992 4590 225 9740 7324 TR3 49 8 
21 100000 100000 62 9438 8976 226 100000 100000 TR4 10 4 
22 9547 9519 63 100000 97899 228 5250 4591 TR5 33 12 
23 8345 8234 64 100000 30 229 6110 4456 TR6 28 21 
24 100000 100000 65 56789 44356 230 5880 5789 TR7 14 9 
25 9745 9679 67 100000 100000 232 9180 5182 APL1 100000 23 
27 8345 8128 68 100000 98000 233 9090 8871 APL2 7720 33 
28 100000 100000 200 14120 43 235 6000 16 APL3 8650 56 
30 9378 9246 201 9378 10 237 5910 5643 APL4 6230 67 
32 9415 9158 202 11560 65 239 5450 10 APL5 6980 31 
33 7645 6529 203 11890 28 240 9820 73 APL6 9520 29 
34 6989 6192 204 12416 57 241 17650 123 APL7 9430 25 
35 9878 89 205 12789 36 242 5820 221 APL8 9123 18 
37 9987 93 206 12983 18 243 10800 27    
38 9993 5399 207 10500 40 245 7620 7768    
39 9345 5911 208 776740 35 248 100000 7491    
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3.3. Statistical analysis on study population 

 

 

3.3.1. Treatment course and outcome 

Treatment schedule and outcome data were available for 116 out of 125 patients. Those patients were 

assessed for response. CR was obtained from 97 out of 116 (83.6%) patients. Primary refractory diseases 

and 5 infectious complication during post-chemotherapy aplasia accounted for the 19 patients who did not 

achieve CR.  

The median follow-up time was 65.5 months based on the reverse Kaplan-Meier method. The estimated 5-

year OS and RI resulted 45.8% and 58.1% respectively, with 37 patients alive in CR1 and 16 patients alive in 

second or subsequent CR (see Figure 17 ).  

 

Figure 17  - Kaplan-Meier plots showing OS and RI of AML pati ents  
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3.3.2. Outcome per risk classification 

Patients were then divided on the basis of the three main classification system, formerly according to Medical 

Research Council (MRC), European LeukemiaNet (ELN), and National Comprehensive Cancer Network 

(NCCN) scoring system, respectively (see Tables 6-8 ). Numerical distribution of patients in the distinct risk 

groups belonging to the different classifications is showed in Table 13 . 

 
Table 13 – Distribution of patients belonging to different risk classifications   

 Patients , no. MRC ELN NCCN 

Favorable 44 56 58 

Intermediate 59 
INT-1:       34 

INT-2:       14 
33 

Adverse 13  12 25 

 

 

Our study population demonstrated to be a representative sample of leukemic patients described in 

literature, and all three classification system adopted have proved to be able to distinguish patients at 

different outcomes with a statistically significative wise (see Table 14 and Figure 18 ). 

 
 
Table 14 – Outcome data per distinct risk classifications a nd risk groups   

 

Median survival (months) MRC ELN NCCN 

Favorable NR     NR NR 

Intermediate 17.97 
INT-1:    16.23 

INT-2:    47.87 
22.97 

Adverse 14.97     14.57 11.80 

5-years OS  (%)    

Favorable 54.9     54.7 53.6 

Intermediate 43.7 
INT-1:    39.3 

INT-2:    49.0 
45.9 

Adverse 20.0     11.4 25.0 

Significance (p) 0.0314 0.0133 0.0010 
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Figure 18  - Kaplan-Meier plots showing OS per risk classific ation 
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3.3.3.  Differences in distribution of WNT10B and W NT10BIVS1 per risk classification 

 

WNT10B transcript levels 

WNT10B was highly expressed in every risk group according to the three different classification systems, 

and statistical analysis did not show significative difference in distribution of its transcript levels (p 0.6395, p 

0.4295, and p 0.1786, respectively; Kruskal-Wallis test) (see Figure 19 ). These results were confirmed by 

comparative Mann-Whitney U-test. 

 

Figure 19  - Box-plot distribution of WNT10B transcript per r isk classification  
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WNT10B IVS1 transcript levels 

WNT10BIVS1 transcript levels showed a statistical significative difference between the specific risk classes (p 

<0.0001; Kruskal-Wallis test). Comparative Mann-Whitney U-test showed high expressed transcript levels in 

intermediate or adverse-risk patients, while WNT10BIVS1 showed a significant lacking of mRNA expression in 

patients classified as with favorable-risk prognosis (p <0.001 for all three classification system). No statistical 

significance in WNT10BIVS1 mRNA levels was found between intermediate and adverse-risk groups (MRC Int 

vs Adv: p 0.4864; ELN: Int-1 vs Int-2 p 0.1500; ELN Int-1/2 vs Adv: p 0.6963; NCCN Int vs Adv: p 0.9940) 

(see Figure 20 ). 

 

Figure 20  - Box-plot distribution of WNT10B IVS1 transcript per risk classification  

 

 

 

 

 
 
 
 
 
 
 
 

 
 

Given the significant difference in the expression of WNT10BIVS1 values in favorable-risk patients [namely, 

t(8;21), inv(16)/t(16;16), t(15;17)], we went to analyze patients subdivided by WHO classification. 
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3.3.4.  Differences in distribution of WNT10B and W NT10BIVS1 per WHO classification 

 

WNT10B transcript levels showed a statistical significative difference between the distinct WHO classes (p 

0.0002; Kruskal-Wallis test). WNT10B mRNA was highly expressed in de novo AML (ie, AML with recurrent 

genetic abnormalities or AML not otherwise specified) and AML with myelodysplasia-related features, while 

we showed a significant lacking of mRNA expression in patients  with therapy-related disease (p <0.002, 

Mann-Whitney U-test). No statistical significance in WNT10B transcript levels was found between patients 

with recurrent genetic abnormalities, myelodysplasia-related features or AML not otherwise specified (see 

Figure 21 ). 

 

Figure 21  - Box-plot distribution of WNT10B transcript per W HO classes 

 
Legend for WHO classes: 1. AML with recurrent genetic abnormalities; 2. AML with myelodysplasia-related features; 3. 
therapy related AML; 4. AML, not otherwise specified. Mann-Whitney U-test: 3 vs others: p < 0.002; 1 vs 2: p 0.9594; 1 
vs 4: p 0.8801; 2 vs 4: p 0.9088. 

 

Statistical analysis showed a significative difference in WNT10IVS1 distribuition (p <0.0001; Kruskal-Wallis 

test). Comparative U-test showed the presence of the WNT10BIVS1 transcript in AML with myelodysplasia-

related features and AML not otherwise specified groups, while we recorded absence of WNT10BIVS1 mRNA 

in the therapy-related group (p <0.0005). Patients affected by AML with recurrent genetic abnormalities (see 

Table 3 for details) showed a more heterogeneous distribution in WNT10BIVS1 transcript levels, and they 

included both patients at high or absent mRNA expression. No statistical differences were found between 

patients with MDS-related features or AML not otherwise (see Figure 22 ). 
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Figure 22  - Box-plot distribution of WNT10B IVS1 transcript per WHO classes 

 
Legend for WHO classes: 1. AML with recurrent genetic abnormalities; 2. AML with myelodysplasia-related features; 3. 
therapy related AML; 4. AML, not otherwise specified. Mann-Whitney U-test: 3 vs others: p <0.0005; 1 vs others: p 
<0.003; 2 vs 4: p 0.5475. 
 

 

Given this heterogeneous distribution in WNT10BIVS1 transcript values in patients with recurrent genetic 

abnormalities, and since the previous analysis based on genetic risk classes recognized a significant lacking 

of mRNA expression in patients classified as with favorable-risk prognosis, we went to hive off patients in the 

following genetic profiles: 

1. core-binding factor AML      (n = 40) 

2. acute promyelocytic leukemia      (n = 8) 

3. AML with other recurrent cytogenetic abnormalities  (n = 7) 

4. normal karyotype AML with NPM1 or CEBPA mutation  (n = 16) 

5. AML with myelodysplasia-related features   (n = 5) 

6. therapy-related AML      (n = 7) 

7. normal karyotype AML      (n = 32) 

8. AML with  cytogenetic number abnormalities   (n = 4) 

9. AML with cytogenetic structure abnormalities   (n = 6) 

 

Analysis confirmed a significative difference in WNT10B transcript levels (p 0.0008; Kruskal-Wallis test), and 

comparative Mann-Whitney U-test endorsed the presence of WNT10B mRNA in all groups of patients, with 

the exception of patients with therapy-related disease (p <0.01). No statistical significance in WNT10B levels 

was found between all the other groups (see Figure 23 ).  
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Figure 23  - Box-plot distribution of WNT10B transcript per s plitted WHO classes  

 
Legend for splitted WHO classes: 1. core-binding factor AML; 2. acute promyelocytic leukemia; 3. AML with other 
recurrent cytogenetic abnormalities; 4. AML with NPM1 or CEBPA mutation; 5. AML with myelodysplasia-related 
features; 6. therapy-related AML; 7. normal karyotype AML; 8. AML with  cytogenetic number abnormalities; 9. AML with 
cytogenetic structure abnormalities. Mann-Whitney U-test: 6 vs others: p <0.01.   
  
 

 

WNT10BIVS1 transcript levels showed a statistical significative difference between the distinct genetic classes 

(p <0.0001; Kruskal-Wallis test). Comparative Mann-Whitney U-test showed that WNT10BIVS1 mRNA was 

non-detectable in core-binding factor AML, APL, and therapy-related diseases, while it was highly expressed 

in all the remaining groups of patients (p <0.01) (see Figure 24 ).  

Figure 24  - Box-plot distribution of WNT10B IVS1 transcript per splitted WHO classes 

 

Legend for splitted WHO classes: 1. core-binding factor AML; 2. acute promyelocytic leukemia; 3. AML with other 
recurrent cytogenetic abnormalities; 4. AML with NPM1 or CEBPA mutation; 5. AML with myelodysplasia-related 
features; 6. therapy-related AML; 7. normal karyotype AML; 8. AML with  cytogenetic number abnormalities; 9. AML with 
cytogenetic structure abnormalities. Mann-Whitney U-test: see text for details.   
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These results were confirmed by grouping patients with normal karyotype AML (regardless of the presence 

of mutations in the NPM1 gene / CEBPA, n = 48) or structural or number cytogenetic abnormalities  (n = 17) 

(see Figure 25  and Figure 26 ). 

 

Figure 25  - Box-plot distribution of WNT10B transcript by gr ouping patients 

 

Legend: 1. core-binding factor AML or acute promyelocytic leukemia (n=48); 2. normal karyotype AML (n=48); 3. AML 
with myelodysplasia-related features (n=5); 4. therapy-related AML (n=7); 5. AML with cytogenetic abnormalities (n=17).  

 

Figure 26  - Box-plot distribution of WNT10B IVS1 transcript by grouping patients 

 

 

Legend: 1. core-binding factor AML or acute promyelocytic leukemia (n=48); 2. normal karyotype AML (n=48); 3. AML 
with myelodysplasia-related features (n=5); 4. therapy-related AML (n=7); 5. AML with cytogenetic abnormalities (n=17).  
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3.3.5.  WNT-based classification of AMLs 

Combining these results, it is possible to recognize three distinct WNT10B / WNT10BIVS1 patterns: 

� “double-positive”: WNT10B + / WNT10BIVS1 + 

� “single-positive”: WNT10B + / WNT10BIVS1 - 

� “double-negative”: WNT10B -  / WNT10BIVS1 -   

Our analysis showed that all therapy-related AMLs fall in the first “double-negative” group, favorable-risk 

patients [namely, t(15;17), t(8;21), inv(16)/t(16;16)] are grouped in the “single-positive” group, whereas all the 

other AML-patients (AML with other recurrent genetic abnormalities, AML with MDS-related features, AML 

not otherwise specified) presented the WNT10BIVS1 allele variant and are part of the “double-positive” group 

(see Table 15 ). 

Table 15 - WNT-based classification of AML-patients  

Patient class WNT arrangement Termed 

Therapy-related AMLs WNT10B -  / WNT10BIVS1 - “double-negative” 

Favorable-risk AMLs WNT10B + / WNT10BIVS1 - “single-positive” 

All other AMLs WNT10B + / WNT10BIVS1 + “double-positive” 

 

Statistical analysis confirmed a significative difference for both WNT10B and WNT10IVS1 transcript levels 

using this WNT-based classification (p <0.0001; Kruskal-Wallis test). Comparative Mann-Whitney U-test 

endorsed expression of WNT10B in patients with de novo AML, while confirmed a significant lacking of 

mRNA expression in therapy-related diseases (p <0.0001). Similarly, WNT10BIVS1 mRNA was highly 

expressed in AML patients, with the exception of favorable-risk or therapy-related (p <0.001) (Figure 27 ).  

 

Figure 27  - Box-plot distribution of WNT10B and WNT10B IVS1 transcript per WNT-based classes 

Legend for WNT-based groups: 1. other AMLs; 2. core-binding factor AML; 3. therapy related AML. Mann-Whitney U-
test: see text for details.   
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Scatter analysis confirmed the presence of these three distinct classes of patients based on WNT10B / 

WNT10BIVS1 arrangement (see Figure 28 ). 

 

Figure 28  – Scatter diagram of WNT10B and WNT10B IVS1 transcript values 
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3.3.6.  Receiver operating characteristic (ROC) cur ve analysis 

We performed a receiver operating characteristic (ROC) curve analysis of WNT10B and WNT10BIVS1 levels 

towards those three groups (ie, therapy-related AML, CBF-AML, other AML) in search of possible cut-off 

values.  

Canonical WNT10B analysis showed an optimal cut-point at 123 when test for therapy-related AMLs (AUC 

1.0, sensitivity 100.0%, specificity 100.0%; p <0.0001), while no possible cut-off points were identified for 

favorable-risk (AUC 0.578, p 0.1432) or other AML-patients (AUC 0.533, p 0.5304) (see Figure 29 ). 

  

Figure 29 – ROC curve analysis for WNT10B transcript values 

 

WNT10BIVS1 analysis showed an optimal cut-point at 221 when test for favourable-risk AMLs (AUC 0.918, 

sensitivity 100.0%, specificity 90.91%; p <0.0001), while a WNT10BIVS1 value lower then or egual to 32 is 

suggestive for therapy-related AMLs (AUC 0.96, sensitivity 100.0%, specificity 83.76; p 0.0001). Similarly, a 

WNT10BIVS1 value higher then 221 is indicative of non-CBF/APL or non-therapy-related AMLs (AUC 1.0, 

sensitivity 100.0%, specificity 100.0%; p 0.0001) (see Figure 30 ). 

 

Figure 30  – ROC curve analysis for WNT10B IVS1 transcript values  
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3.3.7. Analysis of molecular mutations influence on  WNT levels 

 
FLT3-ITD 

Statistical analysis showed no significative difference for both WNT10B and WNT10IVS1 transcript levels 

according to FLT3-ITD mutational status (p 0.8818 and p 0.1271, respectively; Kruskal-Wallis test). These 

results were confirmed by comparative Mann-Whitney U-test (see Figure 31 ). The same results were 

obtained when considering only the “double-positive” population, whereas sample size was too small to 

perform the test for FLT3-ITD in favorable-risk (“single-positive”) and therapy-related (“double-negative”) 

groups. 

 

Figure 31  – Box-plot distribution of WNT per FLT3-ITD  

 

 

 

 

 

 

 

 

 

 

KIT in CBF-AML 

Similarly, we observed no significative difference for both WNT10B and WNT10IVS1 transcript levels 

according to KIT mutational status in CBF-AML patients (p 0.4561 and p 0.4871, respectively; Kruskal-Wallis 

test). These results were confirmed by comparative Mann-Whitney U-test (see Figure 32 ).  

Figure 32  – Box-plot distribution of WNT per KIT mutation in  CBF-AML patients  
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4.  DISCUSSION 
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The deceivingly homogeneous, undifferentiated morphology of the leukemic blasts is now known to mask a 

heterogeneous collection of cells that recapitulate the hierarchy of precursor cells that characterize the 

normal process of blood-cell differentiation. According to recent evidences, the leukemia-initiating cell (LIC) 

properties occur in a self-renewing non-hematopoietic stem cell (HSC) progenitor cell population, preceded 

by the expansion of a pre-leukemic long-term hematopoietic stem cell (LT-HSC). The WNT/β-catenin 

pathway has been show to play a critical role in the regulation of cell proliferation, differentiation, and 

apoptosis of different malignant entities. Recently, Wnt/β-catenin pathway requirement for LIC development 

in AML has emerged in mouse model, but the molecular function responsible for the pre-leukemic LT-HSC 

expansion and the acquisition of self-renewal ability in acute myeloide leukemia (AML) remained poorly 

defined. Furthermore, recent studies revealed aberrant WNT signaling in AML cells that is independent from 

the occurrence of AML-associated fusion proteins or mutations in tyrosine kinase receptors. The previous 

results obtained by our research team using gene expression microarrays and pathway analysis, provided 

direct evidence that the WNT/β-catenin signaling is diffusely activated in the AC133+ AML population, with a 

specific transcriptional signature involving over-expression of the WNT pathway agonists and down-

modulation of the major antagonists. Analysis of freshly fractionated cells from AML patients showed that 

active WNT signaling was predominant in the population highly enriched for the AC133 marker. Notably, 

WNT2B, WNT6, WNT10A, and WNT10B, known to promote hematopoietic tissue regeneration, are the WNT 

mediators specifically upregulated in the AC133+ AML cells.  Taking these results into consideration, we 

focused on the characterization of a regenerative function associated to WNT pathway induction. The term 

“regeneration” has been used to define the physiological phenomena of reconstitution from damage due to 

injury or disease. Attention was placed on WNT10B, a well-known hematopoietic stem cell regenerative-

associated molecule, which was the only one to be expressed by all AML patients. We applied the new in 

situ technique through the use of padlock probes and Rolling Circle Amplification (RCA) for detection and 

genotyping of individual mRNA molecules in cells and tissues. The mRNA in situ detection, performed on 

AML bone marrow sections, allowed to detect and visualize the WNT10B mRNA molecules at their exact 

location. We showed a dramatic increase of WNT10B expression and protein release within the 

microenvironment in the large majority of samples from AML patients recruited into the study. Hematopoietic 

regenerative-associated WNT ligand WNT10B was expressed at mRNA and protein levels on both leukemic 

blasts and stromal-like cells, as well as in interstitial spaces, suggesting its secretion and release in the bone 

marrow microenvironment and indicating a possible autocrine/paracrine mechanism. Conversely, the double 

immunostaining for WNT10B and dephosphorylated β-catenin (ABC) evidenced that the activation of WNT 

signaling was restricted only to a smaller subpopulation of cells. In order to better characterize the LICs, we 

performed a series of direct immunolabeling on AML bone marrow biopsies. The AC133 immunostaining 

revealed islands of highly positive AC133bright cells amid AC133dim or negative tumor blasts. These 

AC133bright represented only 8-10% of total marrow cells, and showed a small diameter of the nuclei with an 

increased nuclear/cytoplasmatic ratio. Activation of WNT signaling marked by expression of the 

dephosphorylated β-catenin was restricted to this AC133bright leukemic cell population. The reasons for these 

differences are unclear, but it is possible that β-catenin activation by WNTs requires the expression of 

specific Fzd receptors, conferring a responsive phenotype restricted to the rare AC133bright population of 

cells. These firsts results implicate that regeneration-associated WNT signaling affects responsive 

AC133bright cells whose renewal is promoted by WNT pathway activity.  



79 

 

Focusing our attention on the major locus associated to the regenerative function, we performed a 5’-Rapid 

Amplification of cDNA Ends (5’-RACE) analysis on WNT10B mRNA, evidencing the presence of a non-

physiological transcript variant, termed WNT10BIVS1. This alternative transcript is characterized by the 

absence of exon 1 and partial retention of 77 nucleotides of intervening sequence 1, and it does not seem to 

affect the production of the correct protein, since the start site of translation is localized on exon 2. In order to 

determine the mRNA levels of WNT10B and related WNT10BIVS1 transcript variant and to analyze the clinical 

relevance of WNT10B / WNT10BIVS1 expression, we carried out the gene expression analysis by Droplet 

DigitalTM PCR on mononucleated cells derived from 125 AML patients.  The study population demonstrated 

to be a representative sample of leukemic patients described in literature, in term of clinical characteristics 

and outcomes. We demonstrated that canonical WNT10B was highly expressed in every risk group 

according to the three main scoring system, formerly the Medical Research Council (MRC), European 

LeukemiaNet (ELN), and National Comprehensive Cancer Network (NCCN), and we demonstrated high 

expressed WNT10BIVS1 transcript levels in intermediate or adverse-risk patients. Conversely, we recorded a 

significant lacking of WNT10BIVS1 mRNA expression in patients classified as with favorable prognosis, 

namely comprising patients with core-binding factor (CBF) AML [t(8;21) or inv(16)/t(16;16)] or acute 

promyelocytic leukemia (APL). Given the significant difference in the expression of WNT10BIVS1 values in 

favorable-risk patients, we analyzed patients subdivided by World Health Organization (WHO) classification. 

Actually, AML is classified using the WHO classification system based upon a combination of morphology, 

immunophenotype, genetics, and clinical features. There are four main groups of AML recognized in the 

2008 WHO classification (AML with recurrent genetic abnormalities, AML with myelodysplasia-related 

features, therapy-related AML, AML not otherwise specified), and in the first class are included patients with 

favorable-risk disease (i.e., CBF-AML and APL). Appling analysis on WHO-based groups, we demonstrated 

that WNT10B mRNA was highly expressed in all de novo AML (ie, AML with recurrent genetic abnormalities 

and AML not otherwise specified) and AML with myelodysplasia-related features. Conversely, we showed a 

significant lacking of mRNA expression in patients with therapy-related disease. Non-physiological 

WNT10BIVS1 variant resulted homogenously expressed in AML with myelodysplasia-related features and 

AML not otherwise specified, while we recorded absence of WNT10BIVS1 mRNA in the therapy-related group. 

Interestingly, patients affected by AML with WHO-based recurrent genetic abnormalities showed a more 

heterogeneous distribution in WNT10BIVS1 transcript levels, including both patients at high or absent mRNA 

expression. Given this heterogeneous distribution of WNT10BIVS1 values, and since we recognized a 

significant lacking of WNT10BIVS1 mRNA expression in patients classified as with favorable-risk prognosis, 

we went to hive off patients in nine specific genetic profiles: CBF-AML, APL, AML with other recurrent 

cytogenetic abnormalities, AML with NPM1 or CEBPA mutation, AML with myelodysplasia-related features, 

therapy-related AML, normal karyotype AML, AML with  cytogenetic number abnormalities, and AML with 

cytogenetic structure abnormalities. Analysis for canonical WNT10B confirmed elevated mRNA levels in all 

groups of AML patients, with the exception of patients with therapy-related disease. Conversely, WNT10BIVS1 

mRNA was non-detectable in CBF-AML, APL, and therapy-related diseases, while it was highly expressed in 

all the remaining groups of patients. The same results were confirmed by grouping patients with de novo 

normal karyotype AML and structural or number cytogenetic abnormalities. Furthermore, we demonstrated 

the independence of WNT transcript levels from other concomitant molecular mutations, as if to indicate that 
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WNT represents an early molecular event, independent from the acquisition by the leukemic population of 

secondary additional events.  

Combining these expression results, it was possible to recognize three distinct WNT10B / WNT10BIVS1 

patterns, termed “double-positive” (WNT10B+ / WNT10BIVS1+), “single-positive” (WNT10B+ / WNT10BIVS1–), 

and “double-negative” (WNT10B– / WNT10BIVS1–). Our analysis showed that all therapy-related AMLs were 

characterized by non-detectable levels of both WNT10B and WNT10BIVS1 mRNA (“double-negative”), while 

patients classified as with favorable-risk prognosis presented WNT10B mRNA at high levels and were 

negative for the variant WNT10BIVS1 transcript (“single-positive”). Notably, two patients presenting with CBF-

AML inv(16)(p13q22) and one patient with normal karyotype AML with NPM1 mutation were clinically 

considered as to have a therapy-related AML because of a prior exposure to cytotoxic agents with an 

adequate latency period. Analysis for WNT10B / WNT10BIVS1 succeeded in recognize these therapy-related 

cases, confirming the lacking of both WNT transcript. Interestingly, all other patients with de novo or MDS-

related AML expressed canonical WNT10B at high levels and are particularly characterized by the 

expression of the non-physiological WNT10BIVS1 allele variant.  

In the last few years, it has become more widely appreciated that multiple genetic lesions, including not only 

microscopically detectable chromosomal rearrangements or numerical abnormalities but also point gene 

mutations, cooperate to establish the leukemic process and influence its morphologic and clinical 

characteristics. Although rearrangements of genes that encode transcription factors may lead to impaired 

maturation of one or more myeloid lineages, mutations of other genes (such as FLT3, JAK2, RAS, or KIT) 

that encode proteins involved in signal transduction pathways may be required for the proliferation and 

survival of the neoplastic clone. The discovery of the importance of gene mutations in leukemogenesis has 

also paved the way for the genetic characterization of many cases of cytogenetically normal AML. Although 

these leukemias with normal kayotype are actually categorized as  a unique entity, it is important to realize 

that additional genetic abnormalities may coexist and explain their different biology and clinical behavior, 

including response to therapy and survival. One major challenge is how to incorporate genetic aberrations 

into a classification scheme of AML capable of defining homogeneous, biologically relevant, and mutually 

exclusive entities based not only on the prognostic value of a genetic abnormality, but on morphologic, 

clinical, phenotypic, and unique biologic properties. 

The results presented here provided a compelling evidence that regeneration-associated WNT signaling 

exceeds the homeostatic range in the majority of human AML cases. These newly discovered genetic 

abnormalities WNT10B / WNT10BIVS1 seem to be associated with clinical, morphologic, and phenotypic 

features that allow identification of specific leukemic entity. Canonical WNT10B resulted expressed in all de 

novo AML patients here examined, representing the gene with the highest expression in leukemic patients 

among all the genes actually known. Furthermore,  we found  a non-physiological WNT10BIVS1 variant highly 

expressed in all non-favorable risk de novo AML, which may represent a possible marker for this setting of 

patients. Besides, WHO classification stated that in CBF-AML and APL the genetic abnormality is sufficient 

for the diagnosis of AML regardless of the blast percentage in peripheral blood or bone marrow. Here, we 

presented a distinct molecular signature capable of distinguish with extremely high accuracy these favorable-

risk patients from all the other de novo AML patients, using a non-time consuming and inexpensive test. 
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Similarly, we demonstrated a specific molecular profile capable to recognize therapy-related disease, even in 

those setting in which cytogenetic or molecular analysis may be misleading. 

These findings, if confirmed in a larger population of patients, may help in refine diagnostic or prognostic 

criteria for previously described neoplasms, and to introduce newly recognized disease entities possibly 

characterized by distinct causative pathogenic mechanisms.  
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