
Atmos. Chem. Phys., 14, 13551–13570, 2014

www.atmos-chem-phys.net/14/13551/2014/

doi:10.5194/acp-14-13551-2014

© Author(s) 2014. CC Attribution 3.0 License.

Radiocarbon analysis of elemental and organic carbon in

Switzerland during winter-smog episodes from 2008 to

2012 – Part 1: Source apportionment and spatial variability

P. Zotter1, V. G. Ciobanu1,*, Y. L. Zhang1,2,3,4,**, I. El-Haddad1, M. Macchia5, K. R. Daellenbach1, G. A. Salazar2,3,

R.-J. Huang1, L. Wacker6, C. Hueglin7, A. Piazzalunga8, P. Fermo9, M. Schwikowski2,3,4, U. Baltensperger1,

S. Szidat2,3, and A. S. H. Prévôt1

1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
2Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
3Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
4Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
5CEDAD-Department of Engineering for Innovation, University of Salento, Lecce, Italy
6Laboratory of Ion Beam Physics, ETH Hönggerberg, Zürich, Switzerland
7Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and

Technology (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland
8University of Milano Bicocca, Department of Earth and Environmental Sciences, 20126 Milano, Italy
9Department of Chemistry, University of Milano, 20133 Milano, Italy
*now at: Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
**now at: Yale-NUIST Center on Atmospheric Environmental, Nanjing University of Information Science and Technology,

Nanjing, Jiangsu 210044, China

Correspondence to: A. S. H. Prévôt (andre.prevot@psi.ch)

Received: 6 May 2014 – Published in Atmos. Chem. Phys. Discuss.: 13 June 2014

Revised: 4 September 2014 – Accepted: 21 October 2014 – Published: 19 December 2014

Abstract. While several studies have investigated winter-

time air pollution with a wide range of concentration lev-

els, hardly any results are available for longer time periods

covering several winter-smog episodes at various locations;

e.g., often only a few weeks from a single winter are in-

vestigated. Here, we present source apportionment results

of winter-smog episodes from 16 air pollution monitoring

stations across Switzerland from five consecutive winters.

Radiocarbon (14C) analyses of the elemental (EC) and or-

ganic (OC) carbon fractions, as well as levoglucosan, ma-

jor water-soluble ionic species and gas-phase pollutant mea-

surements were used to characterize the different sources

of PM10. The most important contributions to PM10 dur-

ing winter-smog episodes in Switzerland were on average

the secondary inorganic constituents (sum of nitrate, sul-

fate and ammonium= 41± 15 %) followed by organic mat-

ter (OM) (34± 13 %) and EC (5± 2 %). The non-fossil frac-

tions of OC (fNF,OC) ranged on average from 69 to 85 and

80 to 95 % for stations north and south of the Alps, respec-

tively, showing that traffic contributes on average only up to

∼ 30 % to OC. The non-fossil fraction of EC (fNF,EC), en-

tirely attributable to primary wood burning, was on average

42± 13 and 49± 15 % for north and south of the Alps, re-

spectively. While a high correlation was observed between

fossil EC and nitrogen oxides, both primarily emitted by

traffic, these species did not significantly correlate with fos-

sil OC (OCF), which seems to suggest that a considerable

amount of OCF is secondary, from fossil precursors. Elevated

fNF,EC and fNF,OC values and the high correlation of the lat-

ter with other wood burning markers, including levoglucosan

and water soluble potassium (K+) indicate that residential

wood burning is the major source of carbonaceous aerosols

during winter-smog episodes in Switzerland. The inspection

of the non-fossil OC and EC levels and the relation with
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levoglucosan and water-soluble K+ shows different ratios for

stations north and south of the Alps (most likely because of

differences in burning technologies) for these two regions in

Switzerland.

1 Introduction

Ambient particulate matter (PM) influences the Earth’s cli-

mate directly by scattering and absorbing solar radiation and

indirectly by modifying cloud microphysics (Pöschl, 2005;

IPCC, 2013). In addition, aerosol particles also adversely af-

fect human health as they can cause respiratory and cardio-

vascular diseases which can lead to increased mortality (Pope

and Dockery, 2006; WHO, 2006). In Alpine regions and most

parts of Switzerland elevated PM concentrations are often

found during wintertime since topography (e.g., alpine val-

leys) and frequent thermal inversions favor the accumula-

tion of pollutants (Gehrig and Buchmann, 2003; Ruffieux

et al., 2006). Environmental pollution control strategies and

policies have focused mainly on emissions from fossil fuel

combustion so far (e.g., road traffic and industry). However,

many recent studies have shown that wood burning emis-

sions from domestic heating can be the dominating source

of carbonaceous aerosols during the cold season, in Europe

(e.g., Szidat et al., 2006, 2007; Lanz et al., 2008, 2010; Favez

et al., 2010; Gilardoni et al., 2011; Harrison et al., 2012;

Herich et al., 2014 and references therein). Therefore, the

quantification of the fossil and non-fossil, especially wood

burning, contributions to PM, particularly for days with high

PM concentrations, is crucial for establishing effective miti-

gation strategies.

Carbonaceous particles are a major fraction of the fine

aerosol (PM2.5, PM < 2.5 µm), contributing from 10 up to

90 % of the PM mass (Gelencsér, 2004; Putaud et al., 2004;

Jimenez et al., 2009). Carbonaceous aerosols are further clas-

sified into two sub-fractions: elemental carbon (EC) and or-

ganic carbon (OC) (Jacobson et al., 2000). EC originates

from incomplete combustion of fossil and non-fossil fuels

(e.g., coal, gasoline, diesel, oil and biomass), exclusively

emitted directly as primary aerosol into the atmosphere. In

contrast, OC may be either primary OC (POC) directly emit-

ted into the atmosphere or secondary OC (SOC) formed

in the atmosphere through the oxidation of volatile organic

compounds (VOCs) from both fossil (coal combustion, in-

dustrial and vehicle emissions) and non-fossil (e.g., wood

burning and biogenic emissions as well as cooking) sources

(Jacobson et al., 2000; Pöschl, 2005; Hallquist et al., 2009).

Among several techniques applied to identify and quan-

tify carbonaceous aerosol sources, radiocarbon (14C, half-

life= 5730 years) analysis is a quantitative tool for unam-

biguously distinguishing fossil and non-fossil sources. 14C is

completely depleted in emissions from fossil-fuel combus-

tion, which can therefore be separated from non-fossil car-

bon sources which have a similar 14C signal as atmospheric

carbon dioxide (CO2) (Szidat, 2009; Heal, 2014). The most

detailed information about different sources can be achieved

when 14C measurements are performed on OC and EC sepa-

rately, since EC originates exclusively from biomass burning

and fossil fuel combustion. By contrast, the apportionment

of OC into these two sources using this methodology is less

straightforward due to the complex primary and secondary

sources of this fraction.

Radiocarbon-based source apportionment results avail-

able in the literature are often reported from measurement

campaigns covering rather short periods (e.g., several days

or a few months, see Hodzic et al. (2010), Minguillón et

al. (2011) and Heal (2014) and references therein for a sum-

mary of several publications). Very few studies present an-

nual or seasonal results from a full year or several seasons.

For example, only two 14C data sets are available covering

a time period of 2 full years (Gelencsér et al., 2007; Larsen

et al., 2012), while only a few studies present a yearly cy-

cle (e.g., Huang et al., 2010; Ceburnis et al., 2011; Genberg

et al., 2011; Gilardoni et al., 2011; Zhang et al., 2014) or

data from two consecutive summers (Tanner et al., 2004)

or winters (Glasius et al., 2011). In addition, 14C results

from the same time period are available simultaneously only

for a limited number of stations (usually less than five, see

Heal (2014) and references therein). Furthermore, only a few

groups worldwide perform 14C measurements of the EC frac-

tion, since such analyses are still challenging and since there

are still open questions concerning the optimal approach for

the EC isolation for 14C analysis (Zhang et al., 2012; Bernar-

doni et al., 2013; Szidat et al., 2013; Dusek et al., 2014). As

a consequence, results of 14C measurements carried out sep-

arately on EC and OC are still very scarce (see Minguillón et

al. (2011) and Heal (2014) and references therein).

In this study, we present, to the best of our knowledge,

for the first time 14C measurements covering a time pe-

riod of five years. Aerosol filter samples were collected dur-

ing winter-smog episodes (days exceeding the Swiss daily

PM10 limit of 50 µg m−3), at 16 air pollution monitoring

stations across Switzerland to provide a good spatial reso-

lution as well as different source characteristics in various

area types (e.g., urban, suburban, rural, alpine valley, traf-

fic, background, etc.). These samples were analyzed for the
14C content in EC and OC, levoglucosan, and major water

soluble ionic species. The duration of this project together

with the large number of stations results in one of the world’s

largest aerosol 14C data sets available. This paper is the first

paper of a two-part series investigating the spatial and tem-

poral variability in the fossil and non-fossil sources of the

organic and elemental carbon during high pollution events

in Switzerland. This paper presents the 14C-based source

apportionment results of carbonaceous aerosols and inves-

tigates their spatial variability. The second paper will ex-

plore the influence of meteorological parameters on the dif-
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ferent carbonaceous components, their temporal variability

and their possible trends in the last years (Zotter et al., 2014).

2 Materials and methods

2.1 Aerosol sampling

The filter samples analyzed in this study were collected at

four stations of the Swiss National Air Pollution Monitor-

ing Network NABEL and 12 stations of the Swiss Cantonal

air pollution monitoring networks (EMPA, 2013; Cercl’Air,

2012). These were selected such that a good spatial distri-

bution across Switzerland is achieved (see Fig. 1). In detail,

eight stations (PAY, SOL, SIS, BAS, REI, BER, ZUR and

STG) are located on the Swiss Plateau, one station each in

the Rhine and Rhone valley (VAD and MAS, respectively)

and one station (SCH) in a small alpine valley in central

Switzerland. Those 11 stations will be further referred to as

stations “north of the Alps”. In addition, five sites “south of

the Alps” were selected. These include stations at the Ital-

ian border where the terrain is more open (e.g., station CHI),

plus other stations enclosed within narrow valleys (e.g., sta-

tions SVI and ROV). The locations of the stations are shown

in Fig. 1 and related details are listed in Table 1. Further-

more, the selection of the stations was also carried out such

that the full range of different station characteristics (from

urban/traffic to rural background, see Table 1) was covered.

At the selected sites, aerosols samples were collected onto

quartz fiber filters (Pallflex 2500QAT-UP) for 24 h on a regu-

lar basis (every 2nd or 4th day or daily depending on the sta-

tion) using high-volume samplers (Digitel DHA-80, Switzer-

land) operating at a flow rate of 500 L min−1 and equipped

with PM10 inlets. After the sampling, filters were wrapped

in aluminum foil or lint free paper, sealed in plastic bags,

and stored at −20 ◦C until analysis. Filter sampling has been

widely used, but well-known non-systematic artifacts due to

adsorption and volatilization of semi-volatile compounds ex-

ist (Viana et al., 2006; Jacobson et al., 2000). Since a more

complex sampling (e.g., using two sampling lines in parallel,

one with and the other without a denuder system for volatile

OC removal or using two filters in series) is not carried out

at regular air pollution monitoring stations, artifacts could

not be quantified. However, due to the high filter loadings

in winter such sampling artifacts are not expected to have a

large contribution (e.g., Viana et al. (2007) found a 5 and 7 %

contribution of OC from positive sampling artifacts for win-

ter samples in Amsterdam and Ghent), and we assume that

they will not significantly influence the results presented in

this study. It should be noted that on some filters PM10 mass

was measured gravimetrically which includes weighting be-

fore and after the sampling at a relative humidity (RH) of

50± 2 % and a temperature (T ) of 20± 2 ◦C after condition-

ing for 48 h. Since these handling steps may introduce ad-

ditional artifacts and none of the samples were pre-heated to

Figure 1. Location of the different stations in Switzerland investi-

gated in this study. White labels indicate stations from which filters

from only one or two winters were analyzed. For all other stations

samples from four or five winters were studied.

remove any OC or EC present on the filters prior to sampling,

the analysis of blank filters which were treated exactly the

same way as the samples is very important. Therefore, ∼ 50

field blank filters were collected and 34 of them were ana-

lyzed for 14C in OC, 45 for major water-soluble ionic species

and 47 for OC and EC mass loading.

Every winter, 5 days with high PM10 concentrations

were investigated and therefore, most of the results pre-

sented below are considered as representative for winter-

smog episodes, which were the objective of our study.

Winter-smog episodes in Switzerland frequently occur on

days with inversions, and hence relatively shallow boundary

layer heights. The days were selected such that ideally PM10

concentrations at all stations exceeded the daily limit value

of 50 µg m−3. However, since meteorological conditions in

Switzerland north and south of the Alps can differ strongly

in winter, it was not possible to find enough days where the

selection criterion was fulfilled at all stations simultaneously.

Therefore, 5 identical days were chosen separately for sta-

tions south and north of the Alps. This ensures similar mete-

orology and the interpretability of the results in terms of spa-

tial variations within the two regions. In addition, two to three

filters per month from August 2008 to July 2009 of the urban

background station ZUR were selected to cover a full yearly

cycle. In total 320 aerosol filter samples were analyzed for

this study. The detailed selection of all analyzed days and the

distribution of PM10 concentrations on those days for every

station are shown in Table S1 in the Supplement and Fig. 2,

respectively.

2.2 EC / OC measurements

The EC and OC concentrations were measured on all sam-

ples (n= 320) and blanks (n= 47) using a thermo-optical

OC /EC analyzer (Model 4L, Sunset Laboratory Inc., USA),
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Table 1. List of all stations, their classification according to the Swiss Federal Office for the Environment (FOEN), their general location in

Switzerland, their abbreviations which are used later in the text, figures and tables, as well the different winter seasons from which filters

from each station were analyzed.

Station name Station code General location Station type Altitude Winter analyzeda

Reiden-A2 REI north of the Alps/ rural/highway 510 m 07/08

Basel-St. Johann BAS Swiss Plateau urban/background 308 m 07/08–08/09

Sissach-West SIS suburban/traffic 410 m 07/08–11/12

Solothurn-Altwyberhüsli SOL urban/background 502 m 07/08–11/12

Payerne PAY rural/background 539 m 07/08–11/12

Zürich-Kaserne ZUR urban/background 457 m 07/08–11/12b

St.Gallen-Rorschacherstrasse STG urban/traffic 457 m 07/08–11/12

Bern-Bollwerk BER urban/traffic 506 m 08/09–12/13

Vaduz-Austrasse VAD north of the Alps/ suburban/traffic 706 m 07/08–11/12

Massongex MAS alpine valley rural/industry 452 m 08/09–11/12

Schächental SCH rural/background 995 m 10/11

Chiasso CHI south of the Alps urban/traffic 291 m 07/08–11/12

Magadino-Cadenazzo MAG rural/background 254 m 07/08–11/12

Moleno-A2 MOL south of the Alps/ rural/highway 305 m 07/08

Roveredo-Stazione ROV alpine valley suburban/background 370 m 07/08

San-Vittore SVI rural/traffic 330 m 07/08–11/12

a EC and OC concentrations, 14C in OC and EC were analyzed on all filters. Levoglucosan was only analyzed for all stations for the winters 2007/2008

and 2008/2009. b In addition, a yearly cycle from August 2008 to July 2009 with 2–3 samples per month was analyzed for ZUR.

which is equipped with a non-dispersive infrared (NDIR) de-

tector. All samples were combusted following the thermal-

optical transmittance method (TOT) using the EUSAAR2

temperature protocol (Cavalli et al., 2010). It should be noted

here that the OC /EC determination with TOT instruments

is not standardized yet and that measurements with different

thermal protocols (e.g., NIOSH NIOSH, 1999; Peterson and

Richards, 2002), IMPROVE (Chow et al., 1993), EUSAAR2

(Cavalli et al., 2010) may lead to discrepancies. Typically,

total carbon (TC) measured with different protocols shows

good agreement (within 10 %), whereas EC can differ signif-

icantly from method to method, up to 25 %, and for highly

polluted winter samples even up to 60 % (Chow et al., 2001,

Schmid et al., 2001; Piazzalunga et al., 2011a). We chose

the EUSAAR2 protocol since this protocol is also used by

the NABEL and Cantonal air quality monitoring programs

to measure OC /EC concentrations for some stations on a

regular basis.

Repeated measurements were carried out for 150 samples

out of the 320. A blank correction was performed using the

average TC filter loading (2.5± 0.8 µg C cm−2) of all mea-

sured blank filters (n= 47) since no systematic differences

between the different stations or throughout the years were

found (see Fig. S1 in the Supplement). Since EC was not

detectable in any of the blank samples, the mean TC blank

concentration was also used for the blank correction of OC.

The average contribution of the blanks to the total filter load-

ing was 5± 2 and 4± 2 % for OC and TC, respectively. The

mean measurement uncertainty for OC and TC was estimated

to be 7.7 and 8.1 %, respectively, using the variability of all

samples (n= 8) that were measured three or four times and

the variability of the blanks. The uncertainty for EC was as-

sumed to be 25 % to account for possible differences between

different TOT protocols (Schmid et al., 2001).

2.3 14C analysis

2.3.1 Separation of carbonaceous particle fractions

and 14C analysis

14C analysis of EC and OC was carried out on all samples.
14C content in the blanks was only measured for TC, since

an EC loading was not found on those filters (see Sect. 2.2).

In the following, we will describe the techniques and pro-

cedures of the separation of OC and EC for subsequent 14C

measurements.

OC was separated for 14C analysis using the THEODORE

system and the Sunset analyzer (see Szidat et al., 2004 and

Zhang et al., 2012, respectively for more details). In brief, in

THEODORE filter punches with a diameter of 11 to 16 mm

were combusted at 340 ◦C for 10 min in a pure oxygen (O2)

stream. The Sunset analyzer, connected to the trapping part

of the THEODORE system, was modified such that it could

be operated with pure oxygen as a carrier gas in addition

to the conventionally used He and He/O2. The temperatures

and combustion times for the oxidation of OC to CO2 from

filter punches with 0.8–1.5 cm2 in the Sunset analyzer were

set to the same values as those used in the THEODORE pro-
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tocol. The evolving CO2, from the THEODORE and the Sun-

set analyzer, was separated from interfering reaction gases,

cryo-trapped and sealed in glass ampoules for 14C measure-

ments.

The separation of EC for the 14C measurement was car-

ried out following the Swiss 4S protocol as described by

Zhang et al. (2012). First, water-soluble OC (WSOC) and

other water-soluble components were removed by water ex-

traction in order to minimize positive artifacts from OC char-

ring (Piazzalunga et al., 2011a; Zhang et al., 2012). The re-

maining water-insoluble OC (WINSOC) was then removed

by a thermal treatment in three steps. In the first two steps,

OC was oxidized in O2 at 375 ◦C for 150 s and then at 475 ◦C

for 180 s. In the third step, OC was then evaporated in an

inert atmosphere in helium at 450 ◦C for 180 s followed by

180 s at 650 ◦C. In the end (step four), EC was isolated by

the combustion of the remaining carbonaceous material at

760 ◦C for 150 s in O2. This method was optimized to reduce

biases in 14C measurements of EC related to OC charring

(leading to higher non-fossil EC (ECNF) values) or losses of

the least refractory EC (mostly from wood burning) during

the WINSOC removal (in the steps one to three) as those

would lead to lower ECNF fractions. Furthermore, using the

Sunset analyzer for the combustion made it possible to quan-

tify those artifacts online, since this instrument monitors the

filters during the combustion with a laser. As proposed by

Zhang et al. (2012) we tested the effect of different tempera-

tures in step two and three of the thermal protocol on the EC

yields and the OC charring for some samples from stations

with contrasting sources and filter loadings (e.g., filters with

high and low loading from stations with a large wood burn-

ing contribution vs. more traffic influenced stations). Char-

ring of OC most likely occurred only at lower temperature

in the steps one and two and was quantified as the differ-

ence of the maximum attenuation (ATN) and the initial ATN

normalized to the initial ATN of the given thermal step. The

EC yield denotes the fraction of EC remaining on the fil-

ter samples after the first three OC removal steps before the

last step (step four) starts, which was used for the EC re-

covery for 14C analysis, and is defined as the ratio between

the initial ATN of the laser signal through the filter before

step one of the thermal treatment and the ATN before step

four. We found that the EC yield and charring did not vary

significantly due to different temperatures (550–700 ◦C) in

step three and therefore this temperature was set to 650 ◦C

as suggested by Zhang et al. (2012). In contrast, varying the

temperature in step two we found 525 and 500 ◦C as opti-

mal values for SVI and BER, respectively, which exhibited

very high filter loadings. Higher temperatures for these two

stations were necessary to assure complete removal of OC

and possibly charred OC before the EC step (step four). For

the samples from the other stations 475 ◦C, as suggested by

Zhang et al. (2012), was found to be the optimal setting. On

average 74± 11 % of the EC was recovered for the 14C mea-

surement for all samples and charred OC only contributed

5.3± 4.5 % to EC recovered in step four.

The 14C measurement of the collected CO2 from the

separated carbonaceous fractions was performed with the

MIni radioCArbon DAting System, MICADAS (Synal et al.,

2007) at the Swiss Federal Institute of Technology (ETH)

Zürich and the Laboratory for the Analysis of Radiocar-

bon with AMS (LARA), University of Bern (Szidat et al.,

2014), Switzerland, using a gas ion source (Ruff et al., 2007;

Wacker et al., 2013), which allows direct CO2 injection af-

ter dilution with He (Ruff et al., 2010). All 14C results are

expressed as fraction of modern (fM) representing the ratio

of the 14C / 12C content of the sample related to the isotopic

ratio of the reference year 1950 (Stuiver and Polach, 1977).

The fM values were corrected for δ13C fractionation (Wacker

et al., 2010) and for the 14C decay between 1950 and the year

of measurement. The uncertainty of the measured fM values

for OC and EC (fM,OC and fM,EC, respectively) is on average

∼ 2 % for the samples presented here.

2.3.2 Data correction and presentation

As discussed in the following, several corrections have to be

applied to the fM values obtained from the 14C measurement

(see also Table 2 for a summary).

1. Blank correction: a mass-dependent blank correction is

applied to the measured fM values following an isotopic

mass balance approach (Zapf et al., 2013):

fM,corr = (mCsample · fM,sample−mCblk · fM,blk) (1)

/(mCsample−mCblk),

where fM,corr is the blank corrected fM, and fM,sample

and fM,blk are the fM measured for samples and blanks,

respectively. mCsample and mCblk denote the carbon

mass in the samples and the blanks, respectively. Since

blank filters are not available for all stations and years

and since the 14C results of the blanks were not system-

atically different (between different stations or years,

see Fig. S1), the average fM and TC values of the

blanks, 0.53± 0.12 (n= 34) and 2.5± 0.8 µg C cm−2

(n= 47), respectively, were considered for the correc-

tion of fM,OC (fM,OC,corr). The blank correction in-

creases the fM,OC,corr values by ∼ 3 % and the uncer-

tainty (error propagation of Eq. (1)) rises to ∼ 3 %.

No EC was detected on the blank filters (see Sect. 2.2

above); therefore no blank correction was carried out

for fM,EC.

2. EC yield correction: the fraction of EC, which was iso-

lated for the 14C measurement (EC yield) was on aver-

age 74± 11 % as shown in Sect. 2.3.1. However, Zhang

et al. (2012) showed that fM,EC changes with different

EC recoveries. They found a linear relationship between

www.atmos-chem-phys.net/14/13551/2014/ Atmos. Chem. Phys., 14, 13551–13570, 2014
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Table 2. Summary of the different correction steps of the 14C raw data.

Correction Abbreviations

1. blank correction

fM,corr =
mCsample·fM,sample−mCblk·fM,blk

mCsample−mCblk
fM fraction of modern from 14C analysis

fM,sample fM obtained on the selected filters

fM,blk fM obtained on the blank filters

fM,corr blank corrected fM

mCsample carbon mass of the samples

mCblk carbon mass of the blanks

2. EC yield correction

fM,EC,total = slope · (1−ECyield)+ fM,EC fM,EC fM for EC

ECyield EC fraction separated for 14C analysis

slope slope between fM,EC and ECyield (see Fig. S2)

fM,EC,total fM,EC corrected to 100 % ECyield

3. charring correction

fM,EC,final =
fM,EC,total−fM,charr·fcharr

1−mCcharr
fM,charr fM of charred OC

fcharr fraction of charred OC

fM,EC,final charring corrected fM,EC,total

4. bomb peak correction

fNF,ref = pbio · fM,bio+ (1−pbio) · fM,bb pbio biogenic fraction of total non-fossil sources

fNF,OC = fM,OC,corr/fNF,ref fM,bio fM of biogenic sources

fNF,EC = fM,EC,final/fM,bb fM,bb fM of biomass burning

fNF,ref modern 14C content during sampling

compared to 1950 (before bomb testing)

fNF,OC final non-fossil fraction of OC

fNF,EC final non-fossil fraction of EC

fM,EC and the EC yield, which they used to extrapo-

late fM,EC to 100 % EC yield using the average slope

(0.31± 0.1) from several samples (n= 5) in order to

account for the slight underestimation of biomass burn-

ing EC caused by the EC loss during EC isolation for
14C measurement (see Sect. 2.3.1 above). In this study,

we also measured fM,EC from 11 samples at different

EC yields. As shown in Fig. S2 there is also a linear

relationship between the EC yield and fM,EC for the

samples from this study. Even though the slopes ex-

hibit a larger variability compared to the ones presented

in Zhang et al. (2012) the average slope of all winter

samples is very similar. In contrast, the slopes for the

summer filters show only a very weak relationship be-

tween fM,EC and the EC yield due to the smaller frac-

tion of less refractory EC (mainly from biomass burn-

ing) which is removed before the EC isolation for the
14C analysis. Beside the clear difference between sam-

ples from summer and winter, no systematic differences

between different stations or years were found. There-

fore, average slopes of 0.35± 0.11 and 0.07± 0.03 for

winter and summer samples, respectively, were taken to

correct all fM,EC values to 100 % EC yield (fM,EC,total)

using the following equation (Zhang et al., 2012):

fM,EC,total = slope · (1−ECyield)+ fM,EC. (2)

The uncertainty of fM,EC,total was obtained by an error

propagation of Eq. (2) using the variability of the aver-

age slopes, the measurement uncertainty of fM,EC and

an assigned uncertainty of 10 % for the EC yield and is

on average 4.2 %.

3. Charring correction: approximately 50 samples exhib-

ited OC charring contributing > 10 % to EC even though

the method used here for EC isolation is optimized to

minimize OC charring. Therefore, the fM,EC,total val-

ues were corrected for charring (fM,EC,final) using the

same isotopic mass balance approach as described in

Eq. (1) in which the fM and mC values of the sam-

ples and blanks were replaced by fM,EC,total and EC

as well as the fraction (fcharr, formed in step one and

two of the thermal treatment as described in Sect. 2.3.1)

and fM of charred OC (fM,charr). We assumed that only
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50 % of the charred OC contributed to the 14C result

of EC since some charred material was most likely re-

moved in step three. However, since some EC could be

lost in step three as well, the charred OC evaporated in

step three cannot be quantified. Therefore, a high un-

certainty of 33 % is assigned to the fraction of charred

OC which should in addition account for possible differ-

ences and variability between samples and stations. The

fM,charr was obtained from 14C measurements (n= 11)

of WINSOC from water-extracted filters released in step

one and was found to be on average 0.78. To account

for possible sample-to-sample differences and variabil-

ity between samples and stations, we assigned an uncer-

tainty of 0.10 for fM,charr. The uncertainty of fM,EC,final

was on average 4.4 %, which is only slightly higher than

for fM,EC,total (4.2 %).

4. Bomb peak correction: samples from fossil sources are

characterized by fM = 0 due to the extinction of 14C

with a half-life of 5730 years, whereas fM is equal to

1 for contemporary carbon sources including biogenic

and biomass burning (fM,bio and fM,bb, respectively).

However, due to the thermonuclear weapon tests of the

late 1950s and early 1960s the radiocarbon content of

the atmosphere increased and fM exhibit values greater

than one (Levin et al., 2010). To account for this effect,

the fM,OC,corr and fM,EC,final values are converted into

non-fossil fractions (fNF,OC and fNF,EC, respectively)

(Szidat et al., 2006; Zhang et al., 2012) using a refer-

ence value (fNF,ref) representing the modern 14C con-

tent during the sampling period compared to 1950 be-

fore the bomb testing. EC is only emitted from fossil

sources or biomass burning (neglecting any EC emis-

sions from biofuels as their contribution to the total fuel

use is low). Hence, fNF,ref equals fM,bb to correct fM,EC

whereas it includes additionally fM,bio and the frac-

tion of biogenic sources to the total non-fossil sources

(pbio) for the calculation of fNF,OC. fM,bio was taken

from long-term 14CO2 measurements at the Schauins-

land background station (Levin et al., 2010) and fM,bb

was estimated using a tree growth model as described

in Mohn et al. (2008). pbio was set to 0.2± 0.2 since

no large contributions from biogenic sources are ex-

pected in Switzerland during winter-smog episodes. In

any case, pbio has only a very little impact on fNF,ref

compared to other measurement uncertainties (e.g., an

increase of pbio from 0.2 to 0.4 would change fNF,ref

for this study only by max. 1.8 %). The fM,bio,fM,bb

and fNF,ref values for the different years, which were

consequently used to determine fNF,OC and fNF,EC, are

shown in Table S3. The final uncertainties for fNF,OC

and fNF,EC (∼ 3 and ∼ 5 %, respectively) were derived

from an error propagation and include all the individual

uncertainties of the fM values, fM,bio, fM,bb and pbio.

2.4 Analyses of water-soluble major ionic species and

levoglucosan

The concentrations of major water-soluble ionic species

(cations: K+, Na+, Mg2+, Ca2+ and NH+4 ; anions: methane-

sulfonate (MSA), oxalate (Ox2−), SO2−
4 , NO−3 and Cl−)

were analyzed on all filters (n= 320) and field blanks (n=

45) with an ion chromatographic system (850 Professional,

Metrohm, Switzerland) equipped with a Metrosep C4 cation

column and a Metrosep A anion column, respectively. Prior

to the measurement a water extraction (15 and 50 mL for

samples from 2008–2010 and 2011–2012, respectively) with

ultrapure water (18.2 M� cm−1) for 30 min at 40 ◦C in an

ultrasonic bath of filter punches with a diameter of 11 mm

was carried out. The measurement uncertainty for most of

the water-soluble ions was estimated to be 10 %. An uncer-

tainty of 30 % was assigned for all cations as well as for Ox2−

and Cl− with concentrations < 5 ppb in solution. A blank cor-

rection was carried out subtracting an average value of each

ionic species from the concentrations in the samples. In con-

trast to the blank correction of the OC and TC concentrations

as well as fNF,OC, where an average value of all blanks (dif-

ferent stations and years) was used, the average of all blanks

from the different stations from each winter was taken sepa-

rately. It should be noted here that not all ionic species were

detected in all blanks (see Fig. S1 and Table S2). The over-

all uncertainty of the major water-soluble ionic species was

derived from the error propagation of the measurement un-

certainty and the blank variability.

Levoglucosan was measured following the procedures de-

scribed in Piazzalunga et al. (2010) and (2013a). In brief,

levoglucosan was measured by a high-performance anion-

exchange chromatography (HPAEC) with pulsed ampero-

metric detection (PAD) using an ion chromatograph (Dionex

ICS1000) equipped with an isocratic pump and a sample in-

jection valve with a 100 µL sample loop. Prior to the analysis,

a water extraction was carried out by three subsequent ex-

tractions of ∼ 2 cm2 filter punches by 20 min sonication us-

ing 2 mL Millipore-MilliQ water (18.2 M� cm−1). Levoglu-

cosan was then separated from other compounds by a Car-

bopac PA-10 guard column (50 mm× 4 mm) and a Carbopac

PA-10 anion exchange analytical column (250 mm× 4 mm)

using 18 mM NaOH as an eluent. The analytical system com-

prised an amperometric detector (Dionex ED50) equipped

with an electrochemical cell. The detector cell had a dis-

posable gold electrode and a pH electrode as reference (both

from Dionex) and was operated in the pulsed amperometric

detection (PAD) mode. The measurement uncertainty was es-

timated to be∼ 5 % using the average repeatability of several

standards and the limit of detection in solution is 2 ppb. The

levoglucosan concentrations were also analyzed for blank fil-

ters but were below the detection limit; therefore no blank

correction was performed.

www.atmos-chem-phys.net/14/13551/2014/ Atmos. Chem. Phys., 14, 13551–13570, 2014



13558 P. Zotter et al.: Radiocarbon analysis of elemental and organic carbon in Switzerland

2.5 Additional data

Since all sampling sites in this project are part of the Swiss

national (NABEL) or cantonal air pollution monitoring net-

works, additional parameters (e.g., gas phase pollutants, par-

ticle mass and meteorology) are routinely measured. PM10

and nitrogen oxides (NOx =NO and NO2) data are available

from all stations (except SCH), whereas ozone (O3), sulfur

dioxide (SO2) and carbon monoxide (CO) measurements are

only performed at some stations. Reference instrumentation

according to the valid European standards was used. PM10

is measured online with beta attenuation monitors (FH62-

IR, Thermo ESM Andersen) and by TEOM-FDMS (Thermo

Environmental) instruments and an approach presented in

Gehrig et al. (2005) to correct/harmonize online and gravi-

metric PM10 measurements is routinely applied to data from

all stations. It should be noted that NOx measurements using

molybdenum converters suffer from interference of oxidation

products of NOx which is however not crucial for winter-time

conditions (Steinbacher et al., 2007). The meteorological pa-

rameters wind-speed, wind-direction, temperature (T ), rela-

tive humidity (RH), precipitation and global radiation were

also only measured at some of the sites. For the remain-

ing sampling locations meteorological data were taken from

nearby stations operated by the Swiss weather service (Me-

teoSwiss, 2014). In all networks (NABEL, Cantons and Me-

teoSwiss) data sets (except results obtained offline from fil-

ter samples, i.e., EC /OC and levoglucosan concentrations as

well as 14C data) undergo an automatic and a manual quality

check; data should be (1) within a plausible range, (2) show

plausible variability, (3) reproduce to a reasonable extent the

expected daily, monthly and yearly variations, and (4) when-

ever possible measurements are compared to nearby or simi-

lar stations with the expectation of similar values (Barmpadi-

mos et al., 2011).

3 Results and discussion

3.1 Composition of PM10

As we were interested in winter-smog episodes, only days

with high PM10 concentrations at all stations were analyzed.

As shown in Fig. 2a the selected days from almost all lo-

cations exhibited on average values ∼ 50 µg m−3 (European

and Swiss daily limit) or above. While not exactly the same

days were chosen for stations north and south of the main

chain of the Alps, it is nevertheless evident that the PM10

burden during winter-smog episodes in Switzerland is higher

south of the Alps (73± 27 µg m−3 in the south compared to

55± 16 µg m−3 in the north). These episodes often occur in

winter during stable meteorological conditions including pe-

riods with high pressure, rather low temperatures and weak

winds (typically less than 2 m s−1). Such conditions often

lead to inversions with low mixing layer heights, thereby

favoring the accumulation of pollutants and consequently

causing high PM10 concentrations. The reason for the higher

PM10 values at stations south of the Alps is most likely due

to a combination of topography (e.g., several stations are lo-

cated in alpine valleys), local meteorology (e.g., more per-

sistent inversions with rather low mixing heights compared

to the north) and emissions (strong local wood burning influ-

ence, see Sects. 3.2.1 and 3.2.2 below).

As only 5 winter-smog-episode days from each of the five

winter seasons were selected and to account for possible dif-

ferences in the concentration levels between the stations (es-

pecially locations north vs. south of the Alps), we will mainly

focus here on the fractional contributions of the individual

compounds to total PM10. The major water-soluble ions, EC

and organic matter (OM) measured here explain 82± 11 %

of the total PM10 mass. The missing fraction could mostly

be attributed to aerosol water content, the water insoluble

fraction (e.g., dust particles), and/or to the uncertainties of

the different measurement methods and OM : OC ratio used

to convert OC to OM. The major contributors to PM10 dur-

ing winter-smog episodes in Switzerland were on average

the organic matter (OM=OC×1.8, Turpin and Lim, 2001),

with 29± 7 and 46± 17 % followed by the secondary inor-

ganic aerosol (SIA) constituents nitrate (NO−3 , 25± 9 and

20± 11 %), sulfate (SO2−
4 , 10± 4 and 6± 3 %) and ammo-

nium (NH+4 , 9± 3 and 7± 4 %) for stations north and south

of the Alps, respectively (see Fig. 2). Differences observed

in the chemical composition of the aerosol between south

and north are a first indication that different emission sources

may dominate the aerosol burden at these locations. The EC

shares of PM10 were on average 4± 2 % in the north and

6± 3 % in the south.

For stations north of the Alps, the range of OM contri-

bution is rather stable (station averages 23–32 %), whereas

south of the Alps, the OM fraction spans a wider range (sta-

tion averages 35–52 %), with values statistically significantly

higher than in the north (t test significant at 95 %, in gen-

eral throughout the manuscript we always used a t test with

p = 0.05 to test the statistical significance of differences be-

tween stations north and south of the Alps). Furthermore, a

clear trend towards larger OM contributions at more rural

stations is evident in the south. The EC shares of PM10 are

on average slightly lower in the north compared to the south

but show similar variations among the different stations (av-

erages range between 3–5 % in the north and 5–7 % in the

south). As already shown above the contributions of the dif-

ferent SIA components to PM10 are larger in the north. In

addition, they also show larger station-to-station differences

(averages range from 9–30 % for NO−3 , 5–11 % for NH+4
and 7–12 % for SO2−

4 in the north compared to 14–24 % for

NO−3 , 5–8 % for NH+4 and 5–6 % for SO2−
4 in the south).

While almost all constituents of PM10 (OM, EC and NO−3 )

exhibit on average larger concentrations in the south (mainly

due to the selection of days with higher PM10 concentrations
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Figure 2. Whisker box plots of the fractional contributions of the major constituents of PM10 (water-soluble ions NO−
3

, SO2−
4

and NH+
4

as

well as EC and OM=OC×1.8) from all analyzed winter samples (n∼ 300). The open red circles represent the mean and the black crosses

the max. and min. values. The boxes represents the 25th (lower line), 50th (middle line) and 75th (top line) percentiles. The end of the vertical

bars denote the 10th (below the box) and 90th (above the box) percentiles. Stations north and south of the Alps are sorted from the left to the

right from the nominal most traffic-influenced station (see Table 1) to the most rural one. Data from the yearly cycle in ZUR are excluded.

Only averages± standard deviations are displayed for stations from which only filters from one winter were analyzed. The whisker box plots

showing the absolute concentrations are presented in Fig. S3.

compared to the ones selected in the north), NH+4 shows on

average very similar levels in both regions and SO2−
4 even

higher ones in the north (see Fig. S3). The higher SO2−
4 frac-

tions and levels observed north of the Alps indicate a higher

background of this species possibly caused by occasional

long-range transport of SO2 emissions from Eastern Europe.

Another interesting feature is evident for the stations south of

the Alps. The relative contributions of NO−3 and NH+4 exhibit

a trend towards lower values at rural stations, as opposed to

the OM fraction (see Fig. 2), which may be due to the influ-

ence of the stations in the south by air masses advected from

the Po Valley, where emissions from fossil fuel combustion

(e.g., NOx) are elevated (Piazzalunga et al., 2011b; Larsen

et al., 2012) compared to the southern part of Switzerland.

More details about the influence of air masses originating

from other regions outside Switzerland will be discussed in

Zotter et al. (2014).

3.2 14C-based source apportionment

3.2.1 Relative fossil and non-fossil contributions of OC

and EC

Figure 3 summarizes the individual results of all 14C mea-

surements (n∼ 300 for OC and EC) from all stations for

the 5 winters (2007/2008–2011/2012), except for REI, MOL,

ROV and SCH (one winter) and BAS (two winters), as noted

in Table 2. The use of whisker box plots enables the iden-

tification of the variability of the results for each station as

well as the station-to-station differences. Several filters from

BAS showed clearly elevated fNF,OC values (larger than one

and up to five) indicating that BAS is influenced by sources

emitting anthropogenic 14C (e.g., from nuclear power plants,

pharmaceutical industry and biochemical laboratories work-

ing with labeled 14C, incinerators for medical waste). BAS is

the base for two of the world’s largest pharmaceutical enter-

prises, Roche and Novartis, and in addition an incinerator for

medical waste is located in the vicinity of the station. Fur-

thermore, 14C measurements on leaf samples across the city

of Basel also showed partially highly elevated results (BAG,

2008), indicating 14C-enriched CO2. Therefore, fNF,OC val-

ues from BAS were not considered for the further analysis.

This artifact is however restricted to OC; the fNF,EC results

did not show such an influence (see Fig. 3b) and are included

and discussed throughout this study. The data from the yearly

cycle in ZUR is also excluded here but will be investigated

in part II (Zotter et al., 2014).

The range of all fNF,OC values (except BAS) as displayed

in Fig. 3a is 0.59–0.95 and 0.62–1.02 for stations north

and south of the Alps, respectively. A few samples (n= 4)

with fNF,OC values slightly above one were found in SVI

and are within the uncertainty (∼ 3 %) of fNF,OC. They can

be explained on the one hand with very high local wood-

burning contributions and on the other hand with the un-
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Figure 3. Whisker box plots of the fractional non-fossil contribu-

tions of OC (a) and EC (b) summarizing all winter filter samples

measured for 14C (n∼ 300 for OC and EC). Stations north and

south of the Alps are sorted from the left to the right from the nom-

inal most traffic-influenced station (see Table 1) to the most rural

one. Only averages± standard deviations are displayed for stations

from which only filters from one winter were analyzed. fNF,OC val-

ues for BAS are not included, since several values above one were

found (see Sect. 3.2). Data from the yearly cycle in ZUR are ex-

cluded as well.

certainties in the reference value fNF,ref used for the cor-

rection of the still elevated 14C concentrations due to the

above-ground thermo-nuclear bomb tests (see Sect. 2.3.2).

The average fNF,OC values for stations north and south of the

alps are 0.78± 0.08 (median= 0.78) and 0.82± 0.07 (me-

dian= 0.83), respectively, showing that on average locations

south of the Alps are more impacted by non-fossil sources.

As discussed above, non-fossil OC may include, POC and

SOC from wood burning and cooking emissions, as well

as primary biological particles and biogenic SOC. Cooking

was estimated to contribute on average only 7.5 % to organic

aerosol (OA) during winter in ZUR which is the largest city

of Switzerland (Canonaco et al., 2013), and is therefore ex-

pected to contribute less at the other stations. Furthermore,

large inputs from biological and biogenic sources are also

not expected under Swiss winter conditions, characterized

by low biological activity. Therefore, the high fNF,OC values

indicate that wood burning POC and SOC are most proba-

bly the main source of OC during winter-smog episodes in

Switzerland. The highest fNF,OC values north and south of

the Alps were found at the rural stations SCH (0.85± 0.04)

and SVI (0.95± 0.05), which are located in narrow Alpine

valleys. The lowest non-fossil contributions to OC were ob-

served in BER, STG, VAD and ZUR north of the Alps as

well as in MOL and CHI south of the Alps, but were on aver-

age never below 70 % showing that sources of fossil carbon

only account for a small fraction of OC during winter-smog

episodes in Switzerland, even at urban and traffic-influenced

stations. Furthermore, the variability of all fNF,OC values

for the individual stations and the station to station differ-

ences (with the exception of SVI and BER which present the

highest and lowest values, respectively) are low as displayed

by the small interquartile ranges (IQR= 3rd− 1st quartile;

0.10± 0.02 in the north and 0.08± 0.02 south of the Alps)

and the small range of the station averages (0.75–0.85 and

0.80–0.86 for stations north and south of the Alps, respec-

tively). This suggests that the relative source contributions

to OC are very consistent within Switzerland during winter-

smog episodes.

Similar high non-fossil contributions to OC were also

found in previous studies in Switzerland. The fNF,OC val-

ues for ZUR, ROV, MOL, REI and Sedel as well as MAS,

Saxon, Sion and Brigerbad ranged on average from 61–76 %

with values above 90 % in ROV (Szidat et al., 2006, 2007;

Sandradewi et al., 2008a, b; Perron et al., 2010). Results

previously reported for other regions in Europe show lower

biomass burning contributions to OC: e.g., biomass burning

OC (OCBB) to the total OC fraction of 35–54 % at three Aus-

trian cities (Vienna, Graz and Salzburg, Caseiro et al., 2009),

28–65 % at three locations in the Po Valley (Milan, Sondrio

and Ispra, Gilardoni et al., 2011; Piazzalunga et al., 2011b)

and 60 % in Grenoble (Favez et al., 2010).

The non-fossil fraction of EC relates more unambiguously

to wood burning. For most stations the wood burning contri-

bution was found to be < 50 % and thus the contribution from

fossil fuel combustion, mostly due to traffic, was > 50 % (see

Fig. 3b). However, since the average fNF,EC values, except

for BER, REI and MOL, never decrease below 0.4, it is evi-

dent that wood burning emissions exceptionally account for a

large fraction of EC during winter-smog episodes in Switzer-

land. The individual fNF,EC values range from 0.12–0.79 (on

average 0.42± 0.13) and 0.25–0.87 (on average 0.49± 0.15)

for all stations north and south of the Alps, respectively,

showing that for EC the contributions from wood burning

are higher for locations south of the Alps. The lowest fNF,EC

values were found at the stations BER (0.22± 0.06), MOL

(0.28± 0.06) and REI (0.35± 0.05), which are directly ex-

posed to traffic emissions from nearby roads with a high traf-

fic flow. Extremely high non-fossil contributions to EC up

to 87 and 79 % were observed in SVI (66± 11 %) and SCH

(69± 9 %). Both stations are located in narrow Alpine val-

leys characterized by frequent winter-time inversions and are

strongly influenced by local emissions from wood combus-
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tion, which is the main source for residential heating in such

areas in Switzerland.

Elevated non-fossil contributions to EC have already been

observed during previous campaigns in Switzerland (71± 18

and 84± 13 % on average in ROV and individual results be-

tween 60 and 70 % in MAS, PAY, Sedel, Brigerbad, Saxon

and Sion, see Zhang et al. (2012) and references therein).

Similar fNF,EC results were previously also reported for ZUR

(0.24–0.34), BER (0.14), BAS (0.30), MAG (0.30–0.56),

MOL (0.24), PAY (0.33–0.43) and REI (0.37) (see Zhang et

al. (2012) and Herich et al. (2014), and references therein).

fNF,EC for stations on the Po-valley (0.16 in Milan, 0.29 in

Sondrio and 0.49 in Ispra, Gilardoni et al., 2011; Piazzalunga

et al., 2011b) and Grenoble (0.17, Favez et al., 2010) are

comparable as well, whereas for two urban stations in Swe-

den (Gothenburg and Stockholm) a wide range for fNF,EC

was found (0.12–0.88, Zencak et al., 2007; Szidat et al.,

2009; Andersson et al., 2011).

The most prominent feature in Fig. 3 is the clear non-fossil

increase south of the Alps from MOL to SVI for OC and

EC. With the exception of MOL, which is directly located

next to a highway, these stations are not only ordered from

the most urban and traffic influenced to the most rural, but

also geographically from south to north. CHI is located in a

more open terrain at the Swiss/Italian border, whereas fur-

ther north, towards the main Alpine chain, narrower alpine

valleys dominate and the region is consequently more rural

and wood burning for wintertime residential heating becomes

more important. The observation that the non-fossil contribu-

tions for both, OC and EC, are on average higher at locations

south of the Alps can thus be mainly attributed to the fact that

there are more rural stations in the south whereas urban and

suburban stations dominate north of the Alps (see Fig. 1).

3.2.2 Total fossil and non-fossil contributions

Next we will discuss the fossil and non-fossil concentrations

of OC and EC and their contributions to TC. The fraction

of TC in PM10 is on average 19–25 % for stations north of

the Alps and is slightly higher for locations in the south (27–

30 %). Fig. 4 shows the average ECF, ECNF, OCNF and OCF

concentrations as well as their relative contributions to TC

for all analyzed winter samples for each station. It is evi-

dent that sources of non-fossil carbon dominate TC at loca-

tions north and south of the Alps with contributions around

70± 18 and 79± 10 % (sum of ECNF and OCNF), respec-

tively. Compared to other winter measurements across Eu-

rope this is rather at the higher end of the reported range and

higher than reported for urban sites around the world but sim-

ilar to values found for suburban and rural locations in the US

and India (Hodzic et al., 2010; Heal, 2014).

OCNF is the largest fraction of TC, accounting on aver-

age for 61± 8 and 69± 9 % for stations north and south of

the Alps, respectively, whereas ECNF contributes on aver-

age ∼ 9 % to TC in both regions of Switzerland. The fossil

Figure 4. Averages over all analyzed winter samples (n∼ 300) for

each station of ECF, ECNF, OCNF and OCF (a) as well as their rel-

ative contributions to TC (b). Total OC is displayed for BAS since

fNF,OC values for this station are not included in the analysis due

to several values above one (see Sect. 3.2.1). Data from the yearly

cycle in ZUR are excluded as well.

shares in the north of OC (18± 6 %) and EC (13± 6 %) are

higher compared to those in the south (OCF/TC= 12± 6 %

and ECF/TC 10± 5 %). The lowest and highest fossil con-

tributions to TC (sum of ECF and OCF) were found in SVI

(10± 6 %) and BER (43± 7 %), respectively. For the stations

south of the Alps, a clear decreasing trend in the relative con-

tribution of fossil OC and EC from more traffic to more ru-

rally influenced stations is found (see Fig. 4 and Fig. S4).

North of the Alps, such a trend is only evident for ECF. Rel-

ative and absolute non-fossil OC and EC contributions in the

north (except BER and SCH which present the highest and

lowest values) only show low station-to-station differences

(station averages range from 58–71 % and 1.5–2.5 µg C m−3

for OCNF as well as 8–11 % and 0.9–1.9 µg C m−3 for ECNF,

see Fig. 4 and Fig. S4). In addition, also the variability of

the relative and absolute OCNF and ECNF contributions at

the individual stations north of the Alps is rather small as

evidenced by low IQRs (2.8± 0.9 µg C m−3 and 7± 2 % for

OCNF as well as 0.4± 0.1 µg C m−3 and 3± 1 % for ECNF).

Together with the low station-to-station differences, this sug-

gests that non-fossil sources very consistently influence sta-

tions on the Swiss Plateau. Furthermore, as discussed above,

OCNF can be influenced by SOC formation which can be
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highly variable. However, the low OCNF station-to-station

and day-to-day variability points to a similar degree of at-

mospheric processing and SOC formation for the chosen

days in this region of Switzerland. Last, the low absolute

and relative ECNF and OCNF IQRs at the individual stations

and station-to-station differences also indicate that locations

on the Swiss Plateau are rather influenced by regional (still

mainly within Switzerland) air pollution. This is confirmed

by high correlations (r = 0.7± 0.2, 0.5± 0.3, 0.9± 0.1 and

0.7± 0.1) between the concentrations of ECF, ECNF, OCF

and OCNF for all measured values from each station located

on the Swiss Plateau (see Table 1) against ZUR which was

chosen as a reference for this region. Furthermore, this is

in agreement with Gehrig and Buchmann, 2003) who pre-

viously found that (1) under high pressure conditions inver-

sions can extend over the entire Swiss Plateau and typically

last several days possibly causing smog formation and (2)

that PM concentrations were strongly influenced by meteo-

rology (dilution with clean air or precipitation) rather than by

variation of source activities. In contrast, correlating the fos-

sil and non-fossil concentrations of OC and EC from stations

south of the Alps against the ones from MAG shows lower

values (r = 0.3± 0.2, 0.6± 0.3, 0.4± 0.3 and 0.3± 0.3 for

OCNF, ECNF, ECF and OCF, respectively) indicating that lo-

cal sources are more important for stations south of the Alps.

3.3 Sources and behavior of fossil and non-fossil

organic carbon

3.3.1 Fossil fraction

Figure 5 presents the comparison between ECF, OCF and

NOx, which are expected to be associated with traffic emis-

sions, in Switzerland. ECF, which is emitted as primary

aerosol from vehicles, exhibits a high correlation with NOx

for the stations north (r = 0.79) and south (r = 0.75) of

the Alps, with similar slopes and axis intercepts for both

regions (0.021 and 0.015 µg C m−3 ppb−1 and 0.35 and

0.89 µg C m−3 for north and south of the Alps, respec-

tively (see Fig. 5c), indicating a rather similar fleet com-

position in the two areas. Similar slopes (0.05, 0.03 and

0.02 µ g C m−3 ppb−1) have been reported previously for

three locations in Switzerland (MAG, ZUR and PAY, Herich

et al., 2011), Grenoble (Favez et al., 2010) and London

(Liu et al., 2014). In contrast, no correlation is found be-

tween OCF and the primary vehicular markers, ECF and NOx

(r<0.5, see Fig. 5b) for stations both north and south of the

Alps. Further, the amounts of fossil organic carbon measured

are significantly higher than amounts expected for traffic

emissions; i.e., observed average OCF/ECF = 1.54± 0.83

vs. traffic OC /EC= 0.25–0.80 (El Haddad et al., 2013 and

references therein). Taken together these observations indi-

cate that a considerable amount of OCF is associated with

emissions or atmospheric pathways that yield organic aerosol

with little or no ECF and NOx. These processes may in-

clude primary emissions from non-mobile fossil fuel com-

bustion sources, e.g., heavy fuel combustion (e.g., crude oil,

not widely used in Switzerland), or secondary organic carbon

formed from fossil VOCs emitted from traffic.

3.3.2 Non-fossil fraction

As mentioned above a significant fraction of non-fossil car-

bon during winter-smog episodes originates from wood burn-

ing. The use of a single or a set of source specific com-

pound markers from wood burning emissions is often ap-

plied to estimate the contribution of this source to ambient

aerosol (Herich et al., 2014 and references therein). The most

widely used tracer compound for biomass-burning emissions

is levoglucosan (Simoneit et al., 1999; Puxbaum et al., 2007),

a product of cellulose combustion. Another wood burning

tracer is water-soluble potassium (K+), which is an inor-

ganic compound mainly present in ash. The wide variability

of levoglucosan emission ratios results in significant uncer-

tainties in estimating wood burning contributions. For exam-

ple, ratios of OC and EC to levoglucosan for alpine regions

were reported in Schmidl et al. (2008) to range from 3.7 to

12.5 and from 0.7 to 4.7, respectively, dependent on the com-

bustion conditions and fuel type used (Engling et al., 2006;

Lee et al., 2010). Here, we examine the relationship between

different measured wood burning markers and the measured

OCNF, to investigate the main emission sources and chemical

characteristics of this fraction.

The comparison of ECNF and OCNF with levoglucosan

(see Fig. 6) shows a high correlation for both species with the

latter. The small intercept (1.3 and 2.3 µg C m−3 for stations

north and south of the Alps, respectively) and the high cor-

relation (r>0.87) between OCNF and levoglucosan suggests

that the majority of OCNF originates from wood combustion;

i.e., cooking and, biogenic emissions seem to be minor con-

tributors (see Sect. 3.2.1 above). Furthermore, this indicates

that OCNF is to a large extent emitted as primary aerosol,

however, with the data presented in this study it is not pos-

sible to quantify a primary vs. secondary fraction of wood-

burning OC. OCNF also exhibits a high correlation with K+

as well (r = 0.62 in the north and r = 0.87 in the south,

see Fig. 8a). However, K+ is also found in soil dust and

sea salt or can be formed in incinerators and during meat

cooking (Schauer et al., 1999, 2001), and therefore cannot

be used as unambiguous tracer for wood burning, although

none of these sources are expected to have a large influence

in Switzerland during winter. Another indication for OCNF

originating to a large extent from wood combustion is its high

correlation (r = 0.77, see Fig. 7) with ECNF, which can be

almost exclusively attributed to this source.

A high correlation is also found between levoglucosan and

K+ (r>0.6). However, clearly different slopes (0.6 and 5.4)

are observed for stations north and south of the Alps, respec-

tively. Furthermore, also the comparison of OCNF and ECNF

with levoglucosan as well as OCNF with K+ shows signifi-
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Figure 5. Comparison for stations north and south of the Alps for (a) ECF and OCF, (b) NOx and OCF as well as (c) NOx and ECF. OCF

values from BAS and all data from the yearly cycle in ZUR are excluded (see Sect. 3.2.1 and Sect. 1). An orthogonal distance regression was

used to fit the data.

Figure 6. Scatter plot of OCNF (a) and ECNF (b) vs. levoglucosan

combined with whisker box plots of their ratios for all measured

winter samples (red circles denote the mean). OCNF values from

BAS and all data from the yearly cycle in ZUR are excluded (see

Sect. 3.2.1 and Sect. 1). Levoglucosan data is only available for

the first two winter seasons (see Table 2). An orthogonal distance

regression was used to fit the data.

cantly different ratios for stations located in the north and the

south. These discrepancies between the two Swiss regions

could originate from different wood types used (e.g., soft

and hard wood), burning conditions, and atmospheric pro-

cessing. Different ratios of OCNF and ECNF to levoglucosan

indicate differences in SOC formation and/or photochemi-

cal degradation of the latter which was recently reported by

Kessler et al. (2010) and Hennigan et al. (2011). However,

under winter-smog conditions in Switzerland (low tempera-

tures and photochemical activity) rapid levoglucosan degra-

dation is not expected and no large systematic differences

in the photochemical activity and SOC formation between

locations south and north of the Alps were found as evi-

denced by very similar OCNF to ECNF ratios (7.7± 2.1 and

8.6± 2.9, see Table 3 and Fig. 7) for these two regions in

Switzerland. However, with our data we cannot completely

rule out different wood burning OC /EC emission ratios in

both regions of Switzerland as higher primary wood burning

OC emissions in the south could be compensated by a larger

non-fossil SOC fraction in the north. Higher ratios of OCNF

and levoglucosan to K+ in the south show that wood burn-

ing emissions contain a higher fraction of OC compared to

the north. Data from the Swiss forest inventory (Swiss Fed-

eral Statistical Office, 2014) show that the fraction of soft

(25 %) and hard woods (75 %) in the energy wood produc-

tion is very similar between the Swiss Plateau and the re-

gions south of the Alps (max. 16 % difference for the years

2008–2012) suggesting that households in both regions have

similar access to soft and hard woods. Therefore, the differ-

ent ratios between OCNF and K+ as well as levoglucosan and

K+ are most likely due to different burning conditions. Pre-

vious studies demonstrated that particulate emissions from

biomass combustion with high temperatures (e.g., in large

combustion units, modern stoves and boilers) consist pre-

dominantly of inorganic material (K-salts) and contain lit-

tle OC (Valmari et al., 1998; Johansson et al., 2003; Khalil

and Rasmussen, 2003; Heringa et al., 2011; Schmidl et al.,

2011). Consequently, dissimilar levoglucosan to K+ ratios

measured at different locations have already been used as

indication for different burning conditions in recent studies

(Sandradewi et al., 2008b; Caseiro et al., 2009; Piazzalunga

et al., 2013b). The lower levoglucosan to K+ ratios found in

this study for locations north of the Alps therefore suggest
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Figure 7. Comparison of OCNF and ECNF combined with whisker

box plots of their ratios for all measured winter samples (red circles

denote the mean). OCNF values from BAS and all data from the

yearly cycle in ZUR are excluded (see Sect. 3.2.1 and Sect. 1). An

orthogonal distance regression was used to fit the data.

a larger fraction of more efficient wood burners (e.g., pellet

and wood chip burners) in this region compared to the south

where wood stoves seem to be operated at rather poor com-

bustion conditions with high carbonaceous and thus lower

relative K+ emissions.

The discussions above clearly showed the differences in

wood burning marker ratios at locations north and south of

the Alps. However, a closer inspection of the results of Ta-

ble 3 reveals that most wood burning marker ratios at the

stations PAY and MAS (both north of the Alps) are rather

similar to the average over all locations south of the Alps and

the urban station CHI exhibits values more similar to the av-

erage in the north than to the other southern locations. Since

in the north mainly urban and suburban stations and south

of the Alps mostly rural and/or background sites were cho-

sen (see Table 1 and Fig. 1), this suggests that the differences

in the wood burning marker ratios between these two Swiss

regions are most likely associated with the different station

characteristics (e.g., rural and/or background with high wood

burning influence vs. urban, suburban and more traffic influ-

enced stations) rather than due to their geographical location

within Switzerland.

3.3.3 Comparison of wood burning marker ratios with

other studies

Herich et al. (2014) presented an overview about previ-

ous studies carried out during winter in Switzerland and

other alpine regions in Europe. Several source apportion-

ment methods (including 14C analysis, aethalometer model,

positive matrix factorization, chemical mass balance, macro-

tracer approach – see Gianini et al. (2013) and Herich et

al. (2014) for a discussion about possible differences in the

biomass burning marker ratios due to different approaches)

were used in these studies to estimate the wood burning frac-

Figure 8. OCNF (a) and levoglucosan (b) as a function of the K+

concentrations combined with whisker box plots of their ratios for

all measured winter samples (red circles denote the mean). OCNF

values from BAS and all data from the yearly cycle in ZUR are

excluded (see Sect. 3.2.1 and Sect. 1). Levoglucosan data is only

available for the first two winter seasons (see Table 2). An orthogo-

nal distance regression was used to fit the data.

tion of OC and EC. In the following we will compare our

biomass burning marker ratios with the ones summarized by

Herich et al. (2014). It should be noted that the results pre-

sented in the latter study were mainly obtained from short

campaigns in just a single winter season and at a limited

number of stations, whereas here we performed measure-

ments on winter filters from 5 years and 16 stations.

The average ECNF to levoglucosan ratio for several sta-

tions north of the Alps (BER, PAY, STG, ZUR, REI, BAS,

Ebnat-Kappel) from earlier winter measurements in Switzer-

land is consistent with the results obtained here, but for

some southern stations (MAG, MOL, ROV) it is slightly

higher than the average ratio found here (see Table 3).

ECNF / levoglucosan ratios for three Austrian cities (Vienna,

Graz and Salzburg, Caseiro et al., 2009) and three locations

in the Po Valley (Milan, Sondrio and Ispra, Gilardoni et al.,

2011; Piazzalunga et al., 2011b) which can be considered

as north and south of the main chain of the Alps, respec-

tively, exhibit also similar values as those obtained here. Gen-

erally lower biomass burning OC (OCBB) to levoglucosan

and OCBB to ECNF ratios for the Swiss, Po-valley and Aus-

trian sites located north and south of the Alps were found

in Herich et al. (2014) compared to OCNF to levoglucosan
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Table 3. Compilation of the ratios between levoglucosan (Levo) and K+, ECNF and levoglucosan, OCNF and levoglucosan as well as OCNF

and ECNF for all stations. Numbers indicate the mean values± standard deviation. The number of samples is reported in brackets. OCF

values from BAS and all data from the yearly cycle in ZUR are excluded (see Sect. 3.2.1 and Sect. 1). No levoglucosan was measured in

SCH. In addition, ratios previously reported in literaturea for similar conditions are included as well.

station ECNF /Levo OCb
NF /Levo OCb

NF /ECNF Levo /K+

REI 1.76± 0.49 (n= 5) 17.3± 4.2 (n= 5) 9.9± 1.3 (n= 5) 0.59± 0.16 (n= 5)

BER 1.74± 0.21 (n= 5) 15.5± 2.2 (n= 5) 9.4± 1.6 (n= 25) 0.87± 0.12 (n= 5)

BAS 1.29± 0.28 (n= 9) – – 1.52± 0.47 (n= 10)

PAY 1.26± 0.21 (n= 5) 10.4± 1.1 (n= 5) 8.3± 2.5 (n= 25) 1.37± 0.32 (n= 5)

SIS 1.79± 0.46 (n= 9) 12.9± 3.7 (n= 8) 6.7± 1.4 (n= 21) 0.63± 0.21 (n= 10)

SOL 1.42± 0.33 (n= 9) 11.8± 2.2 (n= 10) 7.8± 2.0 (n= 25) 1.05± 0.25 (n= 10)

MAS 1.15± 0.13 (n= 5) 10.9± 2.0 (n= 5) 8.4± 1.5 (n= 20) 2.05± 0.43 (n= 5)

ZUR 2.12± 0.79 (n= 9) 13.1± 2.2 (n= 9) 7.3± 2.0 (n= 25) 0.80± 0.22 (n= 10)

VAD 2.43± 0.78 (n= 9) 12.1± 3.5 (n= 10) 5.9± 1.5 (n= 25) 0.88± 0.24 (n= 10)

STG 1.77± 0.29 (n= 14) 11.7± 2.0 (n= 14) 7.4± 1.9 (n= 25) 0.97± 0.26 (n= 13)

SCH – – 5.1± 1.2 (n= 3) –

MOL 0.77± 0.24 (n= 5) 7.3± 2.0 (n= 5) 9.9± 2.9 (n= 5) 3.67± 0.83 (n= 5)

ROV 0.76± 0.43 (n= 5) 7.0± 3.0 (n= 5) 9.7± 2.1 (n= 5) 4.39± 1.53 (n= 5)

CHI 1.01± 0.28 (n= 10) 9.9± 2.8 (n= 10) 9.8± 3.7 (n= 25) 2.87± 0.97 (n= 10)

MAG 0.80± 0.17 (n= 10) 6.9± 2.6 (n= 10) 7.9± 2.4 (n= 25) 3.29± 0.73 (n= 10)

SVI 0.93± 0.19 (n= 6) 6.9± 1.4 (n= 6) 7.3± 1.9 (n= 22) 4.49± 1.20 (n= 6)

north of Alps 1.72± 0.59 (n= 79) 12.6± 3.1 (n= 71) 7.7± 2.1 (n= 199) 1.03± 0.46 (n= 83)

south of Alps 0.87± 0.27 (n= 36) 7.8± 2.7 (n= 36) 8.6± 2.9 (n= 82) 3.58± 1.16 (n= 36)

Austriac 1.31± 0.11 7.24± 0.03 5.57± 0.48 –

Po-valleyd 0.89± 0.06 5.62± 0.30 6.54± 0.25 –

north of Alpse 1.82± 0.44 9.05± 1.77 4.98± 0.39 –

south of Alpsf 1.20± 0.37 7.04± 0.90 4.72± 0.04 –

a data from the publications listed below were summarized and recalculated by Herich et al. (2014). b Herich et al. (2014) obtained biomass burning

OC (OCBB) ratios which do not include SOA. c average over measurements in winter from Vienna, Graz and Salzburg (Caseiro et al., 2009). d average

over measurements in winter from Milan, Sondrio and Ispra (Gilardoni et al., 2011; Piazzalunga et al., 2011b). e average over measurements in winter

from BER, PAY, STG, ZUR, REI, BAS, Ebnat-Kappel (Sandradewi et al., 2008b; Herich et al., 2011; Gianini et al., 2012). f average over

measurements in winter from MAG, MOL, ROV (Sandradewi et al., 2008b; Herich et al., 2011; Gianini et al., 2012).

and OCNF to ECNF ratios presented here (see Table 3). The

differences in the ratios most likely originate from (1) uncer-

tainties in the OCBB determination (e.g., OC / levoglucosan

emission ratios have to be assumed which can be highly vari-

able) (2) SOC from wood burning is not taken into account

in the OCBB values as presented in Herich et al. (2014) but

is included in OCNF as obtained by the 14C measurement

and (3) a contribution of other non-fossil sources (e.g., cook-

ing or biogenic aerosol) to OCNF as apportioned with the
14C analysis cannot be completely ruled out although they

are expected to have no large influence during winter-smog

episodes in Switzerland (see discussion in Sect. 3.2.1 above).

The differences in the wood burning marker ratios be-

tween locations north and south of the Alps is also evident

for the results presented in Herich et al. (2014). OCBB and

ECNF to levoglucosan ratios are higher in the north which

was also shown for the same ratios obtained here. In addi-

tion, OCBB /ECNF previously found for stations north and

south of the Alps in Switzerland are very similar confirming

the findings from above (see Sect. 3.3.2) that there is no sig-

nificant difference in the non-fossil SOC formation between

these two regions.

4 Conclusions

In this study we present source apportionment results of

winter-smog episodes in Switzerland (days exceeding the

Swiss and European daily PM10 limit of 50 µg m−3) using

radiocarbon (14C) analysis separated for the elemental (EC)

and organic (OC) carbon fraction together with levoglucosan,

major water-soluble ionic species and gas phase pollutant

measurements. Overall,∼ 300 filter samples from five winter

seasons (2008–2012) from 16 air pollution monitoring sta-

tions across Switzerland with different characteristic (e.g.,

urban, suburban, rural, alpine valley, traffic, background,

etc.) were analyzed providing one of the world’s largest

aerosol 14C data sets.

The most important contributions to PM10 during winter-

smog episodes in Switzerland were on average the or-

ganic matter OM (29± 7 and 46± 17 %), followed by the

secondary inorganic constituents nitrate (NO−3 , 25± 9 and

20± 11 %), sulfate (SO2−
4 , 10± 4 and 6± 3 %) and ammo-

nium (NH+4 , 9± 3 and 7± 4 %) for stations north and south

of the Alps, respectively. The EC shares of PM10 were on av-

erage 3–5 % north of the Alps and 5–7 % south of the Alps.
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PM10 and OM concentrations during winter-smog episodes

in Switzerland were significantly higher for stations south of

the Alps, which is most likely due to a combination of topog-

raphy (e.g., several stations are located in alpine valleys), lo-

cal meteorology (e.g., more persistent inversions with rather

low mixing heights compared to the north) and emissions

(strong local wood burning influence).

The fractional non-fossil contribution of organic carbon

(fNF,OC) determined with the 14C analysis ranges on av-

erage between 0.69–0.85 and 0.80–0.95 for stations north

and south of the Alps, respectively, showing that traffic con-

tributes on average only up to 30 % to OC. Furthermore,

the elevated fNF,OC values together with high correlations

with other wood burning markers (non-fossil EC, levoglu-

cosan and water soluble potassium) indicate that residen-

tial wood burning is the major source of OC during winter

smog episodes in Switzerland. The station-to-station differ-

ences and the variability at each individual location north of

the Alps is small suggesting that on the one hand the rela-

tive source contributions, meteorological conditions, as well

as the degree of atmospheric processing and secondary OC

formation for the chosen days were very similar and on the

other hand that different stations, especially those on the

Swiss Plateau, are rather influenced by regional air pollu-

tion than from local sources. The relative non-fossil contri-

butions of EC (fNF,EC), which can be exclusively attributed

to wood burning, are on average 0.42± 0.13 and 0.49± 0.15

for stations north and south of the Alps, respectively. Since

fNF,EC values are often close to 0.5 (even slightly higher for

some stations) this shows that also residential wood combus-

tion contributes to a large extent to EC during winter-smog

episodes in Switzerland. The sum of non-fossil OC and EC

contributes on average 70± 18 and 79± 10 % to total carbon

at stations north and south of the Alps, respectively, high-

lighting the importance of wood burning emissions from res-

idential heating in Switzerland during winter-smog episodes.

This is in agreement with recent studies which have shown

that residential wood burning can be the dominating source

of carbonaceous aerosols during the cold season in Europe.

The comparison between fossil EC (ECF, only emitted

as primary aerosol) and nitrogen oxides (NOx), which are

mainly associated with traffic emissions, showed a good

agreement whereas no correlation was observed between fos-

sil OC (OCF) and the two latter components, indicating that a

considerable amount of OCF is secondary OC (SOC) formed

from fossil precursors mainly emitted from traffic. Correla-

tions between non-fossil OC (OCNF) and EC (ECNF) and the

wood burning markers levoglucosan and water soluble potas-

sium (K+) clearly show different slopes for stations north

and south of the Alps suggesting different burning technolo-

gies in both regions.

The Supplement related to this article is available online

at doi:10.5194/acp-14-13551-2014-supplement.
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