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Abstract 

Aims: Sample Entropy (SampEn) is a powerful ap­
proach for characterizing heart rate variability regular­
ity. On the other hand, autoregressive (AR) models have 
been employed for maximum-entropy spectral estimation 
for more than 40 years. The aim of this study is to explore 
the feasibility of a parametric approach for SampEn esti­
mation through AR models. We re-analyze the Physionet 
paroxysmal Atrial Fibrillation (AF) database, where RR 
series are provided before and after an AF episode, for 25 
patients. In particular, we selected short RR series, close 
to AF episodes, to fit an AR model. Then, theoretical values 
of SampEn, based on each AR model, were analytically de­
rived (SEth) and also estimated numerically (SEsyn). The 
value of SampEn (SErr), computed on the 5 0  RR series 
with r=0.2xSTD, m=i and N=120, were within the stan­
dard range of SEsyn in 3 0  cases (39 for SEth). This figure 
increased to 82% of cases, if shorter series were selected 
(N=75), and if RR series were replaced by surrogates with 
Gaussian amplitude distribution. interestingly, without re­
moving ectopic beats, every estimate of SampEn consid­
ered was significantly different between pre- and post- AF 
(SErr: p=0.02; SEsyn: p=0.0 024; SEth: p=0.023). When 
an AR model is appropriate and theoretical estimates dif­
fer from numerical ones, a parametric approach might en­
lighten additional information brought by SampEn. 

1. Introduction 

Heart rate variability (HRV) analysis has become an 
important tool for evaluating cardiac autonomic regula­
tion [1]. Pincus [2] at first developed a family of statis­
tics, called approximate entropy (ApEn) to measure sys­
tem complexity. This statistics has been used for measur­
ing the regularity of HRV before the spontaneous onset of 
paroxysmal atrial fibrillation (AF) since 1999 [3]. 

ApEn was shown to be a biased statistics [4] and, to 
overcome this limitation, Richman and Moorman [5] intro­
duced SampEn. The advantages of the latter over ApEn 
are (i) it converges rapidly, (ii) it is less prone to inconsis­
tency and (iii) it is relatively less biased even for finite data 
sets [5]. The statistics SampEn has been applied success-
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fully to a wide variety of time series analysis [6-8]. 
Estimation of these families of statistics requires a prior 

selection of the unknown parameters m and r. To the best 
of our knowledge, there is no universal rule for the selec­
tion of these free parameters. The reconunended value of r 

in the range [0.1 0.2] x STD has been shown to be applica­
ble to a wide variety of signals [2,5,9-11]. The value of m 
depends actually on the length of the series and it should be 
kept small (m = 1) for short series (length::; 120 points). 

Pincus [12], later Lake [13], showed that both ApEn and 
SampEn are related to (differential) entropy rate: a central 
concept of information theory. Autoregressive (AR) mod­
els have been employed for maximum-entropy spectral es­
timation for more than 40 years [14] and already in [9,13] 
analytical formulas of ApEn and SampEn for this specific 
class of processes were provided. In this work, we extend 
and verify these analytical predictions with the aim of un­
derstanding if parametric estimation through AR models 
of SampEn is possible and practically sensible. To do this, 
we verify the convergence of SampEn of the process and 
finally explore the feasibility of parametric approach for 
SampEn estimation of HRV during paroxysmal AF. 

2. Methods 

2.1. Autoregressive processes 

AR processes are commonly used to model time series. 
An AR process of order p is a linear combination of pre­
vious p samples and additive white Gaussian noise with 
mean 0 (zero) and variance a� . It can be expressed as 

p 
x[n] = - L aix[n - i] + w[n] 

i=l 

where ai, i = 1, 2, ... ,p are the coefficients of the AR 
model and w (n) is the injective white noise. 

The joint probability density of the m consecutive val­
ues Xm[n] = (x[n+m],· .. ,x[n+ 1]) is multivariate nor­
mal on JRm, with Xm rv N(O, �m). The Toeplitz covari­
ance matrix �m is completely defined by the coefficients 
of the AR model and the variance a� . When m > p, fur­
ther elements in �m are still dictated by the Yule-Walker's . ,,",p equatIOn Pk = - L...i=l aiPk-l· 
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2.2. Theoretical values for N -----+ 00 

For a stochastic process (thus also AR), the analytical 
expression of ApEn(m = 1, r) has been given in [9] as 

AEth(l,r) = 11 f(X2) {log [l��:r f(Xdd6] 
IR2 

- log [l:�:r l��:r f(X2)d6d6 ] } dXldx2 

where f(Xm) = N(O, �m) is the joint normal stationary 
probability of (x[n + m],· . .  ,x[l]) on ]Rm. This equation 
can be extended to derive a general expression of ApEn for 
any m and r as 

AEth(m, r) = 1 ···1 f(Xm+d log (;'::1) dXm+l, 
IRm+l 

(1) 

(2) 

Following a similar procedure, it is possible to derive a 
theoretical value for SampEn, based on its definition. In 
fact, the probability that there is a match of templates of 
length m (i.e. the maximum absolute difference between 
the corresponding elements of any two templates is r) is 
given by equation (2) where f(Xm) = N(O, 2�m). This 
follows by the fact that the difference of any two templates, 
Xm[i] - Xm[J] rv N(O, 2�m). Hence 

SEth (m, r) = 10g(P m) - 10g(P m+1). (3) 

Please notice that the theoretical values in (1) and (3) 
depend on both m and r, but not on N, as they are given 
in the limit N --+ 00. 

2.3. Theoretical values for Nand m -----+ 00 

Lake [13] derived theoretical expressions for ApEn and 
SampEn from the definition of (differential) entropy rate, 
in the limit m --+ 00. If r is chosen independently of the 
standard deviation of the sequence (STD), it can be shown 
that they are respectively 

1 
AEL(r) =log(O"w) + 2 [log(27r) + 1] - log(2r) 

1 
SEL(r) =log(O"w) + 210g(47r) - log(2r). 

On the other hand, if r is a percentage of STD, then the 
expressions become 

(o"w ) 1 
AEL(r) =log - + - [log(27r) + 1] - log(2r) (4) 

O"y 2 

SEL(r) =log - + -log(47r) - log(2r) (o"w ) 1 
O"y 2 

(5) 

430 

2.8 

2.6 

2.4 
c: 
� 2.2 
E 

U'l 2 

1.8 

1.6 

1.4 

+ 

+ 
T 

T -t 
I 

___ � __ *_ - rn- _� __ n 
--L I U 

--L 
+ I 

--L 

2 3 4 5 6 
m 

Figure 1. SampEn of the model of coefficients 
{I, -0.8,0.46,0.02, -0.33} for different values of m, r = 
0.2 x STD and N = 5000. SEL is constant for all values 
of m because it depends only on r. The probability den­
sity of numerical estimation from 200 times simulation is 
represented by box plot. SEth varies with m and it is al­
ways inside the standard range of numerical estimation. 
Although SEL differs from SEth and SE syn for m < 4, 
they converge to a common value for any m 2: 4. 

where O"y is the standard deviation of the series obtained 
from the AR process. 

Let Pk denotes the autocorrelation coefficient of the AR 
process at lag k. Then from the Yule Walker's equation, 
the variance of the process is 

where c = 1/(1 + alPl + ...  + amPm). Replacing O"y in 
equations (4) and (5) by O"wVC 

1 
AEL(r) =2 [log(27r) + 1] - log(2rVC) 

1 
SEL(r) =210g(47r) - log(2rVC) 

So, if r is fixed, Lake's estimates depend only on the vari­
ance of the prediction error O"!. On the other hand, if r 
varies with STD, they depend on the coefficients of the 
model (thus the order p), but not on O"!. 

2.4. Expected values for fixed Nand m 

The theoretical expressions for entropies given in sec­
tions 2.2 and 2.3 are independent on the series length N. 
When working on finite series, a convergence question 
may arise. In fact, the numerical estimates obtained from 
short series, using the algorithms proposed in [4] and [5], 
might be still far from reaching the expected values. On 
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Figure 2. Convergence of SampEn (model as in Figure 1) 
with different m and r; N = 5000. SEsyn approximately 
coincides with SEth, for any m and r. They also converge 
to SEL as m tends to the model order p = 4, with smaller 
r (r ::; 0.2). 

the other hand, real applications are meant to work on fi­
nite size-series. 

An operative procedure is to resort to a certain number 
of Montecarlo simulations of the AR model. In each run, 
a synthetic series of a certain length N is produced, and 
then numerical values of ApEn and SampEn are numeri­
cally assessed for a specific couple of m and r. Finally, the 
values of the entropy rates are used to estimate the proba­
bility density function of the statistics, from which average 
values and standard deviation can be computed. 

In our study, expected values of SampEn SEsyn (m, r, N) 
were obtained following this procedure (200 runs) and 
computing their average value. 

2.5. AR-process SampEn convergence 

To investigate the convergence of SEL, SEth and SEsyn 
of an AR process, an arbitrary AR model of order 4 was 
considered. SEth, SEL and SEsyn of the model were de­
termined as described in sections 2.2 to 2.4. The conver­
gence with m = 1, ...  ,6 for constant and different values 
of r, is shown in Figure 1 and 2, respectively. Models with 
different orders are instead considered in Figure 3. 

2.6. Parametric approach on real RR series 

Both ApEn and SampEn measures were used success­
fully to detect the reduction of complexity before parox­
ysmal AF [3, 15]. To investigate the feasibility of para­
metric SampEn estimation, we re-analyzed the paroxys­
mal AF database of 25 patients on Physionet, where RR 

431 

4 

3.5 
I
I 

II 

3 I I  
I', 

2.5 , . 

c 
W 
a. 2 E 
'" 

(f) 

1.5 

0.5 

, 
, . , , . 

,'. 
" 

" '. , " 

- . 

-- SEth, SEsyn (M1) 
. _ . - SEth, SEsyn (M2) 
- - - SEth, SEsyn (M) 
--B--- SEL 

OL-----�------�------�----�------� 
o 0.2 0.4 0.6 0.8 

Figure 3. Convergence of SampEn for 3 different mod­
els (MI coefficients: {I, -0.77}, M2: {I, -0.04, 0.67} 
and M3: {I, 0.55, 0.24, 0.39}) with m = 1 and r = 

0.05, ...  ,1. The values of SEth and SEL differ for dif­
ferent models, while SEth and SEsyn approximatively co­
incide. Since m=1 (which is the order of M1), the closest 
convergence of SEth, SEL and SEsyn is found for MI. 

series were provided before and after an episode of AF. 
To remove artifacts in the series, we performed two lev­
els of pre-processing. In the first, only extreme artifacts 
were removed, defined as those RR which lie outside the 
range [QI Q3]±3 x IR. Here, QI and Q3 are first and third 
quartiles, respectively and IR=Q3-Ql. In the second stage 
of pre-processing, the ectopic beats were removed. Only 
those RR, which were within 20% variation of the previous 
accepted RR, were included (the first accepted RR value 
for each series must lie within the IR). 

Short RR series of length 120 points just immediately 
before (pre-AF) and after an episode of AF (post-AF) were 
selected to fit an AR model. Then, SEth of each AR model 
was derived. At the same time, SEsyn of the model was 
estimated. Finally, paired t-test was done on pre- and post­
AF estimations to see if they are distinguishable. 

3. Results 

After editing, the numerical values of SampEn (SErr) of 
the original RR segments, with m = 1, r = 0.2 x STD 
and series length N = 120, were within the standard range 
of SEsyn for 30 cases out of 50. This is shown in Figure 4. 
Although, SEth was in agreement with SEsyn for 39 cases. 

To investigate if non-Gaussianity was the cause of the 
disagreement between SErr and SEsyn, surrogated data of 
the original RR segments were constructed in such a way 
that the original distribution of RR values was replaced by 
a Gaussian distribution of same STD, preserving the order 
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Figure 4. Frequency of dis/agreement (left/right) of SErr 
with SEsyn before (Pre-AF) and after AF (Post-AF) for se­
ries of length N = 120 points. Out of 25 patients, SErr is 
within the standard range of SEsyn for 12 and 18 patients, 
respectively, during pre-and post-AFs. 

of ranks. Then, if shorter surrogate series (N = 75) were 
considered, the figure of agreement rose to 82%. 

Finally we observed that the editing method employed 
largely affects the results, as ectopic beats are more prob­
able before an AF episode [3]. Interestingly, every es­
timates of SampEn considered was significantly differ­
ent between pre-and post-AF series (with SErr: p=0.020; 
SEsyn: p=0.0024; SEth: p=0.023) when only extreme arti­
facts are removed and keeping the ectopic beats. However, 
this is not the case, if ectopic beats are removed (as admit­
ted also in [3,15]). 

4. Conclusions 

The important finding of this study is that parametric 
estimation of SampEn is possible. Numerically computed 
values of SampEn, SEL, SEth and SEsyn all converge to 
a common value for an AR process (if proper values for 
N and m are employed). When an AR model is appropri­
ate and when theoretical estimates differ from numerical 
ones, this approach might provide additional information 
(i.e. non-Gaussianity or non-stationarity of the RR series). 

Moreover, parametrically-estimated values of SampEn 
support the statement that there is reduction of complexity 
in HRV before the onset of AF. While this is in agreement 
with [3,15], it also confirms that the complexity-reduction 
is mostly due to the presence of ectopic beats. In this study, 
the database employed contained only of small number of 
patients, and further studies with larger populations are 
needed. 
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