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Abstract 

Enhanced temporal variability of ventricular repolar­

ization has been related to increased ventricular arrhyth­

mic risk. In this study, we investigate the influence of 

stochastic ion channel gating on the variability of four 

arrhythmic risk biomarkers: action potential (AP) du­

ration (APD), AP triangulation and systolic and dias­

tolic calcium levels. Different levels of white noise, rep­

resenting different channel numbers, were introduced by 

means of a stochastic differential equation for the gating 

variables of the ten Tusscher-Panfilov human ventricular 

model (TP06). In single cells the rapid and slow delayed 

rectifier potassium currents (IKr and IKs) were the main 

contributors to biomarkers variability, which was shown 

to be increased at fast pacing frequencies, particularly for 

APD and diastolic calcium. At tissue level, electrotonic 

coupling masked the effects of stochastic gating on the 

variability of all the investigated biomarkers. In particu­

lar, a very notable reduction in variability was obtained for 

2D and 3D tissue models, with 80% reduction with respect 

to 1 D models, and more than 20 folds with respect to iso­

lated cells under physiological conditions. This indicates 

that large variations in cellular AP are required in order 

to reproduce physiological variability levels measured in 

tissue. 

1. Introduction 

Beat-to-beat repolarization variability (BRV) is an in­

trinsic characteristic of cardiac function that is evidenced 

at different scales, from temporal variations in the action 

potential (AP) duration (APD) of the isolated cardiomy­

ocyte [1] to QT variability at the body surface [2]. A num­

ber of studies have linked enhancement in temporal vari­

ability of cardiac repolarization to an increased risk of de­

veloping arrhythmias [2,3]. In addition, under pathologic 

conditions, beat-to-beat variability has been identified as a 
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better proarrhythmic marker than QT prolongation [2]. 

A number of studies have proposed stochastic ion­

channel gating as a source of variability in ventricular re­

polarization [4,5]. These studies have introduced stochas­

tic gating in one or several ionic currents and have inves­

tigated their effects on APD variability. In this study we 

introduce stochastic ion-channel gating in four ionic cur­

rents of the ten Tusscher-Panfilov (TP06) human ventricu­

lar AP model [6] that have been identified to significantly 

influence BRV [1], namely, IKs> IKr, ICl<L, and Ito. The ef­

fect of current fluctuations is evaluated on four different 

arrhythmic risk biomarkers: systolic and diastolic [Ca2+]i, 
APDgo and AP triangulation (APDgo-APD50), when stim­

ulating at different pacing frequencies. In addition, the in­

fluence of electronic coupling on APD variability is inves­

tigated in one-, two- and three-dimensional (lD, 2D, 3D) 

tissues. Unless otherwise stated, APD is used to refer to 

APD measured at 90% repolarization (APDgo). 

2. Methods 

2.1. Stochastic gating 

Stochastic gating at the ionic level was introduced by 

replacing the Hodking-Huxley formulation for the current 

gating variable by a formulation based on the Langevin 

equation [5,7] given by the following stochastic differen­

tial equation (SDE): 

dg = 

goo - g dt + 
T9 

(1) 

where goo and T9 are the steady-state value of g and the 

time constant to reach that steady-state value, W repre­

sents a Wiener process, and N > 0 is a parameter control­

ling the magnitude of the noise introduced. We associated 

N to the number of channels expressed in the membrane. 

Stochastic gating in the TP06 model was incorporated in 

nine gates related to the ionic currents considered. Namely, 
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i) IKs current, the activation gate Xs; ii) IcaL current, the ac­

tivation gate d, the slow inactivation gate f, the fast inacti­

vation gate 12, and the calcium inactivation gate feass; iii) 

1'0 current, the activation r, and inactivation s, gates; iv) IKe 

current, the activation Xrl, and inactivation Xr2, gates. 

The number of channels in the cell membrane for each 

of the considered currents required in Eq.l were obtained 

from the literature and are given in Table 1. 

Table 1. Average number of channels used for the simula­

tions. 

Current N Ref 

IKs 12000 [5] 

ICaL 50000 [8] 

I� 2175 [9] 

I,D 1495 [10] 

2.2. Stimulation protocols and biomarkers 
of arrhythmic risk 

Two stimulation protocols were applied and four cellular 

biomarkers of arrhythmic risk were computed: 

Steady-state protocol. The model was stimulated for 60 

min at a frequency of 1Hz. APDgo, AP triangulation and 

systolic and diastolic [Ca2+]i levels were recorded for the 

last minute of stimulation. 

Dynamic restitution protocol. After reaching steady 

state, the model was stimulated for 5 min at increasing fre­

quencies from 1Hz up to 5Hz, recording the last minute 

of stimulation. Rate dependent curves for all biomarkers 

were obtained. 

2.3. Numerical implementation and simu­
lation 

Model differential equations were implemented in C. 

Cells were stimulated with square transmembrane current 

pulses with an amplitude -24 pA/pF and 1 ms duration. 

Forward Euler integration with a time step of 0 .02  ms was 

used to integrate the system of differential equations gov­

erning the cellular electrical behavior of epicardial cells. 

The Rush and Larsen integration scheme was used to in­

tegrate the Hodgkin-Huxley type equations for the gat­

ing variables non subjected to fluctuations, whereas SDEs 

were integrated using the Euler-Maruyama method. 

A monodomain reaction-diffusion equation was used to 

model the electric propagation across the cardiac tissue. 

This partial differential equation (PDE) was solved using 

the finite element method with linear interpolation func­

tions, a time step of 0 .02  ms and spatial discretization of 

0 .01  cm by means of the software ELVIRA [11,12]. The 

different tissue models were paced at 1Hz for 6 minutes. 
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The last minute of activity was used for variability compu­

tation. 

2.4. Statistics 

The mean and standard deviation (SD) of each 

biomarker were computed based on five realizations con­

sisting on records one minute long each. Variability is re­

ported as the Coefficient of Variation (CV) in percentage, 

defined as CV=100xSD/mean. 

3. Results 

3.1. Effect of stochastic channel gating on 
BRV and model stability 

The suitability of modeling multi-channel stochastic be­

havior using a Langevin SDE was checked by observing 

the long term model response under stochastic channel 

gating. After 60 minutes of stimulation at 1 Hz, the dif­

ferences in the intracellular potassium [K+]i, among the 

deterministic and stochastic models was less than 0.01 % 

along a beat (Figure la). Similar results were obtained for 

[Na+]i and [Ca2+]i concentrations. In addition, Poincare 

plots of APDi+l versus APDi show the same temporal dy­

namics, circular shape (Figure Ib) as observed in experi­

ments [1, l3]. 
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Figure 1. Long term response ofTP06 model with stochas­

tic channel gating. a) Intracellular potassium concentra­

tion after 60 min of stimulation at a cycle length (CL) of 

1000 ms for the deterministic and stochastic models; b) 

Poincare plot of 60 consecutive APDs at CL=1000 ms in 

the model with stochasticity in all currents. 

3.2. Effect of stochastic channel gating on 
biomarkers 

Stochastic gating did not affect the rate dependence of 

the average value for the four biomarkers with respect to 

the deterministic model (Figure 2). However, fluctuations 

of the main repolarization currents, i.e., I�, and IKP led 

to early appearance of alternants in the model, preventing 

complete repolarization for CLs below 250 ms (see Fig­

ure 2). 

Fluctuations in IKs were found to be the main contributor 

to BRV for all biomarkers (Figure 3), with exception to the 
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Figure 2. Rate dependence for the four biomarkers in the 

TP06 model. 

triangulation where fluctuations in IKr were more signifi­

cant (Figure 3b). We also found that the variability com­

puted when the four currents were made stochastic did not 

correspond to the sum of the individual contributions, as 

observed in [4]. 
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Figure 3. CV for the four biomarkers in the TP06 model 

for three CLs: 250, 500, and 1000 ms. 

Figure 3 also shows that CV increases with the pac­

ing frequency for APD and diastolic [Ca2+]i biomarkers, 

whereas for triangulation and systolic [CaH]i biomarkers 

the CV remained almost constant along the tested frequen­

cies. A more detailed observation of the evolution of the 

CV and SD of the APD for different CLs indicates that CV 

slightly increases for frequencies up to 2.S Hz whereas the 

SD decreases, also slightly (see Figure 4). However, as 

the stimulation frequency increases above 2.S Hz, both the 

CV and SD show a consistent increment. This behavior is 

also observed for diastolic [CaH]i (not shown), whereas 

for the triangulation and systolic [Ca2+]i no significant 

changes in variability were observed in the range of CLs 
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studied. 
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Figure 4. CV (bar plot) and SD (solid trace) for the 

APDgo· 

3.3. Effect of electronic interaction 

As demonstrated in previous studies, electrotonic in­

teraction reduces the variability observed in tissue [1, 

4, 5]. However, these studies have focused mostly 

on one-dimensional tissue models. We considered ID 

(4 cm cable), 2D (0.5x2 cm2 rectangle), and 3D 

(O.OS x O.OS x 1.25 cm3 slab) tissue models in which the 

maximum propagating velocity was set to 6S emls [6], with 

a transverse to longitudinal velocity ratio of 0.57. The tis­

sue was considered as homogeneous (composed of epicar­

dial cells only) and transversally isotropic, with the fiber 

direction coinciding with the largest dimension of the ge­

ometry. For simplicity only fluctuations in IKs were con­

sidered for the tissue simulations. 

Table 2. CV for the APD in 1 D, 2D, and 3D tissue models 

stimulated at 1 Hz, with variability induced by fluctuations 

in the IKs current. 

Model 
NKs CV 

NKs CV 

Dim (%) (%) 

Unicell 12000 0.S5±0.OS 75 1O.S7±1.01 

lD 12000 0.OS2±0.006 75 0.946±0.066 

2D 12000 0.031±0.004 75 0.209±0.030 

3D 12000 0.031±0.001 75 0.175±0.026 

Table 2 (second column) shows the CV of APD for the 

different tissue models as well as for the isolated cell. The 

table shows that for the number of IKs channels given in 

Table 1, electronic coupling results in 90% reduction in 

APD variability over 60 consecutive cardiac cycles at 1Hz 

pacing in the ID tissue (same as obtained in [5]). On the 

contrary, this reduction in APD variability reaches 96% in 

2D and 3D tissues. Therefore, dimensionality significantly 

affects APD fluctuations. Even though results for isolated 

cells are in good agreement with experimental results in 



isolated cells [5], the results obtained in the 3D tissue are 

clearly underestimated with respect to the variability mea­

sured in papillary muscles [5]. In order to reach this degree 

of variability in the numerical model, the fluctuations at 

cellular level must be increased to values shown in Table 2 

(third column). In fact, for this setting, the variability ob­

tained in the ID and 3D tissues models are much closer to 

those reported by Zaniboni et al. for coupled cells (1.5%) 

of guinea pig, and by Pueyo et al. in human papillary mus­

cle (0.44%). In addition, the large fluctuations introduced 

in the model did not affect the stability of the model (re­

sults not shown). In this regard, the isolated cell showed 

similar restitution curves for the deterministic and stochas­

tic models for CLs down to 250 ms, with fluctuations pre­

venting complete repolarization for CLs below 250 ms. 

4. Discussion and conclusions 

We have used a Langevin SDE to introduce stochastic 

fluctuations in the main repolarization and plateau currents 

of the TP06 human AP model, studying the effect on four 

different biomarkers of arrhythmic risk. Our results indi­

cate that fluctuations on IKs have the largest contribution 

to BRV, in agreement with previous observations [4,5,13]. 

In addition, our simulations indicate a non-monotonic de­

pendence of APD and diastolic [Ca2+]i variability with 

CL. In this regard, variability decreases (slightly) with the 

CL up to a CL close to 400 ms. For lower cycle lengths, 

the APD variability starts to increase until the appearance 

of alternants due to incomplete depolarization of the cell. 

This implies that fluctuations may reduce the effective re­

fractory period of the tissue, increasing its vulnerability to 

conduction block. In addition, the increments in APD vari­

ability occur for low CLs, which corresponds to the region 

of higher arrhythmic risks in tissue. Therefore, it is pos­

sible that BRV plays an important role in triggering and 

modulating the arrhythmic behavior in cardiac tissue. 

We have observed that problem dimensionality affects 

the reduction in APD variability. The large difference ob­

served in Table 2 between ID and 2D/3D tissues is related 

to the larger component of the axial current present in the 

higher dimensional problems. In ID, the axial current has 

only components along the cable, whereas in two and three 

dimensions the axial current has multi-dimensional contri­

butions. This makes the 2D and 3D problems more diffu­

sive, which contributes to reduce the fluctuations found at 

cell level. This implies that in order to reproduce experi­

mental observations of variability in tissue, the fluctuations 

at cell level must be increased to values at least four times 

larger than those reported in isolated-cell experiments. 
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