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Abstract

We consider QCD radiative corrections to the production of colorless high-mass systems in hadron col-
lisions. We show that the recent computation of the soft-virtual corrections to Higgs boson production at 
N3LO [1] together with the universality structure of soft-gluon emission can be exploited to extract the 
general expression of the hard-virtual coefficient that contributes to threshold resummation at N3LL accu-
racy. The hard-virtual coefficient is directly related to the process-dependent virtual amplitude through a 
universal (process-independent) factorization formula that we explicitly evaluate up to three-loop order. As 
an application, we present the explicit expression of the soft-virtual N3LO corrections for the production of 
an arbitrary colorless system. In the case of the Drell–Yan process, we confirm the recent result of Ref. [2].
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(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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The authors of Ref. [1] have recently presented the result of the calculation of the cross section 
for the threshold production of the Higgs boson at hadron colliders at the next-to-next-to-next-to-
leading order (N3LO) in perturbative QCD. This result has prompted the observation [2] that the 
Higgs boson calculation contains information on soft-gluon radiation that can be implemented 
to explicitly determine the N3LO threshold cross section for the Drell–Yan (DY) process. In 
the present contribution, we exploit the universality (process-independent) structure [3] of soft-
gluon contributions near partonic threshold and the specific calculation of Ref. [1]. We show 
how the results of Refs. [1] and [3] can be straightforwardly combined and used to extract the 
general expression of the hard-virtual coefficient that contributes to threshold resummation at 
next-to-next-to-next-to-leading-logarithmic (N3LL) accuracy for the cross section of a generic 
(and arbitrary) colorless high-mass system produced in hadron collisions. The threshold resum-
mation formula for the production cross section can also be perturbatively expanded up to N3LO, 
and for the specific case of the DY process we recover the result of Ref. [2].

The N3LO Higgs boson results of Ref. [1] complete a cross section calculation that requires 
the evaluation of several independent ingredients related to collinear-counterterm factors [4,5]
and to real- [6,7] and virtual-radiation [8–10] contributions. One of these ingredients is the three-
loop virtual amplitude [9,10] gg → H for Higgs boson production through gluon fusion (the 
three-loop results of Refs. [9,10] use the large-mtop approximation). As discussed in Ref. [3], 
all-order soft-gluon resummation [11–13] for the hadroproduction cross section of a generic 
colorless high-mass system can be expressed in a process-independent form, whose sole process-
dependent information is encoded in the virtual amplitude of the specific process. Therefore, 
using the cross section of Ref. [1] and the virtual amplitude of Refs. [9,10] for the specific case 
of Higgs boson production, we can apply the formulation of Ref. [3] and we can explicitly deter-
mine the entire process-independent information that contributes to soft-gluon resummation for 
a generic production process up to the three-loop level. In the following we recall the formalism 
of soft-gluon resummation (by mainly following the notation of Section 5 in Ref. [3]) and we 
present and illustrate our three-loop results.

We consider the inclusive hard-scattering reaction

h1(p1) + h2(p2) → F
({qi}

) + X, (1)

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the triggered 
final state F , and X denotes the accompanying final-state radiation. The observed final state F
is a generic system of one or more colorless particles (with momenta qi), such as lepton pairs 
(produced by the DY mechanism), photon pairs, vector bosons, Higgs boson(s), and so forth. We 
focus on the total cross section2 for the process in Eq. (1) at fixed value M of the invariant mass 
of the triggered final state F (i.e., we integrate the differential cross section over the momenta qi

with the constraint (
∑

i qi)
2 = M2). In the simplest case, the final-state system F consists of a 

single (‘on-shell’) particle of mass M (for example, F can be a vector boson or a Higgs boson). 
The total cross section σF (p1, p2; M2) for the production of the system F is computable in QCD 
perturbation theory according to the following factorization formula:

2 The formalism of soft-gluon resummation can be further elaborated and extended to include the dependence on 
final-state kinematical variables such as, for instance, the rapidity of the final state F (see, e.g., Refs. [13–16]).
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σF

(
p1,p2;M2)

=
∑
a1,a2

1∫
0

dz1

1∫
0

dz2 σ̂ F
a1a2

(
ŝ = z1z2s;M2;αS

(
M2))fa1/h1

(
z1,M

2)fa2/h2

(
z2,M

2), (2)

where s = (p1 + p2)
2 � 2p1 · p2, σ̂ F

a1a2
is the total partonic cross section for the inclusive par-

tonic process a1a2 → F + X and, for simplicity, the parton densities fai/hi
(zi , M2) (i = 1, 2)

are evaluated at the scale M2 (the inclusion of an arbitrary factorization scale μF in the par-
ton densities and in the partonic cross sections can be implemented in a straightforward way 
by using the Altarelli–Parisi evolution equations of fa/h(z, μ2

F )). The partonic cross section 
σ̂ F

a1a2
(ŝ; M2; αS(M2)) depends on the mass M of the system F , on the centre-of-mass energy √

ŝ of the colliding partons a1 and a2, and it is a renormalization-group invariant quantity that 
can be perturbatively computed as series expansion in powers of αS(M

2). Considering, for in-
stance, the inclusive partonic channel cc̄ → F + X, we can write

σ̂ F
cc̄

(
ŝ;M2;αS

(
M2)) = σ

(0)
cc̄→F

(
M2;αS

(
M2)) ∞∑

n=0

(
αS(M2)

π

)n

zg
F(n)
cc̄ (z) (3)

where z = M2/ŝ,

g
F(0)
cc̄ (z) = δ(1 − z), (4)

and σ (0)
cc̄→F is the lowest-order cross section for the partonic process cc̄ → F . Since the system 

F is colorless, the lowest-order cross section is determined by the partonic processes of quark–
antiquark annihilation (c = q, q̄) and/or gluon fusion (c = g) (in the case of qq̄-annihilation the 
quark and antiquark can have different flavors, such as, for instance, if F = W±). Perturbative 
expressions that are analogous to Eq. (3) can be written for the partonic cross sections σ̂ F

a1a2
of 

all the other partonic channels. Using the renormalization-group evolution of the QCD running 
coupling αS(q2), we can equivalently expand σ̂ F

a1a2
in powers of αS(μ2

R), with corresponding 

perturbative coefficients gF(n)
a1a2 that explicitly depend on M2/μ2

R , where μR is an arbitrary renor-
malization scale. Throughout the paper we use parton densities as defined in the MS factorization 
scheme, and αS(q2) is the QCD running coupling in the MS renormalization scheme.

The kinematical variable z = M2/ŝ in Eq. (3) parametrizes the distance from the partonic 
threshold. The limit z → 1 specifies the kinematical region that is close to the partonic threshold. 
In this region the partonic cross section σ̂ F

a1a2
receives large QCD radiative corrections that are 

proportional to the singular functions

Dm(z) ≡
[

1

1 − z
lnm(1 − z)

]
+

(m = 0,1, . . .), (5)

where the subscript ‘+’ denotes the customary ‘plus-distribution’. The all-order perturbative 
resummation of these logarithmic contributions (including all the singular contributions that are 
proportional to δ(1 − z)) can be systematically performed by working in Mellin (N -moment) 
space [11,12]. The Mellin transform σ̂N (M2) of the partonic cross section σ̂ (ŝ; M2) is defined 
as

σ̂ F
a1a2, N

(
M2;αS

(
M2)) ≡

1∫
dz zN−1σ̂ F

a1a2

(
ŝ = M2/z;M2;αS

(
M2)). (6)
0
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In Mellin space, the threshold region z → 1 corresponds to the limit N → ∞, and the plus-
distributions of Eq. (5) become powers of lnN(( 1

1−z
lnm(1 − z))+ → lnm+1 N + ‘subleading

logs’). These logarithmic contributions are evaluated to all perturbative orders by using thresh-
old resummation [11,12]. Neglecting terms that are relatively suppressed by powers of 1/N in 
the limit N → ∞, we write

σ̂ F
cc̄, N

(
M2;αS

(
M2)) = σ̂

F (res)
cc̄, N

(
M2;αS

(
M2))[1 +O(1/N)

]
. (7)

Note that we are considering only the partonic channel cc̄ → F + X, with cc̄ = qq̄ and/or cc̄ =
gg, since the other partonic channels give contributions that are of O(1/N). In this paper, we 
use the Mellin-space formalism of threshold resummation [11,12] that we have just introduced. 
Related formulations of threshold resummation for hadron–hadron collisions can be found, for 
instance, in Ref. [17] (which is exploited to derive the results of Ref. [2]) and in Refs. [18–20].

The expression σ̂ F (res)
cc̄, N in the right-hand side of Eq. (7) embodies all the perturbative terms 

that are logarithmically enhanced or constant in the limit N → ∞. The partonic cross section 
σ̂

F (res)
cc̄, N has a universal (process-independent) all-order structure that is given by the following 

threshold-resummation formula [11–13,21–23]:

σ̂
F (res)
cc̄, N

(
M2;αS

(
M2)) = σ

(0)
cc̄→F

(
M2;αS

(
M2))Cth

cc̄→F

(
αS

(
M2))�c, N

(
M2). (8)

The factor σ (0)
cc̄→F obviously depends on the produced final-state system F , and it is simply pro-

portional to the square of the lowest-order scattering amplitude M(0)
cc̄→F (see Eq. (22)) of the 

partonic process cc̄ → F . The factor Cth
cc̄→F also depends on the produced final-state system 

F and, therefore, it includes a process-dependent component. The factor �c, N is process-
independent: it does not depend on the final-state system F , and it only depends on the type 
(c = q or c = g) of colliding partons.

The factor �c, N is entirely due to soft-parton radiation [11,12]. This radiative factor re-
sums all the perturbative contributions αn

S lnm N (including some constant terms, i.e. terms with 
m = 0), and it has the following all-order form:

�c,N

(
M2)

= exp

{ 1∫
0

dz
zN−1 − 1

1 − z

[
2

(1−z)2M2∫
M2

dq2

q2
Ac

(
αS

(
q2)) + Dc

(
αS

(
(1 − z)2M2))]}

, (9)

where Ac(αS) and Dc(αS) are perturbative series in αS,

Ac(αS) =
(

αS

π

)
A(1)

c +
(

αS

π

)2

A(2)
c +

(
αS

π

)3

A(3)
c +

(
αS

π

)4

A(4)
c +O

(
α5

S

)
, (10)

Dc(αS) =
(

αS

π

)2

D(2)
c +

(
αS

π

)3

D(3)
c +O

(
α4

S

)
. (11)

The function Ac(αS) is produced by radiation that is soft and collinear to the direction of the 
colliding partons c and c̄. The effect of soft non-collinear radiation is embodied in the function 
Dc(αS). The perturbative coefficients A(1)

c , A(2)
c [12,24,25] and A(3)

c [4,23] are explicitly known. 
They read
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A(1)
c = Cc,

A(2)
c = 1

2
K Cc, K = CA

(
67

18
− π2

6

)
− 5

9
nF ,

A(3)
c = Cc

((
245

96
− 67

216
π2 + 11

720
π4 + 11

24
ζ3

)
C2

A +
(

−209

432
+ 5

108
π2 − 7

12
ζ3

)
CA nF

+
(

−55

96
+ 1

2
ζ3

)
CF nF − 1

108
n2

F

)
, (12)

where nF is the number of quark flavors, Nc is the number of colors, and the color factors are 
CF = (N2

c − 1)/(2Nc) and CA = Nc in SU(Nc) QCD. The color coefficient Cc depends on the 
type c of colliding partons, and we have Cc = CF if c = q and Cc = CA if c = g. The perturba-
tive expansion of Dc(αS) starts at O(α2

S) (i.e., D(1)
c = 0), and the perturbative coefficients D(2)

c

[21,26] and D(3)
c [27,28] are explicitly known. They read

D(2)
c = Cc

(
CA

(
−101

27
+ 11

18
π2 + 7

2
ζ3

)
+ nF

(
14

27
− 1

9
π2

))
,

D(3)
c = Cc

(
C2

A

(
−297 029

23 328
+ 6139

1944
π2 − 187

2160
π4 + 2509

108
ζ3 − 11

36
π2ζ3 − 6ζ5

)
+ CA nF

(
31 313

11 664
− 1837

1944
π2 + 23

1080
π4 − 155

36
ζ3

)
+ CF nF

(
1711

864
− 1

12
π2 − 1

180
π4 − 19

18
ζ3

)
+ n2

F

(
− 58

729
+ 5

81
π2 + 5

27
ζ3

))
. (13)

Using Eq. (9), the coefficients A(1)
c , A(2)

c , A(3)
c , D(2)

c , D(3)
c in Eqs. (12)–(13) and the coefficient 

A
(4)
c in Eq. (10) explicitly determine soft-gluon resummation up to N3LL accuracy. The fourth-

order coefficient A(4)
c is still unknown. Numerical approximations of A(4)

c [23] indicate that this 
coefficient can have a small quantitative effect in practical applications of threshold resummation. 
By direct inspection of Eqs. (12) and (13), we note that the dependence on c (the type of colliding 
parton) of the perturbative functions Ac(αS) and Dc(αS) is entirely specified up to O(α3

S) by the 
overall color factor Cc. To highlight this overall dependence, we introduce the notation

Ac(αS) = Cc

(
αS

π

)(
1 +

(
αS

π

)
γ (1)

cusp +
(

αS

π

)2

γ (2)
cusp

)
+

(
αS

π

)4

A(4)
c +O

(
α5

S

)
, (14)

so that γ (1)
cusp ≡ A

(2)
c /Cc = K/2 and γ (2)

cusp ≡ A
(3)
c /Cc (see Eq. (12)) are universal QCD coeffi-

cients (namely, they do not depend on the type c of colliding parton). This overall dependence 
on Cc, which is customarily named as Casimir scaling relation, follows from the soft-parton ori-
gin of both Ac(αS) and Dc(αS), and it is eventually a consequence of non-abelian exponentiation 
[29] for soft-gluon radiation. The validity of the Casimir scaling relation (14) beyond O(α3

S) is a 
subject of current theoretical investigations (see Ref. [30] and references therein). More detailed 
comments on the structure of soft-gluon radiation are postponed below Eq. (42).

In this paper we focus on the threshold-resummation factor Cth
cc̄→F . The factor Cth

cc̄→F em-
bodies all the remaining N -independent contributions (i.e., terms that are constant in the limit 
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N → ∞) to the partonic cross section in Eq. (8). This factor is definitely process dependent, and 
it has the general perturbative expansion

Cth
cc̄→F (αS) = 1 +

∞∑
n=1

(
αS

π

)n

C
th (n)
cc̄→F . (15)

Despite its process dependence, in Ref. [3] we have discussed and shown that the all-order factor 
Cth

cc̄→F (αS) involves a minimal amount of process-dependent information. This information is 
entirely due to the renormalized all-loop scattering amplitude Mcc̄→F of the (elastic-production) 
partonic process cc̄ → F . Having Mcc̄→F , we can introduce the corresponding hard-virtual 
amplitude M̃th

cc̄→F for threshold resummation by using a process-independent (universal) fac-
torization formula that has the following all-order expression [3]:

M̃th
cc̄→F = [

1 − Ĩ th
c

(
ε,M2)]Mcc̄→F . (16)

The subtraction operator Ĩ th
c (ε, M2) in Eq. (16) is a renormalization-group invariant quantity that 

does not depend on the specific final-state system F : it only depends on the type (c = q or c = g) 
of colliding partons and on a scale that is set by the invariant mass M of the system F . The factor 
C th

cc̄→F (αS) is then directly related to M̃th
cc̄→F . In the simple case where the system F consists 

of a single particle of mass M , the direct relation is [3]

α2k
S

(
M2)Cth

cc̄→F

(
αS

(
M2)) = |M̃th

cc̄→F |2
|M(0)

cc̄→F |2
(F : single particle), (17)

where the value k of the power of αS(M2) and the lowest-order amplitude M(0)
cc̄→F are precisely 

defined in Eq. (22). The relation in Eq. (17) can be straightforwardly generalized to the more 
general case where the system F is formed by two or more particles with momenta qi (see 
Eq. (1)). The generalization simply follows from the fact that we are considering the cross section 
integrated over the final-state momenta qi and, therefore, we have

σ
(0)
cc̄→F

(
M2;αS

(
M2))Cth

cc̄→F

(
αS

(
M2))

=
∫

PS({qi };M)

∣∣M̃th
cc̄→F

({qi}
)∣∣2

(F : multiparticle system). (18)

Here we have introduced a shorthand (symbolic) notation: the symbol 
∫
PS({qi };M)

denotes the 
properly normalized (see Eq. (23)) phase space integration over the final-state momenta {qi} at 
fixed value of the their total invariant mass M . The extension from Eq. (17) to Eq. (18) derives 
from the simple key observation that the operator Ĩ th

c (ε, M2) in Eq. (16) is completely indepen-
dent of the final-state momenta qi and, therefore, the qi -dependence of M̃th

cc̄→F ({qi}) is entirely 
and directly given by the qi-dependence of the scattering amplitude Mcc̄→F ({qi}). In Ref. [3]
we obtained the explicit expression of the subtraction operator Ĩ th

c up to the second order in the 
QCD coupling αS. In this paper we extend those results and compute Ĩ th

c to the third order in αS.
Before presenting our results, we give more details on the notation that is used in

Eqs. (16)–(18). The all-loop scattering amplitude Mcc̄→F of the partonic process cc̄ → F

contains ultraviolet (UV) and infrared (IR) singularities, which are regularized in d = 4 − 2ε

space-time dimensions. To be definite we use the customary scheme of conventional dimen-
sional regularization (CDR). Before performing renormalization, the multiloop QCD amplitude 
has a perturbative dependence on powers of αuμ2ε , where αu is the bare coupling and μ0 is 
S 0 S
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the dimensional-regularization scale. In the following we work with the renormalized on-shell 
scattering amplitude that is obtained from the corresponding unrenormalized amplitude by just 
expressing the bare coupling αu

S in terms of the running coupling αS(μ2
R) according to the MS

scheme relation

αu
S μ2ε

0 Sε = αS
(
μ2

R

)
μ2ε

R Z
(
αS

(
μ2

R

)
, ε

)
, Sε = (4π)ε e−εγE , (19)

Z(αS, ε) = 1 − αS
β0

ε
+ α2

S

(
β2

0

ε2
− β1

2ε

)
− α3

S

(
β3

0

ε3
− 7

6

β0β1

ε2
+ β2

3ε

)
+O

(
α4

S

)
, (20)

where γE is the Euler number, μR is the renormalization scale and β0, β1 and β2 are the first 
three coefficients of the QCD β-function [8]:

12πβ0 = 11CA − 2nF , 24π2β1 = 17C2
A − 5CAnF − 3CF nF ,

64π3β2 = 2857

54
C3

A − 1415

54
C2

AnF − 205

18
CACF nF + C2

F nF

+ 79

54
CAn2

F + 11

9
CF n2

F . (21)

The renormalized all-loop amplitude Mcc̄→F has the perturbative (loop) expansion

Mcc̄→F = (
αS

(
M2)M2ε

)k

[
M(0)

cc̄→F +
∞∑

n=1

(
αS(M2)

2π

)n

M(n)
cc̄→F

]
, (22)

where the value k of the overall power of αS depends on the specific process (for instance, k = 0
in the case of the vector boson production process qq̄ → V , and k = 1 in the case of the Higgs 
boson production process gg → H through a heavy-quark loop). Note that the lowest-order term 
M(0)

cc̄→F is not necessarily a tree-level amplitude (for instance, it involves a quark loop in the 
cases gg → H and gg → γ γ ). If F is a multiparticle system, using the shorthand notation of 
Eq. (18), we can write the lowest-order cross section as

σ
(0)
cc̄→F

(
M2;αS

(
M2)) = α2k

S

(
M2) ∫

PS({qi };M)

∣∣M(0)
cc̄→F

({qi}
)∣∣2

, (23)

which (implicitly) fixes the overall normalization of the phase space integration. The perturba-
tive terms M(l)

cc̄→F (l = 1, 2, 3, . . .) are UV finite, but they still depend on ε: in particular, they 
contain ε-pole contributions and, therefore, they are IR divergent as ε → 0. The IR divergent 
contributions to the scattering amplitude Mcc̄→F have a universal (process-independent) struc-
ture [31–34] that is explicitly known up to the three-loop (l = 3) level [35]. The subtraction 
operator Ĩ th

c (ε, M2) in Eq. (16) has the perturbative expansion

Ĩ th
c

(
ε,M2) =

∞∑
n=1

(
αS(M2)

2π

)n

Ĩ th(n)
c (ε), (24)

and the perturbative terms Ĩ th(n)
c (ε) contain IR divergent contributions (ε-poles) and a definite 

amount of IR finite contributions. The IR divergent contributions to Ĩ th
c (ε, M2) are exactly those 

that are necessary to cancel the IR divergences of the renormalized all-loop amplitude Mcc̄→F . 
Therefore, the hard-virtual amplitude M̃th

cc̄→F in Eq. (16) is IR finite order-by-order in pertur-
bation theory, and it can be evaluated in the limit ε → 0. The threshold resummation coefficient 
Cth (αS(M2)) can be directly computed in the four-dimensional limit ε → 0 (though, this 
cc̄→F
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limit is not explicitly denoted in the right-hand side of Eqs. (17) and (18)). The perturbative 
expansion of M̃th

cc̄→F is completely analogous to that of Mcc̄→F (see Eq. (22)) with the replace-

ment M(n)
cc̄→F → M̃th(n)

cc̄→F . Note that M̃th(0)
cc̄→F = M(0)

cc̄→F , and the higher-order contributions 

M̃th(n)
cc̄→F (n ≥ 1) are obtained from Eq. (16) in terms of M(l)

cc̄→F and Ĩ th(l)
c (ε) at equal or lower 

orders, i.e. with l ≤ n (see, e.g., Eqs. (48) and (49) in Ref. [3]). For simplicity, the perturbative 
expansions on the right-hand side of Eqs. (22) and (24) are expressed in powers of αS(M2). Note, 
however, that Mcc̄→F and Ĩ th

c (ε, M2) are separately renormalization-group invariant quantities. 
Therefore, they can be equivalently expanded as powers series in αS(μ

2
R), with corresponding 

perturbative terms that depend on M2/μ2
R (see, e.g., Eqs. (50)–(57) in Ref. [3]). The equivalent 

expansions are simply obtained by using Eq. (19) to directly express αS(M2) in terms of αS(μ2
R)

and integer powers of (M2/μ2
R)−ε .

In Ref. [3] we derived the explicit expression of the first-order and second-order subtraction 
operators Ĩ th(1)

c (ε) and Ĩ th(2)
c (ε). To extend the results to the third order, we introduce a more 

compact (though completely equivalent) all-order representation. The operator Ĩ th
c (ε, M2) can be 

written as

1 − Ĩ th
c

(
ε,M2) = exp

{
Rc

(
ε,αS

(
M2)) − iΦc

(
ε,αS

(
M2))}, (25)

where Rc and Φc are real functions. The function Φc(ε, M2) is the IR divergent Coulomb phase 
that originates from the virtual contributions to the all-loop amplitude Mcc̄→F . Its explicit ex-
pression up to O(α3

S) [35] reads

−iΦc(ε,αS) = iπ Cc

2ε

{(
αS

π

)
+

(
αS

π

)2 1

2

(
γ (1)

cusp − β0π

ε

)
+

(
αS

π

)3 1

3

(
γ (2)

cusp − 1

ε
γ (1)

cusp β0π + 1

ε
π2

(
β2

0

ε
− β1

))}
+O

(
α4

S

)
. (26)

The function Rc(ε, αS) contains IR finite terms and all the remaining IR divergent terms (in 
the limit ε → 0) in the exponent of Eq. (25). This perturbative function can be decomposed as 
follows:

Rc(ε,αS) = Rsoft
c (ε,αS) + Rcoll

c (ε,αS), (27)

where

Rsoft
c (ε,αS) = Cc

(
αS

π
Rsoft(1)(ε) +

(
αS

π

)2

Rsoft(2)(ε) +
(

αS

π

)3

Rsoft(3)(ε)

)
+O

(
α4

S

)
, (28)

Rcoll
c (ε,αS) = αS

π
Rcoll(1)

c (ε) +
(

αS

π

)2

Rcoll(2)
c (ε) +

(
αS

π

)3

Rcoll(3)
c (ε) +O

(
α4

S

)
. (29)

The two components Rsoft
c and Rcoll

c of Eq. (27) have a soft and collinear origin, respectively. 
The ε-dependent perturbative coefficients on the right-hand side of Eqs. (28) and (29) read

Rsoft(1)(ε) = 1

2ε2
+ Rfin(1), (30)

Rcoll(1)
c (ε) = γc

, (31)

2ε
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Rsoft(2)(ε) = −3

8

β0π

ε3
+ 1

8ε2
γ (1)

cusp − 1

16ε
d(1) + Rfin(2), (32)

Rcoll(2)
c (ε) = −β0π

4ε2
γc + 1

8ε
γ (1)
c , (33)

Rsoft(3)(ε) = 11β2
0 − 8β1 ε

36ε4
π2 − 5

36ε3
β0πγ (1)

cusp + 1

18ε2
γ (2)

cusp + 1

24ε2
β0πd(1)

− 1

48ε
d(2) + Rfin(3), (34)

Rcoll(3)
c (ε) = γc

6ε2

(
(β0π)2

ε
− β1π

2
)

− β0π
γ

(1)
c

12ε2
+ 1

24ε
γ (2)
c . (35)

The coefficients γc, γ (1)
c and γ (2)

c in Eqs. (31), (33) and (35) depend on the parton flavor c = q, g
and they have a collinear origin. They are equal to the coefficients of the term proportional to 
δ(1 − z) (i.e., to the virtual contribution) in the leading order (LO), next-to-leading order (NLO) 
and next-to-next-to-leading order (NNLO) collinear splitting functions [4], and their explicit 
values3 are

γq = 3

2
CF ,

γ (1)
q =

(
3

8
− 1

2
π2 + 6ζ3

)
C2

F +
(

17

24
+ 11

18
π2 − 3ζ3

)
CF CA +

(
− 1

12
− 1

9
π2

)
CF nF ,

γ (2)
q = C3

F

(
29

16
+ 3

8
π2 + π4

5
+ 17

2
ζ3 − 2

3
π2ζ3 − 30ζ5

)
+ C2

F CA

(
151

32
− 205

72
π2 − 247

1080
π4 + 211

6
ζ3 + 1

3
π2ζ3 + 15ζ5

)
+ C2

ACF

(
−1657

288
+ 281

81
π2 − π4

144
− 194

9
ζ3 + 5ζ5

)
+ C2

F nF

(
−23

8
+ 5

36
π2 + 29

540
π4 − 17

3
ζ3

)
+ CF n2

F

(
−17

72
+ 5

81
π2 − 2

9
ζ3

)
+ CF CAnF

(
5

2
− 167

162
π2 + π4

360
+ 25

9
ζ3

)
, (36)

γg = 11

6
CA − 1

3
nF ,

γ (1)
g =

(
8

3
+ 3ζ3

)
C2

A − 2

3
CA nF − 1

2
CF nF ,

γ (2)
g = C3

A

(
79

16
+ π2

18
+ 11

432
π4 + 67

3
ζ3 − 1

3
π2ζ3 − 10ζ5

)
+ C2

AnF

(
−233

144
− π2

18
− π4

216
− 10

3
ζ3

)

+ 1

8
C2

F nF − 241

144
CACF nF + 29

144
CAn2

F + 11

72
CF n2

F . (37)

3 In Ref. [3] we used a slightly different notation, and the coefficient γc(1) therein is related to γ (1)
c as γ (1)

c = −γc(1)/8.
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The coefficients d(1) and d(2) in Eqs. (32) and (34) have a soft origin, and their values read

d(1) =
(

28

27
− 1

18
π2

)
nF +

(
−202

27
+ 11

36
π2 + 7ζ3

)
CA, (38)

d(2) = C2
A

(
−136 781

5832
+ 6325

1944
π2 − 11

45
π4 + 329

6
ζ3 − 11

9
π2ζ3 − 24ζ5

)
+ CA nF

(
5921

2916
− 707

972
π2 + π4

15
− 91

27
ζ3

)
+ CF nF

(
1711

216
− π2

12
− π4

45
− 38

9
ζ3

)
+ n2

F

(
260

729
+ 5

162
π2 − 14

27
ζ3

)
. (39)

The coefficients Rfin(1) and Rfin(2) determine the IR finite part on the right-hand side of Eqs. (30)
and (32): their explicit values are known [3] and read4

Rfin(1) = −π2

8
, (40)

Rfin(2) = CA

(
607

648
− 469

1728
π2 + π4

288
− 187

144
ζ3

)
+ nF

(
− 41

324
+ 35

864
π2 + 17

72
ζ3

)
. (41)

The first-order and second-order results in Eqs. (30)–(33) were obtained in Ref. [3]. The three-
loop expressions in Eqs. (34) and (35) and, especially, the value of the IR finite part Rfin(3) in 
Eq. (34) are the main new results of the present paper. The explicit value of the third-order coef-
ficient Rfin(3) is

Rfin(3) =
(

5 211 949

1 679 616
− 578 479

559 872
π2 + 9457

311 040
π4 + 19

326 592
π6

− 64 483

7776
ζ3 + 121

192
π2ζ3 + 67

72
ζ 2

3 − 121

144
ζ5

)
C2

A

+
(

−412 765

839 808
+ 75 155

279 936
π2 − 79

9720
π4 + 154

81
ζ3 − 11

288
π2ζ3 − 1

24
ζ5

)
CA nF

+
(

−42 727

62 208
+ 605

6912
π2 + 19

12 960
π4 + 571

1296
ζ3 − 11

144
π2ζ3 + 7

36
ζ5

)
CF nF

+
(

− 2

6561
− 101

7776
π2 + 37

77 760
π4 − 185

1944
ζ3

)
n2

F . (42)

We note that the phase factor e−iΦc in Eq. (25) is physically (and practically) harmless to 
the purpose of computing the threshold resummation coefficient Cth

cc̄→F in Eqs. (17) and (18). 
Indeed, e−iΦc produces a corresponding overall phase factor contribution to M̃th

cc̄→F in Eq. (16)
and, therefore, e−iΦc gives a vanishing contribution to |M̃th

cc̄→F |2 and, hence, to Cth
cc̄→F . We 

recall [3] that this phase factor has been introduced in Ĩ th
c to the sole practical (aesthetical) pur-

pose of canceling the IR divergent Coulomb phase of the virtual amplitude Mcc̄→F , so that 

4 In Ref. [3], the IR finite part of Ĩ th(1)
c and Ĩ th(2)

c is specified by using a different notation in terms of the coefficients 
δth and δth therein.

(1) (2)
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M̃th
cc̄→F itself (and not only |M̃th

cc̄→F |2) is IR finite in the limit ε → 0. We note that M̃th
cc̄→F

can also be redefined by including equally harmless contributions that are purely real (rather 
than phase factors). We can consider a multiplicative redefinition M̃th

cc̄→F → F(αS, ε)M̃th
cc̄→F , 

where F is an arbitrary perturbative function (i.e., F = 1 +O(αS)) such that it is equal to unity 
in the limit ε → 0 (i.e., F = 1 +O(εm) with m = 1, 2, . . .). Since M̃th

cc̄→F is IR finite, this mul-
tiplicative redefinition gives a vanishing contribution to M̃th

cc̄→F in the four-dimensional limit 
ε → 0. Such harmless multiplicative redefinition corresponds to the replacement (1 − Ĩ th

c ) →
F(αS, ε) (1 − Ĩ th

c ) or, equivalently, to the replacement Rc(ε, αS) → Rc(ε, αS) + lnF(αS, ε) =
Rc(ε, αS) +O(εm), with m = 1, 2, . . ., in Eq. (25) (we have used lnF(αS, ε) = O(εm)). There-
fore, we see that terms of O(εm), with m = 1, 2, . . ., in Rc(ε, αS) are harmless. In our explicit 
expressions (see Eqs. (27)–(35)) of Rc(ε, αS) we have not included any of these terms, whereas 
the explicit expressions of Ĩ th(1)

c (ε) and Ĩ th(2)
c (ε) that are presented in Ref. [3] include contribu-

tions that are due to this type of harmless terms.
The derivation of the factorization formula (16), its origin and the general structure of the 

subtraction operator Ĩ th
c (ε, M2) in Eq. (25) were discussed in Ref. [3]. Here we limit ourselves 

to presenting the main conclusions of our reasoning [3] in a very concise form (we refer to Sec-
tions 4.1 and 5 of Ref. [3] for an extended discussion). We have already recalled the origin of the 
phase factor e−iΦc in Eq. (25). We then recall [3] that the remaining contributions to Ĩ th

c (i.e., 
the factor eRc in Eq. (25)) have a soft and collinear origin, as specified by the decomposition in 
Eq. (27). The collinear contributions are embodied in the factor eRcoll

c , and they are entirely due to 
the virtual part of the collinear-counterterm factor that is introduced in the (bare) partonic cross 
sections to factorize the MS parton densities (see Eq. (2)). Since we are considering parton densi-
ties in the MS factorization scheme, this collinear-counterterm factor is completely and explicitly 
specified up to O(α3

S) [4] and, in particular, the perturbative function Rcoll
c (ε, αS) in Eq. (29) in-

cludes only ε-pole contributions (see Eqs. (31), (33) and (35)) with no additional IR finite terms. 
The soft contributions to Ĩ th

c are embodied in the factor eRsoft
c . They are due to the soft part of the 

MS collinear counterterm [4] and to the inelastic processes cc̄ → F +X, where the radiated final-
state system X includes only soft partons. The soft-parton contribution of the inelastic processes 
can be determined by using universal (process-independent) soft factorization formulae [36–40]
of the corresponding scattering amplitudes. In Ref. [41], the soft-parton contribution to the total 
cross section was explicitly computed up to NNLO in a process-independent form by using soft 
factorization formulae up to O(α2

S) [37–39]. A corresponding process-independent calculation 
at N3LO can be performed by using soft factorization formulae at O(α3

S) [7,42]. As discussed 
in Ref. [42], soft-factorization results from Refs. [7,38,39,42] and the soft limit of the results in 
Ref. [6] can be combined and used to reproduce [42] the results of the N3LO cross sections for 
Higgs boson [1] and DY production [2]. However, as discussed and pointed out in Ref. [3], much 
information on the soft contribution to Ĩ th

c can be obtained independently of detailed computa-
tions. Indeed, due to non-abelian eikonal exponentiation [29], the intensity of soft radiation from 
the parton c is simply proportional to the Casimir coefficient Cc of that parton (this conclusion 
is certainly valid up to O(α3

S) [29]). Therefore, Rsoft
c (ε, αS) can be expressed by factorizing the 

overall coefficient Cc as in Eq. (28). This Casimir scaling behavior is completely analogous to 
that of the functions Ac(αS) (see Eq. (14)), Dc(αS) (see Eqs. (11) and (13)) and Φc(ε, αS) (see 
Eq. (26)), since all these functions are entirely due to soft-parton contributions [3]. The perturba-
tive coefficients Rsoft(n)(ε), with n = 1, 2, 3, in Eq. (28) are completely process independent and 
they can be determined by considering a single specific process. In particular, Rsoft(n)(ε) contains 
IR divergent contributions (ε-pole terms) and IR finite contributions. These IR divergent terms of 
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soft-parton origin are due to real emission contributions, but they are constrained (because of the 
real–virtual cancellation mechanism of IR divergences) to be exactly equal to the corresponding 
IR divergent terms due to virtual radiation. Therefore, the ε-pole terms in Eqs. (30), (32) and 
(34) are completely specified by the explicit calculation of either the quark or gluon form factors 
[35] (as recalled below, the process independence of these terms is consistent with the univer-
sality structure of the IR divergent contributions to the QCD scattering amplitudes [31,33,34]). 
It follows that the IR finite coefficients Rfin(n) (n = 1, 2, 3) are the only terms that are not ex-
plicitly determined by using our general reasoning [3]. Owing to their universality, the explicit 
computation of a single process is sufficient to extract the values of these IR finite coefficients. 
As illustrated below, we use the N3LO Higgs boson results of Ref. [1] to obtain the value of 
Rfin(3) in Eq. (42).

Before considering the evaluation of Rfin(3), we present some additional comments on the 
structure of Eqs. (25)–(39) and on the connection between real- and virtual-emission contribu-
tions. As we have discussed, the subtraction operator (1 − Ĩ th

c ) in Eqs. (16) and (25) includes 
the Coulomb phase factor e−iΦc and an additional factor of soft and collinear origin. In Eq. (25)
we express this additional factor by using the exponentiated form eRc . The exponentiated form, 
which is completely equivalent to its direct expansion in powers of αS, is more compact in view of 
the factorization and exponentiation properties of both soft and collinear contributions. Owing to 
factorization we can write eRc = eRcoll

c eRsoft
c , i.e. we can introduce the decomposition in Eq. (27). 

The collinear factor eRcoll
c is entirely due to the virtual part of the collinear counterterm of the MS

parton densities, and its exponentiated structure is eventually a consequence of the customary so-
lution of the Altarelli–Parisi evolution equations in terms of an exponentiated evolution operator. 
Indeed (as stated below Eq. (35)) the exponent Rcoll

c is directly determined by the coefficients 
γc, γ

(1)
c and γ (2)

c of the virtual part of the Altarelli–Parisi splitting functions. The factor eRsoft
c is 

due to real emission of soft partons: it fulfills non-abelian eikonal exponentiation and, therefore, 
we can express the exponent Rsoft

c through the Casimir scaling relation (28). The soft/collinear 
structure of (1 − Ĩ th

c ) ∝ eRcoll
c eRsoft

c does not originate from virtual contributions to the scattering 
amplitude Mcc̄→F , but the IR divergent terms in Eqs. (28)–(35) exactly match the analogous 
universal structure of the IR divergent virtual contributions to Mcc̄→F . The IR divergent virtual 
contributions [31–35] include dominant and subdominant ε-poles. The dominant poles have a 
soft-collinear origin and are controlled by the perturbative function Ac(αS) in Eq. (10) or, equiv-
alently, the function γcusp(αS) in Eq. (14). The subdominant poles originate from either collinear 
(and non-soft) or soft (and non-collinear) contributions and they are controlled by the collinear 
coefficients in Eqs. (36)–(37) and the soft coefficients in Eqs. (38)–(39). We also note that the 
real emission contribution to the partonic cross section of Eq. (8) is separated in two different 
factors: the N -independent factor eRsoft

c (which contributes to (1 − Ĩ th
c ) and, hence, to Cth

cc̄→F ) 
and the lnN -dependent radiative factor �c, N of Eq. (9). These two factors have a soft origin 
and they are not fully independent. In particular, the coefficients of the dominant IR poles of 
Rsoft

c (ε, αS) are directly related to the dominant lnN -dependence of �c, N (as given by the per-
turbative function Ac(αS)). The subdominant lnN -dependence of �c, N is due to the soft-parton 
function Dc(αS), whose perturbative coefficients D(n)

c are related to the soft-parton coefficients 
Cc d(n−1) and Cc Rfin(n−1) of Rsoft

c (ε, αS): this relation between lnN terms, ε-poles and IR finite 
terms is discussed and worked out in Refs. [27,28]. We note that using the general analysis of 
Refs. [27,28] and our result for Rfin(3) in Eq. (42), the fourth-order coefficient D(4)

c of Dc(αS)

can be determined in terms of the ε-poles at O(α4) (once they become available).
S



S. Catani et al. / Nuclear Physics B 888 (2014) 75–91 87
To evaluate the third-order coefficient Rfin(3), we consider the perturbative expansion of the 
resummation formula in Eq. (8), which contains all the terms which are not suppressed in the 
large-N limit, namely, the logarithmically-enhanced terms and the constant terms as N → ∞. 
We consider the N3LO contribution (see, e.g., the Appendix E in Ref. [22]) and we transform 
it back to z space to obtain the general expression of the N3LO term gF(3)

cc̄ (z) of Eq. (3) in the 
threshold limit z → 1. We find

g
F(3)
cc̄ (z) = 8

(
A(1)

c

)3D5 − 40

3
β0π

(
A(1)

c

)2 D4

+
(

−32

3
π2(A(1)

c

)3 + 8C
th(1)
cc̄→F

(
A(1)

c

)2 + 16A(1)
c A(2)

c + 16

3
(β0π)2 A(1)

c

)
D3

+ (
160ζ3

(
A(1)

c

)3 − 4β0π A(1)
c C

th(1)
cc̄→F + 8β0π

3 (
A(1)

c

)2

− 8β0πA(2)
c + 6A(1)

c D(2)
c − 4A(1)

c β1π
2)D2

+
(

4
(
A(3)

c + A(2)
c C

th(1)
cc̄→F + A(1)

c C
th(2)
cc̄→F

) − 16

3
A(1)

c A(2)
c π2

− 8

3

(
A(1)

c

)2
C

th(1)
cc̄→F π2 − 4

9
π4(A(1)

c

)3 − 4β0π
(
D(2)

c + 24
(
A(1)

c

)2
ζ3

))
D1

+
((

192ζ5 − 64

3
π2ζ3

)(
A(1)

c

)3 + 16A(1)
c ζ3

(
2A(2)

c + A(1)
c C

th(1)
cc̄→F

)
+ 4

9

(
A(1)

c

)2
β0π

5 + C
th(1)
cc̄→F D(2)

c + D(3)
c − 2

3
A(1)

c D(2)
c π2

)
D0

+
(

C
th(3)
cc̄→F − 2

45
A(1)

c A(2)
c π4 − 1

45

(
A(1)

c

)2
C

th(1)
cc̄→F π4

+
(

160

3
ζ 2

3 − 116

2835
π6

)(
A(1)

c

)3 + 4A(1)
c D(2)

c ζ3

+ 16

3

(
A(1)

c

)2
β0π

(
π2ζ3 − 12ζ5

))
δ(1 − z) + . . . , (43)

where Dm = Dm(z) are the plus-distributions defined in Eq. (5), and the dots in the right-hand 
side of Eq. (43) denote additional terms that are less singular in the limit z → 1 (i.e., terms that 
are relatively suppressed by some powers of (1 − z)). The terms that are explicitly denoted in the 
right-hand side of Eq. (43) define the soft-virtual (SV) approximation of the N3LO contribution 
g

F(3)
cc̄ (z) to the partonic cross section. These terms depend on the universal perturbative coeffi-

cients A(n)
c , D(n)

c (see Eqs. (12) and (13)) and on the process-dependent coefficients Cth(n)
cc̄→F with 

n ≤ 3.
In the case of Higgs boson production (gg → H ) by gluon fusion, the SV N3LO expression in 

Eq. (43) exactly corresponds to the result of the explicit computation performed in Ref. [1]. The 
first-order and second-order coefficients Cth(1)

gg→F and Cth(2)
gg→F are known (they can be determined 

by our process-independent resummation formalism up to O(α2
S) or, equivalently, they can be 

extracted from the SV NNLO results of Refs. [26,43]). Therefore, comparing Eq. (43) with the 
result in Eq. (10) of Ref. [1], we can extract the coefficient C th(3) and we find
gg→F
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C
th(3)
gg→H = C3

A

(
215 131

5184
+ 16 151

7776
π2 − 1765

15 552
π4 + 1

2160
π6

− 15 649

432
ζ3 − 77

144
π2ζ3 + 3

2
ζ 2

3 + 869

144
ζ5

)
+ C2

AnF

(
−98 059

5184
− 35

243
π2 + 2149

38 880
π4 + 29

8
ζ3 − 29

72
π2ζ3 + 101

72
ζ5

)
+ CACF nF

(
−63 991

5184
− 71

216
π2 + 11

6480
π4 + 13

2
ζ3 + 1

2
π2ζ3 + 5

2
ζ5

)
+ C2

F nF

(
19

18
+ 37

12
ζ3 − 5ζ5

)
+ CAn2

F

(
2515

1728
− 133

1944
π2 − 19

3240
π4 + 43

108
ζ3

)
+ CF n2

F

(
4481

2592
− 23

432
π2 − 1

3240
π4 − 7

6
ζ3

)
. (44)

To be precise, the coefficient Cth(3)
gg→H in Eq. (44) corresponds to the perturbative expansion that 

is defined by Eq. (3) after having rescaled the partonic cross section with the Wilson coefficient 
of the effective point-like coupling ggH [9] (this definition exactly corresponds to that used in 
Eq. (4) of Ref. [1]). Having the information in Eq. (44) and using Eqs. (16) and (17), we apply 
the operator (1 − Ĩ th

c ) of Eq. (25) to the three-loop gluon form factor [10] and we can extract the 
coefficient Rfin(3) in Eq. (34). We find the explicit value that is presented in Eq. (42).

The coefficient Rfin(3) completely determines the explicit expression of the process-indepen-
dent subtraction operator Ĩ th

c up to O(α3
S). Using this expression and Eqs. (16)–(18), the threshold 

resummation coefficient Cth
cc̄→F (αS) for an arbitrary process cc̄ → F is straightforwardly and 

explicitly computable up to the three-loop order once the corresponding three-loop scattering 
amplitude Mcc̄→F for that process is known.

As an application of our general formalism and results, we can consider the production of 
a vector boson V (V = Z, W±) by the DY process qq̄ → V . Using the subtraction operator 
(1 − Ĩ th

c ) and the results for the quark form factor up to three-loop order [10], we can compute 
the coefficients C th(n)

qq̄→V with n = 1, 2, 3. We find

C
th(1)
qq̄→V = CF

(
−4 + π2

3

)
, (45)

C
th(2)
qq̄→V = C2

F

(
511

64
− 35

48
π2 + π4

40
− 15

4
ζ3

)
+ CF CA

(
−1535

192
+ 37

54
π2 − π4

240
+ 7

4
ζ3

)
+ CF nF

(
127

96
− 7

54
π2 + 1

2
ζ3

)
, (46)

C
th(3)
qq̄→V = C3

F

(
−5599

384
− 65

576
π2 − 17

320
π4 + 803

136 080
π6

− 115

16
ζ3 + 5

24
π2ζ3 + 1

2
ζ 2

3 + 83

4
ζ5

)
+ C2

F CA

(
74 321 − 6593

π2 + 94
π4 − 2309

π6
2304 5184 1215 272 160
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432
ζ3 + 53

54
π2ζ3 + 37

12
ζ 2

3 − 689

72
ζ5

)
+ C2

A CF

(
−1 505 881

62 208
+ 281

128
π2 + 14 611

311 040
π4 + 829

272 160
π6

+ 82 385

5184
ζ3 − 221

288
π2ζ3 − 25

12
ζ 2

3 − 51

16
ζ5

)
+ CACF nF

(
110 651

15 552
− 7033

7776
π2 − 1439

77 760
π4 − 94

81
ζ3 + 13

72
π2ζ3 − ζ5

8

)
+ C2

F nF

(
−421

192
+ 329

1296
π2 − 223

19 440
π4 + 869

216
ζ3 − 7

27
π2ζ3 − 19

18
ζ5

)

+ CF n2
F

(
− 7081

15 552
+ 151

1944
π2 + π4

486
− 79

324
ζ3

)

+ CF NF,V

(
N2

c − 4

Nc

)(
1

8
+ 5

96
π2 − π4

2880
+ 7

48
ζ3 − 5

6
ζ5

)
, (47)

where NF,V is a factor originating by diagrams where the virtual gauge boson does not couple 
directly to the initial state quarks [10], and it is proportional to the charge weighted sum of 
the quark flavors. The explicit expressions of the coefficients A(n)

c and D(n)
c up to O(α3

S) and 

the expressions of Cth(n)
qq̄→V in Eqs. (45)–(47) can be inserted in Eq. (43) to obtain the explicit 

expression of the SV N3LO cross section for the DY process. The ensuing result is in agreement 
with the result in Ref. [2].

In this paper we have considered the processes in which an arbitrary colorless system F with 
high mass is produced in hadronic collisions. We have focused on the structure of the perturba-
tive QCD contributions near partonic threshold. Such contributions are controlled by universal 
resummation factors plus a process dependent hard-virtual function. As discussed in Ref. [3], 
the hard-virtual function is directly related to the process-dependent virtual amplitude through a 
universal factorization formula that depends on a process-independent subtraction operator. The 
results that were documented in Ref. [3] determine the structure of the subtraction operator (and, 
thus, of the hard-virtual function) up to a universal perturbative function with purely numerical 
perturbative coefficients that were explicitly computed up to the second-order in αS. In this paper 
we have pointed out that the recent computation of the soft-virtual corrections to Higgs boson 
production at N3LO [1] is sufficient to extend those results to the third-order in αS, and we have 
explicitly computed the corresponding perturbative coefficient. The results presented in this pa-
per can be used to perform soft-gluon resummation up to N3LL accuracy5 for the production of 
an arbitrary colorless system F in hadron collisions. Equivalently, they allow us to determine the 
explicit form of the N3LO corrections to the production cross section near partonic threshold, 
once the corresponding three-loop scattering amplitude Mcc̄→F is available. We have applied 
our results to the DY process and we have presented the explicit expression of the hard-virtual 
function up to N3LO, confirming the result of Ref. [2] for the DY cross section at N3LO.

5 A quantitative study of Higgs boson production at N3LL accuracy, with the inclusion of the soft-virtual contribution 
at N3LO, is presented in a very recent paper [44].



90 S. Catani et al. / Nuclear Physics B 888 (2014) 75–91
Acknowledgements

We would like to thank Thomas Gehrmann for comments on the manuscript. This re-
search was supported in part by the Swiss National Science Foundation (SNSF) under contract 
200021-144352 and by the Research Executive Agency (REA) of the European Union un-
der the Grant Agreements PITN-GA-2010-264564 (LHCPhenoNet) and PITN-GA-2012-316704 
(Higgstools).

References

[1] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, B. Mistlberger, Report IPPP/14/17, 
arXiv:1403.4616 [hep-ph].

[2] T. Ahmed, M. Mahakhud, N. Rana, V. Ravindran, arXiv:1404.0366 [hep-ph].
[3] S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, Nucl. Phys. B 881 (2014) 414, arXiv:1311.1654 [hep-ph].
[4] S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688 (2004) 101, arXiv:hep-ph/0403192;

S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 691 (2004) 129, arXiv:hep-ph/0404111.
[5] C. Anastasiou, S. Buehler, C. Duhr, F. Herzog, J. High Energy Phys. 1211 (2012) 062, arXiv:1208.3130 [hep-ph];

M. Höschele, J. Hoff, A. Pak, M. Steinhauser, T. Ueda, Phys. Lett. B 721 (2013) 244, arXiv:1211.6559 [hep-ph];
S. Buehler, A. Lazopoulos, J. High Energy Phys. 1310 (2013) 096, arXiv:1306.2223 [hep-ph].

[6] T. Gehrmann, M. Jaquier, E.W.N. Glover, A. Koukoutsakis, J. High Energy Phys. 1202 (2012) 056, arXiv:1112.3554 
[hep-ph];
C. Anastasiou, C. Duhr, F. Dulat, B. Mistlberger, J. High Energy Phys. 1307 (2013) 003, arXiv:1302.4379 [hep-ph];
C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, J. High Energy Phys. 1312 (2013) 088, arXiv:1311.1425 
[hep-ph];
W.B. Kilgore, Phys. Rev. D 89 (2014) 073008, arXiv:1312.1296 [hep-ph].

[7] Y. Li, H.X. Zhu, J. High Energy Phys. 1311 (2013) 080, arXiv:1309.4391 [hep-ph];
C. Duhr, T. Gehrmann, Phys. Lett. B 727 (2013) 452, arXiv:1309.4393 [hep-ph].

[8] O.V. Tarasov, A.A. Vladimirov, A.Y. Zharkov, Phys. Lett. B 93 (1980) 429;
S.A. Larin, J.A.M. Vermaseren, Phys. Lett. B 303 (1993) 334, arXiv:hep-ph/9302208;
T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, Phys. Lett. B 400 (1997) 379, arXiv:hep-ph/9701390;
M. Czakon, Nucl. Phys. B 710 (2005) 485, arXiv:hep-ph/0411261.

[9] K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Nucl. Phys. B 510 (1998) 61, arXiv:hep-ph/9708255.
[10] P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett. 102 (2009) 212002, 

arXiv:0902.3519 [hep-ph];
R.N. Lee, A.V. Smirnov, V.A. Smirnov, J. High Energy Phys. 1004 (2010) 020, arXiv:1001.2887 [hep-ph];
T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli, C. Studerus, J. High Energy Phys. 1006 (2010) 094, 
arXiv:1004.3653 [hep-ph].

[11] G.F. Sterman, Nucl. Phys. B 281 (1987) 310.
[12] S. Catani, L. Trentadue, Nucl. Phys. B 327 (1989) 323.
[13] S. Catani, L. Trentadue, Nucl. Phys. B 353 (1991) 183.
[14] A. Mukherjee, W. Vogelsang, Phys. Rev. D 73 (2006) 074005, arXiv:hep-ph/0601162.
[15] V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 767 (2007) 100, arXiv:hep-ph/0608308.
[16] T. Ahmed, M.K. Mandal, N. Rana, V. Ravindran, Report HRI-RECAPP-2014-008, arXiv:1404.6504 [hep-ph].
[17] V. Ravindran, Nucl. Phys. B 746 (2006) 58, arXiv:hep-ph/0512249;

V. Ravindran, Nucl. Phys. B 752 (2006) 173, arXiv:hep-ph/0603041.
[18] S. Forte, G. Ridolfi, Nucl. Phys. B 650 (2003) 229, arXiv:hep-ph/0209154.
[19] A. Idilbi, X.-d. Ji, F. Yuan, Nucl. Phys. B 753 (2006) 42, arXiv:hep-ph/0605068.
[20] T. Becher, M. Neubert, G. Xu, J. High Energy Phys. 0807 (2008) 030, arXiv:0710.0680 [hep-ph].
[21] A. Vogt, Phys. Lett. B 497 (2001) 228, arXiv:hep-ph/0010146.
[22] S. Catani, D. de Florian, M. Grazzini, P. Nason, J. High Energy Phys. 0307 (2003) 028, arXiv:hep-ph/0306211.
[23] S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 726 (2005) 317, arXiv:hep-ph/0506288.
[24] S. Catani, B.R. Webber, G. Marchesini, Nucl. Phys. B 349 (1991) 635.
[25] S. Catani, M.L. Mangano, P. Nason, J. High Energy Phys. 9807 (1998) 024, arXiv:hep-ph/9806484.
[26] S. Catani, D. de Florian, M. Grazzini, J. High Energy Phys. 0105 (2001) 025, arXiv:hep-ph/0102227.

http://refhub.elsevier.com/S0550-3213(14)00282-X/bib416E6173746173696F753A32303134766161s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib416E6173746173696F753A32303134766161s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib41686D65643A32303134636C61s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A32303133746961s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4D6F63683A323030347061s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4D6F63683A323030347061s2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib636F756E7465727465726D73s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib636F756E7465727465726D73s2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib636F756E7465727465726D73s3
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7265616Cs1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7265616Cs1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7265616Cs2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7265616Cs3
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7265616Cs3
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7265616Cs4
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4C693A323031336C7361s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4C693A323031336C7361s2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib757672656Es1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib757672656Es2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib757672656Es3
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib757672656Es4
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4368657479726B696E3A31393937756Es1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7167666F726D666163746F72s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7167666F726D666163746F72s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7167666F726D666163746F72s2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7167666F726D666163746F72s3
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib7167666F726D666163746F72s3
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib537465726D616E3A31393836616As1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A313938396E65s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A313939307270s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4D756B6865726A65653A323030367575s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib526176696E6472616E3A323030366275s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib41686D65643A32303134757961s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib526176696E6472616E3A323030357676s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib526176696E6472616E3A323030357676s2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib466F7274653A323030326E69s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4964696C62693A323030366467s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4265636865723A323030377479s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib566F67743A323030306369s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A323030337A74s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4D6F63683A323030356261s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A313939307272s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A31393938746Ds1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A323030316963s1


S. Catani et al. / Nuclear Physics B 888 (2014) 75–91 91
[27] S. Moch, A. Vogt, Phys. Lett. B 631 (2005) 48, arXiv:hep-ph/0508265.
[28] E. Laenen, L. Magnea, Phys. Lett. B 632 (2006) 270, arXiv:hep-ph/0508284.
[29] J.G.M. Gatheral, Phys. Lett. B 133 (1983) 90;

J. Frenkel, J.C. Taylor, Nucl. Phys. B 246 (1984) 231.
[30] V. Ahrens, M. Neubert, L. Vernazza, J. High Energy Phys. 1209 (2012) 138, arXiv:1208.4847 [hep-ph].
[31] S. Catani, Phys. Lett. B 427 (1998) 161, arXiv:hep-ph/9802439.
[32] G.F. Sterman, M.E. Tejeda-Yeomans, Phys. Lett. B 552 (2003) 48, arXiv:hep-ph/0210130;

S.M. Aybat, L.J. Dixon, G.F. Sterman, Phys. Rev. D 74 (2006) 074004, arXiv:hep-ph/0607309;
E. Gardi, L. Magnea, J. High Energy Phys. 0903 (2009) 079, arXiv:0901.1091 [hep-ph].

[33] L.J. Dixon, L. Magnea, G.F. Sterman, J. High Energy Phys. 0808 (2008) 022, arXiv:0805.3515 [hep-ph].
[34] T. Becher, M. Neubert, J. High Energy Phys. 0906 (2009) 081, arXiv:0903.1126 [hep-ph];

T. Becher, M. Neubert, J. High Energy Phys. 1311 (2013) 024 (Erratum).
[35] S. Moch, J.A.M. Vermaseren, A. Vogt, J. High Energy Phys. 0508 (2005) 049, arXiv:hep-ph/0507039;

S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 625 (2005) 245, arXiv:hep-ph/0508055.
[36] A. Bassetto, M. Ciafaloni, G. Marchesini, Phys. Rep. 100 (1983) 201.
[37] S. Catani, M. Grazzini, Nucl. Phys. B 570 (2000) 287, arXiv:hep-ph/9908523.
[38] Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt, Phys. Rev. D 60 (1999) 116001, arXiv:hep-ph/9903516.
[39] S. Catani, M. Grazzini, Nucl. Phys. B 591 (2000) 435, arXiv:hep-ph/0007142.
[40] I. Feige, M.D. Schwartz, arXiv:1403.6472 [hep-ph].
[41] D. de Florian, J. Mazzitelli, J. High Energy Phys. 1212 (2012) 088, arXiv:1209.0673 [hep-ph].
[42] Y. Li, A. von Manteuffel, R.M. Schabinger, H.X. Zhu, arXiv:1404.5839 [hep-ph].
[43] R.V. Harlander, W.B. Kilgore, Phys. Rev. D 64 (2001) 013015, arXiv:hep-ph/0102241.
[44] M. Bonvini, S. Marzani, Report DESY-14-075, arXiv:1405.3654 [hep-ph].

http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4D6F63683A323030356B79s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4C61656E656E3A32303035757As1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib476174686572616C3A31393833637As1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib476174686572616C3A31393833637As2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib416872656E733A32303132717As1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A313939386268s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib537465726D616E3A32303032716Es1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib537465726D616E3A32303032716Es2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib537465726D616E3A32303032716Es3
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4469786F6E3A323030386772s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4265636865723A323030397161s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4265636865723A323030397161s2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4D6F63683A323030356964s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4D6F63683A323030356964s2
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib426173736574746F3A31393834696Bs1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A313939397373s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4265726E3A313939397279s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib436174616E693A323030307069s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib46656967653A32303134776A61s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib6465466C6F7269616E3A323031327A61s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4C693A32303134626661s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib4861726C616E6465723A323030316973s1
http://refhub.elsevier.com/S0550-3213(14)00282-X/bib426F6E76696E693A323031346A6F61s1

	Threshold resummation at N3LL accuracy  and soft-virtual cross sections at N3LO
	Acknowledgements
	References


