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Abstract

We consider QCD radiative corrections to the production of colorless high-mass systems in hadron col-
lisions. We show that the recent computation of the soft-virtual corrections to Higgs boson production at
N3LO [1] together with the universality structure of soft-gluon emission can be exploited to extract the
general expression of the hard-virtual coefficient that contributes to threshold resummation at N3LL accu-
racy. The hard-virtual coefficient is directly related to the process-dependent virtual amplitude through a
universal (process-independent) factorization formula that we explicitly evaluate up to three-loop order. As
an application, we present the explicit expression of the soft-virtual N3LO corrections for the production of
an arbitrary colorless system. In the case of the Drell-Yan process, we confirm the recent result of Ref. [2].
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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The authors of Ref. [ 1] have recently presented the result of the calculation of the cross section
for the threshold production of the Higgs boson at hadron colliders at the next-to-next-to-next-to-
leading order (N?LO) in perturbative QCD. This result has prompted the observation [2] that the
Higgs boson calculation contains information on soft-gluon radiation that can be implemented
to explicitly determine the NLO threshold cross section for the Drell-Yan (DY) process. In
the present contribution, we exploit the universality (process-independent) structure [3] of soft-
gluon contributions near partonic threshold and the specific calculation of Ref. [1]. We show
how the results of Refs. [1] and [3] can be straightforwardly combined and used to extract the
general expression of the hard-virtual coefficient that contributes to threshold resummation at
next-to-next-to-next-to-leading-logarithmic (N?LL) accuracy for the cross section of a generic
(and arbitrary) colorless high-mass system produced in hadron collisions. The threshold resum-
mation formula for the production cross section can also be perturbatively expanded up to N3LO,
and for the specific case of the DY process we recover the result of Ref. [2].

The N®LO Higgs boson results of Ref. [1] complete a cross section calculation that requires
the evaluation of several independent ingredients related to collinear-counterterm factors [4,5]
and to real- [6,7] and virtual-radiation [8—10] contributions. One of these ingredients is the three-
loop virtual amplitude [9,10] gg — H for Higgs boson production through gluon fusion (the
three-loop results of Refs. [9,10] use the large-m,,, approximation). As discussed in Ref. [3],
all-order soft-gluon resummation [11-13] for the hadroproduction cross section of a generic
colorless high-mass system can be expressed in a process-independent form, whose sole process-
dependent information is encoded in the virtual amplitude of the specific process. Therefore,
using the cross section of Ref. [1] and the virtual amplitude of Refs. [9,10] for the specific case
of Higgs boson production, we can apply the formulation of Ref. [3] and we can explicitly deter-
mine the entire process-independent information that contributes to soft-gluon resummation for
a generic production process up to the three-loop level. In the following we recall the formalism
of soft-gluon resummation (by mainly following the notation of Section 5 in Ref. [3]) and we
present and illustrate our three-loop results.

We consider the inclusive hard-scattering reaction

hi(p1) +ha(p2) — F({gi}) + X, (1)

where the collision of the two hadrons /| and 4, with momenta p; and p; produces the triggered
final state F, and X denotes the accompanying final-state radiation. The observed final state F
is a generic system of one or more colorless particles (with momenta g;), such as lepton pairs
(produced by the DY mechanism), photon pairs, vector bosons, Higgs boson(s), and so forth. We
focus on the fotal cross section” for the process in Eq. (1) at fixed value M of the invariant mass
of the triggered final state F' (i.e., we integrate the differential cross section over the momenta g;
with the constraint () _; gi)> = M?). In the simplest case, the final-state system F consists of a
single (‘on-shell’) particle of mass M (for example, F can be a vector boson or a Higgs boson).
The total cross section or(p1, p2; M 2) for the production of the system F is computable in QCD
perturbation theory according to the following factorization formula:

2 The formalism of soft-gluon resummation can be further elaborated and extended to include the dependence on
final-state kinematical variables such as, for instance, the rapidity of the final state F' (see, e.g., Refs. [13—16]).
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or(p1. p2: MZ)
1

1
= Z/dm/dzZ&a[jaz(‘e:ZlmS;Mz;aS(Mz))fal/hl(Zl’MZ)fHZ/hZ(m’Mz)’ )

ap,az 0 0

where s = (p1 + p2)> ~2p1 - p2, &(5 a, 18 the total partonic cross section for the inclusive par-
tonic process aja; — F + X and, for simplicity, the parton densities fg,/p,; (2i, M%) (i=1,2)
are evaluated at the scale M? (the inclusion of an arbitrary factorization scale wr in the par-
ton densities and in the partonic cross sections can be implemented in a straightforward way
by using the Altarelli—Parisi evolution equations of fq,5(z, /L%)). The partonic cross section
8;; @ (5: M?%; ag(M?)) depends on the mass M of the system F, on the centre-of-mass energy
V5 of the colliding partons a; and aj, and it is a renormalization-group invariant quantity that
can be perturbatively computed as series expansion in powers of as(M?). Considering, for in-

stance, the inclusive partonic channel cc — F + X, we can write

S5 s 002) =02, (s (44) (S22 o
n=0

where z = M?/5,
0@ =801-2), (4)

and UC(QL # is the lowest-order cross section for the partonic process cc — F. Since the system
F is colorless, the lowest-order cross section is determined by the partonic processes of quark—
antiquark annihilation (¢ = g, ¢) and/or gluon fusion (c = g) (in the case of gg-annihilation the
quark and antiquark can have different flavors, such as, for instance, if F = Wi). Perturbative
expressions that are analogous to Eq. (3) can be written for the partonic cross sections &afaz of
all the other partonic channels. Using the renormalization-group evolution of the QCD running

coupling as(g?), we can equivalently expand &af a, I powers of ag (u%), with corresponding

perturbative coefficients gfl(;lz) that explicitly depend on M?/ M%e’ where (g is an arbitrary renor-
malization scale. Throughout the paper we use parton densities as defined in the MS factorization
scheme, and as(g?) is the QCD running coupling in the MS renormalization scheme.

The kinematical variable z = M?/§ in Eq. (3) parametrizes the distance from the partonic
threshold. The limit z — 1 specifies the kinematical region that is close to the partonic threshold.
In this region the partonic cross section 65 a, Teceives large QCD radiative corrections that are
proportional to the singular functions

1—z

’Dm(z)z[ lnm(l—z):| (m=0,1,...), (5)

+
where the subscript ‘+’ denotes the customary ‘plus-distribution’. The all-order perturbative
resummation of these logarithmic contributions (including all the singular contributions that are
proportional to §(1 — z)) can be systematically performed by working in Mellin (N-moment)
space [11,12]. The Mellin transform &y (M?) of the partonic cross section & (§; M?) is defined
as

1
G o (M as(M2)) = / 2N 6E (5= M2/ M as (M), ©)
0
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In Mellin space, the threshold region z — 1 corresponds to the limit N — oo, and the plus-
distributions of Eq. (5) become powers of In N ((ﬁ In"(1 — 2))4 — "N+ ‘subleading
logs’). These logarithmic contributions are evaluated to all perturbative orders by using thresh-
old resummation [11,12]. Neglecting terms that are relatively suppressed by powers of 1/N in
the limit N — oo, we write

Ge, (M7 as(M?)) = 857 (M as (M?))[1 4+ O1/W)]. ™

Note that we are considering only the partonic channel cc — F + X, with c¢ = ¢g and/or cc =
gg, since the other partonic channels give contributions that are of O(1/N). In this paper, we
use the Mellin-space formalism of threshold resummation [11,12] that we have just introduced.
Related formulations of threshold resummation for hadron—hadron collisions can be found, for
instance, in Ref. [17] (which is exploited to derive the results of Ref. [2]) and in Refs. [18-20].
The expression chC(reS) in the right-hand side of Eq. (7) embodies all the perturbative terms
that are logarithmically enhanced or constant in the limit N — oo. The partonic cross section
6(25?,5) has a universal (process-independent) all-order structure that is given by the following
threshold-resummation formula [11-13,21-23]:
Gy (M as(M?)) = 0,2, p(M?sas(M2))Cli p (s (M?)) A, v (M?). ®)

cc—F

()

The factor o;_, . obviously depends on the produced final-state system F, and it is simply pro-
portional to the square of the lowest-order scattering amplitude MECL r (see Eq. (22)) of the
partonic process cc — F. The factor CCC_> r also depends on the produced final-state system
F and, therefore, it includes a process-dependent component. The factor A, y is process-
independent: it does not depend on the final-state system F, and it only depends on the type
(c =g or c = g) of colliding partons.

The factor A y is entirely due to soft-parton radiation [11,12]. This radiative factor re-
sums all the perturbative contributions g In™ N (including some constant terms, i.e. terms with
m = 0), and it has the following all-order form:

Acn(M?)
1 NO (1—2)2M2d 5
:exp{/dzzlj[Z / q—quC(as(qz)) + De(as((1 —z)2M2)):|}, 9)
0 MZ

where A.(«s) and D, (as) are perturbative series in o,

A(as) = (%)Ag” T ( . ) AD 4 ( . ) A® 4 (n > AD 4+ 0(a}), (10)
2 3
De(as) = <%) D@ + (%) DD 1 O(ad). (11)

The function A.(as) is produced by radiation that is soft and collinear to the direction of the
colliding partons ¢ and c. The effect of soft non-collinear radiation is embodied in the function
D.(as). The perturbative coefficients A", A® [12,24.25] and A [4,23] are explicitly known.
They read
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AV =c.,
A9 lxc. koo (Z-T) 3
=5 2 = —~——|—=-ng,
¢ Taphe N8 6) 9oF

245 67 11 11 209 5 7
A = CC<<— -t —att ﬂ;g)ci + (—— +——m?— ECg)CAnF

9 216" ' 720 432 " 108
(24 1) L2 (12)
o6 T 253 )CFNE T 108" )

where nr is the number of quark flavors, N, is the number of colors, and the color factors are
Cr= (Nf —1)/(2N¢) and C4 = N, in SU(N.) QCD. The color coefficient C. depends on the
type c of colliding partons, and we have C. = Cr if c =g and C. = C, if ¢ = g. The perturba-
tive expansion of D.(ag) starts at O(ag) (.e., Dil) = 0), and the perturbative coefficients D?)

[21,26] and D [27,28] are explicitly known. They read

o0 — e 100 15 T N (1,
= ——t+—n 4= — ——7
c AP T TR 28T\ 5775 ’

297029 6139 187 2500 11
DY = CC(C/Z4 <— + 2_ ot + 2 )

256
23328 ' 1944 2160 108 37 367 B0

e 31313 1837 , 23, 1S5
AP\ TTe64 ~ 1944 1080 36 53

e 1711 1, 1, 19
FUP\geq T 127 T 180" T 18%°
58 5 5
2 2
_2% 2 2 ). 13
+"F< 720 T 817 +27§3)) (13)

Using Eq. (9), the coefficients Agl), A?), A?), D£2), D£3) in Egs. (12)—(13) and the coefficient
A£4) in Eq. (10) explicitly determine soft-gluon resummation up to N°LL accuracy. The fourth-
order coefficient A£4) is still unknown. Numerical approximations of A£4) [23] indicate that this
coefficient can have a small quantitative effect in practical applications of threshold resummation.
By direct inspection of Egs. (12) and (13), we note that the dependence on ¢ (the type of colliding
parton) of the perturbative functions A.(as) and D.(as) is entirely specified up to O(ag) by the
overall color factor C,. To highlight this overall dependence, we introduce the notation

2 4
os os 1 os 2 os 4 5
Ac(as) = Cc(;) <1 + (;)yc(us)p + (;) Vc(us)p> + (;) AE‘ ) + O(“S)’ (14)

so that yc(uls)p = A?) /Ce = K /2 and yc(fs)p = A£3) /C. (see Eq. (12)) are universal QCD coeffi-
cients (namely, they do not depend on the type ¢ of colliding parton). This overall dependence
on C,, which is customarily named as Casimir scaling relation, follows from the soft-parton ori-
gin of both A.(«s) and D.(«s), and it is eventually a consequence of non-abelian exponentiation
[29] for soft-gluon radiation. The validity of the Casimir scaling relation (14) beyond C’)(ozg) isa
subject of current theoretical investigations (see Ref. [30] and references therein). More detailed
comments on the structure of soft-gluon radiation are postponed below Eq. (42).

In this paper we focus on the threshold-resummation factor Cfg_) - The factor Cfgﬁ F €m-
bodies all the remaining N-independent contributions (i.e., terms that are constant in the limit
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N — 00) to the partonic cross section in Eq. (8). This factor is definitely process dependent, and
it has the general perturbative expansion

oo n
h as th (n)
Coaplas) =1+ 2 1:<;> Ceoop (15)
n=

Despite its process dependence, in Ref. [3] we have discussed and shown that the all-order factor
C?;H () involves a minimal amount of process-dependent information. This information is
entirely due to the renormalized all-loop scattering amplitude M z_,  of the (elastic-production)
partonic process c¢ — F. Having Mz p, we can introduce the corresponding hard-virtual
amplitude ijhé_)  for threshold resummation by using a process-independent (universal) fac-

torization formula that has the following all-order expression [3]:
M =1 —I"(e, M}) Mo r. (16)

The subtraction operator / Cth (€, M?) in Eq. (16) is a renormalization-group invariant quantity that
does not depend on the specific final-state system F': it only depends on the type (c =g orc = g)
of colliding partons and on a scale that is set by the invariant mass M of the system F'. The factor
C E}Cl% r(ag) is then directly related to ./\/1?1% - In the simple case where the system F consists
of a single particle of mass M, the direct relation is [3]

ALqth 2
(M) p(as(M?)) = :gEHF : (F: single particle), (17)
cc—F

where the value k of the power of as(M?) and the lowest-order amplitude ME?L F are precisely
defined in Eq. (22). The relation in Eq. (17) can be straightforwardly generalized to the more
general case where the system F is formed by two or more particles with momenta ¢g; (see
Eq. (1)). The generalization simply follows from the fact that we are considering the cross section
integrated over the final-state momenta ¢; and, therefore, we have

ol p (P as (M) CEL (s (M?))

cc—>F
= / ‘MLL»F({‘II'}) ]2 (F: multiparticle system). (18)
PS({qi}; M)

Here we have introduced a shorthand (symbolic) notation: the symbol | PS(gi}: M) denotes the
properly normalized (see Eq. (23)) phase space integration over the final-state momenta {g;} at
fixed value of the their total invariant mass M. The extension from Eq. (17) to Eq. (18) derives
from the simple key observation that the operator [ ‘h(e M?) in Eq. (1 0) is completely indepen-
dent of the final-state momenta ¢; and, therefore, the g;-dependence of M;C_) r({gi}) is entirely
and directly given by the g;-dependence of the scattering amplitude M z—, r({g;}). In Ref. [3]
we obtained the explicit expression of the subtraction operator I Lt,h up to the second order in the
QCD coupling as. In this paper we extend those results and compute f,h to the third order in os.

Before presenting our results, we give more details on the notation that is used in
Egs. (16)—(18). The all-loop scattering amplitude M, ;—, g of the partonic process cc — F
contains ultraviolet (UV) and infrared (IR) singularities, which are regularized in d =4 — 2¢
space-time dimensions. To be definite we use the customary scheme of conventional dimen-
sional regularization (CDR). Before performing renormalization, the multiloop QCD amplitude

has a perturbative dependence on powers of ag ,u%f, where og is the bare coupling and wo is
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the dimensional-regularization scale. In the following we work with the renormalized on-shell
scattering amplitude that is obtained from the corresponding unrenormalized amplitude by just
expressing the bare coupling cg in terms of the running coupling os (1 R) according to the MS
scheme relation

of 1y Se = as(uk) g Z(as(ung) €).  Se=@m) e ", (19)
3
Z(as,e)—l—as@—f-a%(ﬁ—o—&) a§<ﬁ—°—zﬁ°ﬂl+ﬁ2)+0( 3 (20)

€2 2e e 6 €2 3
where yg is the Euler number, @g is the renormalization scale and By, 81 and B, are the first
three coefficients of the QCD S-function [8]:

12780 = 11C4 — 2np, 247281 =17C% — 5Canp —3Crnr,

6473 By = 8703 150, ng— @cAanF + Cinp
54 74 54 A 18 F
79 11
+54CAnF+ 9CFnF 21
The renormalized all-loop amplitude M.z, r has the perturbative (loop) expansion
00 2 n
M= s | 2 () w2, | @
n=1

where the value k of the overall power of ag depends on the specific process (for instance, k =0
in the case of the vector boson production process gg — V, and k = 1 in the case of the Higgs
boson production process gg — H through a heavy-quark loop). Note that the lowest-order term
MELL # 18 not necessarily a tree-level amplitude (for instance, it involves a quark loop in the
cases gg — H and gg — yy). If F is a multiparticle system, using the shorthand notation of
Eq. (18), we can write the lowest-order cross section as

o (% as(0) =¥ (4 [ MO () @

PS{qi}s M)

which (implicitly) fixes the overall normalization of the phase space integration. The perturba-
tive terms ME?H r =1,2,3,...) are UV finite, but they still depend on e: in particular, they
contain e€-pole contributions and, therefore, they are IR divergent as € — 0. The IR divergent
contributions to the scattering amplitude M z_, r have a universal (process-independent) struc-
ture [31-34] that is explicitly known up to the three-loop (I = 3) level [35]. The subtraction

operator I Lt,h (€, M?) in Eq. (16) has the perturbative expansion

e°] 2 n
I"(e, M?) = Z(%ﬁ“) 1™ e, (24)
n=1

and the perturbative terms Izh(n)(e) contain IR divergent contributions (e-poles) and a definite
amount of IR finite contributions. The IR divergent contributions to I, f.h(e, M?) are exactly those
that are necessary to cancel the IR divergences of the renormalized all-loop amplitude Mz F.

Therefore, the hard-virtual amplitude ./\/lt cé—r N Eq. (16) is IR finite order-by-order in pertur-
bation theory, and it can be evaluated in the limit € — 0. The threshold resummation coefficient

C22_> F(Ols(Mz)) can be directly computed in the four-dimensional limit € — O (though, this
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limit is not explicitly denoted in the right-hand side of Egs. (17) and (18)). The perturbative
expansion of /\/lth _, p i1s completely analogous to that of Mz r (see Eq. (22)) with the replace-

ment M — M®"  Note that M"? = M©Q . and the higher-order contributions

~ cc—F cc—F* cc—F — cc—>F>

M?}('_? F (n > 1) are obtained from Eq. (16) in terms of /\/l(c)_> pand I, jh® (e) at equal or lower
orders, i.e. with [ <n (see, e.g., Eqs. (48) and (49) in Ref. [3]). For simplicity, the perturbative
expansions on the right-hand side of Egs. (22) and (24) are expressed in powers of as(M?). Note,
however, that M.z, r and I Cth (€, M?) are separately renormalization-group invariant quantities.
Therefore, they can be equivalently expanded as powers series in g (,u%), with corresponding
perturbative terms that depend on M2/ /JL%e (see, e.g., Egs. (50)—(57) in Ref. [3]). The equivalent
expansions are simply obtained by using Eq. (19) to directly express as(M?) in terms of ag (/‘%e)
and integer powers of (M?/ M%)_E.

In Ref. [3] we derived the explicit expression of the first-order and second-order subtraction
operators fcth(l)(e) and fcth(z) (€). To extend the results to the third order, we introduce a more
compact (though completely equivalent) all-order representation. The operator I f.h(e, M?) can be
written as

1— icth(e, M2) = exp{RC(e,as(Mz)) — itpc(e,as(Mz))}, (25)

where R, and @, are real functions. The function @, (e, M?) is the IR divergent Coulomb phase
that originates from the virtual contributions to the all-loop amplitude M ;_, r. Its explicit ex-
pression up to (’)(ozg) [35] reads

. inC. [ (as os 21 ) Bor
—iP(€,as) = e {(;) + <;> 3 (chsp T

3
+((ZT—S> ;(yc(fg)p i C(dfpﬂon+ 171 <'BO ,81))}+(’)(a§). (26)

The function R, (€, as) contains IR finite terms and all the remaining IR divergent terms (in
the limit € — 0) in the exponent of Eq. (25). This perturbative function can be decomposed as
follows:

Re(e, as) = RN (e, as) + R (e, as). 27
where
Rs‘oft(é’ as) — CC( RSOft(l)( ) + < ) RSOft(Z)( ) + ( > RSOft(3)(€))
T T
+ O(as), (28)

Rgou(é,as) RCOH(I)( )+ ( - > RCOH(Z)(G) + <n ) RCOHG) (G) + O(as) (29)

The two components REOﬂ and Rg"” of Eq. (27) have a soft and collinear origin, respectively.
The e-dependent perturbative coefficients on the right-hand side of Egs. (28) and (29) read

RSOft(l) (E) 21 + Rﬁl’l(l) (30)
E

RO () = 25, 3D
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RO () — _g%—f éycﬂs)p - Fdﬁ) 4+ RO,

R (e) = iojzr Ve + 816 vV,
Rsmua(e)::llﬁ%%;fﬂ1€n2__36€3ﬁ0nyégp+-18 —5 Ve + e 2ﬁondu)
REOI) ¢ %((ﬁoeﬂ) . ) o 12<1>2 Zié @,

The coefficients y., )/c(l) and )/c(z)

83

(32)

(33)

(34)

(35)

in Egs. (31), (33) and (35) depend on the parton flavor c = ¢, g

and they have a collinear origin. They are equal to the coefficients of the term proportional to
8(1 — z) (i.e., to the virtual contribution) in the leading order (LO), next-to-leading order (NLO)
and next-to-next-to-leading order (NNLO) collinear splitting functions [4], and their explicit

values® are

=5Cr
M — <§ _1ln +6§3) Ci+ <£ LN 3;3) CrCa+
4 8 2 F 18
4
@ = CF<?2+§ 2+%+1—;3—§nzc3—3055>
+C2CA(E—@ 2 27 4 ﬂcw n;3+15;5>
d 32 7 1080
+Cic (—@ 281 2—”—4—24 +5;)
AYF\ 77288 T 81 144 3T
+C2n < 23+in2 2714—1—;)—{-6‘ n2< —7—1-i
FRFATR 736" T 540 303 T HEE 81
+CFCAnF<§ 167 2+”—4+§;3)
2 162 360
11 1
Vg = KCA - g”F,
y) = (g +3§3)Cf‘ - %CA nr — ECFnFa
2
3 = CA(?z 7118+ 131 Y+ g@—%ﬂzﬁ—loﬁs)
+C%n (_@_7‘[_2_7[_4_& )
A\ T T8 216 30
1, 241 29 o, 11,
+§CFnF CACFnF+ 44CAnF+7—2CFnF.
3 InRef. [3] we used a slightly different notation, and the coefficient y, (1 therein is related to y(])

2

as 7V

2

- =8

9

)

(36)

(37)

=—Ye()/8-
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The coefficients d(1y and d(2) in Egs. (32) and (34) have a soft origin, and their values read

= (LN (202
(1)—(27 187‘[ >HF+< 77 +367T +7§'3>CA, (38)
deo) =C} (‘ o7l @ﬂz g + @53 - Eﬂzﬁ - 24{5)

5832 1944 45 6 9 i

Lc 5921 7077t2+714 91
AT\ 2916 ~ 972 5 275

e 1711 #2 7% 38
FUE\ 516 " 12 25 9%
260 5 14
2 2
L2 22 ). 39
+nF<729 +n 27;3) (39)

The coefficients R"D and R"? determine the IR finite part on the right-hand side of Egs. (30)
and (32): their explicit values are known [3] and read”

2
gfin — T

8 )

: 607 469 Tt 187 41 35 17
Rin®@ — o, (2 _ 2, T 18/ LT S 41
Noas " 728" Tass " 1m) P Taa Tea™ TR8) @D
The first-order and second-order results in Egs. (30)—(33) were obtained in Ref. [3]. The three-
loop expressions in Eqgs. (34) and (35) and, especially, the value of the IR finite part R"®) in
Eq. (34) are the main new results of the present paper. The explicit value of the third-order coef-
ficient Ri"®) jg
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We note that the phase factor e /%< in Eq. (25) is physically (and practically) harmless to
the purpose of computing the threshold resummation coefficient C;};-_) p in Egs. (17) and (18).

Indeed, e~/ ®¢ prodpces a corresponding overall phase fact(f)\rJ contribution to /\7215_) r in Eq. (16)
~i®c gives a vanishing contribution to |ME}Z-,H F|2 and, hence, to Cz,haﬁ e We
recall [3] that this phase factor has been introduced in /, Cth to the sole practical (aesthetical) pur-

pose of canceling the IR divergent Coulomb phase of the virtual amplitude Mz, f, so that

and, therefore, e

4 In Ref. [3], the IR finite part of ﬁh(l) and i}

(S?f) and Szg) therein.

h@ i specified by using a different notation in terms of the coefficients
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/\72}2%  itself (and not only |./\722,% F|2) is IR finite in the limit ¢ — 0. We note that /\7?1% F
can also be redefined by including equally harmless contributions that are purely real (rather
than phase factors). We can consider a multiplicative redefinition /\/l?}_> r— Flas, 6)ME}._> Fo
where F is an arbitrary perturbative function (i.e., F =1+ O(as))’\guch that it is equal to unity
in the limite — 0 (i.e., F =1+ O(e™) withm =1, 2, ...). Since ME}_)F is IR finite, this mul-
tiplicative redefinition gives a vanishing contribution to /F\;lllché_) r in the four-dimensional limit
€ — 0. Such harmless multiplicative redefinition corresponds to the replacement (1 — I c‘h) —
F(as,e) (1 — 1~C‘h) or, equivalently, to the replacement R. (e, as) — R.(€,as) + In F(as, €) =
Ro(e,a5) + O(e™), withm = 1,2, ..., in Eq. (25) (we have used In F (s, €) = O(€™)). There-
fore, we see that terms of O(e”), with m = 1,2, ..., in R (€, as) are harmless. In our explicit
expressions (see Egs. (27)-(35)) of R. (€, «s) we have not included any of these terms, whereas
the explicit expressions of I;lh(l)(e) and fcth(z) (e) that are presented in Ref. [3] include contribu-
tions that are due to this type of harmless terms.

The derivation of the factorization formula (16), its origin and the general structure of the
subtraction operator icth(e, M?) in Eq. (25) were discussed in Ref. [3]. Here we limit ourselves
to presenting the main conclusions of our reasoning [3] in a very concise form (we refer to Sec-
tions 4.1 and 5 of Ref. [3] for an extended discussion). We have already recalled the origin of the
phase factor e~ in Eq. (25). We then recall [3] that the remaining contributions to INCth (.e.,
the factor e®¢ in Eq. (25)) have a soft and collinear origin, as specified by the decomposition in
Eq. (27). The collinear contributions are embodied in the factor R , and they are entirely due to
the virtual part of the collinear-counterterm factor that is introduced in the (bare) partonic cross
sections to factorize the MS parton densities (see Eq. (2)). Since we are considering parton densi-
ties in the MS factorization scheme, this collinear-counterterm factor is completely and explicitly
specified up to O(e3) [4] and, in particular, the perturbative function R°!!(¢, ) in Eq. (29) in-
cludes only e-pole contributions (see Eqs. (31), (33) and (35)) with no additional IR finite terms.
The soft contributions to 7, C‘h are embodied in the factor e They are due to the soft part of the
MS collinear counterterm [4] and to the inelastic processes cc — F + X, where the radiated final-
state system X includes only soft partons. The soft-parton contribution of the inelastic processes
can be determined by using universal (process-independent) soft factorization formulae [36—40]
of the corresponding scattering amplitudes. In Ref. [41], the soft-parton contribution to the total
cross section was explicitly computed up to NNLO in a process-independent form by using soft
factorization formulae up to O(a%) [37-39]. A corresponding process-independent calculation
at N°LO can be performed by using soft factorization formulae at O(ag) [7,42]. As discussed
in Ref. [42], soft-factorization results from Refs. [7,38,39,42] and the soft limit of the results in
Ref. [6] can be combined and used to reproduce [42] the results of the N>LO cross sections for
Higgs boson [1] and DY production [2]. However, as discussed and pointed out in Ref. [3], much
information on the soft contribution to I cth can be obtained independently of detailed computa-
tions. Indeed, due to non-abelian eikonal exponentiation [29], the intensity of soft radiation from
the parton c is simply proportional to the Casimir coefficient C, of that parton (this conclusion
is certainly valid up to (’)(ag) [29]). Therefore, Rf."ﬂ(e, as) can be expressed by factorizing the
overall coefficient C. as in Eq. (28). This Casimir scaling behavior is completely analogous to
that of the functions A.(as) (see Eq. (14)), D.(as) (see Egs. (11) and (13)) and @, (¢, as) (see
Eq. (26)), since all these functions are entirely due to soft-parton contributions [3]. The perturba-
tive coefficients RS (¢), with n = 1, 2, 3, in Eq. (28) are completely process independent and
they can be determined by considering a single specific process. In particular, R%°'") (¢) contains
IR divergent contributions (e-pole terms) and IR finite contributions. These IR divergent terms of
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soft-parton origin are due to real emission contributions, but they are constrained (because of the
real-virtual cancellation mechanism of IR divergences) to be exactly equal to the corresponding
IR divergent terms due to virtual radiation. Therefore, the e-pole terms in Eqgs. (30), (32) and
(34) are completely specified by the explicit calculation of either the quark or gluon form factors
[35] (as recalled below, the process independence of these terms is consistent with the univer-
sality structure of the IR divergent contributions to the QCD scattering amplitudes [31,33,34]).
It follows that the IR finite coefficients Rfin() (n =1,2,3) are the only terms that are not ex-
plicitly determined by using our general reasoning [3]. Owing to their universality, the explicit
computation of a single process is sufficient to extract the values of these IR finite coefficients.
As illustrated below, we use the N3LO Higgs boson results of Ref. [1] to obtain the value of
R®) in Eq. (42).

Before considering the evaluation of Rf"®)| we present some additional comments on the
structure of Egs. (25)—(39) and on the connection between real- and virtual-emission contribu-
tions. As we have discussed, the subtraction operator (1 — fcth) in Egs. (16) and (25) includes
the Coulomb phase factor ¢ ~/® and an additional factor of soft and collinear origin. In Eq. (25)
we express this additional factor by using the exponentiated form e®¢. The exponentiated form,
which is completely equivalent to its direct expansion in powers of as, is more compact in view of

the factorization and exponentiation properties of both soft and collinear contributions. Owing to

. . . coll soft
factorization we can write e Re — €R< R;

R(E:O“

, 1.e. we can introduce the decomposition in Eq. (27).
The collinear factor e is entirely due to the virtual part of the collinear counterterm of the MS
parton densities, and its exponentiated structure is eventually a consequence of the customary so-
lution of the Altarelli—Parisi evolution equations in terms of an exponentiated evolution operator.
Indeed (as stated below Eq. (35)) the exponent RSOH is directly determined by the coefficients
Ves V. C(l) and y(z) of the virtual part of the Altarelli—Parisi splitting functions. The factor R i
due to real emission of soft partons: it fulfills non-abelian eikonal exponentiation and, therefore,
we can express the exponent Rj.Oft through the Casimir scaling relation (28). The soft/collinear
structure of (1 — iC‘h) o R eR™ does not originate from virtual contributions to the scattering
amplitude M z_, r, but the IR divergent terms in Egs. (28)—(35) exactly match the analogous
universal structure of the IR divergent virtual contributions to Mz, r. The IR divergent virtual
contributions [31-35] include dominant and subdominant e-poles. The dominant poles have a
soft-collinear origin and are controlled by the perturbative function A.(«s) in Eq. (10) or, equiv-
alently, the function ycusp(as) in Eq. (14). The subdominant poles originate from either collinear
(and non-soft) or soft (and non-collinear) contributions and they are controlled by the collinear
coefficients in Egs. (36)—(37) and the soft coefficients in Egs. (38)—(39). We also note that the
real emission contribution to the partonic cross section of Eq. (8) is separated in two different
factors: the N-independent factor e R (Wthh contributes to (1 — 1 th) and, hence, to C, th i)
and the In N-dependent radiative factor A, n of Eq. (9). These two factors have a soft origin
and they are not fully independent. In particular, the coefficients of the dominant IR poles of
R‘Z"ﬁ(e, as) are directly related to the dominant In N-dependence of A, y (as given by the per-
turbative function A.(os)). The subdominant In N-dependence of A x is due to the soft-parton
function D.(«s), whose perturbative coefficients D(") are related to the soft-parton coefficients
Ced(n—1) and C, RIN'=D of RS (e rg): this relation between In N terms, €-poles and IR finite
terms is discussed and worked out in Refs. [27,28]. We note that using the general analysis of
Refs. [27,28] and our result for Rfi*®) jn Eq. (42), the fourth-order coefficient D£4) of D.(as)
can be determined in terms of the e-poles at O(a‘S‘) (once they become available).
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To evaluate the third-order coefficient Ri"®) | we consider the perturbative expansion of the
resummation formula in Eq. (8), which contains all the terms which are not suppressed in the
large-N limit, namely, the logarithmically-enhanced terms and the constant terms as N — oo.
We consider the N3LO contribution (see, e.g., the Appendix E in Ref. [22]) and we transform
it back to z space to obtain the general expression of the N°LO term g“@)(z) of Eq. (3) in the
threshold limit z — 1. We find

40
gt @ =8(A0)"Ds = o (4")" s

c—F

32 2 16
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where D,, = D,,(z) are the plus-distributions defined in Eq. (5), and the dots in the right-hand
side of Eq. (43) denote additional terms that are less singular in the limit z — 1 (i.e., terms that
are relatively suppressed by some powers of (1 — z)). The terms that are explicitly denoted in the
right-hand side of Eq. (43) define the soft-virtual (SV) approximation of the N>LO contribution
g“m (z) to the partonic cross section. These terms depend on the universal perturbative coeffi-

thin) with

cc—F

cients AE"), D(") (see Egs. (12) and (13)) and on the process-dependent coefficients C
n <3.

In the case of Higgs boson production (gg — H ) by gluon fusion, the SV N3LO expression in
Eq. (43) exactly corresponds to the result of the explicit computation performed in Ref. [1]. The
first-order and second-order coefficients Cth(l) and Cth(z) are known (they can be determined
by our process-independent resummation formallsm up to (’)(a%) or, equivalently, they can be
extracted from the SV NNLO results of Refs. [26,43]). Therefore, comparing Eq. (43) with the

result in Eq. (10) of Ref. [1], we can extract the coefficient Cg};i)) r and we find
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To be precise, the coefficient C th(3) g in Eq. (44) corresponds to the perturbative expansion that

is defined by Eq. (3) after having rescaled the partonic cross section with the Wilson coefficient
of the effective point-like coupling gg H [9] (this definition exactly corresponds to that used in
Eq. (4) of Ref. [1]). Having the information in Eq. (44) and using Eqgs. (16) and (17), we apply
the operator (1 — 1 th) of Eq. (25) to the three-loop gluon form factor [10] and we can extract the
coefficient R™3) in Eq. (34). We find the explicit value that is presented in Eq. (42).

The coefficient R completely determines the explicit expression of the process-indepen-
dent subtraction operator i th up to O(Olg). Using this expression and Egs. (16)—(18), the threshold
resummation coefficient Cf;_) r(as) for an arbitrary process cc — F' is straightforwardly and
explicitly computable up to the three-loop order once the corresponding three-loop scattering
amplitude M ;_, r for that process is known.

As an application of our general formalism and results, we can consider the production of
a vector boson V (V = Z, W¥) by the DY process g7 — V. Using the subtraction operator
(1- I ;h) and the results for the quark form factor up to three-loop order [10], we can compute

the coefficients C,/") |, with n = 1,2, 3. We find
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where Ny is a factor originating by diagrams where the virtual gauge boson does not couple
directly to the initial state quarks [10], and it is proportional to the charge weighted sum of

the quark flavors. The explicit expressions of the coefficients Ag") and Dé") up to O(ag) and

31;(2\/ in Egs. (45)—(47) can be inserted in Eq. (43) to obtain the explicit
expression of the SV N3LO cross section for the DY process. The ensuing result is in agreement
with the result in Ref. [2].

In this paper we have considered the processes in which an arbitrary colorless system F with
high mass is produced in hadronic collisions. We have focused on the structure of the perturba-
tive QCD contributions near partonic threshold. Such contributions are controlled by universal
resummation factors plus a process dependent hard-virtual function. As discussed in Ref. [3],
the hard-virtual function is directly related to the process-dependent virtual amplitude through a
universal factorization formula that depends on a process-independent subtraction operator. The
results that were documented in Ref. [3] determine the structure of the subtraction operator (and,
thus, of the hard-virtual function) up to a universal perturbative function with purely numerical
perturbative coefficients that were explicitly computed up to the second-order in ag. In this paper
we have pointed out that the recent computation of the soft-virtual corrections to Higgs boson
production at N3LO [1] is sufficient to extend those results to the third-order in g, and we have
explicitly computed the corresponding perturbative coefficient. The results presented in this pa-
per can be used to perform soft-gluon resummation up to N>LL accuracy” for the production of
an arbitrary colorless system F in hadron collisions. Equivalently, they allow us to determine the
explicit form of the N3LO corrections to the production cross section near partonic threshold,
once the corresponding three-loop scattering amplitude Mz, r is available. We have applied
our results to the DY process and we have presented the explicit expression of the hard-virtual
function up to N3LO, confirming the result of Ref. [2] for the DY cross section at N>LO.

the expressions of C

SA quantitative study of Higgs boson production at N 3LL accuracy, with the inclusion of the soft-virtual contribution
at N3LO, is presented in a very recent paper [44].
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