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Abstract

Morphological modelling of electrocardiographical P-
waves could simplify the detection of signals’ morpholog-
ical features employed in risk stratification. We compared
four different approaches, based on signal decomposition,
for morphological modeling of signal-averaged P waves.
The functional models included: trigonometric, Bézier, B-
spline, and Gaussian basis functions.

The comparison between models was performed at a
common fixed number of parameters (ranging between
C=3 to 21). The performances of the approximations were
evaluated using compression efficiency measures, like the
percentage of root-mean-square differences (PRD). Non-
linear iterative parameter identification was employed for
Gaussian models, while the parameters of the other basis
functions were calculated through closed formulas.

We tested the effectiveness of the several methods on the
PhysioNet PTB diagnostic ECG database (561 subjects,
10 s each, 12 leads). Trigonometric and B-spline mod-
els proved to be the most effective in following the details
of the morphology (PRD: 0.51% ± 0.62% and 0.99% ±
0.96%, respectively, on lead V1 at C=21), possibly as they
form an orthogonal basis for the specific signal. This prop-
erty is not shared by Bézier curves and Gaussian basis
functions (PRD: 2.47%± 2.17% and 3.57%± 6.83%).

1. Introduction

The P wave is the first characteristic waveform found
in each beat of an electrocardiographical (ECG) record-
ing. It corresponds to the spread of ionic currents through
the atrial musculature (activation or depolarization), after
the firing of the sinoatrial (SA) node. The P-wave dura-
tion has been commonly employed as a marker of atrial
conduction, and its prolongation associated with the re-
modelling induced by an history of atrial fibrillation (AF).
However, a slower propagation is not necessarily linked
to paroxysmal episodes of AF. The study of the entire P-
wave morphology is therefore gaining momentum, in par-
ticular for detecting local conduction disturbances which
might then lead to AF, but also for characterizing a larger
class of pathologies, i.e., ischemic heart disease and con-
gestive heart failure [1, 2]. Hence, a standardized method

for signal-averaged P wave analysis has been called for, es-
pecially in the clinical management of elderly patients [3].

On the other hand, the analysis of the P wave presents
technical challenges due to the small ECG amplitude and
the consequently lower signal to noise (SNR) ratio. Signal-
averaged P wave analysis, where consecutive P wave are
averaged to decrease the impact of noise, was the first so-
lution suggested to cope with this issue. More recently,
techniques based on fitting a mathematical model capa-
ble of capturing the main morphological features emerged.
The morphological features are derived directly from the
model. For example, Censi et al. presented a P wave
model, based on a linear combination of Gaussian func-
tions [4]. Alternatively, Carlson et al. tried to model di-
rectly the conduction system, of which the P wave is a sort
of “impulse response” [5].

In this methodological work, we compared different
models for a morphological description of the P wave,
from a signal decomposition perspective. Possible mor-
phological parameters, which can be subsequently derived
from the models, were not considered, as they depend on
the specific class of patients under analysis.

2. Materials and Methods

2.1. ECG data

The signals used in this study were taken from the Phy-
sioNet PTB Diagnostic ECG Database [6] (sampling fre-
quency: 1000 Hz; resolution: 16-bit). 561 ECG segments,
each with duration of 10s, were selected from the twelve
conventional leads, at the begining of each recording. Af-
ter detecting QRS complexes, P waves were located in a
200 ms-long window starting 300 ms before the R waves.

2.2. Signal Decomposition

Let us consider the P wave samples x(ti), collected in
the (1 × n) vector x. Our goal is to model them with
x̂(ti), produced by the linear combination of basis func-
tions φk(t), that is [7]

x̂(ti) =
N−1∑
k=0

ckφk(ti) or x̂ = cTΦ, (1)
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(b) N = 6
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(c) N = 9

0 50 100 150 200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

A
m

pl
itu

de
 (

m
V

)

 

 

(d) N = 12
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(e) N = 15
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(f) N = 18

Figure 1. Trigonometric and Gaussian functions-based models for a real P-wave (subject s0001 re, lead 2).

where ck are N scalar coefficients and c their correspond-
ing (N × 1) vector. Φ is a (N × n) matrix containing on
each row the basis functions sampled at the instants ti. The
only unknown parameters are the coefficients ck and they
can be obtained by minimizing the energy of the residual
signal x̂(ti)− x(ti), that is the scalar cost function

SMSSE(x|c) =
∥∥xT −ΦT c

∥∥2
2

= (x− cTΦ)(xT −ΦT c).

Taking the derivative of SMSSE(x|c) with respect to c,
and after algebraic manipulations, we get

c = (ΦT )+xT = (Φ+)TxT = Φ(ΦTΦ)−1xT (2)

The P wave is a continuous function defined on a compact
support [a, b]. If the functions {φk(t)} are a complete set of
L2{[a, b]} then any finite energy signal x(t), defined over
[a, b], can be approximated at a selected precision with (1).
Moreover, if {φk(t)} also form an orthonormal basis, the
expansion is not redundant and the relative amplitudes of
ck convey information about the relevance of each of the
basis functions in the construction of the signal.

In the following several basis functions will be consid-
ered: polynomial splines (Bézier and B-spline), trigono-
metric and Gaussian functions. However the framework
can be extended to other functions such as wavelets.

2.2.1. Polynomial Spline Basis Functions

Polynomial splines have been extensively used for curve
fitting and interpolation [8]. Among the different types of
polynomial splines, Bézier and B-splines satisfy many of
the aforementioned properties required for signal model-
ing. For a finite support signal x(t) defined for t ∈ [a, b],
Bézier basis functions of order p (also known as Bernstein
polynomials [8, Ch. 5]) are defined as:

φk(t) =

(
p

k

)(
t− a
b− a

)k (
b− t
b− a

)p−k

. (3)

Therefore, following (1), the resulting signal’s model is

x̂(t) =
N−1∑
k=0

ck

(
p

k

)
(t− a)k(b− t)p−k

(b− a)p
. (4)

The Bézier spline in (4) is a polynomial of order N − 1.
However local control is not achieved by Bézier curves,
since the change of the control points (which is fixed) will
affect the whole curve shape [9]. B-Spline curves can be
used to solve this problem.

Once selected a non-decreasing sequence of real num-
bers {tj}N+p

j=0 , known as knots or node sequences, a B-
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Table 1. Performances (mean PRD over all P-waves and leads) of the different approximations for different models’ orders.

Model N

3 6 9 12 15 18 21
Gaussian 49.98±0.6% 24.9±0.9% 15.3±0.9% 10.02± 1.0% 7.00±0.7% 5.40±0.6% 4.01±0.7%
Bézier 34.66±1.2% 17.76±1.1% 11.06±0.7% 7.62± 0.6% 5.32±0.4% 3.46±0.2% 2.09±0.2%
B-spline 20.18±1.2% 11.74±0.8% 7.58±0.6% 4.77± 0.3% 2.34±0.2% 1.29±0.1% 0.86±0.1%
Trigonom. 22.68±0.6% 10.98±0.4% 5.88±0.3% 3.13± 0.2% 1.64±0.2% 0.91±0.2% 0.58±0.1%

spline of order p is recursively defined as:

φpj (t) =
t− tj

tj+p−1 − tj
φp−1
j (t) +

tj+p − t
tj+p − tj+1

φp−1
j+1(t)

where

φ0j (t) =

{
1 if tj ≤ t < tj+1

0 elsewhere .

The function φpj (t) is identically zero outside the interval
tj < t < tj+p and its supporting interval is tj < t < tj+1.
Order p B-splines are linearly independent and the signal
x(t) can be modelled as

x̂(t) =
N−1∑
k=0

cjφ
p
j (t).

The piecewise definition of B-splines and the possibility of
selecting the position of the knots make the model highly
flexible. They also have other interesting properties, in-
cluding the fact that their interpolants rapidly converge to
the sinc(·) function, as the degree p increases, and they
might degenerate into a Bézier spline. Finally, the local
control property is also achieved since B-splines have com-
pact support.

In our simulations, we subdivided the temporal interval
where the P-wave was defined, into N identical segments.
The knots at the extremes of the interval were repeated,
so to have exactly N − 1 + p knots (e.g., φpN−1(t) was
supported on tN−1 < t < tN = · · · = tN−1+p).

2.2.2. Sinusoidal (Trigonometric) Functions

P-waves can be approximated also by a linear mixture
of sinusoidal basis functions:

x̂(t) =
N−1∑
k=0

ck cos(ωkt+ ψk) (5)

where ck, fk and ψk are respectively, the amplitude, fre-
quency and phase of the k-th sinusoid, and ωk = 2πfk.
However using directly a discrete model is more practi-
cal for numerical modeling. From the theory of discrete
Fourier transform (DCT), it is known that a discrete time

signal x[i] of length n can be approximated by a linear
mixture of N ≤ n discrete cosine functions

x̂[i] =
1

n

N−1∑
k=0

ck cos [ωk(2i+ 1)] (6)

where ωk = kπ/(2n) and x̂[i] = x̂[ti]. This expansion,
known as DCT-II, is one of the four common DCT trans-
forms [10, Ch. 8]. Since the set {φk[i]} form an orthogo-
nal basis for discrete signals of length n, ΦTΦ = I/(2n).
Moreover, the model error e[i] = x[i] − x̂[i] is zero for
N = n, while for N < n its power is minimized selecting
the coefficients ck as:

ck = βk
∑n−1

i=0 x[i] cos [ωk(2i+ 1)] (7)

where β0 = 1 and βk = 2 for 1 ≤ k ≤ N − 1.
We should note that the DCT-II provides higher power

compaction against sinusoidal basis function [10, Ch. 8].
Finally, comparing equation (5) with equation (1), φk(t) =
cos(ωkt + ψk) which depends on the two additional pa-
rameters ωk and ψk. However, in the DCT-II expansion,
ωk was evenly selected between 0 and the sampling fre-
quency (only the lowest frequencies are then retained in
the model) and the fitting of the phase ψk implicitly be-
comes a linear problem due to trigonometric identities.

2.2.3. Gaussian Basis Functions

Each P wave can also be modeled by a superposition
of Gaussian kernels with different amplitudes and widths,
centered at specific points in time [4]. According to (1),

x̂(t) =
N−1∑
k=0

ckφk(t) =
N−1∑
k=0

ck exp

[
− (t− tk)2

2b2k

]
. (8)

However, each Gaussian kernel in (8) depends nonlin-
early on two additional parameters: tk and bk. Unfor-
tunately, there is no analytical formula to identify these
parameters from observed data, as the problem is asso-
ciated with the solution of an over-determined system of
nonlinear equations. Levenberg-Marquardt nonlinear least
squares were employed to minimize directly the cost func-
tion SMSSE(x|c) and fitting the model in equation (8).
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Figure 2. Mean PRD, averaged over any P-wave and lead,
versus the order of the model.

The higher computational costs, due to the lack of a closed
form solution, make the Gaussian expansion less practical
for an automated fitting.

A comparison of trigonometric and Gaussian functions-
based models for a P-wave obtained from a real ECG is
shown in Fig. (1) at different model orders N .

3. Results

The percentage root-mean-square difference (PRD), a
classical compression efficiency measure, was employed
to compare the performances of the different models. PRD
was calculated as:

PRD = 100

√√√√∑N
i=1 (x̂[ti]− x[ti])

2∑N
i=1 x[ti]

2
, (9)

where x and x̂ are the original and modelled P wave. We
term compression ratio the value: r = N/n.

The mean results are summarized in Fig. 2, for a number
of free parametersN ranging from 3 to 21, and Table 1. As
a reference, each original P-wave was 200 samples long, so
r ranged from 1.5% to 10.5%. Trigonometric models dis-
played the minimum mean PRD. Together with B-spline
models, they proved to be the most effective in following
the details of the morphology (PRD: 0.51 ± 0.62% and
0.99 ± 0.96%, respectively, on lead V1 at C=21), a possi-
ble explanation being that they form an orthogonal basis.
This property is not shared by Bézier curves and Gaussian
basis functions (PRD: 2.47 ± 2.17% and 3.57 ± 6.83%).
Correspondingly, the number of free parameters necessary
to have a mean PRD < 5% in lead II, increased: C=10 for
trigonometric, 11 for B-splines, 15 for Bézier polynomials
and 18 for Gaussian functions.

4. Discussion and Conclusion

Different approaches for morphological modeling of P
waves, based on signal decomposition, were compared.
The different methods were able to follow the morphol-
ogy in details. This suggests that, in practice, they could
be successfully employed for amplitude assessment as well
as model-based filtering (given the fact that the P-wave fre-
quency content is mainly located in the low frequencies).
In applications where the compactness of the model is an
advantage, trigonometric model and B-spline were found
to be preferable.
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