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Abstract 

 

Breast cancer is the second leading cause of tumor-related death in women, 

mainly due to resistance to first line therapy, high risk of relapse and metastatic 

dissemination. Breast cancer is a highly heterogeneous disease, which displays 

diverse biological characteristics, clinical behaviour and prognosis. For these 

reasons, it has become challenging the identification and characterization of novel 

genes responsible for breast cancer initiation and progression. To identify new 

targets that sustain breast cancer growth, we performed in vivo and in vitro shRNA 

screens in a human breast cancer cell model. We screened two libraries targeting 

several chromatin remodeling enzymes (around 200 in total), which are essential 

genes in breast cancer maintenance and represent optimal druggable candidates. 

We identified approximately 70 genes that were depleted in our screens, and 

among them, we selected five hits to validate the screens. Remarkably, the 

silencing of each target gene significantly reduced tumor growth in vivo and 

decreased proliferation, colony formation and migration in vitro, thus validating our 

screens.  

We deeply investigated the Chromodomain Helicase DNA binding Domain 4 

(CHD4) gene, whose silencing in breast cancer cells greatly reduces tumor 

growth, but does not affect normal mammary epithelial proliferation and migration. 

We examined the role of CHD4 in primary cells derived from spontaneous 

mammary tumors of MMTV/NeuT transgenic mice. Upon CHD4 depletion, we 

confirmed a significant decrease of tumor growth in vivo and cell proliferation and 

migration in vitro. Intriguingly, we demonstrated that CHD4 silencing reduced 

tumor growth in vivo in a patient-derived xenopatient (PDX) model of Luminal B 

drug-resistant breast carcinoma. 
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Moreover, we investigated the mechanism through which CHD4 promotes breast 

cancer cell proliferation and we showed that CHD4 regulates cell cycle 

progression of breast cancer cells. CHD4 depletion provokes a consistent 

accumulation of cells in the G0/G1 phase and a strong reduction of the S phase of 

the cell cycle, and an upregulation of p21.  

In summary, RNAi screens allowed us to identify CHD4 as a critical target that 

sustains human breast cancer. Importantly, we showed that CHD4 modulation 

does not modify normal mammary cell proliferation and migration, suggesting that 

its targeting in tumor cells might not impact on the surrounding normal tissues. 

Moreover, CHD4 is crucial in almost any subtype of breast cancer, as shown by its 

effect on MMTV/NeuT and PDX tumorigenesis. Finally, we demonstrated that 

CHD4 is a key regulator of breast cancer cell cycle.  

  



	
   16	
  

1 Introduction 

 

1.1 Breast cancer 

 

According to the American Cancer Society, breast cancer is the most common 

cancer among women and it is the second leading cause of tumor-related deaths 

in women [Fig 1A]. The incidence of new cases is increasing every year [Fig. 1B] 

and the probability for a woman to get a breast cancer is very high (1:8) compared 

to other tumors (www.cancer.org) [Fig.1C]. 

 

	
  
Figure 1: 2014 Cancer statistics from the American Cancer Society website 
(www.cancer.org). A) New cancer cases and related deaths in the USA in 2014. B) Cancer 

incidence rates among women in the USA from 1975 to 2010. C) The lifetime probability of 

developing cancer in the US female population from 2008 to 2010. 

 

The biological history of the mammary tumor is characterized by a progression 

from pre-neoplastic lesion to benign neoplastic disease, culminating in malignant 

disease (Page, Dupont et al. 1985, Ponten, Holmberg et al. 1990). Several pre-

neoplastic lesions have been identified: atypical hyperplasia (AH), papillary 

lesions, radial scars, fibroepithelial lesions, mucocele-like lesions and columnar 
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cell lesions (Jacobs, Connolly et al. 2002). AH is the most common pre-neoplastic 

lesion and the risk to develop a breast cancer is very high mainly because of the 

presence of dysplastic components (Dupont, Parl et al. 1993).  

Breast cancer is not a single disease but rather a collection of diseases showing 

heterogeneity at a molecular, histopatological and clinical level, which generates 

variable clinical courses and responses to treatment. Breast cancer heterogeneity 

is shown at two different levels. There is a well-described intertumour 

heterogeneity, meaning that different patients have tumours with different genetic 

and phenotypic profiles, and also an intratumour heterogeneity, where the genetic 

heterogeneity is displayed within the same patient (Sorlie, Perou et al. 2001, 

Zardavas, Irrthum et al. 2015).	
  The different levels of tumour heterogeneity lead to 

tumor biological behaviours that are difficult to predict and tackle. Moreover, 

resistance to conventional therapy is still the major clinical problem in breast 

cancer, possibly due to such heterogeneity (Curigliano 2012). It is therefore of 

utmost importance to address the treatment and resistance issues associated with 

breast cancer, to develop novel and rationally selected combination of agents that 

target driver mutations, but also to identify new driver genetic and epigenetic targets in 

this malignancy. 

 

 

1.1.1 Breast cancer classification 

 

Breast cancer heterogeneity has lead to the requirement of a common 

classification of these tumors, mainly based on four different parameters: 

histopathology, grade, stage and receptor status. 
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According to the histopathological evaluation, based on the microanatomy of the 

tissue and the organization of the cellular structures, breast tumors are classified 

as ductal carcinoma in situ (DCIS), infiltrating ductal carcinoma (IDC), lobular 

carcinoma in situ (LCIS) and invasive lobular carcinoma (ILC) [Fig.2].  

  

	
  
Figure 2: Graphical representation of the mammary gland and histological characteristics of 

breast cancer. Hematoxylin and eosin (H/E) of: ILC adapted from (McCart Reed, Kutasovic et al. 

2015), LCIS adapted from (M, Cantile et al. 2013), IDC adapted from (Marangoni, Vincent-Salomon 

et al. 2007), DCIS adapted from (M, Cantile et al. 2013). 

 

DCIS is characterized by the proliferation of malignant cells that accumulate within 

the lumen of the membrane of the mammary ducts without invading the 

surrounding tissue (Schnitt, Silen et al. 1988, Burstein, Polyak et al. 2004). DCIS 

has been generally recognized as the precursor of IDC type (Gump, Jicha et al. 

1987, Allred, Mohsin et al. 2001), the most frequent subtype of breast cancers. 

IDC is characterized by infiltration of cancer cells in the stromal tissue and also in 
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the surrounding tissues, the first step of metastatic dissemination (Weigelt, 

Peterse et al. 2005, Siziopikou 2013). LCIS and ILC represent a small percentage 

of breast cancers and they are localized to epithelia lobules in situ (LCIS) or 

lobules and stroma (ILC) (Hanby and Hughes 2008). 

The grade of breast cancer is highly indicative of the aggressiveness of the tumor, 

based on histopathological parameters defined by pathologists. They describe 

tumor cells as well differentiated (low grade - I), moderately differentiated 

(intermediate grade - II), and poorly differentiated (high grade - III), the latter 

having the worst prognosis. With progressive decrease of differentiation grade, 

luminal and ductal epithelial cells loose their morphological architecture, the 

uniformity of cell nuclei and they divide without control (Elston and Ellis 1991). 

The stage of breast cancer, as for other tumors, is established using the TNM 

(tumor, node, metastasis) classification. It takes into account tumor size (T1 to T4), 

involvement of lymph nodes (N0 to N3) and presence of metastasis (M0 or M1) 

(Singletary and Connolly 2006).  

The receptor status classification divides breast cancers in four different 

molecular subtypes: luminal-like, basal-like, HER2 positive, normal breast (Perou, 

Sorlie et al. 2000), on the basis of the presence of estrogen, progesteron and 

HER2 receptors on cancer cells and their proliferative rate (detected by Ki67 

staining). Subsequently, the classification has been improved distinguishing 

between Luminal A and Luminal B on the basis of a gene signature of 456 genes 

differentially expressed in the two subtypes that correlate with patient outcome 

(Sorlie, Perou et al. 2001). More recently, the classification has been implemented 

by the addition of another subtype, the claudin-low subtype, on the basis of the 

expression of a family of cell adhesion molecules at epithelial tight junctions, the 

claudins (Herschkowitz, Simin et al. 2007).  
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In Luminal A tumors, cells are located next to the lumen of the duct, thereby called 

‘‘luminal’’ (Lam, Jimenez et al. 2014). The tumor is characterized by high 

expression of estrogen (ER) and/or progesterone receptors (PgR), low expression 

of genes related to proliferation (Ki67) and absence of HER2 (Carey, Perou et al. 

2006, Blows, Driver et al. 2010, Kennecke, Yerushalmi et al. 2010, Arvold, 

Taghian et al. 2011) [Table 1]. The presence of ER and/or PgR indicates that the 

tumor is hormone-sensitive, and can therefore be treated with targeted therapies 

(Tamoxifen or aromatase inhibitors) (Bianchini, Pusztai et al. 2013).  

Luminal B tumors show a lower expression of ER and a higher expression of Ki67, 

compared to Luminal A tumors [Table 1] (Ades, Zardavas et al. 2014). Luminal B 

tumors are more aggressive than Luminal A and are highly proliferative (de 

Azambuja, Cardoso et al. 2007). Endocrine therapy can still be offered to patients 

affected by Luminal B tumors, even if they have high risk of relapse and death. An 

improvement of treatment options for this specific subtype is thus necessary 

(Bardou, Arpino et al. 2003).  

The HER2 positive subtype is characterized by amplification or overexpression of 

the HER2 oncogene (Kennecke, Yerushalmi et al. 2010). HER2 overexpression is 

accompanied by lack of ER and PgR (Blows, Driver et al. 2010) [Table 1]. The 

therapy of choice for these patients is based on the use of a monoclonal antibody 

(Trastuzumab) raised against the HER2 receptor (Yeon and Pegram 2005), 

eventually combined with chemotherapy. Despite the major improvements in 

survival achieved by the use of the targeted therapy, HER2+ patients have a high 

relapse rate, a high risk of metastasis and a short overall survival (Nahta and 

Esteva 2006, Kennecke, Yerushalmi et al. 2010, Voduc, Cheang et al. 2010). 

The Basal-like tumor is considered the most aggressive breast cancer subtype, 

with poor prognosis and high risk of relapse (Munzone, Botteri et al. 2012). The 
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tumor lacks HER2 overexpression and ER and PgR expression, and for this 

reason is also called Triple negative (Blows, Driver et al. 2010) [Table 1]. The only 

therapeutic option for patients with Triple negative tumors is chemotherapy 

(Curigliano and Goldhirsch 2011). Approximately 75% of breast cancer patients 

carrying the BRCA1 (Breast Cancer 1) mutations have a Triple negative 

phenotype, indicating that BRCA1 is an important vulnerable gene in Triple 

negative tumors (Rakha, Reis-Filho et al. 2008). For these patients, platinum-

based chemotherapies or poly ADP-ribose polymerase (PARP) inhibitor have 

been offered (Farmer, McCabe et al. 2005).  

 

	
  
Table 1: Breast cancer subtypes: prevalence, receptor status and proliferation marker. 

Percentages of prevalence from: (Kennecke, Yerushalmi et al. 2010, Perou 2010, Prat and Perou 

2011, Haque, Ahmed et al. 2012, Howlader, Altekruse et al. 2014). Positive (+), negative (-), 

estrogen (ER), progesterone (PgR), human epidermal grow factor receptor (HER2) and Ki67. * 

Luminal A and Luminal B tumors can be positive for ER or PgR receptors or positive for both 

receptors at the same time. ** Luminal B tumors that are positive for ER, PgR and HER2 are also 

called Triple Positive. 

 

Claudin-low tumors are the least frequent subtype (prevalence 12-14%) among 

breast cancers and are characterized by low expression of many of the claudin 

genes, including 3,4 and 7 (Perou 2010, Prat and Perou 2011). Like the Triple 

negative subtype, these tumors lack ER and PgR expression and overexpression 

of HER2. In fact, 30% of Triple negative breast cancer is also claudin-low (Perou 
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2010) [Table 1]. Conversely, these tumors do not display a high expression of the 

Ki67 proliferation marker (Prat, Parker et al. 2010). Patients with Claudin-low 

breast cancer have a poor prognosis, possibly because the only therapeutic 

possibilities are chemotherapy and eventually the use of PARP inhibitors for those 

patients with BRCA1 mutation tumors (Perou 2010, Prat and Perou 2011). 

 

 

1.1.2 Breast cancer genomic alterations  

	
  

During the progression of breast cancer, a wide number of genomic alterations 

occurs, ranging from somatic mutations to short deletions, single nucleotide 

variations and copy number variations, leading to genomic instability. This range of 

genomic alteration supports the idea of the existence of a so-called “gene 

signature” representing global changes in groups of genes (i.e. genes involved in 

cell division, angiogenesis and invasion) between normal and cancer cells (van 't 

Veer, Dai et al. 2002, van de Vijver, He et al. 2002).	
  

 In the last decade, even if the integrative analysis of genomic alterations has 

provided a conspicuous contribution for the characterization of breast cancer, it did 

not fully helped to reliably predict therapy response (Previati, Manfrini et al. 2013). 

Indeed, a genome-based and a treatment-oriented classification of breast tumors 

are still necessary (Previati, Manfrini et al. 2013).  

Genome-wide sequencing studies in cancer have identified two types of somatic 

mutations: driver and passenger mutations. Driver mutations confer survival and 

proliferative advantage to cancer cells and they drive the malignant cell through 

the multistep path of tumorigenesis, whereas passenger alterations are non-

pathogenic and neutral (Previati, Manfrini et al. 2013). The most common driver 
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mutations in breast cancer identified by different research groups include: PIK3CA, 

PTEN, AKT1, TP53, GATA3, CDH1, RB1, MLL3, MAP3K1 and CDKN1B (Banerji, 

Cibulskis et al. 2012, Ellis, Ding et al. 2012, Stephens, Tarpey et al. 2012).  

One of the main purposes of the data analysis from genome wide sequencing 

studies is the identification of all molecular pathways that sustain the heterogeneity 

and complexity of breast cancer. A major challenge in breast cancer research is to 

pharmacologically target these driver mutations (Curigliano 2012). 

 

 

1.1.3 Breast cancer targeted therapy 

 

Until very recent, surgery, radiation and standard chemotherapy were the only 

treatment options that could be offered to the majority of breast cancer patients. 

Given that both radiation and chemotherapy exhibit lack of selectivity and high 

toxicity, there is an urgent need for novel drugs with more specific, possibly 

targeted actions (Widakowich, de Azambuja et al. 2007). In the last decades, 

thanks to genomic studies aimed to identify the genomic alterations at the basis of 

breast tumorigenesis, new therapeutic agents targeting specific mutations and key 

signalling pathways deeply transformed cancer drug development, opening to the 

targeted therapy era (Chabner and Roberts 2005). Personalized medicine holds 

great promise for precision cancer therapies against the unique profile of a cancer 

patient’s tumor (Lang, Wecsler et al. 2015). Targeted therapies routinely employed 

in the clinical setting can be grouped generally on the basis of their mechanism of 

action or of the targeted biological process (Tobin, Foukakis et al. 2015). These 

therapies are based on the use of monoclonal antibodies, hormones, signal 
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transduction inhibitors, gene expression modulators and angiogenesis inhibitors 

(Tobin, Foukakis et al. 2015) [Table 2].  

 

	
  
Table 2: Targeted therapies in breast cancer, adapted from Tobin et al., 2015. 

	
  

Luminal and HER2+ breast cancer patients can benefit of a variety of targeted 

therapies, whereas for Triple negative patients there are less options (PARP 

inhibitors, platinum-based agent). All these targeted therapies constitute a 

considerable progress in the systemic treatment of breast cancer. However, since 

breast cancer cell genome is dynamically changing and evolving during cancer 

development and even treatment, both de novo or acquired resistance can occur 

(Sato and Toi 2015). Several mechanisms leading to the development of 

Trastuzumab resistance have been described, including loss of PTEN (Nagata, 
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Lan et al. 2004), activation of alternative pathways (IGFR) (Lu, Zi et al. 2001), 

receptor-antibody interaction block (Nagy, Friedlander et al. 2005) or innate 

modulation of the immunological response (Musolino, Naldi et al. 2008). Strategies 

to overcome this clinical complication by developing more potent therapies or 

synergetic combinations are necessary (Widakowich, de Azambuja et al. 2007). 

	
  

	
  

1.1.4 Breast cancer susceptibility genes 

 

Family history constitutes an important risk factor for the development of inherited 

breast cancer, however, only 5-10% of total breast cancer cases are associated 

with genetic predisposition (Gayther, Pharoah et al. 1998, Sutcliffe, Pharoah et al. 

2000). BRCA1 and BRCA2 are two major breast cancer susceptibility genes, 

implicated in DNA repair and homologous recombination (Miki, Swensen et al. 

1994). The inheritance of BRCA1 and BRCA2 mutations confers a lifetime risk of 

developing breast cancer of 50-85% (Miki, Swensen et al. 1994). The majority of 

BRCA1 mutated mammary tumors are characterized by a Basal-like phenotype 

and different chromosome alterations (severe aneuploidy and centrosome 

amplification) (Miki, Swensen et al. 1994, Foulkes, Stefansson et al. 2003, Rakha, 

Reis-Filho et al. 2008).  Another gene that confers breast cancer susceptibility is 

p53, as its mutation leads to cell cycle defects and genome instability (Gayther, 

Pharoah et al. 1998, Vousden and Lane 2007).  The tumor suppressor p53 has 

been found mutated in 13% of the Luminal A tumors and in 66% of the Luminal B 

cases (Carey, Perou et al. 2006, Blows, Driver et al. 2010, Kennecke, Yerushalmi 

et al. 2010). 



	
   26	
  

1.2 Epigenetics and breast cancer 

 

The genetic diversity of breast cancer is associated to a similar diversity in 

epigenetic alterations. It appears that the subtype of breast cancer is dictated by a 

combination of mutations and copy number changes, while epigenetic alterations 

can be the primary initiators of cancer development. All these changes increase 

the heterogeneity of this malignancy, but also affect the prognosis and therapeutic 

options (Byler, Goldgar et al. 2014). Strictly regulated chromatin-modifying 

enzymes dynamically orchestrate modifications to DNA and histones in an 

extremely regulated manner. These changes include direct modification of DNA 

and histones such as acetylation or methylation [Table 3]. These modifications 

influence chromatin structure by changing non-covalent interactions within and 

between nucleosomes (basic units consisting of a segment of DNA wrapped 

around a histone protein core), thus regulating accessibility of promoter regions to 

transcription factors. Specialized proteins bearing unique domains precisely 

recognize these modifications and eventually recruit additional chromatin modifiers 

and remodelling enzymes that are considered the effectors of the modification 

(Dawson and Kouzarides 2012, Sarkies and Sale 2012).  

Chromatin regulatory factors play crucial roles in several cellular processes 

including cell survival, proliferation, differentiation and migration. Not surprisingly, 

altered expression of remodeler proteins allows cells to reprogram their behaviour 

and contribute to the development of cancer (Rodriguez-Paredes and Esteller 

2011, Dawson and Kouzarides 2012, Gonzalez-Perez, Jene-Sanz et al. 2013). 
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Table 3: Summary of chromatin modifications, readers and their function, adapted from 

Dawson et al., 2012. Readers domain: methyl-CpG-binding domain (MBD), plant homeodomain 

(PHD), malignant brain tumor domain (MBT), proline-tryptophan-tryptophan-proline domain 

(PWWP), BRCA1 C terminus domain (BRCT), ubiquitin interaction motif (UIM), inverted ubiquitin 

interaction motif (IUIM), sumo interaction motif (SIM) and poly ADP-ribose binding zinc finger 

(PBZ). a Binding modules for the post-translational modification. 

 

The best characterized epigenetic modifications are DNA methylation and post–

translational modification of histones. DNA methylation is a reversible 

mechanism of a covalent addition of a methyl group at the 5’-carbon of a cytosine 

particularly when preceding a guanine (CpG) (Weber and Schubeler 2007). DNA 

methylation, catalysed by DNA methyltransferase enzymes (DNMTs), is 

considered a crucial factor in the regulation of gene expression (Jones 2012). 

Several genes are inactivated in breast cancer through methylation-dependent 

gene silencing (Widschwendter and Jones 2002).  Genes directly silenced by DNA 

methylation in breast cancer include the steroid receptor genes (ERa, PgR and 
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RARb2), the tumor suppressor gene BRCA1, the cell cycle control gene CDKN2A 

and E-cadherin, which is associated to metastasis promotion (Ottaviano, Issa et al. 

1994, Herman, Merlo et al. 1995, Lapidus, Ferguson et al. 1996, Dobrovic and 

Simpfendorfer 1997, Magdinier, Ribieras et al. 1998, Widschwendter, Berger et al. 

2000). 

Post-translational modifications of the N-terminal ends of histones include 

acetylation, methylation, phosphorylation, ubiquitination and SUMOylation [Table 

3]. These modifications have a deep impact on transcription, DNA repair and 

genome stability (Escargueil, Soares et al. 2008, Munshi, Shafi et al. 2009). Unlike 

DNA methylation, where a single methylation modification occurs in a precise 

position on a single base, histone modifications are more complex (Munshi, Shafi 

et al. 2009). Depending on the residue they occur on, the type of modifications 

(chemical groups) and the number of alterations, histone modifications are 

associated with activation or repression of gene transcription (Berger 2007). 

Histone modifications are dynamic and reversible. Several epigenetic modifier 

enzymes (epi-enzymes) are specifically responsible for adding (writers) or 

removing (erasers) those modifications (Bannister and Kouzarides 2011).  

Chromatin regulatory factors are emerging as novel targets for the treatment of 

several tumors, including breast cancer (Jovanovic, Ronneberg et al. 2010, 

Rodriguez-Paredes and Esteller 2011, Basse and Arock 2014). Epigenetic drugs 

(epi-drugs) can restore the normal epigenetic landscape in cancer cells by 

inhibiting enzymes of the epigenetic machinery. In recent years, epigenetic drugs 

have been approved by the US Food and Drug Administration (FDA) for 

haematological malignancies (DNA methyltransferases inhibitors for acute 

leukemias and histone deacetylases inhibitors for cutaneous T cell lymphomas) 
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(Gonzalez-Perez, Jene-Sanz et al. 2013), and the treatment of solid tumors with 

epi-drugs is progressing (Juergens, Wrangle et al. 2011).  

Up to now no epigenetic drugs have been approved for the treatment of breast 

cancer, however, it has been demonstrated that the combination of the HDAC 

inhibitor Vorinostat with Paclitaxel and Bevacizumab induced an objective 

response in more than 50% of patients with metastatic breast cancer (Wong 

2009).  

Epigenetic regulation of genes is important for breast cancer progression, and epi-

enzymes represent putative targets for treating this type of tumor.  

 

 

1.2.1 The helicase CHD4 and the NuRD complex 

 

Approximately 1% of eukaryotic genes encode for helicase proteins. Unlike other 

classes of chromatin remodelers, helicases are involved in virtually all aspects of 

cell survival (Wu 2012). In fact, they are necessary to correctly replicate, repair 

and recombine the genome. Helicases play also a role in RNA metabolic 

processes such as transcription, translation, ribosome biogenesis and RNA 

splicing, editing, transport and degradation (Patel and Donmez 2006). 

The human genome encodes 95 non-redudant helicases: 64 RNA helicases and 

31 DNA helicases (Umate, Tuteja et al. 2011). CHD (chromodomain helicase 

DNA-binding) family is a class of DNA helicases composed of nine members 

(Marfella and Imbalzano 2007). This enzymatic family belongs to the ATPases 

superfamily SNF2, which uses the energy derived from ATP hydrolysis to remodel 

nucleosome structure (Eisen, Sweder et al. 1995).  



	
   30	
  

The human Mi2 proteins (Mi2α and β, also known as CHD3 and CHD4) were 

initially discovered as autoantigenes in dermatomyositis, a disease of the 

connective tissue (Ge, Nilasena et al. 1995, Seelig, Moosbrugger et al. 1995), in 

which 20-25% of the affected patients develop ovarian, lung, pancreatic, 

colon/rectal cancer or lymphoma (Hill, Zhang et al. 2001, Callen and Wortmann 

2006). It is not clear, however, the mechanism behind this connection.  

CHD4, is the catalytic core subunit of the large macromolecular Nucleosome 

Remodeling and Deacetylases (NuRD) complex [Fig. 3] that couples histone 

deacetylation and chromatin remodelling ATPase activity (Tong, Hassig et al. 

1998, Wade, Jones et al. 1998, Xue, Wong et al. 1998, Zhang, LeRoy et al. 1998).  

 

 
Figure 3: Graphical representation of the multi-subunits NuRD complex. The complex 

contains: the ATPase chromatin remodeling CHD4, the histone deacetylases HDCA1/2, the 

specific DNA-binding proteins MTA1/2/3 (Metastasis-associated gene), the methyl-CpG-binding 

proteins MBD2/3, the histone chaperones RbAp46/48 (Retinoblastoma-binding protein) and p66 (or 

GATA2). 

	
  

The CHD4 protein contains a SWI2/SNF-like helicase domain, two tandem 

chromodomains and two conserved plant homeodomains (PHD) finger domains 

(Woodage, Basrai et al. 1997) [Fig.4]. These PHD domains are capable of binding 

two distinct histone H3 tails within a single nucleosome, or on adjacent ones 

(Musselman, Ramirez et al. 2012). Post-translational modifications of these 
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histone tails regulate the binding affinity of CHD4: in particular, H3K9 

trimethylation promotes the binding of the enzyme (Musselman, Ramirez et al. 

2012), whereas mono-, di and tri methylation of H3K4 abolishes it (Musselman, 

Mansfield et al. 2009). 

                   

	
  
Figure 4: Graphical representation of CHD4 domains. CHD4 contains two N-terminal PHD zinc 

fingers (blue), two chromodomains (green) and a C-terminal ATPase helicase module (orange). 

 

In addition to its role in transcriptional regulation (Kim, Sif et al. 1999, Williams, 

Naito et al. 2004, Srinivasan, Mager et al. 2006, Reynolds, Latos et al. 2012, 

Amaya, Desai et al. 2013, Reynolds, O'Shaughnessy et al. 2013), CHD4 is 

implicated in DNA damage response (DDR) and in cell cycle progression, two key 

mechanisms deregulated in cancer. CHD4 can be recruited to sites of DNA 

damage in two distinct ways. The first one is through the binding of poly ADP-

ribose (PAR) chains, which are deposited on chromatin at site of DNA damage by 

PARP proteins (Chou, Adamson et al. 2010, Polo, Kaidi et al. 2010). It is not 

known yet, which is the function of CHD4 upon PARP recruiting. The second one 

is through the association with the ubiquitin ligase protein RING finger protein 8 

(RNF8), which allows CHD4 to unwind the chromatin at DNA damage sites 

(Smeenk, Wiegant et al. 2010, Luijsterburg, Acs et al. 2012). Chromatin unwinding 

promotes the formation of ubiquitin conjugates by RNF8 and another ubiquitin 

ligase, RNF168. The stimulation of the ubiquitylation activity of RNF8/RNF168 is 

necessary to amplify DDR signal and recruit downstream DDR proteins (i.e. 

BRCA1) (Luijsterburg, Acs et al. 2012). In the control of cell cycle progression, 
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CHD4/NuRD emerged as a crucial regulator of the G1/S transition in U2OS cells 

(human osteosarcoma cell line), by modulating p53 deacetylation and p21 

expression (Polo, Kaidi et al. 2010). Furthermore, in U2OS cells, the loss of CHD4 

causes a delay in the S-phase (Larsen, Poinsignon et al. 2010) and a consequent 

accumulation of the cells in the G2 phase (Smeenk, Wiegant et al. 2010).  

In breast cancer, several members of the NuRD complex have been described to 

play important roles in disease progression. It has been demonstrated that MTA1 

converts breast cancer cells to a more aggressive phenotype through the 

repression of the ER (Mazumdar, Wang et al. 2001). In addition, MTA1 

overexpression is closely associated with higher tumor grade and high 

intratumoral microvessel density in human breast cancers (Jang, Paik et al. 2006). 

MTA2 was found to associate with TWIST in promoting epithelial-to-mesenchymal 

transition (EMT) in breast cancer (Fu, Qin et al. 2011). On the contrary, it has been 

shown that in ER+ breast cancer cells the knockdown of MTA3 leads to aberrant 

expression of SNAIL, an EMT regulator, resulting in the repression of E-cadherin 

and the development of a more invasive phenotype (Fujita, Jaye et al. 2003). 

Finally, it has been described that loss of MBD2 initiates and maintains tumor 

suppressor gene transcription and suppresses breast cancer cell proliferation 

(Mian, Wang et al. 2011).  Little is known about the role of CHD4 in breast cancer. 

A very recent study showed that in the vast majority of breast cancer patients, 

CHD4 expression does not correlate with overall survival, whereas in BRAC2 

mutant breast cancers patients, which represent only 5% of total breast cancer 

patient, low CHD4 expression correlates with shorter overall survival (Guillemette, 

Serra et al. 2015). Therefore, the role of CHD4 in breast cancer remains to be 

investigated.  
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1.3 Preclinical models of breast cancer 

 

Preclinical model systems are necessary tools for the understanding and the study 

of cancer; moreover, they are essential for the development of novel anti-cancer 

therapeutics. The advent of tailored medicine requires preclinical models that 

closely recapitulate the human disease of origin, in order to develop new 

biomarkers, test the efficacy and tolerability of new compounds and rapidly 

translate the new discoveries to the clinic.  Due to the complex and heterogeneous 

nature of breast cancer, a variety of preclinical models has been developed, 

including in vitro human breast cancer cell lines, genetically engineered mouse 

(GEM) models and xenograft animal models (Frese and Tuveson 2007, Vargo-

Gogola and Rosen 2007). Although each model has various limitations in terms of 

recapitulating human breast tumors, the use of more than one model is needed to 

investigate this disease. 

 

 

1.3.1 Human breast cancer cell lines 

 

Breast cancer cell lines are the most common tool used in the preclinical studies to 

investigate the biology of breast cancer (Vargo-Gogola and Rosen 2007). The cell 

lines are easy to be manipulated and propagated in culture, under standardized 

and reproducible experimental conditions. Breast cancer cell lines are genetically 

and molecularly characterized, thus providing useful models that reproduce the 

classification of breast cancer subtypes and allow to deeply investigate the 

molecular mechanisms underlying the different subtypes (Neve, Chin et al. 2006, 

Kao, Salari et al. 2009). MCF10DCIS.com is a human breast cancer cell line that 
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derives from the MCF10A cell line, a spontaneously immortalized, non-malignant 

cell line obtained from a fibrocystic breast patient (Dawson, Wolman et al. 1996). 

MCF10A cells are normal epithelial cells, which do not form tumors upon 

transplantation into immunocompromised mice and are not invasive in vitro (Soule, 

Maloney et al. 1990).  MCF10AT1 is a pre-malignant cell line produced by 

transfection of MCF10A with constitutively active Harvey Rat Sarcoma Viral 

Oncogene Homolog (HRAS) oncogene, which is capable of generating xenograft 

tumors in vivo (Dawson, Wolman et al. 1996). The MCF10DCIS.com cell line was 

derived from an ex vivo culture of a MCF10AT1 xenograft tumor (Miller, Soule et 

al. 1993).  

It has been described that genes involved in tumorigenesis such as IGF1 receptor, 

MYC, SMAD4, HER2, ERK, AKT are upregulated in MCF10DCIS.com cells 

compared to the normal counterpart MCF10A, demonstrating that 

MCF10DCIS.com cells have an aggressive phenotype (So, Lee et al. 2012). 

Moreover, it has been shown that MCF10DCIS.com spontaneously loose the 

expression of pro-apoptotic proteins such as p53 and BCL2 when serially 

passaged in vitro (i.e. passage 44) (Shekhar, Tait et al. 2008). It is extremely 

important to consider this peculiarity because the phenotype of MCF10DCIS.com 

cells can change accordingly to the transcriptomic features, thus altering the 

outcome of in vitro studies. 

The MCF10 model offers the opportunity to study in vitro genetic and molecular 

events of breast cancer progression from normal mammary epithelium (MCF10A) 

to the malignant full-blown disease (MCF10DCIS.com) within the same genetic 

background (Rhee, Park et al. 2008, Kim, Miller et al. 2009, Choong, Lim et al. 

2010, Kadota, Yang et al. 2010).  
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Even though cell lines are very informative and have well-defined characteristics, 

they represent only a snapshot of the tumor because they do not adequately 

represent the full heterogeneity or morphology of breast tumor tissue in vivo. 

Moreover, they are subjected to selective pressure from the cell culture 

environment (Tsuji, Kawauchi et al. 2010, DeRose, Wang et al. 2011). 

 

 

1.3.2 Genetically engineered mouse models 

 

GEM models are useful tools to investigate the development and progression of 

breast cancer in vivo, and to understand the specific functions of human breast 

cancer-associated genes in mammary tumorigenesis (Sharpless and Depinho 

2006). Remarkably, these mice represent a relevant tool to study the spontaneous 

initiation and development of breast cancer in a fully immune competent setting 

(Caligiuri, Rizzolio et al. 2012). Several GEM models have been generated either 

deleting tumor suppressor genes (p53, PTEN and BRCA1) or activating 

oncogenes (c-Myc, HRAS, PyMT and the activated HER-2/neu oncogene) in the 

germline of the animal, leading to the formation of mammary tumors [Table 4]. 

A powerful model for the study of breast cancer is represented by the MMTV/NeuT 

transgenic mouse, whose spontaneous tumors recapitulate some features of the 

aggressive grade 3 (G3) human breast cancers (Pece, Tosoni et al. 2010). 

Moreover, the histological pattern and the immunohistochemistry (IHC) staining of 

the cancer cells resemble those of the human HER2 breast tumors (Cardiff and 

Muller 1993). The MMTV/NeuT mice develop synchronously mammary tumors, 

which are polyclonal in origin and have complete penetrance and short latency 

(12-16 weeks) (Muller, Sinn et al. 1988). Furthermore, MMTV/NeuT tumors have 
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an increased number of cancer stem cells, compared to the normal stem cells in 

the mammary gland (Cicalese, Bonizzi et al. 2009). 

           

 
Table 4: List of breast cancer GEM models, adapted from Cardiff et al., 2000. 

 

Interestingly, the transcriptomic profiles of mammary carcinomas derived from 27 

different GEM models have been investigated, showing that these murine models 

can mimic the corresponding human mammary tumors, but also that multiple 

models are needed to recapitulate the diverse cellular characteristics of human 

breast cancer subtypes (Pfefferle, Herschkowitz et al. 2013). Indeed, one major 

limitation of these models is that the tumor derived from one single GEM model is 

not sufficient to represent the intrinsic heterogeneity of patients’ tumors (Vargo-

Gogola and Rosen 2007).  
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1.3.3 Xenograft animal models 

 

The xenograft animal model consists in the transplantation of human cancer cells 

into immunodeficient mice. This model can be generated by either implanting 

cancer cells orthotopically or subcutaneously; the site of injection can vary 

depending on the purpose of the study. The xenograft model is a well-established 

tool that allows the investigation of human breast cancer cell biology in vivo. There 

are two types of xenograft animal models: one consists on the injection of human 

cell lines, the second one on the transplantation of patient samples (both cells or 

tissues), so called patient derived xenograft (PDX).  

Several human breast cancer cell lines have been used for the generation of 

xenografts in cancer research, including MCF10DCIS.com cells. When 

transplanted into immunodeficient mice, MCF10DCIS.com cells form DCIS-like 

comedo lesions (in four weeks) [Fig. 5] that spontaneously evolve in IDC tumors 

(in eight weeks) and eventually form lung metastasis (Miller, Santner et al. 2000, 

Tait, Pauley et al. 2007).  

 

	
  
Figure 5: MCF10DCIS.com tumors formed upon transplantation into immunocompromised 
mice (Tait, Pauley et al. 2007). A) Hematoxylin and Eosin (H&E) staining B) Silver stain depicting 

typical comedo necrosis.   



	
   38	
  

The number of cells that are able to generate a new tumor upon transplantation is 

an important aspect of the xenograft model because it reflects the aggressiveness 

of the cells. MCF10DCIS.com cells are highly tumorigenic because as few as 100 

cells are capable to form a new tumor in the animal (Possemato, Marks et al. 

2011).  

A limitation in the use of human cell lines for in vivo experiments is that their 

prolonged adaptation to tissue culture conditions may lead to genetic alterations, 

thus modifying the features of the tumor of origin (Tsuji, Kawauchi et al. 2010). 

The PDX models are ideal tools to investigate breast cancer in a more clinically 

oriented context. Direct implantation of patient derived samples into the mouse 

mammary fat pad of immunodeficient mice gives rise to human breast cancer that 

closely resembles the tumor of the patient. Indeed, tumors grown in PDX models 

retain several aspects of the original tumor: clinical markers, histopathology, 

hormone dependency or independency, gene expression profile, DNA copy 

number variation and capacity to form metastases (DeRose, Wang et al. 2011). 

Moreover, PDXs represent a suitable model to assess the effectiveness and 

toxicity of candidate compounds on specific cancer subtypes (Kerbel 2003). 

A major weakness of xenograft models generated by injection of either cell lines or 

patients’ samples is the lack of an intact immune system. Interaction of tumor and 

immune cells is a crucial component of cancer development and progression 

(Balkwill, Charles et al. 2005).  
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1.4 RNAi screening 

 

1.4.1 Types, implications and caveats of RNAi 

 

The discovery of RNAi had a deep impact in the understanding of gene regulation. 

Virtually any gene can be silenced by means of this technique, giving the 

researchers the possibility to investigate gene function in a faster and easier way 

than with the classical genetic approach (i.e. knock-out technique). Several 

artificial types of small RNAs were generated to silence a specific gene, In 

research the most frequently employed are synthetic small interfering RNAs 

(siRNAs) and small hairpin RNAs (shRNAs). SiRNA is a double stranded RNA of 

21-23 nucleotides through which a gene can be transiently silenced (Elbashir, 

Harborth et al. 2001). siRNAs can be synthetically synthesized and then directly 

introduced into the cell. shRNA stably interferes a specific target by constant gene 

knockdown (Yu, DeRuiter et al. 2002). ShRNAs are long RNA molecules (ranging 

from 19 to 29 nucleotides) composed of RNA folded into stem-loop structures and 

cloned into recombinant plasmids to be transduced and then integrated into 

hosted cells. Since long dsRNAs induce the activation of the interferon response 

leading to apoptosis, in human cells commonly used shRNAs are composed of 

only 21-23 nucleotides (Elbashir, Harborth et al. 2001). Several vectors can be 

used to transduce shRNAs, the more effective being the viral vectors: 1) 

adenoviruses, which are not integrated into the host genome, thus are not 

replicated during cell division (Graham and Prevec 1991); 2) retroviruses, which 

contain a reverse transcriptase that allows integration into the host genome, but 

can infect only dividing cells (Coffin, Hughes et al. 1997); 3) lentiviruses, which are 

a subclass of retroviruses endowed with the ability to infect also non-dividing cells 
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(Rubinson, Dillon et al. 2003). In these vectors, expression of shRNAs can be 

driven by either constitutive or inducible promoters (Wiznerowicz, Szulc et al. 

2006). 

RNAi is used for different purposes in biomedical research. RNAi-engineered cells 

can be assayed both in vivo and in vitro to study gene function. In oncology, efforts 

have been made to design specific si/shRNAs to define the role of either 

oncogenes or tumor suppressor genes in specific malignancies. The possibility to 

silence genes paved the way to the development of new therapeutic agents, which 

target disease-associated genes, the so called gene therapy (Verma and Somia 

1997). In recent years, several RNAi-based drugs have entered clinical trials for 

the treatment of diseases such as HIV, hereditary disorders and cancer (Angaji, 

Hedayati et al. 2010).  

Caveats to RNAi approach are the off-target effects that can be provoked by the 

RNAi machinery. Ideally, si/shRNAs should only degrade their complementary 

mRNAs, but unspecific silencing of other mRNAs (off-targets) often occurs 

(Jackson, Bartz et al. 2003). Recent studies revealed that Dicer (a complex 

involved in the RNAi machinery) is imprecise in processing commonly used stem-

loop designs, which increases the likely-hood of aberrant guide- and passenger-

strand mediated off-target effects (Gu, Jin et al. 2012). The off-targets effects are 

mainly due to “seed region” (conserved sequence essential for the binding to the 

target mRNA) in the guide strand of si/shRNA that matches to the 3’ UTRs of 

another mRNA (Lin, Ruan et al. 2005, Qiu, Adema et al. 2005). To avoid this 

phenomenon, it is necessary to ensure that the seed region is unique to the 

intended target. However, in practice this is difficult to realize and the proper 

design of the si/shRNA sequence is crucial to minimize this drawback. A more 

practical strategy is to chemically modify the nucleotide at the seed region. It has 
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been demonstrated that the introduction of 2’-O-methylation modification to 

nucleotide within seed region protects from off-target effect without compromising 

the potency of the RNAi (Jackson, Burchard et al. 2006).  

 

 

1.4.2 RNAi libraries 

 

The establishment of RNAi as a straightforward tool to specifically silence genes in 

mammalian cells paved the way to carry out genome-wide studies. In vitro and in 

vivo screenings based on RNAi libraries have been shown to be powerful 

approaches in functional genomics, to unravel the cellular and molecular functions 

of annotated genes. Different types of libraries can be used to perform a 

screening: the most common are siRNA and shRNA libraries. siRNA libraries can 

be prepared either by chemical synthesis or by enzymatic digestion of the dsRNA. 

Several screens have been performed using siRNA-arrayed libraries targeting a 

huge range of human genes (Echeverri and Perrimon 2006, Boutros and Ahringer 

2008). Accordingly, genome-wide siRNA libraries that cover almost complete 

human genome are commercially available. However, the siRNA approach is 

based on transient silencing, and for this reason can be limited to short in vitro 

screens, being the results only partially informative (Sharma and Rao 2009).  

The advent of shRNA technology has allowed the development of more powerful 

and less expensive RNAi libraries. ShRNAs can be transfected as plasmid vectors 

encoding shRNAs transcribed by RNA pol III, but can also be delivered into 

mammalian cells through infection of the cell with viral-based vectors (Moore, 

Guthrie et al. 2010). The shRNA technology combined with viral delivery has been 

efficaciously used. shRNAs assembled in adenovirus or lentivirus are able to 



	
   42	
  

transduce non replicating cells (i.e. quiescent cells) and are used for cells that are 

difficult to transfect such as primary cells; moreover, they can sustain the silencing 

of the genes over weeks after transduction. 

Several laboratories have developed vector-based shRNA libraries (Meacham, Ho 

et al. 2009, Zuber, Shi et al. 2011); in alternative,	
  ready-to-use shRNA libraries can 

be purchased from different companies (i.e. Open Biosystem, Sigma Aldrich or 

Cellecta Inc). Cellecta company generates libraries optimized for RNAi genetic 

screens in a pooled format and they are made to cover most of the human and 

mouse genome. These libraries can be fully customizable according to the 

researcher necessity: the company offers the possibility to choose one by one the 

shRNAs to be cloned. Cellecta libraries have high percentage of functionally 

validated sequences with five to ten shRNAs per gene resulting in at least 70% 

silencing efficiency for approximately 65% of the target genes represented. 

Moreover, about 80-90% of the population of shRNA constructs are present within 

a ten-fold range. The peculiarity of the Cellecta libraries is the presence of a 

barcode univocally associated to the shRNA engineered in the pRSI lentiviral 

vector [Fig. 6]. The barcodes are composed of 18 ologonucleotides that facilitate 

high throughput sequencing (HTS) process using the Illumina platform. Barcodes 

are identified and converted to lists of genes/shRNA with enumerated barcode 

data (www.cellecta.com).   
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Figure 6: Graphical representation of the Cellecta pRSI lentiviral vector (www.cellecta.com). 

The vector contains the U6 promoter for the shRNA, the barcode (18 unique nucleotides), the UbiC 

promoter for the GFF and the puromycin resistance. 

 

 

 

1.4.3 High throughput screen and its critical steps  

 

High throughput screening (HTS) has become an increasingly important tool in 

biomedical research. As technology improves, it allows large-scale experiments to 

be performed in a very short period of time. The generation of libraries of RNAi 

reagents has made possible to conduct high throughput, loss-of-function RNAi 

screenings in cells. Positive or negative selection can be applied to the screen, 

according to the goal of the screen. In a positive screen, selection is applied in 

order to have few clones surviving the selection mechanism, while in a negative 

screen, the goal is to identify those cells which do not survive. For this type of 

screen Next Generation Sequencing (NGS) is required to identify the cells that do 

not survive the selection. 

Loss of function (LOF) screening has become an invaluable tool in cancer 

research because this approach allows the identification of new genes essential 

for cancer progression, possibly resulting in the generation of novel therapeutics. 

So far, a variety of screens have been performed, leading to the identification of 

previously uncharacterized cancer vulnerable genes in haematological 
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malignancies and solid tumors (Zender, Xue et al. 2008, Bric, Miething et al. 2009, 

Meacham, Ho et al. 2009, Possemato, Marks et al. 2011, Zuber, McJunkin et al. 

2011, Zuber, Shi et al. 2011, Iorns, Ward et al. 2012, Scuoppo, Miething et al. 

2012, Beronja, Janki et al. 2013, Gargiulo, Cesaroni et al. 2013, Miller, Al-

Shahrour et al. 2013, Wuestefeld, Pesic et al. 2013, Possik, Muller et al. 2014, 

Schramek, Sendoel et al. 2014, Wolf, Muller-Decker et al. 2014, Baratta, Schinzel 

et al. 2015, Meacham, Lawton et al. 2015). 

A critical factor for the feasibility of an in vivo shRNA screen using primary cells is 

the number of transduced cancer cells that are able to form a new tumor when 

transplanted into mice, the so called tumor initianting cells (TICs). This number 

must be large enough to support the size/complexity of the library (library 

representation). It is of utmost importance to achieve this condition because TICs 

might represent a fraction of the entire cancer population and, moreover, TIC 

frequencies can vary depending on the cancer cell system. 

There are two important aspects to take into account when setting-up an RNAi 

screen: the assay design and the hit selection and validation.  

Assay design: a current protocol to perform an in vivo and in vitro RNAi screening 

contemplates six main steps (Gargiulo, Serresi et al. 2014) [Fig. 7]:  

• Production of shRNAs. Single preselected shRNAs are first expanded in 

bacterial cultures and subsequently pooled together. This procedure 

enhances flexibility in shRNA selection and it allows confirmation of efficient 

amplification of individual bacterial stock. Moreover, it diminishes the risk of 

unbalanced growth in colture, which can occur if single shRNAs in a pooled 

culture grow at different rates and are then over- or under-represented in 

the end. 
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• Transfection. The shRNA library is transfected into HEK293T cells to 

generate the viruses. The cancer cell population of interest is than infected 

at low multiplicity of infection (MOI) in order to have one shRNA per cell. 

Cancer cells are subsequently selected by their resistance to 

pharmacological agents or by sorting for the expression of fluorescent 

reporters. 

• Transduced cancer cells’ implantation. Transduced cancer cells are 

transplanted into recipient mice at a number that is calculated according to: 

technical limits of surgical procedure, number of TICs and the number of 

shRNAs composing the library. A control cell population (reference cells) is 

collected and the remaining cells are passaged in culture if an in vitro 

screen is performed in parallel. 

• DNA extraction. After tumor onset, mice are sacrificed and tumors are 

harvested. Genomic DNA (gDNA) is extracted from tumors or from viable 

transduced cells (reference). 

• Sequencing. Purified gDNA is subjected to PCR1 (shRNA amplification, 

barcode-tagging for multiplex sequencing) and PCR2 (introducing Illumina 

P5-P7 adapters) and libraries are quantified and subsequently sequenced. 

• Data analysis. The obtained sequences are aligned to the shRNA list. Each 

hairpin is counted and associated with the related barcode. Every shRNA is 

normalized by the sequencing depth and by the relative abundance 

compared to the reference. A final list of depleted and enriched genes is 

generated for validation.  
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Figure 7: Schematic representation of in vivo and in vitro shRNA screening protocol 
(Gargiulo, Serresi et al. 2014). (A-B) shRNA library preparation, transfection and transduction into 

cancer cells. C) Transplantation of transduced cells into recipient mice. (D-E) Tumor-enriched 

shRNAs are amplified from tissue or FACS-purified cells by PCR. F) shRNAs are counted to 

identify enrichments and dropouts. 

	
  

Critical drawbacks of RNAi screens are the generation of false positive hits 

(Echeverri, Beachy et al. 2006). False positives are due to off-target effects of the 

shRNAs, inefficient knockdown of the specific target by the shRNAs, or to random 
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under-representation of the shRNAs. To avoid this inconvenience, it is necessary 

that each gene is targeted by a multiplicity (normally from 5 to 10) of shRNAs, so 

that if a single shRNA does not silence properly the gene, or show off-target 

effects, or are not adequately represented in the tumor, the other shRNAs 

targeting the same gene can overcome this caveat.  

Negative and positive controls are essential in RNAi screenings, as in the analysis 

process they set the borders for the appropriate positioning of the shRNAs’ values. 

As negative controls, shRNAs targeting genes unrelated to the screen in use are 

utilized. In the analyses, these controls should result neither depleted nor 

enriched. As positive controls, shRNAs targeting basic components of the 

biological proliferation machinery are used, resulting then as the top scorer in the 

analysis. Once a threshold is fixed, a hit list of depleted or enriched genes is then 

generated.  

Hit selection and validation: Different criteria can be applied for the crucial 

selection of the targets to validate the screen. One of simplest method is to choose 

the top depleted (or enriched) genes. Alternatively, the choice can be influenced 

by the relevance in the biological process in which candidate hits are implied.  

To rule out the possibility that the selected genes are false positives, a robust 

validation of the screen is necessary. For both in vivo and in vitro validation, two or 

more shRNAs of the screen are used to silence the candidate hit to perform 

several cell-based assays (i.e. proliferation, colony formation assays). 
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Aim of the PhD thesis 

 

The goal of the project is the identification of novel targets that sustain breast 

cancer growth and suitable for the design of new therapeutic drugs. Our specific 

aim is to set up an in vivo and in vitro shRNA screening of chromatin modifiers, in 

order to discover novel driver genes relevant for breast cancer maintenance both 

in human and murine systems. The possibility of testing new compounds in in vitro 

and in vivo models of breast cancer prompted us to develop a platform of various 

model systems, including normal and tumoral cell lines, patient-derived xenografts 

and genetically engineered mouse models. This platform will also be strategic to 

elucidate the mechanisms of action of the genes that will be validated upon RNAi 

screens. 
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2 Materials and Methods 

 

Mice. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice 

and Friend Virus B-Type (FVB) were purchased from Harlan Laboratories. 

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were purchased from Charles River. 

MMTV-NeuT transgenic mice were in the FVB background (Muller, Sinn et al. 

1988). Mice were housed under specific pathogen free conditions. All animal 

studies were approved by Italian Health Ministry in accordance to EU directive 

2010/63. 

 

Tumor cell isolation from MMTV/NeuT mice and culture conditions.  

Mammary tumors derived from MMTV/NeuT transgenic mice were collected at the 

time of their appearance (tumor latency: 12 to 16 weeks after birth). Tumors were 

mechanically minced into small fragments, homogenised with the gentleMACS 

dissociator (Miltenyi Biotec) and enzymatically digested on a rotating wheel for 2-3 

hours at 37°C with 200 U/mL collagenase (Sigma) and 100 U/mL hyaluronidase 

(Sigma) in the following digestion mixture: Dulbecco’s modified Eagle’s medium 

(DMEM, Lonza), 2 mM glutamine (Lonza), 100 U/mL penicillin (Lonza) and 100 

µg/mL streptomycin (Lonza). When the digestion was complete, cell suspensions 

were centrifuged at 600 rpm for 5 minutes. Red blood cells (RBC) were lysed with 

RBC lysis buffer (155 mM NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA) for 2 minutes. 

Cells depleted of erythrocytes were incubated in Trypsin/EDTA (Lonza), 0.5 U/mL 

Dispase (Stemcell Technologies) and 1 mg/mL DNase (Stemcell Technologies) for 

2 minutes. Inactivation of the enzymes was performed with phosphate-buffered 

saline (PBS, Lonza) supplemented with 2% North American fetal bovine serum 

(FBS, Euroclone), followed by centrifugation at 1500 rpm for 5 minutes. Cells were 
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suspended in PBS, filtered through 100 µm cell strainers to eliminate cell 

aggregates and centrifuged at 1500 rpm for 5 minutes. The above-described 

protocol was adapted from (www.stemcell.com).  

MMTV/NeuT cells were maintained in DMEM/F12 (1:1, Lonza/Gibco) 

supplemented with 10% North American FBS, 2 mM glutamine, 100 U/mL 

penicillin and 100 µg/mL streptomycin, 10mM HEPES (Sigma), 5 µg/mL insulin 

(Roche), 0.5 µg/mL hydrocortisone (Sigma), 20 ng/mL epidermal growth factor 

(EGF, Tebu-Bio), 10 ng/mL Cholera Toxin (Sigma).  

 

Patient derived xenograft (PDX) generation and culture conditions. PDXs 

were already established in the laboratory (manuscript in preparation). PDX cells 

were maintained in DMEM/F12 (1:1) supplemented with 10% North American 

FBS, 2 mM glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin, 10mM 

HEPES, 5 µg/mL insulin, 0.5 µg/mL hydrocortisone, 10 ng/mL EGF, 50 ng/ml 

Cholera Toxin. 

 

Cell lines. MCF10DCIS.com cells were maintained in DMEM/F12 (1:1) medium 

supplemented with 5% horse serum (Invitrogen), 1.05 mM CaCl2 (VWR), 10mM 

HEPES (Sigma). MCF10A cells were maintained in DMEM/F12 (1:1) 

supplemented with 5% horse serum, 2 mM glutamine, 100 U/mL penicillin and 100 

µg/mL streptomycin, 10 µg/mL insulin, 0.5 µg/mL hydrocortisone, 20 ng/mL EGF, 

10 ng/mL Cholera Toxin.  

All cells were cultured at 37°C in 5% CO2. 

 

Human cell line xenograft generation. 1.000.000 MCF10DCIS.com cells were 

suspended in 1:1 PBS/Matrigel (phenol red free, Corning). 4 week-old female 
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Nod/Scid mice were anaesthetized with 2.5% Avertin in PBS (100% avertin: 10 g 

of tribromoethanol, in 10 mL of tetramyl alcohol, both from Sigma) and injected 

orthotopically in the inguinal (4th) mammary fat pad with the above-described 

preparation of MCF10DCIS.com cancer cells. 100% of mice developed tumors 

with a latency of 20-25 days.  

 

Preparation of paraffin sections. Over-night formalin-fixed tumor fragments were 

sequentially treated for 1 hour at room temperature with 70%, 80%, 95% ethanol, 

three times with 100% ethanol, twice with xylene and twice for two hours at 58°C 

with paraffin. The specimens were then embedded in paraffin and sectioned with a 

microtome at 5 µm thickness. Slides were stained by IHC.  

 

Immunohistochemistry. Paraffin sections were de-paraffinized with histolemon 

(Carlo Erba) for 10 minutes twice and hydrated through graded alcohol series 

(100%, 95%, 70% ethanol and water) for 5 minutes each. Heat induced antigen 

retrieval was performed by boiling slides in citrate buffer (10mM sodium citrate, 

0.05% Tween20, pH 6.0) for 30 to 50 minutes at 95°C. After blocking endogenous 

peroxidases with 3% hydrogen peroxide in distilled water for 10 minutes at room 

temperature, sections were washed in Tris Buffered Saline (TBS), pre-incubated 

with the antibody dilution buffer (4% BSA, 0.02% Tween20 in TBS) for 1 hour at 

room temperature and then stained for 1 hour at room temperature with one of the 

following primary antibodies: monoclonal anti-estrogen (1:200, Dako, clone 1D5); 

monoclonal anti-progesterone (1:200, Dako, clone PgR 636); polyclonal anti-

ERBB2 (1:600, Dako-A0485); monoclonal anti-Ki67 (1:200, Dako, clone MIB-1). 

After two washes with TBS, slides were incubated with horseradish peroxidase-

conjugated secondary antibodies (DAKO Envision system HRP rabbit/mouse) for 



	
   52	
  

30 minutes at room temperature and washed twice in TBS. The sections were 

subsequently incubated in peroxidase substrate solution (DAB DAKO) for 2 to 10 

minutes, rinsed in water, counterstained with hematoxylin for 30 seconds, 

dehydrated through graded alcohol series (water and 70%, 95%, 100% ethanol) 

for 5 minutes each and ultimately mounted with Eukitt (Kindler GmbH). 

 

Libraries, plasmids and siRNAs.  

Libraries. Both human and murine epigenetic libraries were purchased from 

Cellecta Inc. and engineered into the pRSI-U6-(sh)-UbiC-GFP-2A-Puro lentiviral 

vector containing the puromycin-resistance and the GFP fluorescent marker. 

shRNAs were under the control of the U6 promoter and univocally associated to a 

barcode (18 oligonucleotides). The libraries contained 1204 (hEpi1 and mEpi1) 

and 1192 shRNAs (hEpi2 and mEpi2) targeting 118 (hEpi1 and mEpi1) and 119 

(hEpi2 and mEpi2) epigenetic genes (10 different shRNAs per gene), positive 

(Psma1, Rpl30) and negative (Luciferase, LUC) controls.  

Plasmids. shRNAs for target genes were cloned into the pRSI-U6-(sh)-UbiC-

TagRFP-2A-Puro: 

 

  5’à3’ 
Luc CAAATCACAGAATCGTTGTAT 

shBAZ1B 1 CTGGGAGGAAGAATAGGAGGT 
shBAZ1B 2 GCAGATGGCTTTGTTGGATGT 
shBPTF 1 GCGGCAGTTAATGAAGAAATT 
shBPTF 2 CGAGGAGGATGGGATGGAGGA 
shBRD4 1 CCTGGAGATGATATAGTCTTA 
shBRD4 2 GAGACCTCCAATCCTAATAAG 
shCHD4 1 GCGGGAGTTTAGTACTAATAA 
shCHD4 2 CCTCGAGTGAGGGTGATGATT 
shWDR5 1 CTGGTTACAAGTTGGGAATAT 
shWDR5 2 GTGTCTGGCTTAGAGGATAAT 
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Plasmids for the murine experiments were engineered in the pLKO.1 (Sigma). 3 

scrambles (SCRs) shRNAs were pooled together: SCR1 (5’-

TGCCCGACACCACTACCTGA-3’), SCR2 (5’-CTACAAGACCGACATCAAGCT-

3’), SCR3 (5’-TCGTATTACAACGTCGTGACT-3’). The shRNAs targeting CHD4 

(used in pool) were: CHD4 1 (TRCN0000086147), CHD4 2 (TRCN00301995).   

siRNAs: siMax siRNA 21 mer (Eurofin Genomics)  LUC (5’-

UACGACGAUUCUGUGAUUU-3’), CHD4 1 (5'-CCCAGAAGAGGAUUUGUCA-3'), 

CHD4 2 (5'-GGUUUAAGCUCUUAGAACA-3'). siRNAs targeting CHD4 were also 

used in pool. 

 

Cell infections. Concentrated lentiviral particles (TU, transducing units) from 

human libraries were purchased from Cellecta Inc, The murine libraries were 

produced by transfecting 293T as described in the Cellecta User Manual 

(http://www.cellecta.com/wp-content/uploads/Cellecta-Manual-13Kx13K-Barcode-

Library-v1c.pdf).  

For single plasmids, 293T cells were transfected with the calcium-phosphate 

procedure with a mixture of: 125 mM CaCl2, 5 µg VSV-G, 8 µg dR8.2, 10 µg 

lentiviral vector and H2O (to reach a final volume of 500 µL). The mix was added 

drop-wise to 500 µL of 2X HBS (HEPES buffered saline: 50 mM HEPES pH 7.05, 

12 mM dextrose, 10 mM KCl, 280 mM NaCl and 1.5 mM Na2HPO4) by bubbling. 

After 15 minutes of incubation, the precipitate was distributed on 70% confluent 

exponentially growing cells. The medium was replaced 12-16 hours later with fresh 

293T medium. After 24 hours, viral supernatant was collected and filtered through 

a 0.45 µm syringe-filter. Lentiviruses were concentrated by ultra-centrifugation for 

2 hours at 20,000 rpm at 4°C and the viral pellet obtained was suspended in PBS 

at 100X concentration. The viral stock was frozen (-80°C) and subsequently used 
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to infect target cells. Lentiviral particles, together with 4 µg/mL polybrene 

(Sigma), were added to MCF10DCIS.com or MCF10A or MMTV/NeuT or PDX 

cells, with their medium. After 16 hours, the medium was replaced and 48 hours 

post infection, all cells were selected with 3 µg/mL puromycin for 3 days. For 

library infection and ELDA experiment, MCF10DCIS.com and MMTV/NeuT cells 

were infected at low MOI (MOI = ~0.2 and MOI = ~1.4 TU/cell respectively). 

Conversely, for the transplantation assays and for the in vitro studies, cells were 

infected at high MOI: MCF10DCIS.com and MCF10A MOI = ~3, MMTV/NeuT MOI 

= ~20, PDX MOI = ~50. Infection efficiency was determined as the percentage of 

GFP positive cells 2 days after infection as measured by flow-cytometry. All 

samples were acquired at FACS Canto II (BD bioscience) and analysed with 

FlowJo 9.3-2 analysis software.  

 

Southern Blot. The experiment was performed following a published protocol 

(Southern 2006). 

 

Quantitative PCR (qPCR). Total RNA was extracted from epigenetic libraries 

transduced MCF10DCIS.com cells using the QIAGEN RNeasy Mini Kit and 

reverse transcribed using random primers and ImProm-II™ reverse transcriptase 

(Promega), following manufacturer’s instructions. Real-time RT-PCR analyses 

were done in triplicate on the Applied Biosystems 7500 Fast Real-Time PCR 

System with the fast-SYBR Green PCR kit as instructed by the manufacturer 

(Applied Biosystems). GAG primers: Fw GGAGCTAGAACGATTCGCAGTTA, Rv 

GGTGTAGCTGTCCCAGTATTGTC. Alb primers: Fw 

GCTGTCATCTCTTGTGGGCTGT, Rv ACTCATGGGAGCTGCTGGTTC. 
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Extreme limiting dilution assay (ELDA). MMTV/NeuT cells were infected at low 

MOI with pRSI-U6-(sh)-UbiC-GFP-2A-Puro empty vector. 50.000, 10.000, 1000, 

100 transduced cells were suspended in 1:1 PBS/Matrigel (phenol red free, 

Corning) and injected orthotopically in the inguinal (4th) mammary gland of 

anesthetized syngeneic mice (FVB). Tumor-initiating cell (TIC) frequency and 

upper and lower range were determined using the ELDA software 

(http://bioinf.wehi.edu.au/software/elda/).   

 

In vivo and in vitro shRNA screens. 1.200.000 epigenetic libraries transduced 

cells were injected orthotopically (see Human cell line xenograft generation) in 

quadruplicate in Nod/Scid mice, or plated in triplicate. A representative portion of 

the total transduced cells (1/4) was collected as reference cells and immediately 

frozen as pellet at -80°C. Cultured cells were passaged for 21 days (Nolan-

Stevaux, Tedesco et al. 2013) and frozen as pellet at -80°C. Tumors were 

harvested after 28 days (Possemato, Marks et al. 2011) and frozen in liquid 

nitrogen. Frozen tumors were mechanically minced into small fragments with 

sterile scalpels and suspended in buffer P1 (QIAGEN, 1 mL Buffer/100 mg tumor) 

supplemented with 100 µg/mL RNase A (Sigma). The dissociation step was 

performed using disposable gentleMACS M tubes with the gentleMACS dissociator 

(Miltenyi Biotec). Cell pellets obtained from reference cells and cultured cells were 

suspended in buffer P1/RNAse A (1 mL/1.000.000 cells). Samples were lysed 

adding 1/20 volume of 10% SDS (Promega). After mixing, the reference cells 

lysates were incubated for 5 minutes, cultured cells and tumors for 20 minutes. 

gDNA was sheared by passing the lysate 10-15 times through a 22-gauge syringe 

needle. Then, a first gDNA extraction step was executed by adding 1 volume of 

phenol:chloroform pH 8.0 (Sigma). After centrifugation (12000 rpm, 12 minutes), 
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the upper phase was moved to a new tube and a second extraction step with 

chloroform (Sigma) was performed. Again, the upper phase was transferred to a 

new tube and 0.1 volumes of 3M NaCl (Sigma Aldrich) and 0.8 volumes of 

isopropanol (Fisher Scientific) were added to precipitate gDNAs. Centrifugation of 

tumor samples and cultured cells was performed at 12000 rpm for 20 minutes, the 

samples from reference cells were stored over-night at -20°C before centrifugation. 

DNA pellets were washed once in 70% ethanol and centrifuged again for 5 minutes 

at 12000 rpm. DNA pellets were finally air-dried and dissolved over-night in RNase 

free water (QIAGEN). The final DNA concentration was assessed by NanoDrop 

2000 (Thermo Scientific) quantification. For NGS libraries generation, the barcodes 

were amplified starting from the total amount of gDNA in 2 rounds of PCR using 

the Titanium Taq DNA polymerase (Clontech-Takara) and pooling together the 

total material from the first PCR before proceeding with the second run. The first 

PCR reactions were performed for 16 cycles with 13K_R2 (5’- 

AGTAGCGTGAAGAGCAGAGAA-3’) and 13K_F2 (5’-

TCGGATTCGCACCAGCACGCTA-3’). The second PCR reactions were performed 

for 12 cycles with P5_NR2 (5-

AATGATACGGCGACCACCGAGACGAGCACCGACAACAACGCAGA-3’) and 

P7_NF2 (5’-CAAGCAGAAGACGGCATACGATTCGCACCAGCACGCCTACGCA-

3’). The primers for the second PCR reactions were optimized in order to introduce 

the required adapters for Illumina NGS technology. The PCR amplifications were 

analysed by agarose gel electrophoresis (2.5%, Lonza) to check for the expected 

272 bp products. Amplified PCR products of the second PCR reactions were 

pooled together and extracted from agarose gel with the QIAquick gel purification 

kit (QIAGEN). The amount of purified PCR product was quantified using the High 

Sensitivity DNA Assay (Agilent Technologies) for the Agilent 2100 Bioanalyzer. 
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Barcode representation was measured by Next Generation Sequencing on an 

Illumina HiSeq2000 with a common sequencing primer for both the libraries, 

13K_Seq (5’-AGAGGTTCAGAGTTCTACAGTCCGAA-3’). Barcodes were identified 

by aligning each sequencing read to the barcoded-libraries using the Bowtie 

aligner (Langmead, Trapnell et al. 2009), and by considering only those barcodes 

having, at most, three mismatches for each alignment. For the analysis of the 

screens, detailed procedures are described in Results (3.1.1 and 3.1.2) and for 

statistical analysis we used CurveExpert software (http://www.curveexpert.net). 

When we added two (in vivo) biological replicates to the technical quadruplicate 

and for the murine screening, the same procedure was applied. 

 

Transplantation assay. MCF10DCIS.com, MMTV/NeuT and PDX cells were 

infected at high MOI with control shRNA (LUC) and pooled shRNAs silencing 

specific target genes. 250.000 infected MCF10DCIS.com or PDX cells and 

500.000 infected MMTV/NeuT cells were orthotopically injected (5 mice for LUC 

and 5 mice for target genes) into the inguinal (4th) mammary gland of anesthetized 

mice (respectively nod/scid, NSG and FVB). Mice were monitored weekly and 

euthanized when the tumors reached a volume around 1 cm3 as determined by 

caliper measurement. Tumor volume was calculated using this formula: V=l2*L/2 (l 

length; L width). 

 

In vitro studies. MCF10DCIS.com or MCF10A cells infected at high MOI with 

control shRNAs (LUC) and pooled shRNAs silencing specific target genes were 

used for: 

• ATP-based proliferation assay. 2.000 cells/well were plated in triplicate in 96 

well-plates. Every 24 hours, cells were lysed with the CellTiterGLO buffer 
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(Promega) and luminescence was quantified by the GLOMAX multi-detection 

system.  

• Colony formation assay. Triplicates of 1.000 cells per well were plated in 6 

well-plates. After 7 days of culture, the colonies were fixed in 10% methanol, 

stained with 0.5% Crystal Violet and counted.  

• Migration assay. MCF10A were starved over night with starvation medium: 

DMEM/F12 (1:1) supplemented with 1% Horse serum, 2 mM glutamine, 100 

U/mL penicillin and 100 µg/mL streptomycin, 10 µg/mL insulin, 0.5 µg/mL 

hydrocortisone, 10 ng/mL Cholera Toxin. The migration assay was 

performed using 8.0µm pore size inserts in 24-well plates (Costar). 

Triplicates of 250.000 MCF10DCIS.com cells or 50.000 MCF10A cells in 

growth factors and serum free medium were seeded in the upper chamber, 

and complete medium for MCF10A or complete medium supplemented with 

50% FBS for MCF10DCIS.com cells were added as chemoattractant in the 

lower chamber (Liu, Wang et al. 2012). After 24 hours of incubation, 

migrated cells through inserts were fixed in 10% methanol and stained with 

0.5% Crystal Violet. Migration was quantified by imageJ analysis of cells 

migrated through transwell inserts (5 pictures/transwell) (Limame, Wouters et 

al. 2012). 

MMTV/NeuT cells were infected at high MOI with control shRNAs (LUC) and pooled 

shRNAs silencing CHD4 were used for: 

• Cell proliferation assay. 80.000 cells were plated in 6 well-plates in triplicate 

for 4 time points and counted every 48 hours. 

• Migration assay. Triplicates of 100.000 cells in growth factors and serum free 

medium were seeded in the upper chamber and complete medium 

supplemented with 50% FBS was used as chemoattractant. After 24 hours of 
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incubation, cell migration was quantified as described for MCF10DCIS.com 

and MCF10A cells. 

 

Western blot analysis. 500.000 to 1.000.000 MCF10DCIS.com, MCF10A, 

MMTV/NeuT and PDX cells were lysed in 50 to 100 µl of RIPA buffer (Tris-HCl 

50mM; NaCl 150mM; 1% NP-40; EDTA 1mM; 0.5% Sodium Deoxylcholate; 0.1% 

SDS) supplemented with protease inhibitors (Roche). 40 µg proteins were loaded 

on 5-15% gradient polyacrylamide SDS gels, and electrophoresis was performed 

at a constant current of 120 V for approximately 2 hours. Following SDS-PAGE 

electrophoresis, proteins were transferred to nitrocellulose membranes (Protan; 

Schleicher & Schuell) by electroblotting for 1.5 hours at 100 V for the detection of 

WDR5, or over night at 30V for the detection of BAZ1B, BRD4, CHD4 and BPTF. 

Subsequently, membranes were stained with Ponceau S to verify the efficiency of 

the transfer. Membranes were then blocked for 1 hour in blocking solution: 5% 

non-fat milk in TBS-T (Tris Buffered Saline, 0.1% Tween 20) and incubated 1 hour 

at room temperature with one of the following primary antibodies: anti-vinculin 

(1:10.000, Sigma), anti-BAZ1B (1:10.000, Abcam-ab51256), anti-BRD4 (1:5.000, 

Abcam-ab128874), anti-CHD4 (1:1.000, Abcam-ab70469), anti-WDR5 (1:1000, 

Cell Signalling-13105), anti-BPTF (1:5.000, Novus Bio-NB100-41418). The 

membranes were washed three times in TBS-T (10 minutes each) and incubated 

with appropriate secondary antibodies linked to horseradish peroxidase for 1 hour 

at room temperature. After three washes in TBS-T, the proteins were visualized 

using Clarity™ Western ECL Blotting Substrate (Biorad). 

 

gDNA extraction and sequencing of BRCA1, BRCA2 and p53. gDNA was 

extracted from MCF10DCIS.com cells using QUIAGEN DNA extraction kit. BRCA1, 
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BRCA2 and p53 genes were amplified using specific primers for every exon, 

covering the coding sequence from start to stop codon. The couples of primers 

were designed on intronic regions, just to include the splicing junctions. Every 

forward and reverse primer had also a 5' universal tail, a PE-21 and a M13rev 

sequence respectively. This strategy allowed the sequencing of all the different 

PCR fragments with only 2 sequencing primers. The primers were also designed 

with a similar melting temperature (Tm), so that all the different regions could be 

amplified at the same time in isothermal conditions, on Veriti Thermal Cycler 

(Thermo Fisher Scientific). The PCR reactions were set up using Biomek 3000 

(Beckman Coulter), after control and quantification by agarose gel, the reactions 

were purified from free PCR primers and dNTPs (Biomek FX-Barkman Coulter). 

The sequencing reactions were set up using BigDye v3.1 chemistry from Applyed 

Biosystems (Sanger method), purified from unincorporated terminators (Biomek FX-

Barkman Coulter), loaded into the capillaries of the 3730xl sequencer (Applyed 

Biosystems) and analysed with Mutation Surveyor v5.0.1 software (SoftGenetics). 

 

siRNA transfection. MCF10DCIS.com were plated in triplicate in 10 cm plates 

(for BrU analysis) or onto glass coverslips (pre-coated with 0.5% gelatin) in 6 well-

plates. After 24 hours, the transfection mix was prepared: 15pMol or 90 pMol (for 6 

well-plates and 10 cm plates, respectively) of siMax siRNA 21 mer (LUC, CHD4 1, 

CHD4 2 and pooled CHD4 1 and 2) were mixed with 2.5 µL per well or 15 µL per 

plate of ready-to-use Lipofectamine RNAiMAX reagent (Life Technologies, 13778-

075). After 15 minutes of incubation, the precipitate was distributed on 30% 

confluent exponentially growing cells. The medium was replaced 6 hours later with 

fresh medium.  
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Cell cycle analysis. 72 hours post transfection, 10 µM EdU was added to the 

culture medium. After 30 minutes cells were washed twice with PBS and fixed with 

4% paraformaldehyde for 20 minutes. Subsequently, cells were washed twice with 

PBS, permeabilized with 0.1% Triton-X100 and processed using the Click-iTTM 

EdU Imaging kit (Life Technologies) plus Pacific Blue azide according to the 

manufacturer’s instructions. After blocking with 5% BSA, cells were incubated for 1 

hour at room temperature with primary antibodies:  anti-p53 (1:100, Santa Cruz-

sc6243), anti-CHD4 (1:100 Sigma-HPA012008) and anti-p21 (1:100, Dako-

M7202). After washing 3 times with PBS, cells were incubated for 1 hour at room 

temperature with CW800-conjugated anti-biotin (1:100, Rockland, 600-132-098). 

Cells were washed 3 times and incubated for 1 hour at room temperature with the 

following secondary antibodies: anti-rabbit Alexa488 (1:100, Life Technologies) 

and anti-mouse Cy3 (1:100, Jackson Immuno-Research). Cells were washed 3 

times with PBS and fixed again with 4% paraformaldehyde for 5 minutes. After 3 

washes, cells were blocked with PBS containing 5% BSA and mouse IgG 

(Jackson Immuno-Research) for 30 minutes at room temperature. After 1 wash, 

cells were incubated for 1 hour with anti-ki67 Alexa647 conjugated (1:50, BD 

Pharmigen-558615). Cells were washed 3 times and DNA counterstained with 

DAPI. Slides were then mounted in Mowiol. Images were collected by BX61 fully 

motorized Olympus fluorescence microscope controlled by Skan^R software 

(version 2.209, Olympus). An oil immersion 60X 1.2 NA objective was employed 

for acquisition. Cell cycle statistical analysis was performed as described by Furia 

and colleagues (Furia, Pelicci et al. 2013). 
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FACS Analysis. 

Phenotypic characterization of MMTV/NeuT cells. Before plating the cells in 

culture (Day 0), after 2 and 7 days (Day 2 and Day 7) of culture, MMTV/NeuT 

single cells were stained for 1 hour at 4°C with antibodies for: 

- Lineage cocktail (Lin-): anti-CD45 (eBioscience, clone RA3-6B2); ant-

Ter119 (eBioscience, clone Ter119); anti-CD31 (eBioscience, clone 390); 

all PE-Cy7 conjugated (1:300). 

Subsequently, cells were washed, centrifuged and suspended in PBS. 

BrU content analysis. 72 hours post siRNAs transfection, MCF10DCIS.com cells 

were pulsed with 5 mM BrU (Santa Cruz) for 30 minutes at 37 °C. Subsequently, 

cells were harvested, washed in PBS and centrifuged at 1500 rpm for 5 minutes. 

Cell pellet was fixed in 70% ethanol for 30 minutes on ice, fixed cells were then 

washed in 1% BSA and centrifuged. Celle were suspended in 0.1% Triton-X100 

for 10 minutes at room temperature and then washed with 1% BSA. After 

centrifugation, cells were stained with anti-BrdU (1:5, BD Biosciences) and anti-

CHD4 (1:20, Sigma-HPA012008) for 1 hour at room temperature. Cells were then 

washed and centrifuged. Pellet cells were stained with secondary antibodies anti-

mouse Alexafluor488 (1:100, Life Technologies) and anti-rabbit Alexafluor647 

(1:100, Life Technologies). Cells were then washed and centrifuged. In the end, 

cells were incubated with propidum iodide (PI) solution (2.5µg/ml, Sigma) and 

RNaseA (0.25mg/ml, Sigma) over night at 4°C. 

For both assays, samples were acquired at FACS Canto II (BD bioscience) and 

analysed with FlowJo 9.3-2 analysis software. 

 

Immunofluorescence. MMTV/NeuT cells were plated in triplicate with their 

medium onto poly-lysinated coverslips, where they were let adhere for 1 hour (Day 
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0) or 2 and 7 days. Cells were then permeabilized for 10 minutes with 0.1% Triton-

X100 in PBS at room temperature, washed three times in PBS and blocked with 

5% BSA for 20 minutes. Staining with mouse anti-pan Cytokeratin (1:250, Abcam, 

clone C11) primary antibody was performed in a humid chamber for 1 hour at 

room temperature and followed by three washes in PBS. Cells were then stained 

with Alexafluor488 conjugated anti-mouse secondary antibody (1:100, Life 

Technologies) for 30 minutes at room temperature, washed three times in PBS, 

counterstained with DAPI and mounted with mowiol. Samples were analysed 

under an UpRight BX61 (Olympus) fluorescence microscope with a 20X objective 

(Olympus).  

 

Statistical Analysis. In vitro and in vivo data are presented as the mean ± s.d. 

(standard deviation). Statistical analyses were performed using a two-tailed 

Student’s t-test and one way ANOVA plus post hoc Dunnett’s test. Results from 

MMTV/NeuT transplantation assay were analysed with a Mann-Whitney U test.  
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3 Results 

 

Tumors show a very high degree of heterogeneity and plasticity, required to 

constantly adapt to the microenvironment in which cancer cells have to survive 

and proliferate. This process of continuous remodeling involves a coordinate 

reprogramming of the signaling pathways that in the end converge on chromatin 

remodelers. These proteins orchestrate transcriptional regulation, allowing cancer 

cells to switch from a normal to a tumoral phenotype and/or maintain the 

oncogenic phenotype (Rodriguez-Paredes and Esteller 2011). 

To understand the role of chromatin remodeler in breast cancer initiation and 

progression, we undertook an innovative approach, based on the use of shRNA 

dropout screens in vivo in two different models: 

ü a human breast cancer cell line (MCF10DCIS.com), that faithfully 

recapitulates in vivo breast cancer progression when xenografted in 

immunodeficient mice; 

ü a mouse GEM model (MMTV/NeuT mouse), that is equivalent to the human 

HER2+ breast subtype. 

We then validated our candidate hits in the same two models, as well as in a 

human patient-derived xenograft of a breast Luminal B, drug-resistant metastatic 

carcinoma. 
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3.1 In vivo and in vitro shRNA screen in a human breast 

cancer model 

 

In order to identify new targets crucial for breast cancer initiation and progression, 

we performed loss of function in vivo and in vitro shRNA screens of epigenetic 

modifiers in a human breast cancer model. We decided for a dual in vivo and in 

vitro approach, to understand which genes are contributing to the regulation of 

breast cancer growth only in vitro and which ones are instead regulating in vivo 

cancer progression. It has been previously shown that few cancer-associated 

genes are shared between in vivo and in vitro growth of lymphoma and melanoma 

cells, as well as breast cancer cells (Meacham, Ho et al. 2009, Possik, Muller et al. 

2014, Possemato, 2011 #161). We focused on epigenetic modifiers, because of 

their role in breast cancer development and also because they could represent 

optimal targets for the design of new drugs (Jovanovic, Ronneberg et al. 2010, 

Rodriguez-Paredes and Esteller 2011, Basse and Arock 2014). 

As first cancer cell model, we chose the MCF10DCIS.com cell line because it has 

been extensively characterized both in vitro and in vivo (Barnabas and Cohen 

2013) and already proved to be a feasible model for shRNA screening 

(Possemato, Marks et al. 2011). MCF10DCIS.com cells can mimic the three 

grades of patient breast cancer progression, being capable of generating in situ 

carcinoma, then shift to invasive carcinoma and, eventually, form metastases in 

vivo (Tait, Pauley et al. 2007, Barnabas and Cohen 2013). To confirm the 

tumorigenic ability of the MCF10DCIS.com cells under our experimental 

conditions, 1.000.000 cells were transplanted orthotopically in Nod/Scid mice. 

Tumors were collected four weeks later, and tumor sections were stained with the 

known breast cancer receptor markers (i.e. ER, PgR and HER2) (Shekhar, Kato et 
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al. 2013). As shown in Fig. 8A, MCF10DCIS.com tumors do not express any 

receptor, in line with the triple negative classification of these cells (Shekhar, Kato 

et al. 2013). The high rate of proliferation (Ki67 positivity) confirmed the 

aggressiveness of these cells [Fig 8A]. Positive controls for ER, PgR and HER2 

staining are shown [Fig. 8B,C]. 

 

	
  
Figure 8: Phenotypic characterization of MCF10DCIS.com tumors (four weeks xenograft). A) 

The cancer cells were ER and PgR negative and HER2 only slightly positive. 85% of the cells were 

Ki67 positive. B) Luminal B PDX tumors were used as ER and PgR positive control. C) HER2 PDX 

tumors was used as HER2 positive control. 

 

To investigate which epigenetic modifiers are crucial to breast tumorigenesis, two 

custom pooled shRNA libraries, targeting 118 (hEpi1) and 119 (hEpi2) epigenetic 

genes respectively, were purchased from Cellecta Inc. The epigenetic genes were 

classified according to their functions (methylation/demethylation, 

acetylation/deacetylation, transcriptional regulation, chromatin remodelling, DNA 

methylation, ubiquitination, chaperone activity and other few epi-genes relevant in 

cancer formation) [Fig 9]. In the barcoded libraries, ten shRNAs were used to 

silence each gene. The libraries, composed of 1204 (hEpi1) and 1192 shRNAs 

(hEpi2) including positive (Psma1, Rpl30) and negative (Luciferase) controls, are 
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engineered in the pRSI lentiviral vector. MCF10DCIS.com cells were infected at 

low MOI (MOI=0.2), so that each cell was infected with a single shRNA. Viral 

supernatant of the libraries obtained by transfection of 293T cells, were titered and 

cells transduced at approximately 20% of infection efficiency (as necessary to 

have only one shRNA/cell). 

 

 
Figure 9: Epigenetic libraries composition. hEpi1 and hEpi2 libraries are composed of genes 

with different epigenetic functions, as reported in the pie charts. 

	
  

The number of viral integrant in the transduced cells was calculated by quantitative 

PCR (qPCR) using a vector that contains the human genomic sequence of the 

albumin gene (Alb) and a viral sequence (GAG) (pAlbGAG), as a reference to 

score the number of viral particles in the genome of every cell [Fig. 10A]. With this 

technique we calculated the number of molecules of GAG in the genome of the 

transduced cells comparing them with the number of molecules of Alb (present in 

the genome in 2 copies).  To calculate the number of molecules, a standard curve 

with a lentiviral vector carrying Alb was applied. As shown in Figure 10A, the ratio 

between the number of GAG and Alb molecules of approximately 0.5 indicates 

one viral integrant per cell. The consistency of this method was confirmed 

comparing the number of insertion per cell (IS) calculated by qPCR to the number 

of viral integrant that were present in isolated clones of a melanoma cell line (A375) 
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detected by Southern Blot analysis and used as a proof of concept [Fig. 10B]. With 

the qPCR system we were able to calculate the number of integrant present in 

MCF10DCIC.com infected cells, thus demonstrating that the cells were effectively 

transduced with one viral integrant per cell [Fig. 10C]. 

 

 

	
  
Figure 10: qPCR system for the calculation of the viral integrant per cell. A) Standard curve 

produced by the amplification of known numbers of molecules of Alb and GAG of a lentiviral vector 

(pAlbGAG). Threshold cycles of Alb (CTAlb) and GAG (CTGAG) of infected cells were used to 

calculate the number of molecules of Alb and GAG (MNAlb and MNGAG). Once obtained these data, 

to determine the number of insertion per cell (IS) we used this formula: IS=(MNGAG/MNAlb)/2. B) 

Southern Blot to determine the number of viral integrant in A375 infected clones (1-7) and A375 not 

infected (NI) as negative control. The numbers of IS calculated with qPCR of the same samples 

are in green. C) Number of IS of MCF10DCIS.com infected with both epigenetic libraries calculated 

by qPCR. 

 

Upon infection, MCF10DCIS.com cells were selected with puromycin and at the 

end of the selection, transduced cells were either orthotopically injected into the 

mammary gland of immunodeficient mice (in vivo screen) or passaged in vitro (in 

vitro screen) [Fig. 11]. For the in vivo screen, 4.800.000 transduced cells were 

transplanted in four Nod/Scid mice (1.200.000 cells/animal), in order to have each 

single shRNA represented in approximately 1000 cells, as previously described 

(Possemato, Marks et al. 2011), while 1.200.000 transduced cells were plated in 

triplicate and grown in culture for the in vitro screen. Tumors were harvested after 
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28 days, as previously reported (Possemato, Marks et al. 2011), while cultured 

cells were passaged for 21 days in order to reach 9 cell replications, as it was 

shown in an analogous experimental setting (Nolan-Stevaux, Tedesco et al. 2013). 

After in vitro/in vivo expansion, gDNA was extracted from tumors, cultured cells 

and control population (reference) and analyzed by NGS to assess the frequency 

of each shRNA constructs in the population. The barcodes from gDNAs were 

amplified with two rounds of PCR: in the second PCR we employed a set of 

primers carrying the Illumina adapters (P5 and P7) in order to facilitate the 

quantification by NGS of the barcodes. The reads generated by the sequencing 

process were aligned to corresponding barcodes sequences in order to determine 

the amount of reads of each shRNA. 

 

	
  
Figure 11: Experimental approach of the in vivo and in vitro shRNA screen in 

MCF10DCIS.com cells. The genetic screen was performed in duplicate for the in vitro assay and 

in quadruplicate for the in vivo assay. Biological replicates are required to give an evaluation of the 

experimental reproducibility, and during the phase of HITs identifications, to lower the false-positive 

rate (by defining as candidate hits those that have been isolated in several screens) and to 

increase the reliability of the identified target genes. 
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3.1.1 Generation of a statistical model to represent a complex 

shRNA library in MCF10DCIS.com cells 

 

Counting of mapped reads of all cell populations screened in vitro showed 100% 

recovery of the library and no shRNA under-represented (read count less than 10). 

Moreover, the relative frequency of the shRNAs (i.e. number of reads of each 

shRNA divided by the total number of reads) highly correlated between replicates 

(Pearson correlation = 0.99), indicating a high in vitro experimental reproducibility. 

In vivo shRNA screen gave similar results, as almost all shRNAs that were present 

in the library were recovered in the tumors (around 98% recovery, with less than 

1.5% of shRNAs with reads count <10) but, unlike the in vitro assay, the relative 

frequency of the shRNAs in the experimental replicates showed a very low 

correlation (Pearson correlation ranging from 0.11 to 0.38). These data indicate 

that in this experimental setting, the in vivo shRNA screen was not sufficiently 

reproducible to allow the calculation of the depleted hits. Moreover, these results 

suggested that the in vivo clonal expansion of MCF10DCIS.com cells was not 

homogeneous enough to support the molecular complexity of the library after in 

vivo transplantation. Because of the high heterogeneity developed during in vivo 

growth, the library cannot be efficiently analysed in a single tumor. The biological 

variability might therefore be reduced by increasing the number of analysed 

tumors. 

To analyse the screens, we needed to calculate the number of tumors necessary 

to represent all the shRNAs contained in our libraries. To do so, we needed to 

understand if the potentially depleted shRNAs were effectively depleted in our 

system, thus excluding depletion due to stochastic reasons (i.e. library randomly 

under-represented in one or more tumors).  
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First of all, we calculated the relative frequency of each shRNA and we analysed 

the log2 fold change distribution between the shRNA frequency in each of the four 

tumors and in the reference cells. We calculated the z-scores of the log2 fold 

change distribution and then the average of the ten shRNAs z-score values, 

resulting in a unique mean z-score value for each gene and for each tumor. The z-

score indicates how many standard deviations an element is from the mean, thus 

how far away a particular score is from average. For each tumor, the genes whose 

mean z-score value scored in the first quartile were then considered potentially 

depleted. All the lists of depleted genes relative to each single tumor were 

composed of 30/31 genes (approximately a quarter of the total genes composing 

the library). 

We reasoned that, if the shRNA depletion was due to biological reason (i.e. 

shRNA effect) and not to stochastic reason (i.e. library under-representation), this 

depletion should be observed in all tumors. Since only a fraction of scored 

depleted genes was in common among the four lists of the same library (12 and 

16 genes in hEpi1 and hEpi2 respectively), we could not rule out the possibility 

that a single gene scored depleted just for a stochastic effect (false positive). To 

verify whether the four tumors were able to represent the entire library, we 

generated different lists of potentially depleted genes for all the possible 

combinations of two, three or four tumors (six, four and one combinations 

respectively).  

We then generated a statistical model using the logistic sigmoid function, applied 

to the lists generated by single tumors and all their possible combinations. This 

function has a common “S” shape and it is usually used to describe the growth of a 

population, with an initial stage where growth is approximately exponential, 

followed by a slow down of the growth when saturation begins, ending with a block 
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of the growth where the curve reaches the asymptote. The formula to calculate 

this function is: y= a/1+be-cx where a is the curve's maximum value, b is the 

coefficient related to the value y (0), e is the Euler’s number (2.718) and c is the 

growth rate. To meet the requirements of the statistical model, starting from the 

number of scored depleted genes, we calculated the percentage of not depleted 

(or represented) genes. We then plotted these percentages in a curve according to 

the number of tumors considered (independent variable) [Fig. 12]. 

 

                
Figure 12: Logistic sigmoid function used to evaluate the represented genes in both 
libraries. The graphs illustrate the percentage of represented or “not depleted” genes when 1, 2, 3, 

4 tumors out of 4 are taken into account (see text for further explanation). The experimental curves 

approximate a logistic sigmoid function (red line, r as reported). Number of represented genes and 

possible combinations are reported within the graphs. Blue dotted lines represent the maximum 

value of the logistic curves (percentages reported in blue). 
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According to this model, the percentage of “not depleted” genes is a dependent 

variable tending to a maximum constant value. The experimental curve obtained 

plotting these data was almost perfectly approximated (R=0.99) by a sigmoidal 

curve, whose maximum (of not depleted genes) was 93.0% and 89.2% for hEpi1 

and hEpi2 respectively, reached by pooling four tumors together. These results 

revealed that by clustering four tumors, we reached the theoretical minimum 

number of “depleted” (meaning the not found) genes [Fig 13]. 

 

                  
Figure 13: Variation of the number of “depleted” genes estimated according to the 

sigmoidal model. The graphs illustrate the number of “depleted” (or not found) genes always 

found in the first quartile when 1, 2, 3, 4 tumors out of 4 are taken into account (as reported in x 

axis) for hEpi1 and hEpi2. Red triangles represented the inferred numbers and the blue squares 

showed the experimental “depleted” genes. Numbers of depleted genes and possible combinations 

are reported within the graphs. 
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In order to measure the contribute of stochastic events to this sigmoidal model, we 

calculated the number of “expected depleted genes” for a combination of two, 

three or four tumors according to a bimodal probability distribution [Fig.14].  

 

 
Figure 14: Bimodal probability distribution for both libraries. Number of tumors showing gene 

depletion (x) vs number of genes expected or observed as depleted 0-4 times (y) in the condition of 

analysing four tumors. Red bars represent the observed values, blue bars represents the expected 

values, according to a binomial distribution for a random probability of finding a gene depleted in a 

single tumor equal to 0.25 (first quartile). “0” accounts for genes never resulting as depleted in the 

four tumors considered, “4” accounts for genes always resulting as depleted in the four tumors 

considered. 

 

If we consider the z-score distribution without the biological effect of the shRNAs, 

thus z-scores randomly distributed, the probability that a particular gene falls in the 

first quartile is 25%. Therefore, the random quote of “always depleted” genes in a 

pair of tumors would be 0.252 (0.0625) of the total, in a set of three tumors 0.253 

(0.016), in a set of four tumors 0.254 (0.004), corresponding respectively to 8, 2 

and <0.5 (false positive) genes, in both libraries [Table 5].  
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Table 5: Estimation of false positive and true positive depleted genes according to the 
bimodal distribution for both libraries.   

 

This analysis revealed that, by clustering four tumors, we were in the statistical 

condition to represent the entire library, avoiding stochastic depletion (false 

positive depleted genes). 

To verify that the sequencing of a cluster of four tumors pooled together could 

equally represent the four tumors sequenced as individual entities, we PCR 

amplified the gDNAs of the four single tumors together, and we sequenced the two 

pools, one per library. We then calculated the Pearson correlation between the 

average of the four tumors and its corresponding pool. The Pearson correlation 

was very high (R=0.93, p<0.0001) [Fig. 15] for both libraries, meaning that the 

pooled samples could, as well, represent the entire library. 

 

 
Figure 15: Comparison between pooled tumors and four single tumors. Scatter plot 

comparing shRNA z-score of the log2 FC of the pooled tumors (y) vs the average of the shRNA z-

score of the log2 FC of the four single tumors (x) for both libraries (Pearson correlations, R, as 

reported). 
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3.1.2 Analysis of the human in vivo and in vitro screens 

 

Since a pool of four tumors was sufficient to represent the entire library in our 

model system, we added two more pooled samples (4 tumors each) in order to 

have a biological triplicate. This would enhance the robustness of the screen 

analysis. For this analysis, we first calculated the relative frequency of each 

shRNA and we analysed the log2 fold change distribution between the shRNA 

frequencies of tumors and reference cells. We calculated the z-score of the log2 

fold change distribution [Fig. 16A,B] and then the Pearson correlations among the 

three pools of each library, that ranged between R= 0.55 and R= 0.69 [Fig. 

16C,D].  

 

	
  
Figure 16: Analysis of the in vivo screens. (A-B) z-score of the log2 FC distribution curve of the 

three pooled samples for hEpi1 (A) and hEpi2 (B). (C-D) Scatter plot comparing shRNA z-score of 

the log2 FC of pool1 (y) vs pool2 (x) for hEpi1 (C) and pool3 (y) vs pool2 (x) for hEpi2 (D) (Pearson 

correlations, R, are reported). 
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Successively, we calculated the average, among the three pools, of each shRNA 

z-score value, resulting in a unique z-score value for any single shRNA. As a cut-

off threshold to identify the depleted genes, we chose the median of the z-score 

distribution, thus considering depleted the shRNAs whose z-score value scored 

below the median. To generate the list of candidate hits, we imposed a further cut-

off threshold. If we consider a single barcode as depleted when found below the 

median of the Z-score distribution, we may calculate a random probability to find a 

gene depleted 0 to 10 times (10 is the number of shRNAs per gene) by obtaining 

an hypergeometric distribution with a probability of a single event (a single 

barcode depleted) p=0.5. The hypergeometric distribution describe the probability 

to find a gene depleted 0 times, 1 time, 2 times, to 10 times by chance on a set of 

10 shRNAs per gene. Based on these probabilities, we inferred the number of 

genes randomly expected, for each number (0 to 10) of “depleted” shRNAs. This 

estimate has been compared with the observed number of genes per condition in 

both libraries. Histograms in figure 17 show that observed depleted genes 

overcome the randomly expected genes at a number of 7 or 8 depleted barcodes.  

               

	
  
Figure 17: Hypergeometric probability distribution for both libraries. Number of expected 

genes showing a different number of barcodes depleted by chance (blue bars) vs number of 

observed genes showing the same number of barcodes depletion (red bars) in the two libraries. 
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To uniform the procedure of the analyses we decided to set the cut off threshold 

selecting those genes for whom at least 70% of the targeting shRNAs (i.e. 7 out of 

10) were depleted. Notably, the positive control genes included in the epigenetic 

library resulted as the top hit scorers, whereas the neutral controls were not 

depleted. 	
  

When the same analysis was applied to the in vitro screen, the Pearson 

correlations for both libraries were close to 1, suggesting an almost identity of the 

cells grown in vitro with the reference cells [Fig 18].  

 

	
  
Figure 18: Comparison between two in vitro samples. Scatter plot comparing shRNA z-score of 

the log2 FC of sample 2 (y) vs sample 1 (x) for both libraries (Pearson correlations, R, as reported). 

 

The resulting lists of depleted genes were composed of 22 and 28 genes (in vivo 

and in vitro, respectively, for hEpi1), 13 of which in common, and 29 and 19 genes 

(in vivo and in vitro, respectively, for hEpi2), 17 of which in common [Fig. 19A,B]. 

The number of total genes depleted in the in vitro and in vivo hEpi1 and hEpi2 

screens were classified according to their functions [Fig. 19C]. The classification of 

the depleted targets roughly reflects their distribution among the different 

functional classes of epigenetic modifiers included in the libraries. As we can 

observe, members of the major epigenetic complexes were retrieved (i.e. NuRD, 
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COMPASS, NURF, SWI/SNF and WICH), suggesting that a variety of pathways 

are implicated in the formation and development of mammary tumors.  

          

	
  
Figure 19: Candidate hits from hEPI1 and hEPI2 libraries screens in MCF10DCIS.com cells. 

A) Venn Diagrams indicating the number of depleted genes scoring in the in vivo and in vitro 

screens with the number of overlapping genes. B) Lists of depleted targets scored in the in vivo 

and in vitro screens. Central columns indicate the common genes. C) Pie charts representing the 

different epigenetic functions and their relative representation within the libraries, of the depleted 

genes scored in the in vivo and in vitro screens.   
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3.2 Validation of the epigenetic shRNA screens 

 

To validate our screenings we selected five candidate hits among the genes that 

were concordantly depleted in the in vivo and in vitro screens, in order to 

investigate the molecular pathways underlying tumorigenesis in vivo and study the 

mechanisms of activation of the specific genes in vitro. We selected five targets, 

namely BAZ1B (Bromodomain Adjacent to Zinc finger domain 1B), BRD4 

(Bromodomain containing 4), WDR5 (WD Repeat domain 5), BPTF (Bromodomain 

PHD finger Transcription Factor) and CHD4 (Chromodomain Helicase DNA 

binding 4).  

BAZ1B, an atypical tyrosine kinase, is a member of the bromodomain containing 

family and is part of the WICH complex, involved in chromatin-dependent 

regulation of transcription and DNA damage response (Xiao, Li et al. 2009, Barnett 

and Krebs 2011). BAZ1B potentiates the growth inhibitory effect of anti-cancer 

drugs in haematopoietic malignancies (Zhu, Tiedemann et al. 2011, Zhang, Lu et 

al. 2012).  

BRD4, belonging to the BET (bromodomain and extraterminal domain) family, 

contains two tandem bromodomains through which it recruits transcriptional 

regulatory complexes to acetylated chromatin (Filippakopoulos, Picaud et al. 

2012). Its direct role in tumorigenesis has been recently demonstrated in ovarian 

cancer (Baratta, Schinzel et al. 2015),	
   in hematopoietic malignancies (Dawson, 

Prinjha et al. 2011, Delmore, Issa et al. 2011, Zuber, Shi et al. 2011) and other 

solid tumors such as melanoma and lung cancer (Lockwood, Zejnullahu et al. 

2012, Segura, Fontanals-Cirera et al. 2013), while its involvement in breast cancer 

is still controversial. Very recently it has been shown that the pharmacologic 

inhibition of the Twist-BRD4 association significantly reduces tumorigenicity of 
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triple negative breast carcinomas, suggesting that the Twist-BRD4 interaction is 

critical for breast cancer progression (Shi, Wang et al. 2014). BRD4 encodes two 

isoforms with opposite effect on breast cancer progression, a pro-metastatic short, 

nuclear membrane associated isoform, and a long isoform that blocks metastases 

formation without interfering with tumor growth, associated with the nuclear matrix 

(Alsarraj, Faraji et al. 2013).  

WDR5, the core subunit of the human COMPASS complex, is involved in 

methylation and dimethylation at Lys-4 of histone H3 (H3K4) (Wysocka, Swigut et 

al. 2005). In bladder cancer WDR5 promotes proliferation, self-renewal and 

chemoresistance to cisplatin in vitro, and tumor growth in vivo (Chen, Xie et al. 

2015). Furthermore, high levels of WDR5 expression correlate with poor survival in 

these tumors (Chen, Xie et al. 2015). In ErbB2-positive breast cancer cells WDR5 

silencing decreases ErbB2 overexpression and inhibits cell growth, cooperating 

with Trastuzumab or chemotherapy (Mungamuri, Murk et al. 2013).  

BPTF, the largest subunit of the nucleosome remodeling factor (NURF) complex, 

regulates nucleosome occupancy and its binding to chromatin is regulated by 

WDR5 (Wysocka, Swigut et al. 2006, Qiu, Song et al. 2015). Furthermore, it has 

recently shown that BPTF has an oncogenic effect in melanoma, where its 

targeting has been proposed as a novel therapeutic strategy for BRAF-mutated 

melanomas in combination with BRAF inhibitors (Dar, Nosrati et al. 2015).	
  	
  

CHD4 has been extensively described in the Introduction (see Introduction 1.2.1). 
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3.2.1 In vivo validation of the shRNA screens 

 

To validate our screenings in vivo, the five genes were individually targeted with 

two shRNAs (shRNA1 and 2), chosen among the seven depleted ones. In order to 

maximize the number of cells infected, MCF10DCIS.com cells were infected at 

high MOI (=3) with pRSI vectors expressing the control shRNAs (LUC, luciferase 

as neutral control) and a pool of the two shRNAs to target each candidate hits. As 

shown by western blotting analysis, all five targets were efficiently silenced in 

breast cancer cells [Fig. 20A].  

 

	
  
Figure 20: In vivo validation of the shRNAs screens. MCF10DCIS.com cells infected with 

shRNAs targeting five selected genes were transplanted into NOD/SCID mice. A) Western blot 

analysis to evaluate the protein level after knockdown of each target gene. Anti-vinculin was used 

as loading control. B) Pictures of the tumors formed 28 days after transplantation. C) The analysis 

of the tumor volume was reported for each hit. Values (mean±SD) were expressed as ratio with 

respect to control LUC (One way ANOVA plus post hoc Dunnett’s test ** p<0.01, *** p<0.001). 

 



	
   83	
  

At the end of puromycin selection, 200.000 transduced cells were transplanted 

orthotopically in NOD/SCID mice (five mice/target). As for the epigenetic screen, 

tumors were harvested after 28 days and tumor volume measured [Fig. 20B,C].  

Remarkably, we observed a significant reduction in the dimension of the tumors 

obtained upon injection of MCF10DCIS.com cells silenced for each target gene, 

compared to control LUC tumors (shBAZ1B= 44%, shBRD4= 74%, shCHD4= 

90%, shWDR5= 70%, shBPTF= 86% tumor size reduction).  

Altogether these results let us conclude that we successfully validated the in vivo 

screen, suggesting an oncogenic role for BAZ1B, BRD4, CHD4, WDR5 and BPTF 

in breast cancer progression.  

 

 

3.2.2 In vitro validation of the shRNA screens 

 

In parallel, we validated the five targets in vitro. MCF10DCIS.com cells were 

infected at high MOI with pRSI vectors containing control shRNAs (LUC) and the 

specific shRNAs targeting the five hits. Silencing efficacy was evaluated at protein 

level, demonstrating an effective knockdown of the genes upon interference with a 

pool of two shRNAs/gene [Fig. 21A] and also with two single shRNAs for some of 

the candidate hits (i.e. BAZ1B and CHD4) [Fig. 21B]. To establish if the 

knockdown of the five candidates could influence cell growth in vitro, 

MCF10DCIS.com cells were plated in culture and cell proliferation was assessed 

with an ATP-based assay (CellTiterGlo) [Fig. 22]. 
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Figure 21: Western blot analysis to evaluate silencing efficiency of MCF10DCIS.com 

transduced with candidate hits. Breast cancer cells were infected with LUC and a pool of the two 

shRNAs/gene (A) or two single shRNAs/gene (B). Western blot analysis was performed to 

evaluate the protein level after knockdown of each target gene. Anti-vinculin was used as a loading 

control.  

 

Notably, silencing of the candidate genes significantly diminished cell proliferation 

of MCF10DCIS.com cells compared to control LUC (shBAZ1B= 36%, shBRD4= 

63%, shCHD4= 55%, shWDR5= 69%, shBPTF= 52% reduction of cell 

proliferation). 

 

	
  
Figure 22: Proliferation assay of MCF10DCIS.com transduced cells. MCF10DCIS.com cells 

expressing a pool of two shRNAs targeting the reported genes were used for ATP-based assay. 

Cell proliferation were measured at time of plating (day 0) and every 24 hours for three days (day 
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1, 2, 3). Experiment performed in biological and technical triplicate. Values (mean±SD) were 

expressed as ratio with respect to control LUC (One way ANOVA plus post hoc Dunnett’s test *** 

p<0.001). 

 

To further investigate the role of these genes in cell survival and colony formation 

ability in vitro, a colony-forming assay was carried out [Fig. 23]. A significant 

decrease of the number of MCF10DCIS.com colonies was shown when the five 

targets were silenced (shBAZ1B= 62%, shBRD4= 85%, shCHD4= 56%, 

shWDR5= 80%, shBPTF= 90% reduction of colony formation). 

These data indicate that the selected genes influence the ability of breast cancer 

cells to survive and then expand in a clonal manner.  

 

	
  
Figure 23: Colony formation assay of MCF10DCIS.com transduced cells. MCF10DCIS.com 

cells expressing a pool of two shRNAs targeting the reported genes and the control LUC were 

utilized for colony formation assay. Experiment performed in biological and technical triplicate. 

Values (mean±SD) were expressed as ratio with respect to control LUC (One way ANOVA plus 

post hoc Dunnett’s test *** p<0.001). 

 

Furthermore, we investigated if the five target genes can alter the migratory 

capability of the cells, an important feature of breast cancer cells. As shown in 

figure 24, the silencing of all candidates caused the loss of the ability of 

MCF10DCIS.com cells to migrate in vitro (shBAZ1B = 57%, shBRD4 = 64%, 
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shCHD4 = 65%, shWDR5 = 83%, shBPTF = 88% reduction of cell migration).  

Taken together these data prompted us to conclude that we successfully validated 

the screen in vitro. Furthermore, we demonstrated that BAZ1B, BRD4, CHD4, 

WDR5 and BPTF, though to different extent, promote breast cancer cell 

proliferation and migration in vitro.  

 

	
  
Figure 24: Migration assay of MCF10DCIS.com transduced cells. MCF10DCIS.com cells 

expressing a pool of two shRNAs targeting the reported genes and the control LUC were used for 

migration assay. Experiment performed in biological and technical triplicate. Values (mean±SD) 

were expressed as ratio with respect to control LUC (One way ANOVA plus post hoc Dunnett’s test 

*** p<0.001). 

 

 

 

3.3 Investigating the effect of validated targets in a non-

cancerous context 

 

We have shown that our five validated hits play an essential role in promoting 

breast cancer progression in vivo and in vitro. For this reason it would be of utmost 

importance to design specific drugs that could eventually target these genes and 
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offer new therapeutic options to patients. To make sure that the specific silencing 

of BAZ1B, BRD4, CHD4, WDR5 and BPTF does not affect the proliferation and 

migration of the normal counterpart of breast cancer cells, we performed the same 

experiments in the MCF10A normal mammary epithelial cells. 

 

 

3.3.1 Evaluating the impact of validated genes on proliferation 

and colony formation of MCF10A cells 

 

We first examined the effect of the silencing of the five genes on the proliferative 

capabilities of MCF10A cells. Cells were infected at high MOI with pRSI vectors 

expressing the pooled shRNAs targeting the five genes and the control shRNA 

(LUC). Silencing was very efficient in mammary epithelial cells, as shown by 

western blotting analysis [Fig. 25].  

 

	
  
Figure 25: Western blot analysis to evaluate silencing efficiency of MCF10A transduced with 

candidate hits. Mammary epithelial cells were transduced with LUC and a pool of two shRNAs 

silencing the five indicated genes. Western blot analysis was performed to evaluate the protein 

level after knockdown of each target gene. Anti-vinculin was used as a loading control. 

 

After puromycin selection, the proliferation of MCF10A transduced cells was 

assessed using ATP-based assay (CellTiterGlo) [Fig. 26]. 



	
   88	
  

As shown in figure 26, BRD4, WDR5 and BPTF silencing partially decreased 

mammary epithelial cell proliferation (43% in shBRD4, 39% in shWDR5 and 32% 

in shBPTF cells). CHD4 knockdown slightly influenced MCF10A cell growth and 

the loss of BAZ1B did not have any statistically relevant effect on MCF10A cell 

proliferation. These data suggest that these five genes have little impact on normal 

mammary cell growth.  

 

	
  
Figure 26: Proliferation assay of MCF10A transduced cells. MCF10a cells transduced with LUC 

and a pool of two shRNAs silencing the five indicated genes were evaluated for cell growth. Cell 

proliferation were measured when the cells were plated (0) and every 24 hours for three days (1, 2, 

3). Experiment performed in biological duplicate and technical triplicate. Values (mean±SD) were 

expressed as ratio with respect to control LUC (One way ANOVA plus post hoc Dunnett’s test 

*p<0.05, *** p<0.001).  
 

 

To further investigate the role of these genes in MCF10A, a colony formation 

assay was performed [Fig. 27]. BAZ1B, CHD4 and BPTF did not impair the clonal 

behaviour of mammary cells, while the silencing of WDR5 and BRD4 affected the 

number of MCF10A colonies (62% reduction in shWDR5 and 72% in shBRD4 

cells). However, the inhibitory effect of the silencing of WDR5 and BRD4 in 
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MCF10A colony formation was lower than in MCF10DCIS.com cells (80% 

reduction in shWDR5 and 85% in shBRD4 cells). Remarkably, the knock down of 

BAZ1B, CHD4 and BPTF did not influence the ability of mammary epithelial cells 

to survive and then expand in a clonal manner.  

 

	
  
Figure 27: Colony formation assay of MCF10A transduced cells. MCF10A cells transduced 

with LUC and a pool of two shRNAs silencing the five indicated genes were plated for colony 

formation assay. Experiment performed in biological duplicate and technical triplicate. Values 

(mean±SD) were expressed as ratio with respect to control LUC (One way ANOVA plus post hoc 

Dunnett’s test ** p<0.01, *** p<0.001). 

 

 

3.3.2 Silencing of the candidate hits does not affect cell migration 

of MCF10A cells 

 

In parallel to cell proliferation and colony formation assays, we investigated if the 

validated genes can alter the migratory ability of normal mammary epithelial cells. 

MCF10A cells, infected at high MOI with the five hits shRNAs and the control LUC, 

were subjected to a migration assay [Fig. 28]. Intriguingly, MCF10A cells silenced 

for BAZ1B, BRD4, CHD4, WDR5 and BPTF did not loose their ability to migrate in 
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vitro.  

Taken together, these results suggested that none of the validated hits affect the 

migration of non-cancerous cells. We have previously shown in MCF10DCIS.com 

cells that the migratory abilities of the cells parallel their capacity to grow and form 

tumors in vivo. It is therefore particularly relevant to find that MCF10A cells 

silenced for BAZ1B, BRD4, CHD4, WDR5 and BPTF do not modify their migration 

in vitro, as they do not form tumors in vivo. These data suggest that the targeting 

of the five genes should not affect normal cell growth in the tissues.  

 

 
Figure 28: Migration assay of MCF10A transduced cells. MCF10A cells transduced with LUC 

and a pool of two shRNAs silencing the five indicated genes were investigated for migration 

capability. Experiment performed in biological duplicate and technical triplicate. Values (mean±SD) 

were expressed as ratio with respect to control LUC One way ANOVA plus post hoc Dunnett’s 

test). 
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3.4 Epigenetic in vivo shRNA screening in the 

MMTV/NeuT transgenic model 

	
  

To investigate which are the critical determinants of breast tumorigenesis in an 

immune-competent setting to then compare the human and murine candidate hits, 

we performed an analogous RNAi screening using a breast cancer transgenic 

mouse model. The model we used for our screening purpose was the 

MMTV/NeuT transgenic mouse. We chose this model because closely reflects 

some features of the aggressive human G3 breast cancer and of the human HER2 

positive tumors (Cardiff and Muller 1993, Pece, Tosoni et al. 2010). Furthermore, it 

was previously shown in our laboratory that cancer stem cells from tumors of the 

MMTV/NeuT model had an increased self-renewal frequency compared to normal 

stem cells in the mammary gland (Cicalese, Bonizzi et al. 2009). The number of 

stem cells that are capable of initiating the tumor influences the feasibility of the 

screening, being a critical factor of in vivo tumor growth. 

 

 

3.4.1 Characterization of the MMTV/NeuT tumors 

	
  

We have first characterized the population of cells isolated from the MMTV/NeuT 

tumors. We have performed a phenotypic analysis of the MMTV/NeuT tumors 

cultured in vitro at different time points using an anti-pan Cytokeratin antibody to 

detect epithelial cells (panCK).  
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Figure 29: Phenotypic characterization of MMTV-NeuT cells. A) Before plating the cells in 

culture (Day 0) and after two and seven days of culture (Day 2 and Day 7), cells were fixed and 

analysed by immunofluorescence for pancytokeratins. B) At the same time points, the cells were 

stained with antibodies against CD31, CD45, Ter119 and analysed by flow cytometry 

	
  

As shown in figure 29A, just before plating the cells in culture (Day 0), 61% of the 

MMTV/NeuT cells present in the tumor showed epithelial markers, while after two 

and seven days of culture more that 90% of adherent cells were epithelial in origin. 

To further characterize the MMTV/NeuT population we stained the cells with a 

cocktail of antibodies recognizing endothelial and hematopoietic markers (lineage 

markers: CD31, CD45, Ter119) at the same time points [Fig 29B]. Concordantly, 

at the first time point 72% of cells were lineage negative and, upon plating in 

culture, this percentage increased until it reached almost 100% (Day 7).  

Thus, the presence of multiple populations of cells suggests that the heterogeneity 

of the tumor is preserved after dissociation of the tissue. Only the epithelial cells, 

though, are maintained in culture, while the mouse stromal cells contained in the 

original tumor are progressively lost over time.  

One of the most critical steps in the RNAi screening protocol is to have enough 

TICs in the starting cancer cell population to represent the entire library. The 
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previously published TIC frequency of uncultured MMTV/NeuT cells was 

approximately 1:3000 (Cicalese, Bonizzi et al. 2009), a frequency that does not 

enable RNAi screens with complex libraries. We have used a different protocol of 

cell isolation (Stem Cell Technology protocol), which required an enzymatic 

digestion to dissociate the tumor tissue into single cells. We infected and selected 

the cells with an empty vector in order to mimic the screen setting. Extreme 

limiting dilution assays (ELDA) have then been performed to calculate the TIC 

frequency in our cell populations. Scalar doses (50.000, 10.000, 1.000 and 100) of 

transduced cells were injected in the fat pad of syngeneic animals and tumor 

engraftment assessed by caliper measurements at weekly intervals [Table 6].  

 

                        	
  
Table 6 ELDA of transduced MMTV-NeuT cells. Scalar doses of cells were injected into 

syngeneic mice at the indicated number (Injected Cells). Cells were injected in the mouse 

mammary fat pad, one injection/mouse. Total number of tumors formed over the number of 

transplanted mice was reported. TIC frequency (upper and lower limits) was calculated using ELDA 

software. 

 

As few as 100 cells were capable of giving rise to tumors in approximately 30% of 

the injected animals, while more than 80% of the animals developed tumors when 

transplanted with 1.000 cells. TIC frequency, calculated using the ELDA software 
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(Hu and Smyth 2009), was 1:448, suggesting that with this isolation protocol we 

could extract an increased number of TIC from the tumor tissue. 

 

 

3.4.2 In vivo shRNA screening and analysis in the mouse 

MMTV/NeuT system 	
  

 

To perform the in vivo shRNA screen in the transgenic mouse model of breast 

cancer, we adapted the experimental protocol of the human screen [Fig. 30] and 

we used the identical murine counterpart of the human epigenetic libraries (mEpi1 

and mEpi2). 

 

	
  
Figure 30: Experimental approach of the epigenetic in vivo RNAi screen using the 

MMTV/NeuT transgenic mouse model. 

 

Spontaneously developing MMTV/NeuT tumors were first enzymatically digested 

and single cells plated in culture. After 2 days, cells were infected with either 

mEpi1 and mEpi2 libraries at low MOI. In order to transduce each cancer cell with 

a single hairpin, we need to transduce them at approximately 20% of infection 

efficiency. Therefore, we measured the viral titer of the shRNA libraries, and we 

transduced MMTV/NeuT cells at 17% and 20% of infection efficiency with mEPI1 

and mEPI2 respectively [Fig.31]. The number of viral insertions per cell was 

confirmed by qPCR, making use of a vector analogous to pAlbGAG, where the 
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human albumin gene has been substituted with the murine beta-glucuronidase 

gene (GUSB). We compared the expression of GUSB in the infected cells with that 

of a vector containing both GAG and GUSB.  

 

                   	
  
Figure 31: Infection efficiency of MMTV/NeuT cells infected with mEPI1 and mEPI2 

epigenetic libraries. The infection rate was established by flow cytometry through the fluorescent 

marker (GFP) inserted in the lentiviral vector. 

 

At the end of the puromycin selection, transduced cells were orthotopically injected 

into the mammary gland of syngeneic mice (FVB animals) and reference cells 

collected as control cell population. Due to a high TIC frequency (1:448) of 

MMTV/NeuT cells, to represent the entire library, we transplanted 22 animals (for 

each library) with 1.200.000 cells per mice, so to have each single shRNA 

represented in approximately 1000 cells. Mice were monitored for tumor growth by 

caliper measurements at weekly intervals. When tumors reached a volume of 

approximately 1 cm3, they were harvested and gDNA extracted from tumors and 

control cell population (reference cells). The barcodes were amplified by PCR and 

relative amount of barcodes determined by NGS. The reads generated by the 

sequencing process were aligned to the barcodes sequences, as previously 

described. The result of the alignment showed that between 30 to 50% of the 

shRNAs (436 and 775 shRNAs of 1192 or 1204 shRNAs present in mEPI1 and 

mEPI2, respectively) had less than ten reads/shRNA. Nonetheless, we calculated 
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the relative frequency of each barcode, we analysed the log2 fold change 

distribution between the shRNA frequencies of tumors and reference cells and we 

then calculated the z-score of the log2 fold change distribution. Pearson 

correlations among the z-scores of different tumors varied in a range comprised 

between R=0.12 and R=0.21. These data prompted us to hypothesize that one 

single tumor was not sufficient to represent all the shRNAs present in the library, 

and we decided to pool together the gDNAs of 11 tumors. As previously described, 

we amplified the barcodes by PCR and we sequenced the four pools of 11 tumors 

each (2 pools/library). Unfortunately, also this approach revealed that each pool of 

11 tumors contained between 254 and 287 shRNAs having less than ten reads. 

Finally, we applied the logistic sigmoid function model to the murine screen (data 

not shown). Unfavorably, the number of tumors necessary to represent these 

libraries was too high to accomplish the screen. 

It is therefore impossible to calculate the shRNAs that can result depleted in our 

model. Even though we managed to increase the number of TICs extracted from 

tumor tissue, all together these results led to the conclusion that an in vivo 

screening in MMTV/NeuT model is not feasible with a library of 1.200 shRNAs 

transplanting 22 animals. 

 

 

3.5 Dissecting the role of CHD4 in human breast cancer 

 

CHD4, a core component of the nucleosome remodelling and histone deacetylase 

NuRD complex, is known to be involved in the G1/S phase transition, where its 

down modulation leads to cell cycle arrest, p53 stabilization and p21 accumulation 

in U2OS cells (Polo, Kaidi et al. 2010). In these cells, the absence of CHD4, 
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prevents p53 deacetylation. In mouse embryonic fibroblasts, on the contrary, the 

NuRD complex directly regulates p21 levels in a p53-independent manner (Lai and 

Wade 2011). This discrepancy suggests that some of the NuRD complex functions 

are not deeply understood yet. Some functions might be cell-type specific, some 

might be required only during particular phases of the development, and 

reactivated during tumor progression. We have shown that CHD4 silencing affects 

cell survival, proliferation and migration in vitro, and tumor growth in vivo, of breast 

cancer and not of normal epithelial cells. 

To investigate whether the mechanism behind this phenotype is due a blockage of 

the G1/S phase transition, to p53 stabilization and acetylation, and consequently 

to p21 accumulation in breast cancer cells, we decided to further characterize 

mechanistically the function of CHD4 in the human MCF10DCIS.com cancer cell 

line. In particular, we focused on the mechanism through which CHD4 regulates 

breast cancer cell proliferation. 

 

 

3.5.1 Breast cancer susceptibility genes are not mutated in 

MCF10DCIS.com cells 

 

Since it has been described that in BRCA2 mutated breast cancer CHD4 behaves 

as a tumor suppressor (Guillemette, Serra et al. 2015), we verified if BRCA2 is 

mutated in MCF10DCIS.com cells. Furthermore, we investigated also the mutation 

status of p53 and BRCA1, being considered vulnerable genes in breast cancer 

(Miki, Swensen et al. 1994, Gayther, Pharoah et al. , Vousden and Lane 2007). 
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Table 7: Analyses of BRCA1, BRCA2 and p53 mutation status in MCF10DCIS.com cells. 

Types of SNP are indicated according to the Human Genome Variation Society (HGVS). (WT = no 

variant, c. = codon, IV = intronic variant, * = variation after stop codon). 

	
  

Genomic DNA sequencing revealed that BRCA1, BRCA2 and p53 are not mutated 

in MCF10DCIS.com cells, being present only Single Nucleotide Polymorfisms 

(SNPs) either heterozygous or homozygous [Table 7].  

 

 

3.5.2 CHD4 is essential for cell cycle progression of 

MCF10DCIS.com cells 

 

To investigate the role of CHD4 in cell cycle regulation in MCF10DCIS.com cells, 

we took advantage of a new technology named A.M.I.C.O. (automated microscopy 

for image cytometry), recently developed in our laboratory.  The new technique 

consists of a computational platform for quantitative and statistical analysis of 

images acquired by widefield or confocal microscopes. This innovative approach is 
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based on DNA content evaluation during the cell cycle and allows to perform multi-

parameter analysis, targeting specific cell subpopulations. Furthermore, this high 

sensitive technology enables resolution measurements of images with a 

statistically relevant number of analysed events (Furia, Pelicci et al. 2013, Furia, 

Pelicci et al. 2013).  

To perform cell cycle analysis, we transiently transfected exponentially growing 

MCF10DCIS.com cells with one of two different siRNAs targeting CHD4, the pool 

of these two siRNAs and siRNA Luciferase (LUC) as control. After 72 hours from 

transfection, the cells were incubated with 5-ethynyl-2-deoxyuridine (EdU), a 

nucleoside analogous to thymidine that is incorporated into DNA during active 

DNA synthesis (Salic and Mitchison 2008). The technique allowed us to detect, at 

the same time, different parameters: i) CHD4, to verify silencing efficacy; ii) EdU, 

to examine DNA synthesis; iii) ’6 diamidino-2phenylindole (DAPI), to evaluate DNA 

content; iv) Ki67, to assess cell proliferation; v) p21 and p53, to determine their 

reciprocal levels.  

Through this technique we were able to analyse a high number of events for each 

phase of the cell cycle in the same transduced cells. The number of acquired 

events reflects the number of cells that are present in a fixed area of the coverslips 

(i.e. cellular density) in all conditions (LUC, siRNA1-CHD4, siRNA2-CHD4 and 

siRNApool-CHD4). The possibility of examining a high number of cells confers 

robustness to the assay [Fig. 32]. A lower, though statistically significant, number 

of events was acquired for CHD4-silenced cells due to a reduced capability of 

these cells to proliferate, compared to the control population (LUC). The reduction 

in cell proliferation with siRNAs is similar to what we observed in shRNA-CHD4 

silenced cells, thus confirming that the phenotype obtained during the validation of 
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the screen is indeed due to a reduction in CHD4 levels, and possibly, to a 

disruption of the NuRD complex.  

 

              
Figure 32: Number of acquired events representing the number of cells in a fixed area. 

MCF10DCIS.com cells transfected with siRNA targeting CHD4 (siRNA1 CHD4, siRNA2 CHD4 and 

siRNA Pool CHD4) and LUC control were acquired in a fixed area (0.5 x 0.5 cm). For each cell 

cycle phase the number of acquired events was reported. 

	
  

The first parameter we analysed was the level of CHD4 silencing in 

MCF10DCIS.com cells. CHD4 content was measured in all phases of the cell 

cycle and values added up (Sum of all) [Fig. 33]. CHD4 levels were then analysed 

in the G0/G1 phase only (Sum of G0/G1). As we can observe, CHD4 was efficiently 

silenced and its downregulation was not dependent to the cell cycle distribution. 
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Figure 33: Silencing efficacy of CHD4 in MCF10DCIS.com transfected cells. CHD4 content 

was verified in MCF10DCIS.com cells transfected with siRNA targeting CHD4 (siRNA1 CHD4, 

siRNA2 CHD4 and siRNA Pool CHD4) and LUC control. 

 

The evaluation of DNA content, through binding of DAPI to DNA [Fig. 34A], and 

EdU incorporation [Fig 34B] allowed us to performing the analysis of the cell cycle.  

Remarkably, from the analysis of the DNA profiles and the EdU content, we 

showed that 23% of the CHD4 silenced cells accumulate in the G0/G1 phase 

compared to the control population (LUC) [Figure 34C, blue bars]. Furthermore, 

loss of CHD4 determined a dramatic decrease of cells in S phase (18%) [Figure 

34C, red bars]. On the contrary, the DNA content in G2 phase was not changed 

[Fig. 34C, green bars]. 
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Figure 34: MCF10DCIS.com cell cycle analysis. A) The DNA profiles of MCF10DCIS.com cells 

transfected with siRNA targeting CHD4 (siRNA1 CHD4, siRNA2 CHD4 and siRNA Pool CHD4) and 

LUC control were analysed. B) The same cells were analysed for their Edu content. C) The 

percentages of events for each cell cycle phase were reported. 

 

To better clarify the role of CHD4 in the cell cycle progression, we stained the cells 

with the proliferation marker Ki67 [Fig 35]. The analysis of Ki67 content revealed a 

drastic reduction of protein levels in the G0/G1 cells interfered for CHD4, compared 

to control LUC cells. This analysis revealed that in CHD4 silenced 

MCF10DCIS.com cells the levels of Ki67 are greatly reduced, suggesting that 

CHD4 loss causes G0/G1 arrest in breast cancer cells. 

To conclude, the loss of CHD4 provokes an accumulation of cells in the G0/G1 

phase, a reduction in the S phase, and a decrease of Ki67 levels, suggesting that 

the silencing of CHD4 determines MCF10DCIS.com cell cycle exit in the G0 phase 

of the cell cycle. 
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Figure 35: Analysis of Ki67 levels in MCF10DCIS.com transfected cells. Ki67 content was 

examined in MCF10DCIS.com cells transfected with siRNA targeting CHD4 (siRNA1 CHD4, 

siRNA2 CHD4 and siRNA Pool CHD4) and LUC control. The analysis was performed in G0/G1 

cells. 

 

To understand if the G0 arrest was dependent on p21 and p53, we analysed the 

content of p21 and p53 proteins in MCF10DCIS.com CHD4 knockdown cells 

compared to control LUC cells.  

The analysis of p21 showed a strong increase of p21 levels, especially in siRNA2 

cells, in which the accumulation was more than 60% [Fig. 36A,C]. Since the 

silencing of CHD4 was not 100%, the population interfered for CHD4 was further 

subdivided in CHD4 positive (CHD4+, where residual CHD4 expression could be 

showed) and negative (CHD4-) cells. It is worth noting that the levels of p21 were 

higher in CHD4- cells [Fig. 36B]. Moreover, analysis of a subpopulation of the 

MCF10DCIS.com cells showing high levels of p21 (p21 high) revealed an overall 

consistent increment of p21 intensity in the CHD4-silenced cell populations [Fig 

36C]. These data suggest that the loss of CHD4 determined an increase of p21 

level and also of its intensity [Fig 36C].  
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Figure 36: Analysis of p21 levels in MCF10DCIS.com transfected cells. A) p21 content was 

examined in MCF10DCIS.com cells transfected with siRNA targeting CHD4 (siRNA1 CHD4, 

siRNA2 CHD4 and siRNA Pool CHD4) and LUC control. B) p21 content was also examined in the 

CHD4 positive and negative cells. C) p21 level was evaluate as basal level (sum of all) and high 

intensity (p21 high). 

	
  

On the contrary, the analysis of p53 content revealed that there was no increase in 

the levels of this protein upon CHD4 loss [Fig. 37A, C, D]. We eventually observed 

a slight decrease of p53 levels in CHD4 knockdown cells, in particular in those 

cells where the intensity of p53 was high (p53 high) [Fig. 37D, red bars]. Also in 

this case, the CHD4 interfered population was subdivided in CHD4 positive and 

negative cells. As further confirmation of the analysis of p53 content, in the 

silenced cells the level of p53 was not perturbed in CHD4 negative and positive 

cells [Fig. 37C]. Positive control for p53 staining is shown [Fig. 37B]. 
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Figure 37: Analysis of p53 levels in MCF10DCIS.com transfected cells. A) p53 content was 

examined in MCF10DCIS.com cells transfected with siRNA targeting CHD4 (siRNA1 CHD4, 

siRNA2 CHD4 and siRNA Pool CHD4) and LUC control. B) MCF10A cells, treated with Nutlin 

(5mM), were used as positive control for p53 staining. C) p53 content was also examined in the 

CHD4 positive and negative cells. D) p53 level was evaluate as basal level (sum of all) and high 

intensity (p53 high). 

 

As a proof of concept, we further analysed p21 and p53 content in siCHD4 cells 

with high levels of p21 and of p53 [Fig. 38]. P21 levels displayed a constant 

accumulation in the total population of siCHD4 cells (Sum of All) and also in the 

p53 high cells [Fig. 38A]. On the contrary, p53 levels showed a mild decrease in 

the p21 high cells interfered with siRNA1 and siRNA2, whereas there was a slight 

increase of p53 content in the total population and no difference in the cells 
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silenced with siRNA Pool [Fig. 38B]. These results suggest that p53 upregulates 

p21 but it is not required to maintain cell cycle arrest (p21 high cells).  

 

                     

 
Figure 38: Analysis of p53 and p21 levels in MCF10DCIS.com transfected cells. p53 and p21 

content were examined in MCF10DCIS.com cells transfected with siRNA targeting CHD4 (siRNA1 

CHD4, siRNA2 CHD4 and siRNA Pool CHD4) and LUC control. The analysis was performed in the 

total population and in the p53 high cells for p21 level (A) and in the p21 high cells for p53 level 

(B). 

 

All together these data lead us to conclude that the loss of CHD4 arrests 

MCF10DCIS.com cells in G0, and that is due to an accumulation of p21 levels but 

not to an upregulation of p53 level, suggesting a p53-independent mechanism of 

activation of p21.  

To verify whether the exit from the cell cycle induced by the loss of CHD4 was 

associated to an inability of the global transcriptional machinery of breast cancer 

cells, we investigated the total amount of RNA transcribed by MCF10DCIS.com 

cells upon CHD4 silencing [Fig. 39]. We used the 5-Bromouridine (BrU), a uridine 

derivate that is incorporated into RNA and can be detected immunocytochemically 

and analysed by flow cytometry. The analysis of the BrU content did not reveal 

any substantial difference in BrU levels between siCHD4- and siLUC- 
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MCF10DCIS.com cells. This result suggests that CHD4 does not influence the 

total amount of RNA transcribed by breast cancer cells. 

 

               	
  
Figure 39: BrU content in MCF10DCIS.com transfected cells. BrU content was examined in 

MCF10DCIS.com cells transfected with siRNA targeting CHD4 (siRNA1 CHD4, siRNA2 CHD4 and 

siRNA Pool CHD4) and LUC control. Flow cytometry analysis of BrU levels was reported. 

 

Further experiments are required to understand the role of CHD4 in the 

transcriptional activity of breast cancer cells and also to verify p53 role in breast 

cancer cell cycle arrest induced by CHD4 knockdown.  

 

 

3.6 CHD4 plays a key role in MMTV/NeuT and in PDX 

breast tumors  

 

We next evaluated the role of CHD4 in two other breast model systems, the 

MMTV/NeuT transgenic mouse and a patient-derived xenograft of breast 

carcinoma. Even though the MCF10DCIS.com cells can recapitulate breast cancer 

progression in vivo, they can be considered the in vitro counterpart of only a 
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subtype of breast cancer, the Triple negative breast cancer, lacking ER, PgR and 

HER2 receptor (see above, Figure 8). To better define the role of CHD4 in two 

other subtypes of aggressive breast cancer, the HER2 positive and Luminal B, 

therapy-resistant cancers, we used spontaneously arising (MMTV/NeuT) and 

patient-derived (PDX) tumors as valuable models for parallel analysis. Both 

models have been previously established and characterized in our laboratory 

(Cicalese et al, manuscript in preparation).  

 

 

3.6.1 Loss of CHD4 impairs MMTV/NeuT tumors in vivo and in 

vitro  

 

To investigate the role of CHD4 in MMTV/NeuT model, we first isolated cells from 

spontaneous tumors and then infected them at high MOI with lentiviral vectors 

expressing shRNAs silencing CHD4, or Scramble shRNAs (SCR), as neutral 

control. A pool of two different shCHD4 (shRNA1 and shRNA2) was used to infect 

the cells.  After puromycin selection, we verified knockdown efficacy through 

western blotting analysis: MMTV/NeuT cells were successfully silenced for CHD4 

[Fig. 40A]. 500.000 transduced cells were orthotopically transplanted into 

syngeneic mouse (eight mice for SCR and ten mice for shCHD4). Notably, as 

shown in figure 40B, the silencing of CHD4 impaired MMTV/NeuT tumor growth, 

with a statistical reduction of 71% compared to control SCR. 
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Figure 40: Transplantation assay of MMTV/NeuT transduced cells. MMTV/NeuT cells were 

infected with scrambled control (SCR) and the pooled shRNAs silencing CHD4. A) Western blot 

analysis was performed to evaluate the protein level after knockdown of CHD4. Anti-vinculin was 

used as a loading control. B) Picture of one representative tumor formed upon transplantation for 

each group. Due to the difference in data variances between tumor volume distributions of 

scramble and shCHD4, tumor volumes were compared with Mann-Whitney U test (non 

parametrical analogous to the Student’s T-test), resulting in a significant difference between 

medians (U=14.0; *p<0.05*). 

 

As for the human cell lines, we evaluated proliferation and migration of murine 

breast cancer cells in vitro. To this end, MMTV/NeuT shCHD4 and shSCR cells 

were plated in culture and proliferative rate evaluated by counting cells every 48 

hours for eight days [Fig 41B]. Remarkably, knockdown of CHD4 reduced 

MMTV/NeuT growth of 45% compared to control SCR. RNA interference 

decreased CHD4 levels at almost zero after transduction and selection (T0), while 

at the end of the proliferation assay (T8), a slight increase was observed [Fig. 

41A]. This can be due to the presence of a modest, non-efficiently selected, cell 

population within the transduced cells, or to a reactivation of CHD4 expression for 

a partially inefficient silencing overtime. 

MMTV/NeuT transduced cells were also interrogated for their ability to migrate in 

vitro [Fig. 41C]. Intriguingly, the loss of CHD4 impaired MMTV/NeuT migration with 

a reduction of 46% compared to scrambled control.  
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Figure 41: Proliferation and migration assay of MMTV/NeuT transduced cells. Cancer cells 

transduced with scrambled control (SCR) and the pooled shRNAs targeting CHD4 were used for: 

A) western blot analysis to evaluate the protein level after knockdown of CHD4, lysates collected 

immediately after puromycin selection (T0) and after 8 days (T8). Anti Vinculin was used as a 

loading control; B) proliferation assay: cells were counted when we plated the cells (0) and every 

48 hours for four time points (2, 4, 6, 8). C) migration assay with measurement of the relative 

migration. (A-C) Experiments performed in biological duplicate and technical triplicate. Values 

(mean±SD) were expressed as ratio with respect to control SCR (Student’s T-test: ** p<0.01). 

 

Taken together these results prompted us to conclude that CHD4 plays a crucial 

role also in a HER2+ subtype of breast cancer and, therefore, in a GEM model with 

a competent immune system. These data strongly support what we observed in 

the human system, thus confirming the oncogenic role of CHD4 in breast cancer 

cells. 
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3.6.2 Silencing of CHD4 reduces breast cancer progression in a 

PDX model 

 

To study the effect of CHD4 in a more reliable preclinical model, we used a luminal 

B PDX model. To generate the model, patient’s tumor sample was transplanted in 

NSG mice to generate primary PDX tumors. Upon appropriate characterization 

(specification of epithelial markers, definition of receptors’ status and proliferative 

rate, evaluation of macro- and micro-anatomy of the tissue), PDXs were expanded 

by serial passages into mice to generate a cohort of animals to work with. PDX 

tumors were then dissociated into single cells, infected at high MOI with pRSI 

vectors expressing control shRNAs (LUC) and two pooled shRNAs targeting 

CHD4, and then injected into recipient mice [Fig. 42A]. Before transplantation, 

PDX cells were verified for silencing efficiency: human breast cancer cells were 

successfully silenced for CHD4 [Fig. 42B]. 250.000 transduced cells were then 

transplanted into NSG mice (four animals for LUC and four for shCHD4) and they 

were monitored for tumor growth by caliper measurements weekly. When control 

tumors reached approximately 1 cm3, they were harvested and measured [Fig. 

42C]. Remarkably, analysis of tumors size showed that loss of CHD4 significantly 

decreases tumor volume, with a reduction of 68% for shCHD4 tumors compared to 

control LUC.  

These interesting results once again confirmed the oncogenic role of CHD4 in a 

more suitable preclinical model. Moreover, we revealed that CHD4 is crucial also 

for Luminal B tumor progression, thus concluding that CHD4 is not subtype 

specific but is a universal breast cancer oncogene. 
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Figure 42: Transplantation assay of PDX transduced cells. A) Experimental approach to 

evaluate CHD4 role in a PDX model. (B-C) PDX cells were transduced with control shRNAs (LUC) 

and the pooled shRNAs targeting CHD4. B) Western blot analysis to evaluate the protein level 

after knockdown of CHD4. Anti Vinculin was used as a loading control. C) Picture of one 

representative tumor formed upon transplantation. The measurement of the volume was reported. 

Values (mean±SD) were expressed as ratio with respect to control LUC (Student’s T-test: ** 

p<0.01). 
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4 Discussion 

	
  

Tumorigenesis is a multistep process through which normal cells are transformed 

into cancer cells by activation of oncogenes or inactivation of tumor suppressor 

genes. Breast cancer is not considered a single disease because of its genetic 

and histological complexity, underlying variable response to therapy. Despite 

improvements in the last decades in the treatment of this disease, resistance to 

first-line therapies is still the main clinical problem. Therefore, the major challenge 

for breast cancer researchers is to identify and characterize new genes that drive 

tumorigenesis and eventually to design targeted therapies that would overcome 

conventional therapy resistance. New strategies aimed to identify genes with 

functional relevance to tumor initiation and progression, are necessary. High 

throughput RNAi screening approach has become increasingly popular for the 

discovery of genes that may be otherwise difficult to identify through traditional 

research methods. shRNA screens proved to be a powerful tool for cancer gene 

discovery in hematopoietic malignancies and solid tumors. In recent years, pool-

based shRNA screening technology has been applied to in vivo studies in 

transplantable tumors. These screens have identified several previously 

uncharacterized genes that sustain tumor growth (Zender, Xue et al. 2008, Bric, 

Miething et al. 2009, Meacham, Ho et al. 2009, Possemato, Marks et al. 2011, 

Zuber, McJunkin et al. 2011, Zuber, Shi et al. 2011, Iorns, Ward et al. 2012, 

Scuoppo, Miething et al. 2012, Beronja, Janki et al. 2013, Gargiulo, Cesaroni et al. 

2013, Miller, Al-Shahrour et al. 2013, Wuestefeld, Pesic et al. 2013, Possik, Muller 

et al. 2014, Schramek, Sendoel et al. 2014, Wolf, Muller-Decker et al. 2014, 

Baratta, Schinzel et al. 2015, Meacham, Lawton et al. 2015). 
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Breast cancer is a disease characterized not only by genetic defects, but also by 

epigenetic alterations. Fundamental discoveries in the understanding of basic 

regulatory mechanisms and massive technological improvments have enabled the 

discovery of breast cancer specific epigenetic modifications. Despite the fact that 

targeted therapies for epigenetic modifiers are already in use for the treatment of 

hematopoietic disease and solid tumors, at the moment, no epigenetic 

therapeutics have been approved by the FDA. Therefore, it became challenging 

the discovery of new epigenetic targets suitable for the design of novel therapeutic 

drugs. To this end, our purpose was to apply the powerful RNAi technology to 

investigate epigenetic vulnerabilities in breast cancer.  

For our shRNA screen we took advantage of a published protocol in which 

MCF10DCIS.com cells were screened with a metabolic library composed of 516 

shRNAs (Possemato, Marks et al. 2011). We used two shRNA libraries, each 

composed of approximately 1200 shRNA targeting chromatin modifiers that are 

relevant for human breast cancer initiation and progression. For the first time in a 

breast cancer model, we screened epigenetic libraries to identify the epigenetic 

targets that drive tumorigenesis both in vitro and in vivo. In our library each gene 

was silenced by 10 shRNAs, differently from what was previously proposed, i.e. 5 

shRNAs (Possemato, Marks et al. 2011), and 5 or 6 shRNAs in the human 

SUM149 cell line (Wolf, Muller-Decker et al. 2014). The increased number of 

shRNAs composing the library reduces the possibility of detecting false positive 

depleted genes, as more shRNAs are included in the analysis. 

We meticulously generated a valid statistical model to calculate the number of 

samples necessary to represent a complex library in the MCFDCIS.com cell line. 

The logistic function method allowed us to overcome the main caveat of the 

screens, i.e. scoring false positive genes, and conferred robustness to our 
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analysis. This innovative model can be applied to RNAi screen in other cell 

systems, in particular in the context of tumors where the TIC frequency is reduced 

and the cellular system is less permissive to the representation of a complex 

library. Unfortunately, though, when we applied the statistical model to the in vivo 

screen in the MMTV/NeuT murine model (data not shown), we realized that the 

number of tumors necessary to represent these libraries was too high to pursue 

the screen.  

Our in vitro and in vivo approach allowed us to compare genes that impact on 

breast cancer progression in both conditions. Our dual method generated results 

that are in good agreement with data published by Possemato and collegues in a 

metabolic RNAi screen. Indeed, approximately 50% of our depleted genes are in 

common between the in vitro and in vivo screens, suggesting that the regulation of 

either metabolic or epigenetic pathways in breast cancer is relatively similar in vitro 

and in vivo. This result suggests that breast cancer cells can be a valid system to 

investigate the molecular pathways underlying tumorigenesis in vivo and that is 

then possible to analyse the mechanisms of activation of specific genes in the 

same context in vitro. 

We fully validated the epigenetic screens in vivo and in vitro with five different hits, 

highlighting the solidity of our screens. Importantly, we have demonstrated that 

BAZ1B, BRD4, CHD4, WDR5 and BPTF are essential genes for breast cancer cell 

proliferation and migration in vivo and in vitro. This point acquires even more 

relevance because we showed a striking reduction of tumor volume in vivo and of 

proliferation and migration in vitro upon silencing of each targets. These five genes 

belong to different protein families, with distinct functions and they are all 

individually implicated in cancerogenesis as part of epigenetic complexes. Taken 

together, these results are extremely important for the breast cancer subtypes for 
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which, at the moment, no targeted therapy can be offered to the metastatic, drug-

resistant patients (Curigliano and Goldhirsch 2011). Having proven that epigenetic 

targets are crucial targets that maintain breast cancer growth, it would be of 

utmost importance to design novel drugs to inhibit our newly identified hits. In vitro 

proliferation and migration assays could be valuable tools to test the biological 

effect of novel, specific inhibitors as single agents or in combination with other 

targeting compounds. 

We definitely demonstrate that all validated genes, although promoting migration 

in cancer cells, do not affect normal epithelial mammary cell migration in vitro. 

Seeing that metastasis formation is the first cause of death in breast cancer 

patients (Weigelt, Peterse et al. 2005), it would be relevant to pharmacologically 

repress these cancer-specific targets in patients to possibly delay or revert the 

metastatic process. We choose MCF10A cells because they are widely used as a 

model for normal human mammary epithelial cells, in fact it has been 

demonstrated that ductal and alveolar structures closely resemble the in vivo 

mammary morphology (Krause, Maffini et al. 2008). Moreover, MCF10A cells 

grown in 3D cultures recapitulate numerous features of the glandular epithelium in 

vivo and various invasive properties have been observed in 3D systems, including 

invasion through the basement membrane (Debnath and Brugge 2005). 

Moreover, we show that BAZ1B and CHD4 do not influence mammary cell 

proliferation and colony formation in vitro, thus being selectively responsible for 

survival of cancer cells. However, BRD4, WDR5 and BPTF slightly affect cell 

growth and their ability to expand in a clonal manner. These data underline the 

relevance of BAZ1B and CHD4 genes, the only two targets whose silencing does 

not particularly impair normal epithelial cells. Despite the high selectivity of 

targeted therapy, unpredictable side effects and toxicity in normal cells can 
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emerge (Widakowich, de Castro et al. 2007), therefore it is extremely important to 

prove that the pharmacological gene targeting does not have impact on normal 

cells. 

Our second screening approach in the MMTV/NeuT transgenic mouse model 

turned out to be inefficacious. The preliminary experiments we performed to set up 

the murine model (i.e. ELDA) generated encouraging results, suggesting that the 

screening was feasible in this system. Even though we managed to extract an 

increased number of TICs from the tumor tissue, compared to previously 

published data (Cicalese, Bonizzi et al. 2009), this result was not sufficient to 

perform a shRNA screen with a complex library. We calculated that we needed to 

express each shRNA in 1000 cells to successfully represent successfully the 

entire library, so more than twice the number of TIC frequency (1:448). 

Nevertheless, the screening was not feasible. We hypothesized that it can be due 

to a peculiarity of the system, where a putative competition within cancer cells can 

occur, or to a saturation of the stem cell niche, a physiological microenvironment in 

the mammary gland, preventing the anchorage of TICs in the niche, thus loosing 

their stemness properties (Sneddon and Werb 2007).  

A very recent and innovative approach to overcome the limitation of the ELDA 

experiments to set up an in vivo shRNA screen, is the use of a non-targeting 

barcoded library. Transplantation of cancer cells transduced with this library allows 

the calculation of the TIC frequency as cells grow in vivo, analysing distribution 

and representation of barcodes with no impact on cell proliferation and/or 

migration.  

CHD4, together with the other subunits of the NuRD complex, is implicated in 

tumor progression (Denslow and Wade 2007, Lai and Wade 2011, 

O'Shaughnessy and Hendrich 2013). For this reason, CHD4 represents the most 
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appealing target to investigate in a more complex cellular system as tumor growth 

in vivo in three different types of breast carcinoma. CHD4 blocks cell proliferation 

and migration both in vivo and in vitro, and it is therefore possible to understand 

the mechanism through which this gene promotes cancer progression by setting 

up appropriate cellular systems.  

Because of the complexity and heterogeneity of breast cancer, no individual 

preclinical model recapitulates all aspects of this disease. Therefore, an integrated 

and multi-systems approach is currently the strongest way to model this disease 

and to study gene vulnerabilities (Vargo-Gogola and Rosen 2007).  

The mechanisms that allow cancer cells to avoid immune surveillance are complex 

and still largely unexplored. Since human in vivo shRNA screen has been 

performed in immunodeficient animals, we further investigated the role of CHD4 in 

a model in which the tumor develops in the presence of an intact immune system. 

In vivo silencing of CHD4 in the MMTV/NeuT model revealed that it plays a crucial 

role also in a fully immune-competent system, meaning that the tumorigenic 

function of CHD4 can bypass the intrinsic immune organisation. The oncogenic 

role of CHD4 in the MMTV/NeuT model is extremely solid, as it was confirmed by 

the consistent reduction, caused by the loss of CHD4, of proliferation and 

migration in vitro. All together, these results suggest that CHD4 silencing blocks 

also HER2+ breast cancer cells. 

To explore the role of CHD4 in a more clinical oriented context, we used a PDX 

model of Luminal B breast cancer. This system recapitulates the characteristics of 

the human tumor, maintaining the histologic and immunophenotipic features of the 

tumor of origin in the xenografts (data not shown). The dramatic reduction of tumor 

growth induced by the loss of CHD4 is extremely relevant, suggesting that a 

pharmacological inhibition of this target could have a deep impact in the treatment 
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of breast cancer. Remarkably, in this study, we identified and investigated a driver 

target that is responsible for tumor maintenance in the most frequent breast 

cancer subtypes. 

The feasibility of targeting an epigenetic regulator must be considered. Those 

targets that function through enzymatic activity such as DNA methylases, HDACs, 

histone methylases and the ATPase activity of CHD4, are more readily druggable 

(Ginder 2015). Moreover, CHD4 contains two chromodomains and two PHD finger 

domains. It has been already demonstrated the druggability of the chromodomain 

as for the case of chromobox homolog 7 (CBX7) for which a peptide inhibitor has 

been synthesised (Simhadri, Daze et al. 2014). PHD fingers are emerging as 

druggable classes of protein-protein interaction domains and they represent a new 

frontier in drug discovery that has a huge potential for the development of novel 

therapeutics (Spiliotopoulos, Spitaleri et al. 2012).  

To date, the function of CHD4 in breast cancer has been scarcely investigated. 

Our mechanistic characterization paves the way for a better understanding of 

CHD4 role in human mammary tumors. With this work, we shed light on the 

mechanisms through which CHD4 regulates breast cancer cell proliferation. 

Noticeably, for the first time, we reveal that CHD4 is essential for breast cancer 

cell cycle progression. In particular, our cell cycle analysis showed that the loss of 

CHD4 causes MCF10DCIS.com cells cell cycle arrest in G0/G1 phase. In addition, 

we demonstrated that CHD4 knockdown causes a striking reduction of breast 

cancer cell DNA synthesis. To progress from one phase of the cell cycle to 

another, cells have to pass through a series of coordinately regulated cell-cycle 

checkpoints (Hartwell and Weinert 1989). If aberrant or incomplete cell cycle 

progression occurs, the specialized proteins involved in the checkpoint control 

transmit signals to effector proteins, such as cyclin dependent kinase (CDK) 
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inhibitors, that are able to induce cell-cycle arrest until the problem is solved, or 

induce either cell death or uncontrolled cell growth (Musacchio and Salmon 2007). 

Our analysis of the CDK inhibitor p21, demonstrated that CHD4 silencing causes 

p21 accumulation in breast cancer cells. To understand the mechanism that links 

CHD4 to p21, we examined the levels of expression of p53. Surprisingly, this 

analysis revealed that p53 is not upregulated in CHD4 silenced cells, suggesting 

that p21 can be regulated through p53-independent mechanisms.  

Our cell cycle analysis, delineating a cell cycle block in the G0/G1 phase in breast 

cells, is in good agreement with what it has been previously published in human 

osteosarcoma cells (U2OS) (Larsen, Poinsignon et al. 2010, Polo, Kaidi et al. 

2010). Polo and colleagues demonstrated that in U2OS cells upon depletion of 

CHD4, p53 is hyperacetylated and hyperactive, which in turn leads to increased 

p21 expression. CHD4 controls cell cycle progression by promoting the ability of 

HDAC1, another component of the NuRD complex, to deacetylate p53 (Polo, Kaidi 

et al. 2010). Our results indicate that in breast cancer cells the mechanism that 

regulates the interplay between CHD4 and p21 is not canonically through p53. It 

has been shown that oncogenic Ras, as well as Raf, one of its downstream 

effectors, activates p21 transcription through both p53-dependent and p53-

independent mechanisms, the second one requiring the transcription factor E2F1 

(Gartel, Najmabadi et al. 2000). MCF10DCIS.com cells contain an active HRAS 

and for this reason, the E2F1 binding activity, as well as HRAS/CHD4/E2F1 axis, 

will be investigated in these cells. Moreover, p21, p53-independent, transcription is 

also activated by several nuclear receptors (retinoid, vitamin D and androgen 

receptors), which bind specific responsive elements in the p21 promoter (Gartel 

and Tyner 1999). Several members of the Krüppel-like transcription factor (Klf) 

family also regulate the transcription of p21 by p53-independent mechanisms. 
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These transcription factors are key regulators of proliferation and differentiation 

(Black, Black et al. 2001). In particular KLF4, which is expressed in epithelial 

tissues, acts as a tumour suppressor, inducing p21 expression (Rowland and 

Peeper 2006). Moreover, CDX2, a member of the caudal-related homeobox gene 

family, induces p21 expression in human colon cancer cells (Bai, Miyake et al. 

2003). Strikingly, CDX2 activates KLF4 transcription (Dang, Mahatan et al. 2001), 

suggesting that the CDX2–KLF4–p21 axis may play a role in CHD4 silenced cells. 

Moreover, the investigation of global transcription activity of MCF10DCIS.com 

indicates that CHD4 does not impair total RNA transcription but we can speculate 

that its function could be more specifically linked to direct targets. In order to fill the 

gap between CHD4 and p21, our ongoing and future plans consider to perform 

RNA-sequencing analysis (RNA-seq) on CHD4-silenced MCF10DCIS.com and 

MCF10A cells. This approach will allow us to dissect the molecular pathway in 

which CHD4 is involved in tumor and normal contexts. Moreover, to verify whether 

the differentially regulated genes that will be identified by RNA-seq analysis are 

direct targets of CHD4, we will perform chromatin immunoprecipitation.  

In conclusion, we performed epigenetic in vivo and in vitro screens in human 

breast cancer cells with a meticulous statistical analysis. Our approach identified 

CHD4 as a vulnerable gene of the most common breast cancer subtypes. Finally, 

CHD4 is a key player of human breast cancer cell replication by regulating cell 

cycle progression. 
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