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Abstract

It is developed a functional analytic framework allowing to formulate a rigorous im-
plementation of zeta regularization for a canonically quantized scalar field, living on an
arbitrary spatial domain and interacting with a classical background potential. This
framework relies on the construction of an infinite scale of graded Hilbert spaces associ-
ated to the real powers of some given, positive self-adjoint operator. When the latter is
a Schrödinger-type differential operator, this formulation provides a natural language to
study the integral kernels related to a large class of operators, fulfilling minimal regularity
requirements; particular attention is devoted to the regularity of these kernels and to the
construction of their analytic continuations with respect to some parameters. Within this
framework, complex powers of the elliptic operator giving rise to the Klein-Gordon equa-
tion are used to define a zeta-regularized version of the Wightman field whose pointwise
evaluation is well-posed. This regularized field determines regularized local observables
(such as the stress-energy tensor), whose vacuum expectation values can be expressed
in terms of the above mentioned integral kernels. This allows to make contact with the
theory of the Casimir effect. Renormalization is achieved by analytic continuation, which
is proved to give finite results for the previously mentioned expectation values in most
cases of interest. Finally, to exhibit the computational efficiency of the above methods,
some explicit examples are discussed.
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Introduction

In quantum field theory (QFT) there often arises the necessity to give meaning to ill-
defined expressions; these appear typically in formal manipulations of distributions that
give rise to infinities or divergent quantities when explicit computations are attempted.
Zeta regularization (ZR) allows to deal with many of these problematic expressions by
re-interpreting them as the analytic continuations with respect to a regulator parameter,
introduced on purpose, of well-defined integral kernels (or of the corresponding traces)
associated to complex powers of the elliptic differential operator appearing in the field
equations.
The standard textbook example deals with the sum of positive integers

∑+∞
n=1 n. Of course,

this series is divergent in the sense of Cauchy; nevertheless, it can be re-interpreted in
terms of the analytic continuation of the Riemann zeta function ζ, by introducing the
regulator s ∈ C and setting

+∞∑
n=1

n “=”

[
+∞∑
n=1

1

ns

]
s=−1

“=”
[
ζ(s)

]
s=−1

= − 1

12
. (1)

Here the first identity is purely formal, the second one only holds if <s > 1 and the third
one has to be meant as the evaluation of the analytic continuation at s = −1 (1).
The mathematical literature on this topic dates back to the early works of Minakshisun-
daram and Plejel [111, 112], and to the subsequent contributions of Seeley [143], Ray and
Singer [128].
The first application to QFT was considered in the pioneering work of Dowker and Critch-
ley [51]; soon after a more systematic formulation was developed by Hawking [86] and Wald
[152]. Later on, the ZR approach was championed, revisited and widely extended by many
authors; among them are, in particular, Cognola, Zerbini and Elizalde [40, 41] (see also
[56, 57]), Actor, Svaiter et al. [3, 4, 6, 131, 132] and Moretti et al. [32, 88, 114, 117, 118]
(see also the references in the cited works). All the authors mentioned above were mainly
interested in the renormalization of local observables, such as the vacuum expectation
value (VEV) of the stress-energy tensor, having in mind the ultimate purpose of a semi-
classical treatment of quantum effects in general relativity (e.g., using the stress-energy
VEV as a source in Einstein’s equations).

1The same arguments allow to infer, perhaps even more surprisingly, that
∑+∞
n=1 n

2 “=” 0.
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2 CONTENTS

On the other hand, the zeta strategy can be applied as well to global observables, such as
the VEV of the total energy and of the force on the boundary; in this “global version”,
it has become perhaps even more popular than its local counterpart. The literature on
global ZR is enormous; here we only cite the classical papers [135, 136] by Zimerman et
al., [22] by Blau, Visser, and Wipf and the monographies of Elizalde et al. [32, 56, 57], of
Bordag et al. [24, 25], and of Kirsten [91] (see also the papers [36, 71, 72, 85, 92, 98] by
the same author).

Both in the local and in the global versions mentioned above, zeta methods provide a
very natural approach to study the theory of the Casimir effect (CE): in the present
manuscript, with this terminology we refer generically to a class of quite notable physical
phenomena which are related to the vacuum state of a quantum field interacting with
classical boundaries and/or potentials, possibly living on curved and/or topologically
non-trivial background spacetimes. Let us stress that no back-reaction is ever taken
into account. The experimental confirmation [28, 93, 113, 147, 148] of these theoretical
predictions has shown that operations such as a naive implementation of Wick’s normal
ordering (usually interpreted as a simple redefinition of the energy) are highly non-trivial,
since they remove a priori the possibility to predict any vacuum effect.

In comparison with the original theoretical derivation of these effects by Casimir [35],
and with other methods such as point-splitting [21, 31, 49, 59, 110, 126] (in particular,
see [84, 115] for a comparison between point-splitting and the ZR approach) and the
algebraic, microlocal approach (see, e.g., [16, 44, 75, 123, 127] and citations therein), the
zeta strategy is competitive and, perhaps, more elegant. Nevertheless, in most of the
works cited previously ZR is implemented within the framework of Euclidean formulation
of QFT, often in connection with expressions which are derived by formal manipulations
of functional integrals; moreover, apart from a few exceptions [3, 4, 6, 40, 114, 131, 132]
dealing with specific spatial configurations, local aspects are scarcely taken into account
when boundaries are also present.

In this manuscript a different, more systematic formulation is proposed for the ZR ap-
proach, which can be applied automatically in any specific case. The basic framework
under consideration is that of canonical quantization for a Hermitian scalar field, living
on an arbitrary spatial subset of Minkowski spacetime; prescribed boundary conditions
are also taken into account, as well as the “effective interaction” with a classical, back-
ground scalar potential. The attention is mainly focused on the VEV of the stress-energy
tensor, of which both the conformal and the non-conformal parts are considered; however,
the total energy and boundary forces are also taken into account.

More in detail, the manuscript consists of four chapters, described hereafter.

Chapter 1 briefly reviews the approach to ZR developed in the previous works [63, 64, 65,
66, 67] (D.F., L. Pizzocchero) where, having in mind a direct application to some specific
physical models, the language employed is less formal than the one developed in the
subsequent chapters of the present work. Attention is focused on the case of a Hermitian
scalar field living on a subset of Minkowski spacetime; time evolution is described by the
Klein-Gordon equation with the addition of a classical background potential and suitable
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spatial boundary conditions are prescribed. After a brief outline of the classical reference
theory, the field is described in second quantization by means of the standard expansion in
terms of annihilation and creation operators associated to a complete orthonormal system
of eigenfunctions for the elliptic operator defining the “spatial part” of the Klein-Gordon
equation. Complex powers of this elliptic operator are used to define a regularized version
of the field; in turn, the latter is used to derive a regularized version of the propagator,
which is related to the VEVs of many observables (such as the stress-energy tensor).
The regularized propagator appears to be connected to the integral kernels associated to
complex powers of the elliptic operator mentioned above. In the end, renormalization is
defined in terms of the analytic continuation of these kernels.

In Chapter 2 a more systematic functional analytic framework is developed, allowing to
address properly topics such as the integral kernels associated to the complex powers of
an elliptic differential operator, their regularity and their analytic continuations (without
relying heavily on eigenfunction expansion techniques). This apparatus is conceived to be
used in the subsequent Chapter 3 in connection with a more rigorous formulation of the
field theory discussed in Chapter 1 and of its regularization. First an abstract framework is
described, where a scale of indexed Hilbert spaces is constructed starting from an assigned
separable Hilbert space H and from a strictly positive, (essentially) self-adjoint operator
A on it. Next, this abstract framework is employed in the case where H is the space of
square-summable functions on a given spatial domain Ω ⊂ Rd and A is a Schrödinger-
type differential operator; it is shown that the elements of the scale of Hilbert spaces are
related to Sobolev spaces and to spaces of differentiable functions. This formalism is used
to describe the theory of integral kernels related to a class of suitable operators; regularity
and other miscellaneous results are derived for these kernels. Particular attention is
dedicated to the Dirichlet kernel (i.e., the kernel related to the complex power A−s, for
suitable s ∈ C) and to the heat and cylinder kernels (associated, respectively, to e−tA

and e−t
√
A , for <t > 0); it is shown that the first can be expressed in terms of Mellin

transforms of the latters. This fact is employed to construct the analytic continuation
of the Dirichlet kernel and of its derivatives, by means of three different methods; these
rely on suitable assumptions for the heat or cylinder kernels, which are well known to be
fulfilled in most cases of interest.

In Chapter 3 the approach to local ZR discussed in the first chapter is developed within
a fully rigorous framework for second quantization, based on Fock space techniques. The
starting point is the bosonic Fock space F∨(H) on the single particle Hilbert space H;
next, for h ∈ H, the Segal field Φ̂S(h) and the conjugate momentum Π̂S(h) are defined
in terms of the annihilation and creation operators (which, in turn, are defined in the
standard manner on the dense finite particle subspace of F∨(H) ). Assuming A to be
a strictly positive and self-adjoint operator on H, the Wightman field at time zero is
described as the unique C-linear extension of the R-linear map h 7→ Φ̂S(A−1/4h) (for
h = h). Time evolution is implemented applying the second quantization map Γ to the

strongly continuous, one parameter unitary group (e−it
√
A )t∈R (where

√
A plays the role

of the single particle Hamiltonian); it is shown that, under suitable assumptions on h,
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the time evolved field ϕ̂t(h) is differentiable and fulfills a strong form of the Klein-Gordon

equation. ZR is implemented using the powers A−u/4κ := (A/κ2)−u/4 (u ∈ C; κ > 0 a

given mass parameter), to define a family of regularized Dirac deltas δux := A−u/4κ δx and
setting, for x = (t,x) ∈ R× Ω,

ϕ̂u(x) := ϕ̂t(δ
u
x) ; (2)

this is shown to be a regular function of x for <u large enough and it is used to define
a zeta-regularized version T̂ uµν(x) of the stress-energy tensor operator, by analogy with

the corresponding classical observable. Moreover, the VEV of T̂ uµν(x) is proven to be
an analytic function of u which can be expressed in terms of the Dirichlet kernel and
of its derivatives; the analytic continuation of these kernels can be obtained using one
of the methods described in Chapter 2, relating to Mellin transforms. In the end, the
renormalized stress-energy VEV is defined by analytic continuation at u = 0. Related
observables, such as the total energy and the pressure on the boundary, are also discussed
by similar methods.

In the conclusive Chapter 4 the framework developed previously is applied to some specific
configurations. First of all, some of the results obtained for special cases in our antecedent
works [66, 67] are briefly recalled: in particular, attention is focused on the cases of a
massless field either interacting with a background harmonic potential or confined within
a rectangular box. Next, another case is analyzed which, to the author’s knowledge,
has never been addressed before using zeta techniques; this is the case of a scalar field
confined between two parallel planes π0, πa, on which a particular type of Robin boundary
conditions are prescribed. More precisely, for β ∈ R, it is required

(1 + β ∂n) ϕ̂
∣∣∣
π0

= 0 , (1− β ∂n) ϕ̂
∣∣∣
πa

= 0 (3)

(where ∂n indicates the normal derivative at points of π0 and πa, respectively). To treat
this case, an integral representation is derived for the cylinder kernel corresponding to the
reduced 1-dimensional problem of a segment with the boundary conditions descending
from those in Eq. (3). This integral representation allows to derive an explicit expression
for the regularized stress-energy VEV, which can be evaluated explicitly at u = 0, thus
giving the renormalized VEV of the stress-energy tensor.

Basic notations.

We write N for the set of nonnegative integers n = 0, 1, 2, ... .

Throughout this manuscript, we indicate with · and | | the standard inner product on Rd

(d ∈ {1, 2, 3, ...}) and the corresponding norm, respectively. Points of Rd are indicated
with boldface symbols (such as x,y, z, etc).

The Lebesgue measure on Rd is denoted with dx (or dy); we indicate with |E| the Lebesgue
measure of any measurable subset E ⊂ Rd.
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We often use d-dimensional multi-indeces, which are sequences α = (α1, ..., αd) ∈ Nd;
the order of any such multi-index is |α| := α1 + ... + αd. We use the standard notation
for partial derivatives and set ∂α := ∂x1

α1 ... ∂xd
αd . For functions of two (or more) sets

of variables such as ψ : Rd × Rd → C, (x,y) 7→ ψ(x,y), given any pair of multi-indices
α, β ∈ Nd, we use the self-evident notations ∂α1 ∂

β
2ψ ≡ ∂αx∂

β
yψ to indicate the corresponding

partial derivatives.

About complex powers.

Throughout the present manuscript, the following conventions are employed.
i. ln : (0,+∞)→ R is the elementary logarithm.
ii. For any s ∈ C, we systematically refer to the standard definition

xs := es lnx for all x ∈ (0,+∞) . (4)

iii. For any s ∈ C and for any z in a convenient subset C× of the complex plane, we put

zs := es ln |z|+is arg z , (5)

where arg : C× → R is some determination of the argument; this determination depends
on the domain C× and must be specified in each case of interest. Unless otherwise stated,
hereafter we always put

C× := C \ [0,+∞) ;

arg := the unique determination of the argument with values in (0, 2π) .
(6)
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Chapter 1

Motivations and basic ideas

In the present chapter we outline the main heuristic ideas motivating the more rigorous
analysis to be discussed in detail throughout the subsequent chapters of this work, where
a language more formal and precise from a mathematical point of view is employed. To
this purpose, hereafter we briefly recall some results which were first presented more ex-
tensively in our previous work [64] (see also [63]). In particular, we consider an approach
to ZR which works in the framework of canonical quantization; this makes a major differ-
ence in comparison with the more common version of this regularization scheme, which
relies substantially on the Euclidean formulation of QFT.
We restrict the attention to the case of a scalar field; this is assumed to live on an
assigned spatial domain of arbitrary dimension, to fulfill suitable boundary conditions
and, possibly, to interact with a classical background potential (including, in some cases,
a mass term). In Section 1.1 we review the reference classical theory, introducing the
physical observables of main interest for the subsequent analysis; namely, the stress-energy
tensor, the total energy and the pressure on the boundary. In Section 1.2 we consider
the canonical quantization of the classical theory described previously; the quantized
scalar field is expanded in terms of creation and annihilation operators, using a complete
orthonormal set of eigenfunctions of the elliptic operator appearing in the field equations.
In the final Section 1.3 we describe the approach to ZR which was first proposed in [63, 64]:
the basic idea is to use the complex powers of the previously mentioned elliptic operator
to define a regularized version of the field at a point. The latter determines, in turn, a
regularized propagator, whose diagonal evaluation is strictly connected to certain integral
kernels, to be analyzed in detail in Chapter 2.
In passing, we take the chance to fix some conventions and notations to which we will
refer throughout the entire manuscript.
Before proceeding let us stress that, in both the classical and quantum versions of the
field theory under analysis, the above mentioned spatial domain, its boundary and the
background potential are treated as purely classical objects, which are assigned once and
for all and possess no dynamical evolution in time. Therefore, the interaction between
these objects and the (quantum) field is described in a purely effective fashion; in par-
ticular, no back-reaction is ever taken into account in the analysis to be described in the
present Chapter, as well as in the remainder of this work.

7



8 CHAPTER 1. MOTIVATIONS AND BASIC IDEAS

1.1 The reference classical theory.

We use natural units, so that

c = 1 and ~ = 1 , (1.1)

and work in (d + 1)-dimensional Minkowski spacetime Md+1 (with d ∈ {1, 2, 3, ..} arbi-
trary); this is identified with Rd+1 using a set of inertial coordinates

x = (xµ)µ=0,1,...,d ≡ (x0,x) ≡ (t,x) : Md+1 → Rd+1 , (1.2)

in which the Minkowski metric η ≡ (ηµν) has coefficients (1)

(ηµν) = diag(−1 , 1 , . . . , 1︸ ︷︷ ︸
d times

) . (1.3)

We fix a spatial domain Ω ⊂ Rd and refer to the classical theory of a scalar field

ϕ : R× Ω→ R , x 7→ ϕ(x) ≡ ϕ(t,x) ; (1.4)

this is assumed to be at least twice differentiable, to fulfill prescribed conditions (e.g., of
Dirichlet, Neumann or Robin type) on the boundary R×∂Ω and to decay rapidly at time
(and possibly spatial, if Ω is unbounded) infinity. Analogous settings are considered, e.g.,
in [24, 25, 32, 75].
The action functional describing the theory under analysis is

S[ϕ] :=

∫
R×Ω

dt dx
1

2

(
∂µϕ(t,x)∂µϕ(t,x) + V (x)ϕ2(t,x)

)
, (1.5)

where V : Ω → R, x 7→ V (x) is a suitable smooth potential; here and elsewhere, unless
otherwise stated, we use Einstein’s summation convention.
The field time evolution is described by the Klein-Gordon equation with external potential

0 = (− ∂µ∂µ + V )ϕ = (∂tt −4+ V )ϕ (1.6)

(4 :=
∑d

i=1 ∂xixi is the d-dimensional laplacian); of course, initial data for the field and
for its time derivative must be provided as well in order to obtain a well-posed evolution
differential problem.
The stress-energy tensor has components (for µ, ν ∈ {0, ..., d})

Tµν := (1− 2ξ) ∂µϕ∂νϕ−
(

1

2
− 2ξ

)
ηµν(∂

λϕ∂λϕ+ V ϕ2)− 2ξ ϕ ∂µνϕ ; (1.7)

1Equivalently, the line element corresponding to the Minkowksi metric η is assumed to be

ds2 = ηµνdx
µdxν = − (dx0)2 + (dx1)2 + . . .+ (dxd)2 .
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the parameter ξ ∈ R is fixed arbitrarily. The above mentioned regularity assumptions for
the field ϕ suffice to infer the continuity of the functions Tµν : R×Ω→ R, x 7→ Tµν(x) ≡
Tµν(t,x) (let us stress that all the bilinear expressions in the field in Eq. (1.7) are to be
evaluated along the diagonal; so, e.g., (∂µϕ∂νϕ)(x) = ∂µϕ(x) ∂νϕ(x) ). The expression in
Eq. (1.7) is usually referred to as “improved” stress-energy tensor; this is a well-known
modification of the canonical stress-energy tensor (i.e., the conserved Noether current
associated with the spacetime translational symmetries of the action functional (1.5) ) with
an additive term proportional to the real parameter ξ, that does not alter its divergence
(for more details, see Appendix A of [64]). The improved stress-energy tensor was first
proposed by Callan, Coleman and Jackiw [34] in order to deal with some pathologies
arising in perturbation theory for the corresponding quantized version of the field theory
under analysis; later on, this tensor was reinterpreted in terms of the Minkowskian limit
for a scalar field coupled to gravity via the curvature scalar [21, 32, 51, 121, 123] (see also
the footnote on page 4 of [63]).
Other observables can be defined in terms of the stress-energy tensor. More precisely, the
total energy at time t ∈ R is the integral over the spatial domain Ω of the energy density
T00(t,x), i.e.,

E(t) :=

∫
Ω

dx T00(t,x) ; (1.8)

on the other hand, the pressure at a point on the boundary of the spatial domain x ∈ ∂Ω
(at times t ∈ R), is the vector p(x) = (pi(t,x)) (i = 1, ..., d), whose components are

pi(t,x) := T i j(t,x)nj(x) , (1.9)

where n(x) = (ni(x)) is the unit normal to ∂Ω at x.

1.2 Second quantization.

In order to fix some notations, let us now briefly address the second quantization of the
classical field theory described in the previous section. Within this framework, we consider
the single particle Hilbert space H = L2(Ω), with inner product 〈 | 〉L2 , and the bosonic
Fock space F∨(H) ≡ F on it, with inner product ( | ).
The classical field ϕ : R× Ω→ R is replaced by the map

ϕ̂ : R× Ω→ Lsa(F) , x 7→ ϕ̂(x) ≡ ϕ̂(t,x) (1.10)

(2), where we are referring to the space L(F) of linear operators on F and to the subset
Lsa(F) of self-adjoint operators. Next, let us put

A := −4+V , (1.11)

2 Of course the notation ϕ̂ : R × Ω → Lsa(F), (x, t) 7→ ϕ̂(x, t) is used here in connection with a
generalized operator valued function; in fact, as well known, ϕ̂ is an operator valued distribution. We
defer to Chapter 3 a more rigorous analysis.
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intending that the boundary conditions on ∂Ω (if any) are accounted for in the above
definition; we assume the framework under analysis to grant that A is a strictly positive,
selfadjoiont operator on H.
To proceed, consider a complete orthonormal set (Fk)k∈K of (possibly generalized) eigen-
functions of A (3), indexed by an unspecified set of labels K, and write the corresponding
eigenvalues in the form (ω2

k)k∈K (ωk ≥ ε for some ε > 0 and for all k ∈ K); thus

Fk : Ω→ C , AFk = ω2
kFk ,

〈Fk|Fh〉L2 = δ(k, h) for all k, h ∈ K .
(1.12)

Any eigenfunction label k ∈ K can include different parameters, both discrete and con-
tinuous. Besides, we generically write

∫
K dk to indicate summation over all labels (i.e.,

literal summation over discrete parameters and integration over continuous parameters,
with respect to a suitable measure); δ(h, k) is the Dirac delta function for the label space
K (this reduces to the Krönecker symbol in the case of discrete parameters).
The set of eigenfunctions described above allows us to derive for the quantized field a
normal modes expansion of the form

ϕ̂(t,x) =

∫
K

dk√
2ωk

[
âk e

−iωkt Fk(x) + â†k e
iωkt F k(x)

]
(1.13)

(with indicating complex conjugation). Here we are considering the destruction and
creation operators âk, â

†
k ∈ L(F) (k ∈ K) associated to the set of eigenfunctions (Fk)k∈K;

these fulfill the canonical commutation relations

[âh, âk] = [â†h, â
†
k] = ÔF , [âh, â

†
k] = δ(h, k) ÎF , (1.14)

where ÔF, ÎF ∈ L(F) denote the null and the identity operator on F, respectively. More-
over, indicating with v ∈ F the vacuum state (of unit norm), there holds the annihilation
condition

âk v = o (1.15)

(o ∈ F is the null element of F, not to be confused with v).
Next let us consider the propagator, i.e., the vacuum expectation value (VEV)

(v | ϕ̂(x) ϕ̂(y) v) (x, y ∈ R× Ω) ; (1.16)

this allows to make connection with the Casimir effect. In fact, one can define second
quantized versions of the classical observables mentioned in the previous subsection (such
as the stress-energy tensor (1.7) ) and compute the corresponding VEVs; all these VEVs
can be expressed in terms of the propagator (1.16) and of its derivatives, evaluated along
the diagonal y = x. We defer to Chapter 3 a more detailed analysis.

3For a fully rigorous discussion of generalized eigenfunctions see, e.g., Chapter IV of [78].
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The assumption of strict positivity for A (granting that ωk ≥ ε, for some ε > 0 and for
all k ∈ K) excludes the presence of any infrared divergence (4). On the other hand, the
propagator is known to be plagued with ultraviolet divergences, which appear along the
diagonal; therefore, expressions such as (v | ϕ̂(x)2 v) ≡ (v | ϕ̂(x) ϕ̂(x) v) are merely formal
ways to indicate ill-defined quantities.
Our purpose in the next subsection is to redefine the field operator via a suitable regular-
ization scheme, ultimately yielding finite values for the propagator also along the diagonal
(and for other related observables).

1.3 Zeta regularization.

Let κ > 0 denote a parameter, to which we attribute the dimension of a mass (or of an
inverse length, since we have fixed ~ = 1). Because of this, κ will be called the mass scale;
it is introduced for dimensional reasons and it plays the role of a normalization scale. The
final, renormalized results appear to depend on κ only when singularities appear in the
analytic continuations involved in the following construction. See [22, 32, 56, 88, 114] for
further comments regarding this parameter and its presence or absence in the renormalized
observables related to the field.
The zeta strategy, in the version proposed in [63, 64] (and employed systematically in
[65, 66, 67]), relies on the powers

A−u/4κ := (A/κ2)−u/4 , (1.17)

where A = −4 +V is the operator (1.11) and u ∈ C; these operators are employed to
introduce the zeta-regularized field operator

ϕ̂u := A−u/4κ ϕ̂ , (1.18)

depending on the complex parameter u and coinciding with the usual field operator ϕ̂
for u = 0. We provisionally accept the following heuristic definition of A−u/4κ ϕ̂ (5):
this is the operator-valued function constructed expanding ϕ̂ as in Eq. (1.13) via a

complete orthonormal system of eigenfunctions (Fk)k∈K of A and letting A−u/4κ act on

each eigenfunction as A−u/4κ Fk = κu/2 ω
−u/2
k Fk. In this way, Eq. (1.18) yields

ϕ̂u(t,x) = κu/2
∫
K

dk√
2ω

(u+1)/2
k

[
âk e

−iωktFk(x) + â†k e
iωktF k(x)

]
. (1.19)

Note that, in the limit ωk → +∞, the term 1/ω
(u+1)/2
k in the above integral vanishes

rapidly if <u is large; this is a manifestation of the regularizing effect of the operator
A−u/4κ for large <u.

4In Section 5 of [64], we also considered some variations of the present setting allowing to deal with
infrared issues as well.

5We defer to Chapter 3 of this manuscript a more rigorous formulation.
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The regularized field ϕ̂u allows to construct a regularized propagator

(v | ϕ̂u(x) ϕ̂u(y) v) (x, y ∈ R× Ω) , (1.20)

which can be used, in turn, to define regularized versions for the VEV of the other previ-
ously mentioned observables as well. In fact, it appears that the regularized propagator
(1.20) (along with its derivatives) is regular also along the diagonal y = x if <u is large
enough; this means that the ultraviolet divergences of (v | ϕ̂(x) ϕ̂(y) v) have been cured
by the regularization scheme described above.
In particular, using the expansion (1.19) along with the commutation relations (1.14), the
diagonal regularized propagator (v | (ϕ̂u(t,x))2 v) ≡ (v | ϕ̂u(x) ϕ̂u(x) v) can be computed
explicitly. The final result is

(v | (ϕ̂u(t,x))2 v) =
κu

2

∫
K

dk

ωku+1
Fk(x)F k(x) ; (1.21)

notice that the right-hand side above does not depend on the time coordinate t. Moreover,
the integral appearing in Eq. (1.21) can be interpreted as the eigenfunction expansion of

the integral kernel associated to the complex power A−u+1
2 evaluated along the diagonal,

i.e., as A−u+1
2 (x,x); more precisely there holds

(v | (ϕ̂u(t,x))2 v) =
κu

2
A−u+1

2 (x,x) . (1.22)

Typically, the zeta regularized observables derived in the above framework are analytic
functions of the parameter u, for <u sufficiently large. Then, according to the (either
restricted or extended) zeta approach described in [64], the renormalized versions of this
observables are defined in terms of the analytic continuations (or, rather, of their regular
parts) at u = 0 of the regularized counterparts; so, for example, we put

(v | (ϕ̂(t,x))2 v)ren := RP
∣∣∣
u=0

κu

2
A−u+1

2 (x,x) (1.23)

(here RP |u=0 indicates the evaluation in u = 0 of the regular part of the related analytic
continuation). As exemplified in Eq. (1.23), the renormalized observables are strictly
related to the diagonal values of the integral kernels (and of the corresponding derivatives)
associated to complex powers of the differential operator A = −4+V .

In view of the above considerations, in order to give a more rigorous and systematic
formulation of the approach described above (a formulation to be discussed in Chapter
3), it is first necessary to develop a functional analytic framework allowing to address
properly the theory of integral kernels. This topic will be discussed in the forthcoming
Chapter 2 were attention is focused, in particular, on the regularity properties of the
mentioned kernels and on the methods allowing to construct their analytic continuations.



Chapter 2

Functional spaces, operators and
kernels

In this chapter we describe the basic functional analytic framework to which we will refer
throughout the remainder of the present manuscript. We first recall some well-known
facts about distributions, Sobolev spaces and interpolation of Banach spaces. Next, we
describe an abstract setting based on a scale of Hilbert spaces associated to the real powers
of a given strictly positive, self-adjoint operator. The case were the mentioned operator
is an elliptic Schrödinger-type differential operator is then considered in more detail; the
results obtained in this setting allow, among else, to give an alternative formulation of
the theory of integral kernels related to a suitable type of operators. Finally, we briefly
review some results about Mellin transforms and their analytic continuations.

2.1 Function spaces.

Throughout the entire manuscript Ω denotes a domain in Rd, meaning that Ω ⊂ Rd is
an open connected subset. We will mainly focus the attention on the settings i) and ii)
described hereafter:

i) Ω is an arbitrary domain in Rd, with no restrictions regarding either regularity or
boundedness; in fact, Ω could also be unbounded with a boundary which is not even
continuous (the case Ω = Rd is not excluded as well).

ii) Ω is a bounded domain, with compact boundary ∂Ω of class C∞.

In both cases i) and ii), Ω indicates the closure of Ω, i.e., Ω := Ω ∪ ∂Ω.

Possible variations of the above settings are sometimes taken into account as well, in order
to hint at simple generalizations of some results to be discussed in the following.

Remark 2.1. Unless otherwise stated, Ω is always assumed to be as in item i) above.

In the subsequent paragraphs we fix some standards about the main function spaces on
Ω to be considered in this work.

13
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Test functions and distributions.

A test function on Ω is a smooth, compactly supported function f : Ω→ C; these functions
form the vector space D(Ω), which can be equipped with the well known inductive limit
topology (see, e.g., [151]). With respect to this topology, D(Ω) is a so-called LF-space,
that is a countable, strict inductive limit of Fréchet spaces.
The topological dual space D′(Ω) is the locally convex space of Schwartz distributions
on Ω; we write 〈f, ϕ〉 for the action of a distribution f on a test function ϕ. Unless
otherwise stated, all derivatives considered in the sequel are to be understood in the sense
of distributions.

The spaces Lp(Ω), Lp
loc(Ω).

For any p ∈ (0,+∞), these spaces consist of measurable functions f : Ω → C such that
|f |p is Lebesgue integrable on Ω or (in the local case) on any compact subset of Ω. The
standard norm on the Banach space Lp(Ω) is indicated with ‖ ‖Lp ; we regard L2(Ω) as a
Hilbert space endowed with the inner product 〈f |g〉L2 :=

∫
Ω
dx f(x) g(x) ≡

∫
Ω
f g.

We use systematically the embeddings Lp(Ω) ↪→ Lploc(Ω) ↪→ D′(Ω).

Sobolev spaces

Let m ∈ N; we will often consider the Sobolev space (of L2 type and) of integer order m

Hm(Ω) := {f ∈ D′(Ω) | ∂αf ∈ L2(Ω) for α ∈ Nd, |α| ≤ m} . (2.1)

This is a complex Hilbert space with the inner product

〈f |g〉Hm :=
∑

α∈Nd, |α|≤m

〈∂αf |∂αg〉L2 , (2.2)

inducing the norm ‖f‖Hm :=
√
〈f |f〉Hm; of course, H0(Ω) = L2(Ω).

Let r ∈ [0,+∞) \ N; consider the integer part [r] ∈ N and put ρ := r − [r] ∈ (0, 1). The
Sobolev space of fractional order r is

Hr(Ω) :=

{
f ∈ D′(Ω)

∣∣∣ ∂αf ∈ L2(Ω) for α ∈ Nd, |α| ≤ [r] , and∫
Ω×Ω

dx dy
|∂αf(x)− ∂αf(y)|2
|x− y|d+2ρ

< +∞ for α ∈ Nd, |α| = [r]

}
;

(2.3)

this is also a complex Hilbert space with the inner product

〈f |g〉Hr := (2.4)∑
α∈Nd,|α|≤[r]

〈∂αf |∂αg〉L2 +
∑

α∈Nd,|α|=[r]

∫
Ω×Ω

dx dy
(∂αf(x)− ∂αf(y)) (∂αg(x)− ∂αg(y))

|x− y|d+2ρ
,

inducing the norm ‖f‖Hr :=
√
〈f |f〉Hr .
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For any r ∈ [0,+∞) (integer or not), we denote with Hr
0(Ω) the closure of D(Ω) in the

space Hr(Ω) (with respect to the associated norm); Hr
0(Ω) is itself a Hilbert space with

the inner product (2.4) inherited from Hr(Ω). We denote with H−r(Ω) its topological
dual; so, each f ∈ H−r(Ω) is a continuous linear form on Hr

0(Ω) and, by restriction to
D(Ω), it can be identified with a distribution on Ω. By the Riesz theorem, there is a
unique antilinear isomorphism ir : Hr

0(Ω) → H−r(Ω) such that 〈irf, g〉 = 〈f |g〉Hr for all
g ∈ Hr(Ω); we define an inner product on H−r(Ω) setting

〈f |g〉H−r := 〈i−1
r g | i−1

r f〉Hr . (2.5)

Poincaré type inequalities.

Two inequalities of this kind will be considered in this work.

i) Assume the (otherwise arbitrary) domain Ω ⊂ Rd to be bounded along a direction; this
means that there exist a unit vector n ∈ Rd and two constants a ∈ R, h ∈ (0,+∞) such
that Ω is contained in the strip {x ∈ Rd | a ≤ n · x ≤ a + h} (of course, h represents
the width of the strip). Under these conditions, it is known that there is a constant
cΩ ∈ (0,+∞) such that∫

Ω

|f |2 ≤ cΩ

∫
Ω

|∇f |2 for all f ∈ H1
0 (Ω) (2.6)

(here |∇f |2 :=
∑d

i=1 |∂xif |2); as well known (see, e.g., [54, 109]), one can take cΩ = h2/2.

ii) Another inequality we will refer to involves functions of zero mean (rather than func-
tions vanishing on the boundary of the domain) with domain consisting of any ball B(x0, r)
in Rd of center x0 and radius r. It is known that there exists a constant cB ∈ (0,+∞),
depending only on d, such that for any x0 ∈ Rd and r ∈ (0,+∞)∫

B(x0,r)

|f |2 ≤ cB r
2

∫
B(x0,r)

|∇f |2 for all f ∈H1(B(x0, r)) s.t.

∫
B(x0,r)

f = 0 ; (2.7)

one can take cB = 22d (see [79], page 164, Eq. (7.45) ).

Local Sobolev spaces.

For any r ∈ R, we consider the local Sobolev space of order r (see [38])

Hr
loc(Ω) := {f ∈ D′(Ω) | ϕf ∈ Hr(Ω) for any ϕ ∈ D(Ω)} . (2.8)

This carries the locally convex topology induced by the family of seminorms

f 7→ ‖ϕf‖Hr (ϕ ∈ D(Ω)) , (2.9)

with ‖ ‖Hr indicating the Hr norm.
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Spaces of differentiable functions and Sobolev embeddings.

Let j ∈ N; we denote with Cj(Ω) the space of functions f : Ω→ C which are continuous
on Ω along with all their partial derivatives ∂αf of orders |α| ≤ j. We endow Cj(Ω) with
the Fréchet topology induced by the family of seminorms

f 7→ |f |Cj,K := max
α∈Nd, |α|≤j

sup
x∈K
|∂αf(x)| (K ⊂ Ω compact) (2.10)

(1); of course, this family is equivalent to the set of seminorms

f 7→ |f |Cj,ϕ := max
α∈Nd, |α|≤j

sup
x∈Ω
|ϕ(x) ∂αf(x)| (ϕ ∈ D(Ω) ) . (2.11)

On the other hand, we indicate with Cj(Ω) the linear subspace of Cj(Ω) consisting of
functions f that, along with all their derivatives ∂αf of order |α| ≤ j, admit continuous
extensions to Ω; f , ∂αf are often identified with these extensions, which are unique. If Ω
is bounded, Cj(Ω) is a Banach space with respect to the norm

‖f‖Cj := max
α∈Nd, |α|≤j

sup
x∈Ω
|∂αf(x)| . (2.12)

We shall also need the spaces of functions whose derivatives satisfy a Hölder condition
for some exponent λ ∈ (0, 1]. More precisely, we write Cj,λ(Ω) for the space of functions
f ∈ Cj(Ω) whose derivatives ∂αf of order |α| = j fulfill, for any compact subset K ⊂ Ω,

sup
x,y∈K,x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|λ < +∞ ; (2.13)

we endow this space with the Fréchet topology induced by family of seminorms

|f |Cj,λ,K := |f |Cj,K + max
α∈Nd, |α|=j

sup
x,y∈K,x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|λ (K ⊂ Ω compact) . (2.14)

For Ω bounded, we indicate with Cj,λ(Ω) the space of functions f ∈ Cj(Ω) whose deriva-
tives ∂αf of order |α| = j fulfill

sup
x,y∈Ω,x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|λ < +∞ ; (2.15)

this becomes a Banach space if equipped with the norm

‖f‖Cj,λ := ‖f‖Cj + max
α∈Nd, |α|=j

sup
x,y∈Ω,x6=y

|∂αf(x)− ∂αf(y)|
|x− y|λ . (2.16)

There hold the following well-known results.

1In fact, this family is equivalent to the countable set of seminorms which corresponds to any given
sequence of compact subsets K0 ⊂ K1 ⊂ K2 ⊂ ... such that Ω =

⋃
n∈NKn .
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Theorem 2.1. (Sobolev Embedding) Let r ∈ R and j ∈ N be such that r > j + d/2;
then, there hold the following continuous embeddings.
i) For any domain Ω ⊂ Rd, there holds

Hr
loc(Ω) ↪→ Cj(Ω) ; (2.17)

more precisely, for any λ ∈ (0, 1) such that r > j + d/2 + λ, it is

Hr
loc(Ω) ↪→ Cj,λ(Ω) ↪→ Cj(Ω) . (2.18)

ii) If Ω ⊂ Rd is a bounded domain, with compact boundary ∂Ω of class C∞, there holds

Hr(Ω) ↪→ Cj(Ω) ; (2.19)

more precisely, for any λ ∈ (0, 1) such that r > j + d/2 + λ, it is

Hr(Ω) ↪→ Cj,λ(Ω) ↪→ Cj(Ω) . (2.20)

Remark 2.2. We refer to Proposition 2.13 of [38] and to Corollary 9.1 on page 46 of [97]
for the proof of statements i) and ii), respectively. See also [7], Theorems 5.4 and 6.2, for
generalizations of the above theorem dealing also with configurations involving unbounded
domains whose boundary only fulfill regularity conditions much weaker than the ones in
statement ii).

The case Ω = Rd: tempered distributions, Fourier transforms and another
characterization of Sobolev spaces.

We write S(Rd) for the Schwartz space of smooth functions f : Rd → C rapidly decreasing
at infinity with all their derivatives; this space has well known topology [151], and its
topological dual S ′(Rd) is called the space of tempered distributions. Any f ∈ S ′(Rd),
after restriction to the space D(Ω), can be identified with an element of D′(Ω). A Fourier
transform can be defined

F : S ′(Rd)→ S ′(Rd) , f 7→ Ff ; (2.21)

we use for F the normalization such that

(Ff)(k) =
1

(2π)d/2

∫
Rd
dx f(x) e−ik·x (f ∈ S(Rd) ; k ∈ Rd) . (2.22)

For any r ∈ R we have the following, equivalent characterization of the spaces Hr(Rd):

Hr(Rd) = {f ∈ S ′(Rd) | (1 + |k|2)r/2Ff ∈ L2(Rd)} (2.23)

(where (1 + |k|2)r/2Ff indicates multiplication of the Fourier transform Ff by the smooth
function Rd → R, k 7→ (1 + |k|2)r/2; the quantity

〈f |g〉Hr(Rd) := 〈(1 + |k|2)r/2Ff | (1 + |k|2)r/2Fg〉L2 (2.24)
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yields an inner product on Hr(Rd) equivalent to the inner products introduced previously
for any space Hr(Ω) (considering separately the cases r ∈ N, r ∈ [0,+∞) \ N, and r ∈
(−∞, 0) ). Moreover, there holds the continuous embedding (2)

Hu(Rd) ↪→ Hr(Rd) for r, u ∈ R with u ≥ r . (2.25)

2.2 Some known results on Banach spaces.

If G is any topological vector space, we write G ′ for the dual vector space, made of the
continuous linear forms α : G → C, g 7→ 〈α, g〉. If G is a Banach space with a norm ‖ ‖, G ′
is as well a Banach space with the norm ‖α‖′ := supg∈G,g 6=0

|〈α,g〉|
‖g‖ ; in particular, for each

r ∈ R, (Hr)′ is a Banach space with the norm ‖ ‖′r induced by ‖ ‖r.

Notations for operators. Banach adjoints.

Let X, Y be any two Banach spaces, endowed with the standard norm topology; we denote
with X ′, Y ′ their topological duals, and with 〈 , 〉 the bilinear duality pairing between X ′

and X (resp. Y ′ and Y ).

An operator B : Dom(B) ⊂ X → Y is a linear map whose domain Dom(B) is a linear
subspace of X; if B is injective, we write B−1 for the inverse. We indicate with B(X, Y )
the Banach space of continuous (i.e., bounded) operators from X to Y ; this is equipped
with the standard operator norm ‖ ‖B(X,Y ) (and with the induced topology).

The Banach adjoint of a continuous operator B ∈ B(X, Y ) is the unique continuous
operator B∗ ∈ B(Y ′, X ′) such that

〈B∗g, f〉X = 〈g,Bf〉Y for all f ∈ X, g ∈ Y ; (2.26)

we refer to the standard theory analyzed, e.g., in [42, 129]. It can be easily proved that
the adjoint map ∗ : B(X, Y ) → B(Y ′, X ′), B 7→ B∗ is an isometric isomorphism (3);
moreover, if X and Y are reflexive (i.e., X ′′ = X and Y ′′ = Y ), any continuous operator
B ∈ B(X, Y ) coincides with its double adjoint B∗∗ ≡ (B∗)∗ ∈ B(X ′′, Y ′′). Given a third
Banach space Z and any two continuous operators B ∈ B(X, Y ), C ∈ B(Y, Z), the
composition CB : X → Z is also continuous and its adjoint (CB)∗ fulfills (CB)∗ = B∗C∗ ∈
B(Z ′, X ′).

We will employ the above mentioned facts in subsection 2.5.

2 In fact, using the norm ‖ ‖Hr(Rd) induced by inner product (2.24), for any f ∈ Hu(Rd) one has

‖f‖2Hr(Rd) = ‖(1 + |k|2)r/2Ff‖2L2 ≤ ‖(1 + |k|2)u/2Ff‖2L2 = ‖f‖2Hu(Rd) .

3For a proof of this fact, see, e.g., [129], page 186, Theorem VI.2.
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Integration of Banach-valued functions.

Let us consider a real (or complex) Banach space X and its topological dual X ′, equipped
with the standard norm topology; moreover, let (Ω,MΩ, µ) be a measure space (with MΩ

a σ-algebra of parts of Ω). A function f : Ω→ X is said to be weakly measurable if, for
each α ∈ X ′, the function 〈α, f〉 : Ω→ R (or C), x 7→ 〈α, f(x)〉 is measurable in the usual
sense. The function f is said to be weakly integrable (or integrable in the Gelfand-Pettis
sense) if it is weakly measurable, 〈α, f〉 is Lebesgue integrable for all α ∈ X ′ and there is
an element of X, indicated with

∫
Ω
f(x) dµ(x) ≡

∫
Ω
f dµ , such that

〈α,
∫

Ω

f dµ〉 =

∫
Ω

〈α, f〉 dµ for all α ∈ X ′ ; (2.27)

the above element of X is unique if it exists, and it is called the integral of f in the weak
(or Gelfand-Pettis) sense.
In the following developments we will need the forthcoming result.

Theorem 2.2. Let X, Y be any two real (or complex) Banach spaces, f : Ω → X a
weakly integrable function and let B : X → Y be a continuous operator; then, the function
Bf : Ω→ Y , x 7→ (B(f(x)) ≡ (Bf)(x) is weakly integrable and

B
(∫

Ω

f dµ

)
=

∫
Ω

(Bf) dµ . (2.28)

See, e.g., [50] and [125] for more details about the topics discussed in the present paragraph
(in particular, for the proof of Theorem 2.2).

Abstract interpolation of complex Banach spaces.

Two complex vector spaces X0, X1 are said to be interpolable if their set theoretical
intersection X0∩X1 is a linear subspace of both of them. In this case there exists a vector
space X0 +X1 that contains X0 and X1 as subspaces, and is generated by them; X0 +X1

is unique up to linear isomorphisms that preserve the elements of X0 and X1.
Now let us consider two complex Banach spaces X0 and X1, with norms ‖ ‖X0 and ‖ ‖X1 ,
respectively; these are said to be interpolable if the underlying vector spaces are so. In
this case, both the vector spaces X0 ∩X1 and X0 +X1 are Banach spaces with respect to
the norms ‖x‖X0∩X1 := max(‖x‖X0 , ‖x‖X1) and ‖x‖X0+X1 := inf{‖x0‖X0 + ‖x1‖X1 | x0 ∈
X0, x1 ∈ X1, x0 + x1 = x}, respectively. It turns out that X0, X1, X0 ∩ X1 ↪→ X0 + X1

(continuous embeddings).
To go on, let us consider the strip S := {z ∈ C | 0 < <z < 1} in the complex plane C, and
its closure S (that is the union of S with the lines s0 := {<z = 0} and s1 := {<z = 1}.
Let us introduce the function space

F(X0, X1) :=

{F ∈ Hol(S,X0 +X1) ∩ C(S,X0 +X1) | (F �si) ∈ CB(si, Xi) for i = 0, 1} ,
(2.29)
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where Hol, C, CB mean, respectively, holomorphic, continuous, continuous and bounded.
F(X0, X1) is a vector space and it becomes a Banach space when it is equipped with the
norm

‖F‖F(X0,X1) := max
(

sup
z∈s0
‖F (z)‖X0 , sup

z∈s1
‖F (z)‖X1

)
. (2.30)

For θ ∈ (0, 1), the interpolation space of order θ between X0 and X1 is

[X0, X1]θ := {x ∈ X0 +X1 | x = F (θ) for some F ∈ F(X0, X1) ; (2.31)

this is a linear subspace of X0 +X1, and it is a Banach space with respect to the norm

‖x‖[X0,X1]θ := inf{‖F‖F(X0,X1) | F ∈ F(X0, X1) , F (θ) = x} . (2.32)

It turns out that X0∩X1 ↪→ [X0, X1]θ ↪→ X0 +X1. In particular, assume X1 ↪→ X0. Then
the two spaces X0, X1 are interpolable; in terms of linear structures we have X0∩X1 = X1,
and we can take X0 +X1 = X0. Moreover the norms defined previously for X0 ∩X1 and
X0 + X1 are equivalent to the norms of X1 and X0, respectively. Summing up, in this
case, X1 ↪→ [X0, X1]θ ↪→ X0.
The main theorem in interpolation theory states the following [1, 19, 101]:

Theorem 2.3. Let X0, X1 and Y0, Y1 be two arbitrary pairs of interpolable Banach spaces
and consider two continuous linear operators B0 : X0 → Y0 and B1 : X1 → Y1 such that
B0 �X0∩X1 = B1 �X0∩X1. Let B : X0 +X1 → Y0 +Y1 be the unique linear map such that
B �X0 = B0 and B �X1 = B1. Then, for each θ ∈ (0, 1), Bθ := B �Xθ maps continuously
[X0, X1]θ to [Y0, Y1]θ and

‖Bθ‖B([X0,X1]θ,[Y0,Y1]θ) ≤ (‖B0‖B(X0,Y0))
1−θ (‖B1‖B(X1,Y1))

θ . (2.33)

Many applications of interpolation theory are related to Lp spaces. More precisely, con-
sider a measure space (K,MK , µ) ≡ K, with µ a positive measure on some σ-algebra MK

of subsets of K; let us write Mis(K) for the vector space of complex measurable functions
K → C (or, more precisely, of the equivalence classes of such functions with respect to
equality almost everywhere for the measure µ). Let p ∈ [1,+∞], and ω ∈ Mis(K) be such
that ω(k) > 0 for almost every (a.e.) k ∈ K; consider the Banach space Lp(K,ω dµ), made
of functions f ∈ Mis(K) which are Lp with respect to the measure MK 3 A 7→

∫
A
ω dµ.

Let p0, p1 ∈ [1,+∞] and ω0, ω1 ∈ Mis(K), with ω0, ω1 > 0 almost everywhere. Then, the
Banach spaces Lp0(K,ω0dµ) and Lp1(K,ω1dµ) are both interpolable, and their sum can
be realized naturally as a linear subspace of Mis(K); moreover, for all θ ∈ (0, 1) one has
(see [1], Theorem 2.12)

[Lp0(K,ω0dµ), Lp1(K,ω1dµ)]θ = Lp(K,ωdµ) , (2.34)

where p ∈ [1,+∞] and ω ∈ Mis(K) are defined, respectively, by

1

p
=

1− θ
p0

+
θ

p1

, ω(k) := ω0(k)
p
p0

(1−θ)
ω1(k)

p
p1
θ

for a.e. k ∈ K . (2.35)
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The equality in Eq. (2.34) must be intended as follows: the left and the right-hand side
coincide as vector spaces, and carry the same norm.
A subcase of this result, of interest for us in the sequel, is the one with p0 = p1 ≡ p and
ω0 = wr0 , ω1 = wr1 for some w ∈ Mis(K), with w > 0 almost everywhere, and r0, r1 ∈ R.
In this case, Eq.s (2.34) and (2.35) give

[Lp(K,wr0dµ), Lp(K,wr1dµ)]θ = Lp(K,w(1−θ)r0+θr1dµ) . (2.36)

Standard interpolation results for the Sobolev spaces Hn(Rd) can be derived by Eq. (2.36);
indeed, for each r ∈ R, the space Hr(Rd) of Eq. (2.23) can be identified (via the Fourier
transform) with L2(Rd, wrdk), where w(k) := 1 + |k|2 and dk is the standard Lebesgue
measure. So, for all r0, r1 ∈ R and θ ∈ (0, 1), one infers from Eq. (2.36) that

[Hr0(Rd), Hr1(Rd)]θ = H(1−θ)r0+θr1(Rd) . (2.37)

A result analogous to Eq. (2.37) holds as well for the Sobolev spaces Hr(Ω) (r ∈ R), under
minimal regularity assumptions for the domain Ω ⊂ Rd; in particular, if Ω is bounded
with compact boundary of class C∞, for any r0, r1 ∈ R and for any θ ∈ (0, 1) one has (4)

[Hr0(Ω), Hr1(Ω)]θ = H(1−θ)r0+θr1(Ω) . (2.38)

Let us stress that, contrary to the previous examples (2.34-2.37), the spaces on the two
sides of the above equality are in general endowed with distinct norms (5): Eq. (2.38)
must be meant to hold algebraically and topologically, in the sense that the mentioned
norms are equivalent.

For a more comprehensive analysis of the topics reviewed briefly in the present paragraph,
we refer, e.g., to the already cited books [1, 19, 101].

2.3 Operators on Hilbert spaces.

In the sequel we consider a complex, separable Hilbert space H; we write 〈 | 〉 for the
inner product of H (antilinear in the left argument, linear in the right one) and ‖ ‖ for
the induced norm.

Notations for operators.

Similarly to the case of Banach spaces (compare with Section 2.2), an operator on H is
a linear map A : Dom(A) ⊂ H → H, whose domain Dom(A) is a linear subspace of H;
B(H) ≡ B(H,H) is the space of continuous (i.e., bounded) operators from H into H,
and ‖ ‖B ≡ ‖ ‖B(H,H) indicates the usual operator norm on this space.

4Eq. (2.38) contains a well-known result on Sobolev spaces; see, e.g., Theorem 7.48 of [7], Proposition
2.7 of [96] and Theorem 9.6 of [97] for more details.

5In fact, the space [Hr0(Ω), Hr1(Ω)]θ carries the interpolation norm defined according to Eq. (2.32)
while, if r0, r1 ≥ 0, H(1−θ)r0+θr1(Ω) has the standard norm induced by the inner product (2.4).
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If Dom(A) is dense in H, we can define the Hilbert adjoint operator A† (see, e.g., [119,
129]). Let us stress that if A is continuous and Dom(A) = H the notion of Banach adjoint
defined in Section 2.2 reduces to that of Hilbert adjoint considered here; in fact, viewing
H as an (anti-)self-dual Banach space, one has A∗ = A† ∈ B(H). In the remainder of
this work, for the sake of brevity, we use the bare adjective “adjoint” as short for “Hilbert
adjoint”.
Given a pair of linear operators A : Dom(A) ⊂ H → H, B : Dom(B) ⊂ H → H and a
constant c ∈ C, the operators cA, A + B and BA are obviously defined on the domains
Dom(cA) := Dom(A), Dom(A+B) := Dom(A)∩Dom(B) and Dom(BA) := {f ∈ H | f ∈
Dom(A),Af ∈ Dom(B)}. If C is another operator onH we define A+B+C := (A+B)+C,
CBA := C(BA), and so on iteratively. We write B ⊃ A if B is an extension of A.
In the sequel we will write σ(A) for the spectrum of an operator A, defined as in [119, 129].

The case H = L2(K,µ). Multiplication operators.

Let us consider again a measure space (K,MK , µ) ≡ (K,µ), with µ a positive measure on
some σ-algebra MK of subsets of K; let us recall that we write k for a generic point of K
and Mis(K) for the space of measurable functions on K (see subsection 2.2). The space
L2(K,µ) of complex, square integrable, measurable functions on K is a Hilbert space with
the inner product

〈f |g〉 :=

∫
K

f(k) g(k) dµ(k) ≡
∫
K

f g dµ , (2.39)

inducing the norm

‖f‖2 =

∫
K

|f |2 dµ . (2.40)

To go on, let us consider a function w ∈ Mis(K); the multiplication operator by w is

Mw : Dom(Mw) ⊂ L2(K,µ)→ L2(K,µ) , f 7→Mwf := wf (2.41)

with
Dom(Mw) := {f ∈ L2(K,µ) | wf ∈ L2(K,µ)} . (2.42)

This is a linear operator with dense domain, whose adjoint is

(Mw)† = Mw ; (2.43)

in particular, Mw is self-adjoint if w is real valued. The operator Mw is defined on the
whole space L2(K,µ) and bounded (i.e., Mw∈B(L2(K,µ)) ) if and only if w is essentially
bounded (i.e., bounded up to sets of zero µ measure); in this case

‖Mw‖B = ess sup
k∈K

|w(k)| . (2.44)

For any given w ∈ Mis(K), the spectrum of Mw is as follows:

σ(Mw) = EssImw , (2.45)
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where the right-hand side indicates the essential image of w, defined by

EssImw := {λ ∈ C | µ(w−1(B(λ, ε))) > 0 for each ε > 0} (2.46)

(with B(λ, ε) := {λ′ ∈ C | |λ′ − λ| < ε}).
If w is real valued, in which case Mw is self-adjoint, one infers from Eq. (2.45) that, for
all a ∈ R,

w ≥ a µ-almost everywhere ⇔ σ(Mw) ⊂ [a,+∞) . (2.47)

Given any pair of functions v, w ∈ Mis(K) one has

Mv+w ⊃Mw +Mw , Mvw ⊃MvMw , (2.48)

with ⊃ replaced by = if v and w are essentially bounded. Moreover, for c ∈ C \ {0}, it is

Mcw = cMw , (2.49)

while M0·w ⊃ 0 ·Mw.

Spectral theorem and functional calculus for self-adjoint operators.

Let us consider an abstract, separable Hilbert space H and a self-adjoint operator A :
Dom(A) ⊂ H → H. The “multiplication operator version” of the spectral theorem (see
[129]) states that there exist a measure space (K,µ), a measurable function w : K → R
and a Hilbertian isomorphism I : H → L2(K,µ) such that

A = I−1Mw I . (2.50)

Obviously enough, I−1Mw I indicates the linear operator f 7→ I−1Mw If with domain
I−1(Dom(Mw)). The set (K,µ,w, I) is not uniquely determined by A, but this is no
cause of concern for the relevant constructions associated to this representation and, in
particular, for the functional calculus described hereafter. For future use, we mention that
one can choose (K,µ) so that µ(K) < +∞ (see [129], page 260, Theorem VIII.4).
Now, let us consider a measurable function

φ : σ(A) ⊂ R→ C . (2.51)

As well known, the functional calculus for self-adjoint operators allows to associate to
φ an operator φ(A) : Dom(φ(A)) ⊂ H → H with dense domain, which is everywhere
defined and bounded if φ is bounded; this has adjoint φ(A)† = φ(A) where φ : σ(A)→ C
is the complex conjugate function. If (K,µ,w, I) is a set as above, the composition
φ ◦ w ∈ Mis(K) makes sense, because w(k) ∈ σ(A) for µ-a.e. k ∈ K; it turns out that

φ(A) = I−1Mφ◦w I : I−1(Dom(Mφ◦w)) ⊂ H → H (2.52)

(6). As an example, for z ∈ C, e−zA is defined as above choosing φ : σ(A) → C,
φ(λ) := e−zλ; this operator is self-adjoint if z ∈ R, and e−zA ∈ B(H) if σ(A) ⊂ [0,+∞)
and <z ≥ 0.

6As a matter of fact, one could define φ(A) as the unique operator on H fulfilling Eq. (2.52), for each
(K,µ,w, I). The previously mentioned condition of boundedness for φ(A) and the expression given for
its adjoint are made evident by the representation (2.52).
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Complex powers of a strictly positive, self-adjoint operator.

In the rest of this paragraph we consider a self-adjoint operator A : Dom(A) ⊂ H → H,
assuming

σ(A) ⊂ [ε,+∞) for some ε > 0 . (2.53)

Up to Hilbertian isomorphisms, it can be assumed that

H = L2(K,µ) , (2.54)

and that A is the multiplication operator by a measurable function (7)

w : K → [ε,+∞) ; (2.55)

so,

Dom(A) = {f ∈ L2(K,µ) | wf ∈ L2(K,µ)} , Af = wf . (2.56)

Now, let s ∈ C and consider the operator A−s, which can be defined applying the standard
functional calculus with φ(λ) :=λ−s.
In the realization (2.54-2.56) of H and A, assumed as a standard in the sequel, for any
s ∈ C one has

Dom(A−s) = {f ∈ L2(K,µ) | w−sf ∈ L2(K,µ)} , A−sf = w−sf . (2.57)

If <s ≥ 0, one has |w−s| = w−<s ≤ ε−<s; so,

<s ≥ 0 ⇒ A−s ∈ B(H) and ‖A−s‖B ≤ ε−<s . (2.58)

One readily checks that A0 = I (with I the identity operator on H), that A1 = A and
that A−1 coincides with the inverse of the injective operator A; for n ∈ N one has

An = A . . . A︸ ︷︷ ︸
n times

, A−n = A−1 . . . A−1︸ ︷︷ ︸
n times

. (2.59)

Trace class and Hilbert-Schmidt operators.

Let C ∈ B(H) be any nonnegative self-adjoint operator (so that, in particular, 〈f |Cf〉 ≥ 0
for all f ∈ H). The trace of C is

Tr C :=
∑
n∈N

〈un| Cun〉 ∈ [0,+∞] , (2.60)

where (un)n∈N is any orthonormal basis of H; the trace is in fact independent of the basis.

7Indeed, the assmptions made on σ(A) ensure that A can be realized as the multiplication by a real
function w such that w(k) ≥ ε for a.e. k ∈ K. Redefining w on a set of measure zero, if necessary, we
obtain w(k) ≥ ε for all k.
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Given any C ∈ B(H), we can associate to it the nonnegative self-adjoint operator |C| :=√
C†C (8). As well known, C is said to be of trace class if Tr |C| < +∞; in this case we

can define
Tr C :=

∑
n∈N

〈un| Cun〉 ∈ C , (2.61)

where (un)n∈N is any orthonormal basis of H (the above series is shown to converge, with
a sum independent of the basis). In the sequel, we indicate with B1(H) the set of trace
class operators on H, which is found to be a two-sided ideal of B(H).
Let us also recall that an operator B ∈ B(H) is said to be Hilbert-Schmidt if Tr(B†B) <
+∞; the set B2(H) of these operators is a two-sided ideal of B(H), and B2(H) ⊃ B1(H).
To go on we assume the Hilbert space to be H = L2(K,µ), with µ a σ-finite, separable
measure on K. Then, as well known (see, e.g., [119]), B2(H) can be identified isomor-
phically with the Hilbert space L2(K ×K,µ⊗ µ); in particular, this means that for any
B ∈ B2(H) there exists a unique integral kernel B( , ) ∈ L2(Ω × Ω) such that, for any
f ∈ H,

(Bf)(h) =

∫
K

dµ(k) B(h, k) f(k) (for µ-a.e. k ∈ K) . (2.62)

Moreover, for any given orthonormal basis (un)n∈N of H (recall that H is assumed to be
separable), there holds the L2–convergent expansion

B(h, k) =
∑
n,m∈N

〈um|B un〉 um(h) un(k) (for µ-a.e. h, k ∈ K) . (2.63)

2.4 Conjugations and Hilbert spaces

Generalities

Let us consider a complex vector space H; a conjugation on H is an antilinear, involutive
map J : H → H; so, for all α, β ∈ C and for all f, g ∈ H, there hold

J (αf + βg) = αJ f + β J g , J 2f = f , (2.64)

(where indicates the usual complex conjugation). Given the conjugation J , we can
introduce the sets

H± := {f ∈ H | J f = ±f} ; (2.65)

for obvious reasons, the elements of H+ and H− are called, respectively, the J -real and
the J -imaginary vectors of H. One readily checks that H± are real vector subspaces of
H, and that

H∓ = iH± ; (2.66)

moreover, one finds that
H = H+ ⊕H− (2.67)

8This is, the power of exponent 1/2 of the nonnegative self-adjoint operator C†C.
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(direct sum of real vector spaces) and that the projections P± : H → H± corresponding
to the above decomposition are given by

P+ :=
I + J

2
, P− :=

I− J
2

(2.68)

(of course P±P∓ = O and P++ P− = I, with O and I indicating the null and the identity
operators on H, respectively). Let us also mention that, for all f ∈ H, there hold the
following identities:

P±(i f) = iP∓f , f = P+f + iP+(−if) . (2.69)

Now, let us consider a (C-linear) operator B : Dom(B) ⊂ H → H, with domain on a
(complex) vector suspace; B is said to be J-real if [138, 155]

JDom(B) ⊂ Dom(B) and JBf = BJ f for all f ∈Dom(B) . (2.70)

Since J is in particular an involution, the second relation in Eq. (2.70) can be restated
as follows, for all f ∈ Dom(B):

JBJ −1f = Bf . (2.71)

To conclude, we stipulate the following: a conjugation on a complex topological vector
space H; is a conjugation on H as a vector space, which is also a homeomorphism in the
given topology. In this case, the subspaces H± defined as before are closed subsets of H.

Coniugations on a Hilbert space.

A conjugation on a complex Hilbert space H (equipped with inner product 〈 | 〉) is a
conjugation J in the vector space H with the additional property

〈J f |J g〉 = 〈f |g〉 (2.72)

for all f, g ∈ H; this indicates that J is an antiunitary operator. One easily checks that
condition (2.72) has the equivalent formulation

〈J f |g〉 = 〈f |J g〉 , (2.73)

sometimes used in the sequel (9).
When a conjugation J is given on the Hilbert space H, we can then introduce the real
vector subspaces H±, defined as in the previous subsection, and check that (2.72) implies
〈f |g〉 ∈ R if f, g are both in H+ or both in H−.
To go on, let us consider a self-adjoint operator A : Dom(A) ⊂ H → H and recall that
(for H separable) the spectral theorem ensures the existence of a Hilbertian isomorphism
I : H → L2(K,µ) such that IAI−1 is the multiplication operator by a measurable

9Applying Eq. (2.72) with g replaced by J g, and using J 2g = g, one infers (2.73). One uses similar
arguments to infer (2.72) from (2.73)
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function w : K → R. In addition let us assume that A is J -real, in the sense of the
previous subsection (see Eq. (2.70) ); then, the system (K,µ,w, I) mentioned before can
be chosen so that

IJ I−1 = , (2.74)

where : L2(K,µ) → L2(K,µ), f 7→ f is the usual pointwise complex conjugation (10).
Let us also mention the relation

J φ(A)J −1 = φ(A) (2.75)

holding for each measurable function φ : σ(A)→ C: this is self-evident if we represent A
as a multiplication operator using a system (K,µ,w, I) with the property (2.74).

2.5 Scale of Hilbert spaces associated to a positive

self-adjoint operator.

Let us consider an abstract Hilbert space (H, 〈 | 〉) ≡ H and let A : Dom(A) ⊂ H → H
be a self-adjoint operator on it with spectrum as in Eq. (2.53) (i.e., σ(A) ⊂ [ε,+∞) for
some ε > 0). Unless otherwise stated, H is endowed with no further structure.

In the present section we assume that, when a normed space X is a linear subspace of
another normed space Y , their completions are realized so that X is a linear subspace of
Y (such a realization is always possible).

Finite order spaces.

Hereafter we introduce a family of spaces, associated to the real powers of A, i.e., to the
operators Ar for r ∈ R.

Proposition 2.4. For any r ∈ R, the following statements hold.

i) Define 〈 | 〉r : Dom(Ar/2)× Dom(Ar/2)→ C and ‖ ‖r : Dom(Ar/2)→ [0,+∞) by

〈g|f〉r := 〈Ar/2g|Ar/2f〉 , ‖f‖2
r := ‖Ar/2f‖2 . (2.76)

10This statement is derived reconsidering the standard proof of the “multiplication operator form”
for the spectral theorem on self-adjoint operators, as given in [129]; one must perform a rather simple
adaptation of the argument to the case where H carries a conjugation J and the operator A is J -real.
The main points in this adaptation are the following:
i) the spectral measure P of A is as well J -real: JP (M)J−1 = P (M) for each Borel subset of the
spectrum of A. Due to this, for each measurable function φ : σ(A) → C one has J φ(A)J−1 = φ(A)
where φ is the usual complex conjugate;
ii) In the standard proof of the “multiplication operator” theorem, one lets the functions of A act on
a maximal family of cyclic vectors of H, whose existence is proved via the Zorn lemma. In the present
adaptation one must use a maximal family of J -real cyclic vectors, whose existence is again established
by Zornication.
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Then, 〈 | 〉r is an inner product and ‖ ‖r is the induced norm; moreover, in the realization
(2.54-2.56) of H and A, one has

〈g|f〉r =

∫
K

wr g f dµ , ‖f‖2
r =

∫
K

wr |f |2 dµ . (2.77)

ii) Let us denote with Hr the Hilbert space obtained completing (Dom(Ar/2), 〈 | 〉r). If H
and A are realized as in (2.54-2.56), this Hilbert space can be represented as

Hr = {f ∈ Mis(K,µ) | wr/2f ∈ L2(K,µ)} ; (2.78)

its inner product and norm, denoted again with 〈 | 〉r and ‖ ‖r, can be expressed as in Eq.
(2.77) for all f, g ∈ Hr. In other terms

Hr = L2(K,wrdµ) . (2.79)

iii) There holds
Hr = Dom(Ar/2) for r ∈ R, r ≥ 0 . (2.80)

iv) Consider the linear subspace Dom(eA) ⊂ H that, in the realization (2.54-2.56) of H
and A, is given by

Dom(eA) = {f ∈ L2(K,µ) | ewf ∈ L2(K,µ)} ⊂ H . (2.81)

For all r ∈ R there holds

Dom(eA) ⊂ Dom(Ar/2) ⊂ Hr , (2.82)

and Dom(eA) is dense in (Hr, ‖ ‖r).

Proof. Point i) is obvious. Now, provisionally regard Hr to be defined by Eq. (2.78), and
intend 〈 | 〉r : Hr×Hr → C to be defined as in Eq. (2.77); due to (2.79), it is evident that
Hr is a Hilbert space with this inner product and that the norm induced by this inner
product, denoted with ‖ ‖r, can be expressed as in Eq. (2.77). As well, it appears that
Hr ⊃ Dom(Ar/2) and that the inner product 〈 | 〉r of Hr extends the inner product on
Dom(Ar/2) of item i). In the sequel we will prove in order points iii), iv) and finally ii).
iii) For any f ∈ Hr (r ≥ 0) one has

+∞ >

∫
K

wr|f |2 dµ ≥ εr
∫
H
|f |2 dµ ,

whence f ∈ L2(K,µ). By comparison with the representation of Eq. (2.57), one concludes
that f ∈ Dom(Ar/2), so that iii) follows.
iv) For any r ∈ R, there exists a constant Cr > 0 such that xr ≤ Cre

x for all x ∈ R such
that x ≥ ε ; this implies wr ≤ Cre

w so that, for any f ∈ Dom(eA) , one has∫
K

wr|f |2 dµ ≤ Cr

∫
K

ew|f |2 dµ < +∞ ,
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and the inclusions in Eq. (2.82) follow.
Let us now pass to prove the density of Dom(eA) in Hr, choosing arbitrarily f ∈ Hr and
constructing a sequence (fn)n∈N in Dom(eA) such that ‖f−fn‖r → 0 for n→ +∞. Define

fn := (χ[0,n] ◦ w)1/2f ,

where χ[0,n] : R→ R is the indicator function of the interval [0, n] (11); we will prove that

fn ∈ Dom(eA) for all n ∈ N . (2.83)

Let us first show that fn ∈ L2(K,µ) for all n ∈ N. In fact, for r ≥ 0 it is Hr =
Dom(Ar/2) ⊂ L2(K,µ); thus f ∈ L2(K,µ), and the obvious inequality |fn| ≤ |f | implies
fn ∈ L2(K,µ). For r < 0, from the definition of fn it follows that |fn| ≤ (w/n)r/2 |f |, so
that ∫

K

|fn|2 dµ ≤
1

nr

∫
K

wr|f |2 dµ =
1

nr
‖f‖2

r < +∞ ;

thus, fn ∈ L2(K,µ) for all n ∈ N. Now note that ew|fn| ≤ en|fn|, whence∫
K

e2w|fn|2 dµ ≤ e2n

∫
K

|fn|2 dµ < +∞ ,

so that Eq. (2.83) is proven.
Let us pass to evaluate the quantity

‖f − fn‖2
r =

∫
K

wr|f − fn|2 dµ .

By construction, we have fn(k) → f(k) for a.e. k ∈ K in the limit n → +∞, whence
wr|f−fn|2 → 0 µ-almost everywhere. Moreover wr|f−fn|2 = wr(1−(χ[0,n]◦w)1/2)2|f |2 ≤
wr|f |2 ∈ L1(K,µ) so, by Lebesgue’s theorem on dominated convergence (see, e.g., [47],
page 417, Theorem 2.1),∫

K

wr|f − fn|2 dµ→ 0 for n→ +∞ .

Summing up, we have proven that Dom(eA) is dense in Hr for any r ∈ R.
ii) For any r ∈ R, to state that Hr is the completion of Dom(Ar/2), one has to prove that
Dom(Ar/2) is dense in Hr. For r ≥ 0 this holds trivially, since Dom(Ar/2) = Hr by point
iii); for r < 0 the thesis follows from the density of Dom(eA) ⊂ Dom(Ar/2) in Hr (see
point iv) ).

11For any subset J ⊂ R, the indicator function is

χJ : R→ {0, 1} , t 7→ χJ(t) :=

{
1 for t ∈ J
0 for t /∈ J .
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Remark 2.3. In the sequel we will keep the notations Hr, 〈 | 〉r, and so on for the spaces
considered in the previous proposition. Of course, since A0 = I we have H0 = H and
〈 | 〉0 = 〈 | 〉.
Proposition 2.5. Let r, r′ ∈ R with r′ ≥ r; then the following statements hold, showing

in particular that Hr′ dense↪→ Hr.
i) Dom(Ar′/2) (resp. Hr′) is a linear subspace of Dom(Ar/2) (resp., Hr) and

‖f‖r ≤ ε−(r′−r)/2 ‖f‖r′ for all f ∈ Hr′ ; (2.84)

so, the continuous embedding Hr′ ↪→ Hr holds.
ii) Hr′ is dense in Hr.

Proof. i) All the above statements follow easily using representations of the form (2.57)
for Dom(Ar′/2),Dom(Ar/2), (2.78) for Hr′ ,Hr, and (2.77) for ‖ ‖r′ , ‖ ‖r; it must be taken
into account that wr = wr

′
/wr

′−r ≤ wr
′
/εr

′−r, as well.
ii) It has already been proved that Dom(eA) ⊂ Hr′ is dense in Hr; of course, this suffices
to grant the density of Hr′ in Hr.

Proposition 2.6. Let r0, r1 ∈ R, θ ∈ (0, 1), and consider the interpolation space [Hr0 ,Hr1 ]θ;
then

[Hr0 ,Hr1 ]θ = H(1−θ)r0+θr1 . (2.85)

Proof. It suffices to use the realization Hr = L2(K,wrdµ) of Eq. (2.79), for each r ∈ R,
and to recall the identity in Eq. (2.36).

Infinite order spaces.

Let us now pass to discuss two natural spaces: the first one is contained in all the spaces
Hr (r ∈ R) and the second one contains them all.

Definition 2.7. We put

H+∞ :=
⋂
r∈R

Hr , (2.86)

and equip this linear space with the locally convex topology T +∞ induced by the family
of norms ‖ ‖r (r ∈ R).

Remark 2.4. i) The topological space (H+∞, T +∞) is complete, due to the completeness
of each space Hr in the corresponding norm topology induced by ‖ ‖r.
ii) For any r ∈ R, there exists an n ∈ N such that n ≥ r so that, by Proposition 2.5,
‖ ‖r ≤ ε−(n−r)/2 ‖ ‖n; therefore, the topology induced on H+∞ by the family (‖ ‖r)r∈R
coincides with the topology induced by the countable subfamily (‖ ‖n)n∈N. In conclusion,
T +∞ is a Fréchet topology.

Proposition 2.8. For each r ∈ R there holds H+∞ dense
↪→ Hr.
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Proof. By construction, it is H+∞ ↪→ Hr. The density follows from the fact that Dom(eA)
is contained in H+∞ and dense in Hr.

Definition 2.9. We put

H−∞ :=
⋃
r∈R

Hr , (2.87)

and equip this linear space with the inductive limit topology T −∞ corresponding to the
family of normed subspaces (Hr, ‖ ‖r) (r ∈ R).

Remark 2.5. i) For a general definition of inductive limit topologies, see e.g. [42]. In few
words, T −∞ is the finest locally convex topology on H−∞ such that Hr ↪→ H−∞ for all
r ∈ R.
For any given locally convex space (Y , TY), a linear operator B : H−∞ → Y is continuous
in the topologies T −∞ and TY if and only if the restriction B �Hr is continuous in the
topologies T r and TY for each r ∈ R (see, again, [42]).
ii) Let L denote any subset of R such that inf L = −∞ (e.g., L := {−1,−2,−3, ...}).
Then, for each r ∈ R, there is an ` ∈ L such that Hr ↪→ H` (just take any ` such that
r ≥ `); of course, it also holds that for each ` ∈ L there is r ∈ R such that H` ↪→ Hr (just
take r = `). Due to these facts we have

H−∞ =
⋃
`∈L

H` (2.88)

and the topology T −∞ coincides with the inductive limit topology on H−∞ given by the
family of normed subspaces (H`, ‖ ‖`) (` ∈ L) (12).

Proposition 2.10. (H−∞, T −∞) is a Hausdorff space.

Proof. Choose representations of H and A as in Eq.s (2.54-2.56) such that the measure
space (K,µ) satisfies µ(K) < +∞ (we already mentioned that such a representation
always exists); then

H−∞ = {f ∈ Mis(K) | wr/2f ∈ L2(K,µ) for some r ∈ R} . (2.89)

Now, for each measurable subset M ⊂ K, let us put

αM : H−∞ → C , f 7→ 〈αM , f〉 :=

∫
M

e−wf dµ .

The integral defining 〈αM , f〉 exists for any f ∈ H−∞; in fact, if r ∈ R is such that
wr/2f ∈ L2(K,µ), it follows that∫

M

|e−wf | dµ =

∫
M

e−ww−r/2wr/2|f | dµ ≤√∫
M

e−2ww−r dµ

√∫
M

wr|f |2 dµ ≤
√
Cr µ(M)

√∫
K

wr|f |2 dµ < +∞ ,

12Concerning the last statement, see e.g. [42], page 118, Proposition 5.8.
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where we have put Cr := supλ∈[ε,+∞) e
−2λλ−r (so that e−2ww−r ≤ Cr). Clearly, αM is a

linear form on H−∞; moreover, for each r ∈ R, the previous manipulations also imply
|〈αM , f〉| ≤

√
Cr µ(M) ‖f‖r for all f ∈ Hr, so that αM �Hr is continuous. In conclusion,

αM is a continuous linear form on (H−∞, T −∞) (see the comments in Remark 2.5).

Now observe that, for each f ∈ H−∞,

〈αM , f〉 = 0 for any measurable subset M ⊂ K ⇒
⇒ e−wf = 0 a.e. in K ⇒ f = 0 a.e. in K .

To go on, let f, g ∈ H−∞ and f 6= g ; then there is a measurable subset M ⊂ K such
that δ := |〈αM , f − g〉| > 0 (otherwise we would have f − g = 0). Put Uf := {f ′ ∈
H−∞| |〈αM , f ′ − f〉| < δ/3} and Ug := {g′ ∈ H−∞| |〈αM , g′ − g〉| < δ/3}; then, it
appears that Uf and Ug are open subsets of H−∞ containing f and g, respectively, and
Uf ∩ Ug = ∅.

Remark 2.6. The spaces Hr (r ∈ R) and H+∞ are also Hausdorff for obvious reasons;
this fact follows trivially from Proposition 2.10 since H+∞ ⊂ Hr ⊂ H−∞ and any subset
of a Hausdorff space is itself Hausdorff (see, e.g., [26], page 77). Summing up, Hr is a
Hausdorff space for any r ∈ [−∞,+∞].

Proposition 2.11. Each one of the sets Dom(eA), Dom(Ar/2) and Hr (r ∈ R) is dense
in (H−∞, T −∞).

Proof. Since the chain of inclusions Dom(eA) ⊂ Dom(Ar/2) ⊂ Hr holds, it suffices to prove
the density of Dom(eA) in (H−∞, T −∞); to this purpose, let us consider any f ∈ H−∞
and prove that there exists a sequence (fn)n∈N of elements of Dom(eA) such that fn → f
for n→ +∞ in (H−∞, T −∞). Indeed, let r be such that f ∈ Hr; then, due to Proposition
2.4, there is a sequence (fn)n∈N in Dom(eA) such that fn → f in (Hr, ‖ ‖r) for n→ +∞.
From here and from Hr ↪→ H−∞ it follows that fn → f in (H−∞, T −∞) for n→ +∞.

Proposition 2.12. Let φ : σ(A) → C be a measurable function and assume that, for
some b ∈ R,

sup
λ∈σ(A)

λb|φ(λ)| < +∞ . (2.90)

Then, the following statements hold:

i) The operator φ(A) : Dom(φ(A)) ⊂ H → H has a unique continuous linear extension,
denoted with the same symbol, φ(A) : H−∞ → H−∞.



2.5. SCALE OF HILBERT SPACES ASSOCIATED TO A POSITIVE
SELF-ADJOINT OPERATOR. 33

ii) Let r, r′ ∈ R be such that r′ − r ≥ −2b. Then, the extension φ(A) sends continuously
Hr′ into Hr; moreover, for all f ∈ Hr′ one has (13)

‖φ(A)f‖r ≤ Qrr′‖f‖r′ , Qrr′ := sup
λ∈σ(A)

λ−(r′−r)/2 |φ(λ)| < +∞ . (2.91)

iii) In particular assume that, for some b ∈ R, it is

|φ(λ)| = λ−b for all λ ∈ σ(A) ; (2.92)

then the extension φ(A) of item i) is a Hilbertian isomorphism between Hr and Hr+2b for
each r ∈ R.

Proof. i) ii) First of all, let us prove that the mentioned continuous extension is unique,
assuming it to exist. In fact, consider two distinct continuous extensions φ(A), φ′(A) :
H−∞→H−∞. By construction, φ(A) and φ′(A) coincide on the set Dom(φ(A)) which is
dense inH and, consequently, inH−∞ (see Proposition 2.11); so φ(A) = φ′(A) everywhere
on H−∞ by continuity.
In order to prove the existence of the continuous linear extension, represent H−∞ as in
Eq. (2.89) and define

φ(A) : H−∞ → H−∞ , f 7→ φ(A)f := (φ ◦ w)f (2.93)

(recalling that w(k) ∈ σ(A) = Dom(φ) for a.e. k ∈ K, so that φ ◦ w is defined almost
everywhere in K). Let us prove that the map (2.93) is well defined. to this purpose, let
f ∈ H−∞; then f ∈ Hr′ for some r′ ∈ R. If we consider any r ∈ R such that r′− r ≥ −2b,
writing (almost everywhere in K)

wr/2 φ(A) f = w−(r′−r)/2 (φ ◦ w)wr
′/2f ,

we infer
wr/2 |φ(A)f | ≤ Qrr′ w

r′/2 |f | , (2.94)

with Qr′r as in Eq. (2.91). From Eq. (2.94) and from wr
′/2f ∈ L2(K,µ) it follows that

wr/2φ(A)f ∈ L2(K,µ), which amounts to state that φ(A)f ∈ Hr ↪→ H−∞.
Summing up, we have shown that the map in Eq. (2.93) actually sendsH−∞ intoH−∞; the
linearity of this map is evident. The previous argument also indicates that φ(A)Hr′ ⊂ Hr

for r′ − r ≥ −2b; moreover, the inequality in Eq. (2.94) can be used to infer the norm
inequality in Eq. (2.91). This also implies the continuity of φ(A) as a map H−∞ → H−∞ .
iii) The thesis is almost evident; the main point in the proof is the (obvious) identity
wr/2+b|φ(A)f | = wr/2f .

13Note that the supremum defining Qrr′ is finite. In fact, for any λ ∈ σ(A) ⊂ [ε,+∞), we have

λ−(r′−r)/2|φ(λ)| = ε−(r′−r)/2(λ/ε)−(r′−r)/2|φ(λ)| ≤
≤ ε−(r′−r)/2(λ/ε)b|φ(λ)| = ε−(r′−r+2b)/2λb|φ(λ)| ,

and Eq. (2.90) gives the thesis.
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Corollary 2.13. i) For any s ∈ C, the operator A−s : Dom(A−s) ⊂ H−∞ → H ⊂ H−∞
has a unique, continuous linear extension (indicated with the same symbol ) A−s : H−∞ →
H−∞.
ii) The extension of item i) is such that, for any r ∈ R ,

A−s(Hr) = Hr+2<s , ‖A−sf‖r+2<s = ‖f‖r for all f ∈ Hr . (2.95)

iii) Concerning the continuous extensions to H−∞, the following statements hold: A0 =
IH−∞, A−(s+s′) = A−sA−s′ for any s, s′ ∈ C, and As is the inverse operator of A−s for
any s ∈ C.

Proof. i) ii) The thesis follows by statements i) and iii) of Proposition 2.12. Indeed, for
any s ∈ C, the map φ : σ(A) → C, λ 7→ λ−s is measurable and fulfills Eq. (2.92) for
b = <s.
iii) All these statements follow easily noting that, for any s ∈ C, the linear continuous
extension A−s : H−∞ → H−∞ in item i) is defined according to Eq. (2.93), so that
A−sf = w−sf for all f ∈ H−∞.

Corollary 2.14. i) For any t ∈ C with <t ≥ 0 consider the operators e−tA, e−t
√
A ,

(e−t
√
A /
√
A ) mapping the respective domains Dom(e−tA), Dom(e−t

√
A ), Dom(e−t

√
A /
√
A ) ⊂

H ⊂ H−∞ into H ⊂ H−∞. Each of them admits a unique continuous linear extension
(indicated with the same symbol )

e−tA , e−t
√
A ,

e−t
√
A

√
A

: H−∞ → H−∞ . (2.96)

ii) Assume <t > 0 and consider the extensions of item i); these are such that, for any
r, r′ ∈ R, and for all f ∈ Hr′, one has

‖e−tAf‖r ≤
{ (

r−r′
2 e<t

)(r−r′)/2 ‖f‖r′ for 0 < <t ≤ r−r′
2ε

ε(r−r′)/2 e−ε<t ‖f‖r′ for <t > r−r′
2ε

, (2.97)

‖e−t
√
A f‖r ≤

{ (
r−r′
e<t

)r−r′ ‖f‖r′ for 0 < <t ≤ r−r′√
ε

ε(r−r′)/2 e−
√
ε<t ‖f‖r′ for <t > r−r′√

ε

, (2.98)

‖(e−t
√
A /
√
A ) f‖r ≤

{ (
r−r′−1
e<t

)r−r′−1 ‖f‖r′ for 0 < <t ≤ r−r′−1√
ε

ε(r−r′−1)/2 e−
√
ε<t ‖f‖r′ for <t > r−r′−1√

ε

. (2.99)

Moreover, each of the extensions e−tA, e−t
√
A , (e−t

√
A /
√
A ) maps continuously H−∞ into

H+∞.
iii) Assume <t = 0, so that t = it for some t ∈ R. Then the extensions e−itA, e−it

√
A of

item i) are Hilbertian automorphism of Hr, for each r ∈ R; in particular, there holds

‖e−itAf‖r = ‖e−it
√
A f‖r = ‖f‖r . (2.100)
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Moreover, the extension e−it
√
A /
√
A is an Hilbertian isomorphism of Hr into Hr+1, for

any r ∈ R; in particular,

‖(e−it
√
A /
√
A )f‖r = ‖f‖r+1 . (2.101)

Proof. Hereafter we report the proof only for the operator e−tA; the proofs of the analo-
gous statements for the other two operators e−t

√
A , e−t

√
A /
√
A can be derived by similar

arguments.

i) ii) The thesis follows by items i) and ii) of Proposition 2.12. Indeed, for any t ∈ C with
<t > 0, the map φ : σ(A)→ C, λ 7→ e−λt is measurable and fulfills Eq. (2.91) with

Qrr′ = sup
λ∈σ(A)

λ−(r′−r)/2e−λ<t =

{ (
r−r′
2 e<t

)(r−r′)/2
for 0 < <t ≤ r−r′

2ε

ε(r−r′)/2 e−ε<t for <t > r−r′
2ε

.

Moreover, for all f ∈ H−∞, there exists an r′ ∈ R such that f ∈ Hr′ ; then, by Item ii),
for any t ∈ C with <t > 0, one has e−tAf ∈ Hr for all r ∈ R; thus e−tAf ∈ H+∞, that is
the thesis. The continuity of e−tA from H−∞ to H+∞ is proved by similar arguments.

iv) Consider the elementary identities |e−itλ| = |e−it
√
λ| = 1 and |e−it

√
λ/
√
λ| = λ−1/2, for

λ ∈ σ(A); then, the thesis follows straightforwardly from item iii) of Proposition 2.12.

Duality relations.

In the present paragraph we discuss duality relations holding for both the finite (Hr,
r ∈ R) and infinite order (H±∞) spaces considered in the two previous subsections.

Definition 2.15. We consider the set

H(2) :=
⋃
r∈R

H−r ×Hr . (2.102)

Remark 2.7. Note that the space H(2) contains, in particular, H×H = H0 ×H0.

Proposition 2.16. The inner product 〈 | 〉 of H has a unique extension

〈 | 〉 : H(2) → C (2.103)

that is continuous when restricted to any of the products H−r × Hr (r ∈ R) (14). For
each r ∈ R, the map (2.103) restricted to H−r × Hr is a sesquilinear Hermitian form;
moreover, for all f ∈ H−r and all g ∈ Hr, it fulfills

|〈f |g〉| ≤ ‖f‖−r ‖g‖r . (2.104)

14Of course, H−r×Hr (r ∈ R) is equipped with the product topology.
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Proof. Let us first prove that the extension 〈 | 〉 with the above requirements, if it exists,
is unique; to this purpose, it suffices to show that any extension with the above properties
is uniquely determined on any product H−r× Hr (r ∈ R). In fact, if r ≥ 0, Hr× Hr is
dense in H−r× Hr and the extension must agree with the usual inner product of H on
Hr×Hr (⊂ H×H); similar arguments hold if r < 0 considering the space H−r×H−r in
place of Hr×Hr.

To prove existence of the extension (2.103), consider the realization of H and A given in
Eq.s (2.54-2.56) and define

〈f |g〉 :=

∫
K

fg dµ for all (f, g) ∈ H(2) . (2.105)

The above integral exists; in fact, if r ∈ R is such that (f, g) ∈ H−r ×Hr, we have∫
K

|fg| dµ =

∫
K

w−r/2|f |wr/2|g| dµ ≤

≤
√∫

K

w−r|f |2 dµ
√∫

K

wr|g|2 dµ = ‖f‖−r‖g‖r < +∞ .

(2.106)

It is clear that (2.105) defines an extension of the inner product on H×H. For all r ∈ R,
the map (2.105) is a sesquilinear Hermitian form on H−r × Hr; moreover, due to the
estimate in Eq. (2.106), it fulfills the inequality (2.104), which implies its continuity.

In the sequel we keep the notation 〈 | 〉 for the extension (2.103) of the inner product
on H. In the forthcoming Proposition 2.18 this extension is used to prove that H−r can
be identified isomorphically with the dual of the Banach space Hr; in the subsequent
Proposition 2.20 it is shown that H−∞ can be identified with the dual of the Fréchet
space H+∞, as well.

Definition 2.17. For r ∈ R, we define the map

Ir : H−r → (Hr)′ , f 7→ Irf such that 〈Irf, g〉 := 〈f |g〉 for all g ∈ Hr . (2.107)

Proposition 2.18. The following statements hold.

i) The map Ir in Eq. (2.107) is well defined, antilinear, bijective and fulfills

‖Irf‖′r = ‖f‖−r for all f ∈ H−r . (2.108)

(and thus, summing up, it is an antilinear isomorphism of Banach spaces).

ii) Let r, r′ ∈ R with r′ ≥ r, so that Hr′ ↪→ Hr and H−r ↪→ H−r′; then

Ir′f = Irf � Hr′ for all f ∈ H−r . (2.109)
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Proof. i) Fix r ∈ R ; due to Proposition 2.16 it appears that, for each f ∈ H−r, the
element Irf defined in Eq. (2.107) is a continuous linear form on Hr, with the norm
bound (recall Eq. (2.104) )

‖Irf‖′r ≤ ‖f‖−r . (2.110)

It is evident as well that Ir is a continuous antilinear map from H−r to (Hr)′.

In the sequel we use again the representations (2.54-2.56) for H and A, so that

〈Irf, g〉 =

∫
K

f g dµ for all f ∈ H−r, g ∈ Hr . (2.111)

Let us prove Eq. (2.108), for a given f ∈ H−r. To this purpose, put g = w−rf ; then∫
K
wr|g|2 dµ =

∫
K
w−r|f |2 dµ, which implies g ∈ Hr and ‖g‖r = ‖f‖−r. For this g it is

〈Irf, g〉 =
∫
K
w−r|f |2 dµ = ‖f‖−r‖f‖−r = ‖f‖−r‖g‖r, whence ‖Irf‖′r ≥ ‖f‖−r. From here

and from Eq. (2.110) the thesis (2.108) follows.

To conclude, let us prove that Ir is bijective between H−r and Hr. Due to Eq. (2.108),
Ir has zero kernel, so it is injective. To prove surjectivity, let α ∈ (Hr)′; since Hr is a
Hilbert space with the inner product 〈 | 〉r, by the Riesz theorem there exists an h ∈ Hr

such that

〈α, g〉 = 〈h|g〉r =

∫
K

wr h g dµ for all g ∈ Hr . (2.112)

Put f := wrh; then
∫
K
w−r|f |2 dµ =

∫
K
wr|h|2 dµ < +∞, so that f ∈ H−r. Moreover, Eq.

(2.112) implies 〈α, g〉 =
∫
K
f g dµ = 〈Irf, g〉 for all g ∈ Hr; this means α = Irf , thus the

surjectivity of Ir is proved.

ii) The thesis follows immediately from the definitions of Ir and Ir′ .

Consider now (H+∞)′, the topological dual of the space H+∞. Recall that the topology
on the Fréchet space H+∞ is induced by the family of norms ‖ ‖r � Hr (r ∈ R); so, a
linear form α : H+∞ → C is continuous if and only if there exist r ∈ R and Cr ∈ [0,+∞)
such that |〈α, f〉| ≤ Cr‖f‖r for all f ∈ H+∞. This condition is equivalent to state that
α is the restriction of a continuous linear form on Hr; this form on Hr is unique, due to
the density of H+∞ in Hr. Therefore, by identifing the elements of (H+∞)′ with their
restrictions to Hr, one has

(H+∞)′ =
⋃
r∈R

(Hr)′ . (2.113)

Definition 2.19. From now on, (H+∞)′ will be equipped with the inductive limit topology
corresponding to the family of Banach spaces ((Hr)′, ‖ ‖′r).

Remark 2.8. The above topology is the finest locally convex topology on (H+∞)′ that
makes continuous the injection of each space ((Hr)′, ‖ ‖′r) in (H+∞)′.

The following statement is easily proved using, where necessary, the already known facts
on the Banach anti-isomorphisms Ir : H−r → (Hr)′.
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Proposition 2.20. H−∞× H+∞ is contained in the set H(2) defined in Eq. (2.102); let
us put

I∞ : H−∞ → (H+∞)′ , f 7→ I∞f such that 〈I∞f, g〉 := 〈f |g〉 for all g∈H+∞.
(2.114)

The map I∞ is well defined, antilinear and bijective; it is a homeomorphism with respect
to the inductive limit topologies of H−∞ and (H+∞)′ introduced in the Definitions 2.9 and
2.19. For any r ∈ R and any f ∈ H−r, there holds

I∞f = Irf � H+∞ . (2.115)

Proof. Let (f, g) ∈ H−∞×H+∞; then f ∈ H−r for some r ∈ [0,+∞). Since g ∈ Hr, we
have (f, g) ∈ H−r ×Hr ⊂ H(2); this proves the inclusion H−∞ ×H+∞ ⊂ H(2).
Now, let f ∈ H−∞, and define I∞f : Hr → C following (2.114). Clearly, I∞f is a linear
map. If r ∈ R is such that f ∈ H−r, it is evident that I∞f = Irf � H+∞, and this
restriction is continuous on H+∞ since Irf is continuous on Hr and H+∞ ↪→ Hr.
In conclusion I∞f ∈ (H+∞)′ and we have a well defined map I∞ : H−∞ → (H+∞)′,
f → I∞f . The antilinearity of this map is self-evident; hereafter we show that I∞ is
bijective.
Indeed, let f, f ′ ∈ H−∞ be such that I∞f = I∞f ′. There exists r ∈ R such that
f, f ′ ∈ H−r; this implies Irf � H+∞ = Irf ′ � H+∞ which gives (by the density of H+∞

in Hr) Irf = Irf ′. Thus, we infer that f = f ′, which proves the injectivity of I∞.
To prove suriectivity, let us take α ∈ (H+∞)′ and show that α = I∞f for some f ∈ H−∞.
Indeed, there are r ∈ R and αr ∈ (Hr)′ such that α = αr � H+∞; if f ∈ H−r is such that
αr = Irf , we have I∞f = Irf � H+∞ = α.
To infer that I∞ is in fact a homeomorphism (i.e., continuous with continuous inverse),
one can use the continuity of the maps Ir : H−r → (Hr)′ (r ∈ R) (see Proposition 2.18),
recalling the fundamental properties of the inductive limit topologies on H−∞ and on
(H+∞)′ (15).

Banach adjoints of continuous operators.

Consider the scale of spaces Hr (r ∈ R) discussed previously in this section; even though
each of these spaces is in fact a Hilbert space (with inner product 〈 | 〉r; see Proposition
2.4), in the present subsection we shall only consider the underlying Banach space struc-
ture. In particular, hereafter we discuss the notion of adjoint for a continuous operator
acting between any two of the Banach spaces Hr (r ∈ R).
Recall that for any r ∈ R (or r = +∞) the topological dual of the Banach space Hr, i.e.
(Hr)′, is anti-linearly isomorphicH−r (see Proposition 2.18); moreover, the duality pairing

15For example, recall that the map I∞ : H−∞ → (H+∞) is continuous if and only if its restriction
I∞ � H−r : H−r → (Hr)′ is so, for all r ∈ R; on the other hand, the continuity of I∞ � H−r can
be infered noting that I∞ �H−r ≡ Ir : H−r → (Hr)′ (which is continuous) and that the embedding
(Hr)′ ↪→ (H+∞)′ is continuous, since (H+∞)′ is endowed with the inductive limit topology.
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between these spaces is described by the restriction toH−r×Hr of the map 〈 | 〉 : H(2) → C,
introduced in Proposition 2.16. In view of these facts, the notion of Banach adjoint of a
continuous operator (see Section 2.2) can be rephrased as follows within the framework
under analysis.

Definition 2.21. Let r, r′ ∈ R and consider a continuous linear operator B : Hr → Hr′ .
The Banach adjoint of B is the unique continuous operator B∗ : H−r′ → H−r such that

〈B∗g|f〉 = 〈g|Bf〉 for all f ∈ Hr, g ∈ H−r′ . (2.116)

Remark 2.9. Let us point out a few facts concerning the above definition.
i) The symbol 〈 | 〉 on the left-hand side of Eq. (2.116) is used to indicate the restriction of
the map (2.103) toH−r×Hr; on the other hand, the same symbol is used on the right-hand
side of the cited equation to denote the restriction of the map (2.103) to H−r′×Hr′ .
ii) Recall that the map 〈 | 〉 : H(2) → C of Proposition 2.16 is an extension of the inner
product onH ; thus, given a continuous operator B : H → H (H ≡ H0), the corresponding
Banach adjoint B∗ : H → H (defined according to Eq. (2.116) ) does in fact coincide with
the standard Hilbert adjoint B†. On the other hand, despite the fact that Hr and Hr′

are also Hilbert spaces, the adjoint of an operator B : Hr → Hr′ described above is
different from the notion of Hilbert adjoint with respect to the inner products 〈 | 〉r (of
Hr) and 〈 | 〉r′ (of Hr′). Within the present manuscript Hilbert adjoints with respect to
the products 〈 | 〉r and 〈 | 〉r′ will never be considered.
iii) Let B : Hr → H+∞ be a continuous operator (for some r ∈ R); due to the results of
Proposition 2.20, we can generalize the Definition 2.21 of adjoint operator to include this
case. In analogy to Definition 2.21, we say that the adjoint of B is the unique continuous
operator B∗ : H−∞ → H−r fulfilling Eq. (2.116) for all f ∈ H−∞ and for all g ∈ Hr; of
course, the expression in the right-hand side of the cited equation must be intended here
in terms of the isomorphism I∞ : H−∞ → (H+∞)′ introduced in Eq. (2.114). (16)

The results on Banach adjoints already mentioned in Section 2.2 can be straightforwardly
translated in the present framework; we enumerate them in the subsequent Lemma.

Lemma 2.22. Let r, r′, r′′ ∈ R; then, there hold the following results.
i) The adjoint map

∗ : B(Hr,Hr′)→ B(H−r′ ,H−r) , B 7→ B∗ (2.117)

is an isometric anti-isomorphism (17).
ii) Any continuous operator B : Hr → Hr′ coincides with its double adjoint B∗∗ ≡ (B∗)∗ :
Hr → Hr′, that is

B∗∗ = B . (2.118)

16On the contrary, it is not so easy to extend the notion of adjoint operator to the case of a continuous
operator B : Hr → H−∞ (r ∈ R) within this contex since, in general, there only holds the strict inclusion
(H−∞)′ ⊃ H+∞ (and not the equality).

17Recall that, for any pair of Banach spaces X and Y , B(X,Y ) indicates the Banach space of linear
continuous operators from X to Y .
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iii) Let B : Hr → Hr′ and C : Hr′ → Hr′′ be any pair of continuous operators and
consider their composition CB : Hr → Hr′′; this is also a continuous operator and its
adjoint (CB)∗ : H−r′′ → H−r fulfills

(CB)∗ = B∗C∗ . (2.119)

Proof. All the statements in the present Lemma are obtained as trivial reformulations of
well-known results on Banach adjoint operators in the framework under analysis.

Proposition 2.23. Let φ : σ(A)→ C be any measurable function fulfilling the assumption
(2.90) for some b ∈ R; for any pair r, r′ ∈ R with r′ − r ≥ −2b, consider the continuous
extension φ(A) : Hr′ → Hr introduced in Proposition 2.12. Then, the corresponding
adjoint operator φ(A)∗ : H−r → H−r′ is given by

φ(A)∗ = φ(A) (2.120)

(φ : σ(A)→ C denotes the complex conjugate of the function φ; in the right-hand side of
Eq. (2.120) we are considering the extension of φ(A) to a continuous map H−r → H−r′,
which exists since (−r)− (−r′) = r′ − r ≥ −2b).

Remark 2.10. In the case where φ(A) maps H−r into Hr continuosly, for some given r ∈ R
with r ≤ b, using the previous results with r′ = −r we infer

φ(A)∗ = φ(A) ∈ B(H−r,Hr) . (2.121)

In particular, if φ is real-valued it follows that

φ(A)∗ = φ(A) ; (2.122)

then, in analogy with the theory of operators on Hilbert spaces, we refer to φ(A) as a
generalized self-adjoint operator.

Proof. Consider the representations of H and A given in Eq.s (2.54-2.56); in particular,
recall that the sesquilinear form 〈 | 〉 : H−r ×Hr → C (for all r ∈ R) can be expressed as
in Eq. (2.105) and that φ(A) coincides with the multiplication operator Mφ(w) : H → H,
f 7→ Mφ(w)f := φ(w)f (which also defines a unique continuous extension φ(A) : H−∞ →
H−∞ according to the prescription (2.93) ). Using the basic identity (2.116) for adjoint
operators we infer, for all g ∈ H−r and all f ∈ Hr′ ,

〈φ(A)∗g|f〉 = 〈g|φ(A)f〉 =

∫
K

dµ g (φ(w)f) =

∫
K

dµ (φ(w)g) f = 〈φ(A)g|f〉 ;

due to the arbitrariness of f and g, the above chain of equalities implies the thesis.
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Corollary 2.24. There hold the following results.
i) Let r ∈ R, s ∈ C and consider the continuous operator A−s : Hr → Hr+2<s; its adjoint
is the continuous operator

(A−s)∗ = (A−s̄ �H−(r+2<s)) : H−(r+2<s) → H−r . (2.123)

ii) Let r ∈ R, t ∈ C with <t > 0 and consider the restriction of the continuous operator
e−tA : H−∞ → H+∞ to the space Hr; its adjoint is the continuous operator

(e−tA)∗ = e−t̄A : H−∞ → H−r . (2.124)

If <t = 0, so that t = it for some t ∈ R, the adjoint of the continuous operator e−itA :
Hr → Hr is

(e−itA)∗ = (eitA �H−r) : H−r → H−r . (2.125)

Analogous results hold for the exponential operators e−t
√
A and e−t

√
A /
√
A .

Proof. Both items i) and ii) follow straightforwardly from Proposition 2.23; in particular,
for ii) recall the considerations in Remarks 2.10.

The case of a Hilbert space with conjugation
Let us now assume that the basic Hilbert space H is endowed with a conjugation J :
H → H (see Section 2.4 and, expecially, the second paragraph therein); moreover, let
us assume that the operator A used in the previous subsections to construct the scale of
spaces Hr (r ∈ [−∞,+∞]) is J-real (so that A and J commute).

Proposition 2.25. The map J : H → H has a unique continuous extension to the
topological vector space H−∞. This extension, denoted from now on with J : H−∞ →
H−∞, possesses the following properties:
i) J is a conjugation on the topological vector space H−∞;
ii) J (Hr) = Hr for all r ∈ [−∞,+∞];
iii) for all f ∈ H−∞ and g ∈ H+∞ one has

〈J f |J g〉 = 〈f |g〉 (2.126)

or, equivalently,
〈J f |g〉 = 〈f |J g〉 (2.127)

(where 〈 | 〉 is the extension (2.103) of the inner product of H);
iv) for each r ∈ R, J �Hr is a conjugation on the Hilbert space Hr:

〈J f |J g〉r = 〈f |g〉r . (2.128)

v) let φ : σ(A)→ C be a measurable function fulfilling the assumption (2.90) for some b ∈
R and consider the continuous extension φ(A) : H−∞ → H−∞ introduced in Proposition
2.12 and the analogous map φ(A) : H−∞ → H−∞. Then, the relation

J φ(A)J −1 = φ(A) (2.129)

holds in the space of operators from H−∞ to H−∞.
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Proof. The continuous extension of J to H−∞, if it exists, is unique due to the density
of H in H−∞. In the sequel we prove that such a continuous extension exists and fulfills
statements i)-v).
To this purpose, let us recall the formulation of the spectral theorem given in the second
paragraph of Section 2.4 for a J -real self-adjoint operator; due to this formulation, it
suffices to prove existence and i)-v) when H = L2(K,µ), A is the multiplication operator
by measurable function w : K → [ε,+∞) and J : L2(K,µ) → L2(K,µ) is the usual
complex conjugation: J f = f . In this case, let us define

J f := f for all f ∈ H−∞ ⊂ Mis(K) ; (2.130)

then, one readily checks that J maps H−∞ to H−∞ extending continuously the conjuga-
tion of H = L2(K,µ), and that all statements i)-v) hold.

Corollary 2.26. Consider the map J : H−∞ → H−∞ defined by Proposition 2.25 and
the operators A−s,A−s̄, etA, e−tA : H−∞ → H−∞ for any s ∈ C, t ∈ C with <t ≥ 0; then

JA−sJ −1 = A−s̄ , (2.131)

J e−tAJ −1 = e−t̄A , (2.132)

and analogous results hold for the exponential operators e−t
√
A , e−t

√
A/
√
A :H−∞→H−∞.

Proof. Use item v) of the Proposition 2.25 with φ(λ) := λ−s, φ(λ) := e−tλ and so on.

Further results on the complex powers of A.

Let us keep all the assumptions and the notations of the previous subsections; in particular,
we consider the (extensions of the) powers A−s : H−∞ → H−∞, for s ∈ C. Moreover, for
any fixed r ∈ R, let us define the strip

Σr := {s ∈ C | <s > r} . (2.133)

Lemma 2.27. Let r1, r2 ∈ R; for all s ∈ Σ(r1+r2)/2, the operator A−s maps continuously
H−r1 into Hr2.

Proof. Recall that, for any s ∈ C, A−s maps continuouslyH−r1 toH−r1+2<s (see Corollary
2.13). Moreover, for any s ∈ Σ(r1+r2)/2, we have −r1 + 2<s > r2 so that H−r1+2<s ↪→ Hr2 ;
this suffices to infer the thesis.

Let us recall once more that, for any r1, r2 ∈ R, B(H−r1 ,Hr2) indicates the Banach space
of continuous linear operators from H−r1 to Hr2 , with the usual operator norm.

Proposition 2.28. For any r1, r2 ∈ R, the following function is holomorphic:

Σ(r1+r2)/2 → B(H−r1 ,Hr2) , s 7→ A−s �H−r1 . (2.134)
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Proof. Let us fix s0 ∈ Σ(r1+r2)/2 arbitrarily. For any s ∈ Σ(r1+r2)/2, A−s can be represented
as the multiplication operator by the function w−s : K → C ; the latter can be re-
expressed, in turn, as follows:

w−s = w−s0 w−(s−s0) = w−s0 e−(s−s0) lnw =

= w−s0
+∞∑
n=0

(s− s0)n

n!
(− lnw)n =

+∞∑
n=0

(s− s0)n

n!
w−s0 (− lnw)n .

Hereafter we will prove the following statements, yielding the thesis.
i) For each n ∈ N, the operatorA−s0(− lnA)n mapsH−r1 intoHr2 , and Cn := A−s0(− lnA)n �
H−r1 is continuous from H−r1 to Hr2 .
ii) The series

∑+∞
n=0

(s−s0)n

n!
Cn is convergent in B(H−r1 ,Hr2) for all s inside the disc

D(s0,<s0 − (r1+r2)/2) ⊂ Σ(r1+r2)/2.
iii) For all s ∈ D(s0,<s0− (r1+r2)/2), the sum of the series in item ii) equals A−s �H−r1 .
These statements are proved in the following Steps 1, 2 and 3.
Step 1 - Statement i) holds and, for each n ∈ N, the operator Cn has norm

‖Cn‖B(H−r1 ,Hr2 ) ≤ max

(
ε−(<s0− r1+r22

)| ln ε|n ,
(n
e

)n(
<s0 −

r1+r2

2

)−n)
. (2.135)

Let us fix n ∈ N; moreover, let f ∈ H−r1 so that w−r1/2f ∈ L2(K,µ). Then

wr2/2 [w−s0(− lnw)n]f = [w−(s0− r1+r22
)(− lnw)n]w−r1/2f ,

so that we have w−s0(− lnw)nf ∈ Hr2 if the function w−(s0− r1+r22
)(− lnw)n is essentially

bounded on K. To go on, recall that <s0 − (r1 + r2)/2 > 0 (since s0 ∈ Σ(r1+r2)/2)
and that w(k) ≥ ε for a.e. k ∈ K; then, analyzing by elementary means the function

Fn : [ε,+∞)→ R, z 7→ Fn(z) := z−(<s0− r1+r22
)| ln z|n, we obtain

ess sup
K

∣∣∣w−(s0− r1+r22
)(− lnw)n

∣∣∣ ≤ sup
z∈[ε,+∞)

Fn(z) = max
(
Fn(ε) , Fn(en/(<s0−

r1+r2
2

))
)

=

= max

(
ε−(<s0− r1+r22

)| ln ε|n ,
(n
e

)n(
<s0 −

r1+r2

2

)−n)
< +∞ .

Summing up, we have shown that A−s0(− lnA)nf = w−s0(− lnw)nf ∈ Hr2 , and that
Cn := A−s0(− lnA)n � H−r1 : H−r1 → Hr2 fulfills

‖Cnf‖r2 ≤ max

(
ε−(<s0− r1+r22

)| ln ε|n ,
(n
e

)n(
<s0 −

r1 + r2

2

)−n)
‖f‖−r1 ,

for all f ∈ H−r1 ; so, Cn is continuous with norm fulfilling Eq. (2.135).

Step 2 - Statement ii) holds. The convergence radius of the series
∑+∞

n=0
(s−s0)n

n!
Cn in the

Banach space B(H−r1 ,Hr2) is ρ ∈ [0,+∞], where

1

ρ
:= lim sup

n→+∞

( 1

n!
‖Cn‖B(H−r1 ,Hr2 )

)1/n

.
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Let us show that ρ ≥ <s0 − (r1+r2)/2 ; in fact, due to Eq. (2.135) we have

1

ρ
≤ max

(
lim

n→+∞

( 1

n!
ε−(<s0− r1+r22

)| ln ε|n
)1/n

, lim
n→+∞

( 1

n!

(n
e

)n(
<s0 −

r1 + r2

2

)−n)1/n
)

=
1

<s0− r1+r2
2

(to compute the above limits, we have used the Stirling formula n! = (n/e)n
√

2πnun,
with un → 1 for n→ +∞).
Step 3 - Proof of statement iii). Let s ∈ D(s0,<s0 − (r1 +r2)/2); for all f ∈ H−r1 , the

convergence of the series
∑+∞

n=0
(s−s0)n

n!
Cn in the space B(H−r1 ,Hr2) and the definition of

Cn imply the following(
+∞∑
n=0

(s− s0)n

n!
Cn
)
f =

+∞∑
n=0

(s− s0)n

n!
Cnf =

+∞∑
n=0

(s− s0)n

n!
w−s0(− lnw)nf ,

and the last series converges in Hr2 . On the other hand, it can be checked that the series∑+∞
n=0

(s−s0)n

n!
w−s0(− lnw)n converges in L∞(K,µ) to the function w−s; in conclusion,(

+∞∑
n=0

(s− s0)n

n!
Cn
)
f = w−sf

for all f ∈ H−r1 , that is,
∑+∞

n=0
(s−s0)n

n!
Cn = A−s �H−r1 .

Proposition 2.29. For any r1, r2 ∈ R, the following maps are holomorphic:

Σ0 → B(H−r1 ,Hr2) , t 7→ e−tA �H−r1 , e−t
√
A �H−r1 , (e−t

√
A/
√
A )�H−r1 . (2.136)

Proof. We report the proof only for the map t 7→ e−tA; the derivation of same results
for the other exponential functions is analogous. We move along the same lines as in the
proof of the previous Proposition 2.28.
So, let r1, r2 ∈ R and let us fix t0 ∈ Σ0. Recall that, for all t ∈ Σ0, e−tA can be
represented as the multiplication operator by the function e−tw : K → C; the latter can
be re-expressed, in turn, as

e−tw = e−t0w e−(t−t0)w =

= e−t0w
+∞∑
n=0

(t− t0)n

n!
(−w)n =

+∞∑
n=0

(t− t0)n

n!
e−t0w (−w)n .

Hereafter we will prove the following statements, yielding the thesis.
i) For each n ∈ N and for any r1, r2 ∈ R, e−t0A (−A)n maps H−r1 into Hr2 and Cn :=
e−t0A (−A)n �H−r1 is continuous from H−r1 to Hr2 .
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ii) The series
∑+∞

n=0
(t−t0)n

n!
Cn converges in B(H−r1 ,Hr2) for all t belonging to the disc

D(<t0,<t0)⊂Σ0.
iii) The sum of the series in item ii) equals e−tA �H−r1 , for all t ∈ D(<t0,<t0).
These statements are proved in the following Steps 1, 2 and 3.
Step 1 - Statement i) holds and, for each n ∈ N and for any r1, r2 ∈ R, the operator Cn
has norm

‖Cn‖B(H−r1 ,Hr2 ) ≤ max

(
εn+

r1+r2
2 e−<t0 ε ,

(n+ r1+r2
2

e<t0

)n+
r1+r2

2

)
. (2.137)

Let us fix n ∈ N and let f ∈ H−r1 , so that w−r1/2f ∈ L2(K,µ); then

wr2/2 [e−t0w(−wn)]f =
[
e−t0w(−1)nwn+

r1+r2
2

]
w−r1/2f .

Therefore, it suffices to show that the function e−t0w wn+
r1+r2

2 is essentially bounded on K
to infer that e−t0w(−w)nf ∈ Hr2 . To this purpose, let us first recall that <t0 > 0 (since
t0 ∈ Σ0) and that w(k) ≥ ε for a.e. k ∈ K; then, analyzing by elementary means the

function Fn : [ε,+∞)→ R, z 7→ Fn(z) := e−t0zzn+
r1+r2

2 , we obtain

ess sup
K
|e−t0w(−1)nwn+

r1+r2
2 | ≤ sup

z∈[ε,+∞)

Fn(z) =

= max

(
Fn(ε) , Fn

(n+ r1+r2
2

2

))
= max

(
e−<t0 εεn+

r1+r2
2 ,

(n+ r1+r2
2

e<t0

)n+
r1+r2

2

)
< +∞ .

As stated above, this implies that e−t0A (−A)nf = e−t0w(−w)nf ∈ Hr2 which also ensures
that the operator Cn := e−t0A (−A)n �H−r1 maps H−r1 to Hr2 . Moreover, the arguments
employed also give

‖Cnf‖r2 ≤ max

(
e−<t0 εεn+

r1+r2
2 ,

(n+ r1+r2
2

e<t0

)n+
r1+r2

2

)
‖f‖−r1 ,

for all f ∈ H−r1 ; so, Cn is continuous with norm fulfilling Eq. (2.137).

Step 2 - Statement ii) holds. Indeed, the convergence radius of the series
∑+∞

n=0
(t−t0)n

n!
Cn

in the Banach space B(H−r1 ,Hr2) is ρ ∈ [0,+∞], where

1

ρ
:= lim sup

n→+∞

( 1

n!
‖Cn‖B(H−r1 ,Hr2 )

)1/n

.

Next note that, due to Eq. (2.137), we have

1

ρ
≤ max

(
lim

n→+∞

( 1

n!
e−<t0 εεn+

r1+r2
2

)1/n

, lim
n→+∞

( 1

n!

(n+ r1+r2
2

e<t0

)n+
r1+r2

2
)1/n

)
=

1

<t0

(the above limits have been comptuted using again the Stirling formula n! = (n/e)n
√

2πnun,
with un → 1 for n→ +∞); so, ρ ≥ <t0.
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Step 3 - Proof of statement iii). Let t ∈ D(<t0,<t0). For all f ∈ H−r1 , the convergence

of the series
∑+∞

n=0
(t−t0)n

n!
Cn in the space B(H−r1 ,Hr2) and the definition of Cn imply the

following

( +∞∑
n=0

(t− t0)n

n!
Cn
)
f =

+∞∑
n=0

(t− t0)n

n!
Cnf =

+∞∑
n=0

(t− t0)n

n!
e−t0w(−w)nf ;

the last series converges in Hr2 . On the other hand, it can be checked that the series∑+∞
n=0

(t−t0)n

n!
e−t0w(−w)n converges in L∞(K,µ) to the function e−tw; summing up, we

have shown that ( +∞∑
n=0

(t− t0)n

n!
Cn
)
f = e−twf

for all f ∈ H−r1 , that is,
∑+∞

n=0
(t−t0)n

n!
Cn = e−tA �H−r1 .

Proposition 2.30. For any r∈R and for any n∈N, the following maps are of class Cn:

R→ B(Hr+2(n+1),Hr) , t 7→ e−itA �Hr+2(n+1) ,

R→ B(Hr+n+1,Hr) , t 7→ e−it
√
A �Hr+n+1 ,

R→ B(Hr+n,Hr) , t 7→ (e−it
√
A/
√
A )�Hr+n .

(2.138)

Proof. As an example, we consider the map t 7→ e−itA and show the existence and con-
tinuity of its first derivative (arguments similar to those presented hereafter can be em-
ployed to discuss the higher order derivatives). Let us stress that, in view of the identity
e−itA = e−it0Ae−i(t−t0)A and of the fact that e−it0A is an Hilbertian isomorphism on Hr

(for any t0 ∈ R and for any r ∈ R), it suffices to discuss the differentiabilty in t = 0.
Therefore, to infer the existence of d

dt
e−itA, it suffices to show that

e−itA − 1 + itA
t

→ 0 in B(Hr+4,Hr) for t→ 0 . (2.139)

Notice that, by definition, there holds∥∥∥∥e−itA − 1 + itA
t

∥∥∥∥
B(Hr+4,Hr)

= sup
f∈Hr+4

‖ e−itA−1+itA
t

f‖r
‖f‖r+4

;

moreover, using representations of H and A as in Eq.s (2.54-2.56), for any f ∈ Hr+2(n+1)

we have ∥∥∥∥e−itA − 1 + itA
t

f

∥∥∥∥2

r

=

∫
K

dµ wr
∣∣∣e−itw − 1 + iw t

t
f
∣∣∣2 =

=

∫
K

dµ wr
2

t2

(
1− cos(w t)− t w sin(w t) +

1

2
w2t2

)
|f |2 .
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On the other hand, it can be proved by elementary means that 2
t2

(1−cos(w t)−t w sin(w t)+
1
2
w2t2) ≤ 1

4
w4t2 for |t| small enough; this allows to infer∥∥∥∥e−itA − 1 + itA

t
f

∥∥∥∥2

r

≤ t2

4

∫
K

dµ wr+4 |f |2 =
t2

4
‖f‖2

r+4 .

Summing up, the above considerations imply∥∥∥∥e−itA − 1 + itA
t

∥∥∥∥
B(Hr+4,Hr)

≤ 1

2
|t| ,

which, in view of Eq. (2.139), proves the existence of the map R → B(Hr+4,Hr),
t 7→ d

dt
e−itA = −iA e−itA. The latter can also be shown to be continuous by arguments

analogous to those employed above, thus yielding the thesis.

Before moving on, let us prove the following proposition, relating the complex powers A−s
(s ∈ C) to the Mellin transforms of the exponential operators e−tA, e−t

√
A , e−t

√
A/
√
A .

Proposition 2.31. Let t ∈ (0,+∞) and consider the operators e−tA, e−t
√
A , e−t

√
A /
√
A :

H−∞ → H+∞ defined in Corollary 2.14; besides, let r1, r2 ∈ R be such that r1 +r2 > 0.
Then, for all f ∈ H−r1 and all s ∈ Σ(r1+r2)/2 the following relations hold in Hr2:

A−sf =
1

Γ(s)

∫ +∞

0

dt ts−1 e−tAf , (2.140)

A−sf =
1

Γ(2s)

∫ +∞

0

dt t2s−1 e−t
√
A f , (2.141)

A−sf =
1

Γ(2s−1)

∫ +∞

0

dt t2s−2 (e−t
√
A /
√
A )f . (2.142)

In the above, all integrals are intended in the Gelfand-Pettis sense and involve functions
from (0,+∞) to Hr2 (in fact, according to Corollary 2.14, e−tAf, e−t

√
A f, (e−t

√
A /
√
A )f ∈

H+∞ ↪→ Hr2).

Proof. We report the proof only for the operator e−tA (the proof for the other operators
is analogous). Fix r1, r2 ∈ R with r1 + r2 > 0; for any s ∈ Σ(r1+r2)/2 and any f ∈ H−r1 ,
one has A−sf ∈ H2<s−r1 ↪→ Hr2 (see Corollary 2.13). Next, recall that all linear forms
on Hr2 have the form 〈g| 〉, for some g ∈ H−r2 (with 〈 | 〉 denoting the extended inner
product of Proposition 2.16). Then, by the definition of the Gelfand-Pettis integral,
proving Eq. (2.140) amounts to showing the following: for any g ∈ H−r2 , the function
t 7→ ts−1 〈g|e−tAf〉 is integrable and

〈g|A−sf〉 =
1

Γ(s)

∫ +∞

0

dt ts−1 〈g|e−tAf〉 . (2.143)
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Now, consider the representation (2.54-2.56) for H and A; then, A−s and e−tA correspond
to the multiplication operators by the functions w−s : K → C and e−tw : K → R,
respectively. So, Eq. (2.143) (to be proved) can be rephrased as∫

K

dµ w−s g f =
1

Γ(s)

∫ +∞

0

dt ts−1

∫
K

dµ e−tw g f . (2.144)

Indeed, recall that w(k) ∈ [ε,+∞) for a.e. k ∈ K and that <s > 0, since s ∈ Σ(r1+r2)/2

and r1+r2 > 0; in consequence of this, we have (see [122], page 139, Eq. 5.9.1) w(k)−s =
1

Γ(s)

∫ +∞
0

dt ts−1 e−tw(k) for a.e. k ∈ K. Therefore Eq. (2.144) is, in turn, equivalent to

1

Γ(s)

∫
K

dµ

(∫ +∞

0

dt ts−1 e−tw
)
g f =

1

Γ(s)

∫ +∞

0

dt ts−1

(∫
K

dµ e−tw g f

)
.

Summing up, the thesis follows if we can show that the order of integration on K and
(0,+∞) can be interchanged; this statement is ensured by the Fubini-Tonelli theorem
[134] if

I :=

∫
(0,+∞)×K

dt⊗ dµ
∣∣ts−1 e−tw g f

∣∣ < +∞ . (2.145)

To prove Eq. (2.145), first re-express the integral therein as

I =

∫
(0,+∞)×K

dt⊗ dµ t<s−1 (e−tw w
r1+r2

2 ) |w−r2/2g| |w−r1/2f | .

Then, consider the function F : (0,+∞) → R, t 7→ F (t) := supw∈[ε,+∞) |w
r1+r2

2 e−tw|; by
elementary methods, we obtain

F (t) =

(
r1+r2

2e t

)r1+r2
2

χ(0,(r1+r2)/(2ε)](t) +
(
ε
r1+r2

2 e−εt
)
χ((r1+r2)/(2ε),+∞)(t)

(where χ denotes the indicator function; see the footnote 11 of page 29). It follows that

I ≤
(∫ +∞

0

dt t<s−1 F (t)

)(∫
K

dµ |w−r2/2g| |w−r1/2f |
)
. (2.146)

On the one hand, due to Hölder’s inequality we have
∫
K
dµ |w−r2/2g||w−r1/2f | ≤ ‖g‖−r2‖f‖−r1 ,

so that the second integral in Eq. (2.146) is finite. On the other hand, concerning the
first integral in the same equation, we have∫ +∞

0

dt t<s−1 F (t) =

(
r1+r2

2e

)r1+r2
2
∫ r1+r2

2ε

0

dt t<s−
r1+r2

2
−1 + ε

r1+r2
2

∫ +∞

r1+r2
2ε

dt t<s−1 e−tε ;

both the integrals on the right-hand side are finite since s ∈ Σ(r1+r2)/2 and ε > 0. Summing
up, Eq. (2.146) proves Eq. (2.145), thus yielding the thesis.
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2.6 Schrödinger-type operators: regularity and

self-adjointness.

So far, we have been considering an abstract framework where A was some self-adjoint
operator acting on a given Hilbert space H. In this section we analyze more in detail the
case where the basic Hilbert space is H = L2(Ω), with Ω ⊂ Rd a suitable domain, and A
is determined by some differential operator on it.

Regularity results for elliptic differential operators.

Local results.

Let us first assume that Ω is an arbitrary domain in Rd and let us choose a “potential”

V ∈ C∞(Ω, R) ; (2.147)

we will make more specific hypotheses on Ω and V when necessary. Moreover, let us
consider the second-order, proper (see [38, 107, 156]) elliptic differential operator of
Schrödinger type

A := −4+V : D′(Ω)→ D′(Ω) (2.148)

(recall that 4 stands for the d-dimensional Laplacian, i.e., 4 :=
∑d

i=1 ∂xixi). For any
n ∈ N and any r ∈ R, it is easily checked that

AnHr+2n
loc (Ω) ⊂ Hr

loc(Ω) (2.149)

and that An � Hr+2n
loc (Ω) maps continuously Hr+2n

loc (Ω) into Hr
loc(Ω) (see [38], page 98,

Proposition 2.13). Furthermore, the standard theory of local regularity for elliptic differ-
ential operators allows to derive the following result.

Theorem 2.32. For n ∈ N, the following statements hold.
i) One has

H2n
loc(Ω) = {f ∈ D′(Ω) | Amf ∈ L2

loc(Ω) for m = 0, ..., n } . (2.150)

ii) Consider the standard topology of H2n
loc(Ω), based on the family of seminorms f 7→

‖ϕf‖H2n (ϕ ∈ D(Ω) ). This coincides with the topology induced by the family of seminorms

f 7→ ‖ϕAmf‖L2 (ϕ ∈ D(Ω) , m ∈ {0, ..., n}) . (2.151)

Proof. We give the proof of the statements i) and ii) in several steps.
Step 1 - Proof of i). Let us provisionally denote with H2n(Ω) the right-hand side of Eq.
(2.150); it is evident that H2n

loc(Ω) ⊂ H2n(Ω). The proof of the reverse inclusion relies on
the following well-known result:

m ∈ N , r ∈ R , f ∈ D′(Ω) , Amf ∈ Hr
loc(Ω) ⇒ f ∈ Hr+2m

loc (Ω) (2.152)
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(see, e.g., [141] and Theorem 3.2 of [97]). Now, let f ∈ H2n(Ω); the condition in Eq.
(2.150) with m = n reads Anf ∈ L2

loc(Ω) ≡ H0
loc(Ω) and this implies f ∈ H2n

loc(Ω).
Step 2 - An inequality. For any ` ∈ Z and any compact subset K ⊂ Ω, let us define the
set H`

K(Ω) := {f ∈ H`(Ω) | suppf ⊂ K}; then AH`+2
K (Ω) ⊂ H`

K(Ω). Since A is a proper
elliptic operator of degree 2 in the sense of [38] (see also [107, 156]), for each ` ∈ Z and
each compact subset K ⊂ Ω there exists a constant C`,K > 0 such that

‖f‖H`+2 ≤ C`,K(‖Af‖H` + ‖f‖L2) for all f ∈ H`+2
K (Ω) (2.153)

(see [38], Theorem 8.11; the inequality written above follows from Eq. (8.11.3) therein,
setting m = 2 and t = 0 (18)).
Step 3 - Another inequality. Let ` ∈ Z, ϕ ∈ D(Ω). We claim there is a constant C`,ϕ such
that, for all f ∈H`+2

loc (Ω),

‖ϕf‖H`+2 ≤

C`,ϕ

(
‖ϕ(Af)‖H` +

d∑
i=1

‖(∂xiϕ)f‖H`+1 + ‖(4ϕ)f‖H` + ‖ϕf‖L2

)
.

(2.154)

Indeed, let `, ϕ be as above, and set K := suppϕ; in the sequel, “const.” indicates a
positive constant, depending only on ` and ϕ. Let f ∈ H`+2

loc (Ω); then ϕf ∈ H`+2
K (Ω) and

the inequality in Eq. (2.153) for this function gives

‖ϕf‖H`+2 ≤ const.(‖A(ϕf)‖H` + ‖ϕf‖L2) . (2.155)

On the other hand A(ϕf) = ϕ(Af)− 2
∑d

i=1 ∂xi [(∂xiϕ)f ] + (4ϕ)f , which allows to infer

‖A(ϕf)‖H` ≤

‖ϕ(Af)‖H` + const.
d∑
i=1

‖(∂xiϕ)f‖H`+1 + ‖(4ϕ)f‖H` .
(2.156)

Moreover, recall that ϕ is smooth and has compact support. These facts and the inequal-
ities in Eq.s (2.155) (2.156) yield the thesis (2.154).
Step 4 - Proof of ii). Let us show that each of the topologies based respectively on the
family of seminorms f 7→ ‖ϕAmf‖L2 and f 7→ ‖ϕf‖H2n (ϕ∈D(Ω) ) is finer than the other.
To this purpose we will prove that, for all ϕ ∈ D(Ω) and for all n ∈ N, there exist two
constants Cn,ϕ, C

′
n,ϕ > 0 and two finite sets In, I

′
n,ϕ such that

‖ϕf‖H2n ≤ Cn,ϕ
∑

(m,α)∈In

‖(∂αϕ)Amf‖L2 , (2.157)

18As a matter of fact, the cited Eq. (8.11.3) of [38] is stated for functions in C∞(Ω) with support
in a given compact subset, but can be readily extended to functions in H`+2

K (Ω) by elementary density
arguments.
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‖ϕAnf‖L2 ≤ C ′n,ϕ
∑
ψ∈I′n,ϕ

‖ψ f‖H2n . (2.158)

The set In appearing above has elements of the form (m,α), where m ∈ {0, ..., n} and α
a multi-index with |α| ≤ 2n; on the contrary, I ′n,ϕ is a subset of D(Ω).

Let us begin proving Eq. (2.157). By Eq. (2.154) in Step 3 of the present proof (here
employed with ` = 2(n− 1) ), for all f ∈ H2n

loc(Ω) one has

‖ϕf‖H2n ≤

C2(n−1),ϕ

(
‖ϕ(Af)‖H2(n−1) +

d∑
i=1

‖(∂xiϕ)f‖H2n−1 + ‖(4ϕ)f‖H2(n−1) + ‖ϕf‖L2

)
;

note that all the terms on the right-hand side of this inequality are of the form ‖(∂αϕ) v‖Hk

for some multi-index α of order |α| ≤ 2 and some v ∈Hk
loc(Ω) (k ∈ N, k < 2n). Each

of these terms can be estimated in the same way, employing once more Eq. (2.154)
(with ϕ replaced by ∂αϕ). This procedure can be iterated n times, until only norms of
order 0 or less are left on the right-hand side; clearly, each term remaining is of the form
‖(∂αϕ)Amf‖Hk for some m ∈ {0, ..., n}, k ∈ {−1, 0} and α a multi-index with |α| ≤ 2n.
Then, the inequality (2.157) follows since ‖v‖H−1 ≤ const. ‖v‖H0 = const. ‖v‖L2 for all
v ∈ L2(Ω) with compact support (19).

Let us now pass to justify Eq. (2.158); indeed, this inequality is a just a reformulation of
an already mentioned fact, i.e., the continuity of the differential operator (An �H2n

loc(Ω)) :
H2n

loc(Ω)→ L2
loc(Ω) (let us recall again reference [38]).

Global results.

Making stricter assumptions on the domain Ω, on its boundary ∂Ω and on the regularity
of the potential V defining the elliptic operator A of Eq. (2.148), one can infer stronger
versions of Theorem 2.32 which allow to deal with the behaviour of the functions under
analysis up to the boundary of Ω.

For example, from here to the end of this paragraph, let us consider the case where

Ω ⊂ Rd is a bounded domain with compact boundary ∂Ω of class C∞

and V : Ω→ R has a C∞ extension V : Ω = Ω ∪ ∂Ω→ R ;
(2.159)

these hypotheses suffice to infer the continuity of the differential operator (An �H`+2n(Ω)) :
H`+2n(Ω)→ H`(Ω) for any n ∈ N and any ` ∈ Z (compare with Eq. (2.149) ).

In this situation, it is natural to consider the behaviour of functions on the boundary of
Ω. As well known (see, e.g., [109]) there is a linear, continous operation of trace

H1(Ω)→ L2(∂Ω) , f 7→ f �∂Ω (2.160)

19See [97], Chapter 2, Section 3, pages 121–122.
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that coincides with the usual operation of restriction to ∂Ω on any function f ∈ C1(Ω);
moreover the space H1

0 (Ω) (defined, we recall it, as the closure of D(Ω) in H1(Ω) ) admits
in the present case the representation

H1
0 (Ω) = {f ∈ H1(Ω) | f �∂Ω = 0} . (2.161)

The prescription f � ∂Ω = 0 is a Dirichlet boundary condition; in the sequel we will be
especially interested in analysing the differential operator A (and its powers) with these
boundary conditions, indicated by the symbol D. In view of this, following [109] (see
pages 228–229), we introduce the following space:

Definition 2.33. For n ∈ N we put

H2n
D (Ω) := {f ∈ H2n(Ω) | (Amf)�∂Ω = 0 for m = 0, ..., n−1 } . (2.162)

Remark 2.11. If f ∈ H2n(Ω) and m ∈ {0, ..., n − 1}, then Amf ∈ H2n−2m(Ω) ⊂ H1(Ω),
so it makes sense to speak of the trace (Amf) � ∂Ω. Elementary considerations related
to the linearity and continuity of the operators Am, � ∂Ω ensure that H2n

D (Ω) is a closed
linear subspace of H2n(Ω) and, in particular, it is itself a Banach space with the norm
‖ ‖H2n ; furthermore, it appears that D(Ω) and, consequently, its closure H2n

0 (Ω) are linear
subspaces of H2n

D (Ω).

In analogy to Theorem 2.32, one can infer the forthcoming result.

Theorem 2.34. For n ∈ N, the following statements hold.
i) One has

H2n
D (Ω) =

{
f ∈ D′(Ω)

∣∣∣ Anf ∈ L2(Ω) and
Amf ∈ H1

0 (Ω) for m = 0, ..., n−1

}
. (2.163)

ii) The standard topology of H2n
D (Ω), inherited from H2n(Ω), coincides with the topology

induced by the norm

f 7→
n∑

m=0

‖Amf‖L2 . (2.164)

Proof. The thesis can be proved moving along the same lines as in the proof of Theorem
2.32; hereafter we only point out the main steps.
The essential argument is the following, well-known result of regularity (see [62] page 323,
Theorem 5):

k ∈ N, g ∈ H1
0 (Ω), Ag ∈ Hk(Ω) ⇒

g ∈ Hk+2(Ω) and ‖g‖Hk+2 ≤ const.(‖Ag‖Hk + ‖g‖L2) .
(2.165)

In order to show statement i), let us temporarily indicate with H2n
D (Ω) the space in the

right-hand side of Eq. (2.163); of course, H2n
D (Ω) ⊂ H2n

D (Ω). On the other hand, for any
f ∈ H2n

D (Ω), we have A(An−1f) = Anf ∈ L2(Ω) and An−1f ∈ H1
0 (Ω); by (2.165) with
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g = An−1f and k = 0, this implies that An−1f ∈ H2(Ω). Iterating these arguments one
obtains An−`f ∈ H2`(Ω) for ` = 0, ..., n and, in particular, f ∈ H2n(Ω), which proves the
inclusion H2n

D (Ω) ⊂ H2n
D (Ω).

Next, since Ω is bounded and the potential V is smooth up to the boundary (whence,
bounded along with its derivatives), it can be easily checked that there exists a positive
constant “const.” such that, for all f ∈ H2n

D (Ω),

n∑
m=0

‖Amf‖L2 ≤ const. ‖f‖H2n ; (2.166)

on the other hand for f ∈ H2n
D (Ω), repeated use of the inequality in (2.165) gives ‖f‖H2n ≤

const.(‖Af‖H2n−2 + ‖f‖L2) ≤ const.(‖A2f‖H2n−4 + ‖Af‖L2 + ‖f‖L2) and, more generally,
‖f‖H2n ≤ const.(‖A`f‖H2n−2` +

∑`
m=0 ‖Amf‖L2) for ` = 0, ..., n; in particular, with ` = n

we have

‖f‖H2n ≤ const.
n∑

m=0

‖Amf‖L2 . (2.167)

Summing up, Eq.s (2.166) (2.167) prove statement ii).

Some possible generalizations.

Results analogous to those discussed in the previous Theorems 2.32 and 2.34 can be
derived under more general hypotheses for the differential operator A, for the domain
Ω and for the boundary conditions on ∂Ω. The proofs of these results closely resemble
those of the cited theorems, and do in fact rely on essentially the same arguments; for
this reason, these proofs will not be reported in this manuscript. We will limit ourself
to simply mention some variations of Theorems 2.32, 2.34 and to hint at some of their
possible, further generalizations. Let us notice that, as a matter of fact, some of these
generalizations are not of direct interest for the physical applications to be considered in
Chapter 3 of this work. Nevertheless, they are likely to have an interest of their own and
in connection with other topics, which are not dealt with in the present manuscript; for
these reasons we report them here anyway for completeness.
First of all, let us stress that if A is any second order, formally self-adjoint, proper elliptic
differential operator (20)

A :=
∑
|α|≤2

aα ∂
α : D′(Ω)→ D′(Ω) (2.168)

20Formal self-adjointness of the operator A in (2.168) means that A coincides with its Lagrange adjoint
[39]

A† :=
∑
|α|≤2

(−∂)αāα : D′(Ω)→ D′(Ω) .

We refer again to [38, 107, 156] for the definition of proper differential operator.
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for some smooth coefficients aα : Ω → C (α∈Nd, |α| ≤ 2), then the results of Theorem
2.32 continue to hold, understanding A to be as in Eq. (2.168); similarly, if the domain
Ω and its boundary are as in Eq. (2.159), assuming that aα ∈ C∞(Ω) and that Dirichlet
boundary conditions are prescribed on ∂Ω one can infer statements analogous to those of
Theorem 2.34 (21).

Next, let us note that one could make weaker assumptions on the regularity of the bound-
ary ∂Ω and of the coefficients defining the differential operator A. For example, let us
consider the case where A is as in Eq. (2.168) with aα ∈ C2j(Ω) for some j ∈ N; then,
Theorem 2.32 continues to hold for all n ∈ N with n ≤ j. On the other hand, Theorem
2.34 is still valid for the same values of n, if Ω is bounded with boundary ∂Ω of class
C2j+2 and if aα ∈ C2j(Ω) (|α| ≤ 2).

Finally, let us draw the attention to the fact that boundary conditions different from those
of Dirichlet type could be taken into account, as well. To this purpose, let us consider
the case described in Eq. (2.159), where Ω is bounded with boundary of class C∞ and
A = −4+V with V ∈ C∞(Ω); hereafter we briefly analyze as examples the cases where
either Neumann or Robin boundary conditions (respectively indicated with the symbols N
and R) are imposed on ∂Ω. Following the Definition 2.33 of H2n

D (Ω) (n ∈ N), we consider
the spaces described hereafter (see again [109], pages 228–229).

Definition 2.35. For any n ∈ N, we introduce the spaces (compare with Eq. (2.162) )

H2n
N (Ω) := {f ∈ H2n(Ω) | ∂n(Amf)�∂Ω = 0 for m = 0, ..., n−1} , (2.169)

H2n
R (Ω) := {f ∈ H2n(Ω) | (h+ ∂n)(Amf)�∂Ω = 0 for m = 0, ..., n−1} ; (2.170)

here n : ∂Ω → Rd is the outer normal versor, ∂n =
∑d

i=1 n
i∂i indicates the normal

derivative at points of ∂Ω and h : ∂Ω→ C is an assigned function of class C∞ (22).

21 In fact, results analogous to Theorems 2.32 and 2.34 can be derived for any proper elliptic differential
operator of arbitrary order p ∈ N, with smooth coefficients aα (|α| ≤ p):

A :=
∑
|α|≤p

aα ∂
α : D′(Ω)→ D′(Ω) .

For example, in place of Eq. (2.150) it can be proved that

Hpn
loc(Ω) = {f ∈ D′(Ω) | Amf ∈ L2

loc(Ω) for all m ∈ {0, ..., n} }

and that the topology determined by the family of seminorms f 7→ ‖ϕAmf‖L2 (ϕ ∈ D(Ω), m ∈ {0, ..., n})
is equivalent to the ususal one of Hpn

loc(Ω). Moreover, results analogous to those of Theorem 2.34 could
be derived assuming that Ω is bounded with smooth boundary ∂Ω and that the coefficients aα (|α| ≤ 2p)
are of class C∞ on Ω. Nevertheless, the case of a differential operator A of order different from p = 2
mentioned within this footnote is not strictly relevant for the purposes of the present work; therefore, it
will never be considered in the remainder of this manuscript.

22For m = 0, ..., n− 1, the above prescriptions on the normal derivatives of Amf make sense because
(for i = 1, ..., d) one has ∂i(A

mf) ∈ H1(Ω), which allows to define the trace of this function on ∂Ω.
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Let us assume that n, h have extensions n ∈ C∞(Ω,Rd), h ∈ C∞(Ω,C) (allowing to define
∂n :=

∑d
i=1 n

i∂i and h + ∂n everywhere on Ω). Then, in analogy to Theorem 2.34, one
can easily infer the forthcoming result, which we report here without proof.

Theorem 2.36. For n ∈ N, the following statements hold.
i) One has

H2n
N (Ω) :=

{
f ∈D′(Ω)

∣∣∣ Anf ∈L2(Ω) and
∂n(Amf)∈ H1

0 (Ω) for m = 0, ..., n−1

}
, (2.171)

H2n
R (Ω) :=

{
f ∈D′(Ω)

∣∣∣ Anf ∈L2(Ω) and
(h+ ∂n)(Amf)∈ H1

0 (Ω) for m = 0, ..., n−1

}
. (2.172)

ii) The topology of induced by H2n(Ω) on H2n
N (Ω) and H2n

R (Ω) coincides with the one
determined by the norm f 7→∑n

m=0 ‖Amf‖L2.

Remark 2.12. As a matter of fact, most of the results to be derived in the remainder of
the present Chapter 2 continue to hold under more general assumptions; for brevity, this
fact will not be restated every once in a while, although it is implicitly understood most
of the times.

In order to avoid misunderstandings, let us stress that in the following we will always
assume A to be the differential operator of Eq. (2.148). Moreover, we will generically
speak of suitable boundary conditions (s.b.c. for short) when the prescribed conditions on
∂Ω are of Dirichlet, Neumann or Robin type; in fact, we will typically consider boundary
conditions of Dirichlet type, even though most of the results presented in the following
continue to hold if Dirichlet conditions are replaced with s.b.c. (also of Neumann or Robin
type).

The general notion of admissible operator. Some examples.
Let us consider the Schrödinger-type differential operator A := −4+V introduced in Eq.
(2.148), where V ∈ C∞(Ω). The definition that follows will be referred to systematically
in the sequel.

Definition 2.37. Consider a linear subspace DA of the Hilbert space L2(Ω). We say that
DA is an admissible domain for A if:
i) ADA ⊂ L2(Ω) and the operator

A := (A�DA) : DA ⊂ L2(Ω)→ L2(Ω) (2.173)

is self-adjoint;
ii) σ(A) ⊂ (0,+∞) (strict inclusion), where σ(A) indicates the spectrum of A.
Under the above conditions, A will be referred to as an admissible operator.

Herefter we review some known cases where DA verifies the admissibility conditions. In
these examples DA is contained in H1

0 (Ω) which means that, if ∂Ω 6= ∅, Dirichlet boundary
conditions are being considered.
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Given DA and V with suitable features, the propositions reviewed hereafter contain suffi-
cient conditions for the self-adjointness of A and also localize the spectrum σ(A) within
proper intervals, thus allowing to prove in certain cases that σ(A) ⊂ (0,+∞).
It would not be difficult to extend our list of examples considering cases where the bound-
ary conditions are of either Neumann or Robin type (see the comments at the end of the
previous subsection).

Proposition 2.38. i) Assume

Ω ⊂ Rd to be an arbitrary domain,
V (x) ≥ W for all x ∈ Ω (W ∈ R)

(2.174)

and define

DA := {f ∈ H1
0 (Ω) | Af ∈ L2(Ω)} . (2.175)

Then A := A � DA is self-adjoint and

σ(A) ⊂ [W,+∞) . (2.176)

In particular, A is an admissible operator if W > 0.
ii) In the particular case Ω = Rd, the definition (2.175) of DA is equivalent to

DA := {f ∈ L2(Rd) | Af ∈ L2(Rd)} . (2.177)

Proof. i) Assume first W = 0; in this case A is m-accretive (see [89], Theorem I). Since
A is symmmetric, this is equivalent to say that A is self-adjoint and σ(A) ⊂ [0,+∞) (see
[90], page 279, Problem 3.32).
Consider now the case of an arbitrary W ∈ R. Let Ṽ (x) := V (x)−W , and Ã, Dom(Ã),
Ã be defined respectively as A, DA and A replacing V with Ṽ ; since Ṽ (x) ≥ 0, the result
proved above for W = 0 implies that Ã is self-adjoint and σ(Ã) ⊂ [0,+∞). On the other
hand, one easily ckecks that DA = Dom(Ã) and that A = Ã+W I (with I indicating the
identity operator on L2(Ω) ), whence the thesis about A.
ii) Let Ω = Rd and recall that H1

0 (Rd) = H1(Rd) (see [7], page 56, Corollary 3.19); to
get the thesis, it must be shown that f ∈ L2(Rd) and Af ∈ L2(Rd) imply f ∈ H1(Rd).
Indeed, the assumptions on f and Proposition (2.32) give f ∈ H2

loc(Rd), so the first and
second distributonal derivatives of f are ordinary functions of class L2

loc(Rd). To prove

that f ∈ H1(Rd) it remains to show that
∫
Rd |∇f |2 =

∑d
i=1

∫
Rd |∂if |2 < +∞; let us only

sketch the argument, based on the manipulations reported hereafter and on the remark
that V −W ≥ 0:

+∞ >

∫
Rd
f(−4f + V f)−W

∫
Rd
|f |2 =

∫
Rd
|∇f |2 +

∫
Rd

(V −W )|f |2 ≥
∫
Rd
|∇f |2 .
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Proposition 2.39. Assume

Ω ⊂ Rd to be a domain bounded along a direction ,
V (x) ≥ W for all x ∈ Ω (W ∈ R)

(2.178)

and consider the self-adjoint operator A with domain DA as in Eq. (2.175). Then

σ(A) ⊂
[

1

cΩ

+W,+∞
)
, (2.179)

where cΩ > 0 is a constant fulfilling the Poincaré inequality of Eq. (2.6). In particular, A
is an admissible operator whenever W > −1/cΩ.

Proof. It suffices to show that

〈f |Af〉L2 ≥
(

1

cΩ

+W

)
‖f‖2

L2 for all f ∈ DA . (2.180)

In fact, given f ∈ DA we have

〈f |Af〉L2 =

∫
Ω

f(−4f + V f) =

∫
Ω

|∇f |2 +

∫
Ω

V |f |2 ≥ 1

cΩ

∫
Ω

|f |2 +W

∫
Ω

|f |2 ,

whence the thesis of Eq. (2.180).

Proposition 2.40. Let

Ω = Rd , V (x) ≥ W for all x ∈ Rd (W ∈ R) , (2.181)

and consider the self-adjoint operator A with domain DA as in Eq. (2.177). Besides,
assume that there exist r0 ∈ (0,+∞ ), p ∈ (1,+∞) and a, b ∈ (0,+∞) (depending on V )
such that, for all x0 ∈ Rd,

1

|B(x0, r0)|

∫
B(x0,r0)

(V −W ) ≥ a , (2.182)

(
1

|B(x0, r0)|

∫
B(x0,r0)

(V −W )p
)1
p

≤ b

|B(x0, r0)|

∫
B(x0,r0)

(V −W ) ; (2.183)

finally, let cB ∈ (0,+∞) denote a constant fulfilling the Poincaré-type inequality of Eq.
(2.7). Then

σ(A) ⊂ [F +W,+∞) , F :=
a

22d(2c2
Ba b

p
p−1 r2

0 + 1) max(2, 2
1
p−1 )

> 0 . (2.184)

In particular, A is an admissible operator if W > −F .
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Proof. In the case W = 0, the thesis is proved in [145] (see Theorem A of this work; the
constants ci, i = 1, 2, 3, 4, mentioned therein satisfy c1 = cB, c2 = 2d, c3 ≥ a, c4 = b).
The case of an arbitrary W ∈ R is treated applying the results of [145] with V replaced
by Ṽ := V −W ; then, as in the proof of the Proposition 2.38, one must note that the
operator Ã corresponding to Ṽ has the same domain DA as A and is related to it by
A = Ã+W I (again, recall that I is the identity operator on L2(Ω) ).

Let us add to the previous examples a statement on the integer powers An (n ∈ N) of a
suitable admissible operator A; let us recall that by item iii) in Proposition 2.4, the space
Dom(An) coincides with the abstract space H2n associated to A; the latter carries the
Hilbertian norm ‖f‖2n := ‖Anf‖L2 .

Proposition 2.41. Assume A to be an admissible operator with domain DA = {f ∈
H1

0 (Ω) | Af ∈ L2(Ω)}. Then the following statements i) and ii) hold.
i) For all n ∈ N

Dom(An) = {f ∈ D′(Ω) | Amf ∈ H1
0 (Ω) for m = 0, ..., n− 1 , Anf ∈ L2(Ω) } . (2.185)

ii) If in addition the assumptions (2.159) are fulfilled (so that H1
0 (Ω) = {f ∈ H1(Ω) | f �

∂Ω = 0} and DA can be interpreted in terms of Dirichlet boundary conditions), then, for
all n ∈ N,

Dom(An) = {f ∈ H2n(Ω) | Amf �∂Ω = 0 for m = 0, ..., n− 1} ; (2.186)

Dom(An) is a closed subspace of H2n(Ω), and the topology that it inherits from H2n(Ω)
coincides with the one induced by the norm ‖f‖2n = ‖Af‖L2.

Proof. i) This statment follows by a simple verification by recurrence, based on the defi-
nition Dom(An+1) = {f ∈ Dom(An) | Anf ∈ DA}.
ii) To prove the representation (2.186) of Dom(An), we must show that the right-hand
sides of Eq.s (2.185) and (2.186) coincide; in fact, we already know this from subsection
2.6 (see Definition 2.33 and Theorem 2.34). In the cited subsection we have already noted
that the space described by (2.186) is a closed subspace of H2n(Ω), and we have shown
that the topology that it inherits from H2n(Ω) agrees with the one given by the norm
f 7→ ∑n

m=0 ‖Amf‖L2 (see again Theorem 2.34). In the present case where admissibility
requires Dom(A) ⊂ [ε,+∞) for some ε > 0, we have ‖Amf‖L2 ≤ ε−(n−m)‖Anf‖L2 for
m = 0, ..., n (see Eq. (2.84) ), so that ‖Anf‖L2 is a norm equivalent to

∑n
m=0 ‖Amf‖L2 .

Embedding results for the scale of Hilbert spaces.

Assume again Ω ⊂ Rd to be an arbitrary domain and A to be a Schrödinger-type operator
as in Eq. (2.148). Let DA ⊂ L2(Ω) denote any admissible domain for A and consider the
spaces (Hr, ‖ ‖r) associated to the admissible operator A (see Proposition 2.4). Recall
that ‖f‖r = ‖Ar/2f‖L2 , for f ∈ Dom(Ar/2); besides, Hr coincides with Dom(Ar/2) for
r ≥ 0, and it is its completion for r < 0.
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Proposition 2.42. Let r ∈ [0,+∞); then Hr is a linear subspace of Hr
loc(Ω), and there

holds the continuous embedding

Hr ↪→ Hr
loc(Ω) . (2.187)

Proof. The proof is divided in several steps.
Step 1 - The thesis holds in the case r = 2n, for any n ∈ N. Let f ∈ H2n = Dom(An);
then Amf ∈ L2(Ω) ⊂ L2

loc(Ω) for all m ∈ {0, ..., n}. This implies f ∈ H2n
loc(Ω), due to

item i) of Theorem 2.32. On the one hand, by item ii) of the same theorem, the topology
of H2n

loc(Ω) is induced by the family of seminorms f 7→ ‖ϕAmf‖L2 , for ϕ ∈ D(Ω) and
m ∈ {0, ..., n}. On the other hand, for such ϕ,m and for all f ∈ H2n, one has

‖ϕAmf‖L2 = ‖ϕAmf‖L2 ≤
≤
(

sup
Ω
|ϕ|
)
‖Amf‖L2 =

(
sup

Ω
|ϕ|
)
‖f‖2m ≤

(
sup

Ω
|ϕ|
)
ε−(n−m)‖f‖2n

(see Proposition 2.5 for the last inequality); this proves the continuity of the embedding
H2n ↪→ H2n

loc(Ω).
Step 2 - Reformulation of the statement to be proved, for arbitrary r. For each ϕ ∈ D(Ω),
let us introduce the linear operator of multiplication Mϕ : D′(Ω)→ D′(Rd), f 7→Mϕf :=
ϕf . Consider any r ∈ [0,+∞); then, the definition of Hr

loc(Ω) can be rephrased as
Hr

loc(Ω) = {f ∈ D′(Ω)| Mϕf ∈ Hr(Rd) for all ϕ ∈ D(Ω)}. Recall that the topology
of Hr

loc(Ω) is, by construction, the initial topology with respect to the family of maps
Mϕ : Hr

loc(Ω) → Hr(Rd) (ϕ ∈ D(Ω) ). Then, due to the characteristic property of the
initial topology, the statement Hr ↪→ Hr

loc(Ω) is equivalent to the following: “for each
ϕ ∈ D(Ω), Mϕ maps continuously Hr into Hr(Rd)”.
Step 3 - Proof of the thesis for arbitrary r ∈ [0,+∞). Given such an r, let n denote
the unique natural number such that 2n < r < 2n + 2; then there is a unique θ ∈
(0, 1) such that r = 2n(1 − θ) + (2n + 2)θ. Due to Step 1, we know that H2n ↪→
H2n

loc(Ω) and H2n+2 ↪→ H2n+2
loc (Ω); so, due to Step 2, for each ϕ ∈ D(Ω) the operator Mϕ

maps continuously H2n into H2n(Rd), and H2n+2 into H2n+2(Rd). By the fundamental
theorem of interpolation (Theorem 2.3), for each ϕ the operator Mϕ maps continuously
[H2n,H2n+2]θ into [H2n(Rd), H2n+2(Rd)]θ; however, using Eq.s (2.37) (2.85) with r0 = 2n,
r1 = 2n + 2, we obtain [H2n,H2n+2]θ = Hr and [H2n(Rd), H2n+2(Rd)] = Hr(Rd). In
conclusion, for any ϕ ∈ D(Ω) the operator Mϕ maps continuously Hr to Hr(Rd); due to
Step 2, this proves that Hr ↪→ Hr

loc(Ω).

Corollary 2.43. Let r ∈ R and j ∈ N be such that r > j + d/2; then there holds the
continuous inclusion

Hr ↪→ Cj(Ω) . (2.188)

More precisely, Hr ↪→ Cj,λ(Ω) ↪→ Cj(Ω) for each λ ∈ (0, 1) such that r > j + d/2 + λ.

Proof. In fact Hr ↪→ Hr
loc(Ω), (for r ≥ 0) by the previous proposition, and Hr

loc(Ω) ↪→
Cj,λ(Ω) ↪→ Cj(Ω) by the Sobolev embedding theorem (see Theorem 2.1 of page 17).
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Similarly to the analysis performed in subsection 2.6, hereafter we are going to show that
stronger versions of Proposition 2.42 and of the related Corollary 2.43 can be derived
making stricter hypotheses on the regularity of the domain Ω, of its boundary ∂Ω and of
the Schrödinger-type operator A = −4+V .
For example, let us make the assumptions described in Eq. (2.159), so that Ω is a bounded
domain with boundary of class C∞ and A = −4+V with V ∈ C∞(Ω), and consider the
Sobolev spaces Hr(Ω) (r ∈ R). Then, there hold the following results.

Proposition 2.44. Let the assumptions (2.159) hold with Dirichlet boundary conditions
prescribed on ∂Ω; then, for any r ∈ [0,+∞), Hr is a linear subspace of Hr(Ω) and there
holds the continuous embedding

Hr ↪→ Hr(Ω) . (2.189)

Proof. The proof closely resembles that of Proposition 2.42, and it is divided in several
steps likewise.
Step 1 - The thesis holds in the case r = 2n, for any n ∈ N. This is granted by item ii)
of Proposition 2.41, dealing with Dom(An) = H2n.
Step 2 - Proof of the thesis for arbitrary r ∈ [0,+∞). Let n ∈ N be such that 2n <
r < 2n + 2; then, there exists a unique θ ∈ (0, 1) such that r = 2n(1 − θ) + (2n + 2)θ.
Due to the interpolation relations (2.85) and (2.38), we have [H2n,H2n+2]θ = Hr and
[H2n(Ω), H2n+2(Ω)]θ = Hr(Ω). on the other hand, due to Step 1, we already know that
the identity maps linearly and continuously H2n into H2n(Ω) and H2n+2 into H2n+2(Ω).
So, by the fundamental theorem of interpolation (see Theorem 2.3), the identity maps
linearly and continuously Hr into Hr(Ω).

Corollary 2.45. Let the assumptions (2.159) hold with Dirichlet boundary conditions
prescribed on ∂Ω; moreover, let r ∈ R and j ∈ N be such that r > j + d/2. Then there
holds the continuous inclusion

Hr ↪→ Cj(Ω) . (2.190)

More precisely, Hr ↪→ Cj,λ(Ω) ↪→ Cj(Ω) for each λ ∈ (0, 1) such that r > j + d/2 + λ.

Proof. In fact Hr ↪→ Hr(Ω) (for r ≥ 0) by the previous proposition, and Hr(Ω) ↪→
Cj,λ(Ω) ↪→ Cj(Ω) by the Sobolev embedding (2.19) of Theorem 2.1.

Dirac delta functions.

The Dirac delta at interior points.

Let once more Ω be an arbitrary domain and let V : Ω→ R be a smooth potential on it;
we indicate with x an arbitrary point in the interior of Ω, i.e.,

x ∈ Ω . (2.191)

Corollary 2.43, discussed in the previous subsection, has the following implications.
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Proposition 2.46. Let x ∈ Ω; then, there hold the subsequent statements.
i) There exists a unique element δx ∈ H−∞ such that, for all r > d/2, δx ∈ H−r and

〈δx|f〉 = f(x) for all f ∈ Hr . (2.192)

ii) Let α denote a multi-index of order |α|; then, there exists a unique element ∂αδx ∈ H−∞
such that, for all r > |α|+ d

2
, ∂αδx ∈ H−r and

〈∂αδx|f〉 = (−1)|α| ∂αf(x) for all f ∈ Hr . (2.193)

Remark 2.13. Let us stress that the left-hand sides of Eq.s (2.192) (2.193) both contain
the extension (2.103) of the inner product 〈 | 〉 on H ≡ L2(Ω). To define the right-hand
side of Eq. (2.192), notice that Hr ↪→ C0(Ω) for any r > d/2 and evaluate at x the
continuous function f ; on the other hand, recall that Hr ↪→ Cj(Ω) for r > j+d/2, so that
the the right-hand side of Eq. (2.193) can be interpreted in terms of the α-th derivative
at x of the Cj function f (for any |α| ≤ j).

Proof. i) First note that the evaluation map

ex : C0(Ω)→ C , f 7→ 〈ex, f〉 := f(x)

is a continuous linear form. Now, let us fix r > d/2 arbitrarily; since Hr ↪→ C0(Ω), ex�Hr

is an element of the topological dual (Hr)′. Then, by Proposition 2.18 there is a unique
element of H−r, which we denote provisionally with δrx, such that 〈δrx|f〉 = 〈ex, f〉 = f(x)
for all f ∈ Hr.
To go on, note that δsx = δrx for all s, r ∈ R such that s ≥ r > d/2; in fact, for any
such s and r, one has δsx ∈ H−s, δrx ∈ H−r ⊂ H−s and 〈δsx|f〉 = f(x) = 〈δrx|f〉 for all
f ∈ Hs ⊂ Hr, so that δsx and δrx are the same element of H−s.
In conclusion, all the elements δrx (r > d/2) are copies of a same element, that we indicate
with δx; this element belongs to H−r for any r > d/2, and it fulfills Eq. (2.192) by
construction. Finally, it is easy to check that an element of H−∞ possessing the same
properties coincides with this δx, thus granting its uniqueness.
ii) The proof follows by arguments similar to the ones employed to show statement i) for
the special case |α| = 0. For any j ∈ N and for any multi-index α of order ≤ j, one uses
the continuity of the linear form

eαx : Cj(Ω)→ C , f 7→ 〈eαx, f〉 := (∂αf)(x) (2.194)

together with the continuous embedding Hr ↪→ Cj(Ω) for r > j + d/2; the element
∂αδx ∈ H−∞ is the one corresponding to the linear form (−1)|α| eαx.

Apart from the use of the spaces Hr (for r > j + d/2), Eq.s (2.192) and (2.193) closely
resemble the definitions given in the standard theory of Schwartz distributions for the
Dirac delta function at a point x and for its derivatives, respectively; this justifies the
following definition.
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Definition 2.47. In the sequel, δx and ∂αδx will be referred to as the Dirac delta at x
and its α-th derivative, respectively.

Proposition 2.48. Let j ∈ N and r ∈ R be such that r > j + d/2; consider the map

δ : Ω→ H−r x 7→ δx . (2.195)

This map is of class Cj from Ω to the Banach space H−r; more precisely, δ ∈ Cj,λ(Ω,H−r)
for any λ ∈ (0, 1) such that r > j + d/2 + λ.
Moreover, for any multi-index α of order ≤ j, the corresponding partial derivative of δ at
a point x ∈ Ω is given by

(∂αδ)(x) = (−1)|α| ∂αδx . (2.196)

Proof. In this proof, for any locally convex space X, the topological dual space X ′ is
equipped with the strong topology (i.e., with the topology of uniform convergence on the
bounded subsets of X); this topology is induced by the family of seminorms pB (B ⊂ X
bounded) where, for each λ ∈ X ′, we set

pB(λ) := sup
x∈B
|〈λ, x〉| . (2.197)

In particular, if X is a Banach space, the strong topology on X ′ is just the usual norm
topology. The rest of the proof is divided in several steps.
Step 1 - The maps eα on Cj,λ(Ω). Let j ∈ N, λ ∈ (0, 1), and consider a multi-index α of
order ≤ j. For each x ∈ Ω we put

eαx : Cj,λ(Ω)→ C, f 7→ 〈eαx, f〉 := (∂αf)(x) ;

in particular, let us stress that
e0
x ≡ ex

is the usual evaluation map on C0,λ(Ω). Clearly, eαx ∈ (Cj,λ(Ω))′; so, we have the map

eα : Ω→ Cj,λ(Ω)′ , x 7→ eαx . (2.198)

Step 2 - Let j ∈ N, λ ∈ (0, 1) and consider a multi-index α of order ≤ j. Then the map
(2.198) is of class C0,1 (i.e., locally Lipschitz, hence continuous) if |α| < j and of class
C0,λ (hence continuous) if |α| = j. For the sake of brevity, hereafter we put

λ̃ :=

{
1 if |α| < j

λ̃ := λ if |α| = j
.

Let us consider any compact subset K ⊂ Ω. If f ∈ Cj,λ(Ω) and x,y ∈ K (with y 6= x)
we have

〈eαy − eαx, f〉 = ∂αf(y)− ∂αf(x) =
∂αf(y)− ∂αf(x)

|y− x|λ̃
|y− x|λ̃
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that implies

|〈eαy−eαx, f〉| ≤ |f |α,λ̃K |y−x|λ̃ for x,y∈K, |f |α,λ̃K := sup
x,y∈K,y 6=x

|∂αf(y)−∂αf(x)|
|y− z|λ̃

(2.199)

(if |α| < j, so that λ̃ = 1, the finiteness of |f |α,1K follows from the fact that ∂αf is a C1

function). For any bounded subset B of Cj,λ(Ω), let us put

Mα,λ̃
K,B := sup

f∈B
|f |α,λ̃K < +∞

(the sup over B is finite, because f 7→ |f |α,λ̃K is a continuous seminorm on Cj,λ(Ω); compare
with Eq. (2.14) ). Returning to Eq. (2.199) we see that

|〈eαy − eαx, f〉| ≤Mα,λ̃
K,B |y− x|λ for x,y ∈ K, f ∈ B ;

therefore, if pB is the seminorm on (Cj,λ(Ω))′ defined by Eq. (2.197), we have

pB(eαy − eαx) ≤Mα,λ̃
K,B |y− x|λ̃ for x,y ∈ K .

Since the above relation holds for any bounded subset B ⊂ Cj,λ(Ω), we have proved that

eα is of class C0,λ̃.
Step 3 - Let j ∈ N, λ ∈ (0, 1). The map

e : Ω→ (Cj,λ(Ω))′ , x 7→ ex

is of class Cj,λ; for each multi-index α of order ≤ j and each x ∈ Ω, the α-th partial
derivative of the map e at x is

(∂αe)(x) = eαx . (2.200)

To exemplify the necessary arguments, hereafter we give the proof for j = 1; so, our
purpose is to prove that

e : Ω→ (C1,λ(Ω))′ , x 7→ ex

is of class C1,λ with partial derivatives

(∂ie)(x) = eix (i = 1, ..., d; 〈eix, f〉 := ∂if(x) for each f ∈ C1,λ(Ω) ) .

Due to Step 1, we already know that the maps ei : Ω→ C1,λ(Ω), x 7→ eix are of class C0,λ;
therefore, to get the thesis it suffices to prove the following, at each x ∈ Ω:

ey − ex −
∑d

i=1(yi − xi) eix
|y− x| → 0 in (C1,λ(Ω))′ for y ∈ Ω, y→ x . (2.201)
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Let us fix x ∈ Ω; for f ∈ C1,λ(Ω) and y ∈ Ω we have

〈ey − ex −
d∑
i=1

(yi − xi)eix , f〉 = f(y)− f(x)−
d∑
i=1

(yi − xi)(∂if)(x) . (2.202)

To go on, we let us consider a radius ρ > 0 such that B(x, ρ) ⊂ Ω. Then, for y ∈ B(x, ρ)
we can write

f(y)− f(x) =
d∑
i=1

(yi − xi)
∫ 1

0

dτ (∂if)(x + τ(y− x)) ;

inserting this result into Eq. (2.202) we easily obtain

〈ey−ex−
d∑
i=1

(yi−xi)eix , f〉 =
d∑
i=1

(yi−xi)
∫ 1

0

dτ
[
(∂if)(x+τ(y−x))−(∂if)(x)

]
. (2.203)

On the other hand, for y ∈ B(x, ρ) and τ ∈ [0, 1] we have∣∣∣(∂if)(x+τ(y−x))−(∂if)(x)
∣∣∣ ≤ |f |i,λx,ρ|y−x|λ, |f |i,λx,ρ := sup

z,w∈B(x,ρ),z 6=w

|∂if(z)−∂if(w)|
|z−w|λ . (2.204)

From here and from Eq. (2.203) we obtain∣∣∣∣∣〈ey − ex −
d∑
i=1

(yi − xi)eix , f〉
∣∣∣∣∣ ≤

(
d∑
i=1

|yi − xi||f |i,λx,ρ

)
|y− x|λ

≤

√√√√ d∑
i=1

(|f |i,λx,ρ)2|y− x|1+λ for f ∈ C1,λ(Ω), y ∈ B(x, ρ) .

To go on, for any bounded subset B of C1,λ(Ω), let us put

MB,1,λ
x,ρ := sup

f∈B

√√√√ d∑
i=1

(|f |i,λx,ρ)2 < +∞ .

Returning to Eq. (2.204) we see that∣∣∣∣∣〈ey − ex −
d∑
i=1

(yi − xi)eix , f〉
∣∣∣∣∣ ≤MB,1,λ

x,ρ |y− x|1+λ for y ∈ B(x,ρ), f ∈ B ;

therefore, if pB is the seminorm on (C1,λ(Ω))′ defined by Eq. (2.197), we have

pB

(
ey − ex −

d∑
i=1

(yi − xi)eix

)
≤MB,1,λ

x,ρ |y− x|1+λ for y ∈ B(x,ρ) . (2.205)
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By the arbitrariness of the bounded subset B ⊂ C1,λ(Ω), this suffices to obtain the thesis
(2.201).
Step 4 - Let r ∈ R, j ∈ N and λ ∈ (0, 1) be such that r > j + d/2 + σ. Then the map
(2.195) δ : Ω→ H−r, x 7→ δx is of class Cj,λ and its derivatives are as in Eq. (2.196), for
each multi-index α of order ≤ j and each x ∈ Ω. First of all let us recall the embedding
Hr ↪→ Cj,λ(Ω); this induces a continuous linear map

Rr : (Cj,λ(Ω))′ → (Hr)′ , α 7→ Rrα := α�Hr . (2.206)

Let as also recall that there is a Banach antilinear isomorphism Ir : H−r → (Hr)′ such
that 〈Irg, f〉 := 〈g|f〉 for g ∈ H−r, f ∈ Hr.
Now, for any x ∈ Ω, ex ∈ (Cj,λ(Ω))′ and δx ∈ H−r are such that

〈ex, f〉 = f(x) for f ∈ Cj,λ(Ω) , 〈δx|f〉 = f(x) for f ∈ Hr

(recall Step 1 and Eq. (2.192) ). Therefore Rrex = Irδx, i.e.,

δx = (Ir)−1Rrex . (2.207)

The map (Ir)−1Rr : (Cj,λ(Ω))′ → Hr is antilinear and continuous, and e : x ∈ Ω 7→ ex ∈
(Cj,σ(Ω))′ is of class Cj,λ according to Step 3; therefore δ : x ∈ Ω 7→ δx ∈ Hr is also of
class Cj,λ. Moreover, for |α| ≤ j and x ∈ Ω we have

(∂αδ)(x) = (Ir)−1Rr(∂αe)(x) = (Ir)−1Rreαx (2.208)

where the last equality is again due to Step 3. Summing up, for each f ∈ Hr we have

〈(∂αδ)(x)|f〉 = 〈eαx, f〉 = (∂αf)(x),

and comparing this result with the relation (2.193) 〈∂αδx|f〉 = (−1)|α|(∂αf)(x) we finally
obtain Eq. (2.196), i.e., the thesis.

Extension of the previous results up to the boundary.

Let us remark that so far in this subsection we have always assumed x to be a point in the
interior of the open set Ω (see Eq. (2.191) ). Nonetheless, it appears from the proofs of
Propositions 2.46 and 2.48 that, making stronger regularity assumptions, the same results
stated in these propositions continue to hold as well for points on the boundary ∂Ω.
For example, let us make the stricter hypotheses (2.159), so that Ω is a bounded domain
with boundary of class C∞ andA = −4+V with V ∈ C∞(Ω); moreover, assume Dirichlet
boundary conditions are imposed for the operator A, which is also supposed to be strictly
positive. Thus,

Dom(A) ≡ DA = {f ∈ H1
0 (Ω) | (−4+V )f ∈ L2(Ω)} ,

σ(A) ⊂ [ε,+∞) for some ε > 0 .
(2.209)
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Throughout the present paragraph, x denotes any point in the closure Ω of the domain
Ω, that is

x ∈ Ω = Ω ∪ ∂Ω . (2.210)

In this situation, we have the continous embeddings Hr ↪→ Cj,λ(Ω) ↪→ Cj(Ω) for r ∈ R,
j ∈ N, λ ∈ (0, 1) s.t. r > j+d/2+λ. This yields the following variants of Propositions 2.46
and 2.48, that are easily proved replacing Cj(Ω) with Cj(Ω), and Cj,λ(Ω) with Cj,λ(Ω).

Proposition 2.49. Under the assumptions (2.159) and (2.209), both statements i) and
ii) of Proposition 2.46 hold for any x ∈ Ω, allowing to define δx and ∂αδx even for x ∈ ∂Ω.

Proposition 2.50. Consider the assumptions (2.159) and (2.209); moreover, let j ∈ N,
r ∈ R be such that r > j + d/2. Then, the map

δ : Ω→ H−r x 7→ δx , (2.211)

is of class Cj(Ω,H−r); more precisely, it is of class Cj,λ(Ω,H−r) for each λ ∈ (0, 1)
s.t. r > j + d/2 + λ. The continuous extension of (2.211) to Ω is the map x 7→ δx
defined according to Proposition 2.49; furthermore, for any multi-index α of order ≤ j,
the (continuous extension to Ω of the) partial derivative ∂αδ fulfills Eq. (2.196) at all
points x ∈ Ω.

Weak integrability of Dirac delta functions.

Let us return to the case where Ω is an arbitrary domain. The statement that follows
refers to the notion of weak integrability for Banach valued functions (see the paragraph
in Section 2.2; we refer, in particular, to Theorem 2.2).

Proposition 2.51. Let r ∈ R, r > d/2 and f ∈ L2(Ω). Then the map Ω → H−r,
x 7→ f(x) δx is weakly measurable and integrable with respect to the Lebesgue measure dx;
moreover, ∫

Ω

dx f(x) δx = f . (2.212)

Remark 2.14. The integral in Eq. (2.212) should produce an element of H−r; in fact,
f ∈ L2(Ω) ≡ H0 ⊂ H−r.

Proof. Considerations about weak measurability and weak integrability involve the dual
space of H−r, which is antilinearly isomorphic to Hr via the map Hr → (H−r)′, g 7→ 〈g| 〉
(as usual, 〈 | 〉 indicates the extension (2.103) of the inner product of H ≡ L2(Ω) to H(2)).
Let us now fix g ∈ Hr arbitrarily. Then, for a.e. x ∈ Ω we have 〈g|f(x)δx〉 = f(x)〈δx|g〉 =
f(x) g(x), i.e., the map Ω→ C, x 7→ 〈g|f(x)δx〉 coincides a.e. with f g; this map is clearly
measurable and integrable (since f ∈ L2(Ω) and g ∈ Hr ↪→ H ≡ L2(Ω)). Therefore,
the map Ω → H−r, x 7→ f(x)δx is weakly measurable; moreover, for all g ∈ Hr, it is∫

Ω
dx 〈g|f(x) δx〉 =

∫
Ω
dx f(x)g(x) = 〈g|f〉. This means that x → f(x)δx is weakly

integrable, with integral f .
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Complex conjugate of Dirac delta functions.

Let us consider the general framework outlined in subsection 2.5 for an abstract Hilbert
space H with a conjugation J . Of course, in the setting considered in the present section,
there is a natural conjugation on the basic Hilbert space H = L2(Ω): namely, the complex
conjugation

J : L2(Ω)→ L2(Ω) , f 7→ J f := f . (2.213)

Needless to say, in this case the projectors P+ and P− (see Eq. (2.68) ) associated to J
are simply the maps associating to any given complex function f : Ω → C its real part
<f and its imaginary part =f multiplied by the imaginary unit, respectively; so,

P+f = <f , P−f = i=f . (2.214)

Furthermore, it appears that J commutes with the admissible operator A associated to
any given Schrödinger operator A := −4 +V (V : Ω → R); i.e., A is J -real or, briefly,
real. Therefore, we can consider the corresponding extension J : H−∞ → H−∞, defined
according to Proposition 2.25.
There holds the following result concerning the Dirac delta, which will be useful for the
physical applications to be discussed in the next chapter.

Lemma 2.52. Let x ∈ Ω. Then, for any multi-index α, the α-th derivative of the Dirac
delta ∂αδx (∈ H−r, for r > |α|+d/2) is invariant under the extended complex conjugation
J : H−∞ → H−∞, i.e.,

J ∂αδx = ∂αδx . (2.215)

Proof. Let us choose j ∈ N, r ∈ R such that |α| ≤ j and r > j + d/2; then ∂αδx ∈ H−r.
Let us recall that the extension J can be characterized as follows: for each g ∈ H−r, J g
is the unique element of H−r such that 〈J g|f〉 = 〈g|J f〉 for all f ∈ Hr. On the other
hand, for any f ∈ Hr ↪→ Cj(Ω), one has

〈J ∂αδx|f〉 = 〈∂αδx|J f〉 = (−1)|α|∂αf(x) = (−1)|α|∂αf(x) = 〈∂αδx|f〉 ,

which suffices to infer the thesis.

Remark 2.15. Lemma 2.52 continues to hold as well for points on the boundary ∂Ω when-
ever the stricter assumptions (2.159) and (2.209) are met.

2.7 Integral kernels.

Let us consider the framework of the previous section; in particular, let DA ⊂ L2(Ω)
denote any admissible domain for the differential operator A = − 4 +V , and consider
the spaces (Hr, ‖ ‖r) associated to the admissible operator A (see Proposition 2.4). Next,
let us consider a linear operator

B : Dom(B) ⊂ H−∞ → H−∞ ; (2.216)
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in the sequel of this work we will be mainly interested in the case where B fulfills the
following condition, for some j ∈ N:

there exists ϑ ∈ (0,+∞) such that, for all j1, j2 ∈ N with j1 + j2 ≤ j,
B maps continuously H−(j2+d/2+ϑ) to Hj1+d/2+ϑ (2.217)

(23). We refer to the above equation as condition (2.217)j.

Remark 2.16. i) Since Hj−j2+d/2+ϑ ↪→ Hj1+d/2+ϑ for all j1, j2 as in Eq. (2.217)j, it appears
that this condition is equivalent to the following one:

there exists ϑ ∈ (0,+∞) such that, for all j2 ∈ N with j2 ≤ j,
B maps continuously H−(j2+d/2+ϑ) to Hj−j2+d/2+ϑ.

(2.218)

ii) In particular, condition (2.217)0 reads

there exists ϑ ∈ (0,+∞) such that
B maps continuously H−(d/2+ϑ) to Hd/2+ϑ.

(2.219)

iii) Of course, (2.217)j implies (2.217)i for all i ∈ {0, ..., j}.
Definition 2.53. If the condition (2.217)0 holds, the integral kernel associated to the
operator B is the map

B( , ) : Ω× Ω→ C , (x,y) 7→ B(x,y) := 〈δx|B δy〉 (2.220)

(where 〈 | 〉 indicates the extension (2.103) of the inner product on H. Note that, for ϑ
as in (2.217)0, one has δx, δy ∈ H−(d/2+ϑ) and Bδy ∈ Hd/2+ϑ).

Shortly afterwards, we will prove that the function (2.220) is continuous on Ω × Ω, and
even more regular if B fulfills condition (2.217)j for some j > 0 (j ∈ N). The following
Lemma will be useful for the sequel.

Lemma 2.54. Suppose φ : σ(A)→ C is a measurable function fulfilling condition (2.90)
(i.e., supλ∈σ(A) λ

b|φ(λ)| < +∞) for some b ∈ R. If b > (j + d)/2 for some j ∈ N, then
the operator B := φ(A) (extended to H−∞) fulfills condition (2.217)j.

Proof. The thesis follows by an elementary application of Proposition 2.12.

In the forthcoming subsection 2.7, we present a series of results describing some notable
features of the integral kernels associated to a suitable class of operators. For brevity we
choose to discuss these results only in the general setting corresponding to an arbitrary
domain Ω with V a smooth potential on it. Nonetheless, it appears from the related
proofs that, whenever the stricter hypotheses (2.159) are fulfilled and suitable boundary

23Let us stress that, within the general setting considered within the present work, there holds
Hj1+d/2+ϑ ↪→ Cj1(Ω) (see Corollary 2.43); on the other hand, under the stricter assumptions (2.159), one
can infer the stronger result Hj1+d/2+ϑ ↪→ Cj1(Ω) (see Corollary 2.45).
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conditions (see, e.g., Eq. (2.209)) are prescribed, the results to be presented in the sequel
can be easily generalized to describe the behaviour of the integral kernels up to the
boundary. We refer to the subsequent subsection 2.7 for more details and further results
related to this case.

General results on integral kernels.

Let us present several results for the integral kernels associated to operators fulfilling
condition (2.217)j (for some j ∈ N). These results apply, in particular, to operators of
the form B = φ(A) as in Lemma 2.54.

Lemma 2.55. Let (2.217)j hold for some j ∈ N. Then, B( , ) ∈ Cj(Ω × Ω); moreover,
for any pair of multi-indices α, β such that |α|+ |β| ≤ j and for all x,y ∈ Ω, one has

∂α1 ∂
β
2B(x,y) = (−1)|α|+|β|〈∂αδx|B ∂βδy〉 (2.221)

(where ∂1 and ∂2 represent derivatives with respect to the first and second argument,
respectively).

Proof. First notice that each derivative of order ≤ j of the kernel B( , ) involves (in an
arbitrary order) differentiating αi times with respect to xi and βi times with respect to
yi (for i = 1, ..., d), where α = (α1, ..., αd) and β = (β1, ..., βd) are such that |α|+ |β| ≤ j.
We generically write ∂γB( , ) for such a derivative. The thesis holds if we can show that
∂γB( , ) : Ω×Ω→ C exists, is continuous and has the explicit expression in the right-hand
side of Eq. (2.221).
To this purpose, let us recall that both the extended inner product 〈 | 〉 and the (linear)
operator B are continuous on the corresponding domains of definition; so, by linearity
∂γB( , ) exists and, for all (x,y) ∈ Ω× Ω, we can write

∂γB(x,y) = 〈(∂αδ)(x)|B(∂βδ)(y)〉 . (2.222)

In consequence of this, the function ∂γB( , ) can be viewed as the composition of the
maps

δ(α,β) : Ω× Ω→ H−(|α|+d/2+ϑ) ×H−(|β|+d/2+ϑ) , (x,y) 7→ ((∂αδ)(x), (∂βδ)(y)) ,

B(α,β) : H−(|α|+d/2+ϑ) ×H−(|β|+d/2+ϑ) → C , (f, g) 7→ 〈f |Bg〉

for some ϑ ∈ (0,+∞) such that Eq. (2.217) holds (24). On the one hand, since the map
Ω → H−r, x 7→ δx is of class Cj0 for all r > j0 + d/2 (see Propositions 2.46 and 2.48),
it appears that δ(α,β) is continuous. On the other hand, let us recall that the operator
B : H−(|β|+d/2+ϑ) → H|α|+d/2+ϑ and the bilinear map 〈 | 〉 : H−(|α|+d/2+ϑ)×H|α|+d/2+ϑ → C
are both continuous; this suffices to infer that B(α,β) is continuous as well. Summing

24Of course, H−(|α|+d/2+ϑ) ×H−(|β|+d/2+ϑ) is equipped with the product of the Banach topologies of
its factors.
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up, the above considerations show that ∂γB( , ) is continuous since it is given by the
composition of continuous functions.
To conclude, let us notice that Eq. (2.222) and the identity (2.196) for the derivatives
(∂αδ)(x), (∂βδ)(y) yield for ∂γB( , ) the expression in the right-hand side of Eq. (2.221),
thus proving the thesis.

Proposition 2.56. Let (2.217)j hold for some j ∈ N and let α, β be any two multi-indices,
each one of order ≤ j.
i) Let f ∈ L2(Ω) and consider the (Cj) map Bf : Ω→ C. Then, for any x ∈ Ω, the map
Ω→ C, y 7→ ∂αB(x,y) is integrable and

(∂αBf)(x) =

∫
Ω

dy (∂α1B)(x,y) f(y) ; (2.223)

in particular, if α = ∅, this gives

(Bf)(x) =

∫
Ω

dy B(x,y) f(y) . (2.224)

ii) For any fixed x ∈ Ω, consider the (continuous) map ∂α1B(x, ) : Ω→ C, y 7→ ∂α1B(x,y);
then ∂α1B(x, ) ∈ L2(Ω).
iii) For any fixed y ∈ Ω, consider the (continuous) map ∂β2B( ,y) : Ω→ C, x 7→ ∂β2B(x,y);
this is given by

∂β2B( ,y) = (−1)|β| B ∂βδy . (2.225)

Moreover, there exists ϑ ∈ (0,+∞) such that ∂β2B( ,y) ∈ Hj−|β|+d/2+ϑ.

Remark 2.17. The last statement in item iii) of the above proposition allows to infer, in
particular, that ∂β2B( ,y) ∈ L2(Ω) and ∂β2B( ,y) ∈ Cj−|β|(Ω). Furthemore, if j − |β| +
d/2 + ϑ ≥ 2, there holds ∂β2B( ,y) ∈ H2 = Dom(A), so that ∂β2B( ,y) fulfills (at least
in weak sense) the possible boundary conditions included in the definition of A (see, e.g.,
Eq. (2.209)); we will return to this topic in subsection 2.7, where stricter assumptions are
made for the domain Ω and for the potential V .

Proof. In the sequel we always assume ϑ ∈ (0,+∞) and j ∈ N to be as in Eq. (2.217).
i) Let f ∈ L2(Ω). Due to Proposition 2.51 (here employed with r = d/2 + ϑ > d/2), the
map Ω → H−(d/2+ϑ), y 7→ f(y) δy is weakly integrable and f =

∫
Ω
dy f(y)δy. From here

and from the continuity of B betweenH−(d/2+ϑ) andHj+d/2+ϑ, we infer the weak integrabil-
ity of the map Ω→ Hj+d/2+ϑ, y 7→ f(y)Bδy and the relation Bf =

∫
Ω
dy f(y)Bδy proved

in Theorem 2.2. Now, fix a point x ∈ Ω and a multi-index α of order ≤ j. Since 〈∂αδx| 〉 is
a continuous linear form onHj+d/2+ϑ, it follows that the map Ω→ C, y 7→ f(y)〈∂αδx|Bδy〉
is integrable, and 〈∂αδx|Bf〉 =

∫
Ω
dy f(y) 〈∂αδx|Bδy〉. Making explicit the definitions of

∂αδx and ∂α1B( , ), we can say that the map Ω → C, y 7→ ∂α1B(x,y)f(y) is integrable,
and that Eq. (2.224) holds.
ii) From item i) we know that ∂α1B(x, )f is integrable for each f ∈ L2(Ω). The considera-
tions in the proof of item i) also show that the map L2(Ω)→ C, f 7→

∫
Ω
dy ∂α1B(x,y) f(y)
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is continuous (because B � L2(Ω) : L2(Ω) ↪→ H−(d/2+ϑ) → Hj+d/2+ϑ is continuous); so,
∂α1B(x, ) ∈ L2(Ω) due to the Riesz representation theorem.
iii) First recall that ∂βδy ∈ H−(|β|+d/2+ϑ) and B : H−(|β|+d/2+ϑ) → Hj−|β|+d/2+ϑ, so that
B∂βδy ∈ Hj−|β|+d/2+ϑ. On the other hand, due to Eq. (2.221) and to the definition of δx,

for all x ∈ Ω we have ∂β2B(x,y) = (−1)|β| 〈δx|B∂βδy〉 = (−1)|β|(B∂βδy)(x), whence the
thesis (2.225).

Corollary 2.57. Let B fulfill the condition (2.217)j for some j ∈ N and assume BH :=
(B � H) : H → H to be of Hilbert-Schmidt type, i.e., BH ∈ B2(H) (25); moreover, let
BH( , ) and B( , ) denote, respectively, the corresponding Hilbert-Schmidt kernel and the
integral kernel introduced in Eq. (2.220). Then, there holds

B(x,y) = BH(x,y) for a.e. x,y ∈ Ω . (2.226)

Proof. First of all, let us recall that the Hilbert-Schmidt kernel BH( , ) ∈ L2(Ω × Ω) of
BH is the unique function such that, for all f ∈ H, there holds (see Eq. (2.62) )

(BHf)(x) =

∫
Ω

dy BH(x,y) f(y) (for a.e. x ∈ Ω) .

Then, the thesis follows easily from the above relation and from Eq. (2.224) of Proposition
2.56, by the arbitrariness of f ∈ H in both these identities.

Remark 2.18. The above Corollary states that the usual notion of integral kernel for
Hilbert-Schmidt operators and the different definition we introduced previously (using
the Dirac delta elements δx, δy ∈ H−r) do in fact coincide when both are well-defined.

Proposition 2.58. Let B be a linear continuous operator fulfilling the assumption (2.217)j
for some j ∈ N and some ϑ ∈ (0,+∞). Consider a linear operator C : H−∞ → H−∞
and assume that, for all j1 ∈ N with j1 ≤ j, there exists ϑ′ ∈ (0,+∞) such that C sends
continuously Hj1+d/2+ϑ into Hj1+d/2+ϑ′. Then, for any multi-index β of order ≤ j and for
all y ∈ Ω, there holds

C(∂β2B( ,y)) = ∂β2 (CB)( ,y) (2.227)

(this identity is meant to hold in Hj−|β|+d/2+ϑ′ ↪→ Cj−|β|(Ω) ).

Proof. Eq. (2.227) can be formally derived by the following chain of equalities

C(∂β2B( ,y)) = (−1)|β|CB ∂βδy = ∂β2 (CB)( ,y) ,

where the fundamental relation (2.225) has been used in both passages (for |β| ≤ j2 and
j1 + j2 ≤ j). More precisely, if ϑ′ > ϑ one must consider the integral kernels corre-
sponding to the continuous operators B : H−j2+d/2+ϑ → Hj1+d/2+ϑ and CB : H−(j2+d/2+ϑ)

25Here, we are refering to the general theory reviewed in the final paragraph of Section 2.3, on page
24.
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→ (Hj1+d/2+ϑ′ ↪→)Hj1+d/2+ϑ; on the other hand, if ϑ′ < ϑ one must use the identity (2.225)
for the restrictions (B � H−j2+d/2+ϑ′) : H−(j2+d/2+ϑ′)(↪→ H−(j2+d/2+ϑ)) → (Hj1+d/2+ϑ ↪→
)Hj1+d/2+ϑ′ and (CB �H−j2+d/2+ϑ′) : H−(j2+d/2+ϑ′) → Hj1+d/2+ϑ′ .

From now on, given any operator B : H−∞ → H−∞ fulfilling condition (2.217)j for some
j ∈ N and some ϑ ∈ (0,+∞), we always consider its restriction (indicated with the same
symbol) B ≡ B �H−(j+d/2+ϑ); this restriction sends continuously H−(j+d/2+ϑ) into Hd/2+ϑ.
Then, following the general considerations of subsection 2.5, we can consider the (Banach)
adjoint of B, i.e.,

B∗ : H−(j+d/2+ϑ) → Hd/2+ϑ . (2.228)

The forthcoming Propositions 2.59 and 2.60 refer to this operator and to its kernel.

Proposition 2.59. Let (2.217)j hold for some j ∈ N; then there hold the following results.
i) The adjoint operator B∗ (see Eq. (2.228) ) also fulfills the condition (2.217)j; therefore,
Lemma 2.55 and Proposition 2.56 continue to hold with B replaced by B∗.
ii) Let α, β be any pair of multi-indices with |α|+ |β| ≤ j and consider the kernels B( , )
and B∗( , ); then, for all x,y ∈ Ω, there holds

∂α1 ∂
β
2B∗(x,y) = ∂β1 ∂

α
2B(y,x) . (2.229)

Proof. i) Let ϑ be as in Eq. (2.217); for any j1, j2 ∈ N with j1 + j2 ≤ j, we can consider
the restrictions B � H−(j2+d/2+ϑ) sending continuously H−(j2+d/2+ϑ) into Hj1+d/2+ϑ. By
definition, the corresponding Banch adjoints (B � H−(j2+d/2+ϑ))∗ send H−(j1+d/2+ϑ) into
Hj2+d/2+ϑ; moreover, by construction, these maps coincide with the restrictions of the
Banach adjoint (2.228) B∗ �H−(j1+d/2+ϑ). This suffices to infer the thesis.
ii) As pointed out above, due to statement i) in the present proposition, Lemma 2.55
also holds for the kernel B∗( , ); in particular, the general identity (2.221) implies both
∂α1 ∂

β
2B∗(x,y) = (−1)|α|+|β|〈∂αδx|B∗∂βδy〉 and ∂β1 ∂

α
2B(y,x) = (−1)|α|+|β|〈∂βδy|B ∂αδx〉.

Next, let us recall that the bilinear form 〈 | 〉 is hermitian, so that 〈∂αδx|B∗∂βδy〉 =

〈B∗∂βδy|∂αδx〉. The thesis follows noting that the basic relation (2.116) for the adjoint
operator implies 〈B∗∂βδy|∂αδx〉 = 〈∂βδy|B ∂αδx〉.
Proposition 2.60. Let B and C be two operators both fulfilling the assumption (2.217)j
for some given j ∈ N, and consider the corresponding integral kernels. Then, for any
pair of multi-indices α, β with |α| + |β| ≤ j and for all x,y ∈ Ω, there hold the following
identities:

〈∂α2B( ,x)|∂β2 C( ,y)〉 = ∂α1 ∂
β
2 (B∗C)(x,y) , (2.230)

〈∂α1B(x, )|∂β1 C(y, )〉 = ∂α2 ∂
β
1 (CB∗)(y,x) . (2.231)

Remark 2.19. i) Due to Proposition 2.56, the functions ∂α2B( ,x), ∂α1B(x, ), ∂α2 C( ,x),
∂α1 C(x, ) (for any fixed x ∈ Ω) all belong to L2(Ω); so, the expressions 〈 | 〉 in the left-hand
sides of Eq.s (2.230) (2.231) can both to be intended as usual inner products in L2(Ω).
ii) Let us point out that the expressions in the right-hand sides of Eq.s (2.230) (2.231)
does in fact make sense under the weaker assumption that the operator B∗C (or CB∗)
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possesses the property (2.217)j. This fact can be used to give meaning to the left-hand
sides of the cited equations also for less regular operators B, C; we will return on this topic
in the following (see Remark 2.20).

Proof. Let us first prove Eq. (2.230); to this purpose, note that due to item iii) of
Proposition 2.56 there holds

〈∂α2B( ,x)|∂β2 C( ,y)〉 = (−1)|α|+|β|〈B∂αδx|C∂βδy〉 . (2.232)

Now, consider the assumption (2.217)j for B and C; for any i1, i2, j1, j2 ∈ N with i1 +i2 ≤ j
and j1 + j2 ≤ j, this assumption grants the existence of some ϑ ∈ (0,+∞) such that the
maps B : H−(i2+d/2+ϑ) → Hi1+d/2+ϑ (↪→ H−(j1+d/2+ϑ)) and C : H−(j2+d/2+ϑ) → Hj1+d/2+ϑ

(↪→ H−(j2+d/2+ϑ)) are both continuous (26).
Due to the above considerations, the expression 〈 | 〉 in the right-hand side of Eq. (2.232)
can be interpreted in terms of the extension (2.103) of the inner product on H (see
Proposition 2.16) acting onH−(j1+d/2+ϑ)×Hj1+d/2+ϑ. Then, recalling that B = B∗∗ ≡ (B∗)∗
(see item ii) of Lemma 2.22) and using the basic identity (2.116) for adjoint operators, it
follows that

〈B∂αδx|C ∂βδy〉 = 〈(B∗)∗∂αδx|C ∂βδy〉 = 〈∂αδx|B∗C ∂βδy〉 . (2.233)

Next, note that B∗C : H−∞ → H−∞ also fulfills the assumption (2.217)j: in fact, B∗C sends
continuously H−(j2+d/2+ϑ) into Hj1+d/2+ϑ for all j1 + j2 ≤ j (27). So, the last expression in
Eq. (2.233) can be reformulated in terms of integral kernels giving

〈∂αδx|B∗C ∂βδy〉 = (−1)|α|+|β|∂α1 ∂
β
2 (B∗C)(x,y) . (2.234)

Summing up, Eq.s (2.232-2.234) yield Eq. (2.230).
In order to prove Eq. (2.231) let us first notice that, explicitating the inner product in
L2(Ω) and using the identity (2.229) of Proposition 2.59, one infers

〈∂α1B(x, )|∂β1 C(y, )〉 =

∫
Ω

dz ∂α1B(x, z) ∂β1 C(y, z) =∫
Ω

dz ∂α2B∗(z,x) ∂β2 C∗(z,y) = 〈∂β2 C∗( ,y)|∂α2B∗( ,x)〉 .
(2.235)

Then, the thesis follows using the previously discussed identity (2.230), making obvious
substitutions and recalling that C∗∗ = C.

26Of course, the embeddings indicated within round brackets hold since they involve spaces of positive
and negative orders on the left and right-hand sides respectively. Let us also point out that B and C
may fulfill condition (2.217)j for different parameters θB 6= θC ∈ (0,+∞); in this case, it suffices to put
θ := min{θB, θC} in the previous considerations.

27To prove this statement, recall once more that the maps C : H−(j2+d/2+ϑ) → Hj1+d/2+ϑ and B∗ :
H−(i1+d/2+ϑ) → Hi2+d/2+ϑ are continuous and that there holds the continuous embedding Hj1+d/2+ϑ ↪→
H−(j2+d/2+ϑ) for all i1, i2, j1, j2 ∈ N as above.



74 CHAPTER 2. FUNCTIONAL SPACES, OPERATORS AND KERNELS

Let us now consider the extension J : H−∞ → H−∞ of the complex conjugation J : H →
H, f 7→ J f := f (see Proposition 2.25). Then, there holds the following result, which we
report here only for completeness.

Lemma 2.61. Let (2.217)j hold for some j ∈ N. Then, for any multi-index β of order
≤ j and for all y ∈ Ω, there holds

∂β2B( ,y) = ∂β2 (JBJ −1)( ,y) (2.236)

(of course, also in this case this identity is meant to hold in Hj−|β|+d/2+ϑ ↪→ Cj−|β|(Ω);
see below Eq. (2.227) ).

Proof. The thesis follows straightforwardly from the chain of equalities

∂β2B( ,y) = (−1)|β|JBJ −1J ∂βδy = (−1)|β|JBJ −1∂βδy = ∂β2 (JBJ −1)( ,y)

which can be easily derived recalling the properties of the extended complex conjugation
J , along with the results of Proposition 2.56 and of Lemma 2.52.

The Dirichlet kernel. The heat, cylinder and modified cylinder
kernels.

Let us keep all the notations of the previous sections; for any r ∈ R, Σr denotes again the
strip {s ∈ C | <s > r} (see Eq. (2.133) ). Note that, for any s ∈ Σd/2 there exists ϑ > 0
such that <s > d/2+ϑ, so that the operator A−s maps continuously H−(d/2+ϑ) to Hd/2+ϑ.
Then, the results obtained previously in the present section allow us to define the kernel

A−s( , ) ∈ C0(Ω× Ω) , (x,y) 7→ A−s(x,y) := 〈δx|A−sδy〉 . (2.237)

Definition 2.62. For s ∈ Σd/2, the function A−s( , ) is referred to as the Dirichlet kernel
of A of order s.

Next, let t ∈ (0,+∞); each of the operators e−tA, e−t
√
A and e−t

√
A /
√
A maps continu-

ously H−(d/2+ϑ) to Hd/2+ϑ for any ϑ ∈ R (in particular, for ϑ > 0). Again, the previous
results of this section allow us to define the kernels

e−tA( , ) , e−t
√
A ( , ) , (e−t

√
A /
√
A )( , ) ∈ C0(Ω× Ω) ; (2.238)

these are such that, for example,

e−tA(x,y) := 〈δx|e−tAδy〉 for all x,y ∈ Ω . (2.239)

Definition 2.63. Let t ∈ (0,+∞). e−tA( , ), e−t
√
A ( , ) and (e−t

√
A /
√
A )( , ) are referred

to, respectively, as the heat, cylinder (or Poisson) and modified cylinder kernel of A at t.

Let us point out some properties of the above kernels.
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Proposition 2.64. (Properties of the Dirichlet kernel). Let j ∈ N and let α, β be any
pair of multi-indices such that |α|+ |β| ≤ j.
i) For all s ∈ Σ(j+d)/2, the kernel A−s( , ) is in Cj(Ω×Ω) and there hold all the statements
of Proposition 2.56. Moreover, for any x,y ∈ Ω, one has

∂α1 ∂
β
2A−s(x,y) = ∂β1 ∂

α
2A−s(y,x) = ∂β1 ∂

α
2A−s(y,x) ; (2.240)

ii) Let ϑ ∈ (0,+∞) and put

r(αβ,ϑ) :=
|α|+ |β|+ d

2
+ ϑ ; (2.241)

then, for all s ∈ Σ(j+d)/2+ϑ, there holds the pointwise bound (for x,y ∈ Ω)

|∂α1 ∂β2A−s(x,y)| ≤ ε−(<s−r(αβ,ϑ)) ‖∂αδx‖−(|α|+d/2+ϑ) ‖∂βδy‖−(|β|+d/2+ϑ) . (2.242)

iii) Let s1 ∈ Σ(j+d)/2, so that A−s1 fulfills the assumption (2.217)j for some ϑ ∈ (0,+∞);
moreover, let s2 ∈ Σ−ϑ/2. Then, for any fixed y ∈ Ω, there holds

A−s2(∂β2A−s1( ,y)) = ∂β2A−(s1+s2)( ,y) (2.243)

(for any ϑ′∈(0,+∞), Eq. (2.243) can be meant to hold in Hj−|β|+d/2+ϑ′ ↪→ Cj−|β|(Ω) ).
iv) For all s1, s2 ∈ Σ(j+d)/2 and for all x,y ∈ Ω, ∂α1A−s1(x, ), ∂β2A−s1( ,y) ∈ L2(Ω) and

〈∂α2A−s1( ,x)|∂β2A−s2( ,y)〉L2 = ∂α1 ∂
β
2A−(s1+s2)(x,y) , (2.244)

〈∂α1A−s1(x, )|∂β1A−s2(y, )〉L2 = ∂α2 ∂
β
1A−(s1+s2)(y,x) . (2.245)

v) For any fixed x,y ∈ Ω, the map

Σ(j+d)/2 → C , s 7→ ∂α1 ∂
β
2A−s(x,y) (2.246)

is analytic. Moreover, for any n ∈ N and s ∈ Σ(j+d)/2, the kernel (∂nsA−s)( , ) ≡
(A−s(− lnA)n)( , ) belongs to Cj(Ω× Ω) and

∂α1 ∂
β
2 (∂nsA−s)(x,y) = ∂ns

(
∂α1 ∂

β
2A−s(x,y)

)
. (2.247)

vi) Let s ∈ Σ(j+d)/2 and β be a multi-index of order ≤ j such that j− |β|+ d/2 > 2; then,

for any fixed y ∈ Ω, ∂β2A−s( ,y) ∈ Dom(A) (28).

Remark 2.20. Regarding the statements of item iv), recall the general considerations of
item ii) in Remark 2.19; in the present setting, the right-hand sides of both Eq.s (2.244)
(2.245) do also make sense under the assumption s1, s2 ∈ C with s1+s2 ∈ Σ(j+d)/2, which is
weaker than the hypothesis s1, s2 ∈ Σ(j+d)/2. This fact and other analogous considerations
will be used in the following applications to construct the analytic continuation of certain
expressions which can be represented in the form (2.244) (2.245); see Chapter 3.

28In particular, this allows to infer that the map Ω→ C, x 7→ ∂β2A−s(x,y) fulfills (in weak sense) the
possible boundary conditions included in the definition of A.
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Proof. i) Let s ∈ Σ(j+d)/2; then, there exists ϑ ∈ (0,+∞) such that s > (j + d)/2 + ϑ
which also implies s > (j1 +j2 +d)/2+ϑ for all j1, j2 ∈ N with j1 +j2 ≤ j. Since A−s maps
continuously H−(j2+d/2+ϑ) into Hj1+d/2+ϑ for all j1 + j2 ≤ j, Lemma 2.55 and Proposition
2.56 yield the first part of the thesis. On the other hand, the first identity in Eq. (2.240)
follows straightforwardly from Proposition 2.59 and Corollary 2.24; the second identity
in the cited equation follows from Corollary 2.26 and from Lemma 2.61, in view of the
regularity of the kernels involved.
ii) Let again s, ϑ be as in the proof of item i). Recall that due to Lemma 2.55, there
holds ∂α1 ∂

β
2A−s(x,y) = (−1)|α|+|β|〈∂αδx|A−s∂βδy〉; keeping in mind that the bilinear form

〈 | 〉 : H−(|α|+d/2+ϑ) ×H|α|+d/2+ϑ → C is continuous (see Eq. (2.104) ), this allows to infer

|∂α1 ∂β2A−s(x,y)|
≤ ‖∂αδx‖−(|α|+d/2+ϑ) ‖A−s ∂βδy‖|α|+d/2+ϑ = ‖∂αδx‖−(|α|+d/2+ϑ) ‖∂βδy‖|α|+d/2+ϑ−2<s ,

where the last equality can be derived using the second relation in Eq. (2.95). Then, the
thesis follows using the bound (2.84) of Proposition 2.5.
iii) For all j1 ∈ N with j1 ≤ j, item i) of Corollary 2.13 implies A−s2(Hj1+d/2+ϑ) =
Hj1+d/2+ϑ+2<s2 . Furthermore, the hypothesis on s2 grants that ϑ + 2<s2 > ϑ′ for some
ϑ′ > 0, so that Hj1+d/2+ϑ+2<s2 ↪→ Hj1+d/2+ϑ′ ; this allows to infer that the map A−s2 :
Hj1+d/2+ϑ → Hj1+d/2+ϑ′ is continuous. Then, the thesis follows straightforwardly from
Proposition 2.58.
iv) The statement ∂α1A−s1(x, ), ∂β2A−s1( ,y) ∈ L2(Ω) follows from items ii) and iii) of
Proposition 2.56, while Eq.s (2.244) (2.245) can be derived using Proposition 2.60.
v) It suffices to show that the map s 7→ ∂α1 ∂

β
2A−s(x,y) is analytic on the strip Σ(j+d)/2+ϑ

for each ϑ ∈ (0,+∞). Recall that ∂α1 ∂
β
2A−s(x,y) = (−1)|α|+|β|〈∂αδx|A−s∂βδy〉, with

∂αδx ∈ H−(|α|+d/2+ϑ) and ∂βδy ∈ H−(|β|+d/2+ϑ) (see item ii) of the present proof). So, the

map Σ(j+d)/2 3 s 7→ ∂α1 ∂
β
2A−s(x,y) can be represented as the composition of the map

Σ(|α|+|β|+d)/2+ϑ → B(H−(|β|+d/2+ϑ),H|α|+d/2+ϑ), s 7→ A−s �H−(|β|+d/2+ϑ), which is analytic
due to Proposition 2.28, with the linear (continuous) form B(H−(|β|+d/2+ϑ),H|α|+d/2+ϑ)→
C, B 7→ 〈∂αδx|B ∂βδy〉; this is sufficient to infer the thesis.
vi) The thesis follows easily from item iii) of Proposition 2.56 and from the considerations
of the related Remark 2.17, noting that ∂β2A−s( ,y) ∈ Hj−|β|+d/2+ϑ for some ϑ ∈ (0,+∞).

Proposition 2.65. (Properties of the exponential kernels). Let j ∈ N and let α, β be any
two multi-indices with |α|+ |β| ≤ j.
i) For all t ∈ Σ0, the kernel e−tA( , ) is in C∞(Ω× Ω) and there hold all the statements
of Proposition 2.56 for any j ∈ N; moreover, for any x,y ∈ Ω, one has

∂α1 ∂
β
2 e
−tA(x,y) = ∂β1 ∂

α
2 e
−tA(y,x) = ∂β1 ∂

α
2 e
−tA(y,x) . (2.248)

ii) Let ϑ ∈ (0,+∞) and put again (see Eq. (2.241) )

r(αβ,ϑ) :=
|α|+ |β|+ d

2
+ ϑ ;
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then, there holds the pointwise bound (for x,y ∈ Ω)

|∂α1 ∂β2 e−tA(x,y)| ≤
(r(αβ,ϑ)

e<t

)r(αβ,ϑ) ‖∂αδx‖−(|α|+d/2+ϑ)‖∂βδy‖−(|β|+d/2+ϑ) for 0 < <t ≤ r(αβ,ϑ)

ε
εr(αβ,ϑ) e−ε<t ‖∂αδx‖−(|α|+d/2+ϑ)‖∂βδy‖−(|β|+d/2+ϑ) for <t >

r(αβ,ϑ)

ε

.
(2.249)

iii) For all t1, t2 ∈ Σ0 and for all fixed y ∈ Ω, there holds

e−t2A(∂β2 e
−t1A( ,y)) = ∂β2 e

−(t1+t2)A( ,y) . (2.250)

iv) For all t1, t2 ∈ Σ0 and for all x,y ∈ Ω, ∂α1 e
−t1A(x, ), ∂β2 e

−t1A( ,y) ∈ L2(Ω) and

〈∂α2 e−t1A( ,x)|∂β2 e−t2A( ,y)〉 = ∂α1 ∂
β
2 e
−(t1+t2)A(x,y) , (2.251)

〈∂α1 e−t1A(x, )|∂β1 e−t2A(y, )〉 = ∂α2 ∂
β
1 e
−(t1+t2)A(y,x) . (2.252)

v) For any fixed x,y ∈ Ω, the map

Σ0 → C , t 7→ ∂α1 ∂
β
2 (e−tA)(x,y) (2.253)

is analytic.
vi) Let t∈Σ0 and β be a multi-index; then, for any fixed y∈Ω, ∂β2 e

−tA( ,y)∈Dom(A)
(29).

Analogous results also hold for the kernels e−t
√
A ( , ), (e−t

√
A /
√
A )( , ). In particular, in

place of Eq. (2.249), for x,y ∈ Ω there hold

|∂α1 ∂β2 e−t
√
A (x,y)| ≤ (2.254)

(
2 r(αβ,ϑ)

e<t

)2 r(αβ,ϑ)

‖∂αδx‖−(|α|+d/2+ϑ)‖∂βδy‖−(|β|+d/2+ϑ) for 0 < <t ≤ 2 r(αβ,ϑ)√
ε

εr(αβ,ϑ)e−
√
ε<t ‖∂αδx‖−(|α|+d/2+ϑ)‖∂βδy‖−(|β|+d/2+ϑ) for <t >

2 r(αβ,ϑ)√
ε

;

|∂α1 ∂β2 (e−t
√
A /
√
A )(x,y)| ≤ (2.255)

(
2 r(αβ,ϑ)−1

e<t

)2 r(αβ,ϑ)−1

‖∂αδx‖−(|α|+d/2+ϑ)‖∂βδy‖−(|β|+d/2+ϑ) for 0 < <t ≤ 2 r(αβ,ϑ)−1√
ε

εr(αβ,ϑ)−1/2e−
√
ε<t ‖∂αδx‖−(|α|+d/2+ϑ)‖∂βδy‖−(|β|+d/2+ϑ) for <t >

2 r(αβ,ϑ)−1√
ε

.

29In particular, this allows to infer that the map Ω→ C, x 7→ ∂β2 e
−tA(x,y) fulfills (in weak sense) the

possible boundary conditions included in the definition of A.
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Proof. i) Fix t ∈ (0,+∞) and j ∈ N arbitrarily; the operator e−tA maps continuously
H−(j2+d/2+ϑ) into Hj1+d/2+ϑ for each ϑ ∈ (0,+∞) and for all j1, j2 ∈ N (in particular,
if j1 + j2 ≤ j). So, the integral kernel (e−tA)( , ) is of class Cj by Lemma 2.55, and
Proposition 2.56 holds for such j. Then, the first part of the thesis (i.e., e−tA( , ) ∈
C∞(Ω × Ω) ) follows from the arbitrariness of j ∈ N. The first identity in Eq. (2.248)
can be easily proved using Lemma 2.59 and Corollary 2.24; also in this case, the second
identity in the cited equation follows from Corollary 2.26 and from Lemma 2.61, in view
of the regularity of the kernels involved.
ii) First recall that, due to Lemma 2.55, we have ∂α1 ∂

β
2 e
−tA(x,y) = (−1)|α|+|β|〈∂αδx|e−tA∂βδy〉;

due to Eq. (2.104) for the bilinear form 〈 | 〉 : H−(|α|+d/2+ϑ) × H|α|+d/2+ϑ → C for any
ϑ ∈ (0,+∞), we have

|∂α1 ∂β2 (e−tA)(x,y)| ≤ ‖∂αδx‖−(|α|+d/2+ϑ) ‖e−tA ∂βδy‖|α|+d/2+ϑ .

The thesis (2.249) follows easily noting that the bound (2.97) of Corollary 2.14 gives (with
r(αβ,ϑ) as in Eq. (2.241) )

‖e−tA∂βδy‖|α|+d/2+ϑ ≤
{ ( r(αβ,ϑ)

e<t

)r(αβ,ϑ) ‖∂βδy‖−(|β|+d/2+ϑ) for 0 < <t ≤ r(αβ,ϑ)
ε

ε
|α|+|β|+d

2
+ϑ e−ε<t ‖∂βδy‖−(|β|+d/2+ϑ) for <t > |α|+|β|+d+2ϑ

2ε

iii) The thesis follows from Proposition 2.58 since e−tA(H−∞) = H+∞ for all t ∈ Σ0 (see
Corollary 2.14) and H+∞ ↪→ Hr for any r ∈ R (see Proposition 2.8).
iv) Once more, the square-integrability of ∂α1 e

−t1A(x, ) and ∂β2 e
−t1A( ,y) follows from

items ii) and iii) of Proposition 2.56, while Eq.s (2.251) (2.252) can be derived using
Proposition 2.60.
v) Due to item ii) of the present proof we have ∂α1 ∂

β
2 e
−tA(x,y) = (−1)|α|+|β|〈∂αδx|e−tA∂βδy〉,

with ∂αδx ∈ H−(|α|+d/2+ϑ), ∂βδy ∈ H−(|β|+d/2+ϑ) for any r > j + d/2. So, the map t 7→
∂α1 ∂

β
2 e
−tA(x,y) can be viewed as the composition of the map Σ0→B(H−(|β|+d/2+ϑ),H|α|+d/2+ϑ),

t 7→ e−tA �H−(|β|+d/2+ϑ), which is analytic due to Proposition 2.29, with the linear (con-
tinuous) form B(H−(|β|+d/2+ϑ),H|α|+d/2+ϑ) → C, B 7→ 〈∂αδx|B ∂βδy〉; this is sufficient to
infer the thesis.
vi) Also in this case, the thesis follows noting that ∂β2 e

−tA( ,y) ∈ H+∞ ↪→ H2 ≡ Dom(A)
(see, again, item iii) of Proposition 2.56 and Remark 2.17).

Heat and cylinder kernels as solutions of differential problems.
Assume again Ω ⊂ Rd to be an arbitrary domain and let A be the admissible operator
obtained restricting the differential operator A = −4+V (V ∈ C∞(Ω) ) to an admissible
domain DA ≡ Dom(A) ⊂ L2(Ω) (30). In the following, we will consider differential
equations where more than one variable appear at the same time (namely, x and y ∈ Ω );

30As a matter of fact, the results to be discussed in the present subsection continue to hold also if A is
an otherwise generic, elliptic differential operator with smooth coefficients as in the footnote 21 of page
54.
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in order to avoid confusion, we specify the variable to which the differential operator A is
referred to by introducing the notation

Ax := −4x +V (x) (x ∈ Ω) (2.256)

where, of course, 4x indicates the laplacian involving derivatives with respect to x.
Now, consider the heat and cylinder kernels which were introduced in the previous sub-
section as the integral kernels associated to the exponential operators e−tA and e−t

√
A (for

t ∈ (0,+∞) ).

Definition 2.66. For any fixed y ∈ Ω, let us define the maps

Ky : (0,+∞)× Ω→ R , (t,x) 7→ Ky(t ; x) := e−tA(x,y) , (2.257)

Ty : (0,+∞)× Ω→ R , (t,x) 7→ Ty(t ; x) := e−t
√
A (x,y) . (2.258)

Remark 2.21. For any t ∈ (0,+∞), there hold the following identities:

Ky(t ; ) = e−tAδy , Ty(t ; ) = e−t
√
A δy ; (2.259)

note that the expressions on the right-hand sides of the above relations are, in fact,
elements of H+∞ ↪→ C∞(Ω). The fact that Ky(t ; ), Ty(t ; ) ∈ H+∞ ↪→ H2 = Dom(A)
also indicates that these functions fulfill the boundary conditions encoded in the definition
of Dom(A).

Proposition 2.67. Fix y ∈ Ω. Then, Ky and Ty possess the following properties:{
(∂t + Ax)Ky(t ;x) = 0 for (t,x) ∈ (0,+∞)× Ω

lim
t→0+

Ky(0 ; ) = δy in H−d/2+ϑ for any ϑ ∈ (0,+∞)
; (2.260)

{
(∂tt + Ax)Ty(t ;x) = 0 for (t,x) ∈ (0,+∞)× Ω

lim
t→0+

Ty(0 ; ) = δy in H−d/2+ϑ for any ϑ ∈ (0,+∞)
. (2.261)

Remark 2.22. Let us stress that the first equations in both Eq.s (2.260) and (2.261)
can be meant to hold pointwisely, since both the kernels Ky and Ty are smooth for
(t,x) ∈ (0,+∞)× Ω (see Remark 2.21 along with Proposition 2.65).

Proof. We are going to prove the equations in (2.260) (the proof of the analogous relations
in (2.261) is similar and will not be reported here). We refer to Remark 2.21 for the proof
of the second equation. On the other hand, let us fix ϑ ∈ (0,+∞) arbitrarily; then the
first equation follows if we can rigorously justfy the following chain of (formal) equalities

∂tKy(t ; x) = ∂t〈δx|e−tAδy〉
1)
= 〈δx|∂te−tAδy〉

2)
= −〈δx|A e−tAδy〉 =

3)
= −Ax〈δx|e−tAδy〉 = −AxKy(t ; x) .
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As in the proof of statement ii) of Proposition 2.65, notice that for any fixed x,y ∈ Ω the
map Σ0 → C, t 7→ 〈δx|e−tAδy〉 can be interpreted as the composition of the analytic func-
tion Σ0 → B(H−(d/2+ϑ),Hd/2+ϑ), t 7→ e−tA with the linear form B(H−(d/2+ϑ),Hd/2+ϑ)→
C, B 7→ 〈δx|B δy〉; then, 1) follows by the linearity and by the continuity of the second
map. Equality 2) follows easily from Proposition 2.29. To prove equality 3), just no-
tice that for any f ∈ H2+d/2+ϑ ↪→ C2(Ω) there holds 〈δx|Af〉 = (Af)(x) = (Af)(x) =
Axf(x) = Ax〈δx|f〉; then, the thesis follows since e−tAδy ∈ H+∞ ↪→ H2+d/2+ϑ (for any
t ∈ (0,+∞) ).

Asymptotic behaviours of the heat and cylinder kernels.

Hereafter we report some facts on the asymptotic behaviour of the heat and cylinder
kernels e−tA( , ), e−t

√
A ( , ) in the limits of small and large values of the parameter

t ∈ (0,+∞). Some of these facts can be easily infered within the framework presented in
this manuscript, in view of the results proved in the previous subsection 2.7. Moreover,
we also take the chance to point out some more properties of the above mentioned kernels,
which in the literature are well-known to hold and are closely related to the interpretation
of e−tA( , ) and e−t

√
A ( , ) as solutions of the differential problems (2.260) (2.261) discussed

previously in Proposition 2.67.

First of all, recall the bounds reported in Eq.s (2.249), (2.254) and (2.255).

The cited equations state the well-known exponential decay for <t → +∞ of the heat,
cylinder and modified cylinder kernels, respectively. As a matter of fact, by a slight
generalization of Proposition 2.65, the same behaviour can be easily proved to hold for
both the spatial and t-derivatives of the kernels cited above.

The equations cited above also give bounds on the small-t behaviour of the exponential
kernels; these bounds have been derived using only the abstract functional analytic tools
developed in the previous sections for the self-adjoint operator A. As a matter of fact,
since A is a Schrödinger type differential operator − 4 +V , acting in a (sufficiently
regular) domain Ω ⊂ Rd (and, possibly, with suitable boundary conditions on ∂Ω), much
more can be said about the asymptotic behaviour of the heat kernel for t → 0+. We
refer to the monographies by Berline et al. [20], Calin et al. [33], Chavel [37], Davies
[46], Gilkey [80] and Grigor’yan [82] (and to the works cited therein) for a complete and
throughout analysis of this topic.

In the sequel we limit ourself to consider a particular case of Theorem 2.4 on page 39 in
[32] (see also Lemma 2.1 in [116]): we focus the attention to the configurations described
by the assumptions (2.159) and (2.209).

Theorem 2.68. Let the assumptions (2.159) and (2.209) be fulfilled (so that Dirichlet
boundary conditions are taken into account). Then, there exists a unique sequence of real-
valued (smooth) functions an : Ω × Ω → R (n ∈ N; a0(x,y) ≡ 1) such that, in the limit
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t→ 0+ for all x,y ∈ Ω, there holds

∂α1 ∂
β
2 e
−tA(x,y) =

∂α1 ∂
β
2

(
1

(4πt)d/2
e−
|x−y|2

4t

N∑
n=1

an(x,y) tn

)
+

e−
η|x−y|2

4t

(4πt)d/2
tN−|α|−|β|O

(α,β)
η,N (t ;x,y)

(2.262)

for any pair of multi-indeces α, β, N ∈ N with N > 2(|α|+ |β|) + d/2, η ∈ (0, 1) and for

some continuous function O
(α,β)
η,N : [0,+∞)× Ω× Ω→ C.

Remark 2.23. i) The coefficients an (n ∈ N) introduced in the above theorem are usu-
ally referred to as HMDS coefficients, which is short for Hadamard-Minakshisundaram-
DeWitt-Seeley after the authors who gave the earliest and most significant contributions
to the study of the asymptotic behaviour of the heat kernel.
ii) Let us stress that the expression

K0(t ; x,y) :=
1

(4πt)d/2
e−
|x−y|2

4t (2.263)

in Eq. (2.262) is just the heat kernel associated to the laplacian on the whole space Rd.
iii) In view of points i) and v) of Proposition 2.65, Theorem 2.68 suggests the existence
of a smooth function H : [0,+∞)× Ω× Ω→ R such that

e−tA(x,y) =
1

(4πt)d/2
e−
|x−y|2

4t H(t ; x,y) for all t ∈ (0,+∞), x,y ∈ Ω . (2.264)

This actually occurs in many interesting examples. In the sequel, when necessary, we will
assume existence of such a smooth H.
iv) Following [32], we refer to [152] and [37] for some generalizations of this theorem, also
dealing with some settings involving unbounded domains and configurations where Ω is a
(curved) Riemannian manifold.

The corresponding small-t analysis for the cylinder kernel is more involved and less well-
known. Starting from the expansion (2.262) for the heat kernel, Fulling [60, 73, 74, 76]
(see also [13]) proved by means of Riesz summation methods the following result.

Theorem 2.69. Let the assumptions (2.159) and (2.209) be fulfilled (so that Dirichlet
boundary conditions are being considered). Then, there exists a unique pair of sequences
of real-valued functions en, fn : Ω → R (n ∈ N) such that for any N ∈ N, in the limit
t→ 0+ (t ∈ (0,+∞), x,y ∈ Ω interior points), there holds

e−t
√
A (x,x) =

1

td

 N∑
n=0

en(x) tn +
N∑

n=d+1
n−d odd

fn(x) tn ln t +O(tN+1 ln t)

 . (2.265)

Before proceeding, let us mention that the heat and cylinder kernels often admit asymp-
totic expansions of the forms (2.262), (2.265), even under assumptions weaker than those
made in corresponding Theorems 2.68, 2.69. For these reason, in the following, expressions
of the form (2.262) and (2.265) will often be assumed to hold as hypotheses.
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Integral representations of the Dirichlet kernel in terms of the
exponential kernels.
Consider the Dirichlet kernel along with the heat, cylinder and modified cylinder kernels.
Hereafter we use the methods developed in the previous subsections to give an alternative
derivation of some identities known in the literature, relating A−s( , ) to some integral

transforms of the exponential kernels e−tA( , ), e−t
√
A ( , ), (e−t

√
A /
√
A )( , ). More

precisely, there holds the following proposition.

Proposition 2.70. Let j ∈ N; then, for all s ∈ Σ(j+d)/2 and for any pair of multi-indices
α, β with |α|+ |β| ≤ j, the following relations hold pointwisely for all x,y ∈ Ω :

∂α1 ∂
β
2A−s(x,y) =

1

Γ(s)

∫ +∞

0

dt ts−1 ∂α1 ∂
β
2 e
−tA(x,y) , (2.266)

∂α1 ∂
β
2A−s(x,y) =

1

Γ(2s)

∫ +∞

0

dt t2s−1 ∂α1 ∂
β
2 e
−t
√
A (x,y) , (2.267)

∂α1 ∂
β
2A−s(x,y) =

1

Γ(2s−1)

∫ +∞

0

dt t2s−2 ∂α1 ∂
β
2 (e−t

√
A /
√
A )(x,y) . (2.268)

Proof. The thesis follows easily from Proposition 2.31 and from the relation (2.221) of
Lemma 2.55, recalling that ∂αδx ∈ H−(|α|+d/2+ϑ) and ∂βδx ∈ H−(|β|+d/2+ϑ) for any pair of
multi-indeces α, β with |α|+ |β| ≤ j and any ϑ ∈ (0,+∞).

Remark 2.24. The above proposition allows to express the Dirichlet kernel and its spa-
tial derivatives in terms of the Mellin transforms of the exponential kernels and of the
corresponding derivatives. We review the theory of Mellin transforms and the methods
allowing to construct their analytic continuations in the following Section 2.8.

The case of a compact domain with smooth boundary.
In this subsection we restrict the attention to settings which fulfill the stronger regularity
hypotheses (2.159), so that Ω is bounded with boundary of class C∞ and A = −4 +V
with V ∈ C∞(Ω); moreover, we assume (2.209) to hold, so that Dirichlet conditions are
prescribed on the boundary ∂Ω.
Let B : Dom(B) ⊂ H−∞ → H−∞ be an operator fulfilling the condition (2.217)j, for some
j ∈ N, so that

there exists ϑ ∈ (0,+∞) such that, for all j1, j2 ∈ N with j1 + j2 ≤ j,
B maps continuously H−(j2+d/2+ϑ) to Hj1+d/2+ϑ .

Keeping in mind the results discussed in the previous Section 2.6 for configurations of
the above type, it can be easily proved that in this case the integral kernel B( , ) can be
extended up to the boundary ∂Ω of the domain Ω; more precisely, one can consider the
map (compare with Eq. (2.220) )

B( , ) : Ω× Ω→ C , (x,y) 7→ B(x,y) := 〈δx|B δy〉 . (2.269)
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Moreover, all the regularity results derived in subsection 2.7 can be easily generalized
to analogous formulations describing the boundary behaviour of the kernel (2.269). In
particular, we have the following variant of Lemma 2.55.

Lemma 2.71. Let (2.217)j hold for some j ∈ N. Then, B( , ) ∈ Cj(Ω × Ω) (and Eq.
(2.221) for the derivatives of B( , ) holds everywhere on Ω).

Other results on the integral kernel B( , ) are reported in the subsequent paragraphs.

Boundary conditions.

Recall the results stated in item iii) of Proposition 2.56 and the facts mentioned in the
related Remark 2.17. We mentioned therein that, generally, the kernel B( , ) fulfills in
weak sense the possible boundary conditions which are taken into account in the definition
of the domain Dom(A).
The forthcoming Proposition 2.72 and the subsequent Remark 2.25 show that the the
boundary conditions prescribed on ∂Ω are, in fact, satisfied pointwisely.

Proposition 2.72. Let the assumptions (2.159) and (2.209) hold; moreover, let (2.217)j
hold for some j ∈ N. Then, for any multi-index α of order ≤ j and for any y ∈ Ω, there
hold

∂α2B(x,y)
∣∣∣
x∈ ∂Ω

= 0 and ∂α1B(y,x)
∣∣∣
x∈ ∂Ω

= 0 . (2.270)

Proof. First of all note that, in view of the symmetry relation (2.229), it suffices to prove
the first identity in Eq. (2.270). So, let us consider the expression ∂α2B( ,y) and notice
that, due to Proposition 2.56 (see, in particular, Eq. (2.225) ), there holds ∂α2B( ,y) =
(−1)|α|B ∂αδy for any y ∈ Ω. On the other hand, recall that ∂αδy ∈ H−(|α|+d/2+ϑ) for
any ϑ > 0; this, along with the assumption (2.217)j, allows to infer that ∂α2B( ,y) ∈
Hj−|α|+d/2+ϑ ↪→ Hd/2+ϑ. Then, the thesis follows recalling that Hd/2+ϑ ↪→ Hd/2+ϑ(Ω) ↪→
C0(Ω) (see Proposition 2.44 and the related Corollary 2.45), along with the results of item
iii) of Proposition 2.56 (see also the related Remark 2.17).

Remark 2.25. Analogous results can be derived for other kind of boundary conditions.
More precisely, if Neumann conditions are prescribed on ∂Ω, for any multi-index α of
order ≤ j − 1 and for any y ∈ Ω, there holds

∂n(x)∂
α
2B(x,y)

∣∣∣
x∈ ∂Ω

= 0 and ∂n(x)∂
α
1B(y,x)

∣∣∣
x∈ ∂Ω

= 0 , (2.271)

where ∂n(x) indicates the normal derivative at x ∈ ∂Ω.
On the other hand, when Robin boundary conditions are imposed on ∂Ω (for some given
smooth function h : ∂Ω→ R), for any multi-index α of order ≤ j − 1 and for any y ∈ Ω,
there holds

(h(x) + ∂n(x)) ∂
α
2B(x,y)

∣∣∣
x∈ ∂Ω

= 0 and

(h(x) + ∂n(x)) ∂
α
1B(y,x)

∣∣∣
x∈ ∂Ω

= 0 .
(2.272)
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Eigenfunction expansions and traces.

Let us first consider the topic eigenfunction expansions ; to this purpose, let us recall that
the notions of Hilbert-Schmidt kernel and of integral kernel introduced previously (using
the Dirac delta elements), associated to a given suitable operator, do in fact coincide
when both are well-defined (see Corollary 2.57). On the other hand, the kernels related to
Hilbert-Schmidt operators can be expanded as in Eq. (2.63) using any assigned orthonor-
mal basis of L2(Ω). In the present setting it is natural to choose this basis as a set of
eigenfunctions of A. In fact, since Ω is bounded and suitable boundary conditions (e.g.,
of Dirichlet, Neumann or Robin type) are prescribed on ∂Ω, the operator A := −4+V
has purely discrete spectrum and possesses such a basis of eigenfunctions. For the sake
of definiteness, hereafter we will perform our analysis in the case of Dirichlet conditions;
thus, from here to the end of the paragraph, besides boundedness of the domain Ω and
smoothness of its boundary ∂Ω, we assume A to have the features (2.209):

Dom(A) ≡ DA = {f ∈ H1
0 (Ω) | (−4+V )f ∈ L2(Ω)} ,

σ(A) ⊂ [ε,+∞) for some ε > 0 .
.

In this case, A is known to admit a complete orthonormal system of eigenfunctions (Fn)n∈N
with positive eigenvalues, denoted with ω2

n where ωn > 0 :

AFn = ω2
nFn . (2.273)

The eigenvalues can be ordered so that

0 < ω0 ≤ ω1 ≤ ω2 ≤ . . . and lim
n→+∞

ωn = +∞ , (2.274)

where some of the inequalities in the first relation could in fact be equalities in order to
deal with degenerate eigenvalues (see, e.g., [138], page 94, Proposition 5.12).
In this situation σ(A) = {ω2

n |n ∈ N}. For each function φ : σ(A) → C (which is
automatically measurable), φ(A) is the operator with eigenfunctions Fn and eigenvalues
φ(ω2

n) defined on the linear subspace of L2(Ω) on which the eigenfunction expansion
converges; more precisely,

Dom(φ(A)) =
{
f ∈ L2(Ω)

∣∣∣ +∞∑
n=0

|φ(ω2
n)|2 |〈Fn|f〉|2 < +∞

}
,

φ(A)f =
+∞∑
n=0

φ(ω2
n)〈Fn|f〉Fn for f ∈ Dom(φ(A)) (L2 convergence)

(2.275)

(31). As a matter of fact, much more can be said about the eigenfunctions and eigenvalues
of the admissible operator A.

31It is hardly the case to say how this setting can be used to represent A as a multiplication operator:
one equips N with the counting measure # and introduces the Hilbertian isomorphism I : L2(Ω) →
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Theorem 2.73. i) For any n ∈ N, there holds Fn ∈ C∞(Ω); in addition, for any j ∈ N
and for any ϑ ∈ (0,+∞), there exists a positive constant Λj,ϑ such that

‖Fn‖Cj ≤ Λj,ϑ ω
j+d/2+ϑ
n (2.276)

(where ‖ ‖Cj is the norm defined in Eq. (2.12) ).

ii) There holds the Weyl asymptotic relation

lim
n→+∞

ω2
n

n2/d
= Cd , Cd :=

4π

|Ω|−2/d
Γ
(d

2
+1
)2/d

. (2.277)

Proof. i) Let n ∈ N. For any r ∈ R we have Fn ∈ Dom(Ar/2) ⊂ Hr and Ar/2Fn = ωrnFn,
whence ‖Fn‖r = ωrn‖Fn‖L2 = ωrn. Now let j ∈ N, ϑ ∈ (0,+∞) and put r = j + d/2 + ϑ;
then Hr ↪→ Cj(Ω), so there is a constant Λj,ϑ > 0 such that ‖ ‖Cj ≤ Λj,ϑ ‖ ‖r on Hr. In
particular Fn ∈ Cj(Ω) and ‖Fn‖Cj ≤ Λj,ϑ ‖Fn‖r = Λj,ϑ ω

r
n; this justifies Eq. (2.276). In

these considerations j is any natural number; from Fn ∈ Cj(Ω) for all j ∈ N it follows
that Fn ∈ C∞(Ω).

ii) See, e.g., [109], Theorem 5, page 189 and [55], §8.2, pages 99–101 for elementary
derivations of Eq. (2.277).

Now, let us consider a bounded function φ : σ(A)→ C; then φ(A) ∈ B(H). The operators
A†A and |A| have eigenvalues |φ(ω2

n)|2 and |φ(ω2
n)|, respectively, (with eigenfunctions Fn),

so that

Tr(A†A) =
+∞∑
n=1

|φ(ω2
n)|2 , (2.278)

Tr(|φ(A)|) =
+∞∑
n=1

|φ(ω2
n)| . (2.279)

Thus, φ(A) is of Hilbert-Schmidt class (resp., trace class) if and only if the series (2.278)
(resp., then series (2.279) ) converges.

In the Hilbert-Schmidt case, φ(A) has a kernel of class L2; this admits the expansion

φ(A)(x,y) =
+∞∑
n=0

φ(ω2
n)Fn(x)F n(y) (x,y ∈ Ω) , (2.280)

L2(N,#) sending a function f into the sequence If of elements (If)n = 〈Fn|f〉 (n ∈ N). Then, IAI−1

is the operator of multiplication by the sequence (ω2
n)n∈N and, for each measurable function φ : σ(A)→ C,

Iφ(A) I−1 is the operator of multiplication by the sequence (φ(ω2
n))n∈N.

All these statements are rather obvious; the purpose of this footnote is just to connect the case under
analyis to the general “multiplication operator formalism” that we have employed to build the scale of
Hilbert spaces associated to any positive self-adjoint operator.
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converging in L2(Ω × Ω) (see subsection 2.3, especially Eq. (2.63) ). In the trace class
case we can of course define the trace of φ(A), given by

Trφ(A) =
+∞∑
n=0

φ(ω2
n) . (2.281)

Hereafter we infer convergence results for the previous series, assuming φ to fulfill a
suitable decay condition at infinity, and using the results of Theorem 2.73. Our decay
assumptions on φ : σ(A) → C involve condition (2.90) (for suitable values of the real
exponent b), i.e.,

sup
λ∈σ(A)

λb|φ(λ)| < +∞ .

Let us recall that kernel φ(A)( , ) is of class Cj(Ω × Ω) (j ∈ N) if (2.90) holds for a b
such that b > (j + d)/2 (see Lemma 2.54 and Lemma 2.55).

Proposition 2.74. Assume φ : σ(A) → C to fulfill Eq. (2.90) for some real b; then the
following holds.
i) If b > d/4, then φ(A) is of Hilbert-Schmidt class; so, the eigenfunction expansion
(2.280) for the kernel φ(A)( , ) converges in L2(Ω× Ω).
ii) If b > j/2 + d for some j ∈ N, then the eigenfunction expansion (2.280) for the kernel
φ(A)( , ) converges absolutely in Cj(Ω× Ω).
iii) If b > d/2, then φ(A) is of trace class.
iv) If b > d, then

Trφ(A) =

∫
Ω

dx φ(A)(x,x) (2.282)

(note that the integrand function in the right-hand side is of class C0(Ω)).

Proof. First of all, let us note that the assumption (2.90) and the Weyl asymptotic relation
(2.277) imply the existence of some positive constants c, c′ such that

|φ(ω2
n)| ≤ c ω−2b

n for all n ∈ N ,

ωn ≥ c′ n1/d for all n ∈ N \ {0} .
(2.283)

Keeping in mind these facts, let us prove statements i)-iv).
i) Let b > d/4. To prove the thesis, on the grounds of Eq. (2.278) we must show that

+∞∑
n=0

|φ(ω2
n)|2 < +∞ .

On the other hand, due to Eq. (2.283), for each n ≥ 1 we have

|φ(ω2
n)|2 ≤ const.ωn

−4b ≤ const.n−4b/d

and the series
∑+∞

n=1 n
−4b/d is convergent.
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ii) Let b > j/2 + d. To infer the thesis, it suffices prove the absolute convergence in
Cj(Ω× Ω) of the series (2.280), i.e., that

+∞∑
n=0

|φ(ω2
n)| ‖Fn(·)F n(··)‖Cj < +∞ ; (2.284)

here, in analogy with Eq. (2.12) we have set

‖Fn(·)F n(··)‖Cj := max
|α|+|β|≤j, x,y∈Ω

|∂αFn(x) ∂βFn(y)| . (2.285)

If Eq. (2.284) is proved, we have convergence in Cj(Ω × Ω) of the series (2.280); but
Cj(Ω × Ω) ↪→ L2(Ω × Ω), so the sum of the series in Cj equals its sum in L2, that we
know to be the kernel of φ(A).
In order to derive Eq. (2.284), let us point out that that definition (2.285) yields automat-
ically ‖Fn(·)F n(··)‖Cj ≤ maxj1+j2≤j ‖Fn‖Cj1‖Fn‖Cj2 ; so, for any ϑ ∈ (0,+∞), the bound
in Eq. (2.276) gives

‖Fn(·)F n(··)‖Cj ≤ max
j1+j2≤j

(
Λj1,ϑ Λj2,ϑ ω

j1+j2+d+2ϑ
n

)
.

Moreover, recalling that ωn ≥ ω0 > 0 (for all n ∈ N), one has ωj1+j2
n = ωj1+j2

0 (ωn/ω0)j1+j2 ≤
ωj1+j2

0 (ωn/ω0)j = ωjn/ω
j−j1−j2
0 , so that

‖Fn(·)F n(··)‖Cj ≤
(

max
j1+j2≤j

Λj1,ϑ Λj2,ϑ

ωj−j1−j20

)
ωj+d+2ϑ
n . (2.286)

Eq.s (2.283) and (2.286) imply the following, for each n ≥ 1:

|φ(ω2
n)| ‖Fn(·)F n(··)‖Cj ≤ const. ω−2b−j−d−2ϑ

n ≤ const. n−
2b−j−d−2ϑ

d .

Now the thesis follows noting that the series
∑+∞

n=1 n
− 2b−j−d−2ϑ

d converges for any ϑ ∈
(0, b− j/2− d).
iii) Let b > d/2. To prove the thesis, on the grounds of Eq. (2.279) we must show that

+∞∑
n=0

|φ(ω2
n)| < +∞ ;

to this purpose, arguments very similar to the ones employed for item i) can be used.
iv) Let b > d. By item ii) with j = 0, the expansion (2.280) of the kernel φ(A)( , )
converges in C0(Ω× Ω). In particular, along the diagonal we have the expansion

φ(A)(x,x) =
+∞∑
n=0

φ(ω2
n) |Fn(x)|2 , (2.287)
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converging in C0(Ω). Of course the map C0(Ω) 3 f 7→
∫

Ω
is a continuous linear form with

respect to the topology of C0(Ω); so, we can integrate term by term Eq. (2.287) and infer∫
Ω

dx φ(A)(x,x) =
+∞∑
n=0

φ(ω2
n)

∫
Ω

dx |Fn(x)|2 =
+∞∑
n=0

φ(ω2
n) = Tr(A) .

Corollary 2.75. i) For all s ∈ Σd/4, the operator A−s is of Hilbert-Schmidt class; so, its
integral kernel A−s( , ) admits the L2-convergent eigenfunction expansion

A−s(x,y) =
+∞∑
n=0

ω−2s
n Fn(x)F n(y) (x,y ∈ Ω) . (2.288)

ii) For any j ∈ N and for all s ∈ Σj/2+d, the eigenfunction expansion (2.288) for A−s( , )
converges absolutely in Cj(Ω× Ω).
iii) For all s ∈ Σd/2, A−s is a trace class operator whose trace is given by the absolutely
convergent series

TrA−s =
+∞∑
n=0

ω−2s
n . (2.289)

In addition, the map Σd/2 3 s 7→ TrA−s is analytic (32).
iv) For all s ∈ Σd, there holds

TrA−s =

∫
Ω

dx A−s(x,x) . (2.290)

Proof. i)-ii) The thesis follows from items i) (resp. ii) ) of Proposition 2.74 noting that,
for any s ∈ Σd/4 (resp. s ∈ Σj/2+d), there exists some b > d/4 (resp. b > j/2 + d) such
that supλ∈σ(A) λ

b−<s < +∞ (e.g., choose b = d/4 + (<s − d/4)/2, resp. b = j/2 + d +
(<s− j/2− d)/2).
iii) The series representation (2.289) and its absolute convergence can be infered by argu-
ments similar to those employed in the proof of items i) and ii), using item iii) of Propo-
sition 2.74. To prove the analyticity of the map Σd/2 3 s 7→ TrA−s, it suffices to show
the existence of the complex derivative d

ds
TrA−s; in view of the series expansion (2.289),

the last statement follows from Lebesgue dominated convergence theorem if there exists a
summable, local dominant for d

dt
ω−2s
n = −2ω−2s

n lnωn . To obtain such a dominant, let us
fix s ∈ Σd/2 and choose a constant σ ∈ (d/2,<s) (note that <s− σ > d/2); then, for any

s′ ∈ Σ(<s−σ,<s+σ), it can be proved by elementary methods that |ω−2s′
n lnωn| ≤ c ω

−2(<s−σ)
n

for some positive constant c, (depending on ω0 and on the fixed parameters s, σ). On the
other hand, since <s− σ > d/2, the Weyl asymptotic relation (2.277) allows to infer that

32We also refer to [56, 84, 115, 116] for alternative derivations of this and other related results.
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∑+∞
n=0 ω

−2(<s−σ)
n < +∞ (by arguments similar to those employed to prove the convergence

of the series (2.289) ). Summing up, c ω
−2(<s−σ)
n yields the required local dominant, thus

concluding the proof.
iv) The thesis follows by arguments similar to those employed in the proof of items i), ii),
using item iv) of Proposition 2.74.

Corollary 2.76. The following statements hold for all t ∈ Σ0.
i) The operator e−tA is of Hilbert-Schmidt class; so, its integral kernel e−tA( , ) admits
the L2-convergent eigenfunction expansion

e−tA(x,y) =
+∞∑
n=0

e−tω
2
n Fn(x)F n(y) (x,y ∈ Ω) . (2.291)

ii) The eigenfunction expansion (2.291) for e−tA( , ) converges absolutely in C∞(Ω×Ω).
iii) e−tA is a trace class operator whose trace is given by the absolutely convergent series

Tr e−tA =
+∞∑
n=0

e−tω
2
n . (2.292)

In addition, the map Σ0 3 t 7→ Tr e−tA is analytic.
iv) There holds

Tr e−tA =

∫
Ω

dx e−tA(x,x) . (2.293)

Results analogous to statements i)-iv) hold, respectively, for the exponential operators

e−t
√
A , e−t

√
A /
√
A .

Proof. i)-ii) The thesis follows from items i) and ii) of Proposition 2.74 noting that, for
any t ∈ Σ0 and for all b ∈ R there holds supλ∈σ(A) λ

be−<tλ < +∞.
iii) Also in this case, arguments similar to those employed in the proof of items i) and ii)
allow to obtain the series representation (2.292) and its absolute convergence, using again
item iii) of Proposition 2.74. Next, let us prove the existence of the complex derivative
d
dt

Tr e−tA, granting the analyticity of the map Σ0 3 t 7→ Tr e−tA. Notice that, in view
of the series expansion (2.292), this fact follows from Lebesgue dominated convergence
theorem if there exists a summable, local dominant for d

dt
e−tω

2
n = −ω2

n e
−tω2

n . To obtain
such a dominant let us fix, for any t ∈ Σ0, a constant T ∈ (0,<t); then, for any t′ ∈ ΣT0 ,
there holds |ω2

n e
−t′ω2

n| ≤ ω2
n e
−T ω2

n . Now notice that
∑+∞

n=0 ω
2
n e
−T ω2

n < +∞, due to the

Weyl asymptotic relation (2.277). Summing up, ω2
n e
−T ω2

n yields the required dominant,
thus yielding the thesis.
iv) Again, the thesis follows by arguments similar to those employed in the proof of items
i), ii), using item iv) of Proposition 2.74.

For completeness, let us mention that the topic of eigenfunction expansions for integral
kernels associated to self-adjoint operators could also be addressed resorting to the theory
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of rigged Hilbert spaces, within a much more general framework [78, 106, 17, 18]. As
well-known, assuming there to exist a nuclear space N ⊂ H such that N ↪→ H ↪→ N ′ is a
Gelfand triplet, any self-adjoint operator B on H admits a complete system of generalized
eigenfunctions belonging to N ′ (see, e.g., [78], page 190, theorem 1) which can be used
to give an expansion of the integral kernel associated to B. Within this framework,
much more can be said in the case of a self-adjoint operator A given by the closure
of an elliptic differential operator (such as the Schrödinger operator to be considered
in Section 2.6) defined on any (not necessarily bounded) domain Ω ⊂ Rd, with minimal
assumptions of regularity for its coefficients and for the boundary conditions. In particular,
the corresponding generalized eigenfunctions are in fact sufficiently smooth; moreover,
they can be used to give an expansion of the integral kernel associated to the operator
φ(A) for any function φ : σ(A) → C decreasing rapidly enough (see [17], page 398,
Theorem 2.1 for more details).

Asymptotic behaviours of the heat and cylinder traces

The results reported in this paragraph constitute the global counterparts of the local
analysis described in subsection 2.7, where the topic of asymptotic behaviour of the heat
and cylinder kernels was addressed.

More precisely, hereafter we report some results describing the small and large t expansions
of the heat and cylinder traces Tr e−tA, Tr e−t

√
A .

Proposition 2.77. The map Σ0 → C, t 7→ Tr e−tA decays exponentially for <t → +∞;
more precisely, for any fixed T ∈ (0,+∞) and for all t ∈ ΣT , there holds

Tr e−tA ≤ CT e
−<tω2

0 , CT := Tr e−T (A−ω2
0I) < +∞ (2.294)

(recall that ω0 > 0 is the minimum eigenvalue of A; I is the identity operator on H).

Analogous results hold for the other exponential traces Tr e−t
√
A , Tr (e−t

√
A /
√
A ).

Proof. Consider again the series expansion (2.292) and recall that ωn ≥ ω0, for all n ∈ N;
therefore, for all T > 0 and for all t ∈ ΣT , there holds |e−tω2

n| = e−<tω
2
0e−<t (ω2

n−ω2
0) ≤

e−<tω
2
0e−T (ω2

n−ω2
0). Then, the thesis (2.294) follows noting that the Weyl asymptotic rela-

tion (2.277) implies Tr e−T (A−ω2
0I) =

∑+∞
n=0 e

−T (ω2
n−ω2

0) < +∞, by a slight variation of the
arguments used in the proof of Corollary 2.76.

Clearly, the previous proposition only deals with the large t behaviour of the exponential
traces. The small t asymptotics of these traces is described instead by the forthcoming
Theorems 2.78 2.79; these theorems contain results analogous to those reported in The-
orems 2.68 2.69 of subsection 2.7 and, also in this case, we refer to [20, 80, 91] and to
[73, 74, 76] for their respective proofs.

Theorem 2.78. Let the assumptions (2.159) and (2.209) be fulfilled; moreover, assume
V to be positive definite. Then there exists a unique sequence of real coefficients an ∈ R
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(n ∈ N) such that for any N ∈ N, in the limit t→ 0+ (t ∈ (0,+∞) ), there holds

Tr e−tA =
1

td/2

(
N∑
n=1

an tn/2 + O(t
N+1

2 )

)
. (2.295)

Theorem 2.79. Let the assumptions (2.159) and (2.209) be fulfilled; moreover, assume
V to be positive definite. Then, there exist a unique pair of sequences en, fn ∈ R (n ∈ N)
such that, for any N ∈ N and for t→ 0+ (t ∈ (0,+∞) ), there holds

Tr e−t
√
A =

1

td

 N∑
n=0

en tn +
N∑

n=d+1
n−d odd

fn tn ln t +O(tN+1 ln t)

 . (2.296)

Integral representations for TrA−s.
The forthcoming Proposition 2.80 allows to express the trace TrA−s in terms of some
integral transforms related to the exponential traces Tr e−tA, Tr e−t

√
A , Tr (e−t

√
A /
√
A ),

thus givining a global analogous of Proposition 2.70.

Proposition 2.80. Let the assumptions (2.159) and (2.209) be fulfilled (so that Dirichlet
boundary conditions are prescribed on ∂Ω); then, for all s ∈ Σd/2 there hold

TrA−s =
1

Γ(s)

∫ +∞

0

dt ts−1 Tr e−tA , (2.297)

TrA−s =
1

Γ(2s)

∫ +∞

0

dt t2s−1 Tr e−t
√
A , (2.298)

TrA−s =
1

Γ(2s−1)

∫ +∞

0

dt t2s−2 Tr (e−t
√
A /
√
A ) . (2.299)

Proof. As an example, we show how to derive Eq. (2.297). To this purpose, recall once
more the series expansions (2.289) (2.292) for TrA−s and Tr e−tA, resectively; these allow
to rephrase Eq. (2.297) as

+∞∑
n=0

ω−2s
n =

1

Γ(s)

∫ +∞

0

dt ts−1

+∞∑
n=0

e−tω
2
n . (2.300)

Therefore, in view of the identity z−s = 1
Γ(s)

∫ +∞
0

dt ts−1e−tz (see [122], page 139, Eq.

5.9.1), the thesis follows if the integral and the series in Eq. (2.300) can be interchanged.
In fact, the mentioned operation can be performed in consequence of the Fubini-Tonelli
theorem [134] since

+∞∑
n=0

∫ +∞

0

dt |ts−1 e−tω
2
n| =

+∞∑
n=0

ω−2<s
n < +∞ ,

where the finiteness of the last expression is granted by item ii) of Corollary 2.75.
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2.8 Mellin transforms and their analytic

continuation.

General definitions and some basic relations.
Let us first fix a few notations to be employed throughout the present section. We indicate
with R the system of extended real numbers, i.e.,

R := R ∪ {±∞} ≡ [−∞,+∞] ; (2.301)

moreover, for any pair r1, r2 ∈ R with r1 < r2, we put

Σ(r1,r2) := {s ∈ C | r1 < <s < r2} . (2.302)

If r2 = +∞, in accordance with Eq. (2.133), we use the short-hand notation

Σr1 ≡ Σ(r1,+∞) . (2.303)

Definition 2.81. Let r1, r2 ∈ R with r1 < r2. A measurable function F : (0,+∞) → C
is said to be of type (r1, r2) if the map (0,+∞) → C, t 7→ ts−1F (t) is integrable for all
s ∈ Σ(r1,r2); we use the notation

M(r1,r2) := {F : (0,+∞)→ C | F is of type (r1, r2)} (Mr1 ≡M(r1,+∞) ) . (2.304)

For F ∈M(r1,r2) and s ∈ Σ(r1,r2), we put

M[F ](s) :=

∫ +∞

0

dt ts−1 F (t) , (2.305)

and refer to the map M[F ] : Σ(r1,r2) → C, s 7→M[F ](s) as the Mellin transform of F ; the
complex domain Σ(r1,r2) will be called the strip of definition of M[F ].

Remark 2.26. The whole theory of Mellin transforms could be formulated with much
more generality; for example, one could only replace the function F with a distribution-
like object acting on some suitable space of test functions. As a matter of fact, many of
the results discussed in the present subsection continue to hold also in this generalized
framework (for further details on this topic, see, e.g., [157, 30]). Nevertheless, such a
broader generality is unecessary in the present work and will therefore be neglected: we
only consider the Mellin transform of ordinary, Lebesgue-integrable functions, since this
is the case of interest for the applications to be studied in the following.

Lemma 2.82. (Operational relations). Let F : (0,+∞) → C. Then, for all r1, r2 ∈ R
with r1 < r2 the following results are fulfilled.
i) Let a ∈ (0,+∞) and consider the function

Fa : (0,+∞)→ C , t 7→ Fa(t) := F (a t) . (2.306)
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Then, there hold

Fa ∈M(r2,r1) ⇔ F ∈M(r1,r2) ; (2.307)

M[Fa](s) = a−sM[F ](s) for all s ∈ Σ(r1,r2) . (2.308)

ii) Let a ∈ R\{0} and consider the function

Ga : (0,+∞)→ C , t 7→ Ga(t) := F (ta) . (2.309)

Then, there hold

Ga ∈M(a r2, a r1) ⇔ F ∈M(r1,r2) ; (2.310)

M[Ga](s) =
1

|a| M[F ]
(s
a

)
for all s ∈ Σ(a r1, a r2) . (2.311)

iii) Let α ∈ C and consider the function

Hα : (0,+∞)→ C , t 7→ Hα(t) = tαF (t) . (2.312)

Then, there hold

Hα ∈M(r1−<α,r2−<α) ⇔ F ∈M(r1,r2) ; (2.313)

M[Hα](s) = M[F ](s+ α) for all s ∈ Σ(r1−<α,r2−<α) . (2.314)

Proof. All the statements i)-iii) follow from Definition 2.81 by simple changes of the
variable of integration, suitably defined in view of the explicit expressions (2.306), (2.309)
and (2.312) for the functions Fa, Ga and Hα in terms of F .
As an example, let us give a few more details about the derivation of Eq. (2.311). First
note that, Eq. (2.309) and the definition (2.305) of Mellin transform give M[Ga](s) =∫ +∞

0
dt ts−1 F (ta); making the change of variable t 7→ t1/a (33), one infers M[Ga](s) =

1
|a|

∫ +∞
0

dt t
s
a
−1 F (t). Then, Eq. (2.311) follows recalling again the definition (2.305).

Lemma 2.83. Let F ∈ L1
loc(0,+∞) and assume that, for some r1, r2 ∈ R with r1 < r2,

F (t) =

{
O(t−r1) for t→ 0+ ,
O(t−r2) for t→ +∞ . (2.315)

Then, F ∈M(r1,r2).

Remark 2.27. In particular, if r1 = −∞ or r2 = +∞, the notations F (t) = O(t+∞) for
t→ 0+ and F (t) = O(t−∞) for t→ +∞ in Eq. (2.315) mean, respectively, F (t) = O(tr)
and F (t) = O(t−r) for each r ∈ (0,+∞).

33Of course, the restriction on the real parameter a in both items i) and ii) are necessary in order to
guarantee that the change of variables to be employed in the proof (such as t 7→ t1/a) are well defined.
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Proof. First note that, for any T1, T2 ∈ (0,+∞), there holds the following decomposition:∫ +∞

0

dt |ts−1F (t)| =
∫ T1

0

dt |ts−1F (t)|+
∫ T2

T1

dt |ts−1F (t)|+
∫ +∞

T2

dt |ts−1F (t)| . (2.316)

By definition, F is of type (r1, r2) if and only if the integral in the left-hand side of
the above equation is finite for all s ∈ Σ(r1,r2); this happens if and only if each of the
integrals in the right-hand side of Eq. (2.316) are finite, since the integrand functions
are all positive. Hereafter we prove the last statement which, according to the previous
considerations, gives the thesis.
Of course, the assumption (2.315) means that there exist T ∗1 , T

∗
2 ∈ (0,+∞) and a pair of

positive constants M1,M2 such that

|F (t)| ≤
{
M1 t−r1 for 0 < t < T ∗1
M2 t−r2 for t > T ∗2

;

this fact allows to infer easily the bounds∫ T ∗1

0

dt |ts−1F (t)| ≤M1
(T ∗1 )<s−r1

<s− r1

for all s ∈ C with <s > r1 ,

∫ +∞

T ∗2

dt |ts−1F (t)| ≤M2
(T ∗2 )<s−r2

r2 −<s
for all s ∈ C with <s < r2 .

Next note that, for T ∗1 , T
∗
2 ∈ (0,+∞) as above and for all s ∈ C, there holds∫ T ∗2

T ∗1

dt |ts−1F (t)| ≤ max
(
(T ∗1 )<s−1, (T ∗2 )<s−1

) ∫ T ∗2

T ∗1

dt |F (t)| < +∞ ,

where the finiteness of the integral on the right-hand side is granted by the assumption
F ∈ L1

loc(0,+∞).
Summing up, we have shown that the three integrals on the right-hand side of Eq. (2.316)
are all finite at the same time for s ∈ C with r1 < <s < r2, i.e., for s ∈ Σ(r1,r2); as
anticipated above, this yields the thesis.

Remark 2.28. The arguments presented in the proof of Lemma 2.83 allow to infer the
results discussed hereafter, giving a partial converse of the cited lemma.
On the one hand, the assumption F ∈ L1

loc(0,+∞) is in fact a necessary condition in
order to have F ∈M(r1,r2) for some r1, r2 ∈ R (r1 < r2) (34).

34To prove this fact note that, for any T1, T2 ∈ (0,+∞) and for all s ∈ C, there holds∫ T2

T1

dt |F (t)| ≤ max
(
T 1−<s

1 , T 1−<s
2

) ∫ T2

T1

dt |ts−1 F (t)| .
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On the other hand, it appears that the restrictions <s > r1 and <s < r2 descend,
respectively, from the small and large t behaviour of F ; more precisely, the following
bounds must hold:

r1 ≥ inf {r ∈ R | tr−1f(t) ∈ L1(0, T ) for some T > 0} ;

r2 ≤ sup {r ∈ R | tr−1f(t) ∈ L1(T,+∞) for some T > 0} .
(2.317)

Proposition 2.84. Let r1, r2 ∈ R with r1 < r2 and let F ∈ M(r1,r2). Then, the Mellin
transform M[F ] of F is analytic in the strip Σ(r1,r2); moreover, for any k ∈ N and for all
s ∈ Σ(r1,r2), there holds

dkM[F ]

dsk
(s) =

∫ +∞

0

dt ts−1 (ln t)k F (t) . (2.318)

Proof. It suffices to prove that Eq. (2.318) holds for any k ∈ N and for all s ∈ Σ(r1,r2);
indeed, for k = 1 this fact shows, in particular, that M[f ] is holomorphic on the strip
Σ(r1,r2), hence analytic therein.
To derive Eq. (2.318), first consider the definition (2.305) of M[f ] and note that ∂ks t

s−1 =
ts−1(ln t)k ; then, it appears that Eq. (2.318) follows from the Lebesgue dominated con-
vergence theorem if, locally for s ∈ Σ(r1,r2), the map (0,+∞) → C, t 7→ ts−1(ln t)kF (t)
admits an integrable dominant function (independent of s). To prove the last statement,
let us fix s0 ∈ (r1, r2) arbitrarily and choose ϑ > 0 so that s0 ± 2ϑ ∈ (r1, r2) (such a ϑ
always exists since (r1, r2) is open); for any k ∈ N, there exits a pair of positive constants
C1, C2 (depending on ϑ, k) such that (35)∣∣(ln t)k

∣∣ ≤ {C1 t−ϑ for t ∈ (0, 1) ,
C2 tϑ for t ∈ (1,+∞) .

Then, for all s ∈ Σ(s0−ϑ,s0+ϑ) it follows that∣∣ts−1(ln t)kF (t)
∣∣ ≤ C1

∣∣ts0−2ϑ−1F (t)
∣∣+ C2

∣∣ts0+2ϑ−1F (t)
∣∣ . (2.319)

Since F ∈M(r1,r2) and we have chosen ϑ > 0 such that s0 ± 2ϑ ∈ (r1, r2), the right-hand
side of the inequality (2.319) gives a dominant function which is integrable over (0,+∞);
due to the above considerations, this completes the proof.

Remark 2.29. The previous Proposition 2.84 grants the analyticity of the Mellin transform
M[F ] of any given function F ∈M(r1,r2) inside the open strip Σ(r1,r2). Then, it is natural
to try and extend M[F ] to a wider region of the complex plane by means of analytic
continuation, a topic we discuss in the remainder of the present section; more precisely,
we present three main methods allowing to construct the mentioned analytic continuation
of M[F ], under suitable (increasingly stricter) hypotheses for the function F .

35It can be show by elementary methods that the optimal choice for both C1 and C2 is

C1 = C2 =

(
k

ϑ e

)k
.
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Analytic continuation of Mellin transforms.
Proposition 2.85. (First method for analytic continuation: asymptotic expansion). Let
F ∈ L1

loc(0,+∞). Assume there exist N,P ∈ N and two families of coefficients an, fnp
(n ∈ {0, ..., N + 1}, p ∈ {0, ..., P}) with

an ∈ R , a0 < a1 < ... < aN < aN+1 and fnp ∈ C , (2.320)

such that there holds the asymptotic expansion

F (t) =
N∑
n=0

P∑
p=0

fnp tan(ln t)p +O(taN+1) for t→ 0+ ; (2.321)

moreover, assume there exists r ∈ R with r > −a0 such that

F (t) = O(t−r) for t→ +∞ . (2.322)

Then F ∈ M(−a0,r) and its Mellin transform M[F ] can be analytically continued to a
function which is meromorphic in the strip Σ(−aN+1,r), possibly with pole singularities at
s ∈ {−a0, ....,−aN}. Furthermore, the analytic continuation of M[F ] (indicated with the
same symbol) can be represented as follows, for all s ∈ Σ(−aN+1,r):

M[F ](s) =
N∑
n=0

P∑
p=0

p∑
j=0

(
(−1)jp!

(p−j)!

)
fnp T

s+an (lnT )p−j

(s+an)j
+

+

∫ T

0

dt ts−1

(
F (t)−

N∑
n=0

P∑
p=0

fnp tan(ln t)p

)
+

∫ +∞

T

dt ts−1 F (t) .

(2.323)

Proof. First note that F (t) = O(ta0) for t→ 0+ in consequence of the assumption (2.321);
this fact and the other hypotheses on F made in the present proposition grant, in view of
Lemma 2.83, that F ∈M(−a0,r).
Next, let us pass to the construction of the analytic continuation of the Mellin transform
M[F ]. To this purpose, recall that the expression O(taN+1) for t→ 0+ by definition means
that

∃T,M > 0 such that |O(taN+1)| ≤M taN+1 for all 0 < t < T ; (2.324)

for any such T and for all s ∈ Σ(−a0,r), using the expansion (2.321), the definition (2.305)
of M[F ] can be rephrased as

M[F ](s) =

N∑
n=0

P∑
p=0

fnp

∫ T

0

dt ts+an−1 (ln t)p +

∫ T

0

dt ts−1O(taN+1) +

∫ +∞

T

dt ts−1 F (t) .
(2.325)

Hereafter we discuss in detail each of the terms in the right-hand side of Eq. (2.325); the
conclusion of this analysis will be the proof of Eq. (2.323), giving the analytic continuation
of M[F ] as stated in the proposition.
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First, let us fix n ∈ {0, ..., N}, p ∈ {0, ..., P} and consider the corresponding integral in the
first sum on the right-hand side of Eq. (2.325); this integral can be evaluated explicitly,
for all s ∈ Σ−an , giving (36)∫ T

0

dt ts+an−1 (ln t)p = T s+an

p∑
j=0

(
(−1)jp!

(p−j)!

)
(lnT )p−j

(s+an)j
. (2.326)

Despite the above identity is derived under the assumption <s > −an, it can be interpreted
to give the analytic continuation of the integral on the left-hand side to a function which
is meromorphic on the whole complex plane and whose only singularity is a pole of order
p at s = −an.

Concerning the second and the third integral in Eq. (2.325), we state that these integrals
are finite and determine analytic functions of s for all s ∈ C with <s > −aN+1 and

<s < r, respectively. In fact, the convergence of
∫ T

0
dt ts−1O(taN+1) follows easily using

the bound (2.324), while the integral
∫ +∞
T
dt ts−1 F (t) can be shown to be finite moving

along the same lines as in the proof of Lemma 2.83; the analyticity of these expressions
can be proved by arguments similar to the ones presented in the proof of Proposition 2.84.

So, as anticipated before, Eq.s (2.325) (2.326) imply the representation (2.323) which
gives the analytic continuation of M[F ] to a function meromorphic in the strip Σ(−aN+1,r),
with poles at s ∈ {−a0, ...,−aN}.

Corollary 2.86. Let k ∈ N and F ∈ Ck+1([0,+∞)); moreover assume that, for some
r ∈ R with r > 0, there holds

F (t) = O(t−r) for t→ +∞ . (2.327)

Then F ∈M(0,r) and its Mellin transform M[F ] can be analytically continued to a function
meromorphic on the strip Σ(−(k+1),r), possibly with simple poles at s ∈ {0,−1, ...,−k}; in
particular, for s ∈ Σ(−(k+1),r) there holds

M[F ](s) =

k∑
n=0

F (n)(0)

n!(s+n)
T s+n +

∫ T

0

dt ts−1

(
F (t)−

k∑
n=0

F (n)(0)

n!
tn

)
+

∫ +∞

T

dt ts−1 F (t) .
(2.328)

36In order to prove Eq. (2.326), first note that ts+an−1 (ln t)p = ∂ps (ts+an−1); then, for all s ∈ C with
<s > −an, by arguments similar to those presented in the proof of Proposition 2.84 one can resort to the
Lebesgue dominated convergence theorem to infer∫ T

0

dt ts+an−1 (ln t)p =
dp

dsp

∫ T

0

dt ts+an−1 =
dp

dsp

(
T s+an

s+an

)
.

Eq. (2.326) follows straightforwardly from the last expression above using the general Leibnitz rule.
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Proof. The assumption F ∈Ck+1([0,+∞)) ensures, in particular, that both F ∈L1
loc(0,+∞)

and

F (t) =
k−1∑
n=0

F (n)(0)

n!
tn +O(tk) for t→ 0+ ;

then, the thesis follows straightforwardly from Proposition 2.85.

Corollary 2.87. Let F ∈ L1
loc(0,+∞). Assume there exist N,P ∈ N, and two families

of coefficients cn, fnp (n ∈ {0, ..., N}, p ∈ {0, ..., P}) with

cn ∈ R , c0 < c1 < ... < cN < cN+1 and fnp ∈ C , (2.329)

such that there holds the asymptotic expansion

F (t) =
N∑
n=0

P∑
p=0

fnp t−cn(ln t)p +O(t−cN+1) for t→ +∞ ; (2.330)

moreover, assume there exist r ∈ R with r > −c0 such that

F (t) = O(tr) for t→ 0+ . (2.331)

Then F ∈ M(−r,c0) and its Mellin transform M[F ] can be analytically continued to a
function which is meromorphic on the strip Σ(−r,cN+1), possibly with pole singularities at
s ∈ {c0, ...., cN}. Furthermore, the analytic continuation of M[F ] (indicated with the same
symbol) can be represented as follows, for all s ∈ Σ(−r,cN+1):

M[F ](s) =
N∑
n=0

P∑
p=0

p∑
j=0

(
(−1)jp!

(p−j)!

)
fnp T

s−cn(lnT )p−j

(s−cn)j
+

+

∫ +∞

T

dt ts−1

(
F (t)−

N∑
n=0

P∑
p=0

fnp tcn(ln t)p

)
+

∫ T

0

dt ts−1 F (t) .

(2.332)

Proof. Consider the function F−1 : (0,+∞)→ C, t 7→ F−1(t) := F (1/t) (see Eq. (2.306),
with a = −1). Of course, F−1 ∈ L1

loc(0,+∞); moreover, there hold the following relations:

F−1(t) =


N∑
n=0

P∑
p=0

fnp tcn(− ln t)p +O(td) for t→ 0+

O(t−r) for t→ +∞
.

Therefore, due to Proposition 2.85, we have F−1∈M(−c,r); furthermore, the Mellin trans-
form M[F−1] can be analytically continued to the strip Σ(−d,r) and therein it admits the
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following representation, for any T?∈(0,+∞):

M[F−1](s) =
N∑
n=0

P∑
p=0

p∑
j=0

(
(−1)p−jp!

(p−j)!

)
fnp T

s+cn
? (lnT?)

p−j

(s+cn)j
+

+

∫ T?

0

dt ts−1

(
F−1(t)−

N∑
n=0

P∑
p=0

(−1)pfnp t+cn(ln t)p

)
+

∫ +∞

T?

dt ts−1 F−1(t) .

(2.333)

The thesis can be easily infered using statement i) in Lemma 2.82; in particular, Eq.
(2.332) follows from Eq. (2.333) recalling that M[F ](s) = M[F−1](−s) (see Eq. (2.308),
again with a = −1), performing the change of variable t 7→ 1/t in the integrals appearing
in Eq. (2.333) and setting T := 1/T?.

Proposition 2.88. (Second method for analytic continuation: integration by parts). Let
F ∈ Ck([0,+∞)) for some k ∈ N; moreover, assume there exist r ∈ R with r > 0 and a
family of coefficients rn (n ∈ {0, ..., k−1}) with

rn ≥ r + n , (2.334)

such that
F (n)(t) = O(t−rn) for t→ +∞ . (2.335)

Then F ∈ M(0,r) and its Mellin transform M[F ] can be analytically continued to a
function which is meromorphic on the strip Σ(−k,rk−k), possibly with simple poles at s ∈
{0,−1, ...,−(k−1)}; in particular, for s ∈ Σ(−k,rk−k) there holds

M[F ](s) =
(−1)k

s(s+1)...(s+k−1)
M
[
F (k)

]
(s+ k) . (2.336)

Proof. First note that the function F fulfills all the hypotheses of Corollary 2.86, since
F ∈ Ck([0,+∞)) and F (t) = O(t−r0) in the limit t → +∞ for some r0 ≥ r > 0; in
particular, this suffices to infer that F ∈M(0,r).
In order to derive the representation (2.336) for the Mellin transform M[F ], consider the
general definition (2.305); integrating by parts k times, we obtain

M[F ](s) = (2.337)

k−1∑
n=0

(−1)n

s(s+1)...(s+n)

[
ts+nF (n)(t)

]+∞

0
+

(−1)k

s(s+1)...(s+k−1)

∫ +∞

0

dt ts+k−1 F (k)(t) .

Now, fix n ∈ {0, ..., k−1} and consider the boundary term [ts+nF (n)(t)]+∞0 . On the one
hand, since F ∈ Ck([0,+∞)) (k ≥ n), there holds

lim
t→0+

(
ts+nF (n)(t)

)
= 0 for s ∈ C with <s > −n ;
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on the other hand, the assumption (2.335) allows to infer

lim
t→+∞

(
ts+nF (n)(t)

)
= 0 for s ∈ C with <s < rn − n .

The hypothesis (2.334) grants that the above results do indeed hold for all s ∈ Σ(0,r); thus,

within this strip Eq. (2.337) reduces to M[F ](s) = (−1)k

s(s+1)...(s+k−1)

∫ +∞
0

dt ts+k−1F (k)(t),

which is equivalent to Eq. (2.336) by the definition (2.305) of Mellin transform.
To conclude note that, since F fulfills the hypotheses of Corollary 2.86 (here employed
with k+1 replaced by k), there holds F (k) ∈M(0,rk); therefore, the integral in Eq. (2.336)
converges for all s ∈ Σ(−k,rk−k). Since Σ(−k,rk−k) ⊃ Σ(0,r), the representation (2.336)
gives the analytic continuation of M[F ] within this strip to a meromorphic function with
possible poles at s ∈ {0,−1, ...,−(k−1)}.

Proposition 2.89. (Third method for analytic continuation: complex integration). Let
F : (0,+∞)→ C be a function admitting an analytic extension (indicated with the same
symbol) to a complex open neighbour U ⊂ C, such that

[0,+∞) ⊂ U and sup
z ∈U
|=z| > 0 ; (2.338)

moreover, assume that, for some r ∈ R with r > 0,

F (t) = O
(
(<t)−r

)
for <t→ +∞ . (2.339)

Then F ∈M(0,r) and its Mellin transform M[F ] can be analytically continued to a function
meromorphic on the infinite left strip Σ(−∞,r), possibly with simple poles at s∈Z∩(−∞, r);
in particular, for s ∈ Σ(−∞,r)\{Z ∩ (−∞, r)} there holds

M[F ](s) =
e−iπs

2i sin(πs)

∫
H

dt ts−1 F (t) , (2.340)

where H ⊂ U denotes the Hankel contour, that is a simple path contained in the open
neighbour U that starts in the upper half-plane near +∞, encircles the origin counter-
clockwise and returns to +∞ in the lower half-plane (see Fig. 2.1 below).
Proof. Also in this case the assumptions made for the function F are sufficient to infer
that F ∈M(0,r), by Corollary 2.86.
Next, let us show how to derive the representation (2.340) for the Mellin transform M[F ];
to this purpose, fix s ∈ Σ(0,r) and consider the integral

N[F ](s) :=

∫
H

dt ts−1 F (t) (2.341)

(note that the assumption <s < r and the hypotheses made for F ensure that the above
integral is well-defined). To proceed note that, for any δ with 0 < δ < supz∈U |=z|, the
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✻

✲✛
✲ ℜt

ℑt

H

Figure 2.1: The Hankel contour H.

Hankel contour H is homotopic to the path Hδ described as follows:

Hδ = H+
δ ∪ H0

δ ∪ H−δ , with

H±δ := {t ∈ C | t = τ ± iδ, τ ∈ [0,+∞)} ,
H0
δ := {t ∈ C | t = δ eiθ, θ ∈ (π/2, 3π/2)} .

Due to this fact and to the analyticity of F , the path H in Eq. (2.341) can be replaced
with Hδ; thus,

N[F ](s) = N+
δ [F ](s) + N0

δ [F ](s) + N−δ [F ](s) ,

N±δ [F ](s) := ∓
∫ +∞

0

dτ (τ ± iδ)s−1F (τ ± iδ) ,

N0
δ [F ](s) := i

∫ 3π/2

π/2

dθ (δ eiθ)s F (δ eiθ) .

(2.342)

Consider the limit δ → 0+. Notice that, in this limit, (τ+iδ)s−1 → τ s−1 while (τ−iδ)s−1→
e2iπ(s−1)τ s−1 = e2iπsτ s−1; moreover, F (τ ± iδ)→ F (τ). Due to these results, by Lebesgue
dominated convergence theorem it follows that limδ→0+ N+

δ [F ](s) = −
∫ +∞

0
dτ τ s−1F (τ)

and limδ→0+ N−δ [F ](s) = e2iπs
∫ +∞

0
dτ τ s−1F (τ). Concerning the integral N0

δ [F ](s), note
that the analyticity of F implies the existence of a positive constant C such that |F (δ eiθ)| ≤
C for all θ ∈ (0, 2π); thus, for <s > 0, one has

|N0
δ [F ](s)| ≤ C δ<s

∫ 3π/2

π/2

dθ e−(=s)θ → 0 for δ → 0+ . (2.343)

Summing up, in the limit δ → 0+ Eq. (2.342) gives

N[F ](s) = (e2iπs − 1)

∫ +∞

0

dτ τ s−1F (τ) . (2.344)

Noting that e2iπs−1 = 2ieiπs sin(πs) and recalling the definitions (2.305) (2.341) of M[F ],
N[F ], Eq. (2.344) allow us to obtain the representation (2.340) of the Mellin transform
M[F ] for all s ∈ Σ(0,r)\{Z ∩ (0, r)}.
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To conclude, note that the hypothesis <s > 0 was employed only to justify the intermedi-
ate result (2.343); nevertheless, to grant the finiteness of the integral N[F ] of Eq. (2.341)
it suffices to require <s < r. Therefore, the representation (2.340) makes sense for all
s ∈ Σ(−∞,r) and can be interpreted as the analytic continuation of M[F ] to this strip,
yielding the thesis.

Remark 2.30. i) Let F : (0,+∞) → C be an analytic function fulfilling all the hypothe-
ses of Proposition 2.89; for any q ∈ Z, consider the analytic extension of the function
introduced in Eq. (2.312):

Hq : U → C , t 7→ Hq(t) := tq F (t) . (2.345)

Proposition 2.89 and the statement iii) of Lemma 2.82 allow to infer that Hq can be ana-
lytically continued to a function which is meromorphic on the infinite left strip Σ(−∞,r−q);
due to the results in Eq.s (2.314) (2.340), this analytic continuation can be represented as

M[Hq](s) =
e−iπs

2i sin(πs)

∫
H

dt ts−1Hq(t) , (2.346)

where it was also used the fact that

e−iπq/ sin(π(s+ q)) = 1/ sin(πs) for q ∈ Z . (2.347)

ii) Consider the very well-known reflection relation (see, e.g., [122], page 138, Eq. 5.5.3)

Γ(s) Γ(1− s) =
π

sin(πs)
for s ∈ C\Z . (2.348)

Using this identity, Eq. (2.340) can be reformulated as follows, for all s ∈ C\Z:

1

Γ(s)
M[F ](s) =

e−iπs Γ(1− s)
2πi

∫
H

dt ts−1 F (t) , (2.349)

In some cases of interest for the applications to be considered in the following, Eq. (2.349)
yields a very effective method for computing explicitly the analytic continuation of the
Mellin transform of certain functions; in fact, for suitable s ∈ Z, the integral in the right-
hand side of Eq. (2.349) can be easily computed via the residue theorem, since F is
assumed to be analytic in the region enclosed by the Hankel contour H.

Analytic continuation of the Dirichlet kernels.
Let us consider the framework of Sections 2.6 and 2.7; so, assume again Ω ⊂ Rd to be an
arbitrary domain and let A be the admissible operator obtained restricting the differential
operator A = −4+V (V ∈ C∞(Ω) ) to an admissible domain Dom(A) ⊂ L2(Ω).
Consider the heat, cylinder and modified cylinder kernels associated to A; recall that the
features possessed by these kernels have been discussed extensively in subsection 2.7. The
results obtained therein allow, in particular, to derive the following lemma.
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Lemma 2.90. Let j ∈ N and let α, β be any pair of multi-indices such that |α| + |β| ≤
j. For any fixed x,y ∈ Ω, consider the maps (0,+∞) → C, t 7→ ∂α1 ∂

β
2 e
−tA(x,y),

∂α1 ∂
β
2 e
−t
√
A (x,y), ∂α1 ∂

β
2 (e−t

√
A /
√
A )(x,y); each one of these maps admits a Mellin trans-

form. More precisely, there holds

∂α1 ∂
β
2 e
−•A(x,y) ∈M(j+d)/2 ,

∂α1 ∂
β
2 e
−•
√
A (x,y) ∈Mj+d ,

∂α1 ∂
β
2 (e−•

√
A /
√
A )(x,y) ∈Mj+d−1 .

(2.350)

Moreover, for all s ∈ Σ(j+d)/2, the derivative ∂α1 ∂
β
2A−s(x,y) of the Dirichlet kernel can be

expressed as follows in terms of the Mellin transforms of the above maps:

∂α1 ∂
β
2A−s(x,y) =

1

Γ(s)
M[∂α1 ∂

β
2 e
−•A(x,y)](s) , (2.351)

∂α1 ∂
β
2A−s(x,y) =

1

Γ(2s)
M[∂α1 ∂

β
2 e
−•
√
A (x,y)](2s) , (2.352)

∂α1 ∂
β
2A−s(x,y) =

1

Γ(2s−1)
M[∂α1 ∂

β
2 (e−•

√
A /
√
A )(x,y)](2s− 1) . (2.353)

Remark 2.31. The identities in Eq.s (2.351-2.353) must be meant to hold pointwisely, for
all fixed x,y ∈ Ω (and for all s ∈ Σ(j+d)/2).

Proof. Recall the small and large t bounds derived in point ii) of Proposition 2.65 for the
exponential kernels; see, in particular, Eq.s (2.249), (2.254) and (2.255). Then, the first
part of the thesis (namely, Eq. (2.350) ) follows easily from Lemma 2.83.
On the other hand, the identities in Eq.s (2.351-2.353) are simply a restatement of Eq.s
(2.266-2.268) (see Proposition 2.70) in the language of Mellin tranforms.

Let us anticipate that, for the physical applications to be considered in the subsequent
Chapters 3 and 4, it is of utmost interest the evaluation along the diagonal (y = x) of
the Dirichlet kernel and of its derivatives, as well as the computation of their analytic
continuations with respect to the complex parameter defining their order.
Having in mind these developments, hereafter we proceed to construct the required ana-
lytic continuations, making suitable hypotheses for the small t asymptotic behaviour of
the corresponding derivatives of the heat and cylinder kernels (to be evaluated along the
diagonal, as well). The main results are contained in the forthcoming Theorems 2.91, 2.92
and 2.93; in the related Remarks 2.32, 2.33 and 2.34 we will comment on the hypotheses
mentioned above for the exponential kernels, pointing out that they are typically fulfilled
in most cases of interest.
Before proceeding, let us recall once more that, for any x ∈ Ω and for any pair of multi-
indexes α, β, the maps (0,+∞) 3 t 7→ ∂α1 ∂

β
2 e
−tA(x,y)|y=x, ∂

α
1 ∂

β
2 e
−t
√
A (x,y)|y=x are an-

alytic and decay exponentially for t → +∞ (see Proposition 2.65). On the other hand,
all the hypotheses made in Theorems 2.91, 2.92 and 2.93 contain only assumptions about
the asymptotics of the above maps in the limit t→ 0+.
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Theorem 2.91. Let α, β be any pair of multi-indexes and consider the derivative ∂α1 ∂
β
2 e
−tA(x,y)

of the heat kernel, for t ∈ (0,+∞) and x,y ∈ Ω. Assume there exist N ∈ N and a family
of coefficients bn : Ω→ R (n ∈ {0, ..., N}) such that along the diagonal y = x, there holds
the following asymptotic expansion for t→ 0+ :

∂α1 ∂
β
2 e
−tA(x,y)

∣∣∣
y=x

=
1

t(|α|+|β|+d)/2

(
N∑
n=1

bn(x) tn +O(tN+1)

)
. (2.354)

Then, the map Σ(|α|+|β|+d)/2 → C, s 7→ ∂α1 ∂
β
2A−s(x,x) (for all x ∈ Ω) can be analytically

continued to a function which is meromorphic in the strip Σ(|α|+|β|+d)/2−N and possesses

only possible simple pole singularities at s = |α|+|β|+d
2

− n, for n ∈ {0, ..., N}. More
precisely, the analytic continuation is given by

∂α1 ∂
β
2A−s(x,y)

∣∣∣
y=x

=
1

Γ(s)

[
N∑
n=0

bn(x)T s−d/2+n

s− |α|+|β|+d
2

+ n
+ (2.355)

+

∫ T

0

dt ts−1

(
∂α1 ∂

β
2 e
−tA(x,y)

∣∣∣
y=x
− 1

t(|α|+|β|+d)/2

N∑
n=0

bn(x) tn

)
+

∫ +∞

T

dt ts−1 ∂α1 ∂
β
2 e
−tA(x,y)

∣∣∣
y=x

]
.

Proof. First of all, recall that the results of Proposition 2.65 allow to infer the following
estimate, for any fixed x ∈ Ω:∣∣∣∂α1 ∂β2 e−tA(x,y)

∣∣∣
y=x

∣∣∣ ≤ Cα,β(x) e−ε t for t > Tα,β(x) ,

where the positive constants Cα,β(x), Tα,β(x) can be determined explicitly according to
Eq. (2.249) and ε > 0 is such that σ(A) ⊂ [ε,+∞). Then, due to Proposition 2.85,
the map s 7→ ∂α1 ∂

β
2A−s(x,y)|y=x can be analytically continued to the (right-infinite)

strip Σ((|α|+|β|+d)/2−N,+∞) ≡ Σ(|α|+|β|+d)/2−N . Moreover, the analytic continuation can be
determined explicitly starting with Eq. (2.351); it suffices to keep in mind the asymptotic
expansion (2.354) and to resort to the general relation (2.323), here employed with P = 0
and an = n− (|α|+ |β|+ d)/2, (n = 0, ..., N). This suffices to infer the thesis.

Remark 2.32. i) As anticipated previously, the hypotheses made in the above theorem
are well-known to be fulfilled in many cases of interest. For example, expansions of the
form (2.354) for the diagonal heat kernel derivatives can be easily derived for arbitrary
N ∈ N under the assumptions (2.159) for the domain Ω and for the potential V , starting
from the expression in Eq. (2.262); in this case the coefficients bn in Eq. (2.354) can all
be determined in terms of the HDSM-coefficients an and of their derivatives. Analgous
results for the heat kernel also hold in case the domain is a (possibly unbounded) subset Rd

delimited by flat boundaries (namely, parallel or perpendicular planes), on which suitable
boundary conditions are prescribed (37). Let us also mention that, when the domain Ω

37This statement can be checked by direct computations, starting with the heat kernel K0(t ;x,y) :=
1

(4πt)d/2
e−
|x−y|2

4t (see Eq. (2.263) ) and using the method of images.
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is the whole space Rd and the potential V is either a mass term (V = m2, for some
m ∈ R) or an harmonic-type background (V (x) = λ4|x|2, for some λ ∈ R), the well-
known explicit expressions for the corresponding heat kernels are easily seen to possess
asymptotic expansions of the type (2.354).

ii) Whenever the hypotheses of Theorem 2.91 are fulfilled, it can be proved by Riesz means

methods (see, e.g., [60, 73, 76]) that the derivative ∂α1 ∂
β
2 e
−t
√
A (x,y) of the cylinder kernel

evaluated along the diagonal admits a corresponding asymptotic expansion, for t → 0+,
given by (compare with (2.265) )

∂α1 ∂
β
2 e
−t
√
A (x,y)

∣∣∣
y=x

=

1

td+|α|+|β|

 N∑
n=0

gn(x) tn +
N∑

n= d+|α|+|β|+1
n−(d+|α|+|β|) odd

hn(x) tn ln t +O(tN+1 ln t)

 ,
(2.356)

for some N ∈ N and for two families of coefficients gn, hn : Ω → R (n ∈ {0, ..., N}) (38).
Then, a simple variation of the above Theorem 2.91 can be derived starting from the
asymptotic expansion (2.356); since this alternative formulation will never be used in the
applications to be considered in the following, it will not be reported in the present work.

In most of the cases mentioned in item i) of Remark 2.32 much more can be said about
the small t behaviour of either the heat or cylinder kernel and of their derivatives. Having
in mind these considerations, we state the following Theorems 2.92, 2.93; therein, under
slightly stronger assumptions, we present other methods which allow to construct the
analytic continuations of the maps s 7→ ∂α1 ∂

β
2A−s(x,y)|y=x, typically in a more efficient

way from a computational point of view.

Theorem 2.92. Let α, β be any pair of multi-indexes. Assume there exist N ∈ N and a
function H(α,β) : [0,+∞)×Ω→ R, (t,x) 7→ H(α,β)(t ;x) such that, for any fixed x ∈ Ω:

i) the map t 7→ H(α,β)(t ;x) is of class CN ;

ii) for t ∈ (0,+∞), the derivative ∂α1 ∂
β
2 e
−tA(x,y) of the heat kernel evaluated along the

diagonal is given by

∂α1 ∂
β
2 e
−tA(x,y)

∣∣∣
y=x

=
1

t(|α|+|β|+d)/2
H(α,β)(t ;x) . (2.357)

Then, for any fixed x ∈ Ω, the map Σ(d+|α|+|β|)/2 → C, s 7→ ∂α1 ∂
β
2A−s(x,y)|y=x can be

analytically continued to a function which is meromorphic in the strip Σ(d+|α|+|β|)/2−N and

possesses only possible simple pole singularities at s = |α|+|β|+d
2

− n, for n ∈ {0, ..., N}.
More precisely, the analytic continuation is given by

38As pointed out by Fulling in the already cited works [60, 73, 76], some but not all of the coefficients
gn, hn can be determined in terms of the heat kernel coefficients bn.
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∂α1 ∂
β
2A−s(x,y)

∣∣∣
y=x

= (2.358)

(−1)N

Γ(s)(s− |α|+|β|+d
2

) ... (s− |α|+|β|+d
2

−1+N)

∫ +∞

0

dt ts−
|α|+|β|+d

2
−1+N ∂Nt H

(α,β)(t ;x) .

Proof. The thesis can be derived following the same arguments presented in the proof of
Theorem 2.91, using Proposition 2.88 (and the corresponding Eq. (2.336) ) in place of
Proposition 2.85.

Remark 2.33. The hypotheses made in the above theorem are known to hold when Ω is
bounded with smooth boundary and V = 0 (39), or when Ω = Rd and the potential is
either V = m2 (m ∈ R) or V (x) = λ4|x|2 (λ ∈ R).

Theorem 2.93. Let α, β be any pair of multi-indexes. Assume there to exist a function
J (α,β) : (0,+∞)×Ω→ R, (t,x) 7→ J (α,β)(t ;x) such that, for any fixed x ∈ Ω:
i) the map t 7→ J (α,β)(t ;x) admits an analytic extension to a complex open neighbour
U ⊂ C of the positive real semi-axis [0,+∞);

ii) for t ∈ (0,+∞), the derivative ∂α1 ∂
β
2 e
−t
√
A (x,y) of the cylinder kernel evaluated along

the diagonal is given by

∂α1 ∂
β
2 e
−t
√
A (x,y)

∣∣∣
y=x

=
1

t|α|+|β|+d
J (α,β)(t ;x) . (2.359)

Then, the map Σ(|α|+|β|+d)/2 → C, s 7→ ∂α1 ∂
β
2A−s(x,y)|y=x can be analytically continued to

a function, which is meromorphic on the whole complex plane and possesses only possible
simple pole singularities at s = k/2, for k ∈ {1, ..., |α| + |β| + d}. More precisely, the
analytic continuation is given by

∂α1 ∂
β
2A−s(x,y)

∣∣∣
y=x

=
e−2iπs Γ(1−2s)

2πi

∫
H

dt t2s−|α|−|β|−d−1J (α,β)(t ;x) ; (2.360)

in particular, for s = −k/2, k ∈ N, there holds

∂α1 ∂
β
2Ak/2(x,y)

∣∣∣
y=x

= (−1)k Γ(k + 1) Res
(
t−(k+|α|+|β|+d+1)J (α,β)(t ;x) ; t = 0

)
. (2.361)

Proof. Also in this case the thesis can be derived following the same arguments presented
in the proof of Theorem 2.91; this time, in place of Proposition 2.85, one must resort to
Proposition 2.89 and to the related Remark 2.30 (see, in particular, item i) therein which
must be employed here with q = |α|+ |β|+d and F (t) = J (α,β)(t ; x). Finally, Eq. (2.361)
follows easily by the residue theorem, recalling that the map t 7→ J (α,β)(t ; x) is analytic
for all <t > 0.

39In fact, in this case all the HDMS coefficients of any order vanish except for a0(x,x) = 1.
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Remark 2.34. i) The hypotheses made in Theorem 2.93 can be easily checked by direct
computation in many cases of interest. For example, they are fulfilled when the potential
is null (V = 0) and the domain is a subset of Rd delimited by flat boundaries consisting,
namely, of parallel and/or perpendicular planes on which either Dirichlet or Neumann
conditions are prescribed (see [65] and the forthcoming Section 4.3 of Chapter 4).

ii) Consider the analytic continuation of ∂α1 ∂
β
2A−s(x,y)|y=x determined according to Eq.

(2.360). It appears that the singular behaviour at the points s = k/2, k ∈ {1, ..., |α| +
|β| + d} descendes from the pole singularity of the Gamma function evaluated at non-
positive integers. Due to the same considerations, one could expect any of the points
s = k/2, with k ∈ N unrestricted, to be singular; however, it is known a priory that
the map s 7→ ∂α1 ∂

β
2A−s(x,y)|y=x is analytic for s ∈ Σ(|α|+|β|+d)/2, so that no singularity

exists therein (nor can it arise by analytic continuation). Let us stress that there is no
contradiction; in fact, for s = k/2 with k ∈ N and k > |α| + |β| + d, the integral along
the Hankel contour in Eq. (2.360) can be easily seen to vanish via the residue theorem so
that there appears an indeterminate form of the type∞· 0, which has to be evaluated by
alternative methods.

Before moving on, let us point out that the results derived in the above Theorems 2.91, 2.92
and 2.93 continue to hold also for boundary points x ∈ ∂Ω whenever stronger regularity
assumptions (such as those in Eq. (2.159) ) are fulfilled by the domain Ω and by the
potential V , and suitable boundary conditions are prescribed on ∂Ω.

Analytic continuation of the trace TrA−s.
Assume the stricter regularity hypotheses (2.159) and (2.209) to be fulfilled (so that Ω
is bounded with boundary of class C∞, A = − 4 +V with V ∈ C∞(Ω), and Dirichlet
boundary conditions are prescribed on ∂Ω).

Let us recall that, under the above assumptions, the heat and cylinder traces Tr e−tA,
Tr e−t

√
A exist and are analytic for t ∈ Σ0; moreover, these traces decay exponentially

for <t → +∞ (see Proposition 2.77). These facts can be employed, along with suitable
hypotheses about the small t behaviour of the mentioned traces, to construct the analytic
continuation of the complex trace TrA−s (recall that this is granted to exists and to be
analytic for s ∈ Σd/2; see Corollary 2.75).

The forthcoming Theorems 2.94, 2.95 and 2.96 essentially contain global analogues of
Theorems 2.91, 2.92 and 2.93, discussed in the previous subsection.

Theorem 2.94. Consider the heat trace Tr e−tA, for t ∈ (0,+∞). Assume there exist
N ∈ N and a family of coefficients bn ∈ R (n ∈ {0, ..., N}) such that, for t → 0+, this
trace possesses an asymptotic expansion of the form

Tr e−tA =
1

td/2

(
N∑
n=1

bn tn/2 +O(t(N+1)/2)

)
. (2.362)
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Then Tr e−•A ∈Md/2, and there holds

TrA−s =
1

Γ(s)
M[Tr e−•A](s) . (2.363)

Moreover, the map Σd/2 → C, s 7→ TrA−s can be analytically continued to a function
which is meromorphic on the strip Σ(d−N)/2 and possesses only possible simple pole singu-
larities at s = (d − n)/2, for n ∈ {0, ..., N}; more precisely, the analytic continuation is
given by

TrA−s = (2.364)

1

Γ(s)

[
N∑
n=0

bn T
s−d/2+n

s− d
2

+ n
2

+

∫ T

0

dt ts−1

(
Tr e−tA − 1

td/2

N∑
n=0

bn tn/2

)
+

∫ +∞

T

dt ts−1 Tr e−tA

]
.

Proof. Recall again that the heat trace Tr e−tA is analytic for t ∈ Σ0 and vanishes expo-
nentially for <t→ +∞ (see Proposition 2.77); these facts and the asymptotic expansion
(2.362) suffice to infer that Tr e−•A ∈ Md/2, due to Lemma 2.83. Eq. (2.363) is just a
restatement of the integral relation (2.297).
Also in this case, the explicit expression (2.364) for the analytic continuation of TrA−s
can be derived resorting to the general relation (2.323), here employed with P = 0 and
an = (n− |α|+ |β|+ d)/2, (n = 0, ..., N).

Theorem 2.95. Consider the heat trace Tr e−tA, for t ∈ (0,+∞). Assume there exist
N ∈ N and a function H ∈ CN([0,+∞);R) such that

Tr e−tA =
1

td/2
H(t) . (2.365)

Then Tr e−•A ∈Md/2, and there holds Eq. (2.363), i.e.,

TrA−s =
1

Γ(s)
M[Tr e−•A](s) .

Moreover, the map Σd/2 → C, s 7→ TrA−s can be analytically continued to a function
which is meromorphic on the strip Σ(d−N)/2 and possesses only possible simple pole singu-
larities at s = (d − n)/2, for n ∈ {0, ..., N}; more precisely, the analytic continuation is
given by

TrA−s =
(−1)N

Γ(s)(s− d
2

) ... (s− d−N
2
−1)

∫ +∞

0

dt ts−
d−N

2
−1 ∂Nt H(t) . (2.366)

Proof. The thesis can be derived following the same arguments presented in the proof of
Theorem 2.94, using Proposition 2.88 (and the corresponding Eq. (2.336) ) in place of
Proposition 2.85.
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Theorem 2.96. Consider the cylinder trace Tr e−t
√
A , for t ∈ (0,+∞). Assume there

exists a function J : (0,+∞)→ R, t 7→ J(t) admitting an analytic extension to a complex
neighbour U ⊂ C of the positive real semi-axis [0,+∞), such that

Tr e−t
√
A =

1

td
J(t) . (2.367)

Then Tr e−•
√
A ∈Md, and there holds Eq. (2.363), i.e.,

TrA−s =
1

Γ(2s)
M[Tr e−•

√
A ](2s) .

Moreover, the map Σd → C, s 7→ TrA−s can be analytically continued to a function,
which is meromorphic on the whole complex plane and possesses only possible simple pole
singularities at s = k/2, for k ∈ {1, ..., d}. The analytic continuation is given by

TrA−s =
e−2iπs Γ(1−2s)

2πi

∫
H

dt t2s−d−1 J(t) ; (2.368)

in particular, for s = −k/2, k ∈ N, there holds

TrAk/2 = (−1)k Γ(k + 1) Res
(
t−(k+d+1) J(t) ; t = 0

)
. (2.369)

Proof. Also in this case the thesis can be derived following the same arguments presented
in the proof of Theorem 2.94; this time, in place of Proposition 2.85, one must resort to
Proposition 2.89 and to the related Remark 2.30 (see, in particular, item i) therein which
must be employed here with q = d and F (t) = J(t). Finally, Eq. (2.361) follows easily
by the residue theorem, recalling that J is analytic.

Remark 2.35. Of course, the results derived in the above theorems continue to hold when-
ever the heat and cylinder traces are well-posed, decay exponentially at infinity and possess
small t asymptotic behaviours such as those described in Eq.s (2.362), (2.365) and (2.367).
In this sense, the assumptions (2.159) are sufficient but not necessary; for example, it can
be checked by explicit computations that the heat trace is well-defined, analytic and ex-
ponentially vanishing at infinity if Ω = Rd and A = −4+V , with V (x) = λ4|x|2 (λ ∈ R)
(see Section 4.1).
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Chapter 3

Quantum field theory on spatial
domains with boundaries

In the present chapter we review the theory of canonical quantization for a Hermitian
scalar field living on a suitable spatial domain Ω (which is assigned once and for all and
has arbitrary dimension); possible conditions prescribed on the boundary of the domain
and the interaction with a classical background potential are also taken into account.
The implementation of local zeta regularization (ZR) within this framework is discussed
in detail. The physical setting is the one which was described in Chapter 1 of the present
manuscript, of which we retain the same notations and conventions; however, the language
adopted here is more rigorous and precise from a mathematical point of view.
In Section 3.1 we review some well-known Fock space techniques, refering in particular
to the Segal approach to quantization (see, e.g., [43, 58, 129, 130]). We give an abstract
formulation of these topics, using the framework developed in Chapter 2 in terms of scales
of Hilbert spaces associated to the real powers of a given strictly positive, self-adjoint
operator (acting on the single particle space). In Section 3.2, this abstract framework is
specialized to the case where the single particle Hilbert space consists of square-integrable
functions on a fixed spatial domain Ω ⊂ Rd and the positive, self-adjoint operator is
a Schrödinger-type differential operator of the form A = − 4 +V , with V a smooth
potential on Ω. Next, we use the complex powers A−s (s ∈ C) to define a zeta-regularized
Wightman field; this is employed, in turn, to construct a zeta-regularized version of the
propagator and of some related observables (in particular, of the stress-energy VEV), thus
making connection with the theory of the Casimir effect. In the end, we describe the zeta
approach to renormalization in the most general formulation proposed in [64]; it is shown
that this approach is granted to give finite values for the renormalized observables in many
cases of interest.

Before proceeding, let us recall that we consider only a purely classical description of the
above mentioned spatial domain Ω, of its boundary ∂Ω and of the background potential
V ; in particular, no back-reaction effect produced by the interaction with the quantum
field is ever taken into account.
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CHAPTER 3. QUANTUM FIELD THEORY ON SPATIAL DOMAINS WITH

BOUNDARIES

3.1 Canonical quantization of an abstract Hermitian

scalar field.

In this section we review the theory of canonical quantization for an Hermitian scalar field.
We develop an abstract formulation of this subject, making only minimal assumptions on
the objects to be employed in the subsequent constructions. To this purpose, and in order
to fix the notations and some conventions, we first recall some basic definitions and some
well-known results, rephrasing them in the language developed in Chapter 2 of this work.

For further details on the topics discussed hereafter (and, in particular, for the proofs of
some statements), we refer mainly to the books of Reed and Simon [129] and of Moretti
[119].

The bosonic Fock space.

Let (H, 〈 | 〉) be an abstract, separable Hilbert space and let n ∈ {1, 2, 3, ...} be any given
positive integer.

Consider the n-th tensor power H⊗n = H ⊗ ... ⊗ H (n times); this is the Hilbert space
obtained by completing the algebraic tensor product ⊗nalgH of the underlying vector spaces
with respect to the Hermitian inner product ( | )n : ⊗nalgH × ⊗nalgH → C, defined as the
unique sesquilinear extension (1) of the map which, for any pair of factorized elements
f (n) = f1 ⊗ . . .⊗ fn, g(n) = g1 ⊗ . . .⊗ gn ∈ ⊗nalgH (fi, gi ∈ H for all i = 1, ..., n), gives

(f (n)|g(n))n =
n∏
i=1

〈fi|gi〉 . (3.1)

In order to avoid confusion, we will indicate with o the null element of H and with o(n)

the null vector of H⊗n.

Next, consider the group of permutations of n elements, which we indicate with Pn. For
any π ∈ Pn, let Uπ ∈ B(H⊗n) denote the unitary operator which, for any f1, ... , fn ∈ H,
gives

Uπ(f1 ⊗ . . .⊗ fn) = fπ−1(1) ⊗ . . .⊗ fπ−1(n) ; (3.2)

it can be easily checked that the map U : Pn → B(H⊗n), π 7→ Uπ yields a faithful unitary
representation of Pn (see, e.g., Proposition 13.41 on page 661 of [119]).

The n-th totally symmetric tensor power H∨n is, by definition, the closed linear subspace
of H⊗n formed by the elements which are Uπ-invariant for all π ∈ Pn. Of course, H∨n is
itself a Hilbert space with the inner product ( | )n inherited from H⊗n and its null element
is o(n).

1This extension is defined by antilinearity in the left argument and by linearity in the right one,
respectively; for the proof of its uniqueness, see, e.g., [129], page 49, Proposition 1 or [119], page 451,
Proposition 10.23.
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For any f1, ..., fn ∈ H, let us define the symmetrized tensor product

f1 ∨ . . . ∨ fn :=
1

n!

∑
π∈Pn

fπ(1) ⊗ . . .⊗ fπ(n) ; (3.3)

as well-known, H∨n coincides with the closed subspace of H⊗n generated by products of
the form (3.3) (which explains the notation ∨n).
Let us point out that, following the usual convention, we set H⊗0 := C (with null vector
o(0) := 0 ∈ C); consequently, we also have H∨0 = C.

Remark 3.1. The factor 1/n! on the right-hand side of Eq. (3.3) is just an arbitrary
normalization choice; the subsequent items i) and ii) point out some facts descending
from this choice.
i) Let f ∈ H and consider the totally symmetric element f ∨ . . . ∨ f ∈ H∨n. It follows
straightforwardly from the definition (3.3) (here employed with fi = f for all i = 1, ..., n)
that

f ∨ . . . ∨ f = f ⊗ . . .⊗ f ; (3.4)

in particular, one has o ∨ . . . ∨ o = o(n).
ii) Let f (n) = f1 ∨ . . .∨ fn, g(n) = g1 ∨ . . .∨ gn ∈ H∨n (fi, gi ∈ H for all i = 1, ..., n) be any
pair of totally symetric elements. Then, using Eq.s (3.1) (3.3), it can be easily infered
that the inner product (f (n)|g(n))n can be expressed as follows:

(f (n)|g(n))n =
1

n!

∑
π∈Pn

n∏
i=1

〈fi|gπ(i)〉 =
1

n!

∑
π∈Pn

n∏
i=1

〈fπ(i)|gi〉 . (3.5)

In particular, if f (n) = f ∨ . . . ∨ f for some f ∈ H, one has

(f (n)|f (n))n = 〈f |f〉n . (3.6)

Now, consider the infinite collection of all totally symmetric Hilbert tensor powers of H:

H∨n (n ∈ {0, 1, 2, ...}) . (3.7)

Definition 3.1. The symmetric Fock space over H is

F∨(H) :=
+∞⊕
n=0

H∨n , (3.8)

where
⊕

indicates the Hilbert direct sum. The corresponding inner product is denoted
with ( | ).

Remark 3.2. According to the theory of Hilbert direct sums (2), (F∨(H), ( | ) ) is (up to
isomorphisms) the unique Hilbert space possessing the forthcoming features i) and ii).

2For a precise definition of Hilbert tensor product and Hilbert direct sum in the case of infinitely
many countable or uncountable spaces (to be intended properly in the sense of nets), see, e.g., [27, 119].
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i) For any n ∈ {0, 1, 2, ...}, H∨n is a closed subspace of F∨(H) and the corresponding inner
product ( | )n coincides with the restriction of ( | ) to H∨n.
ii) The summands H∨n (n ∈ {0, 1, 2, ...}) are mutually orthogonal with respect to ( | )
and the closed subspace they generate coincides with the whole Fock space F∨(H).

It should be noted that any element f ∈ F∨(H) has a unique representation

f =
+∞∑
n=0

f (n) (f (n) ∈ H∨n) ; (3.9)

for any n ∈ {0, 1, 2, ...}, f (n) is called the n-th component of f .
Let us point out that, for any f as above and for any g =

∑
n g

(n) ∈ F∨(H), there holds

(f |g) =
+∞∑
n=0

(f (n)|g(n))n . (3.10)

We put
o := the null vector of F∨(H) ; (3.11)

on the other hand, we will refer to the normalized vector

v := 1 ∈ C ≡ H∨0 ⊂ F∨(H) (3.12)

(3). Moreover, we indicate with ÔF and ÎF the null and the identity operators on F∨(H),
respectively.

In the sequel we will be often interested in the space

D∨(H) := { f =
∑

n f
(n) ∈ F∨(H) | f (n) = 0 for almost all n ∈ {0, 1, 2, ...} } ; (3.13)

the above expression means that there exists Nf ∈ N (depending on f ) such that f (n) = 0
for all n ≥ Nf . Of course, D∨(H) is a dense linear subspace of the Fock space F∨(H);
whenever we will need a topology on D∨(H), we will use the (non-complete) topology
induced by the restriction of the inner product ( | ).

3 Let us mention that F∨(H) could be defined as the set of sequences of the form

f ≡ (f (n)) = (f (0), f (1), f (2), . . . ) ,

with f (n) ∈ H∨n for each n ∈ {0, 1, 2, ...}, such that
∑
n (f (n)|f (n))n < +∞. This is a Hilbert space with

the inner product ( | ), defined according to Eq. (3.10). An element f (n) ∈ H∨n can be identified with the
sequence (o(0), ..., o(n−1), f (n), o(n+1), ...) ∈ F∨(H), where o(n) is the null element of H∨n (n ∈ {0, 1, 2, ...}).
In this sense H∨n is a linear subspace of F∨(H), for each n ∈ {0, 1, 2, ...}, and Eq. (3.9) holds for any f
as above; moreover, using the language of the present footnote, Eq.s (3.11) and (3.12) can be rephrased,
respectively, as

o := (o(0), o(1), o(2), . . . ) , v := ( 1 , o(1), o(2), . . . ) .
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Needless to say, both o and v (see Eq.s (3.11) (3.12)) do, in fact, belong to D∨(H).

The space of all linear (unbounded) operators on D∨(H) is L(D∨(H)). In particular, we
indicate with ÔD and ÎD (∈ L(D∨(H)) ) the restrictions to D∨(H) of the null and the
identity operators on F∨(H) (i.e., of ÔF and ÎF), respectively; so, for any f ∈ D∨(H),
there hold

ÔD f = o , ÎD f = f . (3.14)

One can also consider the particle number operator ; this is the essentially self-adjoint
operator N̂ : D∨(H) ⊂ F∨(H)→ D∨(H) which is defined by components setting, for any
f =

∑
n f

(n),

N̂ f :=
∑
n

n f (n) . (3.15)

In the following, we adopt systematically the standard terminology indicated hereafter.

Definition 3.2. For any n ∈ {1, 2, 3, ...}, H∨n is called the n-particle Hilbert space (H is
the single particle space) and its elements are the totally symmetric states of n particles.
H∨0 is the Fock vacuum; this is generated by the normalized vector v ∈ F∨(H) (see Eq.
(3.12) ) which is called the vacuum state. D∨(H) is the finite-particle subspace and F∨(H)
is the bosonic Fock space on H.

Remark 3.3. In this work we will only consider a scalar field theory; therefore, since
no confusion shall arise, the adjectives “totally symmetric” and “bosonic” will often be
omitted and implicitly understood.

Finally, let us point out that in the physical applications that we are going to discuss
in the following, we shall mainly be interested with expressions of the form described
hereafter.

Definition 3.3. Let Ô : Dom(Ô) ⊂ F∨(H) → F∨(H) be any operator with domain
containing (at least) the vacuum state v (v ∈ Dom(Ô) ). The vacuum expectation value
(in brief, VEV ) of Ô is the complex number (v | Ô v) ∈ C.

Creation and annihilation operators.

Let again (H, 〈 | 〉) be any abstract Hilbert space and consider the Fock space F∨(H), in
the formulation given in the previous subsection; hereafter, using the language described
therein, we introduce the creation and annihilation operators on F∨(H) and analyze their
main features.

Definition 3.4. For any given h ∈ H, the (h−smeared) creation and annihilation opera-
tors are, respectively, the R-linear maps

â+(h), â−(h) : D∨(H)→ D∨(H) (3.16)
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defined “by components” as follows ( 4). For any n ∈ {1, 2, 3, ...}, â+(h) and â−(h) are
the unique linear maps sending H∨n respectively into H∨(n+1) and H∨(n−1) which, for any
element f (n) ∈ H∨n of the form f (n) = f1 ∨ ... ∨ fn (fi ∈ H for i = 1, ..., n), give

â+(h)(f1 ∨ . . . ∨ fn) =
√
n+ 1 h ∨ f1 ∨ . . . ∨ fn , (3.17)

â−(h)(f1 ∨ . . . ∨ fn) =
1√
n

n∑
i=1

〈h|fi〉 f1 ∨ . . . ∨ 6f i ∨ . . . ∨ fn ; (3.18)

here the notation f1∨...∨ 6f i∨...∨fn indicates the symmetrized tensor product of the n−1
elements obtained eliminating fi from the collection {f1, ..., fn}. In particular, for n = 1
and f (1) ≡ f1, Eq. (3.18) must be meant to hold in the sense that

â−(h)f (1) = 〈h|f1〉 v . (3.19)

Moreover, we put by convention

â−(h) v := o , â+(h) v := h ∈ H ≡ H∨1 , (3.20)

with o and v indicating as usual the null vector and the vacuum state, respectively.

As well-known [130], for any h ∈ H, both â+(h) and â−(h) are closable unbounded linear
operators on F∨(H), defined on the dense domain D∨(H); unless otherwise stated, from
here on the symbols â+(h) and â−(h) will be used to indicate the closures of the operators
defined in Eq.s (3.17) and (3.18), respectively.
Let us also point out a fact made evident by the definitions (3.17) (3.18): namely, that
the maps h 7→ â+(h) and h 7→ â−(h) are C-linear and C-antilinear, repsectively.

Proposition 3.5. For any h ∈ H, the creation and annihilation operators â+(h), â−(h)
are the adjoints of each other; in particular, for all f, g ∈ D∨(H), there holds

(â+(h) f | g) = (f | â−(h) g) . (3.21)

Proof. Due to the definition of the operators â+(h), â−(h), it suffices to show that, for
any n ∈ N the maps â+(h) : H∨n → H∨(n+1) and â−(h) : H∨(n+1) → H∨n are (Banach)
adjoints of each other; since H∨n and H∨(n+1) are respectively spanned by elements of the
form f (n) = f1 ∨ ...∨ fn and g(n+1) = g1 ∨ ...∨ gn+1 ∈ H∨(n+1), this amounts to prove that
for any such pair f (n), g(n+1), there holds

(â+(h) f (n) | g(n+1))n+1 = (f (n) | â−(h) g(n+1) )n

where ( | )n and ( | )n+1 indicate the inner products defined according to Eq. (3.1). On the
other hand, the above identity can be easily checked keeping in mind Eq.s (3.17) (3.18)
for â+(h), â−(h) and recalling the identities in Eq. (3.5) for the inner product ( | )n (and
the corresponding ones for ( | )n+1).

4Recall the considerations below Eq. (3.3) on page 113. In particular, let us recall that the finite
particle subspace D∨(H) (as well as the Fock space F∨(H) ) is spanned by elements of the form f1∨ ...∨fn
(fi ∈ H, for i = 1, ..., n, n ∈ {0, 1, 2, ...}).
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To go on let us notice that, for any n ∈ {1, 2, 3, ...} and for any family hi ∈ H (i = 1, ..., n),
the multiple product â+(h1) ... â+(hn) and the analogous expressions obtained replacing
some of the â+ with â− are all well-defined operators on the finite particle subspace D∨(H).
In particular, there holds the subsequent proposition, where we introduce the notation

[X, Y ] := X Y − Y X , (3.22)

to be respected thorughout the remainder of this manuscript.

Proposition 3.6. There hold the results enumerated hereafter.
i) For any n ∈ {1, 2, 3, ...}, the set {â+(h1) ... â+(hn) v | hi ∈ H, i = 1, ..., n, n ∈ N} spans
D∨(H), (i.e., it is total in F∨(H) ).
ii) For any h, k ∈ H, there hold the canonical commutation relations (CCR)

[â+(h), â+(k)] = ÔD ,

[â−(h), â−(k)] = ÔD ,

[â−(h), â+(k)] = 〈h|k〉 ÎD .

(3.23)

iii) For any h, k ∈ H, the VEVs of monomials of degree two of the creation and annihi-
lation operators are given by (5)

(v | â+(h)â+(k) v) = (v | â+(h)â−(k) v) = (v | â−(h)â−(k) v) = 0 ,

(v | â−(h)â+(k) v) = 〈h|k〉 . (3.24)

Remark 3.4. Statement i) can be expressed in other terms saying that the vacuum state
v is cyclic for the algebra generated by the identity operator ÎD and by the set of all
creation and annihilation operators â+(h), â−(h) (h ∈ H).

Proof. i) Recalling the definition (3.17) of â+(h) (h ∈ H), it can be trivially proved by
induction on n ∈ {1, 2, 3, ...} that

â+(h1) ... â+(hn) v =
√

(n+ 1)! h1 ∨ . . . ∨ hn ; (3.25)

in view of the definition of D∨(H), the above identity allows to infer the thesis.
ii) The thesis follows if one can prove the component-wise versions of the relations in Eq.
(3.23). To this purpose, first notice that, due to the relations in Eq. (3.20), there hold
[â+(h), â+(k)]v =

√
2 (h ∨ k − k ∨ h) = o, [â−(h), â−(k)]v = o and [â−(h), â+(k)]v =

â−(h) k = 〈h|k〉. Next, let us show that, for any n ∈ {1, 2, 3, ...} and for any factorized
element f (n) = f1 ∨ ... ∨ fn ∈ H∨n, there holds

[â+(h), â+(k)] f (n) = 0(n) , (3.26)

5Of course, with some computational effort, this result could be generalized by Wick’s theorem [142,
146] to a monomial of any order in the creation and annihilation operators; we do not report the general
result here for the pursue of brevity, since we will only need the relations in Eq. (3.24) for the developments
to be discussed in the following.
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[â−(h), â−(k)] f (n) = 0(n) , (3.27)

[â−(h), â+(k)] f (n) = 〈h|k〉 f (n) . (3.28)

Eq. (3.26) follows trivially from the definition of symmetrized tensor product (see Eq.
(3.3) ) noting that â+(h) â+(k)f (n) =

√
(n+ 1)(n+ 2) h∨k∨f1∨ ...∨fn. Once Eq. (3.26)

has been extablished, one can easily infer Eq. (3.27) recalling that â−(h) is the adjoint of
â+(h) for all h ∈ H (see Proposition 3.5). Finally, keeping in mind the definitions (3.17)
(3.18) of the creation and annihilation operators, one obtains

â−(h)â+(k)f (n) = â−(h)(
√
n+ 1 k ∨ f1 ∨ ... ∨ fn) =

1

n+ 1

(
〈h|k〉 f1 ∨ ... ∨ fn +

n∑
i=1

〈h|fi〉 k ∨ f1 ∨ ...∨ 6f i ∨ ... ∨ fn
)
,

â+(k)â−(h)f (n) =
1

n

n∑
i=1

〈h|fi〉 â+(k)(f1 ∨ ...∨ 6f i ∨ ... ∨ fn) =

1

n

n∑
i=1

〈h|fi〉 k ∨ f1 ∨ ...∨ 6f i ∨ ... ∨ fn ;

the thesis (3.28) follows by taking the difference of the above expressions.
iii) First notice that, due to Proposition 3.5, there holds

(v | â+(h)â+(k) v) = (â−(k)â−(h) v | v) ;

then, all the expressions in the first line of Eq. (3.24) are easily seen to vanish because
of the convention (3.20). On the other hand, due to (the already proved) item ii) of
the present theorem, there holds â−(h) â+(k) = [â−(h), â+(k)] + â+(k) â−(h); then, the
identity in the second line of Eq. (3.24) follows using again item ii) of the present theorem
and recalling once more the convention (3.20).

For completeness, let us also give the following result.

Lemma 3.7. Let h ∈ H and consider the creation and annihilation operators â+(h), â−(h),
along with the particle number operator N̂ (6). Then, there hold

[N̂ , â+(h)] = â+(h) ,

[N̂ , â−(h)] = − â−(h) .
(3.29)

Proof. Also in this case the thesis follows by proving component-wise versions of the
relations in Eq. (3.29). First notice that, due to Eq. (3.20), [N̂ , â+(h)]v = N̂h = h =
â+(h)v and [N̂ , â−(h)]v = o = â−(h)v . Then, it suffices to show that, for all n ∈
{1, 2, 3, ...} and for all f (n) ∈ H∨n of the form f (n) = f1∨ ...∨fn, one has [N̂ , â+(h)] f (n) =
â+(h) f (n) and [N̂ , â−(h)] f (n) = − â−(h) f (n). In fact, the latter identities can be infered
by straightforward computations, recalling the definitions (3.15) and (3.17) (3.18) of N̂
and â+(h), â−(h); this yields the thesis.

6Recall that all these operators are defined on the common dense domain D∨(H).
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Segal quantization.
Let again F∨(H) denote the Fock space constructed on any given, abstract Hilbert space
H, with inner product 〈 | 〉. In accordance with Segal’s approach to field quantization
(see, e.g., [43, 58, 130]), we give the following definition.

Definition 3.8. For any h ∈ H, the (h−smeared) Segal field and conjugate momentum
are the (unbounded) operators Φ̂S(h), Π̂S(h) : D∨(H)→ D∨(H) given, respectively, by

Φ̂S(h) :=
1√
2

(
â−(h) + â+(h)

)
, (3.30)

Π̂S(h) :=
1

i
√

2

(
â−(h)− â+(h)

)
. (3.31)

Remark 3.5. It can be readily checked that, for any h ∈ H, there holds

Π̂S(h) = Φ̂S(i h) ; (3.32)

so, the Segal momentum is not strictly necessary within the framework considered in this
subsection. For this reason, most of the forthcoming results will be formulated only in
terms of the Segal field Φ̂S(h). Nevertheless, let us anticipate that the Segal momentum
Π̂S(h) turns out to be useful in order to motivate the definition of Wightman conjugate
momentum, as well as in certain related considerations, to be discussed in the following
subsection 3.1.

Recall that the maps h 7→ â+(h), h 7→ â−(h) are, respectively, C-linear and C-antilinear
(see the comments below Definition 3.4); in consequence of this, the map h 7→ Φ̂S(h)
(usually referred to as Segal quantization) is neither C-linear nor C-antilinear, but only
R-linear.
It is well-known [43, 130] that, for any h ∈ H, Φ̂S(h) extends to an essentially self-adjoint
(closed) operator of F∨(H) with domain of self-adjointness D∨(H). Moreover, for any
n ∈ {1, 2, 3, ...} and for any family hi ∈ H1, i = 1, ..., n, the finite product Φ̂S(h1) ... Φ̂S(hn)
is well-defined on the finite particle subspace D∨(H).

Proposition 3.9. There hold the following results.
i) For any n ∈ {1, 2, 3, ...}, the set {Φ̂S(h1) ... Φ̂S(hn) v |hi ∈ H, for i = 1, ..., n, n ∈
{1, 2, 3, ...} } spans D∨(H).
ii) For any f ∈ D∨(H), the map H → D∨(H) ⊂ F∨(H), h 7→ Φ̂S(h)f is continuous.
iii) For any h, k ∈ H, there holds the commutation relation

[Φ̂S(h), Φ̂S(k)] = i=〈h|k〉 ÎD (3.33)

(here =〈h|k〉 indicates the immaginary part of the inner product 〈h|k〉 ∈ C).
iv) For any h, k ∈ H, the VEV of the second-order monomial Φ̂S(h)Φ̂S(k) is

(v | Φ̂S(h) Φ̂S(k) v) =
1

2
〈h|k〉 . (3.34)
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Remark 3.6. In consequence of statement i), the vacuum state v is cyclic for the algebra
generated by the identity operator ÎD and by the set of Segal field operators Φ̂S(h) (h ∈ H).

Proof. i) Recalling the definition (3.20) and the identity (3.25), also in this case the thesis
can be proved by induction on n ∈ {1, 2, 3, ...}, with some computational effort.
ii) This is a well-known fact; see, e.g., the proof of item (d) of Theorem X.41 in [130].
iii) First notice that, in view of the definition (3.30) of the Segal field, one easily infers

[Φ̂S(h), Φ̂S(k)] =
1

2

(
[â−(h), â−(k)] + [â−(h), â+(k)] + [â+(h), â−(k)] + [â+(h), â+(k)]

)
;

due to the CCR (3.23), the above identity implies [Φ̂S(h), Φ̂S(k)] = (〈h|k〉 − 〈k|h〉)/2 ÎD,
which yields Eq. (3.33).
iv) Recalling again the definition (3.30) of Φ̂S(h) (h ∈ H), one has

(v |Φ̂S(h)Φ̂S(k)v) =

1

2

(
(v | â−(h) â−(k)v) + (v | â−(h) â+(k)v) + (v | â+(h) â−(k)v) + (v | â+(h) â+(k)v)

)
;

now, Eq. (3.34) follows straightforwardly using the CCR (3.23).

Now, let us recall some well-known facts about second quantization; these facts will be
employed in the following to introduce a notion of time evolution for the physical theory of
a scalar field, to be described later on. We refer to [43, 130] for the proof of the forthcoming
Proposition 3.11 (as well as for more general formulations, which can be derived under
much weaker assumptions).

Definition 3.10. Consider the single particle Hilbert space H and let U be any unitary
operator on it; the second quantization of U is the unitary operator Γ(U) : F∨(H)→ F∨(H)
defined so that, for all n ∈ {1, 2, 3, ...}, there holds

Γ(U) � H∨n = U ⊗ ...⊗ U︸ ︷︷ ︸
n times

. (3.35)

Remark 3.7. Note that Γ(U)D∨(H) ⊂ D∨(H).

Proposition 3.11. Let U be any unitary operator on H; for any h ∈ H and for all
f ∈ D∨, the Segal field Φ̂S(h) fulfills

Γ(U) Φ̂S(h) Γ(U)−1f = Φ̂S(Uh) f . (3.36)

Proof. First of all notice that, for any n ∈ {1, 2, 3, ...} and for any f (n) ∈ H∨n of the form
f (n) = f1 ∨ ... ∨ fn (fi ∈ H, i = 1, ..., n), there holds

Γ(U) â+(h) Γ(U)−1f (n) = Γ(U) â+(h) (U−1f1 ∨ ... ∨ U−1fn) =

=
√
n+ 1 Γ(U) (h ∨ U−1f1 ∨ ... ∨ U−1fn) =

√
n+ 1 (U h) ∨ f1 ∨ ... ∨ fn = â+(U h) f (n) ;
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by the usual linearity and density arguments, the above chain of equalities allows to
infer that Γ(U) â+(h) Γ(U)−1 = â+(U h) on D∨. On the other hand, keeping in mind
Proposition 3.5 and taking the adjoint, one readily infers Γ(U) â−(h) Γ(U)−1 = â−(U h)
on D∨. Then the thesis follows recalling the definition (3.30) of Φ̂S(H).

The Wightman field at time zero.

Let (H, 〈 | 〉) be any abstract Hilbert space endowed with a conjugation J : H → H
(see subsection 2.5); moreover, let A be some strictly positive, self-adjoint operator on H
(with spectrum σ(A) ⊂ [ε,+∞), for some ε > 0). We assume A to be J-real.

On the one hand, following the general construction developed in Chapter 2 (see, in
particular, Proposition 2.4 of Section 2.5), one can consider the scale of Hilbert spaces
Hr ≡ (Hr, 〈 | 〉r) (r ∈ [−∞,+∞]) associated to the real powers Ar/2. On the other hand,
the conjugation over H admits a continuous extension J : H−∞ → H−∞, (see Proposition
2.25). So, we can introduce the linear subspaces

H−∞± := {f ∈ H−∞ | J f = ± f} , (3.37)

fulfilling

H−∞ = H−∞+ ⊕H−∞− , H−∞− = iH−∞+ . (3.38)

The projectors of H−∞ onto H−∞± are

P± :=
I± J

2
: H−∞ → H−∞± (3.39)

and, for each h ∈ H−∞, one has

h = P+h+ P−h , P−h = iP+(−i h) . (3.40)

Again from Proposition 2.25, we know that JHr = Hr for each r ∈ [−∞,+∞]. Of course,
we can define the subspaces Hr

± := {f ∈ Hr | J f = ± f} and write an analogue of Eq.
(3.38) with −∞ replaced by r; the projections of Hr onto Hr

± are the maps P± �Hr.

In view of the forthcoming physical applications, we choose H ≡ H0 as the fundamental,
single particle Hilbert space and consider the bosonic Fock space F∨(H) on it. Nonetheless,
we will often employ the spaces H±1/2, as well as spaces of other orders; in particular, let

us recall that H1/2 dense
↪→ H dense

↪→ H−1/2 (see item ii) of Proposition 2.5 in Chapter 2).

Next, consider the Segal field Φ̂S(h) along with the conjugate momentum Π̂S(h) (h ∈
H); hereafter we will use them to define the so-called Wightman field and its conjugate
momentum, which are more closely related to the Wightman axioms for field quantization
(and, in particular, are C-linear in the “test function” h, as required by the Wightman
axioms). These fields will be the subject of the forthcoming Definition 3.13, which is
preceeded by the following proposition.
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Proposition 3.12. Consider the R-linear maps

ϕ̂ : H−1/2
+ → L(D∨(H)) , h 7→ ϕ̂(h) := Φ̂S(A−1/4h) , (3.41)

π̂ : H1/2
+ → L(D∨(H)) , h 7→ π̂(h) := Π̂S(A1/4h) . (3.42)

These possess unique C-linear extensions

ϕ̂ : H−1/2 → L(D∨(H)) , π̂ : H1/2 → L(D∨(H)) , (3.43)

given by

ϕ̂(h) = Φ̂S(P+(A−1/4h) ) + i Φ̂S(P+(−iA−1/4h) ) for h ∈ H−1/2 , (3.44)

π̂(h) = Π̂S(P+(A1/4h) ) + i Π̂S(P+(−iA1/4h) ) for h ∈ H1/2 . (3.45)

Remark 3.8. i) The assumptions h ∈ H−1/2 and h ∈ H1/2 in Eq.s (3.44) and (3.45),
repsectively, are both necessary and sufficient in order for the expressions in the cited
equations to make sense. In fact, due to Corollary 2.13 (see, in particular, Eq. (2.95) ),
one has A−1/4h ∈ H0 ≡ H and A1/4h ∈ H0 ≡ H if and only if h ∈ H−1/2 and h ∈
H1/2, respectively; this grants the well-posedness of the Segal fields and of the conjugate
momentums appearing in Eq. (3.44) (3.45).
ii) Of course, the maps H−1/2 3 h 7→ ϕ̂(h) and H1/2 3 h 7→ π̂(h) are both C-linear.
iii) Keeping in mind the identity P+h = iP−(−i h) (see Eq. (3.40) ) and recalling that
Π̂S(A1/4h) = Φ̂S(iA1/4h) (see Eq. (3.32) ), Eq. (3.45) can be easily re-expressed in terms
of the Segal field as

π̂(h) = i
(

Φ̂S(P−(A1/4h) ) + i Φ̂S(P−(−iA1/4h) )
)

for h ∈ H1/2 . (3.46)

Proof. . We are going to show how to derive Eq. (3.44) under the only assumption that

H−1/2 3 h 7→ ϕ̂(h) is a C-linear extension of the map H−1/2
+ 3 h 7→ Φ̂S(A−1/4h); of course,

this automatically grants that the map under analysis exists and is uniquely determined.
The analogous statement for h 7→ π̂(h) can be proved similarly, in view of the identity
Π̂S(A1/4h) = Φ̂S(iA1/4h) (h ∈ H1/2).
So, let us first recall that h = P+h+iP+(−i h) for all h ∈ H−1/2 (see Eq. (3.40)); of course

P+h,P+(−i h) ∈ H−1/2
+ . Next, let ϕ̂ : H−1/2 → L(D∨(H)) be any C-linear map; in view of

the previous considerations, for any h ∈ H−1/2, by complex-linearity it follows that ϕ̂(h) =
ϕ̂(P+h) + i ϕ̂(P+(−i h)). Moreover, requiring ϕ̂ to fulfill ϕ̂(h+) = Φ̂S(A−1/4h+) for all

h+ ∈ H−1/2
+ , one has ϕ̂(P+h)+ i ϕ̂(P+(−i h)) = Φ̂S(A−1/4(P+h) )+ i Φ̂S(A−1/4(P+(−i h)) ).

Since P+ commutes with any real function of A (see Corollary 2.26), Eq. (3.44) follows
easily. In conclusion, the arbitrariness of h ∈ H−1/2 yields the thesis.

Definition 3.13. The (h−smeared) Wightman field and the related conjugate momentum
at time zero are, respectively, the (unbounded) operators ϕ̂(h) : D∨(H) → D∨(H) (for
h ∈ H−1/2) and π̂(h) : D∨(H)→ D∨(H) (for h ∈ H1/2) introduced in Proposition 3.12.
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Remark 3.9. The nomenclature at “time zero” might seem unclear at this stage; its mean-
ing will become apparent in the next subsection, when a notion of time evolution for the
field theory discussed here will be described.

Lemma 3.14. For any f ∈ D∨(H), the maps H−1/2 → D∨(H) ⊂ F∨(H), h 7→ ϕ̂(h)f and
H1/2 → D∨(H), h 7→ π̂(h)f are continuous.

Proof. First consider the representations (3.44) and (3.45) of the Wightman field and of
the conjugate momentum, respectively. Next, recall that the maps A±1/4 : H±1/2 → H are
Hilbertian isomorphisms (see Corollary 2.13); whence, in particular, they are continuous.
On the other hand, in view of the continuity of the extension J : H−∞ → H−∞ of the
conjugation operator (see Proposition 2.25), the restriction of the projector P+ : Hr → Hr

is also continuous for all r ∈ R. Then, the thesis follows from the continuity of the map
H 3 h 7→ Φ̂S(h)f (see item ii) of Proposition 3.9).

Now, let us give an auxiliary result which allows to make contact with the standard
literature on the Wightman field [130]; this result also allows to derive easier proofs of the
subsequent statements.

Lemma 3.15. The Wightman field and conjugate momentum operators at time zero pos-
sess, respectively, the following representations in terms of the creation and annihilation
operators â+( ), â−( ) :

ϕ̂(h) =
1√
2

(
â−(J (A−1/4h) ) + â+(A−1/4h)

)
(h ∈ H−1/2) , (3.47)

π̂(h) =
1

i
√

2

(
â−(J (A1/4h) )− â+(A1/4h)

)
(h ∈ H1/2) . (3.48)

Proof. As an example, we show how to derive Eq. (3.47); the analogous relation (3.48) can
be derived by similar means. First of all, consider the identity (3.44) for the Wightman
field ϕ̂(h) (h ∈ H−1/2); expressing the Segal field Φ̂S appearing therein in terms of the
creation and annihilation operators â±( ) according to Eq. (3.30), it can be readily infered
that

ϕ̂(h) =

1√
2

(
â−(P+(A−1/4h)) + â+(P+(A−1/4h)) + i â−(−iP−(A−1/4h)) + i â+(−iP−(A−1/4h))

)
.

Then, recalling that the maps h 7→ â+(h) and h 7→ â−(h) are, respectively, C-linear and
C-antilinear, it follows that

ϕ̂(h) =
1√
2

(
â−( (P+− P−)A−1/4h ) + â+( (P++ P−)A−1/4h )

)
;

the above identity proves the thesis (3.47) since, in view of the definitions of P± in Eq.
(3.39), P+−P− = J and P+ +P− = I (with I indicating the identity operator on H).
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Proposition 3.16. There hold the following commutation relations:

[ϕ̂(h), ϕ̂(k)] = ÔD for h, k ∈ H−1/2 ,

[ϕ̂(h), π̂(k)] = i 〈J h|k〉 ÎD for h ∈ H−1/2, k ∈ H1/2 ,

[π̂(h), π̂(k)] = ÔD for h, k ∈ H1/2

(3.49)

where 〈 | 〉 indicates the extension (2.103) to H−1/2 ×H1/2 of the inner product on H.

Remark 3.10. Let k ∈ H1/2 be any given element; then, if h belongs to of the subspace
H−1/2

+ ⊂H−1/2 (which is invariant under the action of J ), the second relation in Eq. (3.49)
reduces to

[ϕ̂(h), π̂(k)] = i 〈h|k〉 ÎD . (3.50)

Proof. Let us compute, for example, the only non-vanishing commutator in Eq. (3.49),
i.e., [ϕ̂(h), π̂(k)]. Keeping in mind the expressions derived in Lemma 3.15 (giving the
Wightman field and the conjugate momentum in terms of creation and annihilation op-
erators) and recalling the CCR (3.23), one easily infers that

[ϕ̂(h), π̂(k)] = − 1

2i

(
〈J (A−1/4h)|A1/4k〉+ 〈J (A1/4k)|A−1/4h〉

)
ÎD

where 〈 | 〉 indicates the (non-extended) inner product onH. Since this map is sesquilinear,
the basic properties (2.64) of the conjugation J yield

〈J (A1/4k)|A−1/4h〉 = 〈A1/4k|J (A−1/4h)〉 = 〈J (A−1/4h)|A1/4k〉 .

Next, notice that JA−1/4 = A−1/4J , due to Corollary 2.26; moreover, interpreting the
expression 〈 | 〉 as the extension (2.103) to H−1/2 ×H1/2 of the inner product on H and
keeping in mind the results of Corollary 2.24 on the Banach adjoints of powers of A, it
follows that 〈A−1/4J h|A1/4 k〉 = 〈J h|k〉. Summing up, the above mentioned facts prove
the thesis.

Lemma 3.17. The VEVs of the second order monomials in the Wightman field ϕ̂(h) and
in the conjugate momentum π̂(h) are the following:

(v | ϕ̂(h) ϕ̂(k) v) =
1

2
〈J (A−1/4h)|A−1/4k〉 for h, k ∈ H−1/2 ,

(v | ϕ̂(h) π̂(k) v) = − (v | π̂(h) ϕ̂(k) v) =
i

2
〈J h|k〉 for h ∈ H−1/2, k ∈ H1/2 ,

(v | π̂(h) π̂(k) v) =
1

2
〈J (A1/4h)|A1/4k〉 for h, k ∈ H1/2

(3.51)

where 〈 | 〉 indicates the usual inner product on H.
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Proof. As an example, let us evaluate the VEV (v | ϕ̂(h) ϕ̂(k) v). Recalling once more
Eq.s (3.47) and (3.48) for the Wightman field and the conjugate momentum, respectively,
one easily obtains

(v | ϕ̂(h) ϕ̂(k) v) =

1

2

(
(v |â−(J (A−1/4h) )â−(J (A−1/4k) )v) + (v |â−(J (A−1/4h) )â+(k)v)+

+ (v |â+(A−1/4h)â−(J (A−1/4k) )v) + (v |â+(A−1/4h)â+(A−1/4k)v)
)
.

Due to item iii) of Proposition 3.6 (see, in particular, Eq. (3.24) ), all the VEVs on the
right-hand side vanish except for (v |â−(J (A−1/4h) ) â+(A−1/4k)v) = 〈J (A−1/4h)|A−1/4k〉
which gives the thesis.
Let us also point out that, in order to derive the explicit expression in Eq. (3.51) for
(v | ϕ̂(h) π̂(k) v), (v | π̂(h) ϕ̂(k) v), one should also recall that J

√
A =

√
AJ (see Corol-

lary 2.26).

Time evolution for the Wightman field.

Let A denote again a strictly positive, self-adjoint operator on some given Hilbert space
H, which we assume to be endowed with a conjugation J (such that A is J-real).
In order to introduce a notion of “time evolution” for the Wightman field, let us first
assume that the space H is used to describe a physical theory where the role of the single
particle Hamiltonian is played by the square root of the admissible operator A, i.e.,

√
A : Dom(A1/2) ≡ H1 ⊂ H → H . (3.52)

Due to the abstract formulation we are considering, this assumption might appear a bit
obscure and short of any real justification. Nevertheless, the motivations lying behind it
will soon become clear: in fact, we will show in the forthcoming Corollary 3.23 that in
consequence of this choice the time evolution of the Wightman field fulfills, as expected,
the Klein-Gordon evolution equation (in a suitable strong sense).
Due to Stone’s theorem [119], the time evolution of the non-interacting single-particle
theory is implemented on H in the Schrödinger picture by the strongly continuous one-
parameter unitary group

Ut := e−it
√
A : H → H , (3.53)

where the (otherwise arbitrary) parameter t ∈ R plays the role of time.

Remark 3.11. The time parameter t shall not be confused with the other variable t ∈ R
used in Chapter 2 to define the exponential operators e−tA, e−t

√
A , e−t

√
A /
√
A and the

related heat, cylinder and modified cylinder kernels (7).

7Nonetheless, let us point out that, with the Wick rotation t = −it, one has U−it = e−t
√
A , i.e., U−it

coincides with the cylinder operator.
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Before moving on, let us point out a couple of facts on the family of operators Ut (t ∈
R) and on the related operators cos(

√
A t) := (Ut + U−t)/2, sin(

√
A t)/

√
A := (Ut −

U−t)/2i
√
A : H → H, which will be employed in the forthcoming developments. Due to

Proposition 2.12 in Chapter 2, all the operators mentioned above (for any t ∈ R) possess
unique, continuous linear extensions to H−∞, indicated with the same symbols:

Ut , cos(
√
A t) , (sin(

√
A t)/

√
A ) : H−∞ → H−∞ . (3.54)

In particular, due to item ii) of Proposition 2.12, for any r ∈ R and for any f ∈ Hr there
hold

‖Utf‖r = ‖f‖r ,
‖ cos(

√
A t)f‖r ≤ ‖f‖r , ‖(sin(

√
A t)/

√
A )f‖r ≤ ‖f‖r−1 ;

(3.55)

moreover, item iii) of the same proposition (here employed with b = 0) allows to infer
that Ut is an Hilbertian automorphism of Hr, for any t ∈ R and for any r ∈ R.

Next, following the standard second quantization approach (see, Definition 3.10), we in-
troduce the one-parameter unitary group given by

Γ(Ut) : F∨(H)→ F∨(H) (t ∈ R) ; (3.56)

then, from Definition 3.10, it follows straightforwardly that

Γ(Ut)−1 = Γ(U−1
t ) (3.57)

(8). In the spirit of Heisenberg picture for time evolution, we give the following definition.

Definition 3.18. The Wightman field and conjugate momentum at time t ∈ R are the
(unbounded) operators ϕ̂t(h) : D∨(H) → D∨(H) and π̂t(h) : D∨(H) → D∨(H) defined,
respectively, as

ϕ̂t(h) := Γ(Ut)−1 ϕ̂(h) Γ(Ut) for h ∈ H−1/2 , (3.58)

π̂t(h) := Γ(Ut)−1 π̂(h) Γ(Ut) for h ∈ H1/2 . (3.59)

8For completeness, let us also mention that, setting

D1 := {f
∑
n

f (n) ∈ D∨(H) | f (n) ∈ (Dom(
√
A ))∨n ≡ (H1)∨n, for all n ∈ N} ,

one could also consider the free Hamiltonian for the Hermitian scalar field; this is the densely defined
operator dΓ(

√
A ) : D1 ⊂ F∨(H)→ F∨(H) which, for all n ∈ N, fulfills

dΓ(
√
A ) � (D1 ∩H∨n) =

n∑
i=1

(
√
A )δi,1 ⊗ ...⊗ (

√
A )δi,n

where δ indicates the Kroneker delta (δij = 1 if i = j, δij = 0 if i 6= j) and, by convention, we put

(
√
A )0 := IH−1/2 (i.e., the identity operator on H−1/2). As well-known [130], dΓ(

√
A ) is essentially

self-adjoint on D1 and there holds

Γ(Ut) = e−it dΓ(
√
A ) .
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Remark 3.12. Of course, for t = 0 there holds U0 = I (the identity operator on H); on the
other hand, it follows straightforwardly from Definition 3.10 that Γ(I) = ÎF (the identity
on the Fock space). Therefore, there holds

ϕ̂0(h) = ϕ̂(h) (h ∈ H−1/2) , π̂0(h) = π̂(h) (h ∈ H1/2) ; (3.60)

this justifies the nomenclature “at time zero” adopted in Definition 3.13 for the Wightman
field ϕ̂(h) and for the conjugate momentum π̂(h).

Proposition 3.19. The Wightman field ϕ̂t(h) and conjugate momentum π̂t(h) at any
time t ∈ R can be expressed as follows in terms of their time zero analogues ϕ̂(h), π̂(h):

ϕ̂t(h) = ϕ̂
(

cos(
√
A t)h

)
+ π̂
(

(sin(
√
A t)/

√
A )h

)
(h ∈ H−1/2) , (3.61)

π̂t(h) = π̂
(

cos(
√
A t)h

)
− ϕ̂

(
A (sin(

√
A t)/

√
A )h

)
(h ∈ H1/2) . (3.62)

Remark 3.13. In analogy with the considerations of Remark 3.8 (see, in particular, item
i) therein), it appears that the expressions (3.61) and (3.62) do in fact make sense
for the respective choices of h indicated therein. In fact, cos(

√
A t)h ∈ H−1/2 and

(sin(
√
A t)/

√
A )h ∈ H1/2 for all h ∈ H−1/2, while cos(

√
A t)h ∈ H1/2 andA(sin(

√
A t)/

√
A )h

∈ H−1/2 for all h ∈ H1/2; therefore, all the Wightman fields and conjugate momentums
at time zero appearing in the cited equations are well-defined.

Proof. We only show, as an example, how to derive Eq. (3.61). To this purpose, first
recall the identity (3.44), expressing the Wightman field in terms of the Segal field, and
the definition (3.58), describing the time evolution of the Wightman field. Then, in view
of Proposition 3.11 and of Eq. (3.57), it can be easily infered that

ϕ̂t(h) = Φ̂S(U−1
t P+(A−1/4h) ) + i Φ̂S(U−1

t P+(−iA−1/4h) ) .

Next, notice that U−1
t = eit

√
A = cos(

√
A t) + i sin(

√
A t), for all t ∈ R; moreover,

both the operators cos(
√
A t) and sin(

√
A t) are J -real due to Proposition 2.25, so that

cos(
√
A t)J = J cos(

√
A t) and sin(

√
A t)J = J sin(

√
A t). Therefore, by the R-linearity

of the Segal field Φ̂S (recalling that P±(if) = iP∓f ; see Eq. (3.40) ), one has

ϕ̂t(h) =

Φ̂S(P+(cos(
√
A t)A−1/4h) ) + i Φ̂S(P+(−i cos(

√
A t)A−1/4h) ) +

+ Φ̂S(iP+(sin(
√
A t)A−1/4h) ) + i Φ̂S(iP+(−i sin(

√
A t)A−1/4h) ) ;

then, the thesis follows using, again, the identities (3.44) (3.45) for the Wightman field and
the conjugate momentum at time zero (notice that Φ̂S(iP+(A−1/4h))+i Φ̂S(iP−(−iA−1/4h))
= π̂(A−1/2h), for all h ∈ H−1 ⊃ H−1/2).

For completeness, let us also report the following result, giving the commutation relations
for the Wightman field and the conjugate momentum at unequal times.
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Proposition 3.20. For any t, t′ ∈ R, there hold the commutation relations at unequal
times (t 6= t′)

[ϕ̂t(h), ϕ̂t′(k)] = − i 〈J h|(sin(
√
A (t−t′))/

√
A ) k〉 ÎD for h, k ∈ H−1/2 ,

[ϕ̂t(h), π̂t′(k)] = + i 〈J h| cos(
√
A (t−t′)) k〉 ÎD for h∈H−1/2, k∈H1/2 ,

[π̂t(h), π̂t′(k)] = − i 〈J h|(sin(
√
A (t−t′))/

√
A ) k〉 ÎD for h, k ∈ H1/2

(3.63)

Proof. We only compute, as an example, the commutator [ϕ̂t(h), ϕ̂t′(k)]. To this purpose,
recall the expression (3.61) for the time evolution of the Wightman field, along with
the commutation relations at time zero (3.49); these facts allow to infer by elementary
computations that

[ϕ̂t(h), ϕ̂t′(k)] =

i 〈J (cos(
√
A t)h)|(sin(

√
A t′)/

√
A ) k〉 − i 〈J (cos(

√
A t′) k)|(sin(

√
A t)/

√
A )h〉 ÎD .

Next notice that, 〈J (cos(
√
A t′)k)|(sin(

√
A t)/

√
A )h〉 = 〈J (sin(

√
A t)/

√
A )h| cos(

√
A t′) k〉

(use the properties of the conjugation J , keeping in mind the sesquilinearity of the inner
product 〈 | 〉). Moreover, recall that cos(

√
A t) and sin(

√
A t′)/

√
A both commute with

J in consequence of Proposition 2.25; so, due to the results of Corollary 2.24 on Banach
adjoints, it follows that

[ϕ̂t(h), ϕ̂t′(k)] = i 〈J h|
(

(cos(
√
A t) sin(

√
A t′)− cos(

√
A t′) sin(

√
A t))/

√
A
)
k〉 ÎD .

Then, the thesis follows by elementary functional calculus (9).

Proposition 3.21. Let f ∈ D∨(H) and n ∈ N. Then, the maps R 7→ D∨(H) ⊂ F∨(H),
t 7→ ϕ̂t(h) f and R 7→ D∨(H) ⊂ F∨(H), t 7→ π̂t(h) f are well-posed and of class Cn for all
h ∈ H−1/2+n and all h ∈ H1/2+n, respectively. In particular, for any h ∈ H3/2, the map
t 7→ ϕ̂t(h) f is of class C2 and its first and second derivative are, respectively, given by

d

dt
(ϕ̂t(h) f ) = π̂t(h) f ,

d2

dt2
(ϕ̂t(h) f ) = − ϕ̂t(Ah) f . (3.64)

Proof. As an example, we only discuss the differentiability of the map t 7→ ϕ̂t(h) f .
First of all, recall that the Wightman field at any time t ∈ R can be expressed as
ϕ̂t(h) = ϕ̂(cos(

√
A t)h) + π̂( (sin(

√
A t)/

√
A )h) (see Eq. (3.61) ). On the other hand,

Proposition 2.30 grants that both the maps R→ H−1/2, t 7→ cos(
√
A t)h and R→ H1/2,

t 7→ (sin(
√
A t)/

√
A )h are of class Cn, for any h ∈ H−1/2+n. Moreover, due to Lemma

3.14, both the C-linear maps H−1/2 3 h 7→ ϕ̂(h) f and H1/2 3 h 7→ π̂(h) f are continuous,

9One should recall the trigonometric identity cos a sin b− cos a sin b = − sin(a− b), for any a, b ∈ R.
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whence analytic, for any f ∈ D∨(H). Summing up, the map t 7→ ϕ̂t(h) f is the compo-
sition of functions which are either smooth or of class Cn, which proves the first part of
the thesis.

Finally note that, by linearity and continuity, there hold

dn

dtn
(ϕ̂(cos(

√
A t)h) f ) = ϕ̂

( dn
dtn

cos(
√
A t)h

)
f ,

dn

dtn
(π̂( (sin(

√
A t)/

√
A )h) f ) = ϕ̂

( dn
dtn

(sin(
√
A t)/

√
A )h

)
f ;

then, the identities in Eq. (3.64) can be easily derived computing (via functional calculus)
the derivatives dn

dtn
cos(
√
A t), dn

dtn
(sin(
√
A t)/

√
A ) and keeping in mind the identities in

Eq.s (3.61) and (3.62).

Remark 3.14. Starting from the identities in Eq. (3.64) and working by recursion, one
can derive explicit expressions also for the higher order derivatives of both the maps
t 7→ ϕ̂t(h) f , π̂t(h) f (making suitable assumptions for h, in order to grant their existence).
We will not report these expressions here because for the following developments we shall
only need at most second order “time derivatives” of the Wightman field.

In view of the results extablished in the above Proposition 3.21, we give the forthcoming
definition.

Definition 3.22. For any n ∈ N and for all h ∈ H−1/2+n, the (h−smeared) n-th derivative
of the Wightman field at time t is the unbounded operator ∂nt ϕ̂t(h) : D∨(H) → D∨(H)
which, for all f ∈ D∨(H), fulfills

∂nt ϕ̂t(h) f =
dn

dtn
(ϕ̂t(h) f ) . (3.65)

Corollary 3.23. For any f ∈ D∨(H) and for any h ∈ H3/2, the time-evolved Wightman
field fulfills the strong form of the abstract Klein-Gordon evolution equation

(
∂ttϕ̂t(h) + ϕ̂t(Ah)

)
f = o ,

ϕ̂t(h) f
∣∣∣
t=0

= ϕ̂(h) f ,

∂tϕ̂t(h) f
∣∣∣
t=0

= π̂(h) f

(3.66)

where o ∈ D∨(H) is the null element of the Fock space F∨(H).

Proof. The thesis follows straightforwardly from the results derived in Proposition 3.21,
keeping in mind the considerations of Remark 3.12 and of item i) of Remark 3.14.
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Remark 3.15. i) It appears that Eq. (3.66) can be interpreted as the second quantized
version of the classical Klein-Gordon equation, that is the evolution equation

(∂tt +A)ϕt = 0 ,
ϕt|t=0 = ϕ ,
∂tϕt|t=0 = π

(3.67)

where A is some suitable, second order elliptic differential operator (e.g., of Schrödinger
type), t 7→ ϕt is a function-valued map and ϕ, π are prescribed initial data. In view of
this correspondence, it appears that the parameter t can in fact be interpreted as the time
also in the abstract Klein-Gordon equation.
ii) Consider the ordinary differential equation corresponding to Eq. (3.67)

(∂tt + λ)ϕ(t) = 0 ,

ϕ(t)|t=0 = ϕ0 ,

∂tϕ(t)|t=0 = π0

(3.68)

where ω > 0 and ϕ0, π0 ∈ R are assigned and t 7→ ϕ(t) is an at least twice-differentiable
function; by elementary arguments it follows that the solution of Eq. (3.68) is given by

ϕ(t) = ϕ0 cos(
√
ω t) + π0 sin(

√
ω t)/

√
ω . (3.69)

In view of this fact, working backwords, one could have started with an ansatz and define
the Wightman field ϕ̂t(h) at time t ∈ R (h ∈ H1) according to Eq. (3.61) (which in our
approach is instead a consequence derived by more primitive definitions).

Using the above results and those reported in Lemma 3.17, one can evaluate the VEVs
of the monomials of any order in the Wightman field (as well as the VEVs involving the
conjugate momentum and their time derivatives). As well-known, due to Wick’s theorem
[142, 146], this operation reduces to the computation of the VEV of the field squared. Let
us first give the following corollary descending straightforwardly from Proposition 3.21.

Corollary 3.24. Let v ∈ D∨(H) be the vacuum state and let n ∈ N.
i) For any pair h ∈ H−1/2+n, k ∈ H−1/2 and for any fixed t′ ∈ R, the map R → C,
t 7→ (v | ϕ̂t(h) ϕ̂t′(k) v) is of class Cn; for any j ≤ n, there holds

dj

dtj
(v | ϕ̂t(h) ϕ̂t′(k) v) = (v | ∂jt ϕ̂t(h) ϕ̂t′(k) v) . (3.70)

ii) For any pair h ∈ H−1/2, k ∈ H−1/2+n and for any fixed t ∈ R, the map R → C,
t′ 7→ (v | ϕ̂t(h) ϕ̂t′(k) v) is of class Cn; for any j ≤ n, there holds

dj

dt′j
(v | ϕ̂t(h) ϕ̂t′(k) v) = (v | ϕ̂t(h) ∂jt′ϕ̂t′(k) v) . (3.71)
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Remark 3.16. i) Of course, it follows that if both h ∈ H−1/2+n and k ∈ H−1/2+n for some
n ∈ N, then the map R2 → C, (t, t′) 7→ (v | ϕ̂t(h) ϕ̂t′(k) v) is of class Cn jointly in the two
variables. Moreover, for any j, j′ ≤ n, there holds

∂jt ∂
j′

t′ (v | ϕ̂t(h) ϕ̂t′(k) v) = (v | ∂jt ϕ̂t(h) ∂j
′

t′ ϕ̂t′(k) v) . (3.72)

ii) From the forthcoming proof, it appears that all the above statements can be easily

generalized to any expectation value of the form (f | ∂jt ϕ̂t(h) ∂j
′

t′ ϕ̂t′(k) g), for any given
f , g ∈ D∨(H).

Proof. As an example, we show how to prove statement i). First notice that, for any
v ∈ D∨(H), k ∈ H−1/2 and for any fixed t′ ∈ R, one has ϕ̂t′(k) v ∈ D∨(H). On the
other hand, due to Proposition 3.21, the map t 7→ ϕ̂t(h) ϕ̂t′(k) v is of class Cn for any
h ∈ H−1/2+n. Then, the thesis follows easily from the linearity and continuity (whence,
analyticity) of the inner product ( | ) on F∨(H).

Proposition 3.25. Let h, k ∈ H−1/2 and let t, t′ ∈ R; then the VEV of the Wightman
field squared (v | ϕ̂t(h) ϕ̂t′(k) v) can be expressed as follows:

(v | ϕ̂t(h) ϕ̂t′(k) v) =
1

2
〈J h|(e−i(t−t′)

√
A /
√
A )k〉 , (3.73)

where 〈 | 〉 indicates the extension to H−1/2 ×H1/2 of the inner product on H (10).

Proof. First notice that, using the expression (3.61) for the Wightman field ϕ̂t(h) at time
t ∈ R, one has

(v | ϕ̂t(h) ϕ̂t′(k) v) =

(v |
[
ϕ̂(cos(

√
A t)h) ϕ̂(cos(

√
A t′)k) + π̂((sin(

√
A t)/

√
A )h) π̂((sin(

√
A t′)/

√
A )k) +

+ ϕ̂(cos(
√
A t)h) π̂((sin(

√
A t′)/

√
A )k) + π̂((sin(

√
A t)/

√
A )h) ϕ̂(cos(

√
A t′)k)

]
v) .

To proceed, let us evaluate each of the terms at time zero in the right-hand side of the
above equality, using the results derived in Lemma 3.17. Next, recall that the conjugation
J commutes with cos(

√
A t), sin(

√
A t) and with any real power of A (see Corollary 2.26);

interpreting the inner products 〈 | 〉 so obtained in terms of the extension (2.103) and
using Corollary 2.24 for the (Banach) adjoints of cos(

√
A t), sin(

√
A t), Ar (r ∈ R), it can

be infered that

(v | ϕ̂t(h) ϕ̂t′(k) v) =

1

2
〈J h| A−1/2

[
(cos(

√
A t) cos(

√
A t′) + sin(

√
A t) sin(

√
A t′)) +

+ i (cos(
√
A t) sin(

√
A t′)− sin(

√
A t) cos(

√
A t′))

]
k〉 .

10In fact, for any k ∈ H−1/2, there holds (e−i(t−t
′)
√
A /
√
A )k ∈ H1/2 (see Lemma 2.27).
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Then, the thesis follows again by elementary functional calculus (11).

For the subsequent developments, only the evaluation of the VEVs at equal time is re-
quired; these are reported in the forthcoming corollary.

Corollary 3.26. For any pair h, k ∈ H3/2, the VEVs of the second order monomials in
the Wightman field (and the related time derivatives of degree two at most), evaluated at
equal times are the following:

(v | ϕ̂t(h) ϕ̂t(k) v) =
1

2
〈J h|A−1/2 k〉 ,

(v | ϕ̂t(h) ∂tϕ̂t(k) v) = − (v | ∂tϕ̂t(h) ϕ̂t(k) v) =
i

2
〈J h|k〉 , (3.74)

(v | ∂tϕ̂t(h) ∂tϕ̂t(k) v) = − (v | ∂ttϕ̂t(h) ϕ̂t(k) v) = − (v | ϕ̂t(h) ∂ttϕ̂t(k) v) =
1

2
〈J h|A1/2 k〉 ;

again, 〈 | 〉 indicates, in general, the extension to H(2) of the inner product on H (12).

Proof. First recall the identity (3.72), which allows to express the VEVs in the leaft-hand
sides of Eq. (3.74) in terms of the derivatives of (v | ϕ̂t(h) ϕ̂t′(k) v) evaluated at equal
times (t′ = t); then, the thesis follows easily using the explicit expression (3.73).

Remark 3.17. All the exressions on the left-hand sides of the identities in Eq. (3.74) do,
in principle, depend on the time parameter t ∈ R, which however does not appear in the
corresponding right-hand sides. This fact shows that the VEV of the Wick polynomials
evaluated at equal times are actually time independent; as a matter of fact, this was to be
expected due to the staticity features of the configuration under analysis. We will return
on this topic in the following (see Proposition 3.37).

3.2 Scalar quantum field on a spatial domain.

Hereafter we employ the abstract framework developed in the previous section to analyze
the case of an Hermitian scalar field living on a suitable open subset of (d+1)-dimensional
Minkowski spacetimeMd+1 (with d ∈ {1, 2, 3, ...} arbitrary). Let us recall that this setting
was already considered in Chapter 1, where the main ideas were presented using a language
somehow less precise than the mathematically rigorous one developed in Chapter 2 and
in Section 3.1 of the present chapter.
We refer to the same framework described in Chapter 1; in particular, let us recall that we
employ natural units (so that c = 1 and ~ = 1) and that we identify Minkowski spacetime
with Rd+1 using the set of global inertial coordinates

x = (xµ)µ=0,1,...,d ≡ (x0,x) ≡ (t,x) : Md+1 → Rd+1 ,

11Just notice that (cos a cos b+ sin a sin b) + i (cos a sin b− sin a cos b) = e−i(a−b), for all a, b ∈ R.
12In fact, under the assumptions made for h, k, the expressions in the right-hand sides of Eq. (3.74)

can also be interpreted, a posteriori, in terms of the non-extended inner product on H.
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in terms of which the Minkowski metric η has coefficients (ηµν) = diag(−1 , 1, ... , 1) (see
Eq.s (1.1-1.3) ). We make reference to the theory of a scalar field living on a fixed spatial
domain Ω ⊂ Rd, which we assume to be open and connected but otherwise arbitrary (pos-
sibly, unbounded); time evolution is described on the open subset of Minkowski spacetime
given by R× Ω ⊂ Rd+1 'Md+1. Prescribed boundary conditions on ∂Ω for the field are
properly taken into account, as well as the interaction with an assigned scalar potential
V ∈ C∞(Ω).
We first reconsider the canonical quantization of the classical theory; this is obtained
specializing the general formulation of Section 3.1 to the explicit model under analysis.
Next, we implement ZR within the present setting to define a regularized version of the
Wightman field evaluated at a spacetime point x = (t,x) ∈ R×Ω, depending on a complex
parameter u introduced on purpose. This regularized field is used to construct natural
quantized counterparts of the classical observables, such as the stress-energy tensor, the
total energy and the pressure on the boundary. The VEVs of this regularized observables
are computed explicitly using the integral kernels analyzed in Chapter 2 of this manuscript.
Finally, the renormalized VEVs are defined in terms of the analytic continuation of the
corresponding regularized expressions at u = 0, which is the value corresponding formally
to the non-regularized field operator.
Let us recall once more that the spatial domain Ω, its boundary ∂Ω and the potential
V are assigned classical objects which do not evolve in time; moreover no back-reaction
exterted on them by the quantum field is ever considered in the analysis to be described
in the following.

Canonical quantization (revisited).
To make contact with the standard literature [58, 130], let us specialize the abstract
approach to canonical quantization described in Section 3.1 for the particular case we are
considering in this section.
First of all, we define the single particle Hilbert space to be

H = L2(Ω, dx) ≡ L2(Ω) (3.75)

(with inner product 〈f |g〉L2 :=
∫

Ω
dx f(x) g(x)), i.e., as the space of square-integrable

functions on Ω with respect to the standard Lebesgue measure dx.
The corresponding bosonic Fock space F∨(H) = F∨(L2(Ω)) is the direct sum of the totally
symmetric tensor powers H∨n = (L2(Ω))∨n (n ∈ N); as well known, each of these tensor
powers coincides with the space of square-integrable functions on the n-fold cartesian
product Ω× ...× Ω which are invariant under permutation of the coordinates. So,

F∨(H) =
+∞⊕
n=0

H∨n (3.76)

with H∨0 := C and H∨n = L2
∨(×ni=1Ω,⊗ni=1dx) ≡ L2

∨(×ni=1Ω) for n ∈ {1, 2, 3, ...}, where

L2
∨(×ni=1Ω) :=

{f (n) ∈ L2(×ni=1Ω,⊗ni=1dx) | f (n)(x1, ...,xn) = f (n)(xπ(1), ...,xπ(n)) , ∀π ∈ Pn}
(3.77)
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(here xi ∈ Ω for i = 1, ..., n and Pn is the permutation group of n elements).
For any h ∈ L2(Ω), the creation and annihilation operators â−(h), â+(h) defined in Eq.s
(3.17) (3.18) are easily seen to map any finite-particle element f = (f (n)) ∈ D∨(H) (with
f (n) ∈ L2

∨(×ni=1Ω) ) into â±(h) f = ((â±(h) f )(n)) ∈ D∨(H), where

(â−(h) f )(n)(x1, ...,xn) =
√
n+1

∫
Ω

dy h(y) f (n+1)(y,x1, ...,xn) , (3.78)

(â+(h) f )(n)(x1, ...,xn) =
1√
n

n∑
i=1

h(xi) f
(n−1)(x1, ..., 6xi, ...,xn) . (3.79)

The Segal field and conjugate momentum are defined again according to Eq.s (3.30) (3.31)
and, of course, all the results of subsection 3.1 continue to hold.
In order to proceed, let us consider the strictly positive, self-adjoint Schrödinger-type
differential operator A = (− 4+V ) � DA : DA ⊂ L2(Ω) → L2(Ω), defined on a dense
admissible domain DA ⊂ L2(Ω). Since A fulfills the general hypotheses of Section 2.5,
we can consider the scale of Hilbert spaces Hr (r ∈ [−∞,+∞]) related to it. Of course,
complex conjugation on L2(Ω) commutes with A (i.e., A f = A f , for all f ∈ DA), so
that it can be uniquely extended to a continuous antilinear involution on H−∞ according
to Prosition 2.25. Moreover, the projectors P± related to complex conjugation (see Eq.
(2.68) ) map any function f ∈ L2(Ω) into its real and imaginary parts; more precisely,
there holds P+f = <f and P−f = i=f . In view of this, when considering the extensions
P± : H−∞ → H−∞ of these operators defined according to Eq. (2.127), with a slight
abuse of notation we will write, for any f ∈ H−∞,

P+f = <f , P−f = i=f . (3.80)

The Wightman field and the conjugate momentum at time zero can be expressed according
to Eq.s (3.44) (3.45), which with the present assumptions read

ϕ̂(h) = Φ̂S(<(A−1/4h) ) + i Φ̂S(=(A−1/4h) ) for h ∈ H−1/2 , (3.81)

π̂(h) = Π̂S(<(A1/4h) ) + i Π̂S(=(A1/4h) ) for h ∈ H1/2 . (3.82)

Time evolution is implemented again via second quantization; this allows to define the time
evolved Wightman field ϕ̂t(h) (t ∈ R), for any h ∈ H−1/2, as well as its time derivatives
∂nt ϕ̂t(h), for any h ∈ H−1/2+n (n ∈ N). Moreover, there holds the strong version (3.66) of
the Klein-Gordon equation.

Remark 3.18. The approach to second quantization described above generalizes the cor-
responding formulation that we considered in Section 1.2 of Chapter 1. Let us spend a
few more words about this fact; to this purpose, let us first recall that in Section 1.2 (see,
in particular, Eq.s (1.13-1.15) ) we gave an expansion of the field operator in terms of
the creation and annihilation operators âk, â

†
k associated to a complete orthonormal set of

eigenfunctions (Fk)k∈K of A, with corresponding eigenvalues (ω2
k)k∈K (where ωk ≥ ε, for
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some ε > 0, and K is an unspecified set of labels). In the present framework, assuming
the mentioned proper eigenfunctions Fk ∈ H (k ∈ K) to exist, it appears that the associ-
ated operators âk, â

†
k are strictly related to the maps â−( ), â+( ) : H → L(D∨(H)); more

precisely, for any k ∈ K, this connection is extablished setting

âk := â−(F k) . (3.83)

Then, since â†k is the adjoint of âk, due to Proposition 3.5 the above definition also yields

â†k = (â−(F k))
† = â+(F k) . (3.84)

In view of the above correspondences, the identities in Eq.s (1.14) and (1.15) are an
obvious reformulation of Eq.s (3.23) and (3.20), respectively (13). To conclude, let us
point out that the field expansion (1.13) evaluated at time zero can be derived starting
from the expression (3.47) for the Wightman field in terms of the operators â−, â+ (14).

The zeta-regularized Wightman field.

The analysis to be presented in the following will be mainly focused on the Wightman
field operator. Analogous results could be easily derived also for the conjugate momentum
operator; however, for brevity, we shall not report them within this manuscript since they
are not strictly necessary for the applications that will be discussed in the following.

In the mathematical formulation described so far, only a suitably smeared version of
the Wightman field (at time t ∈ R) can be properly defined, i.e., ϕ̂t(h) for h ∈ H−1/2.
Nevertheless, in many physical applications, it is of interest to evaluate the field at a point
x ∈ Ω; this operation could be formally accounted for by considering the Wightman field
evaluated on the Dirac delta element δx ∈ H−r (r > d/2), setting

“ ϕ̂(x) ≡ ϕ̂t(x) := ϕ̂t(δx) ” (x = (t,x) ∈ R× Ω) . (3.85)

13Recalling that 〈Fk|Fh〉L2 = δ(k, h), where δ(k, h) is the Dirac delta on the label space K.
14Let us account briefly for this statement. To this purpose, for any given h ∈ H consider the

representation (3.47) for the Wightmand field at time zero ϕ̂(h) in terms of the operators â−(J (A−1/4h) )
and â+(A−1/4h). Using the eigenfunction expansions h =

∫
K dk 〈Fk|h〉L2 Fk and h =

∫
K dk 〈F k|h〉L2 F k

and recalling that the maps â− and â+ are respectively C-antilinear and C-linear, by linearity we formally
obtain

ϕ̂(h) =
1√
2

∫
K
dk
(
〈Fk|h〉L2 â−(A−1/4Fk) + 〈F k|h〉L2 â+(A−1/4 F k)

)
.

Next, notice that A−1/4Fk = ω
−1/2
k Fk and A−1/4F k = ω

−1/2
k F k, so that

ϕ̂(h) =

∫
K

dk√
2ωk

(
〈Fk|h〉L2 â−(F k) + 〈F k|h〉L2 â+(F k)

)
=

∫
K

dk√
2ωk

(
〈Fk|h〉L2 âk + 〈F k|h〉L2 â†k

)
,

where the second identity follows from the relations in Eq.s (3.83) (3.84). The last expression written
above can be formally interpreted as the smearing of the field (1.13) with the function h ∈ L2(Ω).
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On the other hand, since δx does not belong to the proper test-function space H−1/2 (for
any d ∈ {1, 2, 3, ...}), it appears that no rigorous meaning can be directly attributed
to expressions like ϕ̂t(δx) (appearing in Eq. (3.85) ) within the framework developed in
Section 3.1.

A natural approach to give an admissible definition of point-wise evaluation for the Wight-
man field operator is to introduce a family of suitably regularized Dirac delta elements,
depending on a parameter; at the end the regularizing parameter has to be removed via a
limiting procedure, to be properly interpreted. In the spirit of ZR, we give the forthcoming
definition.

Definition 3.27. Let κ > 0 be any fixed, real parameter and put (see Eq. (1.17) )

Aκ := A/κ2 . (3.86)

For any fixed x ∈ Ω and for any u ∈ C, the zeta-regularized Dirac delta at x is

δux := A−u/4κ δx . (3.87)

Remark 3.19. i) Following the considerations of Section 1.3, we will refer to κ as mass
parameter ; this is introduced in the definition of the zeta-regularized Dirac delta for
dimensional reasons, in order to make the rescaled operator Aκ adimensional (15). Of
course, δux also depends on κ; however, we assume κ to be assigned once and for all and,
in pursue of notational simplicty, we choose to not indicate explicitly the dependence on
this parameter when writing the regularized Dirac delta δux.
ii) Other regularized versions of the Dirac delta could, of course, be considered in alterna-
tive to (3.87). For example, having in mind an exponential type regularization, one could
put (for t ∈ Σ0)

δtx := e−tAκ δx or δtx := e−t
√
Aκ δx . (3.88)

These alternative definitions will not be considered within this work. We plan to discuss
them and their relation to ZR elsewhere.

Lemma 3.28. i) For any fixed j ∈ N, r ∈ R and for any u ∈ Σ2j+d−2r, the map δu :
Ω→ H−r, x 7→ δux is of class Cj; moreover, for any multi-index α of order ≤ j, the α-th
derivative of this map is given by

(∂αδu)x = A−u/4κ (∂αδ)x ∈ H−r for u ∈ Σ2|α|+d−2r . (3.89)

ii) Let indicate the extension of the complex conjugation on H = L2(Ω) to H−∞; then,
for all u ∈ C and for all x ∈ Ω, there holds

δux = δux . (3.90)

15In fact, by standard dimensional analysis, the Schrödinger-type operator A := − 4 +V can be
attributed the dimension of a momentum squared; due to the convention c = ~ = 1 observed in the
present manuscript, this means that, dimensionally speaking, A is a mass squared.
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Proof. i) By definition (see Eq. (3.87) ), the map x 7→ δux is given by the composition of
the maps x 7→ δx and h 7→ κu/2A−u/4h. Next, recall that the map Ω→ H−r′ , x 7→ δx is of
class Cj for all r′ > j + d/2 (see Proposition 2.48). On the other hand, due to Corollary
2.13, the map A−u/4 : H−(r+<u/2) → H−r is an Hilbertian isomorphism; so, in particular,
it is a linear and continuous (whence analytic) map. The above facts, employed with
r′ = r + <u/2, suffice to infer the thesis.
ii) In order to avoid confusion, let us temporarily indicate with J the extension to H−∞ of
the complex conjugation. Then, notice that δux = J (κu/2A−u/4δx) = κu/2JA−u/4J −1J δx.
Due to Corollary 2.26, there holds JA−u/4J −1 = A−u/4; on the other hand, Lemma 2.52
allows to infer that J δx = δx. Summing up, one has δux = κu/2A−u/4δx = A−u/4κ δx = δux,
which proves Eq. (3.90).

Remark 3.20. Recall the definition (2.237) of the Dirichlet kernel A−u/4( , ). Then, for
all x ∈ Ω, it appears that the above relations (3.87) (3.89) can be rephrased as follows:

δux = κu/2A−u/4( ,x) for u ∈ Σ2d ;

(∂αδu)x = κu/2 ∂α2A−u/4( ,x) for u ∈ Σ2(|α|+d) .
(3.91)

The above relations show that, for <u large enough, δux (x ∈ Ω) coincides with the κ-
rescaled Dirichlet kernel of A, with one of the second argument fixed; so, for any fixed
x ∈ Ω, δux is in fact an ordinary (continuous and differentiable) function.

In view of Lemma 3.28, the forthcoming definition is well-posed.

Definition 3.29. The zeta-regularized Wightman field at x = (t,x) ∈ R×Ω (i.e., at time
t ∈ R and space position x ∈ Ω) is

ϕ̂u(x) ≡ ϕ̂u(t,x) := ϕ̂t(δ
u
x) for u ∈ Σd−1 . (3.92)

Remark 3.21. Due to Lemma 3.28, δux ∈ H−1/2 whenever <u > d− 1; this suffices to infer
that the right-hand side of Eq. (3.92) makes sense according to Definition 3.13, so that
ϕ̂u(x) defined above is well posed.

Proposition 3.30. Let f ∈ D∨(H) be any finite particle state; then, for any n ∈ N and
for all u ∈ Σ2n+d−1, the map R × Ω → D∨(H) ⊂ F∨(H), x 7→ ϕ̂u(x) f is of class Cn.
Moreover, for any (spatial ) multi-index α and any j ∈ N with j + |α| ≤ n, there holds

∂jt ∂
α
x (ϕ̂u(t,x) f ) = ∂jt ϕ̂t( (∂αδu)x) f for u ∈ Σ2(j+|α|)+d−1 ; (3.93)

in addition the order of the derivatives can be interchanged arbitrarily.

Proof. First of all, recall the definition (3.92) of the zeta-regularized Wightman field
ϕ̂u(x). In order to prove the thesis, we show hereafter in several steps that all the partial
derivatives (with respect to t and x) of order ≤ n exist and are continuous on R× Ω.
Step 1 - Existence and continuity of the time derivatives (of any order j ∈ N with j ≤ n).
This statement follows easily from Proposition 3.21, simply noting that δux ∈ H−1/2+j for
all u ∈ Σd−1+2j (see Lemma 3.28).
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Step 2 - Existence and continuity of the spatial derivatives (of any order j ∈ N with j ≤ n);
proof of Eq. (3.93) for j = 0. First recall that, due to Lemma 3.14 and to Proposition
3.19, the map H−1/2 → D∨(H) ⊂ F∨(H), h 7→ ϕ̂t(h) f is linear and continuous, whence
analytic; on the other hand, the map Ω→ H−r, x 7→ δux is of class Cj for all u ∈ Σd+2j−2r

(see Lemma 3.28). Since x 7→ ϕ̂t(δ
u
x) f is given by the composition of the previous two

maps (set r = 1/2), the regularity results discussed above for the latters suffice to infer
the first part of the thesis. Eq. (3.93) with j = 0 follows easily by continuity arguments,
recalling that (∂αδu)x is the α-th derivative of the map x 7→ δux (see Lemma 3.28).
Step 3 - Existence and continuity of the mixed derivatives of the form ∂jt ∂

α
x (ϕ̂u(t,x) f ) (for

j ∈ N and α a multi-index with j+|α| ≤ n). Notice that, due to the previously proved iden-
tity (3.93) with j = 0, there holds ∂jt ∂

α
x (ϕ̂u(t,x) f ) = ∂jt (ϕ̂t((∂

αδu)x) f ). Then, one can
proceed as in Step 1 of the present proof to show that the map (t,x) 7→ ∂jt (ϕ̂t((∂

αδu)x) f )
is well-posed and continuous; indeed, it suffices to notice that the map Ω → H−1/2+j,
x 7→ (∂αδu)x is continuous for all u ∈ Σd−1+2(j+|α|) (see Lemma 3.28). This suffices to
infer the thesis.
Step 4 - Commutativity of the partial derivatives ∂jt and ∂αx . As an example, consider
the expression ∂t∂

α
x (ϕ̂u(t,x) f ), for |α| ≤ n − 1 and recall that, using Eq. (3.93) with

j = 1, this can be re-written as ∂t(ϕ̂t((∂
αδu)x) f ). Next, notice that, due to Lemma 3.21

(see, in particular, the second identity in Eq. (3.64) ), there holds ∂t(ϕ̂t((∂
αδu)x) f ) =

π̂t((∂
αδu)x) f . Moreover, by arguments similar to those of Step 2 it can be proved that,

for all multi-indexes β with β ≤ α (16), π̂t((∂
αδu)x) f = ∂α−βx (π̂t((∂

βδu)x) f ); recalling
again Eq. (3.64), this yields π̂t((∂

αδu)x) f = ∂α−βx ∂t∂
β
x(ϕ̂ut (x) f ). Summing up, the above

facts show that ∂t∂
α
x (ϕ̂u(t,x) f ) = ∂α−βx ∂t∂

β
x(ϕ̂u(t,x) f )), for all β ≤ α. Finally, one

can proceed by induction to prove that analogous identities hold with higher order time
derivatives; this, along with Step 3, yields Eq. (3.93).

In view of the previous proposition, the following definition is well posed.

Definition 3.31. Let α be any multi-index and let j ∈ N; for any u ∈ Σd−1+2(j+|α|) the
j-th time, α-th spatial derivative of the zeta-regularized Wightman field at time t ∈ R and
space position x ∈ Ω is the unique operator ∂jt ∂

α
x ϕ̂

u(t,x) : D∨(H) → D∨(H) (coinciding
with similar expressions obtained by exchanging the differentiation order) which fulfills

(∂jt ∂
α
x ϕ̂

u(t,x)) f = ∂jt ∂
α
x (ϕ̂u(t,x) f ) for all f ∈ D∨(H) . (3.94)

Corollary 3.32. For any f ∈ D∨(H) and for all u ∈ Σd+3, the zeta-regularized Wightman
field fulfills the following version of the Klein-Gordon equation:

(∂tt −4x + V (x) ) ϕ̂u(t,x) f = o ,

ϕ̂u(t,x) f
∣∣∣
t=0

= ϕ̂(δux ) f ,

(∂tϕ̂
u(t,x) f )

∣∣∣
t=0

= π̂(δux ) f

(3.95)

16With the notation β ≤ α, we mean that βi ≤ αi for all i ∈ {1, ..., d}.



3.2. SCALAR QUANTUM FIELD ON A SPATIAL DOMAIN. 139

where o ∈ D∨(H) is the null element of the Fock space F∨(H).

Proof. First of all, let us notice that δux ∈ Dom(A) ⊂ H for all u ∈ Σd ⊃ Σd+3 (see
Lemma 3.28, here employed with r = 0), so that A δux = (−4x +V (x)) δux (17). This fact
and Proposition 3.30 (see, in particular, Eq. (3.93) ) imply, by linearity and continuity,
that ϕ̂t(A δux) f = (−4x +V (x))ϕ̂u(t,x) f (one should also recall the definition (3.92) of
the zeta-regularized Wightman field ϕ̂u(t,x) ). Then the thesis follows straightforwardly
from Corollary 3.23 (see, in particular, Eq. (3.66) ), to be employed here with h = δux (for
u ∈ Σd−1).

Before proceeding, let us also point out that, once the zeta-regularized Wightman field
has been defined according to Eq. (3.92), one can consider the corresponding regularized
VEV of the field squared at any two (possibly coincinding) spacetime points, i.e., the zeta-
regularized propagator. Concerning this quantity, the subsequent results can be proved.

Corollary 3.33. Let v ∈ D∨(H) be the vacuum state and let n ∈ N. Then, for any
u ∈ Σd−1+2n, the map (R×Ω)2 → C, (x, y) 7→ (v | ϕ̂u(x) ϕ̂u(y) v) is of class Cn. Moreover,
for any j, j′ ∈ N and any pair of multi-indeces α, α′ with j + |α|, j′ + |α′| ≤ n, there holds

∂jx0∂
j′

y0∂
α
x ∂

α′

y (v | ϕ̂u(x) ϕ̂u(y) v) = (v | (∂jx0∂αx ϕ̂u(x)) (∂j
′

y0∂
α′

y ϕ̂
u(y)) v) . (3.96)

Proof. Due to the results Proposition 3.30, the thesis can be easily proved moving along
the same lines as in the proof of Corollary 3.24.

Lemma 3.34. For any two spacetime points x = (x0,x), y = (y0,y) ∈ R×Ω and any
u ∈ Σd−1, consider the VEV (v | ϕ̂u(x) ϕ̂u(y) v); this can be expressed as follows

(v | ϕ̂u(x) ϕ̂u(y) v) =
κu

2
〈δx | (e−i(x

0−y0)
√
A /Au+1

2 ) δy〉 , (3.97)

where 〈 | 〉 indicates the extension to H(2) of the inner product on H.

Remark 3.22. Of course, the identity in Eq. (3.97) could be re-expressed as follows, using
the language of integral kernels:

(v | ϕ̂u(x) ϕ̂u(y) v) =
κu

2
(e−i(x

0−y0)
√
A A−u+1

2 )(x,y) . (3.98)

Nonethelss, in view of the following applications, it is advisable to keep in mind the
mentioned identity in the version given in the above Lemma.

17Indeed, for any f ∈ Hr with r > 2 + d/2, there holds

〈A δux|f〉 = 〈δx|AA−u/4f〉 = (−4+V )(A−u/4f)(x) = (−4x +V (x))〈δux|f〉 ,

where, in the last passage, we have used the fact that

(A−u/4f)(x) = 〈δx|A−u/4f〉 = 〈A−u/4δx|f〉 = 〈δux|f〉 .

Then, the identity A δux = (−4x +V (x))δux follows by linearity and continuity.
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Proof. First notice that the definition (3.92) and the identity (3.73) of Proposition 3.25

allow to infer (v | ϕ̂u(x) ϕ̂u(y) v) = 1
2
〈δux |(e−i(x

0−y0)
√
A /
√
A ) δuy〉; on the other hand, the

definition (3.87) (along with the identity (3.90) ) yields

〈δux |(e−i(x
0−y0)

√
A /
√
A ) δuy〉 = κu 〈A−u/4δx |(e−i(x

0−y0)
√
A /
√
A )A−u/4δy〉 . (3.99)

To proceed, notice that for any u ∈ Σd−1 there exists r, r′ ∈ R such that <u > d − 2r,
<u > d − 2r′ − 2 and −r′ > r; then, due to Lemma 3.28, one has A−u/4δx ∈ H−r and
(e−i(x

0−y0)
√
A /
√
A )A−u/4δy ∈ H−r′ ↪→ Hr. Therefore, the pairing 〈 | 〉 in the right-hand

side of Eq. (3.99) can be interpreted as the extension to H−r ×Hr of the inner product
on L2(Ω) (defined according to Proposition 2.16). Then, the thesis follows recalling that
the Banach adjoint of A−u/2 is A−u/2 (see Corollary 2.24).

Remark 3.23. In the following we will mainly consider second order derivatives of the zeta-
regularized Wightman field. In order to adopt a more standard and concise nomenclature,
we will use for such quantities the short-hand notation

∂µνϕ̂
u(x) for u ∈ Σd+3 and µ, ν ∈ {0, 1, ..., d} , (3.100)

where we have introduced the following conventions, for x = (t,x) ∈ R × Ω and i, j ∈
{1, ..., d}:

∂00ϕ̂
u(x) := ∂2

t ϕ̂
u(t,x) ,

∂i0ϕ̂
u(x) ≡ ∂0iϕ̂

u(t,x) := ∂t ∂xiϕ̂
u(t,x) ,

∂ijϕ̂
u(x) ≡ ∂jiϕ̂

u(t,x) := ∂xixj ϕ̂
u(t,x) .

(3.101)

The zeta-regularized stress-energy tensor and its VEV.
We now consider one of the main observables of interest for the applications, i.e., the
stress-energy tensor. By analogy with the classical expression (1.7), we consider the
following definition for the corresponding quantum version; here, in order to deal with the
non-commutativity of the operators involved, we choose to replace the pointwise products
with the symmetrized Jordan’s product

A ◦B :=
1

2

(
AB +BA

)
, (3.102)

for all linear operators A,B : D∨(H)→ D∨(H).

Definition 3.35. For any u ∈ Σd+3, the zeta-regularized stress-energy tensor at x =
(t,x) ∈ R × Ω (i.e., at time t ∈ R and evaluated at the space position x ∈ Ω) is the
operator T̂ uµν(x) : D∨(H)→ D∨(H) given by

T̂ uµν(x) :=

(1− 2ξ) ∂µϕ̂
u(x) ◦ ∂νϕ̂u(x)

−
(

1

2
− 2ξ

)
ηµν

(
∂λϕ̂u(x) ∂λϕ̂

u(x) + V (x)(ϕ̂u(x))2
)
− 2 ξ ϕ̂u(x) ◦ ∂µνϕ̂u(x) ,

(3.103)
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where ξ ∈ R is an assigned parameter.
The zeta-regularized stress-energy VEV at x is (v | T̂ uµν(x) v), where v ∈ D∨(H) indicates
as usual the vacuum state of the Fock space F∨(H).

Remark 3.24. i) This is a proposed regularization of

T̂µν(x) := (1− 2ξ) ∂µϕ̂(x) ◦ ∂νϕ̂(x)

−
(

1

2
− 2ξ

)
ηµν

(
∂λϕ̂(x) ∂λϕ̂(x) + V (x)(ϕ̂(x))2

)
− 2 ξ ϕ̂(x) ◦ ∂µνϕ̂(x) ,

(3.104)

which is ill-defined. See, e.g., [64] for some basic information on this object (and, in
particular, on the role of the parameter ξ).
ii) Let us stress that, due to Proposition 3.30 and to the related Definition 3.31 of the
zeta-regularized Wightman field (see also the notations introduced in Eq. (3.101) ), all
the expressions on the right-hand side of Eq. (3.103) are in fact well-defined under the as-
sumption u ∈ Σd+3, since there appear only derivatives of the zeta-regularized Wightman
field of second order at most.
iii) The choice we made to replace the point-wise products in the classical expression
with the symmetrized Jordan’s product (3.102) of the corresponding operators, grants
automatically the symmetry of the zeta-regularized stress-energy tensor T̂ uµν(x) under
exchange of the indexes µ, ν ∈ {0, ..., d}, i.e., that

T̂ uµν(x) = T̂ uνµ(x) . (3.105)

The zeta-regularized stress-energy VEV can be expressed in terms of the zeta-regularized
propagator (v | ϕ̂u(x) ϕ̂u(y) v) and of its space-time derivatives, evaluated along the diag-
onal y = x. More precisely, there holds the following result.

Lemma 3.36. For any u ∈ Σd+3 and for any x = (t,x) ∈ R×Ω, the regularized VEV of
the stress-energy tensor can be expressed as

(v | T̂ uµν(x) v) =(
1

2
− ξ
)

(∂xµyν + ∂xνyµ)−
(

1

2
− 2ξ

)
ηµν

(
∂x

λ

∂yλ+ V (x)
)
− ξ (∂xµxν + ∂yµyν )

∣∣∣∣
y=x

(v | ϕ̂u(x) ϕ̂u(y) v) . (3.106)

Proof. The thesis can be easily proved keeping in mind the definition (3.103) for the
zeta-regularized stress-energy tensor operator and using the results of Corollary 3.33.

Due to the above lemma, the zeta-regularized stress-energy VEV can be explicitly com-
puted in terms of the Dirichlet kernel and of its derivatives evaluated along the diagonal.
More precisely, there holds the forthcoming proposition.
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Proposition 3.37. For any u ∈ Σd+3, the components of the zeta-regularized stress-energy
VEV at x = (t,x) ∈ R× Ω admit the following representations (for i, j ∈ {1, ..., d}) :

(v | T̂ u00(t,x) v) =

κu
[(

1

4
+ ξ

)
A−u−1

2 (x,y) +

(
1

4
− ξ
)

(∂x
`

∂y` + V (x))A−u+1
2 (x,y)

]
y=x

,
(3.107)

(v | T̂ u0i(t,x) v) = (v | T̂ ui0(t,x) v) = 0 , (3.108)

(v | T̂ uij(t,x) v) = (v | T̂ uji(t,x) v) =

κu
[(

1

4
− ξ
)
δij

(
A−u−1

2 (x,y)− (∂x
`

∂y` + V (x))A−u+1
2 (x,y)

)
+

+

((
1

2
− ξ
)
∂xi∂yj − ξ ∂xixj

)
A−u+1

2 (x,y)

]
y=x

.

(3.109)

Here the notation [ ]y=x is used to indicate that the expressions within the square brakets
must be evaluated along the diagonal y = x.

Proof. First consider the expression (3.106) for the zeta-regularized stress-energy VEV
(v | T̂ uµν(x) v) (µ, ν ∈ {0, ..., d}) in terms of the propagator; then, Eq.s (3.107-3.109) follow
by simple algebraic computations if one can prove the forthcoming identities for the VEVs
of the second order monomials of the zeta-regularized field, for i, j ∈ {1, ..., d}:

(v | ϕ̂u(x) ϕ̂u(x) v) =
κu

2
A−u+1

2 (x,y)
∣∣∣
y=x

,

∂x0y0
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) = − ∂x0x0
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) = − ∂y0y0
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) =

κu

2
A−u−1

2 (x,y)
∣∣∣
y=x

,

∂xiy0
∣∣∣
y=x

(v | ϕ̂u(y)ϕ̂u(x) v) = −∂x0yi
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) =

∂y0yi
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) = −∂x0xi
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(x) v) =
i κu

2
∂xiA−

u
2 (x,y)

∣∣∣
y=x

,

∂xiyj
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) =
κu

2
∂xiyjA−

u+1
2 (x,y)

∣∣∣
y=x

,

∂xixj
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) = ∂yiyj
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) =
κu

2
∂xixjA−

u+1
2 (x,y)

∣∣∣
y=x

.

All the above identites can be derived by elementary manipulations, recalling the explicit
expression (3.97) given in Lemma 3.34 for the zeta-regularized propagator. As an example,
we show how to compute the VEV ∂x0yi |y=x(v | ϕ̂u(x) ϕ̂u(y) v) (the other identities can be
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obtained in a similar fashion). To this purpose first notice that, using the cited lemma,
one has

∂x0yi
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) =
κu

2
∂x0∂yi〈δx | (e−i(x

0−y0)
√
A /Au+1

2 ) δy〉
∣∣∣
y=x

;

this allows to infer that ∂x0yi |y=x(v | ϕ̂u(x) ϕ̂u(y) v) = − i κu

2
〈δx | A−

u
2 (∂iδ)y〉

∣∣∣
y=x

, which

in terms of integral kernels (see Eq. (2.221) ) gives

∂x0yi
∣∣∣
y=x

(v | ϕ̂u(x)ϕ̂u(y) v) = − i κ
u

2
∂yiA−

u
2 (x,y)

∣∣∣
y=x

.

In conclusion, the thesis follows noting that ∂yiA−
u
2 (x,y)|y=x = ∂xiA−

u
2 (x,y)|y=x, due to

item i) of Proposition 2.64 (18).

Remark 3.25. Let us stress that, in principle, the zeta-regularized stress-energy VEV
(v | T̂ uµν(x) v) ≡ (v | T̂ uµν(t,x) v) does depend on both the time (t ∈ R) and spatial (x ∈ Ω)
coordinates; nevertheless, the expressions obtained in the right-hand sides of Eq.s (3.107-
3.109) for the components of the mentioned VEV show that the latter is, in fact, indepen-
dent of the time variable t. This property was to be expected as a natural consequence
of the staticity features of the setting under analysis.

In view of the considerations discussed in the above remark, in purse of brevity, we adopt
the following (slightly abusive) convention.

Notation 3.38. For all (t,x) ∈ R× Ω, µ, ν ∈ {0, ..., d} and for any u ∈ Σd+3, we put

(v | T̂ uµν(x) v) ≡ (v | T̂ uµν(t,x) v) . (3.110)

Remark 3.26. The hypothesis u ∈ Σd+3 made in Proposition 3.37 is necessary to grant the
existence of the stress-energy tensor operator T̂ uµν(x) appearing in the left-hand sides of
Eq.s (3.107-3.109). However, keeping in mind the results of Proposition 2.64, it appears
that the expressions on the right-hand sides of the cited equations continue to make sense
under the weaker assumption u ∈ Σd+1; as a matter of fact, this is also the minimum re-
quirement necessary to ensure the continuity of the map x 7→ (v | T̂ uµν(x) v), thus granting
the well-posedness of the point-wise evaluation of the stress-energy VEV.

The considerations of Remark 3.26 can be interpreted in the sense of analytic continuation,
meaning that the right-hand sides of Eq.s (3.107-3.109) give the analytic continuation to
Σd+1. More precisely, there hold the results reported in the subsequent Corollary.

18In fact, Eq. (2.240) yields, in particular,

∂yiA−
u
2 (x,y) = ∂yiA−

u
2 (y,x) ;

on the other hand, when evaluation along the diagonal y = x is being considered, one can relabel the
variables in the right-hand side of the the above identity (x ↔ y), thus obtaining ∂yiA−

u
2 (x,y)|y=x =

∂xiA−u
2 (x,y)|y=x.
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Corollary 3.39. There hold the following statements.
i) For any j ∈ N and u ∈ Σd+1+j, the map Ω → C, x 7→ (v | T̂ uµν(x) v) is of class Cj

(whence, in particular, continuous for u ∈ Σd+1).
ii) For any fixed x ∈ Ω and for any multi-index α of order ≤ j, the map Σd+1+j → C,

u 7→ ∂αx (v | T̂ uµν(x) v) is analytic.

Proof. First of all, recall the expressions (3.107-3.109) derived in Proposition 3.37 for
the components of the zeta-regularized stress-energy VEV (v | T̂ uµν(x) v) in terms of the
Dirichlet kernel and of its derivatives (evaluated along the diagonal y = x). Then, both
statements i) and ii) can be easily infered from the results of Proposition 2.64, granting
the differentiability of the Dirichlet kernel (also along the diagonal) with respect to the
spatial variables and its analyticity with respect to the complex index; one should recall,
as well, that V was assumed to be smooth.

Remark 3.27. When the domain and the potential fulfill the stronger regularity assump-
tions (2.159) and suitable conditions are prescribed on the boundary (see the comments at
the end of subsection 2.6), the results of Corollary 3.39 can be extended up to the bound-
ary. More precisely, item i) of the above Corollary holds with Ω replaced by Ω = Ω∪ ∂Ω,
while item ii) holds for any x ∈ Ω.

Next, let us state two results which will turn out to be crucial for the developments
to be discussed in the following (in particular, to define a renormalized version of the
stress-energy VEV).

Theorem 3.40. Assume the domain Ω, its boundary ∂Ω and the potential V to be such
that, for any pair of multi-indexes α, β with |α| + |β| ≤ 2, for any x ∈ Ω and for some
N ∈ N, the diagonal heat kernel derivative ∂α1 ∂

β
2 e
−tA(x,y)|y=x has the form (2.354) (or

even (2.357); see pages 104 and 105, respectively). Then, for any µ, ν ∈ {0, ..., d} and
for fixed x ∈ Ω, the map Σd+1 → C, u 7→ (v | T̂ uµν(x) v) can be analytically continued to a
function, which is meromorphic on the strip Σd+1−2N and possesses only possible simple
pole singularities at u = d + 1 − 2n, for n ∈ {0, ..., N}. In particular, if N > (d + 1)/2
the mentioned analytic continuation extends to a neighbour of u = 0; moreover, whenever
the spatial dimension d is even, u = 0 is a regular point for the mentioned analytic
continuation.

Proof. Consider once more the representations (3.107-3.109) for the components of the
zeta-regularized stress-energy VEV (v | T̂ uµν(x) v); in particular, notice that these repre-

sentations involve the functions A−u±1
2 (x,y), ∂wizjA−

u+1
2 (x,y) (with w, z ∈ {x, y} and

i, j ∈ {1, ..., d}), evaluated along the diagonal y = x. Then the thesis follows easily from
Theorem 2.91, whose hypotheses are assumed to be fulfilled in the present theorem.

Theorem 3.41. Assume the domain Ω, its boundary ∂Ω and the potential V to be such
that, for any pair of multi-indexes α, β with |α|+ |β| ≤ 2 and for any x ∈ Ω, the diagonal

cylinder kernel derivative ∂α1 ∂
β
2 e
−t
√
A (x,y)|y=x has the form (2.359) for some function

such that the map [0,+∞) 3 t 7→ J (α,β)(t ;x) admits an analytic extension to a complex
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open neighbour U ⊂ C of [0,+∞) (see page 106). Then, for any µ, ν ∈ {0, ..., d} and for
fixed x ∈ Ω, the map Σd+1 → C, u 7→ (v | T̂ uµν(x) v) can be analytically continued to a
function, which is meromorphic on the whole complex plane and possesses only possible
simple pole singularities at u = k, for k ∈ {0, ..., d+ 1}.

Proof. The thesis can be derived as in the proof of in Theorem 3.40, using Theorem 2.92
in place of Theorem 2.91.

The zeta-regularized vacuum energy and pressure.

Following the analysis presented in Section 4 of our previous work [64], we are now going
to consider other physical observables (aside from the stress-energy tensor), which are of
direct interest for studying the Casimir effect. In particular, keeping in mind the results
derived in the previous subsection for the VEV of the zeta-regularized stress-energy tensor
(recalling, especially, that it is time independent), we can define zeta-regularized versions
for both the vacuum energy and the vacuum pressure on the boundary ∂Ω of the spatial
domain Ω. More precisely, proceeding again by analogy with the classical field theory
described in subsection 1.1, we give the following definitions, which are well-posed under
the specified assumptions.

Definition 3.42. Assume the zeta-regularized VEV of the energy density (v | T̂ u00 v) to
fulfill the following hypothesis:

∃ r1, r2 ∈ R with r1 < r2 s.t. ∀u ∈ Σ(r1,r2)

the map Ω→ C, x 7→ (v | T̂ u00(x) v) belongs to L1(Ω) ,
(3.111)

(recall that Σ(r1,r2) indicates the strip {u ∈ C | r1 < <u < r2}). Then, for all u ∈ Σ(r1,r2)

the zeta-regularized vacuum total energy is (compare with Eq. (1.8) )

Eu :=

∫
Ω

dx (v | T̂ u00(x) v) . (3.112)

Remark 3.28. i) In the next paragraph we will show that the assumption (3.111) holds
in the case where Ω is a bounded domain with smooth boundary ∂Ω, V ∈ C∞(Ω) and
Dirichlet boundary conditions are prescribed.
ii) Recall that the map Ω 3 x 7→ (v | T̂ u00(x) v) is granted to be continuous for all u ∈ Σd+1,
due to Corollary 3.39 (see, in particular, item i) therein); therefore, the assumption (3.111)
can be cheked by studying the behaviour of (v | T̂ u00 v) near the boundary ∂Ω and, when
Ω is unbounded, at spatial infinity.

When the boundary ∂Ω is non-empty and sufficiently regular, one can also consider the
pressure exterted on it by the field confined within the spatial domain Ω.

Definition 3.43. Let ∂Ω be piecewise differentiable; consider the subset

∂Ω′ := {x ∈ ∂Ω | ∃n(x) ≡ (ni(x)) = unit outer normal at x} (3.113)
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and assume the zeta-regularized VEV of the spatial components of the stress-energy tensor
(v | T̂ uij v) (i, j ∈ {1, ..., d}) to fulfill the following hypothesis:

∃ r1, r2 ∈ R with r1 < r2 s.t. ∀u ∈ Σ(r1,r2), i ∈ {1, ..., d}
the map ∂Ω′ → C, x 7→ (v | T̂ uij(x) v)nj(x) is locally bounded .

(3.114)

Then, for all u ∈ Σ(r1,r2), the zeta-regularized vacuum pressure at x ∈ ∂Ω′ is the vector
pu(x) ≡ (pui (x)) whose components are defined as (compare with Eq. (1.9) )

pui (x) := (v | T̂ uij(x) v)nj(x) (i ∈ {1, ..., d}) . (3.115)

The case of a bounded domain.

Let us now restrict the attention to a particular type of settings; more precisely, we
consider configurations fulfilling the assumptions (2.159) and (2.209):

Ω ⊂ Rd is bounded with compact boundary ∂Ω of class C∞ ,
V ∈ C∞(Ω), Dirichlet boundary conditions are prescribed on ∂Ω .

(3.116)

In these cases, it can be shown that the regularized vacuum energy Eu and pressure pu

introduced above are well-defined; as a matter of fact, much more can be said about these
observables. Hereafter we report some results which we already derived in our previous
work [64]; therein we employed systematically eigenfunction expansion techniques, while
the arguments presented here rely on more general considerations.
Before proceeding, let us point out that some of the forthcoming results continue hold
also under assumptions more general than those in Eq. (3.116).

Proposition 3.44. Assume the hypotheses (3.116) to be fulfilled; then, the map Σd+1 →
C, u 7→ Eu is (well-defined and ) analytic.

Proof. First of all, consider the representation (3.107) which allows to express the VEV

(v |T̂ u00(x)v) in terms of the diagonal kernels A−u±1
2 (x,y)|y=x, ∂x

`
∂y`A−

u+1
2 (x,y)|y=x. Re-

call that, due to Proposition 2.64, these kernels are all continuous functions of x on
Ω = Ω∪∂Ω; this suffices to infer that the map Ω 3 x 7→ (v |T̂ u00(x)v) is integrable, so that
Eu is well-defined according to Eq. (3.112).
Let us now pass to show the analyticity of the map Σd+1 3 u 7→ Eu. To this purpose,
it suffices to show that there exists the complex derivative d

du
Eu, for all u ∈ Σd+1; this

fact follows, in turn, from Lebesgue’s dominated convergence theorem if we can prove
that, for any fixed u0 > d + 1, there exist δ > 0 and a function T ∈ L1(Ω) such that
|∂u(v |T̂ u00(x)v)| ≤ T (x) for all u ∈ Σ(u0−δ,u0+δ) ∩ Σd+1 and for all x ∈ Ω.
So, let us proceed to prove the last statement above. Keeping in mind the representation
(3.107) and recalling item v) of Proposition 2.64, it can be easily infered that the complex
derivative ∂u(v |T̂ u00(x)v) is given by a sum of integral kernels of the form

〈δx|(∂uA−
u±1
2 )δx〉 = − 1

2
〈δx|(A−

u±1
2 lnA) δx〉 ,



3.2. SCALAR QUANTUM FIELD ON A SPATIAL DOMAIN. 147

〈∂iδx|(∂uA−
u+1
2 )∂iδx〉 = − 1

2
〈∂iδx|(A−

u+1
2 lnA) ∂iδx〉 (i ∈ {1, ..., d}) .

To proceed, notice that all the above mentioned kernels are of the form 〈f |(A−u±1
2 lnA) f〉,

for f = δx or ∂iδx; on the other hand, it can be easily proved by functional analytic
methods that, for any δ ∈ (0, (u0 − d− 1)/2) and for all u ∈ Σ(u0−δ,u0+δ) (⊂ Σd+1), there

exists a positive constant cu0,δ such that |〈f |(A−u±1
2 lnA) f〉| ≤ 2 cu0,δ 〈f |A−

u0±1
2

+δ f〉 (19).
In consequence of this, there holds

|〈δx|(∂uA−
u±1
2 )δx〉| ≤ cu0,δ,ε A−

u0±1
2

+δ(x,y)
∣∣∣
y=x

,

|〈∂iδx|(∂uA−
u+1
2 )∂iδx〉| ≤ cu0,δ,ε ∂xiyiA−

u0+1
2

+δ(x,y)
∣∣∣
y=x

(i ∈ {1, ..., d}) ,

which allows to infer

|∂u(v | T̂ u00(x) v)| ≤

cu0,δ,ε κ
<u
[(

1

4
+ |ξ|

)
A−u0−1

2
+δ(x,y) +

(
1

4
+ |ξ|

)
(∂x

`

∂y` + |V (x)| )A−u0+1
2

+δ(x,y)

]
y=x

.

To conclude notice that, since u0 ± 1 + 2δ ∈ Σd+1±1, due to Proposition 2.64 (keeping in
mind that the potential V is assumed to be smooth on Ω), the expression on the right-
hand side of the last inequality is in fact a continuous function of x on Ω. Therefore,
the mentioned right-hand side yields the sought-for summable dominant; this proves the
thesis.

Proposition 3.45. Assume the hypotheses (3.116) to be fulfilled; then, the regularized
vacuum energy Eu can be expressed as the sum

Eu = Eu +Bu , (3.117)

where we introduced the zeta regularized bulk and boundary vacuum energies which are,
respectively,

Eu :=
κu

2

∫
Ω

dx A−u−1
2 (x,x) , (3.118)

19To prove this fact consider the realization (2.54-2.56) of H and A, which where often employed in
Chapter 2 of the present work; this allows to infer

|〈f |(A−u±1
2 lnA) f〉| = 2

∫
K

dµ w−(<u±1)| lnw| |f |2 .

On the other hand, for all <u ∈ (u0 − δ, u0 + δ), by elementary calculus one has (for w ∈ [ε,+∞) )

w−(<u±1)| lnw| ≤ cu0,δ w
−(u0±1)+δ with cu0,δ := max{ε−δ| ln ε|, ε−3δ| ln ε|, e−δ, e−3δ} .

Then, the thesis follows noting that
∫
K
dµ w−(u0±1)+2δ |f |2 = 〈f |A−u0±1

2 +δf〉 .



148
CHAPTER 3. QUANTUM FIELD THEORY ON SPATIAL DOMAINS WITH

BOUNDARIES

Bu := κu
(

1

4
− ξ
)∫

∂Ω

da(x) ni(x) ∂yiA−
u+1
2 (x,y)

∣∣∣
y=x

. (3.119)

Remark 3.29. In particular notice that, in view of Eq. (3.118), the regularized bulk energy
can be equivalently expressed as

Eu :=
κu

2
TrA−u−1

2 . (3.120)

Indeed, under the assumptions (3.116), A has purely discrete spectrum and explicit esti-

mates are available for the eigenvalues; moreover, due to Corollary 2.75, A−u−1
2 is of trace

class and TrA−u−1
2 is an analytic function of u for u ∈ Σd+1.

Recalling that Eu is analytic in the very same strip Σd+1 due to Proposition 3.44, this
suffices to infer that also Bu is analytic therein. Moreover, due to the results of item
vi) of Proposition 2.64 (see also Proposition 2.72 and the related Remark 2.25), one
readily infers that the regularized boundary energy Bu defined according to Eq. (3.119)
vanishes identically whenever either Dirichlet or Neumann conditions are prescribed on
the boundary of the domain Ω.

Proof. Recalling the definition (3.112) and considering again the expression (3.107) for
the regularized VEV (v | T̂ u00(x) v), one has

Eu = κu
∫

Ω

dx

[(
1

4
+ ξ

)
A−u−1

2 (x,y) +

(
1

4
− ξ
)

(∂x
`

∂y`+ V (x))A−u+1
2 (x,y)

]
y=x

.

Now, notice that [∂x
`
∂y`A−

u+1
2 (x,y)]y=x = ∂x`([∂y`A−

u+1
2 (x,y)]y=x)− [4yA−

u+1
2 (x,y)]y=x

(by the Leibnitz rule); therefore, by the divergence theorem it follows that∫
Ω

dx
[
(∂x

`

∂y`+ V (x))A−u+1
2 (x,y)

]
y=x

=∫
∂Ω

da(x) n`(x)
[
∂y`A−

u+1
2 (x,y)

]
y=x

+

∫
Ω

dx
[
(−4y+V (y))A−u+1

2 (x,y)
]
y=x

.

In view of this, the thesis follows by simple algebraic computations if we can show that
(−4y+V (y))A−u+1

2 (x,y) = A−u−1
2 (x,y). Indeed, to prove this fact it suffices to notice

that (− 4y +V (y))A−u+1
2 (x,y) = 〈δx|A−

u+1
2 (− 4y +V (y))δy〉 by continuity (see Eq.

(2.221) ), and to recall that 4yδy = 4δy (compare with Eq. (2.196) ), so that (− 4y

+V (y))A−u+1
2 (x,y) = 〈δx|A−

u+1
2 A δy〉, which yields the thesis.

Proposition 3.46. Assume the hypotheses (3.116) to be fulfilled; then, for any boundary
point x ∈ ∂Ω, the map Σd+1 → C, u 7→ pu(x) is (well-defined and) analytic.

Proof. Consider the expression (3.109) giving (v |T̂ uijv) in terms of the Dirichlet kernel
and of its derivatives evaluated along the diagonal. By a simple generalization of item
i) of Proposition 2.64 it follows that A−u±1

2 (x,y)|y=x, ∂zwA
u+1
2 (x,y)|y=x are continuous

functions of x up to the boundary; moreover, for any fixed x ∈ ∂Ω the mentioned kernels
are analytic functions of u, for u ∈ Σd+1, and the unit outer normal n(x) exists. This
suffices to infer the thesis.
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Finally, let us state two results which will turn out to be crucial for the developments to
be discussed in the following (in particular, to define a renormalized version of the bulk
energy).

Theorem 3.47. Assume the heat trace to fulfill the assumptions of Theorem 2.94 (see,
in particular, Eq. (2.362) ) for some N ∈ N. Then, the map Σd+1 → C, u 7→ Eu can
be analytically continued to a function which is meromorphic on the strip Σd+1−2N and
possesses only possible simple pole singularities at u = d + 1− n, for n ∈ {0, ..., 2N}. In
particular, if N > (d + 1)/2 the mentioned analytic continuation extends to a neighbour
of u = 0.

Proof. Consider the representation (3.120) for the zeta-regularized bulk energy Eu, in

terms of the trace TrA−u−1
2 . Then the thesis follows easily from Theorem 2.94.

Theorem 3.48. Assume the cylinder trace to fulfill the assumptions of Theorem 2.96
(see, in particular, Eq. (2.367) ). Then, the map Σd+1 → C, u 7→ Eu can be analytically
continued to a function which is meromorphic on the whole complex plane and possesses
only possible simple pole singularities at at u = k, for k ∈ {0, ..., d+ 1}.

Proof. Consider once more the representation (3.120) for the zeta-regularized bulk energy

Eu, in terms of the trace TrA−u−1
2 . Then the thesis follows by arguments similar to those

employed in the proof of Theorem 3.40, using Theorem 2.96 in place of Theorem 2.94.

Renormalized observables.
Let us consider the zeta-regularized versions of the stress-energy VEV (v |T̂ uµν(x)v) (µ, ν ∈
{0, ..., d}, x ∈ Ω), of the vacuum bulk and boundary energies Eu, Bu, and of the vacuum
pressure pu(x) (x ∈ ∂Ω) introduced in the previous subsection. In view of the results
derived therein for these observables (see, in particular, Corollary 3.39 and Propositions
3.44, 3.46), it appears that the mentioned observables are typically analytic functions of u,
for <u sufficiently large (i.e., for u ∈ Σd+1); moreover, they can be analytically continued
to wider regions of the complex plane, possibly including a neighbour of the origin, where
they are meromorphic and possess only simple pole singularities.
Therefore, in general, we can proceed to define the renormalized versions of the above
mentioned zeta-regularized observables following the general (“extended”) approach pre-
sented in [64]. To this purpose, let us indicate with F (u) any one of (v |T̂ uµν(x)v), Eu, Bu,
pu(x) and state the following definition.

Definition 3.49. (Zeta approach to renormalization). Assume there exist r1, r2 ∈ R with
r1 < r2 such that the map Σ(r1,r2) → C, u 7→ F (u) is analytic; moreover, assume this
map to posses an analytic continuation to a function (indicated again with F ) which is
meromorphic on the larger strip Σ(r−,r+) ⊃ Σ(r1,r2) including the origin (0 ∈ Σ(r−,r+)).
Then, the renormalized value of F is

Fren := RP
∣∣∣
u=0

F (u) , (3.121)



150
CHAPTER 3. QUANTUM FIELD THEORY ON SPATIAL DOMAINS WITH

BOUNDARIES

where RP |u=0 indicates the evaluation in u = 0 of the regular part of the Laurent expan-
sion centered at the same point.

Remark 3.30. i) In order to avoid misunderstandings, let us mention that, for any mero-
morphic function F with a pole of order N (N ∈ N) at u = 0, the Laurent expansion
centered at the same point (u = 0) is

F (u) =
+∞∑
k=−N

Fk u
k ; (3.122)

its regular part is given by (RP F )(u) :=
∑+∞

k=0 Fku
k, so that

RP
∣∣∣
u=0

F (u) = F0 .

ii) Let us stress that the prescription (3.121) is a quite straightforward generalization of
the approach considered, e.g., in [22, 56], where F was assumed to posses a simple pole in
u = 0 (i.e., it was assumed that N = 1). On the other hand it is apparent that, whenever
F is analytic at u = 0, the prescription (3.121) reduces to

Fren := F (0) , (3.123)

which was referred to as “restricted” zeta approach in our previous work [64].

For future reference, let us specify the definition (3.121) for the cases of main interest in
the applications.

Definition 3.50. Assume the regularized expressions (v | T̂ uµν(x) v) (x ∈ Ω), Eu, Bu and
pu(x) (x ∈ ∂Ω) to fulfill the assumptions considered in Definition 3.49. Then, we consider
the corresponding renormalized versions reported hereafter.
i) For any x ∈ Ω and µ, ν ∈ {0, ..., d}, the renormalized stress-energy VEV is

(v | T̂µν(x) v)ren := RP
∣∣∣
u=0

(v | T̂ uµν(x) v) . (3.124)

ii) The renormalized bulk and boundary energies are, respectively,

Eren := RP
∣∣∣
u=0

Eu , Bren := RP
∣∣∣
u=0

Bu . (3.125)

iii) The renormalized pressure, at any point x ∈ ∂Ω where the outer normal n(x) is well
defined, is

pren(x) := RP
∣∣∣
u=0

pu(x) . (3.126)

Remark 3.31. Let us stress that, in particular, whenever the diagonal heat or cylinder ker-
nel derivatives fulfill the hypotheses of Theorem 2.91 (with N > (d+ 1)/2) or of Theorem
2.93, respectively, then Eq. (3.124) is granted to give a finite value for (v | T̂µν(x) v)ren
in consequence of Theorems 3.40 and 3.41, respectively. On the other hand, Theorems
3.47 and 3.48 show that the renormalized bulk energy Eren is also finite under suitable
hypothesis.
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Conformal and non-conformal parts of the stress-energy tensor.

In the literature [21, 119, 153] it is customary to write the stress-energy tensor (here to
be intended as the zeta-regularized operator T̂ uµν , its VEV (v | T̂ uµν v) or the renormalized

version (v | T̂µν v)ren) as the sum of a conformal and a non-conformal part. In order to
define these quantities, let us consider for ξ the critical value

ξd :=
d−1

4d
. (3.127)

Remark 3.32. As well-known, when coupling of the scalar field to gravity is taken into
account and no external potential is present (for V = 0), the theory is invariant under
conformal transformations of the spacetime line element if ξ has the critical value (3.127)
(see, e.g., [153], page 447).

In the sequel we adopt systematically the notations

♦ ≡ conformal , � ≡ non-conformal ; (3.128)

in particular, in accordance with them, we give the following definition.

Definition 3.51. Consider the renormalized stress-energy VEV (v | T̂µν v)ren; its confor-
mal and non-conformal parts are, respectively,

(v | T̂ (♦)
µν v)ren := (v | T̂µν v)ren

∣∣∣
ξ=ξd

, (3.129)

(v | T̂ (�)
µν v)ren :=

1

ξ−ξd

(
(v | T̂µν v)ren − (v | T̂ (♦)

µν v)ren

)
. (3.130)

Remark 3.33. i) Of course, in view of the above definitions, there holds

(v | T̂µν v)ren = (v | T̂ (♦)
µν v)ren + (ξ−ξd) (v | T̂ (�)

µν v)ren . (3.131)

ii) In the applications to be considered in the forthcoming Chapter 4, when presenting
our final results for the renormalized stress-energy VEV, we will either write them in the
form (3.131) or give separately the conformal and non-conformal parts (3.129) (3.130).

Anomalies.
As we pointed out in our previous work [64], Eq.s (3.125) and (3.126) are not the only
reasonable ways to define renormalized versions of the bulk/boundary energies and of
the boundary pressure, respectively. For example, starting with the renormalized stress-
energy VEV (v | T̂µν v)ren, one could consider the quite natural alternative definitions
described hereafter.
On the one hand, one could define the renormalized total energy as

Eren :=

∫
Ω

dx (v | T̂00(x) v)ren (3.132)
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(in few words: in the approach (3.112)-(3.125), one integrates over the domain Ω the
regularized energy density and next renormalizes; in the approach (3.132), one first renor-
malizes the energy density and then integrates it over Ω).

On the other hand, the renormalized pressure pren(x) ≡ (preni (x)) at any boundary point
x ∈ ∂Ω′ (see Eq. (3.113) ) with outer unit normal n(x) could be defined as

preni (x) :=

(
lim

x′∈Ω,x′→x
(v | T̂ij(x′) v)ren

)
nj(x) (3.133)

(in few words: in the approach (3.115)-(3.126), one stays at a point on the boundary, and
performs therein the renormalization; in the approach (3.133), one renormalizes at points
inside Ω, and then moves towards the boundary (20) ).

Let us recall a fact that we already stressed in [64]: namely, that the possibilities (3.132)
and (3.133) are not granted a priori to be equivalent, respectively, to the definitions (3.125)
and (3.126) considered in the previous subsection. For example, it may happen that the
integral in the right-hand side of Eq. (3.132) is divergent, while the prescription (3.125)
always gives a finite result by construction (assuming Eu can be analytically continued in
a neighbour of u = 0). Similarly, the renormalized VEV (v | T̂ij(x′) v)ren (x′ ∈ Ω) might
have no finite limit for x′ → x ∈ ∂Ω, thus making ill-defined the prescription (3.133) for
the renormalized pressure.

As a matter of fact, in our previous series of works [64, 65, 66, 67] we showed with
some explicit examples that, in general, the prescriptions (3.132) and (3.133) give infinite
results for Eren and pren due to the singular behaviours of the renormalized stress-energy
VEV near the boundary. In consequence of this, there arise unavoidable ambiguities, or
anomalies, when talking about these renormalized observables. On the other hand, let us
stress that the above mentioned boundary singularities of the renormalized stress-energy
VEV are not a specific consequence of the ZR approach which we are considering in the
present manuscript; indeed, they also appear if one uses a point-splitting approach, as
indicated by the very systematic analysis of Deutsch and Candelas [49].

For the moment, these anomalies must be accepted as a problematic aspect which is
common to all the main regularization schemes; what we can do is just to record them
when they appear, and hope that in the future they can be better understood. Most
probably, their origin should be looked for in some excessive idealization of the physical
model. For example, one could try to describe in a more realistic manner the boundaries
of the spatial domain; these are “hard” and “deterministic” in the present formulation,
but could perhaps be replaced with “soft” or “stochastic” boundaries, following an idea
which was first proposed by Ford and Svaiter [70].

To conclude, let us also report a supposition we made in [64]. Therein, motivated by some
explicit results derived in our series of papers [64, 65, 66, 67], we advanced the following

20Notice that both the mentioned approaches require the existence of the normal n(x); therefore, they
both lose meaning on the eventual edges and corner points of ∂Ω.
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conjecture about the pressure anomaly discussed before:

“at points x ∈ ∂Ω where the normal is well defined and the approach (3.133)
gives a finite pressure, the result obtained according to the latter prescription

agrees with the renormalized pressure defined by Eq. (3.126).”
(3.134)
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Chapter 4

Some explicitly solvable models

In this conclusive chapter we describe some applications of the abstract framework devel-
oped previously in this manuscript; in particular, we analyze some models which can be
treated exactly, i.e., without resorting to any perturbative method.

First of all, we briefly report some results obtained in our series of papers [64, 65, 66, 67]:
more precisely, we consider the case of a scalar field interacting with a background har-
monic potential and that of a field confined within a rectangular box. Next, in Section
4.3 we consider the configuration involving two parallel planes; this model was analyzed
in [65] for Dirichlet, Neumann and periodic boundary conditions (we make reference to
some of the results obtained for these configurations). In the present work we describe
some novel results obtained for a particular subcase which, to the best of our knowledge,
was never treated previously by means of zeta techniques: we assume Robin boundary
conditions are prescribed on each one of the planes and we compute all the components of
the renormalized stress-energy VEV. Our main motivation in the analysis of this configu-
ration is to study the changes arising in the passage from Dirichlet to Neumann boundary
conditions in a case which can be solved explicitly; in particular, we are interested in
the analysis of the boundary behaviour of the renormalized stress-energy VEV which, as
mentioned in subsection 3.2 and exemplified in the forthcoming Sections 4.1 and 4.2, can
cause the appearence of anomalies within the physical framework under analysis.

Before moving on, let us stress the following facts.

Remark 4.1. In all the settings to be studied in the present chapter, for simplicitly, we
restrict attention to the case of a massless field; nevertheless, most of the results to
be reported in the sequel could be generalized to the case of a massive field, with some
additional computational effort. Furthermore, the computational methods we are going to
present can be employed for an arbitrary spatial dimension d ∈ {1, 2, 3, ...}. As examples,
at the end of each section we report the explicit results which can be obtained performing
the numerical computations required by the previously mentioned general methods for
some specific choice of d; we typically fix d = 3 in these computations, for clear physical
interest (except for Section 4.2, where we choose d = 2 for simplicity of exposition).
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4.1 The case with a background harmonic potential.

The configuration under investigation in the present section is that of a scalar quantum
field interacting with a background harmonic potential, in arbitrary spatial dimension
d ∈ {1, 2, 3, ...}. Hereafter, we report some of the results which were derived in our
previous work [66], to which we refer for a more detailed analysis; following the cited
work, for simplicity, we restrict the attention to the case where the field is massless and
the background potential is isotropic. Nevertheless, our approach could be extended with
some computational effort to anisotropic harmonic potentials and to the case of a massive
scalar field, as well.

The main result of our analysis is the computation of the renormalized stress-energy VEV,
obtained by applying the general framework described in Chapters 2 and 3 (see also [64])
to the present configuration; we also consider the total energy, referring to both bulk
and boundary contributions. For all the mentioned observables we derive, by analytic
methods, fully explicit integral representations; ultimately, these representation must be
computed numerically. However, they can also be used to derive asymptotic expansions
(complete with remainder estimates) for the stress-energy VEV components when the
radius goes to zero or to infinity.

In subection 4.1, we report the results obtained using the framework mentioned above and
performing the required explicit computations for d = 3, with the aid of Mathematica; in
particular, we restrict the attention to the renormalized energy density (v | T̂00 v)ren and
to the renormalized bulk energy Eren.

Before proceeding, let us mention that the idea to replace sharp boundaries with suitable
background potentials is well-known in the literature on the Casimir effect. Typically
(see, e.g., [15, 23, 81, 105, 120]), delta-like potentials are introduced in order to mimic
boundary conditions in a “physically more realistic” framework; the ultimate purpose is
to obtain less singular behaviours of the renormalized quantities, avoiding, e.g., boundary
divergences such as the ones mentioned in subsection 3.2 (see also [64, 65]). The case of a
scalar field interacting with an external harmonic potential has been formerly considered
by Actor and Bender [2, 5], who have determined the renormalized VEV of the total (bulk)
energy via global zeta regularization (using ad hoc results on the analytic continuations for
the special functions involved in this specific case) (1); as far as we know, the stress-energy
tensor has not been previously computed for the present configuration.

Introducing the problem.

As anticipated previously, we consider the case of a massless scalar field on Rd in presence
of a classical isotropic harmonic potential. More precisely, we assume

Ω := Rd, V (x) := λ4 |x|2 , (4.1)

1In [66] we point out that our results for the renormalized bulk energy agree with the ones of Actor
and Bender [5] for d ∈ {1, 2, 3}.
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where λ > 0 and |x| :=
√

(x1)2 + ...+ (xd)2; the constant λ is, dimensionally, a mass (or
an inverse length) like the parameter κ employed to define the zeta-regularized Wightman
field (see Eq. (3.92) and the related comments). In this case, we put

A := −4+V ; (4.2)

this is an admissible operator in the sense of definition 2.37 (see page 55). In fact, as
well known, A is strictly positive and self-adjoint on the single particle Hilbert space
H = L2(Rd), with admissible domain DA := {f ∈ L2(Rd) | (− 4 +V )f ∈ L2(Rd)}.
Moreover, A has purely discrete spectrum, given by

σ(A) =
{
λ2
(

2(n1 + ...+ nd) + d
) ∣∣∣ ni ∈ N , i = 1, ..., d

}
(4.3)

(2). In view of the above considerations, we can employ the functional analytic framework
developed in Chapter 2 to analyze the present setting; in particular, we can consider the
Dirichlet and heat kernels associated to the admissible operator A, as well as the related
traces.

The heat kernel and the heat trace.

Notice that the configuration described in Eq. (4.1) is of product type. Therefore, the
heat kernel e−tA( , ) (for t ∈ Σ0) related to the admissible operator A = −4+V (with
V (x) = λ4|x|2, for x ∈ Rd) can be easily determined, starting from the one-dimensional
Mehler kernel [108] (see also [20, 33, 46, 82]); for any x,y ∈ Rd, the final result is [66]

e−tA(x,y) =

(
λ√

2π sinh(2λ2t)

)d
exp

[
−λ2

( |x|2+ |y|2
2 tanh(2λ2t)

− x · y
sinh(2λ2t)

)]
(4.4)

(where x · y :=
∑d

i=1 x
i yi). Moreover, by a slight variation of Proposition 2.74 and of

the related Corollary 2.76, it appears that the exponential operator e−tA is of trace class
for all t ∈ Σ0; so, the heat trace Tr e−tA exists and is finite. It can be proved by simple
computations (3) that

Tr e−tA =

(
1

2 sinh(k2t)

)d
. (4.5)

2Note that the parameter ε > 0, which is generally chosen so as to fulfill σ(A) ⊂ [ε,+∞), can be
fixed explicitly in the case under analysis, setting ε := λ2 d.

3Eq. (4.5) can be easily derived as follows, recalling that the spectrum of A is given by (4.3):

Tr e−tA =
∑

n1,...,nd∈N
e−tλ

2(2(n1+...+nd)+d) = e−tλ
2d

(
+∞∑
n=0

e−tλ
2n

)d
=

e−tλ
2d

(1− e−tλ2)d
=

(
1

2 sinh(k2t)

)d
.

For an alternative derivation,using the explicit expression(4.4)of the heat kernel, see [66],page 8, footnote
4.
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Rescaled spherical coordinates.

Next, notice that the configuration (4.1) is patently spherically symmetric; therefore, it
is natural to pass to a set of curvilinear coordinates which best fit the symmetries of the
problem. To this purpose, we introduce the spherical “λ-rescaled” coordinates

x 7→ q(x) ≡ (r(x), θ1(x), ..., θd−2(x), θd−1(x)) ∈ (0,+∞)×(0, π)×...×(0, π)×(0, 2π) (4.6)

whose inverse map q 7→ x(q) is described by the equations

λx1 = r cos(θ1) ,

λ x2 = r sin(θ1) cos(θ2) ,

...

λxd−1 = r sin(θ1) . . . sin(θd−2) cos(θd−1) ,

λ xd = r sin(θ1) . . . sin(θd−1) .

(4.7)

Let us stress that, for any spatial dimension d, there holds

r = λ |x| ; (4.8)

thus, the coordinate r is an adimensional radius.
In order to avoid cumbersome notations, given a function Rd → Y , x 7→ f(x) (with Y
any set), we indicate the composition q 7→ f(x(q)) as q 7→ f(q) ; we will use similar
conventions for functions on Rd × Rd.
Of course, the curvilinear coordinates q induce a set of spacetime coordinates q ≡ (qµ) ≡
(t,q). The spatial and space-time line elements are, respectively,

d`2 = aij(q)dqidqj ; ds2 = −dt2+d`2 = gµν(q) dq
µdqν ,

g00 := −1 , gi0 = g0i := 0 , gij(q) := aij(q) for i, j ∈ {r, θ1, ..., θd−1} ,
(4.9)

where aij indicates the flat metric on Rd expressed in the curvilinear coordinates q. Most
results of the previous Chapters 1-3 are readily rephrased in the present framework; in
particular, the analogue of Eq. (3.103) in the coordinate system (qµ) is

T̂ uµν := (1−2ξ)∂µϕ̂
u◦ ∂νϕ̂u−

(
1

2
−2ξ

)
ηµν
(
∂ρϕ̂u∂ρϕ̂

2+V (ϕ̂u)2
)
− 2ξ ϕ̂u◦ ∇µνϕ̂u , (4.10)

where ∇µ denotes the covariant derivative induced by the metric (4.9). Notice that, indi-
cating with γkij the Christoffel symbols for the spatial metric (aij(q)) and with Di the cor-
responding covariant derivative, for any scalar function f there hold (i, j ∈ {r, θ1, ..., θd−1})

∇µf = ∂µf , ∇ijf = Dijf = ∂ijf − γkij∂kf ,
∇0if = ∂0(∂if) = ∂i(∂0f) = ∇i0f , ∇00f = ∂00f .

(4.11)
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Before proceeding, let us also point out that, in view of the explicit expressions (4.4) and
(4.5) for the heat kernel and trace, respectively, it is natural to introduce the rescaled
parameter

τ := λ2 t ∈ (0,+∞) . (4.12)

In the sequel, for any pair

q = (r, θ1, ..., θd−1) ≡ (r,θ) , p = (r′, θ′1, ..., θ
′
d−1) ≡ (r′,θ′) , (4.13)

we write A−s(q,p) and e−τA(q,p), respectively, for the Dirichlet and heat kernels at two
points x,y of (rescaled) spherical coordinates q,p, and with τ related to t by Eq. (4.12).
In particular, Eq. (4.4) implies

e−τA(q,p) =

(
λ√

2π sinh(2τ)

)d
exp

[
−
(

r2+ r′ 2

2 tanh(2τ)
− r r′ S(θ)S(θ′)

sinh(2τ)

)]
(4.14)

where S(θ) and S(θ′) are the products of cosines and sines of the angular coordinates
(θ1, ..., θd1) and (θ′1, ..., θ

′
d1

) of Eq. (4.13), corresponding to the scalar product x · y.

The zeta-regularized stress-energy VEV.

Hereafter we are going to derive integral representations for the regularized stress-energy
VEV components, using the “rescaled” heat kernel e−τA(q,p) (of Eq. (4.14) ). To this
purpose, let us first point out that the Mellin relation (2.266) can be rephrased in the
present setting as

A−s(q,p) =
λ−2s

Γ(s)

∫ +∞

0

dτ τ s−1 e−τA(q,p) , (4.15)

along with analogous relations for its (covariant) derivatives.
Next notice that, starting from Eq. (4.10), expressions analogous to those in Eq.s (3.107-
3.109) can be derived for (v | T̂ uµν v) in terms of the Dirichlet kernel and of its derivatives
in curvilinear coordinates. Using these expressions for the zeta-regularized stress-energy
VEV along with Eq. (4.15) and the corresponding ones for the derivatives of A−s( , ), it
follows that

(v | T̂ uµν(q) v)=
λd+1

Γ(u+1
2

)

(κ
λ

)u∫ +∞

0

dτ τ
u−d−3

2 H(u)
µν (τ ; q) (µ, ν∈{0, r, θ1, ..., θd−1}) (4.16)

where the coefficients H
(u)
µν (τ ; q) are as follows (for i, j, h, ` ∈ {r, θ1, ..., θd−1}; here D is the

spatial covariant derivative of Eq. (4.11) ):

H
(u)
00 (τ ; q) :=

( τ
λ2

)d/2[(1

4
+ξ

)(
u−1

2

)
+

(
1

4
−ξ
)
τ
(
ah`(q)Dqhp`+r

2
)]∣∣∣∣

p=q

e−τA(q,p) , (4.17)

H
(u)
0i (τ ; q) = H

(u)
i0 (τ ; q) := 0 , (4.18)
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H
(u)
ij (τ ; q) = H

(u)
ji (τ ; q) :=( τ

λ2

)d/2[(1

4
− ξ
)
aij(q)

(
u−1

2
− τ

(
ah`(q)Dqhp` + r2

))
+

+
( τ
λ2

)((1

2
− ξ
)
Dqipj − ξ Dqiqj

)]∣∣∣∣
p=q

e−τA(q,p) .

(4.19)

Here and in the remainder of this section, we are implicitly understanding the dependence
on the parameter ξ for simplicity of notation: so, H

(u)
µν (τ ; q) stands for H

(u)
µν (τ ; q ; ξ).

Using the explicit expression (4.14) for the heat kernel in rescaled spherical coordinates,

one can infer the following notable properties i)-v) of the coefficients H
(u)
µν (τ ; q); these

properties could be proved for arbitrary d (in [66] we checked them by explicit computa-
tions in the cases d ∈ {1, 2, 3}).
i) For any fixed τ,q and any µ, ν ∈ {0, r, θ1, ..., θd−1}, the map u 7→ H

(u)
µν (τ ; q) is affine.

ii) For any fixed q, u ∈ C and any µ, ν ∈ {0, r, θ1, ..., θd−1}, the map τ 7→ H
(u)
µν (τ ; q) is

smooth (i.e., of class C∞) on [0,+∞) and exponentially vanishing for τ → +∞.

iii) The final expressions for the coefficients H
(u)
µν do not depend on the parameter λ, even

though it appears in the right-hand sides of Eq.s (4.17-4.19).

iv) There holds

H(u)
µν = 0 for µ 6= ν ,

H
(u)
θd−1θd−1

= sin2(θd−2) H
(u)
θd−2θd−2

= ... = sin2(θd−2) . . . sin2(θ1) H
(u)
θ1θ1

.
(4.20)

v) For µ = ν ∈ {0, r, θ1}, there hold

H(u)
µν (τ ; q) = e−r

2 tanh τM(u)
µν (τ ; r) (4.21)

whereM(u)
µν (τ ; r) is a polynomial in r, u of degree 1 in both these variables, with coefficients

depending smoothly on τ .

Before moving on, let us make a few remarks concerning the integral representation
(4.16) for the regularized stress-energy VEV. First notice that, in consequence of item iii)
above, this VEV only depends on the parameter λ through the multiplicative coefficient
λd+1(κ/λ)u in front of the integral in the cited equation. On the other hand, Eq. (4.20)
of point iv) indicates that the VEV (v | T̂ uµν v) is diagonal and that the only independent
components are those with µ = ν ∈ {0, r, θ1}; finally, these components only depend on
the radial coordinate r (and not on the angular ones {θ1, ..., θd−1}), in accordance with
the spherical symmetry of the configuration under analysis.

Analytic continuation.

Let us move on to determine the analytic continuation of the regularized stress-energy
VEV. To this purpose, consider the integral representation (4.16) of (v | T̂ uµν v) along with
the general framework of subsection 2.8, where several methods are proposed to construct
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the analytic continuation of Mellin transforms. In particular, Proposition 2.88 can be
employed in the case under analysis, setting F = H

(u)
µν ( ; x) and s = (u − d − 1)/2; this

allows to infer (compare with Eq. (2.336) ), for any N ∈ N,

(v | T̂ uµν(q) v) =

λd+1

Γ(u+1
2

)

(−1)N

(u−d−1
2

)...(u−d−1
2

+N − 1)

(κ
λ

)u∫ +∞

0

dτ τ
u−d−3

2
+N ∂Nτ H

(u)
µν (τ ; q) .

(4.22)

Due to the features of the coefficients H
(u)
µν pointed out in the previous subsection, the

integral in the above expression converges for u ∈ Σd+1−2N , so that Eq. (4.22) yields the
required analytic continuation of (v | T̂ uµν v) to the very same region; this region includes
the value u = 0, required for the zeta approach to renormalization (see Eq. (3.124) ),
whenever

N >
d+ 1

2
. (4.23)

Under this assumption, following Eq. (3.124), in general we define

(v | T̂µν(q) v)ren := RP
∣∣∣
u=0

(v | T̂ uµν(q) v) . (4.24)

For N as in Eq. (4.23), consider the expression in the second line of Eq. (4.22); for any
even spatial dimension d this expression is regular in u = 0, so that we can simply evaluate
(v | T̂ uµν(q) v) at this point to obtain the renormalized stress-energy VEV. On the other
hand, for odd d we must in fact discard a singular contribution in the Laurent expansion
at u = 0, since the function under analysis has a simple pole in u = 0. Because of this
pole singularity, the procedure of evaluating the regular part of Eq. (4.22) in u = 0 in the
case of odd d implies the appearance of a logarithmic term in τ in the integrand (4).
Simple but rather lenghty computations give the following results, for d either odd or even
and µ, ν ∈ {0, r, θ1}:

(v | T̂µν(q) v)ren = λd+1
(
T (0)
µν (r) +Mκ,λ T

(1)
µν (r)

)
, where

T (0)
µν (r) :=

∫ +∞

0

dτ τN−
d+3
2 e−r

2 tanh τ
[
P(0)
µν (τ ; r) + ln τ P(1)

µν (τ ; r)
]
,

T (1)
µν (r) :=

∫ +∞

0

dτ τN−
d+3
2 e−r

2 tanh τ P(1)
µν (τ ; r) , Mκ,λ := γEM+2 ln

(
2κ

λ

) (4.25)

4In fact
τu/2 = e

u
2 ln τ = 1 +

u

2
ln τ +O(u2) for u→ 0 .

The logarithmic term proportional to u is not relevant in the case of even d, where analytic continuation
exists up to u = 0 and it is simply obtained setting u = 0 in (4.22). On the contrary, for odd d we
must take the regular part at u = 0 of the expression (4.22) and the above term u

2 ln τ contributes to it,
since it is multiplied by a term proportional to 1/u that comes from the u → 0 expansion of the factor
1/(u−d−3

2 +1)...(u−d−3
2 +N) in (4.22).
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(γEM ' 0.577 is the Euler-Mascheroni constant). In the above definitions P(0)
µν (τ ; r)

and P(1)
µν (τ ; r) are suitable functions determined by H

(u)
µν (τ ; q); these functions are in fact

polynomials in r2 of order N + 1, with coefficients which are smooth functions of τ on
[0,+∞). Let us stress that

P(1)
µν (τ ; r) = 0 and T (1)

µν (r) = 0 for d even , (4.26)

a fact corresponding to the previous comments on the logarithmic terms.
Next note that, in consequence of the remarks at the end of subsection 4.1, the renor-
malized VEV (v | T̂µν v)ren only depends on the parameter λ through the coefficients λd+1

and Mκ,λ in the first equation of (4.25). In particular, the functions T
(a)
µν (r) (a ∈ {0, 1})

introduced therein do not depend on λ and we can evaluate them computing the integrals
in Eq. (4.25) numerically, for any fixed r ∈ (0,+∞). In fact, the same integrals can
also be used to derive explicit expressions (complete with remainder estimates) for the
asymptotic expansions of (v | T̂µν v)ren in the limits r → 0+ and r → +∞. We refer to [66]
for more details on this topic; in the present manuscript we only report the final results
which can be obtained for d = 3 (see the conclusive paragraph of the present section).
To conclude, following Definition 3.51 (5), we introduce the conformal and non-conformal

parts of the functions r 7→ T
(0)
µν (r), T

(1)
µν (r), setting

T (a,♦)
µν := T (a)

µν

∣∣∣
ξ=ξd

, T (a,�)
µν :=

1

ξ−ξd

(
T (a)
µν − T (a,♦)

µν

)
(a ∈ {0, 1}) (4.27)

where ξd is defined by Eq. (3.127). In the final paragraph we present the functions P(a)
00

(a ∈ {0, 1}) and the graphs (obtained via numerical integration) for the functions in Eq.
(4.27) corresponding to the energy density (µ = ν = 0), for d = 3.

The total energy.

First note that, by a simpe variation of Proposition 3.45, the total energy can be expressed
as the sum of a bulk and a boundary contribution as in Eq.s (3.117-3.119); in the following
we are going to discuss these two contributions separately.
Let us first consider the regularized bulk energy ; according to Eq. (3.120), this can be
expressed as

Eu =
κu

2
TrA−u−1

2 .

The trace appearing in the above equation is connected through Eq. (2.297) to the heat
trace which, according to Eq. (4.5), has the form

Tr e−tA =
1

td
H(t) with H(t) :=

(
t

2 sinh(k2t)

)d
; (4.28)

5In particular, recall that the following convention is employed:

♦ ≡ conformal , � ≡ non-conformal .
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it is patent that the map t 7→ H(t) is smooth on [0,+∞) and exponentially vanishing for
t→ +∞. Then, using Theorem 2.95, we obtain for the regularized bulk energy

Eu =
(−1)N κu

2 Γ(u−1
2

)(u−1
2
−d)...(u−1

2
− d+N − 1)

∫ +∞

0

dt t
u−3
2
−d+N dN

dtN
H(t) . (4.29)

The above relation holds for any N ∈ {1, 2, 3, ...} and the integral appearing therein
converges for any complex u ∈ Σ2(d−N)+1; thus, for any integer N > d + 1/2, Eq. (4.29)
gives the analytic continuation of Eu in a neighborhood of u = 0. Since here no singularity
appears, we can obtain the renormalized bulk energy simply by setting u = 0 in Eq. (4.29);
making again the change of integration variable τ := k2t (see Eq. (4.12) ), we infer

Eren = − k

2d+2−N√π

(
N−1∏
i=0

1

2(d− i)+1

)∫ +∞

0

dτ τN−d−
3
2
dN

dτN
H(τ)

for any N > d+
1

2
, with H(τ) :=

( τ

sinh τ

)d
.

(4.30)

Now, let us move on to discuss the boundary energy Bu. This can be defined, according
to Eq. (3.119); however, since the spatial domain is Rd, the integral over the boundary
appearing therein must be properly interpreted as the limit of integrals over the boundary
of suitable, bounded subdomains. By quite lenghty computations (see [66]), this procedure
allows to infer that Bu = 0 for all u ∈ Σd−3. Therefore, the zeta approach implies that
the renormalized boundary energy vanishes identically:

Bren := Bu
∣∣∣
u=0

= 0 . (4.31)

A remark. Before proceeding, let us point out a fact that we anticipated in subsection
3.2: the renormalized total energy Eren (which, due to Eq. (4.31), in the present setting is
equal to Eren) does not coincide with the integral

∫
Rd(v | T̂00 v)ren. This fact is patently

exemplified by the results to be reported in the subsequent paragraph, dealing with a
scalar field in presence of an isotropic harmonic potential in spatial dimension d = 3.
Indeed, on the one hand, the forthcoming Eq. (4.46) states that the renormalized total
energy Eren = Eren is finite; on the other hand, Eq. (4.45) (along with Eq. (4.40) ) shows
that (v | T̂00 v)ren diverges in a non-integrable way for |x| (= r/k) → +∞. Let us stress
that the “energy anomaly” Eren 6=

∫
(v | T̂00 v)ren is not a consequence of some ultraviolet

issue specific to the present setting: in fact, it also appears in configurations involving
bounded spatial domains (such as the one discussed in the subsequent Section 4.2).

The previous results in spatial dimension d = 3.

Hereafter we are going to report the results which can be obtained using the general
approach presented in the previous paragraphs for the case of spatial dimension d = 3.
We describe this setting using the spherical coordinates q = (r, θ1, θ2) ∈ (0,+∞)×(0, π)×
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[0, 2π), which are related to the Cartesian coordinates x ≡ (x1, x2, x3) ∈ R3 via (see Eq.
(4.7) )

λx1 = r cos θ1 , λ x2 = r sin θ1 cos θ2 , λ x3 = r sin θ1 sin θ2 ; (4.32)

the corresponding spatial line element is

d`2 = λ−2(dr2+r2(dθ2
1 +sin2θ1 dθ

2
2) ) . (4.33)

After lenghty computations, the zeta-regularized stress-energy VEV can be expressed as
(compare with Eq. (4.16) and recall that dependence on ξ is understood implicitly)

(v | T̂ uµν(q) v) =
λ4

Γ(u+1
2

)

(κ
λ

)u ∫ +∞

0

dτ τ−3+u
2 H(u)

µν (τ ; q) (µ, ν∈{0, r, θ1, θ2}) , (4.34)

where H
(u)
µν is diagonal and we only have to consider the independent components

H
(u)
00 (τ ; q) :=

A3(τ, r)

[
−(1−u)(1+4ξ) + (1−4ξ)

(
2τ

sinh 2τ

)(
3 + r2 sinh 3τ − sinh τ

cosh τ

)]
,

(4.35)

H(u)
rr (τ ; q) :=

A3(τ, r)

[
8ξ

τ

tanh τ
− (1−4ξ)

(
1−u+

(
2τ

sinh 2τ

)(
1+2r2 tanh τ

))]
,

(4.36)

H
(u)
θ1θ1

(τ ; q) :=( r
λ

)2
A3(τ, r)

[
8ξ

τ

tanh τ
− (1−4ξ)

(
1−u+

(
2τ

sinh 2τ

)(
1+

r2

cosh22τ

))] (4.37)

(for the remaining diagonal component, i.e. H
(u)
θ2θ2

(τ ; q), see Eq. (4.20) ). In the above, for
simplicity of notation we have put

A3(τ, r) :=
1

64π3/2
e−r

2 tanh τ

(
2τ

sinh 2τ

)3/2

. (4.38)

The above expressions for the components of the tensor H
(u)
µν are easily seen to possess the

features anticipated in Eq.s (4.20) (4.21) and in the related comments. Thus, according to
the general framework developed in subsection 4.1, we can obtain the analytic continuation
of (v |T̂ uµν v) given in Eq. (4.34) integrating by parts N times the integral appearing
therein, for any N > 2 (see Eq. (4.23) ). For definiteness, we fix N = 3 so that Eq. (4.22)
reads

(v | T̂ uµν(q) v) = − λ4

Γ(u+1
2

)

1

(u
2
−2)(u

2
−1)u

2

(κ
λ

)u∫ +∞

0

dτ τ
u
2 ∂3

τ H
(u)
µν (τ ; q) . (4.39)
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As in all cases with odd spatial dimension, the analytic continuation of the regularized
stress-energy VEV given in Eq. (4.39) has a simple pole in u = 0 (recall the comments
made in subsection 4.1). In consequence of this, we have to adopt the extended version of
the zeta approach to define the renormalized VEV (v |T̂µν v)ren, taking the regular part
in u = 0 of Eq. (4.39) (see Eq. (4.24) ); with some effort, we obtain

(v |T̂µν(q) v)ren = λ4
(
T (0)
µν (r) +Mκ,λ T

(1)
µν (r)

)
,

T (0)
µν (r) :=

∫ +∞

0

dτ e−r
2 tanh τ

[
P(0)
µν (τ ; r) + ln τ P(1)

µν (τ ; r)
]
,

T (1)
µν (r) :=

∫ +∞

0

dτ e−r
2 tanh τ P(1)

µν (τ ; r) , Mκ,λ := γEM+2 ln

(
2µ

λ

)
,

(4.40)

where

P(0)
µν (τ ; r) := − 1

4
√
π
er

2 tanh τ
[
3 ∂3

τH
(0)
µν (τ ; q) + 4 ∂u

∣∣∣
u=0

∂3
τH

(u)
µν (τ ; q)

]
,

P(1)
µν (τ ; r) := − 1

2
√
π
er

2 tanh τ ∂3
τH

(0)
µν (τ ; q) .

(4.41)

It is readily found that P(0)
µν , P(1)

µν are polynomials of fourth order in r2. Now, we evaluate
numerically the integrals in Eq. (4.40) and distinguish between the conformal and non-
conformal parts ♦, � of each component; once more we refer to Eq. (4.27), recalling that
for d = 3 we have (see Eq. (3.131) )

ξ3 =
1

6
. (4.42)

The forthcoming Fig.s 4.1 and 4.2 show, as examples, the graphs of the functions deter-
mining the renormalized energy density (v |T̂00 v)ren, i.e.,

r 7→ T
(0,♦)
00 (r), T

(1,♦)
00 (r), T

(0,�)
00 (r), T

(1,�)
00 (r) . (4.43)

We refer to [66] for the graphs of the other components.
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In the following we report the asymptotic expansions of the functions in Eq. (4.43) in
the limit of small and large values of the radial coordinate r; these expansions can be
obtained starting from the integral representations (4.40) (see [66] for more details).

On the one hand, for r = λ|x| → 0+ there hold

T
(0,♦)
00 (r) = −0.0047− 0.0024 r2 + 0.0028 r4 + 0.0006 r6 − 0.0001 r8 +O(r10) ,

T
(1,♦)
00 (r) = −0.0016 r4 +O(r10) ,

T
(0,�)
00 (r) = −0.0143− 0.0468 r2 + 0.0134 r4 − 0.0033 r6 + 0.0007 r8 +O(r10) ,

T
(1,�)
00 (r) = 0.0380 +O(r10) .

(4.44)

Let us stress that, using the methods described in [66], all the coefficients in the above ex-
pansions could be determined explicitly, complete with quantitative remainder estimates.
However the expressions involved are quite cumbersome; for this reason, we have reported
here only the first four digits of their numerical evaluation.



4.2. THE CASE OF A RECTANGULAR BOX. 167

On the other hand, in the limit r = λ|x| → +∞, the following asymptotics can be infered:

T
(0,♦)
00 (r) =

r4

64π2

(
ln r2+ γEM +

1

2

)
− 5

96π2
− 23

2880π2r4
+O(r−8 ln r2) ,

T
(1,♦)
00 (r) = − r4

64π2
+O(r−8 ln r2) ,

T
(0,�)
00 (r) = − 3

8π2

(
ln r2+ γEM +

2

3

)
+

1

12π2r4
+O(r−8 ln r2) ,

T
(1,�)
00 (r) =

3

8π2
+O(r−8 ln r2) .

(4.45)

In passing, let us point out that the asymptotic expansions in Eq.s (4.44), (4.45) and the

corresponding graph in Figure 4.2 suggest that the function T
(1,�)
00 is, in fact, constant

(notice that 3/8π2 ' 0.0380...).
Finally, Eq. (4.30) with N = 4 and numerical evaluation of the corresponding integral
allow us to derive the renormalized bulk energy

Eren = −(0.0078607119± 10−10)λ . (4.46)

This result agrees with the one obtained by Actor and Bender in [5], using a different
approach also related to analytic continuation techniques (6).
Since the renormalized boundary energy Bren vanishes identically in the present configu-
ration (see Eq. (4.31) ), the above result for the bulk energy Eren suffices to infer that the
total energy Eren = Eren+Bren is finite. On the other hand, it appears from the asymptotic
expansions in Eq. (4.45) that the renormalized boundary energy (v | T̂00 v)ren diverges in
a non-integrable manner in the limit r → +∞; therefore, the integral

∫
Rd(v | T̂00 v)ren is

infinite (or, rather, it does not exists). In view of this, the alternative definition (3.132)
for the total energy Eren does not yield a finite result in the present case. This is one of the
anomalies which we pointed out in the remark a the end of subsection 4.1 (see subsection
3.2 for a general discussion).

4.2 The case of a rectangular box.

In the present section we consider a massless field confined within a d-dimensional rect-
angular domain Ω = (0, a1) × ... × (0, ad) (d ∈ {1, 2, 3, ...}, arbitrary), with Dirichlet
boundary conditions. Our approach could also be generalized, with some computational
effort, to include the case of a massive field and to deal with Neumann or periodic bound-
ary conditions; we choose to avoid these generalizations here for the sake of simplicity.

6To check this, one must compare the numerical value reported in the above Eq. (4.46) with the
one reported in Eq. (4.4) of [5]. Let us stress that conventions different from ours are used therein. In
fact, using our language, the bulk energy is formally defined in [5] as E :=

∑
n ωn, while our general

prescription (3.120) is formally equivalent to E = 1
2

∑
n ωn; moreover the parameter α of [5] and our

parameter λ are related by α =
√

2λ. Summing up, the “total energy” derived in [5] has to be multiplied
by 1/2 in order to obtain our Eren.
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We follow the analysis presented in our previous work [67]. Our starting point is the
heat kernel e−tA( , ), for which we consider two different series representations describ-
ing, respectively, the behavior for small and large t; these are used to produce series
expansions giving the analytic continuations of the Dirichlet kernel A−s( , ) and of its
derivatives, which converge with exponential speed (we also give fully quantitative re-
mainder estimates). These analytic continuations determine the renormalized VEVs of
several observables, namely: the stress-energy tensor, the pressure on boundary points,
the total energy and the total force acting on any side of the box. Our results hold for
an arbitrary spatial dimension d; in the conclusive paragraph of the present section we
specialize them to the subcase d = 2, producing several graphs for the renormalized VEV
of the energy density and for the other observables mentioned previously.
Many of the results reported in this Section (such as those in [67]) have been derived with
the aid of Mathematica for both symbolic and numerical computations.

The Casimir effect for a rectangular box configuration has been discussed in a lot of
works; here we only mention some of them. Concerning total energy and boundary forces,
the foremost computations were performed by Lukosz [99, 100], by means of exponential
regularization and Abel-Plana formula; the same techniques were used by Mamaev and
Trunov [102, 103] (also see [104, 105]). Alternative derivations based on global ZR were
later given by Ruggerio, Vilanni and Zimerman [135, 136], Ambjørn and Wolfram [11, 12]
and by Li, Cheng et al. [95]; equivalent results were obtained using generalized cut-off
techniques by Edery [52, 53] and by Estrada, Fulling et al. [61, 77]. Finally, let us mention
the monographies of Elizalde et al. [56, 57] and Bordag et al. [25]; these can be taken
as standard references for the study of global aspects. Our series representations for the
total energy and for the boundary forces are different, but equivalent to the ones of [25].

On the other hand, local aspects for a scalar field in a rectangular box were first analyzed
by Actor in two seminal papers [3, 4]; therein d = 3, the framework is Euclidean and the
author renormalizes, mostly by analytic continuation, the effective Lagrangian density
and the VEV (v | ϕ̂ 2(x) v). It is hardly the case to point out that these observables
do not determine the renormalized stress-energy VEV; the latter was instead considered
in a work of Svaiter et al. [132], again by means of analytic continuation techniques.
However, in [132] some additional “empty space” divergences are removed by hand, with
the motivation that they are also present when there is no boundary; moreover, [132]
considers only a 3-dimensional, infinite rectangular waveguide (Ω = (0, a1)× (0, a2)×R),
rather than a box of arbitrary dimension. Let us also stress that the methods employed in
[132] yield a representation of the renormalized stress-energy VEV via series converging
with polynomial speed, which is slower than the exponential convergence of our series
expansions. An alternative evaluation of the stress-energy VEV was proposed by Estrada,
Fulling et al. in [61, 77], where the case of a 2-dimensional rectangular box is analyzed
using exponential cut-off techniques; nevertheless, the position of principle in the cited
works is that the theory with a cutoff is a more realistic description of the physical system
under investigation, and renormalization is only hinted at for the energy density.
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Introducing the problem.

We consider the model of a massless scalar field confined within a d-dimensional box, with
no external potential; more precisely, we assume

Ω = ×di=1(0, ai) with ai > 0 for i ∈ {1, ..., d} , V = 0 . (4.47)

The boundary ∂Ω of the spatial domain is composed by the sides

πp,α := {x ∈ Rd | xp = α ap , xi ∈ [0, ai] for i 6= p, i ∈ {1, ..., d} }
for p ∈ {1, ..., d}, α ∈ {0, 1} ;

(4.48)

for the sake of simplicity, we restrict attention to the case where the field fulfills Dirichlet
boundary conditions on each one of these sides. Under the above assumptions, we put

A := −4 ; (4.49)

this is strictly positive and self-adjoint on H = L2(Ω), with domain DA := {f ∈
H1

0 (Ω) |4f ∈ L2(Ω)} (7). Also in this case, A is an admissible operator in the sense
of definition 2.37 and it has purely discrete spectrum, given by

σ(A) =

{
ω2
m :=

d∑
i=1

m2
iπ

2

a2
i

∣∣∣ m ≡ (mi)i=1,...,d, mi ∈ {1, 2, 3, ...}
}

(4.50)

(8); a complete orthonormal set of eigenfunctions of A in L2(Ω) corresponding to the
eigenvalues (ω2

m) in Eq. (4.50) is

Fm(x) :=
d∏
i=1

√
2

ai
sin
(miπ

ai
xi
)

(x ∈ Ω) . (4.51)

Again, we can use the general framework of Chapter 2; in particular, we can consider the
Dirichlet and heat kernels associated to A, along with the related traces.

The heat kernel.

Similarly to the model with a harmonic potential considered in the previous Section 4.1,
in the present setting we are dealing with a product domain configuration. In particular,
the heat kernel associated to A = −4 factorizes; more precisely, we have

e−tA(x,y) =
d∏
i=1

e−tAi(xi, yi) , (4.52)

7 Let us point out that, since the boundary ∂Ω is Lipschitz, one can still define a notion of trace as in
Eq. (2.160) and prove that H1

0 (Ω) = {f ∈ H1(Ω) | f �∂Ω = 0} (see [7]). Moreover, it can be proven that
DA = {f ∈ H2(Ω) | f �∂Ω = 0}. If Ω were smooth, one could infer this fact from Theorem 2.34; in this
case ∂Ω is not smooth, but the same conclusion can be infered using the eigenfunction expansion of A.

8In this case the the parameter ε > 0 fulfilling σ(A) ⊂ [ε,+∞), can be chosen to be ε :=
∑d
i=1(π/ai)

2.
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where, for i ∈ {1, ..., d}, we have put Ai := −∂xixi (with the induced Dirichlet boundary
conditions in xi = 0 and xi = ai) and e−tAi( , ) indicates the corresponding heat kernel.
Each of the one-dimensional kernels can be determined by elementary methods; in par-
ticular, we showed in [67] that two different representations can be derived for e−tAi( , ),
starting from the set of eigenfunctions and eigenvalues in Eq.s (4.50) (4.51) and using
the Poisson summation formula. Of course, these representations determine, according to
(4.52), two alternative expressions for the total heat kernel e−tA( , ), which we proceed
to report hereafter. It appears that these alternative expressions are suited to describe
the behaviour of this kernel for small and large t, respectively.

Large t representation of the heat kernel. This is

e−tA(x,y) =
2d

a1 ... ad

∑
m∈Nd?

e−ω
2
mt Cm(x,y) , (4.53)

where ωm is as in Eq. (4.50) and, for the sake of brevity, we have put

N? := {1, 2, 3, ...} , Cm(x,y) :=
d∏
i=1

sin

(
miπ

ai
yi
)

sin

(
miπ

ai
xi
)
. (4.54)

Small t representation of the heat kernel. This is

e−tA(x,y) =
1

(4πt)d/2

∑
h∈Zd, l∈{1,2}d

δl e
− 1

t
bhl(x,y) , (4.55)

where, for simplicity of notation, we have put

h := (hi)i=1,...,d , l := (li)i=1,...,d , δl :=
d∏
i=1

δli , δli :=

{
1 for li = 1
−1 for li = 2

,

bhl(x,y) :=
d∑
i=1

a2
i (hi−Dli(xi, yi))2 , Dli(xi, yi) :=

{
xi−yi

2ai
for li = 1

xi+yi

2ai
for li = 2

.

(4.56)

Before moving on, let us emphasize a number of facts on the expansions (4.53) (4.55); we
will resort to them in the following subsections, when performing the analytic continuation
of the Dirichlet kernel and of its derivatives.

i) The expansions in Eq.s (4.53) and (4.55) describe, respectively, the large and small t
behaviour of e−tA( , ) in the following sense. The series over m ∈ Nd

? in Eq. (4.53) and
the one over h ∈ Zd in Eq. (4.55) are mainly determined by the terms corresponding to
small values of mi and |hi| (i ∈ {1, ..., d}), in the limits t→ +∞ and t→ 0+ respectively.
ii) Notice that

ω2
n > 0 for all n ∈ Nd . (4.57)
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iii) There holds

bhl(x,y) ≥ 0 for all h ∈ Zd, l ∈ {1, 2}d, x,y ∈ Ω . (4.58)

In particular, since Dli(xi, yi) ∈ [−1/2, 1/2] for li = 1 and Dli(xi, yi) ∈ [0, 1] for li = 2 (see
the definition of Dli in Eq. (4.56) ), it follows that

bhl(x,y) = 0 ⇔ for each i∈{1, ..., d}, one has


hi = 0, li = 1, yi = xi∈ [0, ai]
or hi = 0, li = 2, yi = xi = 0
or hi = 1, li = 2, yi = xi = ai

; (4.59)

let us stress that this implies, in particular, bhl(x,y) 6= 0 for x 6= y.

The Dirichlet kernel.

The analytic continuation of A−s( , ) can be constructed in the style of Minakshisundaram
[111], starting from the integral representation (2.266) in terms of the heat kernel e−tA( , );
to this purpose, let us fix arbitrarily

T ∈ (0,+∞) (4.60)

and re-express the cited integral representation, for x,y ∈ Ω, as

A−s(x,y) = A−s(>)(x,y) +A−s(<)(x,y) , where (4.61)

A−s(>)(x,y) :=
1

Γ(s)

∫ +∞

T

dt ts−1 e−tA(x,y) , A−s(<)(x,y) :=
1

Γ(s)

∫ T

0

dt ts−1 e−tA(x,y)

(notice that A−s(>)( , ) and A−s(>)( , ) depend on T , but their sum A−s( , ) does not!). To

construct the analytic continuation of A−s( , ), we substitute in the definitions of A−s(>)( , )

and A−s(<)( , ), respectively, the large and small t expansions (4.53) (4.55) for the heat

kernel e−tA(x,y) (9). We obtain the results reported hereafter.

Series expansion for A−s(>)(x,y). Using the representation (4.53) for the heat kernel, one

can derive [67] the following, for x,y ∈ Ω:

A−s(>)(x,y) =
2d

a1...ad Γ(s)

∑
m∈Nd?

ω−2s
m Γ(s, ω2

m T ) Cm(x,y) , (4.62)

where, for any s ∈ C and z ∈ (0,+∞), Γ(s, z) is the upper incomplete gamma function (see
[122], page 174, Eq. 8.2.2). The above expression can also be used to evaluate derivatives

9In these manipulations (and in some related computations) we often take for granted that certain
series can be integrated or differentiated term by term. In all cases under analysis, rigorous justifications
could be given using the Lebesgue dominated convergence theorem or the Fubini-Tonelli theorem, but we
will not go into the details.
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of any order of the function A−s(>)( , ). Moreover, the series in the right-hand sides of Eq.

(4.62), along with analogous ones for the derivatives of A−s(>)( , ), converges for all s ∈ C
even for y = x (see the subsequent paragraph); so, Eq. (4.62) yields automatically the
analytic continuation of the map s 7→ A−s(>)(x,y) to the whole complex plane.

Series expansion for A−s(<)(x,y). The expression (4.55) for the heat kernel can be used to
infer, for x,y ∈ Ω,

A−s(<)(x,y) =
T s−

d
2

(4π)d/2Γ(s)

∑
h∈Zd, l∈{1,2}d

δl Ps− d
2

(
bhl(x,y)

T

)
. (4.63)

Here, for β ≥ 0 and s ∈ C (recall that bhl(x,y) ≥ 0 for all h ∈ Zd, l ∈ {1, 2}d; see Eq.
(4.58) ), we have introduced the function

Ps(β) :=

∫ 1

0

dτ τ s−1e−
β
τ ; (4.64)

this map fulfills

Ps(β) =

{
s−1 for β = 0, <s > 0
βs Γ(−s, β) for β > 0

,

∂`βPs(β) = (−1)`Ps−`(β) for ` ∈ N
(4.65)

(again, Γ( , ) denotes the upper incomplete gamma function). Let us point out that, due
to the results reported in Eq. (4.59), we have

bhl(x,y) = 0 only for y = x and for
a finite number of terms in the series of Eq. (4.63).

(4.66)

The above mentioned terms of Eq. (4.63) deserve special attention, and must be evaluated
using the first identity in Eq. (4.65); it follows that

A−s(<)(x,y) =
T s−

d
2

(4π)d/2Γ(s) (s− d
2
)

∑
h∈Zd, l∈{1,2}d
s.t. bhl(x,y)=0

δl +

+
1

(4π)d/2Γ(s)

∑
h∈Zd, l∈{1,2}d
s.t. bhl(x,y)>0

δl

(
b
s− d

2
hl Γ

(
d

2
−s , bhl

T

))
(x,y) .

(4.67)

Let us repeat that the first sum in the above expression contains finitely many terms.
Notice that the term in the first line of Eq. (4.67) is related to the first equality in Eq.
(4.65) which, in principle, would require <s > d/2; however, this term makes sense for all
complex s except s = d/2, where a simple pole appears. On the other hand, the series
in the second line of Eq.s (4.67) can be proved to converge for any complex s (see, again,



4.2. THE CASE OF A RECTANGULAR BOX. 173

the forthcoming paragraph). In view of these remarks, Eq. (4.67) gives automatically the
analytic continuation of A−s(<)( , ) to a meromorphic function of s on the whole complex
plane, with a simple pole singularity only for

y = x and s = d/2 . (4.68)

A similar analysis can be made for the derivatives of A−s(<)( , ), for which series represen-

tations analogous to that in Eq. (4.65) can be derived. For brevity, we do not report here
the detailed discussion of these quantities, for which we refer to [67]. Let us only mention
that, for any two spatial variables z, w and for any x,y ∈ Ω, the map s 7→ ∂zwA−s(<)(x,y)
can be analytically continued to a function meromorphic on the whole complex plane,
with a simple pole singularity only for

y = x and s = d/2 + 1 . (4.69)

Let us stress that the above facts allow to infer, in particular, that the analytic contin-
uations of A−u−1

2 (x,y)|y=x and ∂zwA−
u+1
2 (x,y)|y=x (required for the evaluation of the

regularized stress-energy VEV and pressure) are both regular at u = 0.

Convergence and remainder estimates for the series in Eq.s (4.62) and (4.63).

This subject is discussed in more detail in [67] (see, in particular, subsection 3.4 and the
related Appendix A therein); here we only report the main results. To this purpose, some
notations are required; first of all we put

a := min
i∈{1,...,d}

{ai} , A := max
i∈{1,...,d}

{ai} ,

|z| :=
(

d∑
i=1

z2
i

)1/2

for z = m ∈ Nd or z = h ∈ Zd .
(4.70)

Besides, for N ∈ (2
√
d,+∞), α ∈ (0, 1), β ∈ (0,+∞), σ, ρ ∈ R, we set

H
(d)
N (α, β;σ, ρ) := (4.71)

πd/2

(1−α)σ(αβ)
d+ρ
2 Γ(d

2
)

(
N−
√
d

N−2
√
d

)d−1

Γ(σ, (1−α)βN2) Γ

(
d+ρ

2
;αβ(N−2

√
d)2

)
;

it can be shown that there holds the asymptotic expansion, for N → +∞,

H
(d)
N (α, β;σ, ρ) =

πd/2 βσ−2e−4αβd

α(1−α) Γ(d
2
)

e−βN(N−4αβ
√
d)N2σ+ρ+d−4 (1 +O(N−1)) . (4.72)

Finally, we put

C
(d)
a,A(σ,N) := max

(a(1−
√
d

N

))2σ
,

(
A

(
1+

√
d

N

))2σ . (4.73)
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Having introduced the above notations, let us proceed to give the previously mentioned
remainder estimates for the series expansions of A−s(>) and A−s(<). In all cases the remainder

is controlled by the function H
(d)
N ; due to the exponential decay of this function for large

N described in Eq. (4.72), good approximations of all the series under investigation can
be obtained by just summing the first few terms.

Estimates for the series (4.62). Let s ∈ C; keeping in mind Eq. (4.62), for any N ∈
(0,+∞) let us write

A−s(>)(x,y) = A−s(>),N(x,y) +R−s(>),N(x,y) ,

A−s(>),N(x,y) :=
2d

a1...ad Γ(s)

∑
m∈Nd?, |m|≤N

ω−2s
m Γ(s, ω2

m T ) Cm(x,y) ,

R−s(>),N(x,y) :=
2d

a1...ad Γ(s)

∑
m∈Nd?, |m|>N

ω−2s
m Γ(s, ω2

m T ) Cm(x,y) .

(4.74)

For the remainder function R−s(>),N(x,y) we have the following uniform estimate∣∣∣R(>)
s,N(x,y)

∣∣∣ ≤ max(a2<s, A2<s)

a1...ad π2<s|Γ(s)| H
(d)
N

(
α,
π2 T

A2
;<s,−2<s

)
for either <s≥0, N>2

√
d or <s<0, N>2

√
d+

A

π

√
|<s|
αT

.

(4.75)

In the above, α is a parameter that can be freely chosen in (0, 1); of course, the best
choice is the one minimizing the right-hand side of Eq. (4.75), which depends on the
other parameters (e.g., N, T ) involved in these considerations.

Estimates for the series (4.63). Let s ∈ C, and exclude the case (4.68); keeping in mind
Eq. (4.63), for any N ∈ (0,+∞) we put

A−s(<)(x,y) = A−s(<),N(x,y) +R−s(<),N(x,y) ,

A−s(<),N(x,y) :=
T s−

d
2

(4π)d/2Γ(s)

∑
h∈Zd, |h|≤N, l∈{1,2}d

δl Ps− d
2

(
bhl(x,y)

T

)
,

R−s(<),N(x,y) :=
T s−

d
2

(4π)d/2Γ(s)

∑
h∈Zd, |h|>N, l∈{1,2}d

δl Ps− d
2

(
bhl(x,y)

T

)
.

(4.76)

For the remainder function R−s(<),N , we have the following uniform estimate:

∣∣∣R(<)
s,N(x,y)

∣∣∣ ≤ C
(d)
a,A(<s− d

2
, N)

πd/2|Γ(s)| H
(d)
N

(
α,
a2(1−

√
d
N

)2

T
;
d

2
−<s, 2<s−d

)

for either <s≤ d
2

, N>2
√
d or <s> d

2
, N>3

√
d+

1

a

√
(<s− d

2
)T

α
.

(4.77)
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Again, the parameter α can be freely taken in (0, 1) and it is conventient to choose for it
the value minimizing the right-hand sides of Eq. (4.77), keeping into account the choices
made for the other parameters (in particular, for N).

The stress-energy tensor.

Consider the representations deduced in the previous paragraph for the analytic contin-
uations of the Dirichlet kernel (and of its derivatives). Resorting to Eq.s (3.107-3.109),
one can obtain series expansions for each component of the zeta-regularized stress-energy
VEV (v | T̂ uµν v). More precisely, for any x ∈ Ω, we have

(v | T̂ uµν(x) v) = T u,(>)
µν (x) + T u,(<)

µν (x) , (4.78)

where, for • equal to > or <, T
u,(•)
µν (x) has the espression corresponding to Eq.s (3.107-

3.109), with A−s( , ) replaced by A−s(•)( , ); thus, for i, j ∈ {1, ..., d}, we have

T
u,(•)
00 (x) = κu

[(
1

4
+ ξ

)
A−

u−1
2

(•) (x,y) +

(
1

4
− ξ
)
∂x

`

∂y`A
−u+1

2

(•) (x,y)

]
y=x

, (4.79)

T
u,(•)
0j (x) = T

u,(•)
j0 (x) = 0 , (4.80)

T
u,(•)
ij (x) = T

u,(•)
ji (x) = κu

[(
1

4
− ξ
)
∂ij

(
A−

u−1
2

(•) (x,y)− ∂ x`∂y`A
−u+1

2

(•) (x,y)
)

+

+

((1

2
− ξ
)
∂xiyj − ξ ∂xixj

)
A−

u+1
2

(•) (x,y)

]
y=x

.

(4.81)

In view of the results discussed in the previous paragraphs for the functions A−s(>)(x,y) and

A−s(<)(x,y), it appears that u = 0 is a regular point for each component of (v | T̂ uµν(x) v);

so, the general zeta approach to renormalization (3.121) reduces, in this case, to

(v | T̂µν(x) v)ren := (v | T̂ uµν(x) v)
∣∣∣
u=0

. (4.82)

In the following, when considering the case in spatial dimension d = 2, we will use
approximate expressions for all the components of (v | T̂µν(x) v)ren obtained replacing
each Dirichlet function A−s(•)( , ) in Eq.s (4.79-4.81) with the truncations A−s(•),N( , ) of a

fixed (sufficiently large) order N , given by Eq.s (4.74) (4.76). Let us recall that we have
explicit remainder bounds for these truncations (see Eq.s (4.75) (4.77) ); these allow us to
infer error estimates for the approximate expressions of (v | T̂µν(x) v)ren described above.

The pressure on the boundary.

Let x be any point interior to one of the sides πp,α; we exclude x to be on an edge of the
box (i.e., on the intersection of two or more sides), where the outer normal is ill-defined.
As an example, let us assume x to be an inner point of the side π1,0, so that the unit outer
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normal at x is n(x) = (−1, 0, ..., 0). The zeta-regularized pressure at x can be defined
according to the general prescription (3.115), which in the present case reduces to

pui (x) := (v | T̂ uij(x) v)nj(x) = − (v | T̂ ui1(x) v) ; (4.83)

since Dirichlet boundary conditions are prescribed, recalling the general expression (3.109)
for (v | T̂ uij(x) v) and using the decomposition (4.61) for the Dirichlet kernel, the above
relation yields (10)

pui (x) = − δi1
κu

4
∂x1y1A−

u+1
2 (x,y)

∣∣∣
y=x

=

= − δi1
κu

4

[
∂x1y1A−

u+1
2

(>) (x,y)
∣∣∣
y=x

+ ∂x1y1A
u+1
2

(<) (x,y)
∣∣∣
y=x

]
.

(4.84)

Recalling that the Dirichlet kernel and and its derivatives are all regular at u = 0, the
general zeta approach to renormalization (3.126) reduces in this case to

preni (x) := pui (x)
∣∣∣
u=0

= − (v | T̂ ui1(x) v)
∣∣∣
u=0

. (4.85)

When dealing with the case d = 2, we will evaluate the pressure starting from Eq.s
(4.84) (4.85) and substituting the functions ∂x1y1A−s(•)( , ) therein with the truncations

∂x1y1A−s(•),N( , ) of a sufficiently large order N ; the errors of these approximants will be

evaluated using the analogues of Eq.s (4.75) and (4.77), holding for the derivatives of the
Dirichlet kernel.

Before proceeding, let us mention a couple of facts about the renormalized pressure on
the boundary; their proof are discussed in detail in our previous work [67].
i) Let us remark that at points on the edges of the box (i.e., on the corners which appear
whenever d > 1) the outer normal and, consequently, the pressure are both ill-defined. It
can be proved that the renormalized pressure (4.85) evaluated at inner points of one side
diverges in a non-integrable manner when moving towards anyone of the edges; this fact
is of utmost importance when attempting to evaluate the total force acting on any side
of the box, a topic we discussed in detail in [66].
ii) In accordance with the alternative definition (3.133), one could define the pressure at
a boundary point x ∈ π1,0 as

preni (x) :=

(
lim

x′∈Ω,x′→x
(v | T̂i1(x′) v)ren

)
nj(x) = −

(
lim

x′∈Ω,x′→x
(v | T̂i1(x′) v)ren

)
. (4.86)

10In the application of Eq. (3.109) to the present case, we use the following identities, holding for all
x ∈ ∂Ω and suitable s ∈ C:

A−s(x,y)
∣∣∣
y=x

= 0 , ∂xixjA−s(x,y)
∣∣∣
y=x

= 0 for all i, j ∈ {1, ..., d} ;

∂xiyjA−s(x,y)
∣∣∣
y=x

= 0 for all i, j ∈ {1, ..., d} such that i 6= 1 or j 6= 1 .

These follow straightforwardly from the Dirichlet conditions prescribed on the boundary of Ω and from
item vi) of Proposition 2.64.
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Simple but long computations allow to infer that the different prescriptions (4.85) and
(4.86) are, in fact, equivalent for the configuration under analysis; therefore, no anomaly
of the type mentioned in subsection 3.2 appears in this case for the VEV of the pressure
at boundary points.

The total energy.

First of all, let us point out that, by a slight generalization of Proposition 3.45, the
zeta-regularized total energy Eu can be expressed as the sum of both a bulk and a bound-
ary contribution, respectively indicated with Eu and Bu. Since Dirichlet conditions are
assumed on the boundary, according to the considerations of Remark 3.29 we have

Bu = 0 ; (4.87)

therefore, we only have to discuss the regularized bulk term Eu. Recalling the general
definition (3.118) and using the expression (4.61) for the Dirichlet kernel, we readily infer

Eu = Eu
(>) + Eu

(<) where

Eu
(•) :=

κu

2

∫
(0,a1)×...×(0,ad)

dx1... dxd A−
u−1
2

(•) (x,x) for • ∈ {>,<} . (4.88)

Series expansion for Eu
(>). Let us insert the expansion (4.62) forA−s(>) into Eq. (4.88); then,

exchanging the order of integration and summation and evaluating each single integral
thus obtained in terms of incomplete gamma functions, we obtain

Eu
(>) =

κu

2 Γ(u−1
2

)

∑
m∈Nd?

ω1−u
m Γ

(
u−1

2
, ω2

m T

)
. (4.89)

The above series can be proved to converge for all u ∈ C, thus giving the analytic contin-
uation of Eu,(>) to the whole complex plane, in particular at u = 0.

Series expansion for Eu
(<). Similarly, inserting the expansion (4.63) for A−s(<) into Eq.

(4.88), after some effort we obtain

Eu
(<) =

κu T
u−1
2

2d+1 Γ(u−1
2

)

d∑
p=0

(−1)d−p

(d−p)!p!
∑
σ∈Pd

aσ,p
(π T )p/2

∑
h∈Zp
Pu−p−1

2

(
Bσ,p(h)

T

)
. (4.90)

In the above Pd indicates the symmetric group with d elements and we have put

aσ,0 := 1 , Z0 := {0} , Bσ,0(0) := 0 ,

aσ,p :=

p∏
i=1

aσ(i) , Bσ,p(h) :=

p∑
i=1

(aσ(i)hi)
2 for σ ∈ Pd, p ∈ {1, ..., d} ;

(4.91)

note that the term with p = 0 in Eq. (4.90) is just (−1)dPu−1
2

(0) and that all the functions

Ps must be evaluated according to Eq. (4.65). It can be shown that Eq. (4.90) gives
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the analytic continuation of Eu
(<) to a meromorphic function on the whole complex plane,

with simple poles at
u ∈ {1, ..., d+ 1} ; (4.92)

in particular, the series in Eq. (4.90) converges for all u ∈ C \ {1, ..., d + 1} and explicit
remainder estimates can be derived, as well.

Summing up, u = 0 is a regular point for the analytic continuations of both Eu
(>) and Eu

(<)

so that, the general prescription in Eq. (3.125) yields

Eren = Eu
(>)

∣∣∣
u=0

+ Eu
(<)

∣∣∣
u=0

(4.93)

where the two addenda on the right-hand side simply indicate the expressions (4.89) and
(4.90) evaluated at u = 0.
Before moving on, let us also mention that results analogous to those reported previously
concerning the convergence rate of the expansions (4.62) (4.63) for the functions A−s(>)( , )

and A−s(<)( , ) can be derived for the series representations (4.89) (4.90) of Eu
(>), E

u
(<). In

particular, quantitative remainder estimates can be derived for the truncation of these
series at any order N ∈ N; we refer to [67] for more details.

Scaling considerations.

Let us consider the d-tuple x? and the (d− 1)-tuple ρ with compoments, respectively,

xi? :=
xi

ai
∈ (0, 1) for i ∈ {1, ..., d} , ρi :=

ai
a1

for i ∈ {2, ..., d} . (4.94)

Using the decomposition (4.61) of the Dirichlet kernel A−s( , ) and recalling the series
expansions (4.62), (4.63) for the functions A−s(>)( , ) and A−s(<)( , ), it can be shown that

A−s(x,y) = a
−(d−2)s
1 Ds(ρ ; x?,y?) , (4.95)

for all x,y ∈ Ω and for some suitable function Ds (11). From the above relation it follows
that, for any pair z, w of spatial variables, there also holds

∂zwA−s(x,y) = a
−(d−2)s−2
1 ∂z?w?Ds(ρ ; x?,y?) . (4.96)

Due to the above results, analogous considerations can be deduced for the zeta-regularized
VEV of the observables mentioned in the previous paragraphs.
In particular, from Eq.s (4.78-4.81) it can be easily infered the following relation for each
component of the regularized stress-energy VEV (µ, ν ∈ {0, ..., d}):

(v | T̂ uµν(x) v) = au−d−1
1 Tu

µν(ρ ; x?) , (4.97)

11Let us point out that for d = 1 the variables ρi are not defined and Ds(ρ ;x?,y?) ≡ Ds(x?,y?) only
depends on the complex parameter s and on the rescaled spatial variables x?,y?.
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where Tu
µν is a suitable function.

Similarly, for the regularized pressure acting on any point x in the interior of the side π1,0,
we deduce from Eq.s (4.83) (4.97) that

pui (x) = au−d−1
1 pui (ρ ; x?) for i ∈ {1, ..., d} , (4.98)

where pui are suitable functions and x? is defined as in Eq. (4.94) at points on the
boundary. Clearly, the same conclusions can be drawn for the pressure on any other side
πp,α (p ∈ {1, ..., d}, α ∈ {0, 1}).
Analogous considerations hold for the regularized bulk energy Eu; from the expansions
(4.88-4.90), it can be easily infered that (indicating with Eu a suitable function)

Eu = au−1
1 Eu(ρ) . (4.99)

By analytic continuation at u = 0, we obtain the renormalized counterparts of the above
relations: more precisely, we have

(v | T̂µν(x) v)ren = a
−(d+1)
1 Tµν(ρ ; x?) ,

preni (x) = a
−(d+1)
1 pi(ρ ; x?) , Eren = a−1

1 E(ρ) ,
(4.100)

where the right-hand sides of the above relations are obtained evaluating at u = 0 the
functions in the right-hand sides of Eq.s (4.97-4.99).

Due to the remarks of this paragraph, for any spatial dimension d the analysis of the
renormalized stress-energy VEV, pressure and total energy can always be reduced to the
case a1 = 1; we will use this fact in the next paragraph dealing with the case d = 2.

The previous results in spatial dimension d = 2.

As an application of the general framework developed in the previous paragraphs, let us
consider the 2-dimensional case where

d = 2 , Ω = (0, a1)× (0, a2) (a1, a2 > 0) . (4.101)

In our computations we fix
a1 = 1 (4.102)

and consider different values of a2; let us repeat that this choice causes no loss of generality
due to the scaling considerations discussed in the previous paragraph. Moreover, we
present the final results in terms of the rescaled coordinates x1

? := x1/a1 ≡ x1, x2
? :=

x2/a2 ∈ (0, 1), defined in Eq. (4.94) (12).

The basic elements to compute the renormalized stress-energy VEV and the pressure
are the Dirichlet functions A−s(>)( , ), A−s(<)( , ), along with their spatial derivatives, for

12 Let us stress that, for a1 = 1, the quantities (v | T̂µν v)ren, pren1 and Eren (to be discussed hereafter)
do in fact coincide with the rescaled analogues Trenµν , preni , Eren introduced in Eq.s (4.97) (4.98) (4.99).
Besides, the lenght a2 of the second side is identified with the ratio ρ2 (see Eq. (4.94) ).
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which we use the truncated expansions (4.74), (4.76) and the remainder bounds of Eq.s
(4.75), (4.77) (plus similar results for the derivatives; see [67]). Needless to say, analogous
considerations also hold for the renormalized bulk energy.

The renormalized stress-energy VEV. As an example, we compute this observable for the
two configurations with

a2 = 1 and a2 = 5 . (4.103)

In these cases, for the parameter T of the decomposition into (>) and (<) parts and for
the truncation order N , we make the following choices:

T = 1 , N = 7 for a2 = 1 ;

T = 1 , N = 9 for a2 = 5 .
(4.104)

Furthermore, the truncation errors in Eq.s (4.75-4.77) are evaluated making for the pa-
rameter α appearing therein the choice

α = 0.04 . (4.105)

The renormalized stress-energy VEV (v | T̂µν v)ren is obtained setting u = 0 in Eq.s (4.78-
4.81). We separate the conformal and nonconformal parts, respectively indicated by the
superscripts (♦) and (�); recall that Eq. (3.127) gives, in the two-dimensional case,

ξ2 =
1

8
. (4.106)

In the following we present, as examples, the graphs for (v | T̂ (♦)
00 v)ren and (v | T̂ (�)

00 v)ren
obtained from the previous truncated expansions; more precisely, Fig.s 4.3 and 4.4 show,
respectively, the results obtained for the configurations with a2 = 1 and a2 = 5 . In the
cited figures we refer to the variables xi? := xi/ai ∈ (0, 1) and, keeping into account some
obvious symmetry considerations (13), we only show the graphs for

xi? ∈ (0, 1/2) for i ∈ {1, 2} . (4.107)

13Indeed, every component of the stress-energy VEV can be shown to be symmetric under the exchange
xi ↔ ai − xi (or xi? ↔ 1− xi?) for i ∈ {1, 2} .
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Figure 4.3: Graphs of (v | T̂ (♦)
00 v)ren and (v | T̂ (�)

00 v)ren for a2 = 1 (d = 2).

Figure 4.4: Graphs of (v | T̂ (♦)
00 v)ren and (v | T̂ (�)

00 v)ren for a2 = 5 (d = 2).

Concerning the error estimates, for µ, ν ∈ {0, 1, 2} and • ∈ {♦,�}, let us introduce the
following notation:

Eµν :=
remainder corresponding to our approximation

by truncation of (v | T̂µν v)ren .
(4.108)

On the one hand, for a2 = 1, our choice N = 7 (T = 1, α = 0.04) yields the uniform
bound

|Eµν | ≤ 3 · 10−11 for µ, ν ∈ {0, 1, 2} . (4.109)

On the other hand, for a2 = 5, our choice N = 9 (T = 1, α = 0.04) ensures

|Eµν | ≤ 8 · 10−11 for µ, ν ∈ {0, 1, 2} . (4.110)
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The renormalized pressure on the boundary. As in the construction of the general theory
we consider, as an example, the pressure preni (x) at points x ≡ (0, x2) in the interior of the
side π1,0, making reference to the prescription (4.85). Fig. 4.5 shows the graphs obtained
for pren1 (x) as a function of x2

? := x2/a2 (again, choosing T = 1 and truncating the related
expansions to order N = 7, for a2 = 1, and N = 9, for a2 = 5).

Figure 4.5: Graphs of pren1 for a2 = 1 (left) and a2 = 5 (right) (d = 2).

As for the error, indicating with ε1 the remainder associated to our approximation by
truncation of pren1 , we obtain the following uniform estimates (setting α = 0.04):

|ε1| ≤ 2 · 10−12 for a2 = 1 ;

|ε1| ≤ 5 · 10−12 for a2 = 5 .
(4.111)

Before moving on, let us mention that the renormalized pressure pren1 can be proved to
possess the following asymptotic behaviour near the edge x = 0, for all a2 > 0:

pren1 (x) =
1

32π(x2)3
+O((x2)2) for x = (0, x2) and x2 → 0+ . (4.112)

The renormalized bulk energy. Let us fix again a1 = 1 and consider this observable for
different values of a2. Using the decomposition into (>) and (<) parts and truncating
the corresponding series at order N = 50 (with T = 1, α = 0, 04), one can plot Eren as
a function of a2 (see Figure 4.6); with the choices made for the parameters a1, T,N, α, it
can be proved that the error is smaller than 2 ·10−3 for any a2 ∈ [0.05, 10] ). Let us discuss
some facts regarding the function a2 7→ Eren(a2), which can be read from the graph in
Fig. 4.6 (the results reported hereafter are obtained using standard numerical methods,
implemented in Mathematica).
i) There is only one point of maximum amax

2 ; our approximation by truncation at order
N = 50 gives

amax
2 = 0.72719110± 10−8 , Eren(amax

2 ) = 0.04472675± 10−8 . (4.113)
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Figure 4.6: Graph of Eren as function of a2 (d = 2).

ii) Eren vanishes for two values ā
(1)
2 < ā

(2)
2 of a2; these are found to be

ā
(1)
2 = 0.36538151± 10−8 , ā

(2)
2 = 2.73686534± 10−8 . (4.114)

Eren is positive for ā
(1)
2 < a2 < ā

(2)
2 and negative elsewhere. This feature was also pointed

out in [102]; therein it is stated that ā
(2)
2 = (ā

(1)
2 )−1, a relation (approximately) verified by

the numerical values in Eq. (4.114).
iii) For a2 → 0+, Eren has the asymptotic behaviour

Eren(a2) =
e0

(a2)2

(
1 +O(a2)

)
with e0 = −0.02391± 10−5 . (4.115)

iv) There are indications that Eren approaches an asymptote for a2 → +∞; taking into
account values of the abscissa up to a2 = 100, we find that this asymptote is the straight
line

y = mE a2 + qE with

{
mE = − 0.02391416± 10−8

qE = + 0.06544985± 10−8 . (4.116)

Finally, let us mention that the numerical values of Eren given by our previous analysis
are in good agreement with those arising from the expansions in [25], a fact strongly
indicating the equivalence between our approach and [25]. Let us also mention that the
results of [25] about Eren are equivalent to the ones of [11, 57, 77].

4.3 The case of parallel planes with Robin

boundary conditions.

In the present conclusive section we consider a variant of the original setting studied by
Casimir in his seminal paper [35], involving a massless field confined between two parallel
planes. Let us recall that we already analyzed this type of configuration in our previous
work [65] (see also [63] for the three-dimensional case with Dirichlet boundary conditions
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and [64] for the one-dimensional analogue of a segment); therein, working in arbitrary odd
spatial dimension d (also greater than d = 3), we considered several kinds of boundary
conditions, namely of Dirichlet, Neumann, mixed (14) and periodic type. For each one
of these specific models we computed the renormalized VEVs of several observables. To
this purpose, using the methods described in [64] and reformulated more rigorously in
the present manuscript, in [65] we developed a series of general computational rules,
independent of the boundary conditions prescribed on the (hyper-)planes; these general
rules rely, in particular, on the fact that the configuration under analysis is of slab type
(15) (so that it suffices to study the reduced one-dimensional problem of a segment) and on
the fact that the corresponding cylinder kernel possesses some general suitable features.

In the subsequent paragraphs we first recall briefly the above mentioned general rules and
then use them to study the case of a massless field fulfilling a particular type of Robin
conditions on the boundary planes. In the specific setting under analysis, it is possible
to derive an explicit integral representation for the cylinder kernel corresponding to the
reduced one-dimensional model; this representation allows to infer that the mentioned
kernel fulfills the hypotheses of Theorem 2.93, so that the analytic continuation of the
related Dirichlet kernel at the points of interest can be computed by means of the residue
theorem (see, in particular, Eq. (2.361) ). Finally, these facts are used to obtain exact
expressions for the renormalized VEV of the stress-energy tensor (we plan to discuss the
total vacuum energy per unit area and the pressure on the boundary elsewhere [68]).

Needless to say, the literature on the Casimir effect for the configuration with two parallel
planes is immense, both regarding local and global aspects; following [65], here we only
cite a few references. In his seminal paper [35], using an exponential cut-off regularization
along with Abel-Plana resummation, Casimir was the first to compute the total energy
and the boundary forces for the case of two parallel planes; concerning local aspects, the
foremost derivation of the full stress-energy tensor VEV was given by Brown and Maclay
[29], using a point-splitting technique. Computation of both global and local quantities
for this model was later reproposed by several authors, using various regularization tech-
niques: see, e.g., the monographies by Milton [110], Elizalde et al. [56, 57], Bordag et al.
[25] (see, as well, the works cited therein).

The first to address the case of Robin boundary conditions were Romeo and Saharian
[133], who used a generalized version of the Abel-Plana formula to obtain the renormalized

14Here the nomenclature “mixed boundary conditions” is used to indicate the case where Dirichlet
conditions are prescribed on one of the planes, while Neumann conditions are prescribed on the other.

15By definition, this means that

Ω = Ω1 × Rd2 3 x ≡ (x1,x2) , V (x) = V (x1) ,

with Ω1 ⊂ Rd1 (d1 + d2 = d) a suitable domain, and that the boundary conditions refer to ∂Ω1 × Rd2 .
In this case the relevant operators are A1 := − 41 +V acting in H1 := L2(Ω1), A2 := −42 acting in
H2 := L2(Rd2) and A = A1 ⊗ I2 + I1 ⊗ A2 = − 4 +V (x1) acting in H = H1 ⊗ H2 = L2(Ω) (with I1,
I2 indicating the identity operators on L2(Ω1) and L2(Rd2), respectively). See [64] for more details; we
refer, in particular, to subsection 3.18 and to the related Appendix E.
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stress-energy VEV and zeta techniques to compute the renormalized total vacuum energy.
Analogous configurations were later considered by Saharian et al. [137] (dealing with
uniformly accelerated plates, described using Rindler coordinates) and by Setare [144]
(treating a case with de Sitter background spacetime); see also [9]. All these works use
primarly regularization techniques different from the zeta approach; on the contrary, the
analysis we present hereafter only relies on ZR in the general formulation described in the
previous chapters of the present manuscript.

Introducing the problem.

We consider the d-dimensional configuration where

Ω := (0, a)× Rd−1 (a > 0) , V = 0 ; (4.117)

the above choices correspond to a massless scalar field confined between two parallel
hyperplanes set at a distance a, with no background potential. The boundary ∂Ω of the
spatial domain is composed by the planes

π0 = {x ∈ Rd | x1 = 0} , πa = {x ∈ Rd | x1 = a} . (4.118)

Boundary conditions of Robin type are generically extablished setting, for some given
parameters β0, βa ∈ R,

(1 + β0 ∂n) ϕ̂
∣∣∣
π0

= 0 , (1 + βa ∂n) ϕ̂
∣∣∣
πa

= 0 (4.119)

(here, as usual, ∂n indicates the derivative in the outer direction normal to the boundary).
The case where β0 6= −βa can only be treated by perturbation theory (16); on the contrary,
in the following we focus the attention to the specific setting where

β0 = −βa ≡ β ∈ (0,+∞) , (4.120)

since in this case it is possible to perform a fully explicit analysis. In view of the above
considerations, the boundary conditions (4.119) reduce to

(1− β ∂x1) ϕ̂
∣∣∣
π0

= 0 , (1− β ∂x1) ϕ̂
∣∣∣
πa

= 0 . (4.121)

In passing, let us point out that the above constraints correspond to the usual Dirichlet
conditions for β = 0, while they formally reduce to Neumann conditions in the limit of
large β (17). Moreover, the case with β < 0 can be recovered at the end by obvious
symmetry arguments, making the replacement x1 7→ a− x1.

16In fact, in this case, only implicit expressions can be derived for the eigenvalues of the Laplacian,
which are a main ingredient for the following developments.

17By elementary dimensional analysis arguments, it appears that this statement must be interpreted
in terms of the adimensional ratio β/a, meaning that the limit β/a→ +∞ has to be considered.
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Keeping into account the boundary conditions (4.121), also in this case we put

A := −4 ; (4.122)

this is strictly positive and self-adjoint on H = L2(Ω), with domain DA := {f ∈
L2(Ω) | (1− β∂x1)f ∈ H1(Ω) , 4f ∈ L2(Ω) and (1− β ∂x1)f �π0 = (1− β ∂x1)f �πa = 0}
(18). Again, A is an admissible operator in the sense of definition 2.37; moreover, its
spectrum can be explicitly determined and is given by

σ(A) =

{
ω2
k,n := |k|2 +

n2π2

a2

∣∣∣ k ∈ Rd−1, n ∈ {1, 2, 3, ...}
}

(4.123)

(19). In view of the above considerations, the general framework of Chapter 2 can be
employed also in this case; in particular, the Dirichlet kernel associated to A and its
derivatives are well-defined integral kernels.
Let us stress that the setting under analysis is, in fact, a slab configuration; we discussed
in detail this type of configurations in our previous work [64] (see in particular subection
3.18 therein), giving some general rules allowing to compute the Dirichlet kernel and its
derivatives evaluated along the diagonal in terms of the integral kernels associated to a
lower dimensional problem. In the subsequent paragraph we briefly recall the main tools
related to the above considerations, required for the evaluation of the stress-energy VEV
to be described in the following.

Before proceeding to this topic, let us point out the following fact.

Remark 4.2. Throughout this section we assume

d odd , d ≥ 3 ; (4.124)

this hypothesis is purely technical and will be motivated later (see the comments before
Eq. (4.142) ). The case d = 1, here excluded, could be discussed using a slight variation
of the computational rules presented here (compare also with the analysis described in
Section 6 of [64]); for brevity, we defer this topic to a future work [68]. Let us also
anticipate that at the end of the present section we will consider more in detail the case
d = 3, performing the required computations explicitly.

Reduction to a one-dimensional problem.

As mentioned previously, it appears from Eq. (4.117) that the configuration under analysis
is of slab type (see the footnote 15 on page 184 and the references given therein). In
particular, in the present setting, we have

Ω = Ω1× Rd−1 with Ω1 = (0, a) ⊂ R (plus, V = 0) ; (4.125)

18Similarly to what was said in the Footnote 7 of page 169, using the eigenfunction expansion of A, it
can be shown that there holds DA = {f ∈ H2(Ω) | (1− β ∂x1)f �π0 = (1− β ∂x1)f �πa = 0}.

19In this case the the parameter ε > 0 fulfilling σ(A) ⊂ [ε,+∞), can be chosen to be ε := (π/a)2.
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therefore, the admissible operator A on L2(Ω) can be expressed as (with the domain
specifications provided by the subsequent considerations)

A = A1 ⊗ I2 + I1 ⊗A2 , (4.126)

where we have introduced the two operators

A1 := − ∂x1x1 : Dom(A1) ⊂ L2(0, a)→ L2(0, a) ,

A2 := −
d∑
i=2

∂xixi : Dom(A2) ⊂ L2(Rd−1)→ L2(Rd−1) .
(4.127)

Here the domains of definitions Dom(A1),Dom(A2) are determined by the boundary
conditions described in Eq. (4.121); more precisely, we have

Dom(A1) := {f ∈ L2(0, a) | ∂x1x1f ∈ L2(0, a) , (1− β ∂x1)f(0) = (1− β ∂x1)f(a) = 0} ,

Dom(A2) := {f ∈ L2(Rd−1) | ∂x1x1f ∈ L2(Rd−1)} . (4.128)

(20). Let us stress that A1 is itself an admissible operator in the sense of Definition 2.37.
Furthermore, it has purely discrete spectrum

σ(A1) =

{
ω2
n :=

n2π2

a2

∣∣∣ n ∈ {1, 2, 3, ...}} , (4.129)

and it possesses a complete orthonormal set of eigenfunctions in L2(0, a), corresponding
to the eigenvalues (ω2

n) in Eq. (4.129), given by

Fn(x1) :=

√
2

a(1 + β2ω2
n)

(
sin(ωnx

1) + β ωn cos(ωnx
1)
)

(x1 ∈ (0, a) ) . (4.130)

In view of the above considerations, we can resort to the general framework of Chapter
2, to speak about the integral kernels associated to A1 and about the related traces. In
particular, in accordance with the general notations adopted in the present manuscript,
we indicate the reduced Dirichlet and cylinder kernel with A−s1 (x1, y1) and e−t

√
A1(x1, y1)

(for x1, y1 ∈ (0, a) ), respectively; similarly, the corresponding traces will be denoted with
TrA−s1 and Tr e−t

√
A1 .

General relations between A−s( , ) and A−s1 ( , ). It can be proved that the Dirichlet
kernel A−s(x,y) evaluated along the diagonal y = x can be expressed in terms of the
reduced kernel A−s1 (x1, y1) at y1 = x1; analogous relations can be derived also for the

20For any f ∈ Dom(A1) it follows that ∂x1f ∈ H1(0, a), so that ∂x1f(0) and ∂x1f(a) are well de-
fined. Moreover, also in this case, using the eigenfunction expansion of A1 and A2 it can be shown that
Dom(A1) = {f ∈ H2(0, a) | (1− β ∂x1)f(0) = (1− β ∂x1)f(a) = 0}.
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derivatives. Here, we are refering to Eq.s (3.115–3.118) of [64]; in the present setting, for
any u ∈ Σd, these relations reduce to

A−u−1
2 (x,y)

∣∣∣
y=x

=
Γ(u−d

2
)

(4π)
d−1
2 Γ(u−1

2
)
A−

u−d
2

1 (x1, y1)
∣∣∣
y1=x1

; (4.131)

∂xiyjA−
u+1
2 (x,y)

∣∣∣
y=x

= ∂xixjA−
u+1
2 (x,y)

∣∣∣
y=x

= ∂yiyjA−
u+1
2 (x,y)

∣∣∣
y=x

= 0

for i = 1 and j ∈ {2, ...d} or i ∈ {2, ..., d} and j = 1 ;
(4.132)

∂zwA−
u+1
2 (x,y)

∣∣∣
y=x

=
Γ(u−d+2

2
)

(4π)
d−1
2 Γ(u+1

2
)
∂zwA−

u−d+2
2

1 (x1, y1)
∣∣∣
y1=x1

for z, w∈{x1, y1} ; (4.133)

∂xiyjA−
u+1
2 (x,y)

∣∣∣
y=x

= − ∂xixjA−
u+1
2 (x,y)

∣∣∣
y=x

= − ∂yiyjA−
u+1
2 (x,y)

∣∣∣
y=x

=

= δij
Γ(u−d

2
)

2 (4π)
d−1
2 Γ(u+1

2
)
A−

u−d
2

1 (x1, y1)
∣∣∣
y1=x1

for i, j ∈ {2, 3, ..., d} .
(4.134)

The reduced cylinder kernel e−t
√
A1( , ). With some computational effort (see the Ap-

pendix), it is possible to express this integral kernel as follows, for all x1, y1 ∈ (0, a) and
all t ∈ (0,+∞):

e−t
√
A1(x1, y1) = T0(t ;x1, y1) + T1(t ;x1, y1) + T2(t ;x1, y1) with

T0(t ;x1, y1) =
1

2a

[
cos(π

a
(x1−y1))− e−πa t

cosh(π
a
t)−cos(π

a
(x1−y1))

− cos(π
a
(x1+y1))− e−πa t

cosh(π
a
t)−cos(π

a
(x1+y1))

]
,

T1(t ;x1, y1) =

∫ +∞

0

dv cos v S1(t + |β|v ;x1, y1) ,

T2(t ;x1, y1) = S2(t ;x1, y1)−
∫ +∞

0

dv sin v S2(t + |β|v ;x1, y1) ,

(4.135)

where the functions S1, S2 are given by

S1(t ;x1, y1) :=
1

a

[
sin(π

a
(x1+y1))

cosh(π
a
t)− cos(π

a
(x1+y1))

]
, (4.136)

S2(t ;x1, y1) :=
1

a

[
cos(π

a
(x1+y1))− e−πa t

cosh(π
a
t)− cos(π

a
(x1+y1))

]
. (4.137)

Before proceeding, let us point out some facts concerning the functions T0, T1, T2 intro-
duced above to evaluate the reduced cylinder kernel e−t

√
A1( , ).
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i) T0 is the cylinder kernel corresponding to the configuration of a segment (0, a) with
Dirichlet boundary conditions (see [64], Eq. 6.20). Notice in particular that, for any
fixed x1, y1 ∈ (0, a), the map (0,+∞) 3 t 7→ T0(t, x1, y1) extends to a function which is
meromorphic in a complex neighbour of [0,+∞), with only a pole singularity in t = 0,
and which vanishes exponentially for <t → +∞. Analogous considerations hold for its
derivatives. ii) Making the change of integration variable v = t+βw and using some trivial
trigonometric identities, the function T1, T2 defined in Eq. (4.135) can be re-expressed as
follows:

T1(t ;x1, y1) = (4.138)

1

β

[
cos

(
t

β

)∫ +∞

t

dw cos

(
w

β

)
S1(w ;x1, y1) + sin

(
t

β

)∫ +∞

t

dw sin

(
w

β

)
S1(w ;x1, y1)

]
T2(t ;x1, y1) = S2(t ;x1, y1) + (4.139)

+
1

β

[
sin

(
t

β

)∫ +∞

t

dw cos

(
w

β

)
S2(w ;x1, y1)− cos

(
t

β

)∫ +∞

t

dw sin

(
w

β

)
S2(w ;x1, y1)

]
Using the above expressions, it can be shown (see the Appendix) that, for any fixed x1, y1 ∈
(0, a), both the maps [0,+∞) 3 t 7→ T1(t, x1, y1), T2(t, x1, y1) extend to functions which
are analytic in a complex neighbour of [0,+∞) and vanish exponentially for <t → +∞;
moreover, their Taylor series in t = 0 can be determined explicitly (see Proposition .4 in
the cited appendix). Analogous considerations hold for the spatial derivatives of T1 and
T2.

The reduced Dirichlet kernel in terms of the reduced cylinder kernels. In view of the
features pointed out above for the reduced cylinder kernel e−t

√
A1( , ) is appears that this

function fulfills the assumptions of Theorem 2.93. Therefore, the analytic continuations
of the related Dirichlet kernel A−s1 ( , ) and of its derivatives can be determined according
to Eq. (2.360); in particular, we have

A−
u−d
2

1 (x1, y1) =
e−iπ(u−d) Γ(d+1−u)

2πi

∫
H

dt tu−d−1 e−t
√
A1(x1, y1) ; (4.140)

∂zwA−
u−d+2

2
1 (x1, y1) =

e−iπ(u−d) Γ(d−1−u)

2πi

∫
H

dt tu−d+1 ∂zwe
−t
√
A1(x1, y1)

for z, w ∈ {x1, y1}
(4.141)

(let us recall that H denotes the Hankel contour).

The stress-energy tensor.

Recall the expressions (3.107-3.109) giving the zeta-regularized stress-energy VEV in
terms of the Dirichlet kernel and of its derivatives. Eq.s (4.131-4.134), along with the
expressions (4.140) (4.141) for the reduced Dirichlet functions, allow to obtain integral
representations for each component of the above mentioned VEV. These integral repre-
sentations give the analytic continuation of the map Σd+1 3 u 7→ (v | T̂ uµν v) to the whole
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complex plane; due to the assumption (4.124) on the spatial dimension d, this analytic
continutation is regular at u = 0. So, the general prescription (3.124) reduces in the
present setting to

(v | T̂µν(x) v)ren := (v | T̂ uµν(x) v)
∣∣∣
u=0

. (4.142)

Due to the meromorphic nature of the reduced cylinder kernel e−t
√
A1( , ) (and of its

derivatives), the resulting integrals along the Hankel contour can be explicitly evaluated
via the residue theorem; the final expressions for the non-vanishing components of the
renormalized stress-energy VEV are (i ∈ {2, ..., d})

(v | T̂00(x) v)ren = − (v | T̂ii(x) v)ren =

−Cd Res

(
t−(d+1)

[(
ξ − d−2

4d

)
d e−t

√
A1(x1, y1) +

+
t2

d−1

(
1

4
− ξ
)
∂x1y1e

−t
√
A1(x1, y1)

]
y1=x1

; 0

)
;

(4.143)

(v | T̂11(x) v)ren =

−Cd Res

(
t−(d+1)

[(
1

4
− ξ
)
d e−t

√
A1(x1, y1) +

+
t2

d−1

(
1

4
∂x1y1 − ξ ∂x1x1

)
e−t
√
A1(x1, y1)

]
y1=x1

; 0

)
;

(4.144)

Here, for the sake of brevity, we have put

Cd := (−π)−
d−1
2 Γ

(
d+ 1

2

)
. (4.145)

We repeat that, in the above, d is an arbitrary odd dimension > 1. In the following
paragraph we will report the explicit expressions for the renormalized stress-energy com-
ponents arising from Eq.s (4.143-4.144) in the case of spatial dimension d = 3; again, we
will give the final results in the form described in subsection 3.2, separating the conformal
and non-conformal parts (see, in particular, Eq. (3.131) ), noting that Eq. (3.127) gives

ξ3 =
1

6
. (4.146)

The previous results in spatial dimension d = 3.

As an example, let us compute the renormalized stress-energy VEV in the case where
d = 3. To this purpose, recall the explicit expression (4.135) for the reduced cylinder
kernel e−t

√
A1( , ) (along with the results of the Appendix) regarding its Laurent series

at t = 0; then, separating the conformal (♦) and non-conformal (�) parts, in the present
setting the general identities (4.143-4.144) yield
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(v | T̂ (♦)
00 (x) v)ren = − (v | T̂ (♦)

22 (x) v)ren = − (v | T̂ (♦)
33 (x) v)ren = (4.147)

− π2

1440a4
− 1

24πa4

[(
a

β

)2
π

2 sin2(πx
1

a
)
−
(
a

β

)3 cos(πx
1

a
)

sin(πx
1

a
)

+

+

(
a

β

)4∫ +∞

0

dt (1− β2∂x1y1)

(
cos
( t

β

)
S2(t ;x1, y1) + sin

( t

β

)
S1(t ;x1, y1)

)
y1=x1

]
,

(v | T̂ (�)
00 (x) v)ren = − (v | T̂ (�)

22 (x) v)ren = − (v | T̂ (�)
33 (x) v)ren = (4.148)

− π
2(3−2 sin2(π

a
x1))

8a4 sin4(π
a
x1)

+
1

2πa4

[(
a

β

)
π2 cos(π

a
x1)

sin3(π
a
x1)

−
(
a

β

)2
π

2 sin2(π
a
x1)

+

(
a

β

)3 cos(π
a
x1)

sin(π
a
x1)

+

+

(
a

β

)4∫ +∞

0

dt (1 + β2∂x1y1)

(
cos
( t

β

)
S2(t ;x1, y1) + sin

( t

β

)
S1(t ;x1, y1)

)
y1=x1

]
,

(v | T̂ (♦)
11 (x) v)ren = (4.149)

− 3π2

1440a4
− 1

24πa4

[(
a

β

)2
π

2 sin2(πx
1

a
)
−
(
a

β

)3 cos(πx
1

a
)

sin(πx
1

a
)

+

+

(
a

β

)4∫ +∞

0

dt (1−3β2∂x1y1 +2β2∂x1x1)

(
cos
( t

β

)
S2(t ;x1, y1)+sin

( t

β

)
S1(t ;x1, y1)

)
y1=x1

]
,

(v | T̂ (�)
11 (x) v)ren = (4.150)

1

2πa4

[(
a

β

)2
π

2 sin2(π
a
x1)
−
(
a

β

)3 cos(π
a
x1)

sin(π
a
x1)

+

+

(
a

β

)4∫ +∞

0

dt (1− β2∂x1x1)

(
cos
( t

β

)
S2(t ;x1, y1) + sin

( t

β

)
S1(t ;x1, y1)

)
y1=x1

]
(here S1 and S2 are the functions given in Eq.s (4.136) and (4.137), respectively).
Let us point out a couple of facts appearing from the expressions (4.147-4.150) obtained
above for the renormalized stress-energy VEV components. On the one hand, as was to be
expected due to clear symmetry considerations, the renormalized VEV (v | T̂µν v)ren only
depends on the spatial coordinates x1 ∈ (0, a), corresponding to the direction orthogonal
to the planes; so, with a slight abuse of notation, we put (for µ, ν ∈ {0, ..., 3})

(v | T̂µν(x)v)ren ≡ (v | T̂µν(x1)v)ren . (4.151)

In fact, the same statement can be easily proven to hold for any spatial dimension d
and for the regularized stress-energy VEV, as well. On the other hand, keeping only the
contributions not depending on the parameter β in the above expressions (4.147-4.150),
one recovers the renormalized stress-energy VEV corresponding to the case of Dirichlet
boundary conditions for the same geometrical configuration with two parallel planes (21).
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Figure 4.7: Graphs of (v | T̂ (♦)
00 v)ren and (v | T̂ (�)

00 v)ren.
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Figure 4.8: Graphs of (v | T̂ (♦)
11 v)ren and (v | T̂ (�)

11 v)ren.

In conclusion, let us present, some results which can be obtained by numerical evaluation
for the functions

(0, a) 3 x1 7→ (v | T̂ (•)
µµ (x1)v)ren for µ ∈ {0, 1} and • ∈ {♦,�} . (4.152)

To this purpose, we fix

a = 1 (4.153)

and consider several values for the parameter β ∈ (0,+∞). As an example, we report in
Fig.s 4.7 and 4.8 the graphs obtained for β = 0.04, evaluating numerically the expressions

21In fact, the renormalized stress-energy VEV for a massless scalar field confined between two parallel
planes with Dirichlet boundary conditions in spatial dimension d = 3 is (see, e.g., [21, 59, 64, 75, 110])

(v | T̂µν(x) v)ren =
π2

1440a4


−1 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 1

− (ξ− 1

6

)
π2(3−2 sin2(πa x

1))

8a4 sin4(πa x
1)


−1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .
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(4.147-4.150) (including the integrals appearing therein) with the aid of Matematica (22).

In view of the above figures, all the functions (v | T̂ (♦)
00 v)ren, (v | T̂ (♦)

11 v)ren and (v | T̂ (�)
11 v)ren

appear to be constant, assuming the approximate numerical values

(v | T̂ (♦)
00 v)ren ' −0.006853 . . . ,

(v | T̂ (♦)
11 v)ren ' −0.020561 . . . ,

(v | T̂ (�)
11 v)ren ' 0 .

(4.154)

As a matter of fact, it can be checked by direct inspection that the above results continue
to hold for any fixed β ∈ (0,+∞), so that all the components in Eq. (4.154) appear to be
independent of the parameter β. Let us also stress that the above results agree with the
exact results corresponding to both the limiting cases of Dirichlet (β → 0+) and Neumann
(β → +∞) conditions (23).
In view of the above considerations, it appears that the only term depending non-trivially
on the parameter β (and on the coordinate x1) is (v |T̂ (�)

00 v)ren; in Fig. 4.9 we show the
graph of this term as a function of x1 ∈ (0, 1) and β ∈ (0, 1).

Figure 4.9: Graphs of (v | T̂ (�)
00 v)ren as a function of x1, β.

We plan to give a more detailed analysis of the present configuration, discussing also the
total energy and the boundary pressure, in a future work [68].

22The lack of symmetry under the exchange x1 ↔ a− x1 in the graph for (v | T̂ (�)
00 v)ren (see Fig. 4.7)

is due to the non-symmetric boundary conditions (4.121).
23In fact, in both these cases (with the present choice a = 1), there holds (see, e.g., [65])

(v |T̂ (♦)
00 v)ren = − π2

1440
' −0.006853... , (v |T̂ (♦)

11 v)ren = − 3π2

1440
' −0.020561... , (v |T̂ (�)

11 v)ren = 0 .
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Appendix. Some results for the
cylinder kernel on a segment with
Robin boundary conditions.

In the present appendix we collect some results which were mentioned and employed in
Section 4.3, dealing with a massless scalar field confined between two parallel planes on
which Robin boundary conditions of the type (4.119) of Robin type are prescribed (recall
that β > 0). Therein we argued that, since the configuration under analysis is a slab, it
suffices to consider the reduced one-dimensional problem where Ω1 = (0, a) (a > 0) and
V = 0; in particular, we have the admissible operator (see Eq. (4.127) )

A1 := −∂x1x1 : Dom(A1) ⊂ L2(0, a)→ L2(0, a) , (155)

Dom(A1) := {f ∈ H1(0, a) | ∂x1x1f ∈ L2(0, a) , (1− β ∂x1)f(0) = (1− β ∂x1)f(a) = 0}
(notice that the domain Dom(A1) keeps into account the boundary conditions induced by
those in Eq. (4.121) ). We already mentioned (see Eq.s (4.123) (4.130) ) that a complete
orthonormal set of eigenfunctions of A1 with corresponding eigenvalues is given by (24)

Fn(x1) :=

√
2

a(1 + β2ω2
n)

(
sin(ωnx

1) + β ωn cos(ωnx
1)
)

(x1 ∈ (0, a) ) ,

ω2
n :=

n2π2

a2
, for n ∈ {1, 2, 3, ...} .

(156)

24To prove this fact, it suffices to consider the differential problem

−∂x1x1Fn = ω2
nFn , Fn(0)− βF ′n(0) = 0 , Fn(a)− βF ′n(a) = 0 , 〈Fn|Fm〉L2 = δnm .

Considering the general solution Fn(x1) = An sin(ωnx
1) + Bn cos(ωnx

1) and imposing the boundary
conditions yields automatically the relations

Bn = β ωnAn , ωn =
πn

a
(n ∈ {1, 2, 3, ...}) .

Finally, the first identity can be used along with the normalization condition 〈Fn|Fm〉L2 = δnm to infer

An =

√
2

a(1 + β2ω2
n)

.
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In the following we will use these facts to compute explicitly the cylinder kernel e−t
√
A1( , )

and to deduce the features possessed by this function, already mentioned in Section 4.3.

Computation of e−t
√
A1( , ).

Lemma .1. For any fixed t ∈ (0,+∞), x1, y1 ∈ (0, a) and any fixed β ∈ (0,+∞), the
cylinder kernel can be expressed as

e−t
√
A1(x1, y1) = T0(t ;x1, y1) + T1(t ;x1, y1) + T2(t ;x1, y1) where

T0(t ;x1, y1) :=
1

a

+∞∑
n=1

e−tωn
(

cos(ωn(x1− y1))− cos(ωn(x1+ y1))
)
,

T1(t ;x1, y1) :=
2

a

+∞∑
n=1

e−tωn
βωn

1 + β2ω2
n

sin(ωn(x1+ y1)) ,

T2(t ;x1, y1) :=
2

a

+∞∑
n=1

e−tωn
β2ω2

n

1 + β2ω2
n

cos(ωn(x1+ y1)) ,

(157)

where ωn is given by (156). Moreover, all the series above are absolutely convergent.

Proof. It suffices to consider the eigenfunction expansion

e−t
√
A1(x1, y1) =

+∞∑
n=1

e−tωn Fn(x1)F n(y1)

along with the explicit expressions (156) for Fn and ωn (some elementary trigonometric
identities must be used, as well). Absolute convergence can be easily proved recalling
again that ωn = πn

a
.

Lemma .2. There holds the relations of Eq. (4.135), i.e.,

T0(t ;x1, y1) =
1

2a

[
cos(π

a
(x1−y1))− e−πa t

cosh(π
a
t)−cos(π

a
(x1−y1))

− cos(π
a
(x1+y1))− e−πa t

cosh(π
a
t)−cos(π

a
(x1+y1))

]
,

T1(t ;x1, y1) =

∫ +∞

0

dv cos v S1(t + βv ;x1, y1) ,

T2(t ;x1, y1) = S2(t ;x1, y1)−
∫ +∞

0

dv sin v S2(t + βv ;x1, y1) ,

where the functions S1, S2 are as in Eq.s (4.136) (4.137).

Proof. We show how to compute the functions T0, T1, T2 in separate steps.
1 - Computation of T0. Let us consider the corresponding series expansion given in Eq.
(157); then, it suffices to express the trigonometric functions therein in terms of complex
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exponentials, to sum the geometric series thus obtained and to perform some elementary
algebraic manipulations.
2 - Computation of T1. First notice that, for any α > 0, there holds

α

1 + α2
=

∫ +∞

0

dv e−αv cos v .

Using the above relation with α = βωk, the series expansion for T1 in Eq. (157) can be
re-expressed as follows:

T1(t ;x1, y1) =
2

a

+∞∑
n=1

∫ +∞

0

dv e−(t+βv)ωn cos v sin(ωn(x1+ y1)) . (158)

Since |e−(t+βv)ωn cos v sin(ωn(x1+ y1))| ≤ e−(t+βv)ωn , by dominated convergence the sum
and integral in the right-hand side of Eq. (158) can be interchanged; then, the thesis
follows evaluating explicitly the sum over n = 1, 2, 3, ... (again, this is a geometric series).
3 - Computation of T2. First consider the identity

α2

1 + α2
= 1−

∫ +∞

0

dv e−αv sin v ,

holding for any α > 0. Then, the series expansion for T2 given in Eq. (157) can be
reformulated as

T2(t ;x1, y1) =

2

a

+∞∑
n=1

e−tωn cos(ωn(x1+ y1))− 2

a

+∞∑
n=1

∫ +∞

0

dv e−(t+βv)ωn sin v cos(ωn(x1+ y1)) .

Again, the sum and the integral in the second term can be interchanged by dominated
convergence theorem; also in this case the thesis follows evaluating explicitly the two sums
over n = 1, 2, 3, ... (once more, these are geometric series).

Regularity and asymptotic expansions for e−t
√
A1( , ).

Let us first state the following general result.

Lemma .3. Let S : [0,+∞) → R, t 7→ S(t) be an analytic function possessing the
following properties:
i. S has an analytic estension to a complex neighbour U ⊂ C of [0,+∞), with Laurent
expansion in t = 0 of the form

S(t) =
+∞∑
n=0

σn tn . (159)

ii. there exist C, α > 0 such that, for all t ∈ [0,+∞),

|S(t)| ≤ C e−αt . (160)
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Then, the function

T : [0,+∞)→ R , t 7→ T (t) :=

∫ +∞

t

dz S(z) , (161)

is well defined and there hold the following results:

i) T is analytic in U and its Laurent expansion in t = 0 is given by

T (t) =
+∞∑
n=0

τn tn with

τ0 :=

∫ +∞

0

dz S(z) , τn := − σn−1

n
for n ∈ {1, 2, 3, ..} ;

(162)

ii) for all t ∈ [0,+∞), there holds

|T (t)| ≤ C

α
e−αt . (163)

Proof. Let us first remark that the hypotheses on S grant, in particular, S ∈ C0([0,+∞))
and S ∈ L1(0,+∞) (⊂ L1(t,+∞), for all t ∈ [0,+∞)); then, the existence of the map
(161) follows trivially. Hereafter we discuss in separate steps the proofs of statements i)
and ii).

Step 1 - Proof of item i). Since S ∈ C0([0,+∞)) ∩ L1(0,+∞), the map (161) is dif-
ferentiable and T ′(t) = −S(t) for all t ∈ [0,+∞) (see, e.g., Thm.7.11 in [134]); then,
hypothesis i. implies the analyticity of T in U . Moreover, by elementary results on power
series, we have

T (t) = T (0) +
+∞∑
m=0

(
− σm
m+ 1

)
tm+1 for t ∈ U ;

Eq. (162) follows relabeling the summation index (n := m + 1) and noting that τ0 =
T (0) =

∫ +∞
0

dz S(z) by definition.

Step 2 - Proof of item ii). The bound (160) and the definition (161) imply, for all t ∈
[0,+∞),

|T (τ)| ≤ C

∫ +∞

t

dz e−αz ;

evaluation of the elementary integral in the right-hand side above yields Eq. (163).

To proceed, let us consider again the explicit expressions (4.136) (4.137) for the functions
S1, S2; in view of these expressions, it appears that

S1, S2 ∈ C∞([0,+∞)× (0, a)× (0, a)) . (164)
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Moreover, for any fixed x1, y1 ∈ (0, a), both the maps [0,+∞)→ R, t 7→ S1(t ;x1, y1), S2(t ;x1, y1)
are analytic and vanish exponentially; more precisely, for i = 1, 2, there exist constants
Ci(x

1, y1) > 0 such that

|Si(t ;x1, y1)| ≤ Ci(x
1, y1) e−

π
a
t for all t ∈ [0,+∞) . (165)

The same considerations can be drawn for the derivatives ∂lt∂
m
x1∂

n
y1Si (i = 1, 2), for any

l,m, n ∈ {0, 1, 2, ...}. Let us stress that, by Lebesgue’s dominated convergence theorem,
the differentiation and integration orders in the expressions for the derivatives of T1, T2

(obtained starting from the relations in Eq. (4.135) ) can be interchanged by Lebesgue
dominated convergence theorem.

Then, we have the following result, mention in Section 4.3.

Proposition .4. Consider the reduced cylinder kernel e−•
√
A1( , ) : (0,+∞) × (0, a) ×

(0, a), (t , x1, y1) 7→ e−t
√
A1(x1, y1). There hold the following results:

i) e−•
√
A1( , ) is jointly smooth in all the variables, i.e., e−•

√
A1( , ) ∈ C∞((0,+∞) ×

(0, a)× (0, a));

ii) for any l,m, n ∈ {0, 1, 2, ...} and any fixed x1 ∈ (0, a), the map (0,+∞) → R, t 7→
∂lt∂

m
x1∂

n
y1T (t ;x1, y1)|y1=x1 can be written in the form

∂lt∂
m
x1∂

n
y1T (t ;x1, y1)

∣∣∣
y1=x1

=
1

tq
Jl,m,n(t ;x1) (166)

where q ∈ N (depending on l,m, n) and the function Jl,m,n( ;x1) : [0,+∞) → R, t 7→
Jl,m,n(t ;x1) is analytic and vanishes exponentially (25). In particular, there hold

T (t ;x1, y1)
∣∣∣
y1=x1

=
1

t
J0,0,0(t ;x1) , (167)

∂mx1∂
n
y1T (t ;x1, y1)

∣∣∣
y1=x1

=
1

t3
J0,m,n(t ;x1) for m,n∈{0, 1, 2} with m+n = 2 . (168)

Proof. First of all, recall that Eq. (4.135) allows to express the cylinder kernel e−t
√
A1(x1, y1)

as the sum of three functions, namely T0(t ;x1, y1), T1(t ;x1, y1) and T2(t ;x1, y1). Here-
after we discuss in separate steps their features, which in conclusion yield the thesis.

Step 1 - The function T0. Consider the explicit expression given in Eq. (4.135); it can
be easily checked by direct computations that, for any l,m, n ∈ {0, 1, 2, ...} and any fixed
x1 ∈ (0, a), there holds

∂lt∂
m
x1∂

n
y1T0(t ;x1, y1)

∣∣∣
y1=x1

=
1

tq
J

(0)
l,m,n(t ;x1)

25Explicit bounds could be derived but we will not report them here, since they involve cumbersome
expressions and are not necessary for later developments
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for some q ∈ N and some function J
(0)
l,m,n( ;x1) : [0,+∞) → R, t 7→ Jl,m,n(t ;x1) which is

analytic and vanishes exponentially. In particular, we have q = 1 if (l,m, n) = (0, 0, 0)
and q = 3 if (l,m, n) ∈ {(0, 2, 0), (0, 1, 1), (0, 0, 2)}.
Step 2 - The functions T1, T2. We are going to show that, for any x1, y1 ∈ (0, a) (including
the case y1 = x1), the map [0,+∞) → R, t 7→ T1(t ;x1, y1) is analytic and exponentially
decreasing for t→ +∞; the very same arguments employed in the following can be used
to derive analogous results for the function T2 and for any derivative of either T1 or T2.
Let us consider the representation for T1 given in Eq. (4.135); making the change of
variable w := t + βv ∈ [t,+∞) and using elementary trigonometric identities, this repre-
sentation can be re-expressed as (see Eq. (4.138) )

T1(t ;x1, y1) =

1

β
sin

(
t

β

)∫ +∞

t

dw sin

(
w

β

)
S1(w ;x1, y1) +

1

β
cos

(
t

β

)∫ +∞

t

dw cos

(
w

β

)
S1(w ;x1, y1) .

The properties of S1 pointed out previously allow to infer that, for any fixed x1, y1 ∈ (0, a),
both the functions [0,+∞) → R, t 7→ sin( t

β
)S1(t ;x1, y1), cos( t

β
)S1(t ;x1, y1) fulfill the

hypotheses of Lemma .3. In consequence of this, the integrals in the above equation are
analytic functions for t ∈ [0,+∞) which vanish exponentially; then, it follows trivially
that the function t 7→ T1(t ;x1, y1) possesses the very same features.
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