
 

 

 
 
 
 
 

European School of Molecular Medicine 
 

PhD in Computational Biology 
 
 
 
 

Diet-specific epigenetic signature 
revealed by H3K4me3 and 

H3K27me3 data analysis in C57BL6 
mice 

 

PhD candidate: Anna Russo 
 

 

Supervisor: Pier Giuseppe Pelicci 
Added supervisors:   Lucilla Luzi 

     Marco Giorgio 

External supervisor: Martin Vingron 

Internal supervisor:  Cesare Furlanello 
 

 
 

Academic Year 2015/2016  



2 

 
 
 
 
 
 
 
 

To my nieces and nephew  
and to my sister and brothers  

for making them. 
 Please make more! 

 
 

 

 
 
 

“Research is what I'm doing when 
I don't know what I'm doing” 

 

Wernher von Braun 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 

 
 
 

Table of contents 
 
 

 

 

Table of contents .............................................................................................. 5 

List of abbreviations ........................................................................................ 6 

List of figures .................................................................................................... 7 

Abstract ............................................................................................................. 8 

1. Introduction .................................................................................................. 10 

1.1. Diet, metabolism and disease 

1.1.1. Nutrients metabolism 

1.1.2. Liver anatomy and its role in metabolism 

1.1.3. High fat diet and (poor) health 

1.1.4. Calorie restriction, the anti-aging and health promoting effect 

1.1.5. The circadian clock and its connection with metabolism 

1.2. The epigenetic link between metabolism and disease risk/prevention 

1.2.1. Chromatin and epigenome 

1.2.2. Histone modifications 

1.2.3. DNA methylation 

1.2.4. Transcription Factors and Chromatin modifiers 

1.2.5. Epigenetics alterations in disease 

1.2.6. Epigenetics and Diet 

1.3. Next Generation Sequencing approach 

1.3.1. Chromatin Immunoprecipitation sequencing (ChIPseq) 

1.3.1.1. Pathology Tissue Chromatin Immunoprecipitation (PAT-ChIP) 

1.3.2. Whole transcriptome sequencing (RNA-seq) 

1.3.3. Bioinformatics Data format and general overview of analysis 

2. Materials and methods ................................................................................ 48 

2.1. Diet treatment of mice colonies and samples collection 

2.2. Experimental procedures 

2.2.1. PAT-ChIP from FFPE-liver samples and libraries 

2.2.2. RNA extraction from frozen liver samples and libraries 

2.2.3. HiSeq2000 Illumina sequencing 



4 

2.3. Bioinformatic methods 

2.3.1. ChIPseq data analysis pipeline 

2.3.2. RNA-seq data analysis pipeline  

 

 

3. Results .......................................................................................................... 59 

3.1. PAT-ChIPseq data analysis 

3.1.1. Assessing biological and technical variability in PAT-ChIPseq replicas 

3.1.1.1. Preprocessing and peak calling results 

3.1.1.2. H3K4me3: diet-group internal and inter-group variability analysis 

3.1.1.3. H3K27me3: diet-group internal and inter-group variability analysis 

3.1.2. Downstream analysis of H3K4me3 and H3K27me3 signals 

3.1.2.1. The “positional” approach 

3.1.2.2. The “quantitative” approach for H3K4me3 dataset 

3.1.2.3. The “quantitative” approach for H3K27me3 dataset 

3.2. RNA-seq data analysis 

3.2.1. Preprocessing, variability analysis and quality check 

3.2.2. Differential Expression analysis and functional enrichment 

4. Discussion .................................................................................................... 115 

4.1. H3K4me3 profile variability 

4.2. H3K4me3 signal reveals the presence of diet-specific epigenetic signature 

4.2.1. Calorie restriction acts on circadian clock through epigenetic 

mechanisms, shaping chromatin conformation and altering gene expression of 

specific regulators 

4.2.2. NRSF/REST could be the mediator of CR induced beneficial effects 

acting on chromatin remodeling and transcription of circadian genes 

4.2.3. High Fat diet shapes chromatin configuration “opening” more genes 

promoter regions 

4.2.4. High fat diet induces changes in liver H3K4me3 profile promoting the  

onset of T2DM 

4.2.5. ZSCAN4 could be the mediator of the detrimental effects of High Fat 

diet, acting on telomere shortening increasing the risk of T2DM development 

4.3. Conclusion and future perspectives 

Bibliography .................................................................................................... 125 

 
 
 



5 

List of abbreviations 
 
The following table describes the significance of various abbreviations and 

acronyms used throughout the thesis.  

 
 
 
 



6 

List of Figures 
 
 

 
 
 
 



7 

 

Abstract 
 
 
 
Increasing evidences demonstrate that adapting to different environmental 

conditions is mediated by epigenetic changes, which can participate in cellular 

processes. In particular, the adaptation to the different caloric intakes is of great 

relevance as it is crucial for the organism’s fitness. Moreover, the phenotypic 

remodeling induced by different diets determine the susceptibility to life-

threatening diseases. For example, refined sugar, fat and meat enriched diet, 

typical of Western countries, is thought to be responsible for about 30-35% of 

cancer cases, in addition to increased incidence of type 2 diabetes and 

cardiovascular diseases. On the other hand, caloric restriction has been shown to 

be the most powerful way to prolong lifespan and reduce cancer incidence in 

different experimental models. 

Based on the hypothesis that epigenetic changes represents the mechanistic link 

between diet and disease risk, the aim of this work is to investigate chromatin  

modifications induced by different diets in murine models to identify specific 

epigenetic profiles associated with fat enriched diets and caloric restriction. 

For this purpose, 8 weeks old  C57Bl/6 female mice were divided in three groups 

and fed for 10 months with 3 different diets: Standard laboratory mouse Diet, 

Calorie Restriction without malnutrition, High Fat Diet. 

Then, livers were extracted and investigated by chromatin immunoprecipitation 

(anti-H3K4me3, anti-H3K27me3) and transcriptomic approach for gene expression 

analysis.  

Despite the presence of moderate technical and biological variability, data analysis 

demonstrated that specific epigenetic profiles were associated to different diets. In 
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particular, the distribution and frequency of H3K4me3 enabled the clustering of 

samples by diet-group. 

Moreover, functional annotation of genes showing an increased signal of 

H3K4me3 for HF or CR respect to SD on their promoter regions, resulted in 

significantly enriched “Type II diabetes mellitus”, for which obesity represents a 

critical risk factor, and “Circadian Rhythm” pathways, whose known to affect 

longevity.  

At mechanistic level, two DNA motifs related to the transcription and chromatin 

regulators ZSCAN4 and REST/NRSF were found enriched in correspondence of 

the regulative regions of the genes of the aforementioned pathways, suggesting 

these factors mediate the effects of diet on chromatin and gene expression. 
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1. Introduction  

To sustain our body’s energy needs and functions, we need food: each single cell 

requires a constant supply of calories and nutrients. Moreover, eating and food are 

also associated to other, yet  important, needs: we use to eat to bond with loved 

ones, friends, family or coworkers; food inspires a sense of community, it is used 

as a source of comfort/reward or as a way to reduce stress in difficult moments of 

our life.  

For these reasons, we have witnessed to a rising interest and curiosity towards 

food habits, the impact and the role that food have on the quality of our life and, 

especially, on our health.  

Increasing number of studies show a correlation between Western-style diet (rich 

in fats, carbohydrates, proteins) and incidence or worsening of malignancies. The 

number of obese adults and, especially, children is constantly increasing 

worldwide, as reported by the World Health Organization (WHO, Obesity and 

Overweight, 2015), rising concerns in the healthcare systems and awareness in 

the population. In the last decades, this frame promoted the flourishing of new 

medical sciences that, placed side by side to biochemistry, investigate the impact 

that food has on our organism at the molecular level adding a new perspective.  

This is the case, for example, of Nutrigenomics (studying the effects of foods and 

food constituents on gene expression, Müller and Kersten, 2003) and 

Nutrigenetics (studying the effect of genetic variations on the interaction between 

diet and health with implications to susceptible subgroups, Mutch et al, 2005). 
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In particular, a recently born discipline is Nutri-epigenomics, focused on the effects 

of food nutrients on human health exerted through epigenetic modifications 

(cellular and physiological variations not caused by changes in DNA sequences) 

(Gallou-Kabani et al, 2007).  

In this thesis I report the results of our studies focused on investigating the impact 

of different diets on the mouse epigenome, starting from the hypothesis that food 

adaptation entails reprogramming of different cell functions, which might be 

maintained and/or executed through changes in chromatin.  

The aims of our studies were to characterize the epigenetic changes induced by 

nutritional regimens that have been associated to either a higher risk of developing 

cancer or cardiovascular diseases (high fat diet, HFD), or to a protective effect 

against aging and diseases (caloric restriction, CR), and to possibly identify diet-

specific epigenetic signatures. To this end, Next-Generation Sequencing (NGS) 

technologies were combined with Chromatin Immunoprecipitation (ChIP-seq) and 

transcriptional expression analyses (RNA-seq) of a big collection of in vivo 

samples of liver tissues. 

In this first chapter we will provide fundamental concepts related to diet, 

metabolism, epigenetics and Next Generation Sequencing data creation and 

analyses, in order to proper illustrate the results reported in Chapter 3 and 

discussed in Chapter 4; all the materials and methods used in this study are  

described in Chapter 2. 
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1.1. Diet, metabolism and disease 

“We are what we eat”, it is often said, but what does this sentence really mean?  

From a general point of view, we can easily state that food affects every aspect of 

our life (mood, body functions, relationships), and that some kinds of food are 

even considered symbols of entire countries (as for example, pasta and pizza for 

Italy). In this perspective, we can say that food creates identity, defining us with 

respect to ourselves and the others. 

From a scientific point of view it is known that, when it comes to food, bad habits 

often produce health problems: a diet rich in fat can be the starting point for 

metabolic disorders, overweight and obesity, all risk factors for cardiovascular 

diseases and different type of cancers. 
In particular, it has been estimated by Anand et al, 2008 that 90%-95% of US 

cancer cases are due to environmental and lifestyle factors like smoke, exposure 

to radiations and/or pollutants, alcohol consumption and, of these, 30-35% are 

related to unhealthy diet. Conditions like these have a huge impact, not only on the 

individual health status, but also on the overall healthcare system and on the 

whole society. On the contrary, in animal models, a low caloric diet is associated 

to a reduced cancer incidence, and moderate calorie restriction (without 

malnutrition) has emerged as the most potent dietary intervention for preventing 

cancer and prolonging life span (Hursting et al, 2009). Although both these 

dietary conditions have been extensively studied, the mechanisms linking diet, 

metabolism and disease development/prevention are still unclear. 
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In this section we will first briefly summarize i) basic concepts of cellular 

metabolism and ii) roles of liver in controlling energy transformation and utilization, 

and then introduce iii) actual knowledge about the impact of high fat and calorie 

restriction diets on health and iv) how our biological internal clock, the circadian 

clock, is linked to the metabolic processes of the entire body, due to its relevance 

in our study results.  
 

1.1.1. Nutrients metabolism  

Living organisms need energy on a daily basis and food represents the fuel to this 

engine. The biochemical reactions needed to obtain and use energy at cellular 

level define the general process called metabolism (from the Greek, µεταβολή, 

metabolē, which means “transformation, change”). 

Carbohydrates, lipids, and proteins represent the principal energetic components 

of diet. After digestion in the gastrointestinal tract and successive absorption, 

through the bloodstream, they reach every tissue and cell of the body, where their 

chemical energy content are further transformed and utilized. Monosaccharides 

(mainly glucose) - from carbohydrates -, monoacylglycerol and long-chain fatty 

acids - from lipids - and small peptides and amino acids - from proteins - are the 

ultimate compounds of the digestion activity. The energy released by breaking 

chemical bonds of these substrates is then transferred to high-energy compounds, 

which work as repositories and energy carriers in cells. One of these keys 

molecules is the adenosine triphosphate (ATP).  

ATP is produced, in mitochondria, during the tricarboxylic acid (TCA) cycle (also 

known as Krebs cycle) - the central metabolic pathway where all products of 

nutrients' degradation (glycolysis, fatty acid oxidation and 

transamination/deamination of some amino acids) converge (Figure 1.1) - and 
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mainly during oxidative phosphorylation. All these metabolic energy-transducing 

events in this process are made possible by oxidation-reduction reactions: the 

electrons removed by the oxidation of nutrient molecules are transferred to two 

major electron carrier coenzymes, nicotinamide adenine dinucleotide (NAD+) and 

flavin adenine dinucleotide (FAD), then converted to their reduced forms, NADH 

and FADH2. These reduced electron carriers are themselves oxidized via the 

electron transport system (ETS) - a modular set of protein complexes which 

constitutes a chain of electron accepting/donating factors – which in turn allows 

the distribution of the free energy between the reduced coenzymes and the O2 

resulting in ATP synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.1 Metabolism activity scheme 
Schematic representation of energy metabolism relationship: the degradation of lipids, proteins and 
carbohydrates produces fatty acid, amino acids and pyruvate, respectively and they all converge to 
TCA cycle. The electrons are transported from reduced coenzymes to O2 in the electron transport 
system, resulting in ATP synthesis. 

(Adapted from El Bacha et al, Nature Education, 2010) 
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Different cells may exhibit specific and unique metabolic profile, not only in a fixed 

tissue-specific context, but also according to different physiological conditions, 

such as the fed or fasting states (Figure 1.2). For example red blood cells, not 

having mitochondria, use only glucose as source of energy, and convert it into 

lactate; the brain relies on glucose and ketone bodies that are generated in the 

liver in case of starvation; adipose tissues uses fatty acids and glucose, while 

muscle cells use also amino acids; the liver uses fatty acid oxidation as energy 

sources (El Bacha et al, 2010; Berg et al, 2002).  

 
Figure 1.2 Different cell types manage differently to satisfy energetic needs 
 
Red blood cells rely on glucose for energy and convert glucose to lactate. The brain uses glucose 
and ketone bodies for energy. The liver primarily uses fatty acid oxidation, while muscle cells use 
fatty acid, glucose and amino as energy sources. 

      (Adapted from El Bacha et al, Nature Education, 2010) 
 

The comprehension of metabolic pathways therefore can be achieved, by and 

large, only considering all the integrative events, which contribute to energy 

regulations and their adaptation to various internal or environmental changes.  
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1.1.2. Liver anatomy and its role in metabolism 

Hepatocytes, liver basic cells, have a major role in the synthesis of molecules 

utilized to sustain whole body homeostasis (the property of a system in which 

variables are regulated so that internal conditions remain stable and relatively 

constant), in converting molecules of one type to another, and in regulating energy 

balances. Compounds absorbed by the intestine are then processed by liver that, 

acting as a metabolic hub, provides fuel to muscles, brain and peripheral organs 

(Berg et al, 2002). 

One the main function of the liver is to maintain normal the blood glucose levels for 

both short and long periods of time: hepatocytes employ many enzymes that 

alternatively switch on or off depending on fluctuations of blood glucose levels.  For 

example, the excess of glucose entering in the blood after eating is taken up by 

liver and in particular by glycogen (glycogenesis), that later, when blood 

concentrations of glucose start to go down, will be depolymerized (glycogenolysis) 

to release glucose back into the blood for transport to all other tissues (cf. Figure 

1.3). 

If hepatic glycogen reserves end, as happens when an animal do not eat for many 

hours, hepatocytes activate other groups of enzymes that synthesize glucose from 

amino acids and non-hexose carbohydrates (gluconeogenesis).  

This process is massively regulated by hormones, in particular, insulin and 

glucagon, that have opposing actions. Insulin levels rise in response to a meal, 

promoting nutrient storage and glycogenesis, whereas glucagon levels rise with 

fasting, promoting glycogenolysis and gluconeogenesis.  
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Figure 1.3 Metabolic homeostasis driven by the liver on the organ level 
The liver integrates nutritional, neural and endocrine signals to store or mobilize nutrients, and to 
control carbohydrate, lipid and amino acid usage. Its main role is to maintain metabolic 
homeostasis. 
      

(Adapted from Metabolic Syndrome eposter, Nature Medicine 2012) 
 

Fatty acids in the blood passing through the liver are absorbed by hepatocytes 

and metabolized to produce energy in the form of ATP. Hepatocytes can also 

produce lipids like cholesterol, phospholipids, and lipoproteins that are used by 

other cells throughout the body. Much of the cholesterol produced by hepatocytes 

is excreted from the body as a component of bile.  In addition, dietary proteins are 

broken down into their component amino acids by the digestive system and then 

being passed on to the hepatic portal vein. Amino acids entering the liver require 

metabolic processing before they can be used as an energy source. Hepatocytes 

first remove the amine groups of the amino acids and convert them into ammonia 

and eventually urea. Urea is less toxic than ammonia and can be excreted in urine 
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as a waste product of digestion. The remaining parts of the amino acids can be 

broken down into ATP or converted into new glucose molecules through the 

process of gluconeogenesis (Lewis et al, 1997; Cherrington et al, 1999; Obici 

and Rossetti, 2003; Lin and Accili, 2011). 

1.1.3. High fat diet and (poor) health 

More than 60 years ago, a first study by Samuels et al, 1942 reported that rats, 

subjected to a regimen containing 70% energy as fat, became obese and showed 

higher basal and postprandial blood sugar values. Similar results were obtained 

with diets containing well above 30% energy for different animal models and diet 

lengths (Budohoski et al, 1993; Harris et al, 1993). Hyperglycemia and obesity 

induced by this so called High Fat Diet (or HFD) in rats, are also present in 

humans in a group of metabolic disorders called metabolic syndrome (MetS), that 

includes abdominal and visceral obesity, dyslipidemia, insulin resistance, 

hypertension and abnormal glucose metabolism. This syndrome is widely diffuse 

nowadays, spread worldwide and counting one-quarter of the world’s adult 

population, as reported by the International Diabetes Federation (IDF, 2015). In 

turn, MetS is known to play a role in the development of cardiovascular diseases, 

diabetes mellitus (Gami et al, 2007) and a variety of tumor types (Esposito et al, 

2012; Giovannucci et al, 2007; Pais et al 2009; Aleksandrova et al, 2011). 

Moreover, Western-style diet, rich in fat, refined carbohydrates and animal 

proteins, is unanimously recognized as the main cause of overweight and obesity, 

which are not only related to metabolic syndrome, insulin resistance and 

cardiovascular risk, but are also major risk factors (as important as tobacco 

smoking) for the development of some types of tumour (breast, colorectal), as 

reviewed by Berrino et al, 2006. Notably, breast and colorectal cancer patients 
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with MetS have also increased risk of developing metastasis (Shen et al, 2010). 

Nevertheless, the molecular mechanism linking (hypercaloric) diet with disease 

risk is far from being clearly understood. 

 

1.1.4. Calorie restriction, the anti-aging and health promoting effect 
 

Since the beginning of the last century, moderate calorie restriction (CR) without 

malnutrition (defined as an experimental setting in which test animals receive a 30-

70% less calories than ad libitum-fed controls) has emerged as the most potent 

dietary intervention for loss weight and preventing age-associated diseases 

(McCay et al, 1935). 

In fact, a collection of studies show that CR extends lifespan in a variety of 

experimental models, like yeasts, worms, flies, spiders, rotifers, fish and rodents 

(Chapman and Partridge, 1996; Fontana et al, 2010; Greer and Brunet, 2009; Kennedy et al, 

2007; Mair and Dillin, 2008; Masoro, 2005; Weindruch et al, 1988) and slows age-related 

chronic diseases. It is also known that CR reduces metabolic rate and oxidative 

stress, improves insulin sensitivity, and alters neuroendocrine and sympathetic 

nervous system function in animals (Heilbronn et al, 2003).  

Moreover, as summarized by Hursting et al, 2010, calorie restriction in 

experimental tumour models inhibits cancer: Mattison et al, 2012 and Colman et 

al, 2009,  reported that rhesus monkeys, subjected to CR, showed a decreased 

risk of diabetes, neurological degeneration and cancer, Harvie et al, 2012  and 

Imayama et al, 2012 observed, in women fed with a CR regimen, a decreasing of 

inflammatory and endocrine markers that are associated with breast cancer risk, 

suggesting that CR beneficial effects on metabolism and chronic disease risk 

known for experimental models could actually apply also to human beings.   
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Even in this case, the mechanisms through which CR improves tumour 

suppression are still largely unclear.  

 

1.1.5. The circadian clock and its connection with metabolism 

It is easy to notice that feeding follows a certain rhythmicity: for instance, humans, 

that are daily organisms, feed during the day, while nocturnal organisms eat 

predominantly at night. In fact, food acts as an external stimulus for our internal 

biological clock that is called circadian clock. 

In mammals the central circadian clock is located in the suprachiasmatic nuclei 

(SCN), a particular bilateral group of cells located in the anterior hypothalamus in 

the brain. This internal biological timer allows the daily coordination of biological 

and behavioural activities of an organism and, as suggested by the name (from 

Latin, circa diem, “about a day”), oscillates with a period of 24 hours regulating the 

day-night cycle and depends from external cues, like sunlight (review by Welsh et 

al, 2010).  

It is important to notice that similar clock oscillators have been found in many 

tissues, such as the liver, intestine, heart, adipose tissue, retina and in various 

regions of the brain and that these oscillators are synchronized through both 

endogenous and external signals to regulate transcriptional activity throughout the 

day in a tissue-specific manner (Balsalobre et al, 1998; Yamazaki et al, 2000; 

Yoo et al, 2004). Moreover, the clock can be modified through environmental 

changes depending on the organism's ability to detect external time cues, like 

light. The circadian rhythms, driven by the circadian clocks, display three main 

characteristics: 
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The existence of an endogenous free-running period lasting approximately 24 

hours. In animals active during daylight hours, in general it is a bit greater than 24 

hours,while for nocturnal animals is shorter than 24 hours. 

They have to be “entrainable”. meaning that it is possible to reset them through 

external stimuli (as, for example, light and heat). This process is called 

entrainment and it happens, for example, traveling across different time zones, 

since our biological clock needs to adjust to the local time. 

They maintain circadian periodicity over a range of physiological temperatures. 

Since differences in thermal energy will affect the kinetics of all molecular 

processes in their cells of an organism, in order to keep track of time, the 

organism's circadian clock must maintain roughly a 24-hour periodicity despite the 

changing kinetics. This is known as temperature compensation.  

Clock components are mostly transcriptional activators or repressors involved in 

the onset of two linked feedback loops: in the first one, CLOCK and 

BMAL1/ARNTL form a complex that, moving from cytoplasm to nucleus, starts 

transcription of target genes that are known as period genes (PER1, PER2, PER3) 

and cryptochrome genes (CRY1, CRY2); in the second one, PERs and CRYs form 

complexes that, travelling to nucleus, represses CLOCK:BMAL1 complex, thus 

blocking their own transcription (Alberts et al, 2008) as schematized in Figure 1.4. 
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Figure 1.4 Feedback loops of the central circadian clock 
 
BMAL1 and CLOCK heterodimerize in the nucleus, promoting the transcription of PER and CRY 
genes. The PERs and CRYs proteins from the cytoplasm, enter in the nucleus to repress BMAL1 
and CLOCK activity. 

  (Adapted from Bernard et al, PLoS Comput. Biol. 2007) 

 

In the last decades, several studies supported a unique role for circadian rhythm in 

metabolism. In fact, Di Lorenzo et al, 2003 showed that disruption of the circadian 

cycle correlates with metabolic imbalance in individuals working night or rotating 

shifts: the prevalence of obesity was higher among shift workers compared to day 

workers, moreover shift workers showed higher BMI than day workers, and shift 

working was associated with BMI, independently of age and work duration. Pitts 

et al, 2003; Pendergast et al, 2009 made similar observations in rodent models of 

circadian arrhythmia.  

In conclusion, feeding is to be considered a circadian event, not only because it is 

an output of the clock, but also as a clock input mechanism. From metabolites to 

transcription factors, circadian clock and feeding intertwine in a crucial manner for 

the maintaining of metabolic homeostasis (Eckel-Mahan, Sassone Corsi, 2013). 
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1.2. The epigenetic link between metabolism and disease 

risk/prevention 

In biology the term adaptation is referred to the ability of adjust in structure or 

habits, often occurring through natural selection, by which a species or individual 

becomes better able to function in their environment.  

Many studies proved the ability of individuals responding to their environment by 

changing their own shape, as for example, leaf-mimicking insects that change 

color depending from the season and leafs that change shape depending from the 

conditions of soil, water and chemistry (Laland et al, 2014). Organisms are 

subjected to frequent environmental changes within their lifetime and natural 

selection responds inefficiently to these continuous immediate changes. Fitness to 

a fluctuating environment requires stable and reversible adaptation that involves 

the tuning of the genetic information by the soma. Physiological systems can 

respond and adapt to new changes in real time: the ongoing process by which 

internal body functions are regulated and adjusted to maintain homeostasis in the 

internal environment is called physiological adaptation. In particular, the 

physiological adaptation to the different caloric intakes is of great relevance as it is 

crucial for the organism’s fitness. As proved by studies related to CR and HF diets 

in different organisms, dramatic changes in dietary regimens provoke a phenotypic 

remodeling, determining the susceptibility to life-threatening diseases (cf. 

Paragraphs 1.1.3 and 1.1.4 ). Recent studies in honeybees, mice and humans 

have shown that food can affect the activity of several chromatin-modifying 

enzymes, producing epigenetic traits that can be passed from generation to 

generation. 
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Moreover epigenetic modifications were proven to be alternative to genetic defects 

and sufficient to initiate tumorigenesis (when induced in animal models by genetic 

approaches) and may represent a common pathway of tumour progression.   
In this context, epigenetics could represent the missing mechanistic link between 

diet and disease risk.  

For these reasons, our working hypothesis in this study is that food adaptation 

entails reprogramming of different cell functions, which might be executed and 

maintained through changes in chromatin.  

In this section we are going to focus on the main concepts related to epigenetics 

and its links with diet and disease development, to better set the frame in which 

our work is built. 

 

1.2.1. Chromatin and epigenome 
 
Chromatin is composed by naked DNA wrapped around nucleosomes - organized 

structures of specialized proteins called histones - and then packed to form 

chromosomes (Figure 1.5). Chromatin is not a mere depository of the genomic 

content but rather a signal transduction platform for extracellular or intracellular 

signals that regulates all genome functions, including gene expression, DNA 

replication and genome stability. 
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Figure 1.5 Chromatin structure 
 
DNA is wrapped around nucleosomes, agglomerate of specific proteins called histones, creating a 
fiber called chromatin that is packed and condensed to form chromosomes. 

 
  (Adapted from Felsenfeld et al, Nature, 2003) 

 
 

Upstream signals are translated by chromatin into either transient or long-lasting 

(and heritable during cell division) changes or modifications, thereby allowing 

chromatin to serve the double function of adapting cells to the environment 

changes while maintaining their lineage and/or identity. These modifications forms 

the epigenome: they are not modifications of DNA sequences but chemical 

changes happening on DNA (DNA methylation) or on specific regions of histone 

proteins called tails (histone modifications) that modify chromatin structure in 

different conformations as more open (euchromatin) and available to be bound by 

other proteins, or closed, compacted and then repressed (heterochromatin) 

(Felsenfeld et al, 2003). 
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1.2.2. Histone modifications 

Histones are the structural units of the nucleosomes (the “beads” around which the 

DNA wraps to form chromatin fibers), they are very important proteins involved 

especially in gene regulation. Five are the major groups of histones: H1/H5, H2A, 

H2B, H3 and H4. Histones H2A, H2B, H3 and H4 are known as the core histones, 

while H1 and H5 are called the linker histones. Two of each of the core histones 

are needed to create an octameric nucleosome core and approximately 150 base 

pairs of DNA wrap around this core particle, while the linker histone H1 binds the 

nucleosome at entry and exit sites of the DNA, blocking it in place. The 4 core 

histones (H2A, H2B, H3 and H4) are relatively similar in structure and are highly 

conserved through evolution, having long tails on the N-terminal end which are 

more exposed, protruding from the center of the nucleosome core. 

This tail is the location in which post-translational modification appears, altering 

the interaction of histones with DNA and nuclear proteins.  

Many different modifications of the tail exist (Kundaje et al, 2015) of which, the 

more studied include methylation, acetylation, phosphorylation and ubiquitination 

(Figure 1.6). Histone modifications have a huge role in several biological 

processes such as gene regulation, DNA repair, chromosome condensation 

(mitosis) and spermatogenesis (meiosis). For these reasons, they often are 

present in specific genomic regions, like promoters (regions of DNA essential for 

the transcriptional regulation of genes; they are bound by both the basic 

transcription machinery complex and by a bunch of ancillary proteins (transcription 

factors, cofactors and chromatin modifiers) that all together impose a strict time- 

(cell cycle or development) and tissue-specific transcriptional program to their 

proximal target gene; they locate mainly upstream and around the Transcription 

Start Site - TSS - of genes) and enhancers (regions of DNA that can be bound by 
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proteins to activate transcription of a gene, that can be located nearby or far away 

from the activated gene, Maston et al, 2006).  

The reaction of Lys-methylation is catalyzed by lysine (K) methyltransferases 

(KMTs) that uses S-adenosylmethionine (SAM or AdoMet) as a donor of methyl 

groups (Smith BC et al, 2009). Lysine residues may accept from 1 to 3 methyl 

groups and mono-, di-, or tri- methylated Lys are indeed observed (Grant et al, 

2001). 

 

 

The tri-methylation of different Lys residues of the H3 histone is associated with 

different extent of gene transcription. In general, the tri-methylation of Lys 4, 36, 79 

(H3K4me3, H3K36me3, H3K79me3) are found predominantly in the euchromatin  

(Li, Carey et al, 2007). In particular, H3K4me3 is localized in the proximity of the 

transcription start sites (TSSs) of many actively transcribed genes (Kim et al, 
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2005) or in promoters region bound by RNA polymerase II and others 

transcriptional factors (Guenther et al, 2007). These observations suggest that 

H3K4me3 is important to make chromatin accessible for transcription (Li, Carey et 

al, 2007). 

H3K27me3, contrarily, is a marker of heterochromatin, found predominantly in 

repressed genes and usually where the H3K4me3 mark is absent (Bernstein et 

al, 2005). The only exceptions to this rule are the bivalent promoters, regions in 

which H3K27me3 colocalizes with H3K4me3 usually lying near genes that are 

poised for transcription, but needed to be rapidly expressed (Bernstein et al, 

2006) (Figure 1.7 b-c). 

Moreover, H3K4me1 is known to be especially associated to enhancer regions 

that usually are functionally active only when H3K4me1 it is also accompanied by 

an H3K27ac enrichment (Shlyueva et al, 2014) (Figure 1.7 a-d).  

 

Figure 1.7 Histone H3 modifications and their role in gene regulation 
 
Presence of H3K4me1 and H3K27ac (a) identifies active enhancers while H3K4me1 and 
H3K27me3 (d) turn off the region, defining a closed or poised enhancer. Active promoters, the ones 
in which Polymerase II can easily bind to initiate transcription of the genes, are identified by 
presence of H3K4me3 and H3K27ac (b), while poised genes are identified by presence of 
H3K4me3 and H3K27me3 (c). 

  (Adapted from Shlyueva et al, Nature Rev. Genetics, 2014) 
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1.2.3. DNA methylation 

 
DNA methylation is a post-replication modification found at cytosines in any 

context of the genome (Lister, Pellizzola, Dowen et al, 2009). DNA methylation, 

is catalyzed by DNA methyltransferase genes and it is known to act as a repressor 

of gene transcription (Kass et al, 1997). It is fundamental for development being 

involved in genomic imprinting (phenomenon by which certain genes are 

expressed in a parent-of-origin-specific manner), X-chromosome inactivation 

(Smith & Meissner, 2013), and alteration of DNA methylation profile is a feature 

present in several diseases, including cancer (Bergman & Cedar, 2013). 

Differently from other modifications, DNA methylation can permanently alter the 

expression of genes in cells during cell division and differentiation from embryonic 

stem cells into specific tissues. This means that the resulting change is not 

reversible and permanent, in order to avoid that a differentiated cell could revert to 

a stem cell and then convert in another cell type. However, DNA methylation can 

be removed either passively, by dilution as cells divide, or by a faster, active, 

process. The latter process occurs via hydroxylation of the methyl groups that are 

to be removed, rather than by complete removal of methyl groups (Iqbal et al, 

2011; Wossidlo et al, 2011). 

 

1.2.4. Transcription Factors and Chromatin modifiers 

Transcription initiation in Eukaryotes requires the activation of many proteins. In 

particular, the RNA polymerase enzyme, that actually transcribes genomic content 

from DNA to RNA, requires help to correctly positioning on gene promoters or 

pulling apart the two DNA strands. This kind of tasks are executed by transcription 

factors, proteins that, binding to specific DNA sequences, control the rate of 
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transcription of genetic information, activating or repressing RNA polymerase 

(Latchman, 1997). 

These peculiar proteins are essential for gene expression regulation and, for this 

reason, massively present in all living organisms (in humans there are 

approximately 2,000 TFs). The distinguishing feature of TFs is the presence of one 

or more DNA binding domains, useful to recognize and bind only specific 

sequences next to the gene that has to be regulated (Mitchell et al, 1989).  

Furthermore, genes often present flanking regions containing several binding sites 

for numerous transcription factors that all together work to properly regulate the 

targeted gene expression. All the possible combination of the ~2,000 human TFs, 

allow the unique regulation of each gene in the human genome during 

development (Brivanlou, Darnell, 2002). 

Transcription factors bind to either enhancer or DNA promoter regions adjacent to 

their target genes and they can use different mechanisms to execute their task, as, 

for example, i) directly blocking or stabilizing RNA polymerase to the DNA, ii) 

recruiting histone acetylation/deacetylation (HAT/HDAC) proteins to produce the 

opening/closing of the chromatin fibers in specific regions (Narlikar et al, 2002) or 

iii) recruiting coactivator or corepressor proteins to the transcription factor DNA 

complex (Xu et al, 1999). 

Transcription factors are usually recruited/activated downstream of signalling 

cascades triggered by internal or external stimuli. It is worth to notice that, among 

the external stimuli, the environmental conditions, also in higher organisms, play a 

very important role. For example, it is the case of the sterol regulatory element 

binding protein (SREBP), which helps maintain proper lipid levels in the cell 

(Weber et al, 2004). 
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1.2.5. Epigenetics alterations in disease 
 
Histone modifications or DNA methylation are sufficient to initiate tumorigenesis 

and may represent a common pathway of tumour progression.  

Indeed, a key feature of the cancer epigenome is the presence of a number of 

altered epigenetic traits (i.e., a reduction of the global content of methylated DNA; 

DNA hypermethylation at specific loci; increased methylation of lysine 4 of histone 

H3; decreased methylation of lysine 27 of histone H3), which are common to 

virtually all cancers, regardless their histological origin or stage of development 

(Esteller, 2007; Hansen et al, 2011). For example, Ke et al, 2009 found that loss 

and/or gain of H3K4me3 and/or H3K27me3 in prostate cancer were strongly 

associated with differential gene expression in tumour samples compared to 

primary cells, thus indicating the presence of a H3K4me3/H3K27me3 epigenetic 

signature of prostate carcinogenesis. He C et al, 2012 showed that high levels of 

H3K4me3 are associated with poor prognosis in hepatocellular carcinoma, while 

the change in H3K27me3 levels and the increased expression of H3K27me3 

methyltransferase EZH2 leads to the silencing of tumour suppressor genes (e.g., 

GAS2 and ADRB2) in prostate cancer patients. (Chen Z et al, 2010). Moreover, 

aberrant patterns of histone modifications, due to malfunctioning of both histone 

methyltransferases (HMTs) and histone demethylases (HDMs), were found in 

other conditions as diabetes (Raciti et al, 2014), cardiovascular disease 

(Mathiyalagan et al, 2014) and neurological diseases as Huntington’s (Urdinguio 

et al, 2009). 

Since histone modifications have been identified as possible predictive markers of 

disease, increasing attention is focused towards creating epigenetic drugs, such 
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as histone methyltransferase inhibitors for treatment, especially in cancer research 

(Ngollo et al, 2014). 

 

 

1.2.6. Epigenetics and Diet 
 
There are evidences that food can affect the activity of several chromatin-

modifying enzymes. In fact, methyl groups derived from foods (i.e. fish, legumes, 

eggs, fruit, cereals) can favor histone methylation by increasing the cellular levels 

of the methyl donor S-adenosylmethionine or by regulating directly the activity of 

HMTs (Park et al, 2012).  

The methylation of lys 4 residue in histone H3 (i.e mono-, di-, trimethylation) is 

induced by consumption of a high-starch/low-fat diet intake in rat jejunum. This 

trimethylation alters the gene expression of Si (sucrose-isomaltase) and Sglt1 

(sodium-dependent glucose cotransporter) involved in carbohydrates metabolism. 

The levels of H3K4me1, H3K4me2 and H3K4me3, on the promoter and 

transcribed region of Si and Sglt1 genes were significantly higher in rats fed a 

high-starch/low-fat diet than in those fed a low-starch/high fat diet. On the contrary, 

the levels of H3K9me1, H3K9me2 and H3K9me3 (associated with 

heterochromatin) on the promoter and transcribed region of Si and Sglt1 genes 

were not significantly higher in rats fed a high-starch/low-fat diet than in those fed 

a low-starch/high fat diet (Inoue et al, 2015). 

In addition, histone trimethylation of Lys residues changes in response to hyper-

lipidemic diet that induces an increase of H3K9me3 and H3K4me3 in mouse 

primary hepatocytes. In this case, the high levels of H3K9me3 and H3K4me3 mark 

the promoters of many genes involved in biological pathways responsible for the 

development of hepatic steatosis and nonalcoholic fatty liver disease (Jun et al 
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2012). Moreover, it has been shown by Kucharski et al, 2008 that bees larvae, 

producing queen and worker phenotypes, are genetically identical; the royal jelly 

silences Dnmt3 and activates genes needed to develop functional ovaries, egg 

laying abdomen and the necessary behavior to produce the queen phenotypic 

traits. Moreover, in “agouti viable yellow” (Avy) mice strain, which are prone to 

obesity, diabetes and cancer, mom’s diet can reverse in newborns the effect of 

unmethylated agouti gene, one of the gene that contribute to coat color: in fact, 

feeding with a methyl-rich diet a pregnant “yellow mouse”, the pups born with 

brown fur and stayed healthy for life (Wolff et al, 1998).  

In humans, Heijmans et al, 2008 reported that babies prenatally exposed to the 

Dutch hunger famine at the end of World War II, had lower level of DNA 

methylation of the imprinted IGF2 gene compared with their unexposed, same-sex 

siblings. Another interesting example is represented by SIRT1. This protein is a 

NAD+-dependent protein deacetylase, known to operate as a key nuclear 

metabolic sensor and as a mediator of the homeostatic responses to nutrient 

availability. Evidence indicates that SIRT1 may exploit these functions working as 

a master effector linking the metabolic status of a cell with the chromatin structure. 

In fact, by the deacetylation of histones, transcription factors and transcriptional 

co-factors, it is capable to regulate gene expression, thus influencing several 

fundamental cellular processes (Brooks et al, 2009). In addition, it has been 

recently demonstrated that the human epigenome contains hundreds of regions 

with high and stable inter-individual variability in DNA methylation, some of which 

correlate with the Body Mass Index (BMI) (Dick et al, 2014). 

Moreover, Eckel-Mahan et al, 2013 revealed, through analysis of H3K4me3 

profiles in specific genes’ loci and expression data, that high-fat diet produces a 
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remodelling of the liver clock, disrupting the normal circadian cycle, impairing 

BMAL1 recruitment to target chromatin sites, and that these effects are reversible.  

Later Leung et al, 2014 showed that high-fat diet leads to chromatin remodelling 

in livers of C57BL6 mice, respect to mice fed with a control diet, and that these 

changes are associated with changes in gene expression. 

These evidences confirm the interplay between diet and the epigenome, revealing 

the true potential in terms of possible therapeutic strategies for metabolic disease 

and cancer. 
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1.3. Next Generation Sequencing approach 

The sequencing of the human genome and related organisms represents one of 

the most amazing scientific achievements in the history of mankind. From the 

discovery of DNA double helix in 1953 to the first DNA sequencing produced, 15 

years passed and we had to wait until 1977 to watch the beginning of the modern 

sequencing (Sanger et al, 1977). Sanger DNA sequencing technology has 

allowed to advance enormously in molecular biology and genetics and several 

large projects have been successfully completed using this technology, as for 

example the Human Genome Project, Rice Genome Project and Swine 

Genome Project. However, Sanger low throughput, high cost and operation 

difficulties limited its use and increased the urge of researcher for faster and less 

costly sequencing. This need let to the rise of “Next Generation Sequencing” 

technologies (NGS): millions or billions of DNA molecules can be sequenced in 

parallel, highly increasing the throughput and minimizing the need for the 

fragment-cloning used in Sanger sequencing (Ronaghi et al, 1996; Adams and 

Kron, 1994; Farinelli et al, 1998; Mayer et al, 1998). 
NGS has enabled researchers to characterize the molecular landscape of diverse 

diseases and produced a phenomenal advancement, especially in cancer genomic 

studies. For example, through whole-genome (WGS) and whole-exome 

sequencing (WES), there was an explosion of data in the context and complexity 

of cancer genomic alterations (point mutations, small insertions or deletions, copy 

number alterations, somatic and germline variants) (Samuel & Hudson, 2012; 

Almendro et al, 2013; Yancovitz et al, 2012; Curtis et al, 2012; Bodini et al, 

2015; Riva et al, 2013). 
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Through whole transcriptome approach (RNA-Seq) it is possible not only to 

quantify gene expression profiles, but also to detect alternative splicing events, 

RNA editing and fusion transcripts (Maher et al, 2009; Trapnell et al, 2010; 

Curtis et al, 2012; Graw et al, 2015). 
Moreover, epigenetic alterations, DNA methylation changes and histone 

modifications can be studied using other sequencing approaches including 

Bisulfite-Seq and ChIP-seq (Schones & Zhao, 2008; Eckel-Mahan et al, 2013; 

The mouse ENCODE consortium et al, 2014; Engelen et al, 2015) 
In this new era we see the birth of new huge consortia like The Encyclopedia of 

DNA Elements Consortium (ENCODE, https://genome.ucsc.edu/ENCODE/; that 

from 2003 is building a catalogue of functional elements in the human genome, 

producing massive amount of OMICS high-throughput sequencing data publicly 

available) and The Cancer Genome Atlas (TCGA, 

http://cancergenome.nih.gov/abouttcga; that grouping together different institutions 

have been able to collect, sequence and analyze thousands of samples of 

different tumours types in order to better understand the molecular basis of cancer 

through the application of genome analysis technologies). 
The huge amount of data gathered through the combination of these approaches 

created the necessity of specific tools and skills in order to translate data into 

information. This necessity brought to the appearance of a new interdisciplinary 

field called bioinformatics, that combines computer science, statistics, 

mathematics, and engineering to develop methods and software tools in order to 

analyze, understand and interpret biological data (Hogeweg, 2011). 
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1.3.1. Chromatin Immunoprecipitation sequencing (ChIPseq)  

Specific DNA sites in direct physical interaction with transcription factors and other 

proteins can be isolated by chromatin immunoprecipitation or ChIP, an 

experimental technique used to investigate the interaction between proteins and 

DNA in the cell. It aims to determine whether specific proteins are associated with 

specific genomic regions (as, for example, transcription factors on promoters or 

other DNA binding sites), or specific location in the genome that various histone 

modifications are associated with, indicating the target of the histone modifiers. 

The protocol method is briefly described in Figure 1.8 and involve the following 

steps (Orlando, 2000): 

1. Crosslinking of DNA and associated proteins on chromatin in living 

cells or tissues; 

2. Complexes constituted by chromatin and protein are then sheared 

into ~500 bp DNA fragments by sonication or nuclease digestion; 

3. Using a protein-specific antibody, cross-linked DNA fragments 

associated with the protein(s) of interest are selectively 

immunoprecipitated from the cell debris; 

4. The DNA associated with the complex is then purified and identified 

by polymerase chain reaction (PCR), microarrays (ChIP-on-chip), 

molecular cloning and sequencing, or direct high-throughput 

sequencing (ChIP-Seq). 
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Figure 1.8 ChIP protocol steps 
 
After crosslinking of DNA and associated proteins on chromatin in living cells or tissues, the DNA-

protein complexes are then sheared into fragments by sonication or nuclease digestion. Using a 

protein-specific antibody, cross-linked DNA fragments bound with the protein(s) of interest are 

selectively immunoprecipitated. Finally, after purification, the DNA associated with the complex can 

be identified by polymerase chain reaction (PCR), microarrays (ChIP-on-chip), molecular cloning 

and sequencing, or direct high-throughput sequencing (ChIP-Seq). 

 (Adapted from Collas, Mol. Biotechnol. review, 2010) 

 

 

In particular, in ChIP-seq, massively parallel sequence analyses are used in 

conjunction with whole-genome sequence databases to analyze the interaction 

pattern of any protein with DNA. The first studies using ChIPseq were published in 

2007 (Johnson et al, 2007; Barski et al, 2007; Robertson et al, 2007; 

Mikkelsen et al, 2007) and many more followed; by now is one of the most used 

techniques for epigenomic studies. 
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1.3.1.1. Pathology Tissue Chromatin Immunoprecipitation (PAT-ChIP) 

In general ChIP protocol is performed on chromatin obtained from cells cultured in 

vitro or from fresh tissues, but not always fresh samples are available for an 

immediate analysis, especially in clinical practice. In fact, clinical samples come 

often as paraffin-embedded tissues (commonly called FFPE - Formaldehyde 

Fixed-Paraffin Embedded) and large archives of these FFPE samples are present 

in most hospitals and have been extensively used for detailed case studies. 

Pathologists use formalin to preserve biopsies and maintain intact their cellular 

structure, including cross-linked DNA and proteins as well. In our laboratory we 

developed a specific protocol called PAT-ChIP (pathology tissue chromatin 

immunoprecipitation) to utilize FFPE for chromatin preparations and analysis 

(Fanelli et al, 2010).  

The setup of PAT-ChIP protocol was originally validated using spleen murine. First 

step of chromatin extraction is quite different from the classic ChIP protocol, 

according to which single-cell suspensions are cross-linked for short periods (10–

15 min) using lower concentrations of formalin (1%). In PAT-ChIP protocol, tissues 

are treated overnight with high concentrations of formalin, followed by paraffin 

embedding. Chromatin preparation from FFPE-tissue started with the re-hydration 

and deparaffinization of 10-µm FFPE-tissue sections, followed by chromatin 

fragmentation and extraction. The sonication step was adapted to have 

comparable size of DNA fragments from chromatin of both Cells-ChIP and PAT-

ChIP. Agarose gel electrophoresis demonstrated that the DNA fragments obtained 

after sonication have the same size (about 300 bps) both using cells or FFPE-

spleen samples (Figure 1.9). 
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Figure 1.9 Comparison of Cells-ChIP and PAT-ChIP procedures  
Schematic representation of canonical ChIP and PAT-ChIP procedures starting from the spleen of 
a mouse. 
Results showed a robust overlap between results obtained with the two ChIP strategies. 
 

(Adapted from Fanelli et al, PNAS, 2010) 
 

Chromatin samples extracted by the two methods from mice spleens were 

compared using a set of specific antibodies for histone modifications such as 

H3K4me3 and H3K27me3 (respectively, associated to active and silent promoters) 

and hyper-acetylated histone H3 or H4 (H3ac, H4ac; associated with active 

regulatory regions). The amount of immunoprecipitated DNA obtained by Cells-

ChIP or PAT-ChIP was similar for each of the used antibodies. 

To compare these two approaches, the immunoprecipitated DNAs were analyzed 

by real-time quantitative PCR (qPCR) of four promoter regions of genes expressed 

(βActin and Gapdh) or silent (Crtl1 and Col2a) in spleen. βActin and Gapdh are 
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positive controls for H3K4me3, H3ac, H4ac and negative for H3K27me3, while 

Crtl1 and Col2a are negative controls for H3K4me3, H3ac, H4ac and positive for 

H3K27me3. Results showed a robust overlap between results obtained with the 

two ChIP strategies. The performance of PAT-ChIP and standard ChIP-protocols, 

were investigated also in high-throughput sequencing methodologies. Purified 

DNA was analyzed by ultra-sequencing using the Illumina Genome Analyzer II.  

A dataset of H3K4me3-enriched genomic regions was generated for each 

experiment (Cells-ChIPSeq or PAT-ChIP-Seq) .  

Also in this case, the data showed a very high correlation between Cells-ChIP and 

PAT-ChIP datasets, showing a substantial overlap of the two techniques. (Fanelli 

M et al, 2011). 

1.3.2. Whole transcriptome sequencing (RNA-seq) 

The evaluation of the gene expression profile of a cell or a tissue through the 

quantification of mRNA levels is a matter of great interest to researchers. In fact, 

measuring mRNA concentration levels is useful in order to understand how 

external cues can affect the transcriptional machinery of the cell or how 

transcriptome profiles differ between a healthy state and a diseased state. 

One of the first experimental method introduced to reply to this kind of questions is 

represented by DNA microarrays: collections of microscopic DNA spots attached 

to a solid surface and each DNA spot contains small quantities of a specific DNA 

sequence, known as probes or oligos used to hybridize a cDNA or cRNA target 

sample. Probe-target hybridization is detected and then quantified to determine 

relative abundance of nucleic acid sequences in the target (Baldi & Hatfield, 

2002). Although they are still largely used, microarrays require species- or 

transcript-specific probes, moreover background hybridization limits the accuracy 
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of expression measurements (Zhao et al, 2014). These limitations have been 

overcome by the introduction of RNA-seq (Mortazavi et al, 2008), in which a 

population of RNA (total or fractionated, such as poly(A)+) is converted to a library 

of cDNA fragments with adaptors attached to one or both ends (see Fig. 1.10).  

 
Figure 1.10 RNA-seq protocol steps 
 
Long RNAs are converted into a library of cDNA fragments through either RNA fragmentation or 
DNA fragmentation. Then sequencing adaptors (in blue) are added to each cDNA fragment and 
short sequences are obtained from cDNAs using high-throughput sequencing technology. 
Resulting sequence reads are aligned with the reference genome or transcriptome, and classified 
in three groups: exonic reads, junction reads and poly(A) end-reads. These three groups are then 
used to generate an expression profile for every gene, as illustrated at the bottom. 

 
(Adapted from Wang et al, Nature Review Genetics, 2009) 
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Each molecule, with or without amplification, is then sequenced in a high-

throughput manner to obtain short sequences from one end (single-end 

sequencing) or both ends (pair-end sequencing). The reads have a length of 30–

400 bp, depending on the DNA-sequencing technology used (Wang et al, 2009). 

 

1.3.3. Bioinformatics Data format and general overview of analysis 

Becoming cheaper and cheaper over the years, generating genomic data have 

made high-throughput sequencing an increasingly important part of biomedical 

research. This has created a new challenge of finding efficient and effective ways 

to analyze data and generate insights into the function of biological systems. 

Raw data coming from the sequencing are contained in FASTQ files, a text-based 

format file that stores both the biological sequence and the corresponding quality 

scores, encoded with a single ASCII character (Cock et al, 2009). A FASTQ file 

normally uses four lines for each sequence: 

● Line 1 begins with a '@' character and is followed by a sequence identifier 

and an optional description; 

● Line 2 is the raw sequence letters (nucleotides); 

● Line 3 begins with a '+' character and is optionally followed by the same 

sequence identifier (and any description) again; 

● Line 4 encodes the quality values for the sequence in Line 2, and must 

contain the same number of symbols as letters in the sequence. 

After filtering out low quality sequences (also called reads), the remaining are 

aligned against a reference genome organism-specific: each read sequence is 

compared to the reference genome sequences through a mapping algorithm and 

in this way a corresponding location is determined. The algorithm will try to find a 
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location, possibly unique, in the reference sequence that matches the read, 

tolerating a certain amount of mismatch to allow subsequence variation detection. 

Many different alignment algorithms exist; recently Flicek & Birney, 2010 made a 

complete comparison of the most commonly used. 

Many are the possible source for errors during the alignment step, for example 

PCR artifacts due to the PCR steps, will show up in multiple reads, or in duplicates 

(the same read occurs multiple times, skewing coverage calculations in the 

alignment). This kind of issues is taken into account in the following steps of the 

data processing in which, i.e. the removal of duplicated reads may be applied.  

SAM and BAM files are, respectively, the text and binary format files usually 

produced as output by the aligner programs; beside the mapping location of each 

reads they contain a lot of other interesting information such as the quality of the 

alignment, presence, number and position of mismatches, and, for paired-end 

experiments, they keep info related to each read mate (Li et al, 2009). They are 

the starting-point data to flow in ad hoc analysis pipelines used for each specific 

type of experiment.  

Importantly, data can be visualized through Genome Browsers. One of the most 

used is the UCSC Genome Browser (Kent et al, 2002): they are graphical 

interfaces in which it is possible to display and integrate information from several 

biological databases, enabling researchers to visualize and browse entire 

genomes.  

Focusing in particular on ChIPseq and RNA-seq experiments, the most commonly 

used analysis pipelines follow: 

● ChIP-seq data analysis pipeline (Fig. 1.11): after filtering out low quality 

reads, the remaining ones are mapped to the respective genome 
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sequences and they can be visualized on Genome Browser converting 

BAM files in BIGWIG files, a designed format for display of dense 

continuous data. The “peaks”, which correspond with regions of the 

genomes where ChIP-sequenced reads are overrepresented, and piling up, 

form a “bell-like shape” profile, represent the sought binding events and 

they are identified (in jargon, “called”) through a peak-caller program (see 

Wilbanks and Facciotti, 2010 for a comparison of some of the most used 

peak-callers and algorithms which they employ). Other tools are then used 

to annotated these regions with respect to the reference genome and/or to 

other functional features, i.e. coding and noncoding genes. Then 

downstream analysis can include (but does not limit to) peak comparison 

among samples in different states to observe presence/absence of specific 

peaks, Gene Ontology or Pathway analysis, recurrent motif search, 

checking for quantitative significant changes in binding levels, peak shape 

analysis. 

 
Figure 1.11 ChIPseq data analysis pipeline workflow 
 
Raw data are preprocessed and mapped to the respective reference genome sequences; read 
densities can be visualized along the genome, and peaks representing binding events are called. 
Comparative analyses include a comparison of global binding similarity, analyses of 
presence/absence of peaks (i.e., peak conservation) and quantitative assessment of binding 
changes. Functional analysis such as Gene Ontology analysis of target genes, recurrent motif 
search and sequence conservation can then be conducted. 
 

(Adapted from Bardet et al, Nature Prot. 2012) 
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● RNA-seq data analysis pipeline (Fig. 1.12): Once high-quality reads have 

been obtained, the first task of data analysis is to map the short reads from 

RNA-Seq to the reference genome using splicing-aware alignment tools like 

for example, TopHat or STAR (Trapnell et al, 2009; Dobin et al, 2013) 

which, contextually with the alignment process to the reference genomic 

sequence, can also take advantage of transcriptomic data to add 

information to the output data (i.e. the strand direction mapping both to 

genome and to parental gene). In fact RefSeq, UCSC Gene or GenCode 

transcript tables, in gtf format, are often also provided to the aligners. Other 

quality checks are needed to address RNA-seq-specific questions, such as 

exonic versus intronic alignments and transcript detection rates, duplication 

rates, GC bias, contaminating ribosomal RNA content, continuity of 

coverage, 3′/5′ biases and counts of detectable transcripts, among others 

(DeLuca et al, 2012; Shen et al, 2014). Then it is possible to summarize 

gene- or gene variant-level read counts using HTseq (Anders et al, 2014). 

Finally to identify differences in RNA expression levels of individual genes, 

or of individual splice variants of a single gene, between control and 

experimental samples, differential analysis can be performed and there are 

numerous tools available. Among the most popular ones are DESeq 

(Anders & Huber, 2010) and edgeR (Robinson et al, 2010), with both 

methods based on negative binomial testing, which provides an exact test 

(generalization of the Poisson distribution model) that is ideal for modeling 

biological variances of read count data. 
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Figure 1.12 RNA-seq data analysis pipeline workflow 

Following data acquisition, RNA-seq analyses typically begin with quality control assessments 
using analytical tools such as FastQC. Next, short sequencing reads can be aligned to a reference 
genome using programs such as TopHat or STAR. After alignment, additional quality control 
assessments can be made with RNA-SeQC and ngs.plot.  
Finally, to quantify and analyze RNA-seq data, programs such as HTSeq, Cufflinks and MISO are 
typically used. Then for differential expression analysis in different conditions (for example, cancer 
tissue vs healthy one), edgeR or DESeq can be used.   
 

(Adapted from Maze et al, Nature Neurosc., 2014) 
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2. Materials and methods 

 

In this chapter we report experimental procedures used in this project and all 

bioinformatic methods. 

Briefly, this project includes the study of 19 C57BL6 WT female mice divided in 3 

groups. Each group was subjected to a different diet regimen: Standard Diet (SD - 

control diet), Calorie Restriction (CR) without malnutrition, High Fat Diet (HF). Mice 

were maintained on diet for 10 months and at the end of the treatment sacrificed; 

liver samples were collected, fixed in formaldehyde and embedded in paraffin 

(FFPE) for further analyses. Chromatin Immunoprecipitation for FFPE samples 

(PATChIP) anti-H3K4me3 (open chromatin - active transcription marker) and anti-

H3K27me3 (suppressive marker) followed by deep sequencing were then 

conducted on liver samples. Sequencing data generated from Illumina HiSeq 2000 

were then filtered to remove low quality reads, then the reads were aligned versus 

a reference mouse genome (UCSC mm9) with BWA and PCR artifacts were 

removed with SAMtools. Enriched regions or "peaks" were identified with SICER 

peak caller and annotated with ChIPseeker. We then applied two different 

methods for downstream analysis: i) a "positional" approach, using BEDtools, to 

identify specific regions present/absent specifically in each diet group; ii) a 

“quantitative” approach, based on the statistical comparison of read-density 

information of samples through DiffBind R package, to identify regions differentially 

enriched among different diet-groups. 

Selection of regions by the two methods was followed by functional annotation of 

corresponding genes to KEGG pathways and GO analysis. Finally MEME suite 

was used to find recurrent motifs in these subsets of enriched regions. In parallel, 
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RNA-seq was performed starting from frozen livers of CR and SD female mice. 

After RNA extraction and Illumina HiSeq 2000 sequencing, low quality reads were 

filtered out and the remaining reads were aligned with TopHat versus the 

reference mouse genome (UCSC mm9). Gene-level read counts were calculated 

with HTSeq Count and further quality check were then performed to account for 

possible biases with the RSeQC set of tools. Finally differential expression 

analysis with edgeR was performed to find regulated genes in CR versus SD 

condition and genes lists were used for functional annotation to select specific GO 

biological processes and KEGG pathways.  

 

2.1. Diet treatment of mice colonies and samples collection 

C57BL6 8 weeks old female mice were generated at IEO facility and then divided 

in groups and maintained in the animal facility of the University of Milan with ad 

libitum standard (SD), restricted (CR) or high fat (HF) diets for 10 months. 

All the experiments with mice were performed in accordance with the Italian Laws 

(D.L.vo 116/92 and following additions), which enforces EU86/609 directives 

(Council Directive 86/609/EEC of 24 November 1986 on the approximation of law 

regulations and administrative, provisions of the Member States regarding the 

protection of animals used for experimental and other scientific purposes).  

Mice were randomly divided into 3 groups (n = 10 per group): SD (control), HF and 

CR. 

Standard diet (2018S Tekland 18% Protein Rodent Diet, provided by Harlan 

Tekland, Madison, WI, USA) is a fixed formula, non-autoclavable diet; energy 

provided by the macronutrients was approximately 30% of proteins, 15% of fats 

and 55% of carbohydrates, for a total of 3.3 kcal g-1. 
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High fat diet (Diet Inducing Obesity D12492 provided by Brogaarden Aps, 

Denmark) contains 60% more fat ingredients than SD and kilocalories account for 

20% from proteins, 60% from fat and 20% from carbohydrates, for a total of 5.24 

kcal g-1. 

To calculate 30% caloric restriction starting at 8 weeks of age, daily food intake 

was measured in a subset of mice fed ad libitum. Food intake was determined by 

collecting and weighing all food remaining in the food hopper and cage at the 

same time each day for a week. Every day 20% or 30 less of amount of food, with 

respect to the average daily food intake observed ad libitum, was provided to the 

CR mice. 

After 10 months of diet, all survived mice (8 for SD, 7 for CR and 5 for HF) have 

been sacrificed by cervical dislocation. Organs (Liver, Brain, Lungs, Kidneys, 

Intestine, Spleen, Abdominal Fat, Heart) were collected, rapidly washed in 

phosphate buffered saline (PBS) and incubate overnight at room-temperature in 

4% formalin solution. Formalin-fixed samples were then routinely dehydrated by 

increasing concentrations of ethanol, starting from 70% through to 80%, 90% and 

100% (absolute ethanol), and subsequently included in paraffin with use a tissue 

processor.  

For this project only liver samples have been used, as: i) liver is a key metabolic 

organ; ii) it is easy to manipulate because of the organ dimension, iii) its 

histological structure is rather homogeneous, avoiding any issue on tissue 

dishomogeneity. Livers have been divided in halves; the first was used for FFPE 

samples for ChIPseq experiments, while the other half was flash frozen in liquid 

nitrogen and stored at -80°C for RNA-seq experiments.  
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2.2. Experimental procedures 

In order to gain information on the possible impact of different diets on murine 

epigenome, we used collected liver paraffin-embedded and frozen tissues to 

perform respectively, Chromatin Immunoprecipitation from pathology tissues (PAT-

ChIP) against two different histone modifications (H3K4me3 and H3K27me3) and 

RNA PolyA extraction, both followed by deep sequencing. The following paragraphs 

contain the details of the two experimental procedures protocols used. All the 

procedures were performed by wet lab biologists of our group, Costanza Savino, 

Valeriano Gentile (PAT-ChIP and library preparation) and post-doc, Elena Mylona 

(RNA extraction and library preparation).  

2.2.1. PAT-ChIP from FFPE-liver samples and libraries 

Chromatin extraction from FFPE-liver samples started with the rehydration and 

deparaffinization of 4 sections 10-µm of FFPE samples. Previously, samples were 

treated with histolemon to remove the paraffin and later treated using different 

decreasing concentration of ethanol and finally rinsed in water in order to 

rehydrate the tissue. 

To extract chromatin from FFPE tissues, physical disruption of cell membranes 

and enzymatic digestion with micrococcal nuclease, were combined. Then, the 

extracted chromatin was fragmented through sonication. 

The sonication step, which is one the more crucial and tricky, was adjusted, 

defining a quantity of chromatin to sonicate in order to achieve fragments of 300-

150 bp in length and to immunoprecipitate the chromatin at a higher efficiency. 

Sonicated chromatin was immunoprecipitated using specific ChIP grade 

antibodies (H3K4me3 Rabbit pAb; Active motif and H3K27me3 Rabbit pAb; 
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Millipore). The obtained immunoprecipitated DNA was finally quantified by Qubit. 

Real time qPCR was performed to estimate the enrichment of H3K4me3 and 

H3K27me3 in promoter regions of known actively transcribed (Gapdh and βactin) 

and not transcribed genes (Crtl1 and Col2a1) in the liver. Finally, libraries were 

prepared following the HT-ChIPSeq library protocol (Blecher-Gonen et al, 2013). 

 

2.2.2. RNA extraction from frozen liver samples and libraries 

To isolate poly(A)+ mRNA, Qiagen Rneasy Mini Kit was used starting from 30 mg 

of frozen liver tissue per 600 uL of buffer RLT. 

On-column DNase digestion was included and the RNA-seq library was built using 

the Illumina TruSeq version 2 kit (Low Sample protocol), starting from 1 ug total 

RNA (QC RNA: Bioanalyzer nano RNA kit, RIN minimum 8). 

2.2.3. HiSeq2000 Illumina sequencing  

ChIP-seq libraries and RNA-seq libraries were sequenced at the IEO NGS facility 

with Illumina HiSeq2000 and, in particular, for PAT-ChIPseq, 51 bp reads, 30 

millions of reads depth of sequencing, single-end were used; while for RNA-seq 

we used 51 bp reads, 35 million reads depth, paired-end. 

2.3. Bioinformatics methods 

After sequencing we applied a quality filter to fastq files in order to remove low 

quality reads. Then we aligned the reads to the reference mouse genome. 

Enriched regions or "peaks" were identified and annotated; additional quality steps 

were performed to evaluate the samples enrichment. In order to both verify the 

extent of the variability among samples exposed to the same dietary regimens, at 

first,  and finally to assess differences among groups of mice fed with different 

diets, we applied two different methods: i) a "positional" approach, where the 
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analysis was based on comparison of mapping information of the peaks to identify 

common or specific enriched regions; ii) a "quantitative" method, based on the 

statistical comparison of read-density information on a common list of peaks along 

different samples. Finally lists of genes obtained from the previous steps were 

characterized for downstream analysis including KEGG pathway analysis with 

ClusterProfiler, Gene ontology enrichment analysis and recurrent motif searching 

with MEME suite. Parallely, for RNA-seq samples from frozen livers of CR and SD 

males and females mice, low quality reads were filtered out and the remaining 

reads were aligned with TopHat versus a reference genome (UCSC mm9). Gene-

level read counts were calculated with HTSeq Count and further quality check 

were then performed to account for possible biases with RNA-SeQC. Finally 

differential expression analysis with EdgeR was performed to find overexpressed 

and underexpressed genes in CR versus SD condition. 

2.3.1. ChIPseq data analysis pipeline 

The analysis of ChIPseq samples is divided in three main parts: Preprocessing 

analysis, Variability analysis, Downstream analysis. 

Preprocessing analysis.  

Samples were sequenced with Illumina HiSeq2000 with reads length of 51 bp. 

After applying a quality filter to remove low quality reads, we aligned reads to a 

reference mouse genome (UCSC mm9 assembly) with BWA (Li and Durbin, 

2009), and we removed duplicates, considered putative PCR artefacts, with 

SAMtools (Li et al, 2009). Therefore we used SICER (Zang et al, 2008), 

considered more sensitive and specific for histone marks analysis than MACs1.4 

(Zhang et al, 2008) to identify enriched regions or "peaks". Indeed we tested both 

programs on our samples confirming this broadly accepted cognition. Parameters 

for SICER runs were adjusted for each samples considering the their overall 
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quality: in particular we applied different thresholds according to the overall 

enrichment level of each samples [on the basis of the number of called peaks with 

the default threshold (E-value=100) and the relative Fraction of Reads in Peaks 

(FRiP) index calculated as reported in (Landt et al, 2012). Samples with 

FRiP<2%, as also suggested in (Landt et al, 2012), were discarded. 

We used a lenient limit (E-value=1000) for samples with low enrichment (FRiP≤5% 

and number of peaks ≤ 10,000 for H3K4me3 samples) and the default value (E-

value=100) for all the other samples. Distribution of number of reads, peaks and 

peaks lenght of the samples were retrieved with to observe technical variability of 

the sequenced samples.  

Peaks were finally annotated with an R package called ChIPseeker 

(Guangchuang et al, 2015) respect to the reference genome UCSC mm9.  

Different genomic classes were considered to annotate peaks: Promoter regions 

(interval centered on Transcription Start Site of genes of 2kb, 4kb and 6 kb),  5’ 

and 3’ UTRs, Exonic regions (divided in 1st Exon and Other Exon), Intronic 

regions (divided in 1st Intron and Other Intron), Downstream regions (less than 

3Kb from the gene end), Distal Intergenic (outside genes and far from them). 

Each peak is annotated to the nearest gene with priority given to the order of the 

above described genomic classes. 

 
Variability analysis. 

In order to perform the downstream analysis, we have first to take into account of 

possible differences due to biological variability. 

To this aim we started analysing the within-diet biological variability, calculating for 

each diet group and for each histone modification the percentage of peaks in each 

genomic class and for each sample and the number of overlapping peaks respect 
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to all the other samples of the same diet group. Then, for each diet group, we 

computed a similarity matrix defined as: 

 

where: 

 

and numerator is the cardinality of the set of peaks shared by sample i and j (the 

number of overlapping peaks between the two samples), while  denominator is the 

cardinality of the union of peak sets i and j (the number of peaks of both samples 

minus the number of overlapping peaks). Jij is also called Jaccard distance. 

Then we represented the similarity matrices with heatmaps to observe 

concordance on peak calling for each diet group and assess intra-diet variability. 

Finally, we perform ANOVA statistical test to investigate variability among diets 

(inter-diets). 

 
Downstream analysis. 

Once obtained information related to biological internal and inter-diets variability, 

we perform two different methods: 

1. The “positional” method, focused on the comparison of peaks in different 

conditions in order to identify specific regions enriched (peaks 

presence/absence); 

2. The “quantitative” method, based on the statistical comparison of read-

density information on a list of shared peaks along different samples. 
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The positional method. 

To take into account of the internal variability of each diet, first of all we used 

IntersectBed (Quinlan et al, 2010) and the Elbow method (Thorndike, 

1953),  plotting the number of overlapping peaks depending on the number 

of samples having those peaks in common, to select only reliable peaks for 

each diet group, i.e. peaks occurring in at least a certain number of replicas. 

After creating these 3 lists of “solid” peaks (one for each diet-group) for each 

histone modification, we annotated them and, in order to retrieve peaks that 

are only occurring in a specific diet group respect to the control (gained 

peaks), we compared CR and HF solid peaks against all peaks present in SD 

samples.  

Viceversa, comparing SD solid peaks with all peaks present in CR samples 

or in HF samples, we obtained lost peaks for CR and HF respectively. 

Finally genes corresponding to gained and lost peaks, were used for 

functional annotation, retrieving information related to enriched KEGG 

pathways and gene ontologies biological processes with ClusterProfiler 

(Guangchuang et al, 2012), comparing the obtained results with up to date 

known literature.  

 
 
 

The quantitative method. 

This time we want to consider the quantitative differences (meaning the 

relative abundance of reads) in peaks for the different diet conditions. 

Specifically enriched regions for each diet group were derived by a 

differential enrichment analysis with DiffBind R package (Diffbind, Stark et 

al): DiffBind provides functions for processing ChIPseq data enriched for 
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genomic loci where specific protein/DNA binding occurs. It is designed to 

work simultaneously with multiple peak sets, representing different ChIP 

experiments. Starting from the original peak sets and from aligned reads files 

of each sample (bam files), DiffBind identifies a consensus peak set (peaks 

shared at least by a certain number of samples), it merges the initial peak 

sets and counts sequencing reads within the new intervals in the consensus 

peak set. To identify the best threshold to build the consensus peak set, as 

for the positional method, we used the "Elbow method" plotting the number of 

overlapping peaks depending on the number of samples having those peaks 

in common. After a normalization step, DiffBind identifies significantly 

differentially bound sites (DB sites) based on evidence of binding affinity 

using edgeR (Robinson et al, 2010) or DESeq (Anders and Huber, 2010), 

which are two widely used R statistical routines for RNA-seq differential 

expression data analysis. We used Trimmed Mean of M-values normalization 

(Robinson and Oshlack, 2010; best normalization method according to 

Dillies et al, 2012) and edgeR for the analysis.  

Once retrieved statistically significant specific differentially bound sites for CR 

or HF versus SD, we annotated them and searched for possible enriched 

KEGG pathways and GO biological processes with clusterProfiler 

(Guangchuang et al, 2012) and recurring motifs with MEME suite (Bailey et 

al, 2009). 

2.3.2. RNA-seq data analysis pipeline 

RNA-seq samples coming from 3 CR (CR6, CR8, CR9) and 1 SD mice were 

analysed. 
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After filtering out low-quality reads, we mapped the short reads from RNA-Seq 

samples to the reference genome (mm9 UCSC) using TopHat (Trapnell et al, 

2009), while gene-level read counts were obtained using HTseq-Count (Anders et 

al, 2014). 

Then quality checks, needed to address possible biases, were performed with 

RSeQC (DeLuca et al, 2012). Finally to identify differences in RNA expression 

levels of individual genes, between control and experimental samples, differential 

analysis was performed with edgeR (Robinson et al, 2010). To estimate samples 

variability, we calculated the similarity matrix starting from sample reads counts 

per gene among samples: 

 

where: 

 

and Si is the array with the read counts for each gene and d is the euclidean 

distance between two vectors. 

We used a heatmap with hierarchical clustering to represent the similarity matrix. 

A volcano plot representing log2(fold change) and -log10(p-value), for genes with 

RPKM value greater than 1 in at least one of the two conditions was used to define 

significance thresholds of regulated genes. Only entries with |log2(FC)| ≥1 and a p-

value≤ 0.05 were considered to investigate possible enriched pathways and 

biological processes.  

We used clusterProfiler R package to perform GO and KEGG enrichment analysis 

and graphically report the results. 
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Only GO BP terms with p-value smaller than 10-5 and q-value smaller than 0.05 

were considered while threshold for KEGG enrichment was more lenient (p-

value≤0.05). Finally results obtained are compared and integrated with ChIPseq 

data analysis.  
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3. Results 
 
 
This chapter is divided in two main sections related to PAT-ChIPseq data analysis 

and RNA-seq data analysis. Here we summarize the main results that are then 

detailed and dis≥cussed in the following paragraphs.  

1. HF diet induces an overall significantly-higher mean-percentage of 

H3K4me3 peaks in promoter regions, as compared to CR (ANOVA test, 

p-value0.05) and, at the same time, a significantly-lower mean percentage 

of peaks in distal intergenic regions. After identifying subsets of peaks 

commonly shared by biological replicas of the same diet group (“solid” 

peaks), HF still showed a higher percentage of promoter peaks than 

CR and control groups ( ~90% versus ~75%) although the numerosity 

of solid peaks for the three groups was almost the same (~3000 

peaks). This means that HF produces specific changes in chromatin 

conformation with respect to the other regimens, “opening”, on 

average, more promoter regions than SD and CR. This could result in an 

aberrant regulation of some genes since H3K4me3 signal correlates mostly 

with active transcription. 

2. Despite the presence of a moderate technical and biological variability 

of PAT-ChIPseq samples (evaluated in terms of differences in final reads, 

number of called peaks, general enrichment, genomic localizations of peaks 

and intensity of the signal), after proper normalization, data analyses 

supported the existence of diet-specific epigenetic signatures, 
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detectable by differential analysis of H3K4me3 signal, allowing the 

clustering of samples by diet-group.  

3. Regions showing an increased level of H3K4me3 in CR with respect to 

SD, corresponds to genes involved in Circadian rhythmicity. Moreover, 

the motif of a known chromatin modifier, NRSF/REST is found enriched 

in these regions (non significantly, because of the low number of sites). It 

has been shown that higher REST levels in brain correlate with longevity 

and healthy aging, two features of CR beneficial effect. Furthermore, 

after the analysis of anti-REST ChIPseq, we showed that this factor 

binds, in liver, promoters of key genes involved in major metabolic 

processes. 

4. Regions showing an increased level of H3K4me3 in HF with respect to 

SD, corresponds to genes involved in onset of Type II diabetes 

mellitus. Moreover, the motif of a ZSCAN4, a transcription factor 

involved in telomere elongation in ES cells, was found enriched in 

these regions (non significantly, because of the low number of sites). 

Telomere shortening is known to be a characteristic of aging. In particular, 

it has been shown that telomere shortening is a risk factor for type II 

diabetes mellitus.  

5. Although very preliminary and based on a smaller subset samples, the 

analysis of RNA-seq data reported 1181 genes significantly differentially 

expressed in CR vs SD, almost equally divided between over- and 

under-expressed. All together they enrich specific pathways coherent with 

findings reported in literature including PPAR signaling pathway and  

Circadian rhythm. Moreover all genes related to elevated level of 

H3K4me3 signal in CR are significantly overexpressed, confirming 
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that CR modulates liver circadian clock through changes in H3K4me3 

signal. 

6. Through the identification and annotation of H3K27me3 peaks present in 

a specific diet condition and absent in the control, data indicates that 

Olfactory transduction and Natural Killer mediated cytotoxicity 

pathway result impaired respectively in HF and CR. These results are 

corroborated by literature findings. 

3.1. PAT-ChIPseq data analysis 

In this paragraph we report results obtained from the bioinformatic analyses of 

data produced by PAT-ChIPseq experiments with the pipeline described in the 

previous chapter.  

The first part encloses a descriptive analysis of the collected datasets; PATChIP 

experimental variability is analysed in terms of number of final reads, number of 

called peaks and peaks genomic distribution. 

Then two approaches are used: a “positional” method, focused on 

absence/presence of peaks in a diet condition respect to the control one, and a 

“quantitative” method, based on the statistical comparison of read-density 

information on a consensus peak-set along different samples. 

Finally, to add insights on possible mechanisms through which diets modulate 

disease risk/prevention we performed pathway- and motif discovery analyses and 

we compared our results with state of the art literature. 
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3.1.1. Assessing biological and technical variability in PAT-ChIPseq 

replicas 

3.1.1.1. Preprocessing and peak calling results  

To gain insight into the effects of different diets in the epigenetic organization of 

the mouse genome we examined levels of trimethylated H3K4 and H3K27 in 

paraffin embedded liver samples using PAT-ChIP-seq. 

 So far we have analysed a total of: 

● 19 samples for the anti-H3K4me3 PAT-ChIP 

● 19 samples for the anti-H3K27me3 PAT-ChIP. 

In particular, for each histone marks, we obtained 6 samples for the CR, 5 from the 

HF and 8 from the SD group of mice. 

The pre-processing results are reported in Table 3.1: on average we obtained 

9,803,500 (± 2,170,478) and 15,292,946 (± 3,382,450) final reads for H3K4me3 

and H3K27me3 samples, respectively. After peak calling using SICER with default 

parameters, for each sample we calculated the fraction of all mapped reads that 

fall into peak regions as identified by the peak caller. The fraction of reads falling 

within peak regions is a first-cut metric to measure the success of the 

immunoprecipitation, since it is related to the signal-to-noise ratio of the 

experiment, and it is called FRiP (Fraction of Reads in Peaks). Generally, a FRiP 

value greater than 1-2% suggest that the ChIP-seq experiment lead to the 

enrichment of specific genomic regions (Landt et al, 2012). 

A comparison of total mapped reads and called peaks distributions for both 

histone marks divided by diet group is plotted in Figure 3.1. We observed a slight 

trend to a higher number of final reads in the H3K27me3 experiments compared to 

those of the H3K4me3, but the number of final reads obtained for this set of 
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experiments is yet considered largely acceptable. The internal variability in each 

diet condition appears to be modest (from 2.7 to 4.0 millions reads std dev). 

However, these dissimilarities were taken in account in the subsequent steps of 

analyses. The number of peaks called by SICER seems to be more variable for 

the H3K4me3 samples than for the H3K27me3. 

 

Table 3.1 Sequencing and peak calling results of H3K27me3 and H3K4me3 ChIP-seqs by diet 
groups.    
Different colours are identifying different diets regimen: green for Calorie Restriction, red for High 
Fat Diet and blue for Standard Diet samples; columns report (from left to right): number of mapped 
reads, E-value applied for peak calling with SICER, number of identified peaks using SICER and 
FRiP index.  
E-values used for each sample are reported in Table 3.1 together with the corresponding final FRiP 
index. E-value was setted at 1000 for those samples that initially, with an E-value=100, displayed a 
FRIP ~1%. 
The CR9 anti-H3K27me3 sample, denoted in red in Table 3.1, because of its very poor enrichment 
(108 peaks, 0% FRiP), has been discarded from downstream analysis.  
 

The slight differences in total reads, called peaks and signal enrichment (FRiP) 

among biological replicas can be explained by intrinsic experimental complexities 

(i.e. adapted PAT-ChIP protocol for the liver tissue, differences in liver histology 
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among different diet groups) and yet indicate that we reached a satisfactory yield 

of ChIPped sequenceable material and the quality of the enrichment overall is 

adequate. 

 

Figure 3.1: Features distribution of H3K27me3 and H3K4me3 Histone Marks by Diet groups.  
 
a) Number of total final reads, b) number of called peaks. In green the Calorie Restriction samples, 
in Red the High Fat Diet samples, in Blue the Standard Diet samples 
 

In particular: 

● in the H3K27me3 dataset, there are no relevant differences in read counts 

among the three diet groups (Fig. 3.1, panel a, left section), all showing an 

overall high-number of total reads; SD and HF groups roughly exhibit the 

same distribution of numbers of called peaks (Fig. 3.1, panel b, left section), 

while for CR group the variance is higher. 

● in the H3K4me3 samples, the distribution of numbers of total reads is 

similar for HF and SD samples, while for CR group variance and overall 

numbers are lower than in the other groups (Fig. 3.1, panel a, right section). 

The distributions of numbers of called peaks, not considering some outliers, 

are comparable among the three diet-groups, even if the peaks identified 

for the HF group were less, on average, than in the other two groups. On 
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the other hand the variance in HF samples is lower with respect to the 

others (Fig. 3.1, panel b, right section).  

We then analysed the length (in base pairs) of  the identified peaks, for each 

histone modification and diet group (Fig. 3.2). Length distributions are quite similar 

among diet groups for both markers (average of 1,800 and 35,000 bp for 

H3K4me3 and H3K27me3 peaks, respectively), with large ranges (from ~200 to 

~3500 bp for H3K4me3 and from ~500 bp to almost 100 Kbp for H3K27me3 

peaks). The marked difference in average length between the H3K4me3 and 

H3K27me3 peaks is due to the  different genomic regions targeted by the two 

histone markers (genes’ transcription start sites vs. intergenic regions, cf. 

paragraph 1.2.2).  

 
Figure 3.2 Peaks length distribution by histone modification and by diet group. 
 
Peaks length distributions for each histone modification are quite similar among diet groups, with 
large ranges (~200-3500 bp for H3K4me3 peaks and ~500 bp-100 Kbp for H3K27me3 peaks). In 
particular the median value is ~1800 bp for H3K4me3 peaks while it is much higher for H3K27me3, 
being ~35 Kbp. This difference is partially expected since the two markers target mainly different 
regions of the genome (genes’ TSSs vs intergenic regions).  
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3.1.1.2. H3K4me3: diet-group internal and inter-group variability analyses  

Internal and inter-diets variability of H3K4me3 peaks is reported in Table 3.2 and 

Fig. 3.3, which shows the genomic peak-distribution for each biological replica, 

obtained annotating peaks with ChIPseeker (Guangchuang et al, 2015): diet 

groups are denoted with different colors (green for CR, red for HF and blue for SD) 

and different genomic regions are individually considered: Promoter regions 

(interval of 5 Kb centered on TSS),  5’ and 3’ UTRs, Exonic regions (divided in 1st 

Exon and Other Exon), Intronic regions (divided in 1st Intron and Other Intron), 

Downstream regions (less than 3 Kb from the gene end), Distal Intergenic (outside 

genes, more than 3 Kb far from them).  

 

 Table 3.2 H3K4me3 peaks genomic distribution divided by diet group     
           
In green CR samples, in red HF samples and in blue SD samples. The promoter class includes all 
peaks falling in the interval [TSS-2.5kb,TSS+2.5kb]. In Promoter and Distal Intergenic classes, for 
HF group the variability seems to be modest (Std. dev. respectively  ~9%-7%) while for CR and SD 
groups we have much higher standard deviations (~20% for Promoter region - ~18% for Distal 
Intergenic) and the mean percentage of peaks in Promoter class is much higher HF group than for 
CR and SD (65% vs 37% and 45%).  
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For each sample and each genomic region, the percentage of peaks falling in the 

specific class is reported. In particular the promoter class includes, for each gene, 

a genomic interval  around the Transcription Start Site [!""  − 2.5!",!"" + 2.5!"].  

From the graphical description of the same data (Fig 3.3), it is possible to notice 

that the highest variability is concentrated in Promoter and Distal Intergenic 

classes. In particular, for HF (first panel) the variability seems much lower than CR 

(second panel) and SD (third panel).  
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Figure 3.3 H3K4me3 peaks Genomic Annotation distribution by sample. 
 
First panel - HF samples; Second panel - CR samples; Third panel - SD samples.  
HF group seems to be much less variable than the other diet groups, showing for all replicas more 
or less the same percentage of peaks in each genomic class. In particular, focusing on Promoter 
regions, HF replicas range is 57%-79%, while CR goes from 11% to 60% and SD from 20% to 
68%. These differences could be due to technical issues due to PATChIP protocol applied to liver 
tissues or they could reflect a real biological variability among replicas.  
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We then computed for each diet group the similarity distance (i-by-k) matrix 

defined as: 

 

where: 

 

where i and k denote i-th and k-th sample of diet d, Si represents the set of peaks of i-th 

sample of diet d and, in Jik, the numerator is the cardinality of the set of peaks 

shared by samples i and k (the number of overlapping peaks between the two 

samples), while the denominator is the cardinality of the union of peak sets i and k 

(the sum of the number of peaks of the two samples, minus the number of the 

common peaks). Jik is called “Jaccard similarity distance” between i-th and k-th 

sample. 

Smaller is this distance between two samples, more similar are the two samples 

(since they share more peaks). To better appreciate internal variability, we plotted 

the heatmaps of the three diet-group similarity matrices in Figure 3.4. 

According to our results, the HF group (Fig. 3.4-a) seems to be the more stable 

dataset (max dist. value is 0.6; 4 out of 5 are similar between each other) while CR 

and SD (Fig.3.4-b and c) groups of samples are more variable (max dist. value is 

greater than 0.8; for CR 4 out of 6 are more similar between each other; for SD 5 

out of 8 are more similar between each other). 
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Figure 3.4 Jaccard similarity matrix heatmaps for diet group - H3K4me3 
 
For each diet, we computed Jaccard similarity distance based on the peaks shared between 
samples of the same diet group. Smaller is the distance, grater is the peak overlap between the 
two samples. 
HF group (a) seems to be the less variable (max dist. value is 0.6; 4 out of 5 are similar between 
each other) while CR and SD are more variable (max dist. value is greater than 0.8; for CR group, 
4 out of 6 are more similar between each other; for SD 5 out of 8 are more similar between each 
other). 
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Focusing on Promoter regions, to assess the statistical significance of inter-groups 

mean-differences, we used the ANOVA test (that compares diet groups internal 

variability with the variability across the groups). 

First, we performed the Shapiro test to assess the normality of peaks percentage-

distributions for the promoter regions in each diet group:  

  

Being the p-values all greater than 0.05, we failed to reject the null hypothesis, and 

assume that the distributions are normal. 

We then performed the Bartlett’s test to check homogeneity of variances, in which 

the null hypothesis assumes that the variances are equal across groups: 

 

Being the p-value greater than 0.05, we failed to reject the null hypothesis and we 

assumed the homogeneity of variances. 

Finally, we performed the ANOVA test: 
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which showed that indeed there is a statistically significant difference between 

groups (one-way ANOVA (F(2,16) = 3.5638, p = 0.05247). 

To identify which were the groups showing significant difference, we performed the 

Tukey test: 

 

 

A significant difference is scored between the CR and HF groups (p-value=0.04),  

suggesting that differences between these two groups, in the promoter regions, 

are higher than the internal variability. 



73 

We repeated these statistical analyses considering the Distal Intergenic class of 

peaks of H3K4me3 and we found the same results (not shown).  

ANOVA test showed that HF diet induces an overall significantly-higher mean-

percentage of H3K4me3 peaks in promoter regions, as compared to CR (p-

value≤0.05) and, at the same time, a significantly-lower mean percentage of 

peaks in distal intergenic regions. No statistically significant differences in peaks 

genomic localization were scored between HF and SD and between CR and SD. 

Probably these differences exist but do not emerge for statistical reasons (low 

number of samples). 

3.1.1.3. H3K27me3: diet-group internal and inter-group variability analysis  

To analyse the internal variability in each diet group for H3K27me3, we report the 

genomic distribution of peaks for each biological replica in Table 3.3, and plotted 

results in Figure 3.5. 

 

Table 3.3 H3K27me3 peaks genomic distribution divided by diet group     
      
In green CR samples, in red HF samples and in blue SD samples. The promoter class includes all 
peaks falling in the interval [TSS-2.5kb,TSS+2.5kb]. The diet internal variability for each diet group 
and each genomic class is low and the same is true for the variability among diet groups.  
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It can be noticed from standard deviations and means values in Table 3.3 (and 

visually in Figure 3.5) that both internal and inter-diets variability is very low. 
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Fig. 3.5 H3K27me3 peaks Genomic Annotation distribution by sample. 
 
First panel - HF samples; Second panel - CR samples; Third panel - SD samples. 
Compared to H3K4me3, the distribution of peaks in the genomic classes for H3K27me3 peaks is 
much less variable both intra-diet that inter-diets.Most of the peaks are located in intergenic regions 
as expected (~30%-50%) and promoter regions (~20%-40%) as often H3K27me3 signal co-
localizes with H3K4me3 in Polycomb targets. 
 
For each diet group, we then computed the similarity distance matrix J(d) and 

plotted the relative heatmap (Figure 3.6), as described in paragraph 3.2.1. 
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Figure 3.6 Jaccard similarity matrix heatmaps for diet group - H3K27me3 
 
For each diet, we computed Jaccard similarity distance based on the peaks shared between 
samples of the same diet group. Smaller is the distance, grater is the peak overlap between the 
samples. In all diet groups the concordance on called peaks seems to be very high. The only 
exception is CR9 that seems to be very different from all the other CR samples: this sample has 
very few peaks and it will be discarded in the downstream analysis.   
 

Results showed a much higher concordance of the called H3K27me3 peaks 

among samples for each diet group, as compared to the H3K4me3 peaks. The 
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only exception is the CR9 samples, which was very different from all others CR 

samples. However,  this sample showed a very low number of called peaks and 

was not included in the subsequent analyses. Since the H3K27me3 marks are 

known to be enriched in heterochromatin regions (cf. paragraph 1.2.2), we 

performed the ANOVA test prioritizing analyses of Distal Intergenic Regions:  

 

  

No differences among diet group means were scored. Analysis on Promoters was 

also performed (not shown) and gave the similar results. 

Together, these data suggest that probably diet regimens does not affect 

H3K27me3 peaks genomic distribution. 
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3.1.2. Downstream analysis of H3K4me3 and H3K27me3 signals 

We then analysed H3K4me3 ChIP-seq datasets to identify differences among 

peaks across diet conditions. We used two approaches:  

I. a "positional" approach, where analyses are based on comparison of peak-

mapping information to identify common or specific enriched-regions; 

II. a "quantitative" method, based on the statistical comparison of read-density 

information. 

 

3.1.2.1. The “positional” approach 

Since we have estimated a certain degree of internal variability, we cannot trust all 

peaks identified in all samples. Thus, we first generated a unique not-redundant 

peak-dataset from the pool of the peaks identified in all samples, for each diet 

group (SD, HF and CR) using BEDtools (Quinlan et al, 2010). Then, to measure 

peak concordance among replicas, we plotted the number of common peaks as a 

function of the number of samples sharing those peaks (Fig. 3.7). Finally, we 

consider a peak to be "solid", for a given diet group, only if common to at least a 

certain number of samples of the same group. This number was calculated, for 

each diet group, with the Elbow method (Thorndike, 1953), often used to 

calculate the number of clusters to perform cluster analysis. Accordingly, the 

threshold is chosen at the angle point of the curve, point in which the variance 

reaches a plateau; Fig. 3.7). For the H3K4me3 datasets (panel a), the plateau is 

reached at 4 samples for all diet groups, allowing unambiguous assigning of 3,703 

peaks for HF, 3,202 peaks for CR and 3,517 peaks for SD. For the H3K27me3 

datasets (Fig. 3.7, panel b) the plateau is instead reached at 3 samples for HF 

(3,092 peaks) and CR (3,243 peaks) diet groups, and at 4 samples for SD (3,505 

peaks). Now on, otherwise specified, this set of “solid” peaks was considered in 
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the all analyses. We annotated all regions with the ChIPseeker R package, using 

the RefSeq table. The genomic distribution of the identified K4 and K27 peaks in 

each diet group is reported in Fig. 3.8.  

We first analysed the genomic distribution of the called peaks in the three diet-

groups. With respect to the H3K4me3, we noticed an higher percentage of peaks 

on promoter regions in the HF diet-group (~90% of the total, as compared to ~72% 

in SD and ~76% in CR). Notably, the number of H3K4me3 “solid” peaks identified 

in each diet group is similar (~3,000), strengthening the relevance of the larger 

percentage of promoter peaks in the HF group, and suggesting that HF produces 

specific changes in chromatin conformation, “opening”, on average, more 

promoter regions, as compared to SD and CR. This effect could produce altered 

and aberrant levels of transcription of specific genes, thus contributing to the 

development and progression of different cancers or other diseases like diabetes 

and cardiovascular diseases (Ke et al, 2009; He C et al, 2012; Chen Z et al, 

2010; Raciti et al, 2014; Mathiyalagan et al, 2014, cf. 1.2.5. in the introduction). 

For H3K27me3, promoter and Intergenic regions were the most enriched (~50% 

and ~30%, respectively). However, we observed no differences for each genomic 

regions analysed among the different diet group (Fig. 3.8, panel b).  
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Figure 3.7 Peak calling concordance at different values of samples intersection.  
 
For both histone modifications (H3K4me3 and H3K27me3) and each diet group (HF, CR and SD) 
and for each value of the intersection (1-8), the number of peaks common to that number of 
samples is reported. Each curve represent the variance in terms of shared peaks as function of the 
number of the samples that have those peaks in common.The chosen threshold in each plot is 
indicated with a bigger dot and it is chosen when there is an angle in the curve, meaning that we 
reached a plateau in the variance. 
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Figure 3.8 Genomic distribution of solid peaks divided by histone modification and diet group. 

 
(a) Percentage of H3K4me3 solid peaks in Promoter classes for HF (90%) is significantly higher 
than SD (72%) and the same is true for CR (76%). (b) Percentage of H3K27me3 solid peaks in 
each genomic class is almost identical through diet groups, in particular K27 peaks are 
concentrated in  Promoter (~50%) and Distal Intergenic (~35%) classes.  



82 

 

We then analysed K4 and K27 datasets to identify lost peaks (e.g. present in SD, 

but not in HF or CR) or gained peaks (e.g. present in HF or CR but not in SD). 

First, we generated a unique not-redundant peak dataset from the pool of peaks 

identified in all samples, for each diet group (SD, HF and CR) using BEDtools. 

Then, starting from the solid peaks, we used BEDtools to identify, by intersection, 

diet-specifically enriched regions. To find HF and CR gained peaks, to be more 

conservative, we intersected the “solid” peaks lists for CR and HF groups with the 

total non-redundant list of peaks identified in SD samples (that is the initial pooled 

list of peaks identified in at least one SD sample). Likewise, to find HF and CR lost 

peaks, we intersected the SD solid peaks list with the total not-redundant list of 

peaks identified in each CR or HF sample. Solid peaks were then annotated for 

their genomic position, by RefSeq and UCSC genes mapping.  

Gained and lost peaks and corresponding genes for H3K4me3 and H3K27me3 

datasets are reported, respectively, in Fig. 3.9 and 3.10:  

For H3K4me3:  

● HF gains 29 peaks, corresponding to 29 genes and loses 64 peaks 

corresponding to 1 gene only; 

● CR gains 31 peaks, corresponding to 4 genes and loses 7 peaks, 

corresponding to no genes. 

For H3K27me3: 

● HF gains 27 peaks, corresponding to 16 genes and loses 130 peaks 

corresponding to 64 genes;  

● CR gains 13 peaks, corresponding to 12 genes and loses 89 peaks, 

corresponding to 52 genes.  
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To make Pathway analysis on these sets of regions only peaks falling on gene 

promoter regions [TSS±2.5 Kb] were further considered.  

A numerical summary of this analysis is reported on third and sixth columns in 

Table 3.4).  

 

Table 3.4 Solid peaks and solid genes involved in KEGG pathways enrichment 
 
In the table are reported for each histone modification and each diet group, the number of solid 
peaks, the number of genes having their promoter region covered by a solid peak, the number of 
genes that were involved in significantly enriched pathways. 
 

No specific pathways were found enriched for gained or lost H3K4me3 peaks in 

HF and CR, nor for lost H3K27me3 peaks. 

Instead for H3K27me3 gained peaks, “Natural killer cell mediated cytotoxicity” 

pathway was significantly enriched by 12 gained genes (p-value adjusted <0.05) 

and “Olfactory transduction” pathway was significantly enriched by 16 gained 

genes (p-value adjusted <0.05). 

Since H3K7me3 is a repressive marker, having a certain pathway “gained” could 

probably mean that the pathway is “switched off” in the specific dietary condition. 

The olfactory receptor system is used by animals to track chemical environment 

for molecules revealing the presence of food or toxic substances and to sense 

predators’ presence (Zhang et al, 2004). 

Numerous evidences showed that the olfactory system is a target for hormones 

related to metabolism and food-intake regulation; moreover it adapts its function to 
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nutritional needs by promoting or inhibiting food foraging (Palouzier-Paulignan et 

al, 2012).  

 

Figure 3.9 Gained and Lost peaks for H3K4me3 dataset 
 
Regions acquired bona fide specifically by HF or CR (“gained” peaks) are retrieved comparing diet 
solid peaks with all peaks found in at least one sample of SD. On the contrary, regions lost by HF 
and CR ( “lost” peaks) are obtained comparing SD solid peaks with all peaks found in at least one 
sample of HF or CR. Peaks are then annotated and genes beneath peaks are reported in related 
flanking tables. 
No significantly enriched pathway were found for H3K4me3 gained or lost genes. 
 

 

Richardson et al, 2004 and 2012 showed that obese patients display decreased 

olfactory acuity and are significantly more likely to have absolute olfactory 

dysfunction or anosmia. Moreover, Simchen et al, 2006 showed that the olfactory 

reception abilities decreases as body mass index (BMI) increases in subjects less 

than 65 years old, independent of any linkage to food odor or gender. 
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Recently, the elements of olfactory-like chemosensory signaling have been found 

also present in non-olfactory tissues such as testis (Parmentier et al, 1992), brain 

(Mombaerts, 1999), heart (Young et al, 2002), fat and muscles (Choi et al, 2013). 

These results, together with our evidence that the olfactory transduction pathway 

is switched off in HF fed mice liver, imply that the olfactory receptors and the 

molecules involved in olfactory transduction might be among the mediators of 

HFD-induced obesity progression in peripheral tissues.  

 

Figure 3.10 Gained and lost peaks and genes for H3K27me3 dataset 
 
Regions acquired bona fide specifically by HF or CR (“gained” peaks) are retrieved comparing diet 
solid peaks with all peaks found in at least one sample of SD. On the contrary, regions lost by HF 
and CR ( “lost” peaks) are obtained comparing SD solid peaks with all peaks found in at least one 
sample of HF or CR. Peaks are then annotated and genes beneath peaks are reported in related 
flanking tables. 
No significantly enriched pathway were found for H3K27me3 lost genes, while for CR and HF 
gained H3K27me3 genes, “Natural killer mediated cytotoxicity” and “Olfactory transduction” 
pathways, respectively, were enriched. 
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For what concerns our finding that “Natural killer cell mediated cytotoxicity” 

pathway could be switched off in CR fed mice, we can find a confirm in Clinthorne 

et al, 2013 in which it is proved that NK cells are reduced in frequency and 

numbers in most peripheral tissues of CR mice and that generation and/or  

maintenance of NK cells in peripheral tissues, such as the spleen, appear most 

affected. 

3.1.2.2. The “quantitative” approach for H3K4me3 dataset 

In order to identify regions specifically enriched in each diet group we performed a 

differential enrichment analysis using the DiffBind R computational tool (Stark and 

Brown, 2011). DiffBind provides functions for processing ChIPseq data obtained 

with antibodies specific for DNA-binding proteins, and is designed to work 

simultaneously with multiple peak sets from different ChIP experiments. We 

started from the peak sets identified by SICER and from aligned reads files of 

each sample (bam files), and applied DiffBind to identify a consensus peak set 

(peaks shared by a minimum number of samples) and merge the initial peak sets 

and counts sequencing reads within the new intervals in the consensus peak set. 

To identify the best threshold to build the consensus peak set, as for the positional 

study, we used the "elbow method", plotting the number of overlapping peaks 

depending on the number of samples having those peaks in common (Figure 

3.11).  
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Figure 3.11 Number of overlapping peaks in all samples 
 
On the y axis the number of peaks present in at least the number of samples represented on the x 
axis. Since we had to compare reads abundance for each region in different conditions, this time 
we take into account all the samples together without dividing them for diet condition.  
In red we denoted the chosen threshold through the Elbow method (peaks common to at least 4 
samples).  
Accordingly we chose 4 as the minimum number of samples to consider while building the 
consensus peak set, which finally accounts for 16,424 regions. 
 
 
After performing the TMM normalization step, we used edgeR to identify 

significantly differentially bound sites (DB sites), based on evidence of binding 

affinity (Robinson et al, 2010). For each possible combination of coupled group 

comparisons, DiffBind produced a different report of DB sites. In particular 

comparing HF vs SD we obtained 564 DB sites (p-value≤0.05 and FDR≤0.01), 

while comparing CR vs SD we obtained 59 DB sites (p-value≤0.05 and 

FDR≤0.05). PCA plots in Figure 3.12 show complete separation from CR and HF 

versus SD samples (using the relative set of DB sites).  
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Figure 3.12 PCA analysis on statistically significant DB sites (p-value<0.05, FDR<0.01) 
 
(a) PCA plot of CR vs SD samples on 59 DB sites, green dots represent CR samples while blue 
dots represent SD samples, they form two perfectly separate clusters; (b) PCA plot of HF vs SD 
samples on 564 DB sites, red dots represent HF samples while blue dots represent SD samples, 
they form two separate clusters although it seems that there is much more variability and the two 
clusters seem to be closer respect to CR and SD. 
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Results are confirmed by the heatmaps of Figure 3.13, which shows the details of 

correlation values for each sample. In particular, it is clearly evident how the two 

clusters of CR and SD are perfectly separated (Fig. 3.13, a) and correlation values 

histograms create two different distributions; while (Fig. 3.13, b) HF and SD seem 

to be much more similar to each other, despite the separation in two clusters 

(correlation values show a right-skewed distribution towards 1). This resemblance 

between SD and HF diet can be explained by the fact that ad libitum standard diet 

induces mild obesity. 

These results give us a first hint regarding the capability of our experimental 

system to ascertain the existence of epigenomic features that are able to 

distinguish different diet conditions. 

Boxplots in Figure 3.14 describe the distributions of log2 normalized reads in the 

regions found differentially enriched for H3K4m3 for the CR vs SD (a)  and the HF 

vs SD (b) groups, also reporting numbers of sites at increased or decreased 

H3K4me3 levels for HF or CR respect to SD. The overall mean and the variance 

of signal intensity for CR group is higher than in SD group (Fig.3.14 (a), first 

panel), the number of total DB sites is very small and the number of regions where 

the level of H3K4me3 decreased in the CR group are higher than those where the 

intensity increased (33 vs 26, Fig.3.14 (a), second and third panel). 
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Figure 3.13 Heatmaps of correlation matrix of normalized signal in DB sites obtained by  
          edgeR 
 
Dark green bars denote CR samples, blue bars SD samples and red bars represent HF samples. 
a) CR samples cluster together respect to SD samples; b) HF and SD samples form separate 
clusters but the distance between HF and SD is lower than in (a). 
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Genomic distribution of CR DB sites (Figure 3.15, third and fourth barplots), show 

that, despite displaying approximately the same numerosity, increased CR regions 

correspond to genes TSSs in more than 75% of the cases, while CR H3K4me3-

decreased regions only to ~50%. 

 

For HF group the overall mean of reads concentration is lower with respect to SD, 

and the variance is almost the same for both groups (Fig.3.14(b), first panel); the 

number of decreased DB sites for HF is more than 6 times higher than the sites at 

increased level (492 vs 72, Fig.3.14(b), second and third panel). However, these 

few increased DB sites, which account only for 13% of the total DB sites, are all 

located at genes' TSSs, while only a very small number of the decreased DB sites 

localize on TSSs (Fig. 3.15, first and second barplots.).   

 

Finally, we used genes corresponding to increased and decreased binding level 

for either HF or CR groups as input for KEGG pathway and Gene ontology 

Biological Processes analyses, using the clusterProfiler program. The lists of 

significantly enriched terms (Benjamini p-values<0.05 for pathways, q-value≤10-5 

for GO terms) obtained from this study are reported in Table 3.5. Strikingly, CR 

samples showed a statistically higher H3K4me3 signal on crucial circadian clock 

genes, suggesting a direct impact of the diet on the accessibility of these genes for 

transcription factors.  
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Figure 3.14 Log2 normalized reads coverage in DB sites for CR and HF vs SD. 
 
(a) CR vs SD: first coupled boxplots are relative to all the 59 differentially bound sites between CR 
and SD groups, second coupled boxplots are relative to the 26 regions where we recorded a 
significant decrease of H3K4me3 signal in CR with respect to the SD, third coupled boxplots report 
the distributions of signal in the 33 regions where instead we found an increase;  (b) HF vs SD: first 
coupled boxplots are relative to all the 546 differentially bound sites between HF and SD groups, 
second coupled boxplots are relative to the 492 sites discovered to be decreased in HF samples, 
third coupled boxplots reports the 72 sites found increased in HF.  
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Figure 3.15 Genomic Distribution of DB sites  
 
Differentially bound sites genomic annotation is reported for both CR and HF vs SD divided in sites 
at increased level and decreased level. 
Increased level DB sites for both HF and CR are mostly on promoter regions (94% and 75%) while 
just a small percentage of decreased level DB sites are on promoter regions.  
 
 
 
In Figure 3.16, a combined screenshot of the Genome Browser of the genomic 

regions around the TSS of seven representative genes (Socs3, Orm1, Pik3r, Gck, 

Usp2, Ciart and Per2) shows the density tracks of the H3K4me3 signal for all the 

19 PAT-ChIPseq samples. The first four regions (highlighted in red) display a 

higher level of H3K4me3 in HF than in SD; the last three (highlighted in green) 

show the same behavior in CR versus SD. 
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Table 3.5 Gene ontology and KEGG pathway enrichment for genes correspondent to DB sites 
 
Genes corresponding to DB sites localized on TSSs were retrieved and used for GO Biological 
Processes and KEGG pathways enrichment. In the table only significantly enriched terms are 
reported (p-value < 0.05 and q-value <0.0001). In particular, CR shows a higher level of H3K4me3 
signal on sites all related to genes involved in Circadian processes while HF shows a higher level 
of H3K4me3 signal on sites of genes involved in Type II diabetes mellitus.  
 
 

Figure 3.16 H3K4me3 signal density on TSSs of some genes.  
 
UCSC Genome Browser screenshots of SD, CR and HF tracks samples in regions near the TSS of 
a subset of genes: in blue SD , in green CR and in red HF samples. For Pik3r1, Socs3, Orm1 and 
Gck there is a visible higher enrichment for HF samples compared to SD, on top of their promoter 
region (indicated with a black bar); the same is true for CR samples on TSSs of Usp2, Ciart and 
Per2. 
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Motif searching for the “Quantitative Method” 
 

Starting from the regions found through the quantitative method, we used MEME 

suite to search for recurrent motifs (MEME-ChIP, Machanick and Bailey, 2011) 

and identify possible transcription factors or chromatin modifiers (TOMTOM, 

Gupta et al, 2007) involved in these diet-induced changes in chromatin.  

We analyzed four classes of regions: 

1. 33 regions with increased levels of H3K4me3 in CR versus SD (CR 

increased); 

2. 26 regions with decreased level of H3K4me3 in CR versus SD (CR 

decreased); 

3. 72 regions with increased level of H3K4me3 in HF versus SD (HF 

increased); 

4. 492 regions with decreased level of H3K4me3 in HF versus SD (HF 

decreased). 

1. Motifs in the H3K4me3 sites increased in CR.  

In this very small set of sequences, MEME identified enrichment of the RE1/NRSE 

motif (Repressor Element 1/Neuron-Restrictive Silencer Element, p-value~0.08).  

The RE1/NRSE is a 21 bp-motif that represents the transcription factor binding site 

for the chromatin modifier called REST/NRSF (RE1-silencing transcription factor 

or Neuron Restrictive Silencer Factor), originally identified through a bioinformatic 

genome-wide analysis by Bruce et al, 2004. In Figure 3.17 we report the motif 

discovered by MEME-ChIP analysis of the regions with increased level of 

H3K4me3 in CR vs SD (denoted with green boxplot), the comparison with the 
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REST motif by Tomtom and the associated p-value (measure of similarity between 

input motif and database motif).  

 

 

 

 
Figure 3.17 REST motif is found enriched in regions that are showing an increased level of 
H3K4me3 signal in CR samples 
 
Using MEME-ChIP for motif discovery and Tomtom to compare found motifs to known TFs binding 
sites, we found REST motif enriched for CR at increased H3K4me3 signal sites.  
 
 
 
Widely studied in brain, REST is involved in neuronal differentiation and silences 

gene transcription through recruitment of multiple chromatin-modifying partners 

like coREST, G9a, LSD1, mSin3, CtBP (Anders et al, 1999; Grimes et al, 2000; 

Huang et al, 1999; Naruse et al, 1999; Roopra et al, 2000). 
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Although it was initially thought only to repress neuronal genes in non-neuronal 

cells, recent evidences suggest that its role is tissue dependent and definitively 

more complex.  In particular, it has been shown that REST interacts with CtBP in a 

NADH-dependent manner: NADH is the metabolite detected by the NRSF 

complex as a readout, or proxy, for metabolic state in rat lung fibroblastic cell line 

JTC-19 treated with glycolytic inhibitor 2-deoxy-D-glucose (2DG) (Garriga-Canut 

et al, 2006). CtBP homo- and hetero-dimerize in the presence of NADH to recruit 

various chromatin modifying complexes including HDACs and HDMs (i.e. LSD1) 

(as summarized by Hayakawa et al, 2011) (Figure 3.18). 

 
 
 
Figure 3.18 REST interacts with CtBP in a NADH-dependent manner and CtBP recruits HDACs 
and HDMs 
 
REST interacts with CtBP in a NADH-labile manner: NADH is the metabolite detected by the NRSF 
complex as a readout, or proxy, for metabolic state. CtBP homo- and hetero-dimerize in the 
presence of NADH to recruit various chromatin modifying complexes including HDACs and HDMs 
(LSD1). 

 
(Adapted from Ooi and Wood, Nature Genetics Review, 2007) 

 
 

Furthermore, REST has a documented role in aging: it is down-regulated in elderly 

people with Alzheimer's disease and its levels are highest in the brains of people 
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who lived up to be 90 - 100s and remained cognitively proficient. In particular, in 

this group, REST levels remain specifically high in those brain areas that are more 

vulnerable to Alzheimer's harms, suggesting that REST might protect from 

dementia. Indeed, it is assumed that REST represses genes that promote cell 

death and Alzheimer's disease pathology, and induces the expression of stress 

response genes. Moreover, REST potently protects neurons from oxidative stress 

and amyloid β-protein (Lu et al, 2014). 

Therefore, as an exploratory test, we used a publicly available ChIPseq anti-REST 

in liver of adult C57BL6 mouse (Faure et al, 2012; ArrayExpress accession 

number E-MTAB-941) to compare REST actual binding sites with regions in which 

we found H3K4me3 signal increased for CR respect to SD. In Figure 3.19 we 

report: on the left, the set of total REST binding sites (REST peaks) retrieved by 

analysis of anti-REST ChIP-seq (conducted as for H3K4me3 samples, SICER E-

value threshold=100) together with the subset of REST peaks falling on gene 

promoters region; on the right the total number of genes present in UCSC mm9 

assembly, together with the number of genes covered by REST peaks.  

After peak calling and annotation, we found that 2,177 (26% of the total) REST 

peaks were localized on TSSs of ~3000 genes. These genes were then used to 

perform functional enrichment analysis for KEGG pathways and we discovered 

that many of the major metabolic processes were enriched: remarkably we noticed 

that Circadian rhythm, PPAR and Insulin signaling pathway are among the most 

enriched. These are by themself novel results, since none before characterized 

the REST functional role in liver. 
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Figure 3.19 Anti-REST ChIPseq sample analysis and genomic annotation 
 
After calling REST peaks, we annotated them and only 2177 (26% of the total) were localized on 
TSSs of ~3000 genes. Performing functional annotation on KEGG pathways, many of the major 
metabolic processes were enriched, in particular circadian rhythm, Ppar signaling and insulin 
signaling pathway. This is by itself a novel result, since none before characterised REST functional 
role in liver. 
 
 
 
Comparing the REST binding sites (derived from ChIP-seq analysis) with the 

H3K4me3 consensus peak-set (derived from the DiffBind analysis), we estimated 

the overall probability that H3K4me3 and REST co-localizes and it score to be 

0.20 (Figure 3.20). 

In the subset of the 33 regions where we observed increased levels of H3K4me3, 

in CR samples, 15 also showed signal of REST motif binding. We used the 

binomial test to assess the significance of this overlap: 



100 

  

 

Figure 3.20 REST peak-set and H3K4me3 consensus peak-set comparison 
 
Comparing the two datasets, we found that Rest and H3K4me3 colocalize 20% of the times.  
 
 

Being the p-value less than 0.05, this overlap is statistically significant, meaning 

that this overlap is not happening by chance. 

Overall our preliminary observations suggest a mechanistic link between 

epigenetics modifications induced by CR and the regulation of circadian genes 

and REST. CR, decreasing NADH level in liver, inhibits the homo- and hetero-

dimerization of CtBP, a REST cofactor, with the consequent inhibition of recruiting 

histone demethylases. In this way, CtBP has the potential to link a metabolic 
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status to specific changes in the epigenetic landscape of the nucleus and play a 

dominant role in determining cellular behavior. 

 

3. H3K4me3 increased in HF 

In this group we found enrichment of a recurrent motif in 12 out of 72 regions (p-

value~0.09) that TOMTOM recognized as slightly similar to the Zinc Finger and 

SCAN Domain Containing 4 (Zscan4) transcription factor binding site (Figure 

3.21). 

It is worth to notice that 4 of the 12 regions in which Zscan4 motif was found, 

correspond to genes belonging to the “Type II diabetes mellitus” pathway found 

significantly enriched (Pik3r1, Hk2, Gck, Prkcd). 

 Zscan4 is known to have a role in telomere elongation in ES cells and genomic 

stability (Zalzman et al, 2010). 

Telomere shortening in peripheral blood cells has been shown to correlate with 

weight gain and an increased Body Mass Index (Kim et al, 2009). Moreover, the 

average telomere length of type 2 diabetic patients was found significantly shorter 

than in control subjects in a cohort of 930 patients and 867 controls (Xiao et al, 

2010). Indeed, experimental evidence suggests that telomerase is important in 

maintaining glucose homeostasis in mice (Kuhlow, Florian, von Figura et al, 

2010). Conversely, elevated blood glucose levels increase oxidative stress, 

potentially interfering with telomerase function and resulting in shortened 

telomeres (Serra et al, 2000). Moreover, Zhao et al, 2013 demonstrated that short 

telomere length is associated with future development of type 2 diabetes 

independently of known type 2 diabetes risk factors. 

These evidences, together with our finding, suggest a possible epigenetic 

regulation of Zscan4 activity and of its roles in telomere maintenance and its direct 
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transcriptional action on specific genes’ promoters involved in the onset of type 2 

diabetes.  

 

Figure 3.21 Zscan4 motif is found in sites at increased level of H3K4me3 signal for HF 
 
Using MEME-ChIP for motif discovery and Tomtom to compare found motifs to known TFs binding 
sites motifs, we found Zscan4 motif enriched for DB sites with increased H3K4me3 signal sites in 
HF, in particular around 4 genes involved in the onset of type 2 diabetes mellitus. 
 
 

No motifs were found in decreased regions of both diets (DB sites in (2) and (4)).  

3.1.2.3. The “quantitative” approach for H3K27me3 dataset 

Starting from the peak sets identified by SICER and from the aligned-reads files of 

each sample (bam files), to identify the best threshold to build the consensus peak 

set, we draw the number of overlapping peaks as a function of the number of 

samples having those peaks in common (Figure 3.22). Accordingly, we chose 5 as 

the minimum number of samples to consider while building the consensus peak 

set, which was finally composed by 5,746 regions. 
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Figure 3.22 Number of overlapping peaks in all samples - H3K27me3 dataset 
 
On the y axis the number of peaks present in at least the number of samples represented on the x 
axis. Since we had to compare reads abundance for each region in different conditions, we take 
into account all the samples together without dividing them for diet condition.  
In red we denoted the chosen threshold through the Elbow method (peaks common to at least 5 
samples).  
 
 
 
 
Similarly to what was done for H3K4me3 dataset, after performing the TMM 

normalization step, we used edgeR in order to identify significantly differentially 
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enriched sites. For both diet conditions no trustable significantly DB sites were 

found.  

We tried to lower the minimum overlap threshold but very few sites were identified 

and the fold change between experimental conditions and control was always so 

small that made them not trustable. This is probably due to the inefficacy of 

properly identification H3K27me3 broad peaks. 

3.2. RNA-seq data analysis  

In this paragraph we report results obtained from the bioinformatic analyses of 

data produced by RNA-seq experiments with the pipeline described in the 

previous chapter.  

The first part encloses a descriptive analysis of the collected datasets in which we 

report preprocessing information related to reads abundance, samples variability 

and quality controls. 

The second part is focused on the differential expression analysis and the 

functional annotation of regulated genes in KEGG pathways and GO biological 

processes. 

 

3.2.1. Preprocessing, variability analysis and quality check 

RNA-seq samples were derived from 3 CR mice (CR6, CR8, CR9) and 1 SD 

mouse (SD1, different from the previous cohort). As described in paragraph 2.2, 

after filtering out low-quality reads, we mapped the short reads to the reference 

genome (mm9 UCSC) using TopHat (Trapnell et al, 2009), while gene-level read 

counts were obtained using HTseq-Count (Anders et al, 2014). 

In table 3.6 the number of accepted hits and unmapped hits are reported together 

with mean and standard deviation values. For all four samples we reached a 
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satisfactory amount of mapped fragments, although some differences appear 

between CR9 and SD1. 

 

 

Table 3.6: RNA-seq reads counts for each sample 
 
The counts of mapped and unmapped reads are reported for each sample with the mean and 
standard deviation for both classes. We reached an acceptable yield of sequences for each 
sample, although there is a certain difference especially between CR9 and SD1.  

 

This difference is also reflected in the gene body coverage curves calculated with 

RSeQC (DeLuca et al, 2012) and represented in Figure 3.23, in which is clearly 

visible that a 3’ bias is present especially in SD1 and CR6 samples, while CR8 and 

CR9 have a more uniform distribution of reads along the gene body. 

We also checked splice junctions saturation level: since for a well-annotated 

organism the number of expressed genes in a specific tissue is almost fixed, the 

number of splice junctions is also invariant. All known splice junctions should be 

rediscovered from a saturated RNA-seq data, otherwise, downstream alternative 

splicing analysis is problematic because low abundance splice junctions are 

missing. This analysis checks for saturation by resampling 5%, 10%, 15%, and so 

on until 95% of total alignments from each sample BAM file of mapped reads, and 

then detects splice junctions from each subset and compares them to reference 

gene model (Figure 3.24).  
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Figure 3.23 Gene body coverage curves for each sample 
 
For each sample, a curve representing the gene body coverage from 5’ to 3’ is reported. While 
CR8 and CR9 samples seem to have an equal distribution of the coverage on the whole gene 
body, SD and CR6 clearly show a bias on 3’ being more covered than 5’ regions. 
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Figure 3.24 Junctions saturation analysis for each sample 
 
CR6 and SD1 known junction curves (red curves) are not completely at saturation, differently from 
CR8 and CR9. For all samples, the novel junction curve (green) is not at saturation. 

 

To estimate samples variability, we calculated the similarity matrix starting from 

sample reads counts per gene among samples: 
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where dij = d(Si, Sj) , with i,j represent two samples in {SD1, CR6, CR8, CR9) and 

Si is the array with the read counts for each gene of i-th sample and d is the 

euclidean distance. 

In Figure 3.25 the heatmap with hierarchical clustering represents the similarity 

matrix calculated: the three CR samples are much similar and are clustering 

together, while the SD1, being different from the others, remains apart.  

 

 

Figure 3.25 Heatmap of similarity distance matrix. 
 
Higher distance between two samples is denoted with red colors, while lighter colors as blue or 
yellow denote lower distances, as reported by the legend. 
 
CR samples cluster among themselves (in particular CR8 and CR9 are much similar respect to the 
CR6), being different from the SD sample.  
 

 

3.2.2. Differential Expression analysis and functional enrichment 

In order to identify differences in RNA expression levels of individual 

genesbetween control and experimental samples, differential analysis was 
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performed using the edgeR (Robinson et al, 2010), after a step of TMM 

normalization to correct for different library sizes and to reduce RNA composition 

effect. Moreover, we used the biological coefficient of variation (a measure of 

dispersion) estimated by edgeR that was lower than 0.2 (this means that genes 

expression typically differs from replicate to replicate less than 20%) using the 

quantile-adjusted conditional maximum likelihood method (qCML). 

To define significance thresholds of regulated genes we used a volcano plot 

representing log2(fold change) and -log10(p-value) for genes with RPKM (reads 

per kilobase per million) greater or equal to 1 in at least one of the two conditions.  

Using a tresholds of  |log2(FC)|≥1 with a p-value≤0.05 (green dots in Figure 3.26), 

we identified a total of 1,181 genes significantly regulated, of which 597 

upregulated and 584 downregulated in CR versus SD. 

We then used DAVID to perform KEGG enrichment analysis: pathways 

significantly enriched (p-value adjusted <0.05) are "Drug metabolism", "Retinol 

metabolism", "Metabolism of xenobiotics by cytochrome P450", "Prion diseases", 

"Circadian rhythm", "Alanine, aspartate and glutamate metabolism" and "Steroid 

hormone biosynthesis", as reported in Table 3.7, together with the genes involved 

and the relative adjusted p-value. 
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Figure 3.26. Volcano plot of genes with RPKM>1 in at least one experimental condition  
 
Red dots represent genes with p-value less than 0.05, orange dots represent genes with 
log2(FoldChange) greater than 1, while green dots are genes satisfying both conditions. Top 
regulated genes’ names are reported in the plot. Genes with log2(FC) less than zero are 
underexpressed in CR vs SD while, on the opposite,  genes with log2(FC) greater than zero are 
upregulated in CR vs SD. A total of 1181 genes are  significantly (p-value<=0.05 and log2(FC)>=1) 
regulated of which 597 upregulated in CR vs SD and 584 downregulated. 
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Table 3.7 Significantly enriched KEGG pathways for differentially regulated genes in CR vs SD 
 
For each pathway described in the first column, the genes found differentially regulated in CR vs 
SD are reported together with the Benjamini- Hochberg adjusted p-value in second and third 
column respectively.  
 

In Figure 3.27 we report, for each pathway, genes upregulated or downregulated 

with their Log Fold Change. 

Alanine, aspartate and glutamate metabolism pathway upregulation is consistent 

with Hagopian et al, 2003 work in which they found that mice on CR showed 

significant increases in the activities of alanine and aspartate transaminases, and 

of malate and glutamate dehydrogenases. This is an effect of an increased 

gluconeogenic activity in CR mice correlating with a state of increased hepatic 

gluconeogenesis and protein turnover during CR. 

The same is true for Prion diseases pathway: these are protein misfolding 

disorders of the central nervous system with many similarities to other 

neurodegenerative diseases, as, for example, deposition of aggregated protein, 
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gliosis, and loss of synapses and neurons. Chen et al, 2008 showed that CR 

delays onset of Prion diseases and this beneficial effect has also been proven to 

happen in other neurodegenerative disorders like Huntington’s (Duan et al, 2003) 

and Alzheimer’s (Patel et al, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.27 Upregulated and downregulated genes for enriched pathways in CR vs SD 
 
For each pathway, corresponding genes log fold change are reported. Green dots represent 
downregulated genes, while red dot upregulated ones. Names of genes corresponding to highest 
or lowest log fold change values are reported for each pathway, together with interesting ones. For 
example, Ppara and Pparg result upregulated together with Per1, Per2, Per3 and Cry1. As 
expected, Arntl is downregulated as it should be since Per and Cry inhibit Arntl transcription. 
 

Alterations of hepatic retinoid metabolism in long term dietary restricted old rats 

were also already reported (Chevalier et al, 1999). Although Calorie Restriction is 

known to extend lifespan, it is often accompanied by impaired reproductive 

function. The differential regulation of Steroid hormone biosynthesis in CR mice 
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can be involved in this kind of mechanisms. In fact Thondamal et al, 2014 show in 

worms that the steroid signaling pathway, which regulates reproduction, is 

activated in response to dietary restriction (DR) and is required for DR-induced 

lifespan extension. It would be very interesting to investigate such relationship in 

mouse model. 

 

Since calorie-restricted mice exhibit increased antioxidative defenses, and they 

have a slower rate of accumulation of tissue oxidative damage with age (Merry, 

2004; Hunt et al, 2006), the up-regulation of xenobiotic metabolism (composed by 

many metabolizing enzymes and transporters that together work for the 

detoxification and elimination of potentially poisonous compounds) could be 

viewed as another form of enhanced stress resistance. In fact, other studies of 

gene expression analysis in Caenorhabditis elegans, in Ames dwarf mice, Little 

mice and calorie-restricted Snell dwarf mice (McElwee et al, 2004; Amador-

Noguez et al, 2004; Amador-Noguez D et al, 2007; Tsuchiya et al, 2004) 

suggest a role for the up-regulation of xenobiotic detoxification genes as an 

important mechanism for longevity assurance. 

 

It has been shown that Calorie Restriction entrains the clock in the SCN, affecting 

during daytime, the temporal organization of the SCN clockwork and circadian 

processes in mice, under light-dark cycle (Challet et al, 1998; Challet et al, 2003; 

Mendoza et al 2005). Moreover, through gene expression data comparison in 

seven different tissues, “circadian rhythms” is identified among the most over-

expressed biological processes in mice subjected to CR (Swindell et al, 2008). 

This suggests that synchronization of peripheral oscillators during CR could be 

achieved directly by synchronizing the SCN, which, in turn, sends humoral or 



114 

neuronal signals to entrain the peripheral tissues (Resuehr & Olcese, 2005; Froy 

et al, 2006; Froy et al, 2007). Our findings perfectly fits in this frame; moreover, 

we can add that the CR impact on circadian rhythms is epigenetic-mediated, since 

genes involved in circadian processes also showed a significantly higher level of 

H3K4me3 in promoter region and we can also hypothesize that this effect could be 

mediated by NRSF/REST. In particular, except for Ccrn4l, all the genes that we 

found at increased level of H3K4me3 in CR are significantly upregulated. Fold 

changes and p-values are reported in Table 3.8 

 
Table 3.8 Focus on expression levels of genes found with elevated level of H3K4me3 in CR 
respect to SD and involved in circadian rhythmic processes 
 
All the genes in the table result overexpressed (p-value≤0.05 and RPKM≥1 in at least one 
condition and |logFC|>1). In particular Ciart and Usp2 are ~30 times more expressed in CR respect 
to SD, followed by Per1 and Dbp (~10 times). 
 

Peroxisome proliferator-activated receptors (PPARα, PPARγ, and PPARβ/δ) are 

members of the nuclear receptors superfamily and are found expressed in multiple 

organs. As summarised by Masternak & Bartke, 2006 these transcription factors 

regulate many physiological functions such as energy metabolism, insulin action, 

immunity and inflammation. In particular, PPARα regulates lipid metabolism and 

binds to the Bmal1 promoter to modulate its expression. Moreover, its own 

expression is regulated by CLOCK–BMAL1 through E-boxes present in its 

promoter region (Canaple et al, 2006; Oishi et al, 2005). Calorie restriction is 
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known to act on PPARs (Corton et al, 2005) but the effects are strikingly organ 

dependent (Figure 3.28).  

 
Figure 3.28 PPARs expression levels in liver of CR mouse 

Scheme of the effects of calorie restriction (CR) on the expression of PPARs family genes in 
mouse liver. PPARg levels of mRNA and protein are not altered, as indicated by the absence of 
arrows. 

(Adapted from Masternak & Bartke, PPAR Research, 2007) 
 
 

Masternak et al, 2005 proved that the hepatic expression of PPARα and PPARβ/δ 

genes from the PPAR family is differentially altered by CR, while no alteration of 

mRNA or protein levels of hepatic PPARγ were found. PPARα increases to 

facilitate glucose homeostasis maintenance during periods of food scarcity. 

Furthermore, Corton et al, 2005 indicated that ~20% of hepatic genes involved in 

lipid metabolism, inflammation, and cell growth altered by CR, were dependent on 

PPARα. These evidences support PPARa as a mediator for CR  (Guerre-Millo et 

al, 2001; Kersten et al, 1999; Leone et al, 1999; Masternak  et al, 2004; 

Masternak et al, 2005). Finally the expression of PPARβ/δ in the liver was 

significantly decreased by CR at both mRNA and protein levels Masternak et al, 

2005. 
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4. Discussion 

 

Over the last decades we witnessed an increasing attention towards food habits, 

especially for their putative role in disease prevention/risk. It is of the last days the 

large attention of the media on the report of International Agency for Research on 

Cancer about a link between processed and red meat consumption and higher risk 

of colorectal cancer (Bouvard et al, 2015). This does not come out, actually, as a 

novel finding, as many previous studies had reported the detrimental effects of 

diets rich in refined sugar, fat and meat, typical of Western countries. This is 

thought to be responsible for increased incidence of of metabolic disorders, type 2 

diabetes, various types of cancer and cardiovascular diseases (Gami et al, 2007; 

Giovannucci et al, 2007; Pais et al 2009; Aleksandrova et al, 2011). 

On the other hand, caloric restriction without malnutrition has been shown to have 

beneficial health effects: it prolongs lifespan (Chapman and Partridge, 1996; 

Fontana et al, 2010; Greer and Brunet, 2009; Kennedy et al, 2007; Mair and 

Dillin, 2008; Masoro, 2005; Weindruch et al, 1988) and reduces age-associated 

diseases, including cancer, in different experimental models (Mattison et al, 2012; 

Colman et al, 2009; Harvie et al, 2012; Imayama et al, 2012).  

However, the molecular mechanisms behind the observed associations between 

diet and disease risk are still unknown. 

On another side, increasing body of evidences suggest a role of epigenomic 

dynamics in the adaptation to different environmental cues, including food. In 

particular, numerous studies highlighted the role of DNA methylation in shaping 

chromatin structure in different organisms, silencing specific regions of the 

genome and producing precise phenotypic effects  (Wolff et al, 1998; Kucharski 
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et al, 2008; Heijmans et al, 2008); while relationships between histone 

modifications and diet are much less explored. 

For these reasons, based on the hypothesis that food adaptation entails 

reprogramming of different cell functions, which might be executed and maintained 

through changes in chromatin, in this study we investigated the impact of different 

diet regimens on histone modifications H3K4me3 and H3K27me3 in murine 

model, in order to identify a diet-specific signature and a set of potential clinical 

markers. 

4.1. H3K4me3 profile variability  

We expected to observe a certain degree of variability in chromatin features 

among biological replicas. Besides being a possible limiting factor for the feasibility 

of this study, the issue of inter-individual variability of chromatin patterns 

represents an unsolved issue per se that we tried to adress. We recognize, in fact, 

that differences in the variables we measured (i.e. final mapped reads, called 

peaks and global level of enrichment) might not only be ascribable to biological 

diversity, but also to experimental complexities (i.e. adapted PAT-ChIP protocol for 

liver tissue, different liver histology among different diet groups). We evaluated 

these specific differences as modest, in the light of ENCODE guidelines for quality 

check on ChIPseq experiments (Landt et al, 2012).  

Moreover, differences in peaks genomic localization within the same diet group 

could represent both a real biological difference and a technical matter (e.g. 

underestimation of number of peaks due to lower global enrichment of the replica). 

In this case we had to minimize the possibility of underscoring peaks, using 

different threshold in the peak calling step, based on the global enrichment value 

(FRiP). 
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Patterns of H3K27me3 distribution resulted quite stable for all three diet groups, 

with very small fluctuation of the signal localization in genomic classes (cf. Fig. 

3.5) and an index of similarity among replicas between 0.2 and 0.6 for all diet 

groups (meaning that replicas share from 40% to 80% of the peaks, cf. Fig. 3.6). 

H3K4me3 differences among biological replicas were much higher: fluctuation of 

signal genomic localization in HF group was very low, compared to CR and SD 

(Fig.3.3). Moreover the similarity index among HF samples is around 0.3 while in 

CR, it is around 0.6 - 0.7 and for SD it goes from 0.3 to 0.6, in both cases with the 

exception of some samples recorded to be totally different from the core clusters 

and representing the source of major variability  (Fig. 3.4). 

These diversities represented an issue to downstream analysis so we reduced it 

through normalization and increasing the stringency of the analyses, even at the 

expense of obtaining a reduction of the peak sets considered significant for each 

diet group.  

Since we finally were able to obtain meaningful and coherent results that fit with 

both known and expected outcomes reported in literature, we believe that, in spite 

of the variability of the experimental setting we used, overall this work makes an 

interesting and original contribution to the understanding of the field.    

4.2. H3K4me3 signal reveals the presence of diet-specific 

epigenetic signature 

We analyzed statistically significant quantitative-differences of reads abundance in 

CR and HF respect to SD samples. Our differential data analysis of genome-wide 

H3K4me3 profile supports the existence of diet-specific epigenetic signatures. 
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In fact, a relatively small number of sites with significant different abundance of 

H3K4me3 signal is able to separate and cluster CR and HF from control diet 

samples (Fig. 3.12 and 3.13).  

4.2.1. Calorie restriction acts on circadian clock through epigenetic 

mechanisms, shaping chromatin conformation and altering gene expression of 

specific regulators 

Genomic regions showing an increased level of H3K4me3 in CR respect to SD, 

corresponds to genes involved in Circadian rhythmic processes (Per1, Per2, Tef, 

Ciart, Ahcy, Usp2, Dbp, Ccrn4l). The same genes were also found significantly 

overexpressed in CR (Table 3.8). 

The circadian clock is in charge of biological timekeeping, on a systemic level. The 

central clock situated in the SCN in the brain, communicates and regulates local 

peripheral clocks, present in other tissues, synchronizing them as a unique system 

(cf. paragraph 1.1.5, Froy, 2011). It has been shown that Calorie Restriction 

entrains the clock in the SCN, affecting during daytime, the temporal organization 

of the SCN clockwork and circadian processes in mice, under light-dark cycle 

(Challet et al, 1998; Challet et al, 2003; Mendoza et al 2005). Moreover, through 

gene expression data comparison in seven different tissues, “circadian rhythms” 

was identified among the most over-expressed biological processes in mice 

subjected to CR (Swindell et al, 2008). This suggests that synchronization of 

peripheral oscillators during CR could be achieved directly by synchronizing the 

SCN, which, in turn, sends humoral or neuronal signals to entrain the peripheral 

tissues (Resuehr & Olcese, 2005; Froy et al, 2006; Froy et al, 2007). Our 

findings are coherent with what was previously found; moreover, our observations 

support a new mechanistic theory by which the CR impact on circadian rhythms is 
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epigenetic-mediated, since genes involved in circadian processes also showed a 

significantly higher level of H3K4me3 in promoter region.  

4.2.2. NRSF/REST could be the mediator of CR induced beneficial effects 

acting on chromatin remodeling and transcription of circadian genes 

Starting from the regions obtained through quantitative differential analysis, we 

performed motif discovery analysis and comparison with known transcription factor 

motif databases. The motif of a known chromatin modifier, NRSF/REST is found 

enriched in regions with increased level of H3K4me3 in CR (even if just below the 

threshold we considered significant; pvalue=0.003128). Moreover, through the 

analysis of anti-REST ChIPseq in liver of adult mouse publicly available, we 

assessed the actual presence of REST peaks on these regions and on other 

genes promoters involved in many important metabolic processes (Chong et al, 

1995). 

REST is a protein, member of the Kruppel-type zinc finger transcription factor 

family that represses transcription by binding a DNA sequence element called the 

neuron-restrictive silencer element. It acts as a master negative regulator of 

neurogenesis and it is expressed in different tissues, including brain, liver, 

stomach and spleen.  

Widely studied in brain, REST is involved in neuronal differentiation and it silences 

gene transcription through the recruitment of multiple chromatin-modifying 

partners like coREST, G9a, Lsd1, mSin3, CtBP (Anders et al, 1999; Grimes et 

al, 2000; Huang et al, 1999; Naruse et al, 1999; Roopra et al, 2000). 

Although it was initially thought only to repress neuronal genes in non-neuronal 

cells, evidences are more recently suggesting that its role is tissue dependent and 

definitively more complex.   
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In particular, it has been shown that REST interacts with CtBP in a NADH-

dependent manner: NADH is the metabolite detected by the NRSF complex as a 

readout, or proxy, for metabolic state in rat lung fibroblastic cell line JTC-19 treated 

with glycolytic inhibitor 2-deoxy-D-glucose (2DG) (Garriga-Canut et al, 2006). 

CtBP homo- and hetero-dimerize in the presence of NADH to recruit various 

chromatin modifying complexes including HDACs and HDMs (i.e. Lsd1) (as 

summarized by Hayakawa et al, 2011). 

Furthermore, higher REST levels in brain of old people protect from Alzheimer's 

and correlate with longevity and healthy aging, two features of CR beneficial effect 

(Lu et al, 2014) 

Calorie restriction is known to decrease NADH levels and this particular effect has 

been correlated with the increase in lifespan in yeast and mammals (Lin et al, 

2000 and 2004).  

Of course, it needs experimental proofs, but these evidences together with our 

data are compatible with the model in which CR, decreasing NADH levels, impairs 

REST recruitment of CtBP, and consequently of Histone Demethylases on its 

targets (including the circadian genes), that in turn produces an increase of 

H3K4me3 levels on their promoters and results in their overexpression.  



122 

 

Figure 4.1 REST could be the mediator of CR-induced beneficial effects acting on 
chromatin remodeling and transcription of circadian genes 
 
CR, decreasing NADH levels, impairs REST recruitment of CtBP, and consequently of Histone 
Demethylases on its targets (including the circadian genes), that in turn produces an increase of 
H3K4me3 levels on their promoters and results in their overexpression.  
 

4.2.3. The High Fat diet shapes chromatin configuration, favouring a higher 

“opening state” at gene promoters 

Testing the significance of differences in genomic localization of H3K4me3 signal 

among different diet groups, the HF diet results having an overall significantly 

higher mean percentage of H3K4me3 peaks in promoter regions respect to CR 

and, at the same time, a significant lower mean percentage of peaks in distal 

intergenic regions. Even increasing the stringency of our analysis, HF showed a 

higher percentage of promoter peaks than the other two groups (~90% versus 

~75%) although the number of the peak-set for the three groups was almost the 

same (~3000 peaks). This clearly indicates that HF produces specific changes in 

chromatin conformation, driving the “opening”, on average, of more promoter 
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regions respect to SD and CR. This epigenetic state could result in an aberrant 

regulation of some genes since H3K4me3 signal correlates mostly with active 

transcription, contributing to the development and progression of diseases like 

diabetes and cardiovascular diseases through the activation or suppression of 

gene functions (Ke et al, 2009; He C et al, 2012; Chen Z et al, 2010; Raciti et al, 

2014; Mathiyalagan et al, 2014). This global result is consistent with local findings 

shown by Inoue et al, 2014 and Jun et al, 2012 that HF produced elevated levels 

of H3Kme3 signal on promoters of specific genes altering their expression in rats 

and mouse hepatocytes. 

 

4.2.4. High fat diet induces changes in liver H3K4me3 profile promoting the  

onset of Type 2 Diabetes Mellitus 

Noteworthy some of the regions showing an increased level of H3K4me3 in HF 

respect to SD correspond to genes involved in onset of Type II diabetes mellitus 

(Pik3r1, Socs3, Gck, Hk2, Prkcd).  

Type II diabetes mellitus (T2DM) is a metabolic disorder characterized by high 

blood sugar due to pancreatic beta-cell functional impairment and insulin 

resistance in different tissues, including liver (Dayeh et al, 2014). 

Though genetic variants are known to have a role in the development of T2DM 

(Zeggini, 2007), different lifestyle factors, including obesity, overweight, lack of 

physical activity, are reported as risk factors for T2DM onset (Abdullah et al, 

2010). Analysis of DNA methylation status in pancreatic beta cells from diabetic 

and healthy individuals revealed epigenetic changes in approximately 850 genes 

confirming the presence of diabetes associated epigenetic modifications producing 

impaired insulin release (Dayeh et al, 2014).  
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MicroRNAs (miRNA) are also shown to be involved in glucose homeostasis and 

diabetes. For example, miRNA 21a has been shown to reverse high glucose and 

high insulin induced resistance in adipocytes modulating PTEN-AKT pathway 

(Ling et al, 2012) and to be over-expressed in diabetes patients (Zeng et al, 

2013). Furthermore, hyperglycemia induced histone modifications and DNA 

methylation of pro-inflammatory genes triggering the vascular inflammation 

(Villeneuve et al, 2010). Lastly, Jufvas et al, 2013 observed that adipocytes from 

type 2 diabetic and non-diabetic overweight subjects exhibited level of 

trimethylation at lysine 4 was 40% higher in adipocytes from overweight diabetic 

subjects compared with normal-weight and overweight non-diabetic subjects.  

In this perspective, our findings are adding novel information regarding the role 

that HF-induced H3K4me3 liver profile may have in the onset of T2DM, since 

changes of histone modifications can result in aberrant gene expression.   

Moreover, we found mir-21a with increased level of H3K4me3 and this result  is 

coherent with its overexpression described in Ling et al, 2012 and Zeng et al, 

2013.  

4.2.5. ZSCAN4 could be the mediator of the detrimental effects of High Fat 

diet, acting on telomere shortening increasing the risk of T2DM development  

We showed (even with low significant statistical value) that regions with elevated 

level of H3K4me3 in HF and involved in type 2 diabetes mellitus pathway are 

enriched for the Zinc Finger and SCAN Domain Containing 4 (Zscan4) 

transcription factor motif. Zscan4 has been demonstrated to be in charge of 

telomere elongation in ES cells and maintenance of genomic stability (Zalzman et 

al, 2010). 
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Kim et al, 2009 proved that weight gain and increased BMI positively correlate 

with telomere shortening in peripheral blood cells.  

Interestingly, Xiao et al, 2010 found that the average telomere length of type 2 

diabetic patients was significantly shorter than the one of control subjects in a 

cohort of 930 patients and 867 controls. Indeed, experimental evidences suggest 

that telomerase is important in maintaining glucose homeostasis in mice (Kuhlow, 

Florian, von Figura et al, 2010). Conversely, elevated blood glucose levels 

increase oxidative stress, potentially interfering with telomerase function and 

resulting in shortened telomeres (Serra et al, 2000). Moreover, Zhao et al, 2013 

demonstrated that short telomere length is associated with future development of 

type 2 diabetes independently of known type 2 diabetes risk factors. 

These evidences, together with our finding, seem to suggest a possible 

involvement of Zscan4 in HF induced detrimental effect through epigenetic 

regulation and of its role in telomere maintenance and its direct transcriptional 

action on specific genes’ promoters involved in the onset of type 2 diabetes that 

were not previously proposed. 

4.3. Conclusion and future perspectives 

In conclusion, our study further elucidate the epigenetic link between caloric intake 

and disease risk/prevention, highlighting the impact of Calorie Restriction on 

circadian clock activity in liver and the detrimental effect of High Fat diet in the 

onset of Type II diabetes mellitus.  

In particular, we hypothesized the involvement of two factors, REST and ZSCAN4, 

in mediating diet effects on chromatin remodeling, which in turn may results in 

changing of transcriptional regulation of specific genes. 

Further directions will be to prove these hypotheses including analyses of ChIPseq 
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profiles anti-REST (in CR and SD samples) and anti-ZSCAN4 (in HF and SD 

samples) evaluating the activity and the differences of these two transcription 

factors in different diet conditions and to enlarge the number of RNA-seq samples 

and include also HF transcriptional profiles. 

Moreover it would be interesting to investigate whether these diet-induced liver 

signatures are permanent or reversible, long lasting or transient and if they can be 

imprinted passed to following generations.   
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