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1. Abstract 

Notch signaling is prominently involved in cell fate decision and growth regulation in 

metazoan tissues. Because of this, Notch is often upregulated in cancer and current efforts 

point to developing drugs that block its activation. Notch receptor endocytosis towards acidic 

compartments is a recently appreciated determinant of signaling activation. The Vacuolar H+ 

ATPase (V-ATPase) is responsible for acidification of endocytic organelles and recently it has 

been shown that mutants in V-ATPase subunit encoding genes in model organisms display loss 

of Notch signaling phenotypes. In the first part of my graduate studies, we aimed at discovering 

whether pharmacologic reduction of V-ATPase activity affected Notch signaling. We found that 

administration of BafilomycinA1 (BafA1), a highly specific V-ATPase inhibitor decreases Notch 

signaling during Drosophila and Zebrafish development, and in human cells in culture. In 

normal breast cells, we have found that BafA1 treatment leads to accumulation of Notch in 

the endo-lysosomal system, and reduces its processing and signaling activity. In Notch-

addicted breast cancer cells, BafA1 treatment reduces growth in cells expressing membrane 

tethered forms of Notch, while sparing cells expressing cytoplasmic forms. In contrast, V-

ATPase inhibition reduces growth of leukemia cells, without affecting Notch activating 

cleavage. However, consistent with the emerging roles of V-ATPase in controlling multiple 

signaling pathways, in these cells Akt activation is reduced, as it is also the case in BafA1-

treated breast cancer cells. Our data support V-ATPase inhibition as a novel therapeutic 

approach to counteract tumor growth sustained by signaling pathways regulated at the endo-

lysosomal level.  

The functions of Notch throughout the life of an individual are varied and complex. This 

complexity is not sufficiently accounted for by the limited core of known Notch signaling 
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components and a growing body of evidence attributes it to additional factors that determine 

whether, when and how Notch functions within a given context. Considering this, in the second 

part of my graduate work, we sought to identify novel genes that might influence Notch. Thus, 

we performed a high content immunofluorescence-based RNA interference screen of a 

pharmacologically-relevant subset of the human genome. To this end, we monitored how 

knockdown of specific genes perturbs the localization of the Notch-1 receptor in human breast 

cells under resting and signaling conditions. Here we present the screen setup, the primary 

screen results and the candidate follow-up strategy.  
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2. Introduction 

2.1 Overview of Notch signaling 
 

 Notch signaling is one of a handful signaling pathways that are conserved and 

extensively deployed in the regulation of tissue growth and fate specification in metazoans 

(Andersson et al. 2011). This evolutionarily conserved medium of cell-cell communication was 

first identified in Drosophila melanogaster and borrows its name from the notched wings 

observed in flies mutant for the Notch receptor gene (Morgan 1917). As an intermediary 

between adjacent cells, Notch signaling directs multiple and highly pleiotropic cellular 

functions. Since its discovery about a century ago it has been shown to influence multiple cell 

fate decisions, tissue differentiation, as well homeostasis in the developing embryo and adult 

organism (Koch et al. 2013). All metazoans are equipped with this ancient system of 

intercellular messaging. Drosophila has only one Notch receptor for its two Notch ligands, 

Delta and Serrate. In contrast, mammals possess four orthologues of the Drosophila Notch 

receptor, Notch 1-4 and five Notch ligands of the Delta-Serrate-Lag2 (DSL) type (Bray 2006). 

 Notch receptors and their ligands are single pass transmembrane proteins. The Notch 

receptor is synthesized in the Endoplasmic Reticulum (ER) as a single precursor protein. Soon 

after synthesis the receptor is transported to the Golgi where it undergoes a furin convertase 

mediated, Site-1 (S1) cleavage. This early biosynthetic cleavage generates a bipartite, mature 

Notch receptor that is then trafficked to cell surface membrane from where it may engage in 

Notch signaling processes (Blaumueller et al. 1997; Logeat et al. 1998; Gordon et al. 2009). In 

addition to this biosynthetic cleavage, it has been shown across species that the nascent 

receptor in the Golgi, undergoes sugar modifications on its EGF-like residues (Moloney et al. 

2000; Moloney 2000), an event that is necessary for productive Notch signaling (Jafar-Nejad et 
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al. 2010; Stanley & Okajima 2010; Fernandez-Valdivia et al. 2011). However, some forms of 

glycosylation, particularly by fringe glycosyltransferases can negatively modulate signaling 

(Moloney et al. 2000; Yang 2004; Taylor et al. 2014). The four mammalian Notch receptors are 

structurally very similar (Figure 1). 

 

 
Figure 1: General structure of the Notch receptor 
 

The extracellular part of the Notch receptor has a variable number of EGF-like repeats 

necessary for interaction with ligands. The two portions of the receptor are joined at the HD. 

The HD and LNR comprise the NRR and protect against ligand independent receptor activation. 

The intracellular domain bears the NLS and functions as a transcription factor. EGF- Epidermal 

Growth Factor, LNR- Lin12/Notch Repeats; HD- HeteroDimerization; NRR- Negative Regulatory 

Region; S2- Cleavage Site 2; S3- Cleavage Site 3; TM- Trans-Membrane; RAM- RBP-J-kappa-

Associated Module; ANK- ANKyrin repeats; NLS- Nuclear Localization Signal; PEST- rich in 

Proline (P), glutamic acid (E), serine (S) and threonine (T); TAD- Transcription-Activation 

Domain, present in Notch-1 and 2 only.     

 

 

Like their receptors, canonical Notch ligands are transmembrane proteins. On the basis 

of likeness to their Drosophila counterparts, the five mammalian Notch ligands are grouped 

into Delta-like (Dll) and Serrate-like Notch ligands. In mammals three Delta-like Notch ligands 

named Dll-1, Dll-3 and Dll-4 and two Serrate-like ligands named Jagged-1 and Jagged-2 are 

known (Bray 2006; Kopan & Ilagan 2009). Members of any of the two classes bear several 

structural similarities (Figure 2). Like Notch receptors, ligands have also been shown to 
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undergo sugar modification (Brückner et al. 2000; Panin et al. 2002; Jafar-Nejad et al. 2010), 

an event thought to mediate and strengthen ligand-receptor interaction. 

 

 
Figure 2: Structure of the mammalian Notch ligands 

Notch ligands are multi-domain, transmembrane proteins. SP- Signal Peptide. DSL- Delta-

Serrate-Lag2. EGF- Epidermal Growth Factor. CR- Cystein Rich domain. TM- Trans-Membrane. 

Jag- Jagged like. DOS- Delta and OSM-11. Dll- Delta like. (Adapted from 'the many facets of 

Notch ligands'; (D’Souza et al. 2008).   

 

It is not clear why mammalian systems have evolved multiple Notch receptors and 

ligands. A possibility is that it facilitates a greater complexity by enabling tissue specific 

variations of Notch signaling. For instance, Notch-1 and to lesser extent Notch-2 function 

broadly during mammalian Notch signaling, operating in numerous cell types. While functions 

of Notch-3 and 4 are less extensive and largely restricted to the vascular and smooth muscle 

systems (Wu & Bresnick 2007). Also not fully understood, is how the expression of Notch 

receptors is governed and what factors direct the expression of a particular Notch receptor(s) 

within a specific tissue or cell type (Wu & Bresnick 2007). 
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2.1.1 The Canonical Notch signaling pathway 

 Physiological Notch signaling is a highly coordinated and tightly regulated process. 

Unlike many other cell signaling pathways, a single activated Notch receptor engages in a single 

episode of cell-cell communication, getting consumed on delivery of its message to the 

receiving cell. It does not engage second messengers, and the signal is not known to undergo 

any form of amplification (Andersson et al. 2011). The best characterized form of Notch 

signaling is termed the ‘canonical Notch signaling pathway’ and involves cell surface resident 

Notch receptors and ligands.  

Notch receptors undergo a stepwise activation process. The extracellular and 

intracellular fragments of the Notch receptor are non-covalently linked at the HD domain, 

which along with the LNR, constitute the NRR. The NRR shields the receptor from ligand 

independent activation by concealing the cleavage Site-2 (S2) – making it inaccessible for 

cleavage (Figure 1). Canonical Notch signaling commences when a Notch ligand on a signal-

sending cell binds to a Notch receptor on a receiving cell. This ligand-receptor interaction 

triggers a series of events that lead first, to a S2 cleavage of the receptor by metalloproteases 

of the ADAM family (van Tetering et al. 2009). Of the currently known ADAMs, ADAM-10 has 

been demonstrated to be the main processor of Notch receptors for subsequent cleavage by 

γ-secretase (Hartmann et al. 2002). As the receptor’s NRR normally shields it from the S2 

cleavage, ligand binding is required to make the S2 cleavage site accessible to the ADAMs. This 

accessibility is thought to be provided mechanically through ligand endocytosis. This ‘pulling 

force’ model posits that as the ligand is endocytosed into the signaling cell, it tugs on the 

extracellular portion of the receptor, causing a conformational change on the NRR and 

exposing the receptor's S2 for cleavage site (Stephenson & Avis 2012). Execution of the S2 

cleavage generates a membrane tethered fragment of the Notch receptor called the Notch 
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Extracellular Truncation (NEXT), which is a substrate for the multi-subunit enzyme complex, γ-

secretase. Eventually γ-secretase executes the final step of Notch signaling activation by 

cleaving NEXT at Site-3 (S3), releasing the Notch Intracellular Domain (NICD) into the signal 

receiving cell (Mumm et al. 2000). The liberated NICD swiftly translocates into the nucleus, 

where it drives target gene expression (Figure 3) (Borggrefe & Oswald 2009). Once in the 

nucleus, the NICD becomes a transcription factor. It expresses target genes by lifting the 

transcriptional repression imposed on them by CSL (CBF1/RBPjκ/Su(H)/Lag-1). In the absence 

of NICD, CSL acts in association with co-repressors to curb the expression of Notch target 

genes. NICD's interaction with CSL displaces the co-repressors and replaces them with 

Mastermind-like – a Notch signaling co-activator. This converts CSL into a signaling activator 

and triggers the expression of target genes, including the Hes (Hairy Enhancer of Split) family 

of transcription factors (Klein et al. 2000; Barolo et al. 2002). Thus, NICD function in the nucleus 

is essentially that of flipping on a transcriptional switch. In the nucleus, NICD is relatively short-

lived as it undergoes ubiquitination within its PEST domain followed by rapid proteasomal 

degradation (Oberg et al. 2001) –  flipping the transcriptional switch off. 
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Figure 3: The canonical Notch signaling pathway 
 

The Notch receptor is synthesized in the ER as a single precursor protein before transport to 

the GA where it is cleaved by furin and processed into a bi-partite Notch receptor; the mature 

receptor is transported to the cell surface (route A). At the cell surface it may engage with a 

Notch ligand which triggers a succession of cleavages by ADAM family metalloproteases and 

by γ-secretase to liberate NICD. NICD then translocates to the nucleus and drives target gene 

expression (route C). Receptor bound ligand endocytosis is thought to provide the pulling force 

necessary for receptor cleavage (route B). The levels of Notch receptors and ligands at the cell 

surface are checked by being targeted for lysosomal degradation (route D). 

 

2.1 Non-canonical Notch signaling 

 Forms of Notch signaling that do not strictly abide to the principles described for 

canonical signaling are collectively termed non-canonical Notch signaling. Since such modes of 

Notch signaling are diverse and not as pervasively employed in cell communication as the 

canonical pathway, the mechanisms and components through which they function are not as 

intensively studied. They include CSL-independent Notch activity, regulation of Notch by non-
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canonical ligands, and ligand independent Notch signaling (Sanalkumar et al. 2010; Andersen 

et al. 2012).  

Notch signaling independently of the CSL has been demonstrated in various species, 

from Drosophila to humans and largely occurs via direct or indirect interaction of Notch with 

components of other signaling pathways – thereby modulating their activity (Shawber et al. 

1996; Rusconi & Corbin 1998; Demehri et al. 2008; Kwon et al. 2011; Andersen et al. 2012). 

The majority of such instances have been described in the regulation of Wnt signaling by Notch 

(Andersen et al. 2012).  

Modulation of Notch by non-canonical ligands has been shown to occur through 

proteins like DLK-1 (Delta-like 1) and DNER (Delta/Notch-like EGF-related receptor) that 

structurally resemble Notch ligands but lack a receptor binding domain. While DLK-1 has been 

reported to negatively influence Notch signaling (Baladrón et al. 2005; Nueda et al. 2007; Bray 

et al. 2008), DNER positively modulates signaling (Eiraku et al. 2005). Some proteins unrelated 

to Notch ligands have been shown interact with Notch receptors and trigger processing by γ-

secretase (Hu et al. 2003; Cui et al. 2004; Guruharsha et al. 2012).  

 

2.2 Intracellular trafficking in Notch signaling 

Perhaps the best studied form of non-canonical Notch signaling is ligand independent 

Notch signaling, which is best characterized in the activation of Notch along the endolysosomal 

pathway. Intracellular trafficking is a chief regulator of cell signaling by virtue of the fact that 

majority of receptors and signal transducers are transmembrane or membrane-associated 

proteins. Notch signaling is intricately coupled to intracellular trafficking. Initial indicators of 

this came from observations that mutations affecting the Drosophila gene shibire (Dynamin in 

mammals), resulted phenotypes similar to those caused by Notch loss of function (Seugnet et 
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al. 1997). These observations prompted vigorous investigations into how Notch signaling is 

modulated through intracellular trafficking. In addition to the imperative exocytic transport of 

Notch receptors and their ligands to the cell surface, they both are subject to continuous 

endocytic transport (Fortini & Bilder 2009).  

Following synthesis, Notch ligands are transported to the Golgi, where they may 

undergo glycosylation before proceeding on their outward journey to the cell surface 

(Brückner et al. 2000; Panin et al. 2002; Jafar-Nejad et al. 2010). Endocytosis of Notch ligands 

from the cell surface has been shown by different groups (Le Borgne & Schweisguth 2003; Itoh 

et al. 2003; Meloty-Kapella et al. 2012). This uptake of Notch ligands follows their 

ubiquitination and subsequent interaction with endocytic adaptors (Yamamoto et al. 2010). 

Ubiquitination is a well-known mediator of endocytosis and mutations in the E3 ligases 

Neuralized (Neur) and Mind bomb (Mib) impairs Notch ligand trafficking as well as signaling 

(Lai et al. 2001; Le Borgne, Remaud, et al. 2005; Lai et al. 2005; Song et al. 2006; Yamamoto et 

al. 2010). The exact role played by ligand endocytosis during Notch signaling is still debated 

and two compelling theories have been advanced. A) That upon interaction with the receptor, 

ligand endocytosis into the signaling cell generates a pulling mechanical force that prompts 

Notch receptor cleavage on the surface of the signal receiving cell (Nichols et al. 2007; Meloty-

Kapella et al. 2012). B) That endocytosis is required for proper ligand maturation as it is 

incapable signaling in its nascent form. Through unclear mechanisms, endocytosis is thought 

incorporate the newly-made ligand into an intracellular compartment where it matures and 

acquires Notch activating potential before being recycled back to the cell surface. This notion 

is supported by observations that impaired ligand recycling suppresses Notch signaling in both 

Drosophila and mammalian cells (Jafar-Nejad et al. 2005; Emery et al. 2005; Rajan et al. 2009). 

Although the exact part played by ligand endocytosis in support of Notch signaling remains 



15 
 

unsettled, it is likely that both mechanisms play a part and the particular process executed by 

endocytosis might strongly depend on the context. The ligand-NECD (Notch Extracellular 

Domain) complex generated on receptor cleavage is postulated to undergo transendocytosis 

into the signaling cell, followed by trafficking to the lysosome for degradation. Ligands not 

engaged with Notch receptors may also undergo endocytosis into the signaling cell, an event 

that may inhibit Notch signaling by limiting the availability of Notch ligands at the cell surface.  

Following synthesis Notch receptors are exocytosed to the cell surface from where they 

may interact with ligands. Newly made receptors are transported to the Golgi where they 

undergo a cleavage by furin (Blaumueller et al. 1997; Logeat et al. 1998; Gordon et al. 2009) 

and undergo glycosylation (Moloney et al. 2000; Moloney 2000; Stanley & Okajima 2010) 

before being transported to the cell surface (Kopan 2012). As with the signaling cell, endocytic 

trafficking in the signal receiving cell may influence Notch signaling either positively or 

negatively. By removing Notch receptors from the cell surface and targeting them for 

degradation, endocytosis may make them unavailable for activation by ligands – inhibiting 

signaling (Le Borgne, Bardin, et al. 2005; Fortini & Bilder 2009; Yamamoto et al. 2010). By 

recycling receptors destined for degradation back to the cell surface or mediating their 

activation along the endolysosomal pathway, trafficking may conversely, enhance Notch 

signaling (Vaccari et al. 2008; Fortini & Bilder 2009).  

It is not clear how the delicate balance between enhancing or inhibiting Notch signaling 

is struck and maintained during endocytic trafficking of Notch receptors. It is becoming 

increasingly clear that this intricate system is orchestrated by a myriad other factors beyond 

the core components of the Notch pathway. A prominent example of a group of such factors, 

and how they may impact Notch signaling is provided by the ubiquitin system. Several 

members of the ubiquitin system are known to affect Notch signaling. For instance, both the 
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Drosophila and mammalian versions of the E3 ubiquitin ligase, dx (deltex), are modulators of 

Notch signaling (Xu & Artavanis-Tsakonas 1990; Diederich et al. 1994; Matsuno et al. 1995; 

Matsuno et al. 1998; Kishi et al. 2001; Hori et al. 2004). Drosophila dx has been demonstrated 

to promote Notch signaling by ubiquitinating the Notch receptor and promoting its activation 

in late endosomes independently of ligands (Hori et al. 2004; Wilkin et al. 2008; Shimizu et al. 

2014). However, in some contexts it negatively regulates Notch signaling by driving receptor 

degradation in the lysosomes (Mukherjee et al. 2005; Wilkin et al. 2008). Another E3 ligase, 

Su(dx) (AIP4/Itch in mammals), opposes dx and negatively regulates Notch signaling by 

promoting its lysosomal degradation (Cornell et al. 1999; Wilkin et al. 2004; Qiu et al. 2000; 

Chastagner et al. 2008; Shimizu et al. 2014). It is thought that dx promotes Notch signaling by 

inducing receptor endocytosis and preventing it from accessing MVB lumens where it would 

be degraded and that Su(Dx) counters dx by recruiting Notch into MVBs for degradation (Wilkin 

et al. 2008; Shimizu et al. 2014). AIP4/Itch has been postulated to also target mammalian dx 

for lysosomal degradation (Chastagner et al. 2006). In Drosophila, factors like Lgd and 

components of the ESCRT machinery, which are necessary for endosomal sorting and MVB 

(MultiVesicular Body) formation also impact on Notch signaling. Ablation of Lgd, which is 

known to promote Notch degradation impairs endosomal sorting and leads to ligand 

independent activation of Notch (Childress et al. 2006; Jaekel & Klein 2006; Gallagher & 

Knoblich 2006; Schneider et al. 2013). Similarly, mutations affecting ESCRT or HOPS 

components impair endosome maturation and as a result Notch trafficking and degradation, 

leading to ectopic activation of Notch (Moberg et al. 2005; Vaccari & Bilder 2005; Thompson 

et al. 2005; Herz et al. 2006; Wilkin et al. 2008; Vaccari et al. 2009; Hori et al. 2011).  

Once Notch receptors and ligands are endocytosed, they are transported along the 

endolysosomal route in membrane vesicles. As the vesicle travels from the cell surface toward 
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the lysosome at the perinuclear region, its luminal pH is progressively acidified by the V-ATPase 

(Vacuolar H+ ATPase). This function of the V-ATPase is crucial for various cellular processes 

including membrane trafficking and fusion (Forgac 2007). More recently, the V-ATPase has 

been shown to modulate clathrin mediated endocytosis (Kozik et al. 2013). Thus acidification 

is bonafide mediator of intracellular trafficking. As discussed in subsequent sections, V-

ATPase/acidification has important implications for Notch among other signaling pathways.  

 

2.3 The V-ATPase pump 

The vacuolar H+ ATPase (V-ATPase) is a large evolutionarily conserved proton pump that 

serves a wide range of cellular functions (Forgac 2007). This versatile pump is built of several 

subunits that assemble into a membrane embedded V0 sector and a soluble cytoplasmic V1 

sector (Figure 4). The V0 sector of the pump consists of six subunits (a-e) and the V1 sector of 

eight (A-H) (Forgac 2007). When assembled, the two sectors are capable of reversible 

association, to form the complete, functional V-ATPase complex (Kane 1995; Sumner et al. 

1995; Lafourcade et al. 2008).  

The primal function of the V-ATPase pump is to translocate protons across cell 

membranes, into the lumens of membrane bound intracellular compartments (Forgac 2007). 

In some specialized cells like those of the kidneys and bones, the translocated protons are 

extruded into the extracellular space as part of physiologic function by these organs. Thus, the 

pump makes an indispensable contribution in maintenance of the body’s acid-base equilibrium 

and bone tissue homeostasis, respectively (Brown et al. 2009; Qin et al. 2012). To execute 

these functions, the pump's cytosolic V1 sector hydrolyzes ATP as a source of the energy. While 

the membrane embedded V0 sector forms a channel through which the protons translocate 

across membranes. Proton translocation and associated intracellular acidification is efficiently 
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blocked by plecomacrolide antibiotics. Members of this family of specific V-ATPase inhibitors 

specifically clutch on the V0C subunit of the pump and prevent the rotary motion of its V0 

sector, hence impairing proton translocation (Bowman & Bowman 2005).  

 

 
Figure 4: General structure of the V-ATPase pump 

The V-ATPase is made up of multiple subunits that assemble into a cytoplasmic V1 sector and 

a membrane embedded V0 sector. The two individual sectors reversibly associate to make the 

complete, membrane residing enzyme complex. The primary function of this ancient proton 

pump is to acidify the cell's intracellular organelles or in specialized tissues, the extracellular 

space. V-ATPase’s proton pumping activity can be specifically blocked with plecomacrolide 

family of antibiotics e.g. Concanamycin A (ConA) and Bafilomycin A1 (BafA1), that specifically 

bind to the C subunit of the V0 sector, interrupting proton translocation.  
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 Because of its well established role in intracellular acidification, the V-ATPase is best 

known as a mediator of lysosomal acidification and function. This notion is grounded on the 

fact that lysosomes are the most acidic organelles and that their low luminal pH is established 

and maintained by the V-ATPase. A lysosomal pH of around 5.0 is required for optimal function 

by lysosomal hydrolases which degrade unwanted cellular material – including proteins, lipids 

and nucleic acids (Cooper 2000). Also referred to as acid hydrolases, these enzymes cease to 

function at higher pH. Protracted stifling of their activity leads to lysosomal storage disorders, 

a group of diseases characterized by compromised removal of cellular waste (Cooper 2000).  

Due to this entrenched view of the lysosome, it is commonly regarded the cell’s ‘dump 

site’ and by association the V-ATPase is largely considered a facilitator of the lysosome’s 

degradative function. However, backed by numerous recent findings, it is becoming 

increasingly evident that lysosomes are a not just cellular incinerators and that the V-ATPase 

is not simply their power supply. Indeed, apart from performing their traditional duties, these 

two execute additional critical tasks in very diverse cellular processes, including cell signaling 

(Appelqvist et al. 2013).  

 

2.3.1 The V-ATPase in Cell signaling 

The V-ATPase, along with the lysosome has so far been implicated in Notch signaling 

(Yan et al. 2009; Vaccari et al. 2010; Lange et al. 2011; Valapala et al. 2013), Wnt signaling 

(Cruciat et al. 2010; Buechling et al. 2010), mTOR signaling (Peña-Llopis et al. 2011; Zoncu et 

al. 2011; Settembre et al. 2012; Bar-Peled et al. 2012; Roczniak-Ferguson et al. 2012; Zhang et 

al. 2014), Ca2+ signaling (Zhu et al. 2010; Medina et al. 2015) and AMPK signaling (Zhang et al. 

2014). These reports, citing evidence from human cells as well as model organisms paint a 

picture of the V-ATPase and the lysosome as a well-coordinated cell signaling hub (Figure 5). 
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Figure 5: The lysosome/V-ATPase as a signaling hub 

Recent data emerging from research on human and animal models cast the view that together, 

the lysosome and V-ATPase are at the center of numerous cell signaling pathways – including 

mTOR, Wnt and Notch signaling. 

 

Together, the V-ATPase/lysosome, mTOR and the Transcription Factor EB (TFEB), form 

a homeostatic loop that regulates cellular energy. TFEB is a master regulator of lysosomal 

genes including V-ATPase subunits genes and therefore controls lysosome biogenesis 

(Sardiello et al. 2009; Settembre et al. 2011). Under normal circumstances, mTOR negatively 

regulates TFEB activity by phosphorylating and keeping it in the cytosol. When mTOR signaling 

is inhibited TFEB translocates to the nucleus, where it stimulates the expression of target genes 

(Settembre et al. 2011; Roczniak-Ferguson et al. 2012). However, for mTOR to restrain TFEB 

from translocating into the nucleus, it must establish whether or not, the nutritional status of 

the cell is adequate. It does this by moving to the lysosomal surface, where it interacts with 

the V-ATPase and in case of nutritional adequacy becomes active. Active mTOR can now 

phosphorylate TFEB and sequester it outside the nucleus. Inhibiting V-ATPase function 



21 
 

inactivates mTOR, making it incapable of phosphorylating TFEB and therefore inducing TFEB’s 

translocation into the nucleus (Zoncu et al. 2011; Roczniak-Ferguson et al. 2012). 

During Wnt signaling, the V-ATPase has been shown to be important for Wnt receptor 

activation. The V-ATPase is connected to Wnt signaling by prorenin (PRR), an accessory 

component of the V-ATPase also known as ATP6AP2. PRR is a transmembrane protein that 

interacts with the Wnt receptor complex at the cell surface. It is thought that following Wnt 

ligand binding, the Wnt signaling complex becomes internalized by the cell. PRR is postulated 

to mediate this endocytic event by acting as an adapter that physically links the Wnt signaling 

complex with the V-ATPase. On the endosomal surface and now attached to the Wnt receptor 

via PRR, the V-ATPase acidifies the vesicle’s lumen as it travels along the endolysosomal path 

– generating a low pH that is required for Wnt receptor phosphorylation and signaling 

activation. This Wnt signaling activation is blocked by V-ATPase inhibitors. A role for the V-

ATPase in Wnt signaling has been demonstrated in model organisms as well as in human cells, 

indicating an evolutionary conservation of the crucial role it plays during Wnt signaling (Cruciat 

et al. 2010; Buechling et al. 2010). 

 In recent years, our group has contributed to the body of evidence that points to the 

V-ATPase as a versatile mediator of cell signaling, particularly its involvement in the Notch 

signaling pathway (Vaccari et al. 2010). Prior to this, our group had demonstrated endosomal 

entry of Notch as a prerequisite for productive Notch signaling (Vaccari et al. 2008).  Regarding 

the V-ATPase in the Notch pathway, we found that mutations affecting Drosophila V-ATPase 

subunits impair intracellular acidification and cause an accumulation of Notch in lysosomes. 

Flies carrying these mutation also display a significant impairment of Notch signaling. Similar 

independent observations were reported by others (Yan et al. 2009). They showed that 

Drosophila rabconnectins regulate V-ATPase activity and that rabconnectin mutations cause 
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phenotypes similar to those of impaired V-ATPase function – including lysosomal accumulation 

of Notch and reduced Notch signaling (Yan et al. 2009). A conserved role for the V-ATPase in 

Notch signaling was highlighted by different groups that using animal models, demonstrated a 

requirement for V-ATPase function in mammalian Notch signaling (Lange et al. 2011; Valapala 

et al. 2013). Using a dominant negative form of the V1e1 subunit of the V-ATPase to inhibit the 

pumps function, Lange and colleagues showed that the loss of V-ATPase activity impairs Notch 

signaling in the developing mouse brain (Lange et al. 2011). V-ATPase function in mammalian 

Notch signaling was also demonstrated by Valapala and colleagues, who showed that mutant 

βA3/A1-crystallin impairs V-ATPase function and Notch signaling during formation of the rat 

retina (Valapala et al. 2013). Together, these independent findings establish the V-ATPase as a 

conserved, bonafide regulator of Notch signaling. These data also propose the V-ATPase as a 

therapeutic target to counter out of control Notch signaling.  

 

2.4 The role of Notch signaling during development  
 
 The consequences of Notch signaling are highly pleiotropic. During development 

signaling by Notch is a well-known determiner of cell fates through the processes of lateral 

inhibition, tissue pattern induction and binary cell fate choice (Lai 2004). In all of these 

processes, Notch signaling acts to specify or influence the identities assumed by daughter cells.    

In the case Lateral inhibition, a cell within a group of equipotent cells (cells with an 

equal capacity to differentiate into a certain cell type) progressively acquires a Notch signal-

sending status. It then employs Notch signaling to instruct neighboring cells not to become 

signal sending cells. Lateral inhibition is best exemplified by neurogenesis in Drosophila. During 

this process, a cell within a group of cells that are equally capable of becoming neurons, 

acquires Notch signal-sending capacity and uses it to compel its neighbors not to adopt a 
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neuronal fate and thus revert to an epidermal fate. Impaired Notch signaling causes the entire 

cluster to differentiate into neurons, giving rise to the telling neurogenic phenotype (Parks et 

al. 1997).  

Unlike lateral inhibition, inductive patterning by Notch occurs between distinct cell 

populations. In such instances, signaling cells instruct their signal receiving neighbors to 

express genes necessary for the development of a specific tissue or organ. This is best 

demonstrated in the formation of the Drosophila wing margin. During this developmental 

process, the cells on the dorsal side of the wing imaginal disc communicate with those on the 

ventral side via Notch signaling to delineate the wing margin. Impaired Notch signaling in this 

context leads to a malformed wing margin with the characteristic wing notches (Lai 2004).  

During binary cell fate decisions, a cell has to choose one of two possible outcomes. A 

fitting example is provided by the process of Drosophila bristle development. A 

mechanosensory fly bristle originates from a stem cell within a proneural field of cells called a 

sensory organ precursor cell (SOP). A SOP cell can divide into a pIIa and pIIb cell which can in 

turn divide into a hair and socket cell or a neuron and sheath cell respectively – eventually 

forming the bristle. During this process, Notch signaling pushes for a pIIa fate during division 

of the dual-potent SOP and in the next round of division it specifies a socket cell from the pIIa 

cell and a sheath cell from the pIIb cell. The remainder of the cells, that do not become SOPs 

and form bristles, become epidermal (Bardin et al. 2004). 

 

2.5 The role of Notch signaling in adult tissue homeostasis 
 

Notch controls a myriad of signaling events that are key for tissue development and 

homeostasis across species. Here we will focus only on Notch signaling in the regulation of 

adult tissue homeostasis to provide background for discussing the role of Notch signaling in 
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cancer. For a more comprehensive description of the roles of Notch signaling during tissue 

development and homeostasis please see (Koch et al. 2013).  

In its capacity as a maintainer of tissue homeostasis, the functions of Notch signaling 

are varied and context dependent. It promotes proliferation and stem cell maintenance, 

directs binary cell fate choice outcomes and induces cell differentiation (Figure 6) (Dumortier 

et al. 2005). Thus depending on the context, improper signaling by Notch may lead to a broad 

range of developmental disorders and cancers (Penton et al. 2012; South et al. 2012).  

 

 

Figure 6: Notch signaling in adult tissue physiology 
Depending on the context, Notch signaling may promote proliferation of stem cells and inhibit 

their differentiation (A), dictate the outcome of binary cell fate choices (B) or inhibit stem cell 

proliferation and induce their differentiation (C). Modified from (Wilson & Radtke 2006)   

 
 
 

In keeping with its context dependent nature, varied functions for Notch signaling in 

adult tissue physiology have been demonstrated in various mammalian tissues and organs, 

including but not limited to the intestines, skin and blood (Sato et al. 2012). These three are 

highlighted as paradigmatic examples of the pervasive yet context dependent Notch signaling 

that occurs in adult mammalian tissues and its relevance to cancer as well as its implications 

for therapeutic intervention against Notch driven cancers. 
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2.5.1 The role of Notch signaling in the GIT 
 

By nature of its function, the epithelial wall of the Gastrointestinal Tract (GIT) endures 

a constant stream of ‘assault’ that inflicts it massive cell death. It must therefore undergo 

constant rejuvenation to replace the shed cells. With a complete overhaul every 3-5 days, the 

intestinal epithelium’s turnover rate is one of the highest and is supported by a high rate of 

cell proliferation. In the small intestines this rapid proliferation is maintained by a pool of stem 

cells that resides within the intestinal crypts. These cells have to replenish the huge population 

of cells that is constantly lost and maintain a stem cell reservoir to ensure constant supply. To 

achieve this, a stem cell divides into a self-renewing stem cell and a transiently amplifying (TA) 

cell. The TA cell briefly proliferates while migrating to the tip of the microvilli and eventually 

differentiates into an intestinal epithelial cell (Lin & Barker 2011; Noah & Shroyer 2013; Barker 

2014). The TA cells can mature into multiple cell types. The bulk of the cells resulting from this 

process differentiate into absorptive cells (enterocytes) that take up nutrients; while a smaller 

proportion of them become secretory (goblet) cells that secrete mucus (Noah & Shroyer 2013). 

That Notch signaling is active in intestinal epithelia, is well-documented (Schröder & Gossler 

2002; Sander & Powell 2004; Noah & Shroyer 2013). Here it controls binary cell fate choices 

and promotes the differentiation of precursor cells into absorptive cells at the expense of 

secretory cells. Impaired Notch signaling results in the expansion of the secretory cell 

compartment at the expense of absorptive cells (Fre et al. 2005; Stanger et al. 2005; Pellegrinet 

et al. 2011). This role of Notch in the maintenance of intestinal homeostasis is conserved across 

species including Drosophila and Zebrafish. Drosophila intestinal stem cells differ from their 

mammalian equivalents in that they do not form TA cells, but rather become enteroblasts that 

may directly differentiate into absorptive or secretory cells without further rounds of division 

(Micchelli & Perrimon 2006; Ohlstein & Spradling 2006). Through unclear mechanisms, some 
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of the intestinal stem cells acquire a signal receiving status and activate Notch signaling, which 

promotes their differentiation. Those that acquire signal sending capacity maintain stemness. 

As in mammals, impaired Notch signaling in Drosophila intestinal tract causes an increase in 

proliferating cells while the opposite causes a loss of stem cells (Micchelli & Perrimon 2006; 

Ohlstein & Spradling 2006). Similar observations have been made in Zebrafish (Crosnier et al. 

2005; Yang et al. 2009). In mammals, pharmacological inhibition of γ-secretase suppresses 

Notch signaling, causing complications similar to those observed upon genetic interruption of 

Notch signaling in animal models (van Es et al. 2005). These observations underscore the 

importance of an optimally functioning Notch pathway for healthy intestinal function – a 

concept that is revisited in the section ‘Notch as a therapeutic target’.  

 

2.5.2 The role of Notch signaling in the skin 

Like intestines, skins have to brave a perpetual onslaught of environmental insults. The 

skin forms the outer covering and shelters our internal organs from mechanical stress, injuries, 

infections, cold and dehydration. As a result, it undergoes massive shedding and therefore 

must sustain continuous self-regeneration in order to counter the losses incurred (Koster & 

Roop 2007; Okuyama et al. 2008). The skin is made up of an outermost layer called the 

epidermis and an underlying dermis. The epidermis is stratified and comprises of multiple 

differentiated outer layers and a single proliferative layer beneath them (Sotiropoulou & 

Blanpain 2012). Replacement of the perennially lost epidermal cells is driven by a stem cell 

pool that resides in the proliferative layer. Cells in this pool undergo asymmetric cell division 

to generate stem cells that continue to reside and divide within the proliferative layer and 

short-lived TA cells that proliferate for a short period before differentiating and moving to the 

upper layers, where they replace lost cells (Okuyama et al. 2008). During this process Notch 
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signaling induces the terminal differentiation of TA cells. Loss of Notch signaling in the skin 

impairs differentiation of the precursor cells, hence expanding the proliferating compartment, 

while increased Notch signaling induces their exit from the cell cycle (Rangarajan et al. 2001; 

Nicolas et al. 2003; Blanpain et al. 2006; Okuyama et al. 2008). Like in the GIT, Notch function 

in the skin has important implications for therapeutic interventions and will be revisited in the 

section ‘Notch as a therapeutic target’. 

Mammary glands are derivatives of the skin and the stem cells that give rise to them 

continue to proliferate until they differentiate during adulthood (Robinson 2007). Their 

development is subject to control by various signaling pathways including Notch (Robinson 

2007; Guo et al. 2011). Unlike in the skin where it promotes differentiation, Notch signaling 

has been reported to promote mammary stem cell proliferation (Dontu et al. 2004). 

Constitutively active Notch signaling in animal models interferes with normal mammary gland 

formation by impairing differentiation and leading to tumor formation (Uyttendaele et al. 

1998; Soriano et al. 2000; Guo et al. 2011). These reports present an important role for Notch 

in mammary gland homeostasis. Indeed, Notch receptor mutations leading to excessive Notch 

signaling have been found in human breast cancers (Robinson et al. 2011).  

 

2.5.3 The role of Notch signaling in the hematopoietic system 
 

The blood, whose cellular constituents are very short-lived, is another organ with a 

remarkable turnover rate and thus undergoes constant renewal throughout life. As with the 

GIT and the skin, this high turnover is maintained by a pool of stem cells. Hematopoietic stem 

cells (HSCs) reside in the bone marrow (Pietras et al. 2011). Notch signaling in the 

hematopoietic system is best characterized in the process of T-cell development. HSCs arriving 

to the thymus from the bone marrow are coaxed by Notch signaling into adopting a T-cell fate 
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at the expense of a B-cell outcome (Radtke et al. 2013). Impaired Notch signaling leads to an 

excessive expansion of the B-cell compartment with a concomitant shrinkage of the T-cell 

population (Radtke et al. 1999; Maillard et al. 2004). On the other hand increased Notch 

signaling induces an overrepresentation of T-cells and a shrinkage of the B-cell compartment 

(Radtke et al. 1999; Taghon et al. 2005).  

Collectively, these data illustrating the pleiotropy of Notch function in adult tissue 

homeostasis, give us a glimpse into the obstacles facing the targeting of Notch for therapeutic 

benefit. Some of which are further mentioned in ‘Notch signaling in cancer’ and ‘Notch as a 

therapeutic target’. 

 

2.6 Notch signaling in cancer 
 
 Cancer is an age-old disease characterized by runaway cell growth and proliferation. 

Early records of cancer trace as far back as 1600 BC, in ancient Egypt (Sudhakar 2009). Through 

the millennia our understanding of cancer, its causes and management strategies has gradually 

but tremendously improved. From Socrates’s humoral theory that cancer was caused by bodily 

fluid imbalances to the current consensus that cancer is the result of a normal cell’s gene(s) 

regulation gone awry (Sudhakar 2009).  

Genes that upon deregulation lead to cancer formation are broadly grouped into two 

categories: oncogenes and tumor suppressors. Oncogenes are typically pro-proliferation genes 

that when deregulated gain extra function and confer the affected cell the capacity to grow 

uncontrollably, leading to tumorous growth. Tumor suppressors on the hand, are genes that 

when functioning normally protect against rampant cell multiplication. Their loss of function 

leads to cell overgrowth and cancer development (Lodish et al. 2000).  
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 As a result if its broad functions throughout the life of an individual, abnormal Notch 

signaling underlies numerous developmental diseases and cancers (Louvi & Artavanis-

Tsakonas 2012). How Notch signaling contributes to disease development depends on its 

function in the context (organ) in which the particular disease occurs. Hence its mechanisms 

of contributing to pathogenesis vary with the disease type, and sometimes act in opposite 

direction. For instance, while some cancers and many congenital disorders are due to loss of 

Notch function (Rangarajan et al. 2001; Nicolas et al. 2003; Restivo et al. 2011; Klinakis et al. 

2011), most Notch driven cancers result from excessive Notch activity (Capaccione & Pine 

2013).  

Cancer development as a result of insufficient Notch signaling results from the loss of 

the Notch pathway’s tumor suppressive function. The tumor suppressive role of Notch 

signaling stems from its pro-differentiative function and is best characterized in the skin  

(Lowell et al. 2000; Rangarajan et al. 2001; Nicolas et al. 2003; Nguyen et al. 2006; Dotto 2008; 

Restivo et al. 2011). Ablation of Notch signaling in the skin induces BCC-like (Basal Cell 

Carcinoma-like) skin cancer in animal models (Nicolas et al. 2003) and in line with this, BCC 

patient samples have been reported to possess reduced levels of Notch signaling (Thelu et al. 

2002). Disruption of Notch signaling using DN-MAML has been shown to cause SCC (Squamous 

Cell Carcinoma) in a mouse model (Proweller 2006). Almost 20% of head and neck SCCs have 

been attributed to mutational losses affecting various components of the Notch pathway, 

including mutations that truncate and disable the Notch-1 or Notch-2 receptor (Stransky et al. 

2011; Agrawal et al. 2011; Wang et al. 2011).  

Oncogenic Notch signaling occurs in the vast majority of Notch associated cancer. They 

include but are not limited to T-cell Acute Lymphoblastic Leukemias (T-ALL) and breast cancers 
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(Ellisen et al. 1991; Weng et al. 2004; Pece et al. 2004; Westhoff et al. 2009; Robinson et al. 

2011; Van Vlierberghe & Ferrando 2012; Reedijk 2012), which are mentioned in further detail.  

 

2.6.1 Oncogenic Notch signaling in T-ALLs 

T-ALL is an aggressive form of Acute Lymphoblastic Leukemia (ALL) that accounts for 

about 15% of ALLs in children and up to 25% of the cases in adults. At diagnosis T-ALL patients 

present with immature T-cell infiltration of the bone marrow, unusually high numbers of white 

blood cells, mediastinal masses and an affected central nervous system (Van Vlierberghe & 

Ferrando 2012). In spite of recent improvements in survivability, prognosis in cases of resistant 

or disease relapse remains poor (Van Vlierberghe & Ferrando 2012).  

The earliest indication that Notch function could be oncogenic came from observations 

that a small proportion of T-ALL patients harbored a translocation mutation that juxtaposed 

the intracellular portion of the Notch-1 receptor with the TCRβ locus (Ellisen et al. 1991), 

resulting in the production of an excessive amount of active Notch. Although this particular 

translocation was found to occur in less than 1% of the cases, it later emerged that more than 

half of T-ALL cases carry Notch-1 activating mutations of one form or another (Weng et al. 

2004). Since then oncogenic Notch function in T-ALLs has been under intense scrutiny and its 

role in T-cell malignant transformation is now well-established. Excessive Notch signaling in T-

ALLs principally follows mutations in the HD and/or the PEST domain of the Notch-1 receptor. 

HD mutations destabilize the receptor’s NRR, rendering it susceptible to ligand independent 

cleavage by γ-secretase, while PEST mutations prolong signaling by stabilizing NICD (Weng et 

al. 2004). A functional Notch-1 PEST domain is recognized and ubiquitinated by FBW-7 (also 

FBXW7), an E3 ligase that marks NICD for proteasomal degradation (Oberg et al. 2001). Failure 

to efficiently degrade NICD inappropriately prolongs Notch signaling. In fact, FBW-7 function 
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is reported to be lost in approximately 20% of T-ALL cases (Malyukova et al. 2007; Mullighan 

2009). Therefore, mutations that directly or indirectly promote ectopic Notch signaling may 

lead to T-ALL development – with the excess Notch activity driving pro-cancer processes like 

Inhibition of apoptosis, cell cycle progression & excessive growth (Figure 7). The actual 

contribution of Notch to T-ALL derives from its physiological function during T-cell 

development. Notch signaling is required for T-cell precursor cells to choose a T-cell outcome 

at the expense of a B-cell fate, a process that requires just the right amount of signaling by 

Notch. Constitutive Notch activity causes an expansion of the T-cell population over that of B-

cells, hence the emergence of T-cell leukemia. The knowledge that uncontrolled Notch activity 

causes majority of T-ALLs, makes inhibition of its function an enticing therapeutic strategy.  

 

 
Figure 7: Many avenues lead to Notch oncogenesis in T-ALLs 

Majority of T-ALLs are due to activating mutations in the Notch-1 receptor that leads to an out 

of control Notch signaling. Mutations affecting negative regulators of Notch, such as FBXW7 

and Ikaros, may lead to or contribute to oncogenic Notch signaling in T-ALLs. The resultant 

excessive Notch signaling drives cancer by activating pro-proliferation pathways like Akt or by 

over expressing pro-survival genes like Survivin and CCND1 while inhibiting apoptotic ones, like 

p53. 
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2.6.2 Oncogenic Notch signaling in breast cancer  

 Breast cancer is the most prevalent cancer in women and the second most common 

type of cancer overall (Torre et al. 2015). Although largely viewed a ‘female disease’, cancers 

of the breasts also occur in men – albeit at a much lower frequency (Ly et al. 2013).  

Early mentions of the Notch pathway’s involvement in breast cancer were informed by 

studies on wild mice that carried the Mouse Mammary Tumor Virus (MMTV) and the 

observation that these animals sometime developed mammary gland tumors (Gallahan & 

Callahan 1987). Deeper investigations revealed that in some of the tumors, the MMTV genome 

had integrated within the Notch-4 locus, which at the time was unknown and referred to as 

int-3,  causing an overexpression of its active form (Gallahan & Callahan 1987; Reedijk 2012). 

Similar analysis showed that insertion of the MMTV genome into the Notch-1 locus caused 

overexpression of its intracellular fragment and induced mammary tumor formation (Diévart 

et al. 1999; Reedijk 2012). This excessive Notch signaling has been demonstrated to cause 

mammary tumors by inhibiting differentiation and proper mammary gland development in the 

rodent (Jhappan et al. 1992; Smith et al. 1995).  

 Clues that Notch signaling might contribute to human breast cancer development came 

from observations that the Ras oncogene increased expression of the Notch ligand Dll-1 and 

also enhanced Notch-1 signaling (Weijzen et al. 2002). Since then numerous reports have 

demonstrated the role of oncogenic Notch signaling in human breast cancers (Mittal et al. 

2009; Robinson et al. 2011; Bolós et al. 2013; Buckley et al. 2013). Excessive Notch signaling in 

breast cancer is often attributed to increased receptor and/or ligand expression (Reedijk 2012). 

However, mutations leading to constitutive activation of Notch, and similar to those previously 

characterized in T-ALLs have recently been identified in Notch driven breast cancers. They 
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include mutations in the HD and PEST as well as receptor translocation mutations (Lee et al. 

2007; Robinson et al. 2011; Reedijk 2012).  

Along with the earlier findings in T-ALLs, this evidence makes Notch signaling an alluring 

therapeutic target against cancers that thrive on oncogenic Notch. 

 

2.7 Notch crosstalk with other signaling pathways 

 Once active, Notch functions as a transcription factor whose instructions to the cell are 

implemented by the proteins under its control. Through these effectors, Notch gains wider 

reach in the regulation of cellular functions, including the capacity to cooperate with or 

influence other signaling pathways. These effectors, employed by Notch for such functions are 

often under instruction from other signaling pathways. Thus, although frequently presented 

as stand-alone circuits, cell signaling pathways are in constant communication – engaging in a 

back and forth interaction that allows them to coordinate their instructions to the cell. As a 

result of this cell signaling integration, dysfunctional activity by one or more pathways may 

directly or indirectly affect another or other signaling pathways. Indeed, malignant 

transformation due to dysfunctional Notch is not solely dependent on Notch’s aberrant 

activity. Rather, oncogenic Notch activity is often intertwined with the out of order signaling 

from other pathways. In cancer contexts, crosstalk has been documented between Notch and 

a number of other major signaling pathways, including but not limited to Wnt and PI3K/AKT 

(Ayyanan et al. 2006; Fre et al. 2009; Wong et al. 2012). 

Cell signaling through Wnt has several parallels with Notch signaling. Like Notch, Wnt 

signaling is evolutionarily conserved and extremely pleiotropic. And since it functions 

extensively during development and in the adult organism, deregulated Wnt signaling is 

causative of multiple developmental disorders and cancers – including cancers of the breast 
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and the hematopoietic system (Staal 2007; Lamb et al. 2013; Ng et al. 2014). During Wnt 

signaling, β-catenin functions in a manner analogous to that of NICD. Wnt ligand binding to cell 

surface receptors causes stabilization and nuclear entry of β-catenin, which otherwise resides 

in the cytosol and possesses a very short half-life. Once in the nucleus β-catenin drives 

transcription of target genes to regulate diverse processes, including cell fate determination 

and cell proliferation (MacDonald et al. 2009). Like Notch, Wnt signaling is also critical for T-

cell development (Staal & Clevers 2005; Staal 2007). Expression of constitutively active β-

catenin in the mouse thymus during T-cell development causes invasive T-cell lymphoma, 

through a process thought to rely on a cooperation between excessive Notch and Wnt signaling 

(Staal 2007; Guo et al. 2007). Wnt signaling is also linked with breast cancer development 

through an association that traces back to the discovery of the first Wnt gene, Wnt-1 (Nusse & 

Varmus 1982). The identification of Wnt-1 came from observations that mice infected with the 

MMTV virus sometime developed mammary tumors. The animals that developed the tumors 

were found to have integrated the MMTV genome within the Int-1 locus, which was later 

renamed Wnt-1 (Nusse & Varmus 1982).  

Crosstalk between Notch and Wnt, referred to as Wntch signaling, has been widely 

reported across species (Muñoz Descalzo & Martinez Arias 2012) and has largely been shown 

to occur through non-canonical modulation of Wnt signaling by Notch. During Wntch signaling, 

Notch acts in a non-transcriptional capacity to regulate the transcriptional activity of the Wnt 

pathway (Rusconi & Corbin 1998; Kwon et al. 2011; Acosta et al. 2011; Muñoz Descalzo & 

Martinez Arias 2012; Andersen et al. 2012). It is not clear whether the non-canonical form of 

Notch signaling is can drive cancer formation on its own but one may imagine that excessive 

Notch might cooperate with/drive Wnt toward oncogenic signaling. Nonetheless, Wnt and 
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Notch signaling have been shown to cooperate in breast cancer formation with ectopic Wnt 

activation inducing ectopic Notch signaling (Ayyanan et al. 2006; Collu & Brennan 2007).   

 As with Notch and Wnt signaling, PI3K/Akt signaling functions during T-cell 

development (Juntilla & Koretzky 2008). Crosstalk between Notch and PI3K/Akt signaling is 

well documented in T-ALL and is thought to go through Notch signaling mediated, Hes-1 

regulation of PTEN (Phosphatase and TENsin homolog). PTEN is a tumor suppressor that 

normally checks the activity of the pro-proliferation PI3K/Akt signaling pathway (Song et al. 

2012). Some of the Notch signaling pathway’s proliferative effect is proposed to be through an 

indirect stimulation of PI3K/Akt signaling through the transcriptional suppression of PTEN by 

the Notch target, Hes-1 – a transcription factor that represses target gene expression (Wong 

et al. 2012). These evidences underscore the fact that cancer cells are often reliant on more 

than one oncogenic pathway and calls for a combinatorial approach to cancer therapy. 

 

2.8 Notch as a therapeutic target 

Various strategies, ranging from small molecule inhibitors, to RNA interference, to the 

use of monoclonal antibodies have been advanced for countering oncogenic Notch function 

(Figure 8) (Shih & Wang 2007; Moellering et al. 2009; Aste-Amézaga et al. 2010). Small 

molecule inhibitors of Notch signaling have been developed mainly against γ-secretase. In spite 

of early encouraging prospects that GSIs (γ-secretase inhibitors) would prove clinically 

beneficial, these hopes were dampened by the realization that these compounds have high 

toxicity in patients. Some of these blockers of γ-secretase’s catalytic function were developed 

for the treatment of AD but were discontinued in the course of clinical trials due to associated 

severe gut toxicities (Aster & Blacklow 2012). The toxicity is believed to result from 

simultaneously blocking the activation of Notch-1 and 2 receptors (Wong et al. 2004; van Es et 
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al. 2005; Aster & Blacklow 2012). Another major obstacle to the clinical application of GSIs is 

the risk of triggering additional cancers. It is possible that while attempting to treat a Notch 

driven cancer, intervention with GSIs might in fact induce new cancers in other organs due to 

loss of Notch’s tumor suppressive function. This fear is especially real for the skin – where 

Notch signaling protects against cancer. Indeed, a GSI in clinical trials was discontinued due to 

heightened risk of skin cancers in patients (Extance 2010; Aster & Blacklow 2012; Andersson & 

Lendahl 2014) and several  GSIs have failed during clinical trials due to various safety concerns  

(Toyn & Ahlijanian 2014). Other challenges to the clinical use of GSIs include the fact that γ-

secretase as an enzyme is extremely promiscuous and hence very difficult to target without 

detrimental side effects (Selkoe & Wolfe 2007). The concerns raised against the use of GSIs 

hold true for many of the strategies that have so far been suggested for countering excessive 

Notch function. The main concern being the inability to discriminate between the different 

Notch receptors. Even in situations where selectivity for a Notch receptor is achieved, for 

example with the use of monoclonal antibodies against specific Notch receptors or ligands 

(Andersson & Lendahl 2014), the pleiotropy of this pathway makes it a recalcitrant target (Liu 

et al. 2011; Ryeom 2011).  

There are additional hurdles faced in pursuing Notch for therapeutic purposes, 

including a rapid acquisition of resistance to GSIs by Notch dependent cancers and their use of 

other signaling pathways. For instance, in addition to Notch, T-ALLs also depend on excessive 

Akt signaling for their proliferation. In such cases the transcriptional repression of PTEN by 

Notch through Hes-1, or the mutational loss of PTEN, drives Akt signaling. This co-operation 

between Notch and Akt signaling makes T-ALLs resistant to Notch signaling inhibition with GSIs 

(Palomero et al. 2007).  
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Given the available evidence, there is an urgent need for newer, safer and more 

efficacious ways of toning down excessive Notch signaling. A goal that is potentially achievable 

through the multi-pronged approach of: developing/identifying safer inhibitors, uncovering 

novel targets that when inhibited reduce Notch signaling subtly, hence causing milder side 

effects and combining two or more therapeutic strategies at lower individual strengths to 

minimize their respective adverse effects while pooling their benefits.  

 

 
Figure 8: Strategies for countering oncogenic Notch signaling 

Some of the approaches proposed for countering excessive Notch signaling are shown. Decoy 

ligands can occupy the receptor in place of actual ligands but lack the ability to activate the 

receptor. LBD antibody inhibitors render the receptor inaccessible to ligands, by occluding their 

binding regions. Chemical inhibitors can block receptor S2 cleavage by ADAM family 

metalloproteases. DN MAML-1 is capable of inhibiting Notch transcriptional activity. 

Conceptually gene silencing could downregulate Notch target gene transcripts. Of these 

suggestions, the most promising approach is the use GSIs to inhibit Notch receptor S3 cleavage 

by the γ-secretase. Modified from (Yin et al. 2010). LBD– Ligand Binding Domain. GSI– γ-

secretase inhibitor. DN MAML-1– Dominant Negative MasterMind-Like-1. 
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3. Aims of the projects 

3.1 V-ATPase inhibition reduces physiologic and oncogenic Notch signaling  

Guided by recent findings that lysosomal acidification is required for physiologic and 

pathologic Notch signaling (Yan et al. 2009; Vaccari et al. 2010; Lange et al. 2011), we sought 

to examine whether pharmacologically inhibiting the V-ATPase would suffice to curtail 

excessive Notch signaling. In the first part of this dissertation, we used model organisms, 

normal human cells, Notch driven human cancer cells and specific V-ATPase inhibition to 

address this question. Our findings on the pharmacologic inhibition of the V-ATPase to counter 

oncogenic Notch signaling have been published in Kobia et al. 2014. Data on the regulation of 

Notch signaling by TFEB will appear in Tognon et al. 2015, which has been accepted for 

publication. 

 

3.2 Screen for novel trafficking components in the Notch pathway 

 One major question in the field of Notch research is how such a seemingly simple and 

direct pathway attains so much sophistication in function. This has been attributed to the 

regulation of Notch signaling at different levels by a multitude of factors, including intracellular 

trafficking modulators and posttranslational modifiers (Bray 2006; Guruharsha et al. 2012). 

With the aim of identifying novel factors that regulate Notch signaling, we performed a siRNA 

screen in MCF10-A cells. We are currently validating candidates from the screen. In the second 

part of the thesis, I present the rationale for the screen, the screen setup, screen pilot and the 

results of the primary screen.  
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4. Materials and Methods 

4.1 Drosophila strains 

 The following fly strains were used: Oregon R (OreR), E(spl)mb-lacZ (Nellesen et al. 

1999) and UAS shrub::GFP (Sweeney et al. 2006). The temperature sensitive Rotund-Gal4-

TubGal80ts (Smith-Bolton et al. 2009) driver, which is expressed in the wing pouch, was used 

to induce the expression of UAS shrub::GFP in larval wing imaginal discs. Flies were kept at 

18°C to restrict the driver’s activity. First instar larvae from rotund-Gal4, TubGal80ts/UAS 

shrub::GFP flies were collected at 18°C and then shifted to 29°C for 24 hours to allow driver 

activity and induce expression of shrub::GFP in the wing imaginal discs. 

 

4.2 Treatment of flies with compounds 

 For drug treatment the following compounds were used: DAPT (N-[N-(3,5-

Difluorophenacetyl)-L-alanyl]-S-phenylglycine butyl ester, Sigma), Leupeptin (Sigma), NH4Cl 

(Sigma), BafilomycinA1 (BafA1) (Calbiochem), ConcanamycinA (ConA) (Calbiochem) and 

Chloroquine (Sigma). Depending on the manufacturer’s suggestions, the compounds were 

diluted in DMSO or ethanol and stock solutions for each compound added to 0.5 ml of liquid 

yeast to a final concentration of 1mM for DAPT and 2-4 µM for BafA1. Yeast containing the 

appropriate compound was added on top of a low-sugar fly food (Agarose 1%, Propionic Acid, 

15% Sucrose, Tegosept, Ampicillin, water). Vials were stored overnight to ensure evaporation 

of residual solvent. 20 females and 10 males were introduced into each vial, and kept at 25°C 

for 5 days. Adults were removed, and the progeny allowed to remain in the presence of 

compound until eclosion. For experiments with rotund-Gal4, TubGal80ts/UAS shrub::GFP flies, 

20 females and 10 males were kept at 18°C in vials containing the compounds until first instar 
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larvae appeared. Adults were then removed and vials containing first instar larvae shifted to 

29°C. They were allowed to grow at 29°C until the 3rd instar stage. 

 

4.3 Treatment of Zebrafish with compounds 
 

 Zebrafish lines were maintained and bred through standard procedures and in 

accordance with EU regulations on the use of laboratory animals. We used embryos from the 

Notch responsive reporter line Tg(Tp1bglob:eGFP)^um14 (Parsons et al. 2009). To inhibit γ-

secretase, zebrafish embryos at gastrulation (80-90% epiboly stage) were manually 

dechorionated. They were then placed in 2 ml petri dishes containing E3 medium (embryo 

water) and DAPT added to final concentrations of 50, 100 or 200mM ensuring that a DMSO did 

not exceed 0.4% of the water volume. The fish embryo were then incubated overnight, in the 

dark at 28.5°C. To specifically block the V-ATPase pump’s activity, we incubated gastrulation, 

1-somite or 18 somites stage zebrafish embryos in the presence of BafA1 (Sigma). BafA1, 

dissolved in DMSO was added into zebrafish E3 media to final concentrations of 50, 100 or 

300nM, ensuring the solution did not exceed 0.4% of the water. For the Mock treated embryos, 

DMSO only, was added into the water at a final volume of 0.4% and the fish incubated in similar 

conditions as the compound treated ones. The embryos were left in the incubation medium at 

28.5°C until the 26-28 hours post-fertilization stage. All recorded phenotypes were scored in 

at least 10 (n >10) embryos for each condition and repeated at least twice. Treated and control 

embryos were then mounted in 3% methylcellulose solution and observed under a Nikon 

fluorescence stereomicroscope. 
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4.4 Cell culture 
 

 MCF10-A cells (ATCC) were cultured in DMEM/F12 (1:1) supplemented with 5% Horse 

Serum (Invitrogen), 10 mg/ml Insulin, 0.5 mg/ml Hydrocortisone, 100 ng/ml cholera toxin 

(SIGMA) and freshly added 20 ng/ml EGF (Vinci-Biochem). HCC2218, HCC1187, and CCRFCEM 

cells (ATCC) were cultured in RPMI 1640 (Lonza) supplemented with 10% FBS and 1% L-

glutamine. HCC1599 (ATCC) was cultured in RPMI 1640 (Lonza) supplemented with 1% L-

glutamine and 20% FBS. DND-41 was cultured in RPMI 1640 (Lonza) supplemented with 15% 

FBS and 2 mM glutamine. HCC1599 and DND-41 cells require in our hands higher FBS 

concentrations, compared to the other cell lines, for optimal growth. All cells were cultured at 

37°C and 5% CO2 in a humidified incubator.  

 

4.5 Treatment of cells with compounds 
 

 To treat with compounds, the cells were diluted to appropriate densities and the drugs 

(dissolved in DMSO) added directly into the media at indicated final concentrations. As mock 

treatment, a volume of DMSO equal to that of respective compounds and their respective 

concentrations, was added directly into the medium. The amount of DMSO did not exceed 

0.5% of the cell culture medium. The cells were then mixed by gently rocking the cell culture 

vessel before being seeded onto appropriate cell culture vessels and being placed in culture. 

All cells were cultured at 37°C and 5% CO2 in a humidified incubator. The following compounds 

were used on mammalian cells: GI 254023X (Tocris), DAPT (Sigma), BafA1 (Sigma), FCCP 

(Sigma), SH6 (Sigma) and Apicularen A (Api-A) (kindly offered by Prof. Angelika Vollmar, 

University of Munich). DIC (Differential Interference contrast) images of treated cells were 

acquired using an inverted EVOSfl Fluorescence Microscope (AMG). 
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4.6 Lysotracker and DQ-Red BSA assays 
 

 Wing discs from 3rd instar larvae were dissected in cold Drosophila cell culture medium 

(M3, Sigma) and then incubated in medium containing 1mM Lysotracker (DND-99, Molecular 

Probes) for 5 minutes at RT. The medium was then decanted and the wing discs rinsed with 

fresh medium before being mounted and imaged. To label organelles with low luminal pH in 

Zebrafish embryos, LysoTracker was directly added directly into the fishes’ E3 medium at a 

final concentration of 0.08mM. In this experiment, Tg(Tp1bglob:eGFP)^um14 embryos at the 

28 hours post-fertilization stage were incubated for 60 min at 28.5°C in the presence of 

LysoTracker. They were then mounted on 1% low melting agarose dissolved in E3 medium 

before observation and confocal imaging. MCF10-A cells were seeded onto glass coverslips and 

cultured to approximately 70% confluence. They were then treated with DMSO, DAPT or BafA1 

by introducing them directly into the well at the desired final concentrations. The medium was 

mixed and the cells placed under normal cell culture conditions for 3 hrs. To label acidified 

cellular compartments, lysotracker was added into the culture medium at a final concentration 

of 1uM. The cells were mixed well and placed in normal culture conditions for 30 minutes. They 

were then rinsed thrice with ice cold PBS and the nuclei stained with DAPI for 10 minutes. They 

were then immediately mounted on glycerol for confocal analysis. For DQ-BSA 

(LifeTechnologies) assays, the stock solution was added directly into the cell culture medium 

to a 1uM final concentration. The medium was mixed well and the cells placed in normal 

culture conditions for 3 hours. They were then rinsed thrice with ice-cold PBS-1X and fixed with 

4% PFA. After nuclei staining with DAPI for 10 minutes, they were mounted on glycerol for 

confocal examination.  
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4.7 Notch translocation assay 
 

 50,000 MCF10-A cells were seeded onto glass coverslips placed into 24-well plate and 

grown to approximately 70-80% confluence. Notch cleavage and its translocation to the 

nuclear was induce by adding EGTA directly into the wells at a final concentration of 10mM. 

The cells were then put back under normal culture conditions for 30 min after which the 

medium was decanted and cells rinsed twice with ice cold PBS-1X. The cells were then fixed 

with 4% PFA for immunostaining. Where noted, MCF10-A cells were pre-treated for 3 hours by 

adding the drugs at the indicated final concentrations directly into the wells. 

 

4.8 Immunostainings 
 

 For Drosophila experiments, wing imaginal discs were dissected and fixed in 4% 

paraformaldehyde (PFA) for 20 minutes. They were then rinsed thrice, 5 minutes per rinse in 

0.1% triton-PBS 1X. Permeabilization was performed with 1% triton-PBS for 10 minutes. The 

samples were then blocked using 5% BSA in 0.1% triton-PBS (blocking solution) for 30 minutes. 

The samples were then incubated overnight with primary antibodies diluted in blocking 

solution at 4°C. After staining with primary antibody staining, samples were washed thrice with 

0.1% triton-PBS 1X, 5 minutes per wash. They were then subjected to secondary antibody 

staining at room temperature for 2 hours. The secondary antibody was diluted in PBS 1X. 

Finally the samples were mounted on glycerol or moviol (Calbiochem). Where indicated, 

phalloidin was added to the secondary antibody solution at 1:100. The primary antibodies used 

were: mouse anti β-Gal [1:25; E7, Developmental Studies Hybridoma Bank (DSHB)], mouse 

anti-N (1:50; C17.9C6 DHSB), rabbit anti-Ubiquitin (1:1000; FK2 1:1000; Biomol), rabbit anti-

Avalanche (1:500; gift from D. Bilder).  
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For cell tissue culture experiments, cells were seeded onto glass coverslips and grown 

to the desired confluence before being fixed for 10 minutes with 4% PFA at room temperature. 

They were then rinsed thrice with PBS 1X, and then permeabilized for 10 minutes in 0.1% 

triton-PBS 1X. They were then incubated in 3% BSA dissolved in PBS 1X blocking solution for 

30 minutes followed by incubation with primary antibody dissolved in blocking solution for 1 

hour, at room. This was followed by 3 washes, 5 minutes each, using PBS 1X. Samples were 

then incubated with secondary antibody diluted in PBS 1X for 1 hour at room temperature 

followed by three washes using PBS 1X, 5 minutes per wash. The primary antibodies used were: 

mouse anti Lamp1/CD107a H4A3 (BD Pharmingen) at 1:1000, or rat anti-Full length Notch1, 

5B5 monoclonal antibody at 1:300 (Sigma). For both Drosophila wing discs and cells, cortical 

actin was stained using Rodamine-Phalloidin (Sigma) at 1:100 and the nuclei were labeled with 

DAPI (Sigma) diluted at 1:1000. The samples then rinsed thrice with PBS 1X and mounted using 

on glycerol. They were then analyzed and imaged using a Leica TCS SL confocal system. Where 

noted, digital images were processed using the Photoshop and/or ImageJ softwares without 

biased manipulations.  

 

4.9 Western blot assays 
 

For western blot assays, cells were seeded and treated by adding the drugs at indicated 

doses directly into the cell culture medium. The cells were placed under normal culture 

conditions for 7 days after which they were harvested. For adherent cells, the medium was 

decanted and cells rinsed twice with ice cold PBS 1X. They were then collected by scraping 

them into 1ml ice cold PBS 1X. Where indicated, MCF10-A cells were stimulated with 10mM 

EGTA in the presence of the drugs for 30 minutes prior to collection. To collect cells growing in 

suspension, they were centrifuged at 1200 revolutions per minute (rpm) for 5 minutes. The 
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medium was then decanted and the pellet resuspended in 1ml ice cold PBS 1X. The cells were 

centrifuged at full speed, at 4°C for 5 minutes. The PBS was decanted and the pellets 

resuspended in appropriate volumes of RIPA buffer (prepared using standard recipe) freshly 

supplemented protease inhibitor cocktail set III (Calbiochem). The cells were next placed on 

ice for 30 minutes while vortexing them at 10 minutes intervals. The Cell lysates were cleared 

by centrifugation at full speed for 30 minutes, at 4°C. The supernatants were recovered and 

quantified using the BCA protein assay kit (LifeTechnologies) and by following the 

manufactures instructions. The relevant amounts of protein samples were denatured by 

adding β-mercaptoethanol containing laemmli buffer (prepared using standard recipe), briefly 

vortexing to mix and then heating for 5 minutes at 98°C. The samples were again briefly mixed 

by vortexing before being loaded and resolved on 8% polyacrylamide gels. Norvex Sharp 

prestained marker (LifeTechnologies) was used as band/protein molecular weight standard.  

The proteins were then transferred onto nitrocellulose membranes. Protein transfer was 

confirmed by reversibly staining with ponceau (prepared using standard recipe). The ponceau 

was washed off using 0.1% tween-20 in PBS 1X (0.1% PBS-T). The membranes were then 

blocked with 5% milk in 0.1% PBS-T for 2 hours. After blocking, membranes were incubated 

with the following antibodies, diluted in 0.1% PBS-T: anti-cleaved N-1 (Val1744, Cell Signaling) 

at 1:500, Rat anti full length N-1 (5B5 monoclonal antibody, Sigma) at 1:500, Rabbit anti 

phospho-S473-Akt (Cell Signaling) at 1:1000, Rabbit anti pan-Akt (Cell Signaling) at 1:1000, 

Rabbit anti-p70 S6K (Cell Signaling) at 1:1000, Rabbit anti phospho-p70-S6K (Cell Signaling) at 

1:1000, Rabbit anti TFEB (Bethyl) at 1:1000 and Goat anti cathepsin D (C-20) (Santa Cruz 

Biotechnology). Normalization of protein loading was done by staining the membranes with 

mouse anti-Vinculin (Sigma) antibody at 1:4000 or mouse anti-tubulin (Sigma) at 1:10,000. The 

following HRP conjugated secondary antibodies were used: Goat anti-rabbit (Biorad), Goat 
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antimouse (Biorad), Goat anti-rat (GE Healthcare) and Rabbit anti-goat (Dako). Signal detection 

was done using Pierce ECL western blotting substrate (Thermo Scientific), developed and 

imaged using a Chemidoc molecular imager (Biorad). Western blot band intensities were 

quantified using imageJ image data analysis software. 

 

4.10 Cell Proliferation assays  
 

 The cells were counted and resuspended so as to have the desired number of cells per 

100µL of cell culture medium. They were then treated by adding the drugs directly into the 

medium to the desired final concentration. As mock treatment, a similar volume of DMSO was 

added into the cells. The cells were then seeded in triplicate onto 96-well plates by transferring 

100µl of the cell suspension into each well. The cells were seeded at the following numbers 

per well: all breast cells at 3,000 and all leukemia cells at 5,000. As blank, 100µl of cell culture 

medium was seeded in triplicate. The cells were then placed under normal cell culture 

conditions for 7 days, after which cell proliferation was assessed using the WST-1 cell 

proliferation assay (Roche), following the manufacturer’s instructions. WST-1 reagent is 

broken by the cells into a soluble, colored metabolite, whose concentration is then measured 

by absorbance reading at 450 nm. Absorbances were read using a Wallac 1420 VICTOR plate 

reader (Perkin Elmer). 

 

4.11 RT-PCR 
 

 Total RNA from wing imaginal discs (40 discs per conditions) or human cells was 

extracted using TRIZOL Reagent (Invitrogen) and RNeasy Mini Kit (Qiagen) following the 

manufacturer’s instructions. Concentration and purity of the RNA was determined by 

measuring optical density at 260 and 280nm with a Nanodrop 2000 spectrophotometer. 500ng 
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of Total RNA was reverse transcribed using SuperScript VILO cDNA Synthesis kit (Invitrogen) 

and in accordance with the manufacturer’s instructions. 5ng of cDNA was amplified (in 

triplicate) in a reaction volume of 15uL containing the following reagents: 7.5uL of TaqMan 

PCR Mastermix (2X) No AmpErase UNG (Applied Biosystems), 0.75uL of TaqMan Gene 

expression assay 20X (Applied Biosystems), 300nM of primers and 100nM of Roche probes. 

RT-PCR was carried out on the ABI/Prism 7900 HT Sequence Detector System (Applied 

Biosystems), using a pre-PCR step of 10 minutes at 95°C, followed by 40 cycles of 15 seconds 

at 95°C and 1 minute at 60°C. The following primers (5'-3') were used: Drosophila E(Spl)-mβ: 

forward-gagtgcctgacccaggag, reverse- cggtcagctccaggatgt. Drosophila E(Spl)-m7: forward- 

agcgacaacgagtctctgct, reverse-ttaccagggacgccacac. Drosophila rpL32-RA: forward- 

cggatcgatatgctaagctgt, reverse- cgacgcactctgttgtcg. GFP: forward- gaagttcgagggcgacac, 

reverse- ccgtcctccttgaagtcg. For human genes the following Applied Biosystems’ probes were 

used: Hes-1: Hs00172878_m1, Hes-2; Hs00219505_m1, Hes-5; Hs01387463_g1, Hey-1: 

Hs00232618_m1, Hey-2: Hs00232622_m1, Notch-1: Hs00413187-m1, Notch-2: Hs00225747-

m1, Notch-3: Hs00166432_m1, Notch-4: Hs00270200_m1, Jag-1: Hs00164982-m1, Jag-2: 

Hs00171432_m1, Delta1:Hs00194509_m1, Delta-3: Hs00213561_m1, Delta-4: 

Hs00184092_m1, Numb: Hs00377772_m1, c-Myc: Hs00153408_m1, TFEB: hs01065085_m1, 

GNS: hs00157741_m1, MCOLN-1: hs00220937_m1, ATP6V0C: Hs007983308_sH, ATP6V1A: 

Hs01097169_m1, ATP6V1F: Hs00855096_g1, ADAM-10: Hs00153853_m1, PSENEN: 

Hs00708570_s1 and GADPH: Hs99999905_m1. Statistical analysis was done using Graphpad 

Prism and statistical significance calculated based on student’s t-test. Results are flagged with 

two asterisks when the P-value is less than 0.01, and three asterisks when the P-value is less 

than 0.001. 

 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=hs00157741_m1
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=hs00220937_m1
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4.12 siRNA knock-downs 
 

 For RNA interference mediated knock down of genes, siRNAs against the respective 

genes were reverse transfected into MCF10-A cells using the lipofectamine RNAi-Max 

transfection reagent (Life technologies) and using the manufacturer’s instructions. Following 

transfection, the cells were placed under normal cell culture conditions for 72 hours after 

which RNA was extracted and processed for qPCR as described in section 4.10. siRNA duplexes 

against PSENEN (D-008057-01-0010), ATP6V0C (D 017620-03) ATP6V1A (D-017590-01) and 

ATP6V1F (D-011930-01) were purchased from GE Dharmacon. 

 

4.13 γ-secretase assay 

To perform the γ-secretase assay, 80% confluent MCF10A cells were pretreated for 3 

hours with 3nM BafA1, 1uM FCCP, DMSO as negative control, or with 3uM DAPT as a positive 

control. The treated cells were then scraped in 1mL of ice cold fractionation buffer (1mM EGTA, 

50mM sucrose, 20mM HEPES-pH 7.4) freshly supplemented with 5mM glucose, protease 

inhibitor cocktail at 1:200, and the respective compounds and concentrations as used for pre-

treatment. While working on ice, the cells were homogenized by passing them through a 23 

gauge needle 5 times. The homogenate was then centrifuged at 2000 g, 4°C to remove the 

nuclei, unbroken cells and large cellular debris. The post-nuclear supernatant was collected 

and centrifuged at maximum speed, 4°C, for 20 minutes to pellet the light endomembranes 

which were then resuspended in 1mL of fractionation buffer containing the respective 

compounds and pre-warmed to 37°C. 8uM γ-secretase fluorogenic substrate (Calbiochem) was 

then added to each light endomembrane suspension and mixed well. The γ-secretase 

fluorogenic substrate is internally quenched and only fluoresces when cleaved by γ-secretase. 

The light endomembrane suspensions were then transferred into black 96 multi-well plates in 
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triplicate (200uL per well) and incubated at 37°C for 12 hours before reading fluorescence. 

Fluorescence measurements were taken using a Wallac 1420 VICTOR plate reader (Perkin 

Elmer). To establish the presence of the endolysosomal compartments in the light 

endomembrane fraction, we performed a western blot assay and stained for LAMP-1.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

5. Results 

All Drosophila experiments presented below were performed by Serena Duchi, a 

postdoctoral fellow who had already initiated this project by the time I joined the lab. The 

Zebrafish experiments presented below were performed by Gianluca Deflorian, a Zebrafish 

expert in charge of IFOM’s Zebrafish facility at the campus. 

 

5.1 V-ATPase inhibition reduces physiologic Notch signaling in Drosophila 

 Mutating genes that encode for subunits of the V-ATPase disrupts proton pumping in 

Drosophila tissues. Previous reports by us and others have observed that this is accompanied 

by impaired Notch activation and function (Yan et al. 2009; Vaccari et al. 2010). We therefore 

sought to determine whether pharmacologically inhibiting the V-ATPase can inhibit physiologic 

or excessive Notch signaling in fly tissue. First, to assess whether pharmacologic inhibition of 

the pump was feasible, we fed Drosophila larvae with fresh yeast supplemented with the 

following compounds: BafA1 or ConA to block H+ pumping and NH4Cl or Chloroquine to 

dissipate organellar luminal pH independently of V-ATPase function. BafA1 and ConA are 

members of the plecomacrolide family of V-ATPase inhibitors. This family of natural 

compounds exhibits very high specificity in binding to the V0C subunit of the enzyme, hence 

preventing H+ translocation (Bowman & Bowman 2002; Huss & Wieczorek 2009). Chloroquine 

and NH4Cl which do not interact with the pump, are weak bases that gain entry into the cells 

by simple diffusion. They readily accumulate in acidified compartments where they get 

protonated, hence consuming protons and raising luminal pH. As negative controls, the 

animals were fed with: the Mock – vehicle in which the compounds were dissolved or, DAPT – 

a GSI frequently used to block Notch activation without affecting V-ATPase function or 
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organellar pH, and Leupetin – an inhibitor of lysosomal proteases that is not expected to alter 

lysosomal pH (Figure 9). To determine whether this method of compound administration was 

efficient, Serena Duchi, a postdoc in the lab assessed the effectiveness of the compounds in 

blocking endolysosomal acidification. This was done by dissecting the larvae’s wing imaginal 

discs and staining them with LysoTracker, an acidophilic dye that only fluoresces when 

incorporated in acidic cellular environments. We then observed the cells of the wing discs to 

establish the extent of lysotracker retention. In the wing disc tissue of mock (A) treated 

animals, LysoTracker incorporates in acidified endosomes. In NH4Cl (B), Chloroquine (C), ConA 

(D), and BafA1 (E) fed animals, LysoTracker incorporation in the discs is markedly reduced, 

indicating decreased endolysosomal acidification. LysoTracker incorporation was not reduced 

in discs of DAPT (F) and Leupetin (G) fed animals. This indicates that endolysosomal 

acidification can be effectively blocked pharmacologically in vivo. As BafA1, is a highly specific 

inhibitor of V-ATPase (Bowman & Bowman 2002), we elected to use it for all further 

experiments. 
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Figure 9: V-ATPase inhibition diminishes intracellular acidification 

(A–G) Single confocal sections of the wing pouch portion of 3rd instar wing imaginal discs from 

Ore(R) flies. Flies were fed the respective compounds at the indicated doses before performing 

lysotracker assays on the wing discs. Acidification is strongly reduced in flies fed with NH4Cl, 

Chloroquine, ConA and BafA1, but not with DAPT or Leupeptin, illustrating that drugs 

administered to the animals in food function effectively. Experiment by Serena Duchi. 

 

 To test whether pharmacologic inhibition of the V-ATPase reduces Notch signaling in 

vivo, Serena fed larvae expressing the Notch reporter E(spl)mβ-LacZ with BafA1 and assessed 

the extent of β-gal expression in wing discs (Figure 10). E(spl)mβ-LacZ reports expression of 

the Notch target gene E(spl)mβ along the dorso-ventral boundary of the disc, which 

corresponds to the future wing margin, as well as in other parts of the discs whereby Notch 

signaling is active (A), (Nellesen et al. 1999). Compared to mock treated controls, discs from 

larvae fed with the DAPT exhibit a marked decrease of β-gal expression as determined through 

immunofluorescent staining (B). This results showed that reduction of Notch target gene 

expression is achievable through feeding an established Notch signaling inhibitor to the 

animals, confirming previous findings (Micchelli et al. 2003). Similarly, discs from BafA1-fed 

larvae show a decrease of β-gal expression (C). qPCR analysis of endogenous E(spl)mβ and 
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E(spl)m7 expression reveals a more than 50% reduction of mRNA expression following 

treatment with BafA1, an effect comparable to that of DAPT (D). This indicates that 

pharmacologic V-ATPase inhibition leads to reduction of physiologic Notch signaling activity in 

vivo, further supporting recent reports that the V-ATPase could be part of a multicomponent 

machinery that controls Notch activation on the endolysosomal track.  

 

 
Figure 10: Reduced Notch signaling in Drosophila wing imaginal disc upon V-ATPase 
inhibition  
(A–C) Single confocal sections of 3rd instar wing imaginal discs from larvae expressing the 
Notch signaling reporter E(spl)mβ-LacZ that have been fed the drugs as indicated. Anti-βGal 
staining was done to detect expression of the Notch target. Compared with discs from mock-
fed animals (A), discs from animals fed with DAPT (B) and BafA1 (C) show a significant decrease 
of β-Gal expression. (D) Quantitative RT-PCR on mRNA extracted from 3rd instar wing imaginal 
discs from flies fed with the drugs as indicated. E(spl)mβ-LacZ and E(spl)m7 show a 30–40% 
decrease upon γ-secretase inhibition and more than 60% with V-ATPase inhibitor BafA1. 
Experiment by Serena Duchi. 

 

5.2 V-ATPase inhibition suppresses ectopic Notch signaling in Drosophila 

 Armed with the knowledge that we can effectively block V-ATPase activity, we 

wondered whether such inhibition is capable of curtailing the excessive Notch activation seen 

when Notch is trapped on the endolysosomal path. Chronically blocking endolysosomal 

degradation during development of wing discs is observed in fly mutants for ESCRT (Endosomal 

Sorting Required for Transport) genes. The products of these genes function at the endosomal 

membrane to coordinate the sorting of Notch as well as other cargoes destined for 
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degradation. ESCRTs mutant imaginal discs display ligand-independent but γ-secretase reliant 

Notch signaling activation (Herz et al. 2006; Moberg et al. 2005; Thompson et al. 2005; Vaccari 

& Bilder 2005; Hori et al. 2011). To block endolysosomal degradation in our experiments, 

Serena expressed a GFP tagged dominant negative version of VPS32 (Shrub::GFP), a 

component of the ESCRT III complex in the wing discs (Sweeney et al. 2006). Expression of 

Shrub::GFP for 24 hours during late wing disc development results in the accumulation of 

Notch along with ubiquitinated cargoes in endosomes, which is consistent with a block in 

endosomal sorting (Figure 11). This accumulation of Notch is accompanied by a greater than 

2.5 fold increase in the expression of E(spl)mβ, as revealed by qPCR analysis of the wing discs 

RNA extract (I). Compared to mock-fed controls, DAPT feeding of larvae expressing Shrub::GFP 

lowers the excess Notch signaling to almost basal levels. We observed that upon V-ATPase 

inhibition with BafA1, Notch signaling was reduced to intermediate levels (I). These data 

indicate that like γ-secretase inhibition, V-ATPase inhibition reduces Notch signaling in a model 

of pathological Notch activation and signaling. 
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Figure 11: V-ATPase inhibition reduces ectopic Notch signaling in Drosophila 
(A–B) Single confocal section of discs not expressing (A) or expressing (B) Shrub::GFP under the 

control of RnGAL4, a wing pouch specific driver. (C–H) High magnification confocal sections of 

wing pouch cells not expressing (C, E, G) or expressing (D, F, H) Shrub::GFP. Discs have been 

stained to detect Ubiquitin (C–D), the endosomal marker Avl (E–F) or the Notch intracellular 

domain (NICD; G-H). In discs expressing Shrub::GFP, accumulation of ubiquitinated cargoes, 

including Notch, at endosomal sites is observed. Single channels for Ubiquitin, Avl and NICD 

are shown in D′, F′, H′. (I) Quantitative RT-PCR on mRNA extracted from wing imaginal discs of 

Shrub::GFP expressing flies that had been fed with the indicated drugs before temperature 

stimulation. E(spl)mβ expression is 30% reduced upon feeding with BafA1 and 50% upon γ-

secretase inhibition. Comparable GFP expression levels indicate equal amounts of Shrub::GFP 

expressing cells in induced samples under different drug treatment. Experiments by Serena 

Duchi. 

 

5.3 V-ATPase inhibition reduces Notch signaling in Zebrafish 

 These  observations raised the question of whether regulation of Notch signaling by 

the V-ATPase is exclusive to invertebrate systems or whether it is conserved in vertebrates. To 

test this, in collaboration with Gianluca Deflorian, we assessed whether BafA1 is capable of 

reducing Notch signaling in developing Zebrafish embryos. To visualize Notch activity, we used 

a transgenic fish line that carries a Notch signaling reporter Tg(Tp1bglob:eGFP)^um14 in which 

EGFP expression is under the control of 12 Notch-responsive RBP-Jk binding sites (Figure 12) 

(Parsons et al. 2009). Compared to controls, embryos treated with 100uM DAPT from 

gastrulation display only minor developmental defects (B) and as previously reported, DAPT-

treated fish embryo display reduced GFP expression, indicating reduced Notch signaling (B’ 
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and B’’; (Parsons et al. 2009). When the embryos are treated with BafA1 at 300nM, lysotracker 

incorporation is lost relative to the controls, indicating that V-ATPase function is impaired (C-

D). However, compared with the controls, treatment of the fish at this dose of BafA1 causes 

obvious developmental defects, including tail and trunk shortening (E). These defects are 

consistent with those previously observed following loss of Zebrafish V-ATPase subunit genes 

(Amsterdam et al. 2004). Still, reduction of GFP expression is observed, indicating reduced 

Notch signaling (E’-E’’). When the embryos are treated with BafA1 later in development, at the 

1-somite stage, they present milder defects (F) while reduction in GFP expression persists at 

(F’-F''). Treating with BafA1 at an even later developmental stage, at the end of somitogenesis, 

further diminishes the defects (G) while maintaining reduced GFP expression at levels 

comparable to those attained with DAPT (G’-G”). 
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Figure 12: Developmental defects and reduced Notch signaling in Zebrafish embryos upon V-
ATPase inhibition 
Zebrafish embryos were treated as labeled, at the indicated developmental stages. (A-B & E-

G) Lateral view bright field images reveal embryo morphology. Compared to mock-treated 

embryos (A), those given DAPT (B) show mild morphological alterations and reduced Notch 

signaling (B’-B’’). A’’ and B’’ are higher magnifications of the trunk regions of A’ and B’ 

respectively. (C-D) High magnification confocal sections of the region of the intersomitic 

vessels of transgenic embryos treated with LysoTracker. Compared to mock-treated controls 

(C), embryos treated with 300nM BafA1 at somitogenesis (D), exhibit diminished lysotracker 

staining, indicating loss of V-ATPase function. (E-G) Embryos given BafA1 at early 

developmental stages show morphologic defects characterized by shorter body length along 

with tail and trunk defects (E and F). When BafA1 is administered post-somitogenesis, the 

defects are remarkably milder defects (G) and similar to those caused by DAPT (B). Treating 

the fish embryos with BafA1 results in a strong reduction of GFP expression (E′-G′’), to levels 

similar to those seen upon administration of DAPT (B′). E’’-G’’ are higher magnifications of the 

trunk region of embryos E–G. Experiment by Gianluca Deflorian. 

 

 Following these observations, we sought to determine whether the developmental 

defects observed upon BafA1 administration early in embryonic development can be alleviated 

by lowering the doses applied (Figure 13). Administering higher doses of DAPT, at 200uM does 

not cause major morphological defects (B) but leads to a very strong reduction in Notch 

signaling as seen from reduced GFP expression (B’). Treatment with DAPT at 50uM does not 

have any apparent morphological alterations (C) and still reduces Notch signaling – albeit to a 

lesser extent (C’). Using lower amounts of BafA1, at 100nM and 50nM during gastrulation, 

allows embryos to develop with almost normal morphologies (D-E) and still reduces Notch 
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signaling (D’-E’) to levels comparable with those reached using a lower dose DAPT (C). 

Combining low dose BafA1 with low dose DAPT lowers Notch signaling in an additive manner 

(F’), to similar levels as when using the high dose of DAPT (B’). These data indicate that V-

ATPase inhibition reduces Notch signaling activity in Zebrafish embryos, and that Notch 

signaling might rely on V-ATPase activity during vertebrate development. It also demonstrates 

that low doses of the compounds can be combined to obtain stronger efficacies than can be 

achieved with either drug individually. 

 

 

 
Figure 13: Low dose V-ATPase reduces Notch signaling in Zebrafish embryos  

(A–F) Bright field lateral views of zebrafish embryo morphology. Representative images of 

embryos treated as indicated are shown. Compared to mock-treated embryo (A), embryos 

treated with varying doses of DAPT (B–C) or BafA1 (D–E) or both (F) have mild physical defects. 

(A′–F′) GFP, which indicates the expression levels of Notch in the reporter line 

Tg(Tp1bglob:eGFP)ˆum14 is visualized. Treating the embryos with DAPT or BafA1 results in a 

dose-dependent reduction of the GFP signal (B′–F′). Note that combining both drugs at low 

doses attains a reduction in GFP expression that is comparable to treatment with DAPT at a 

high dose (compare B′ and D′ with F′). Experiment by Gianluca Deflorian. 
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5.4 V-ATPase inhibition reduces physiologic Notch signaling in human cells 

 Given the observations that V-ATPase inhibition lowers Notch signaling in flies and 

Zebrafish, we decided to explore whether V-ATPase inhibition has similar effects in human 

cells. To perform such assessment on physiologic Notch signaling, we used MCF10-A cells. This 

is a non-transformed human breast epithelial cell line commonly used as a model of normal 

human epithelial cells (Soule et al. 1990). To assess whether BafA1 impairs V-ATPase function 

in MCF10-A, we treated them for 3 hours with BafA1 and compared the effect against that of 

the vehicle, or of DAPT (Figure 14). We then assayed V-ATPase function using lysotracker. 

Relative to Mock (A) and DAPT (D) treated cells, treatment of these cells with BafA1 leads to a 

dose-dependent loss of lysosomal acidification (B-C), indicating a dose-dependent blockade of 

V-ATPase activity. Since lysotracker is not indicative of lysosomal function, to assess lysosomal 

function we performed a DQ-RED BSA assay. DQ-RED BSA only fluoresces when cleaved by 

lysosomal hydrolases. Relative to Mock (A’) and DAPT (D’) treatment, BafA1 exhibits a dose 

dependent reduction in the capacity of the cells’ to hydrolyze DQ-RED BSA (B’-C’), indicating 

reduced lysosomal function. 
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Figure 14: BafA1 reduces lysosomal acidification 

Confocal images of MCF10-A cells that were treated as indicated for 3 hours, following which 

lysotracker (upper panel) and DQ-RED BSA (lower panel) assays were performed. Relative to 

Mock treatment (A), BafA1 impairs lysotracker retention by the cells in a dose dependent 

fashion (B-C). Treatment with DAPT does not affect lysotracker incorporation (D). The DQ-RED 

BSA assay reveals a similar pattern. Compared to the Mock (A’), BafA1 treatment impairs the 

capacity of the cells to hydrolyze the substrate in a dose dependent manner (B’-C’) while DAPT 

has no effect on the function of lysosomal hydrolases. This indicates that BafA1 can effectively 

block V-ATPase function in cultured human cells.   

 
 

As revealed through a qPCR analysis, MCF10-A cells endogenously express components 

of the Notch pathway, including receptors and ligands. They however engage in a low level of 

Notch signaling as seen from the basal expression of the Notch target, Hes-1 (Figure 15). This 

makes them an excellent cell line in which to investigate Notch signaling as it obviates the need 

for transfecting elements of the pathway into the cells. 
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Figure 15: MCF10-A cells endogenously express Notch pathway components  

MCF10-A cells possess the complete Notch pathway. It expresses the Notch receptors 1-3 and 

the ligands Jag-1 and 2. As seen from the expression of Notch target genes of the Hes family of 

transcription factors, these cells physiologically engage in basal levels of Notch signaling. 

 

Endogenous Notch-1 in MCF10-A is readily detectable by IF (Figure 16). 

Immunostaining the cells with an anti-Notch-1 antibody shows that under physiological 

conditions, the receptor resides on the cell surface membrane (A). Relative to untreated cells, 

the presence of DAPT for 3 hours does not alter Notch-1 localization (B). When compared to 

both controls, treatment with BafA1 for 3 hours greatly causes Notch to accumulate 

intracellularly. A co-staining for Notch-1 and the late endosomal/lysosomal marker, Lamp-1, 

reveals that intracellularly accumulated Notch-1 localizes in late endosomes and lysosomes 

(C). This accumulation is attributable to impaired degradation of cellular material, including 

Notch and shows that endosomal trafficking of Notch and its high turnover rate along the 

endolysosomal system can be tracked efficiently in human cells.  
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Figure 16: Notch-1 resides on the cell surface of MCF10-A cells 

Staining Mock treated cells with an anti-Notch-1 antibody reveals its localization on the cells 

surface membrane (A). This localization of Notch-1 remains unchanged in cells treated with 

DAPT (B). Staining cells treated with BafA1 reveals accumulation of Notch-1 along the 

endolysosomal path, as told by co-localization of the Notch signal with the Lamp-1 signal (C). 

Lamp-1 is a late endosomal/lysosomal marker. The cells are counter stained with DAPI and 

phalloidin to highlight the nuclei and cell surface membranes respectively (lower panel). 

 

 

Notch signaling activation can be induced in cultured cells through calcium depletion 

(Rand et al. 2000). Extracellular Ca2+ chelation sheds the extracellular portion of the Notch 

receptor, triggering its ligand independent cleavage by γ-secretase and NICD translocation into 

the nucleus. To test whether BafA1 treatment interferes with Notch-1 translocation to the 

nucleus, we treated MCF10-A for 3 hours with DMSO, BafA1, and as positive control, with DAPT 

and then induced Notch cleavage with EGTA (Figure 17). Immunolabeling the cells with an 

antibody that recognizes both the full-length and cleaved forms of Notch-1 (cNICD-1), revealed 

that in mock treated cells, EGTA caused Notch-1 translocation into the nucleus (A). As 
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expected, this translocation was completely blocked by DAPT, which keeps Notch on the cell 

surface membrane in the presence of EGTA (B). Adding EGTA to cells treated with BafA1, 

reveals a partial, dose-dependent reduction of relocation to the nucleus (C-D; quantification in 

E). 

 

 
Figure 17: V-ATPase inhibition reduces Notch activation in human breast cells 

(A–D) Confocal images showing the cellular localization of endogenous Notch-1 in MCF10A 

cells. The cells were treated as indicated for 3 hours before Notch cleavage was stimulated 

with EGTA. Immunostaining was performed with an anti-Notch-1 antibody that recognizes 

both the full-length and cleaved receptor (A-D). Phalloidin and DAPI were used to mark the cell 

surface membrane and nuclei respectively (lower panel). Relative to Mock treated cells (A), 

Notch-1 localization in the nucleus is completely prevented by DAPT (B) and significantly 

reduced by BafA1 treatment in a dose responsive manner (C-D). (E) Nuclear pixel intensity 

quantifications of A–D is shown.  

 

 To establish whether BafA1 prevents Notch cleavage and signaling, we treated MCF10-

A cells for 7 days with 3nM BafA1, 3uM DAPT as positive control and DMSO as negative control. 

These doses were selected as we found that the cells can withstand low dose BafA1 for 

extended periods (Figure 18). A treatment period of 7 days was selected so as to provide 

sufficient doubling time for the cells so as to capture differences in cell proliferation between 

in treated vs untreated cells. 
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Figure 18: MCF10-A cells tolerate low doses of BafA1 

DIC images of cells treated as shown for the indicated periods. The cells remain viable for up 

to 7 days, the longest period of time for which we treated them. 

 

 At the end of 7 days treatment, Notch cleavage was stimulated with EGTA (Figure 19). 

EGTA induction of Notch cleavage generates a strong amount of cNICD-1, which is detectable 

by western blot using an antibody specific to the cleaved form of the receptor. The NICD 

produced upon EGTA triggered Notch cleavage is accompanied by a steep increase in Hes-1 

expression, a Notch signaling target (Borggrefe & Oswald 2009). Relative to negative control 

treated cells, in the presence of EGTA BafA1-treated cells display reduced Notch cleavage (A) 

and no spike in Hes-1 expression, similar to treating the cells with DAPT (B). Treating the cells 

with Api-A, a second V-ATPase inhibitor unrelated to BafA1 (Osteresch et al. 2012) also 

inhibited cNICD-1 production upon stimulation with EGTA, indicating that the observed results 

are due to V-ATPase inhibition and not off target effects (C). Moreover, knocking down non-

redundant V-ATPase subunit genes for 72 hours also reduced the spike of Hes-1 levels upon 

stimulation with EGTA, as did knock down of PSENEN, a component of the γ-secretase complex 

(D). A qPCR assay reveals strongly reduced mRNA levels upon knockdown of the respective 

genes (E). Overall, these data indicated that the V-ATPase controls Notch signaling activation 

in a model of normal human epithelial cells. 
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Figure 19: V-ATPase inhibition reduces Notch cleavage and signaling in MCF10-A 

(A-C) MCF10-A cells were treated with the mentioned drugs at the indicated doses for 7 days 

before being stimulated (or not) with EGTA for 30 minutes. Compared to unstimulated cells, 

addition of EGTA triggers strong generation of cNICD-1. Relative to Mock, BafA1 treatment 

inhibited EGTA driven cNICD-1 production to levels similar to those achieved with DAPT (A).  A 

qPCR analysis of similarly treated cells reveals the spike in Hes-1 expression in EGTA stimulated, 

Mock treated cells when compared to unstimulated ones. Both BafA1 and DAPT strongly 

suppress this EGTA triggered spike in Hes-1 – indicating inhibited Notch signaling (B). A western 

blot analysis of cells treated with API-A, a V-ATPase inhibitor unrelated to BafA1, has an effect 

similar to that of BafA1 – suggesting that the observed effects are indeed due to V-ATPase 

inhibition (C). (D) Knocking down genes encoding subunits of the V-ATPase or a γ-secretase 

component, PSENEN, suppresses the spike in Hes-1 upon EGTA treatment – indicating that V-

ATPase inhibition reduces Notch signaling. (E) qPCR analysis shows significant reduction in the 

expression of the indicated genes upon their knockdown. Western blot oading differences 

between the samples were equalized using vinculin or tubulin and the corrected cNICD-1 band 

intensities normalized to obtain a fold cNICD-1 band intensity relative to the Mock_-EGTA 

sample.  
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5.5 V-ATPase inhibition suppresses Notch signaling in breast cancer cells  

 Having established that pharmacologic inhibition of V-ATPase reduces physiologic 

Notch signaling, we wondered whether it could mitigate excessive Notch signaling in cancer 

cells. Oncogenic Notch signaling has been observed in several cancers including those of the 

breast and hematopoietic system (Weng et al. 2004; Stylianou et al. 2006; Robinson et al. 

2011). As such, oncogenic Notch signaling has been the focus of intense interest for 

therapeutic purposes. However, owing to a number of issues, targeting Notch signaling in 

disease has so far been difficult (Andersson & Lendahl 2014). We therefore wondered whether 

pharmacologic inhibition of the V-ATPase could inhibit oncogenic Notch signaling in Notch 

driven breast cancers. To test this, we used the breast cancer cell lines HCC1599 and HCC2218, 

which harbor translocation mutations in the Notch-1 gene that have caused them to express 

membrane-tethered forms of the receptor (Robinson et al. 2011). This truncated receptor is 

substrate for cleavage by γ-secretase independently of ligand interaction, generating cNICD-1 

and constitutively activating the Notch pathway. HCC1599 and HCC2218 express both Notch 

receptors and ligands, and consistent with a constitutively active Notch pathway, they express 

high levels of the Notch target Hes-1 (Figure 20). 
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Figure 20: Constitutive Notch signaling in human breast cancer cell lines 
(A-B) A qPCR analysis of human breast cancer cell lines known to possess a constitutively active 

Notch pathway shows that they both express Notch ligands and receptors. HCC1599 (A) and 

HCC2218 (B) possess translocation mutations in their Notch-1 receptors (C). These truncated 

forms of the Notch-1 receptor are subject to ligand independent cleavage by γ-secretase. As a 

consequence of a constantly ‘on’ Notch signaling, the cells express high levels of the Notch 

target gene Hes-1 (A-B).  

 

Since the membrane-tethered stubs of Notch-1 expressed by HCC1599 and HCC2218 

require processing by γ-secretase, Notch cleavage can be blocked by GSI (Robinson et al. 2011). 

To assess whether V-ATPase inhibition can block constitutive cleavage of Notch-1 in these cells 

we treated them with BafA1 and assessed the extent of cNICD-1 generation by western blot 

(Figure 21). This assay revealed that both DAPT and BafA1 reduce the level of c-NICD-1 when 

compared to mock treated HCC1599 and HCC2218 (A-B). A qPCR analysis of the Notch target 

HES-1 reveals that both the GSI and BafA1 significantly inhibit Notch signaling (C). 
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Figure 21: V-ATPase inhibition suppresses Notch cleavage in Notch reliant breast cancer cells 
(A-B) Western blot analysis on extracts from HCC1599 and HCC2218 treated as indicated for 7 

days. cNICD-1 production is strongly reduced by both BafA1 and DAPT when compared to the 

negative control. (C) qPCR assay to detect Hes-1 expression levels in HCC1599 following 

treatment as shown. Upon BafA1 pretreatment we observe a 25% reduction of Hes-1 

expression, confirming reduced Notch signaling. Western blot loading differences between the 

samples were equalized using tubulin and the corrected cNICD-1 band intensities normalized 

to obtain fold cNICD-1 band intensities relative to the Mock treated sample. 

 

The constitutive activation of the Notch signaling pathway sustains the proliferation of 

HCC1599 and HCC2218, which is reduced upon Notch signaling inhibition with GSI (Robinson 

et al. 2011). We therefore wondered whether the reduced Notch activation and signaling 

observed upon V-ATPase inhibition corresponds with a reduction of cell proliferation. Another 

breast cancer cell line, HCC1187, bears a truncating mutation in Notch-2. Unlike HCC1599 and 

HCC2218, this mutation generates a fragment of the receptor that lacks the entire extracellular 

portion of Notch-2, including the S3 cleavage site, resulting in constitutive Notch signaling that 

is both ligand and γ-secretase independent (Robinson et al. 2011). Since this cell line directly 

produces Notch-2 NICD, its Notch signaling and associated proliferation is unresponsive to γ-

secretase inhibition (Robinson et al. 2011). We therefore treated the cells with DAPT and 

assessed their proliferation and survival after 7 days (Figure 22). We observed that in the GSI 

insensitive HCC1187, growth and proliferation is not affected by DAPT when compared to the 
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negative control treated cells (B). A similar observation is made in similarly treated MCF10-A 

cells, whose growth and proliferation is not reliant on excessive Notch signaling (A). On the 

other hand, treating the GSI sensitive HCC2218 and HCC1599 with DAPT causes a strong dose-

dependent reduction in cell proliferation when compared to control treated cells (C-D). These 

results confirmed previous evidence (Robinson et al. 2011) and permitted us to test the effect 

of BafA1 on the Notch addicted breast cancer cells. We observed that V-ATPase inhibition 

reduces the proliferation of HCC1599 and HCC2218 (C-D) to levels comparable with those 

attained by γ-secretase inhibition. At a similar concentration of BafA1, proliferation of 

HCC1187 was minimally affected while that of MCF10-A cells remained unaltered relative to 

Mock treated cells (A-B). In addition, we found that the effect of BafA1 on the proliferation of 

HCC2218 and HCC1599 is dose-dependent and can be potentiated by co-treating the cells with 

DAPT and BafA1 (C-D). All experiments from this point on, were performed by treating the cells 

with 3nM BafA1. 

 

 
Figure 22: V-ATPase inhibition reduces growth of Notch addicted breast cancer cells  

(A–D) Cells were treated as indicated for 7 days before a WST-1 assay was performed to assess 

cell growth. WST-1 is metabolized by the cells, which then release a soluble product that is 

quantified by absorbance, which directly correlates with the number and viability of the cells. 

Growth of normal breast MCF10A cells and breast cancer HCC1187 cells, which express 

constitutively active Notch-2, is not affected by the drugs. In contrast, growth of the breast 

cancer cells HCC2218 and HCC1599, which express activated but membrane tethered forms of 

Notch-1, is sensitive to both DAPT and BafA1 in a dose-sensitive fashion. 



70 
 

 On the whole, these data indicate that V-ATPase inhibition reduces Notch dependent 

growth and survival in breast cancer cells, and that combined treatment with BafA1 along with 

a GSI permits the use of both compounds at very low doses while preserving efficacy. 

 

5.6 V-ATPase inhibition suppresses proliferation of GSI sensitive T-ALL cells  

 The role of excessive Notch signaling in T-ALLs is well established and T-ALL cell lines 

that rely on oncogenic Notch signaling are well characterized. Many of these cells possess 

mutations in the NRR region of the Notch-1 receptor, making it prone to ligand independent 

Notch activation, hence constitutive signaling (Weng et al. 2004). A qPCR analysis of two 

representative T-ALL cell lines revealed that they express components of the Notch signaling 

pathway, including Notch ligands and receptors. They also express the Notch targets Hes-1 and 

Myc (Figure 23).  

 

 
Figure 23: T-ALL cell lines express Notch signaling pathway components  

(A-B) A qPCR analysis of some Notch pathway genes in the T-ALL cell lines DND-41 (A) and 

CCRF-CEM (B) reveals that they express relative levels of Notch receptors (Notch-1-4), ligands 

(Jag1-2, Delta1,3-4), targets (Hes-1, 2, 5, Hey-1, 2, Myc) as well as the Notch inhibitor Numb. 
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 Several of these Notch dependent T-ALL cell lines, for example DND-41, are responsive 

to γ-secretase inhibition. Because DND-41 represents an established model of T-ALL cells with 

ligand-independent, constitutive Notch signaling, we tested whether its Notch signaling 

activity could be inhibited by pharmacologic inhibition of the V-ATPase (Figure 24). Treating 

DND-41 cells for 7 days with low doses of DAPT reduces their proliferation in a dose dependent 

manner (A). As is the case of DAPT treatment, low doses of BafA1 also reduce the cells’ 

proliferation dose dependently (A). In addition, we observe that co-treatment with both 

compounds at low dose, is more efficient than using either singular treatment at high dose (A). 

However, western blot analysis showed minimal reduction of cNICD-1 generation upon BafA1 

treatment (B). These results imply that inhibition of pathways other than Notch might account 

for the considerable reduction in proliferation observed in DND-41 cells. 

 

 
Figure 24: V-ATPase inhibition reduces proliferation of DND-41 T-ALL cells 

(A-B) DND-41 cells were treated with the indicated doses of BafA1 or DAPT for 7 days before 

cell proliferation or western blot assays were performed. Relative to Mock treated cells, DAPT 

significantly inhibits cell growth in a dose specific manner. V-ATPase inhibition also reduces 

their proliferation to levels nearing those of DAPT. Co-treating with low concentrations of both 

compounds has an additive effect in reducing cell proliferation (A). A western blot analysis on 

similarly treated cells indicates that unlike DAPT, which as expected abolishes cNICD-1 

production, the V-ATPase inhibitor only modestly reduces cNICD-1 generation (B). Western 

blot loading differences between the samples were equalized using tubulin and the corrected 

cNICD-1 band intensities normalized to obtain fold cNICD-1 band intensities relative to the 

Mock treated sample. 
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 Because Akt/mTOR signaling also contributes to growth of T-cell leukemia lines 

(Palomero et al. 2007; Guo et al. 2009; Shepherd et al. 2013), we assessed Akt signaling 

activation with an anti-phospho-Akt antibody upon treatment of the cells for 7 days (Figure 

25). This western blot assay revealed a reduction in Akt phosphorylation following treatment 

with both DAPT and BafA1 (A), indicating suppressed Akt signaling. Consistent with a possible 

inhibition of Akt signaling upon V-ATPase inhibition, additive growth reduction was observed 

when DND-41 cells were co-treated with either BafA1+SH6 or DAPT+SH6. SH6 is a selective 

inhibitor of Akt signaling that does not affect other kinases upstream or downstream of Akt 

(Kozikowski et al. 2003). Breast cells treated with BafA1 also display reduced Akt 

phosphorylation (C-E), indicating reduced Akt signaling. These data suggest that BafA1 is likely 

to reduce DND-41 proliferation mostly by inhibition of Akt signaling. Reduced Akt signaling 

upon V-ATPase inhibition is could contribute to the anti-proliferative effect of BafA1 both 

breast cancer and T-ALL cells.  
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Figure 25: V-ATPase inhibition reduces Akt signaling in leukemia and breast cancer cells 

(A-E) Cells were cultured for 7 days before western blot and proliferation assay were 

performed. Relative to Mock treated cells, both γ-secretase and V-ATPase inhibited cells 

exhibit suppressed levels Akt signaling as seen through a western blot assay for activated Akt 

(A). Growth of DND-41 cells is sensitive to both DAPT and BafA1 (B). Akt signaling is not altered 

upon similar treatment of MCF10-A cells, which do not appear to engage in high level Akt 

signaling (C). Similarly treated Notch driven breast cancer cells display significant reduction in 

Akt signaling (D-E). This indicates that V-ATPase inhibition might simultaneously suppress both 

Notch and Akt signaling. Western blot loading differences between the samples were 

equalized using vinculin or tubulin and the corrected cNICD-1 band intensities normalized to 

obtain fold cNICD-1 band intensities relative to the Mock treated sample. 

 
 

5.7 V-ATPase inhibition reduces proliferation of GSI-insensitive T-ALL cells 

independently of Notch signaling 

 A major hindrance to the use of GSIs against Notch dependent leukemias is the rapid 

emergence of resistance. In some T-ALLs the resistance has been linked to a reliance on 

oncogenic Akt signaling on top of the excessive Notch signaling. The T-ALL cell line, CRF-CEMM 

harbors activating mutations in Notch-1 and possesses constitutive Notch signaling as seen 
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from elevated expression of Notch targets (Figure 23 B). In addition, these cells have lost PTEN, 

a negative modulator of Akt signaling, hence they possess excessive Akt activity. It is their use 

of Akt for secondary oncogenic signaling that makes them resistant to GSIs (Palomero et al. 

2007). In a bid to establish whether V-ATPase inhibitions might be of therapeutic value against 

Notch dependent, GSI resistant T-ALL cells, we treated CCRF-CEM for 7 days and assessed the 

status of Notch cleavage (Figure 26). Treating CCRF-CEM with DAPT blocks cNICD-1 generation 

(A) but does not inhibit their proliferation (C), reiterating earlier findings (Palomero et al. 

2007). V-ATPase inhibition reduces growth of CCRF-CEM dose dependently, alone or in 

combination with Akt inhibitors (C). As with DND-41, no reduction of Notch cleavage is 

observed in BafA1 treated CCRF-CEM when compared to the controls (A). In CCRF-CEM 

phospho-Akt levels are very high and contrary to what we see in DND-41, neither drug 

significantly inhibits activation of Akt signaling in relation to the negative control (B). 
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Figure 26: V-ATPase inhibition reduces the proliferation of CCRF-CEM 

CCRF-CEM is a GSI resistant, Akt addicted T-ALL cell line. (A-C) The cells were treated as 

indicated for 7 days before performing western blot and proliferation assays. As expected, 

DAPT blocked cNICD-1 generation but not cell proliferation (A-C). V-ATPase inhibition reduces 

proliferation but not cNICD-1 production (A-C). Unlike the GSI sensitive DND-41 and breast 

cancer cells, none of the compounds reduces Akt signaling in CCRF-CEM (B), suggesting that 

the observed growth reduction upon V-ATPase suppression is due to inhibition of a another 

pathway(s), outside of Notch and Akt. CCRF-CEM is sensitive to specific Akt inhibition. Note the 

strongly additive effect of combining low dose BafA1 and SH6 (C). Western blot loading 

differences between the samples were equalized using tubulin and the corrected cNICD-1 band 

intensities normalized to obtain fold cNICD-1 band intensities relative to the Mock treated 

sample. 

 
 
 Our findings suggest that in T-ALL lines displaying ectopic Notch and Akt signaling, V-

ATPase inhibition might reduce growth in part by affecting Akt signaling, and in part by 

affecting additional proliferative signaling pathways, as is the case in CCRF-CEM cells. Since V-

ATPase has been reported to regulate Wnt and mTOR signaling (Hermle et al. 2010; Buechling 

et al. 2010; Cruciat et al. 2010; Zoncu et al. 2011), we examined whether treatment with the 

drugs affected these two pathways. To test the status of mTOR signaling, we performed a 

western blot assay on lysates from treated cells and assessed the level of phosphorylated S6K 

(Figure 27), an established readout of mTOR signaling (Fingar et al. 2002). Despite differences 
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in levels of phospho-S6K among the T-ALL cell lines, we did not observe major change in its 

activation upon drug treatments (A-B). This could be due to the fact that we grew the cells in 

rich media, and suggests that V-ATPase inhibition is unlikely to affect mTOR activation in 

conditions of high nutrition. To test if at least part of the effects observed following BafA1 

treatment might be due to inhibition of Wnt signaling, we finally treated T-ALL cells with ICG-

001 and IWR-1, both Wnt signaling inhibitors (Emami et al. 2004; Chen et al. 2009). We 

observed that at inhibitor doses that do not affect growth of MCF10-A (D), there is a significant 

reduction in the growth of DND-41 cells but not CCRF-CEM (C). Suggesting that in CCRF-CEM 

V-ATPase inhibition is likely to affect an additional, yet to be identified growth pathway. 

 

 
Figure 27: V-ATPase inhibition does not affect mTOR signaling in T-ALL cell lines 

(A-B) DND-41 and CCRF-CEM were treated for 7 days as indicated before a western blot 

assessment of the status mTOR signaling. None of the compounds inhibits mTOR in our 

experimental setup (A-B). (C) The cells were treated with two inhibitors of Wnt signaling at 

doses that do not affect MCF10-A (D). While proliferation of DND-41 is reduced after 7 days of 

treatment, that of CCRF-CEM is unaffected (C). Western blot loading differences between the 

samples were equalized using tubulin and the corrected cNICD-1 band intensities normalized 

to obtain fold cNICD-1 band intensities relative to the Mock treated sample. 

 

 



77 
 

5.8 The V-ATPase may regulate Notch signaling by modulating γ-secretase 

activity 

 How exactly, the V-ATPase pump and intracellular acidification influence Notch 

signaling remains mysterious. One possibility is that the V-ATPase, through its H+ pumping role 

creates and maintains an environment favorable for γ-secretase function. In fact, γ-secretase 

is membrane embedded and has been shown to require low pH for optimal function (Pasternak 

et al. 2003). To assess whether the reduced Notch signaling observed after V-ATPase inhibition 

could be due to reduced γ-secretase activity, we performed a γ-secretase assay in-vitro. Such 

an assay relies on a quenched substrate that fluoresces when processed by γ-secretase 

(Farmery et al. 2003). The intensity of fluorescence is directly proportional to the extent of 

cleavage, which can be equated to enzymatic efficiency. MCF10-A cells were treated with 

BafA1 to inhibit the V-ATPase or as positive control, with DAPT to block γ-secretase function, 

or finally, with FCCP an ionophore that dissipates lysosomal pH independently of V-ATPase 

function (Steinberg et al. 2010), (Figure 28). A viability assay on cells treated with the 

compounds revealed that they tolerate all the compounds (B). A lysotracker analysis of treated 

cells revealed, as expected, impaired lysotracker incorporation in the presence of BafA1 and 

FCCP relative to the controls (C). Indicating that both approaches effectively block intracellular 

acidification. To perform the γ-secretase assay, we lysed the cells and prepared a lysosome 

enriched fraction. By western blotting for Lamp-1, an established lysosomal marker, we 

confirmed the presence and enrichment of lysosomes in the fractionated extract used for the 

γ-secretase assay (D). Compared to the negative control (DMSO), samples treated with DAPT 

displayed low fluorescence intensity (D), consistent with reduced γ-secretase activity. Relative 

to the controls, both BafA1 and FCCP reduced γ-secretase efficiency to intermediate levels (D). 

These observations suggest that the reduced Notch signaling seen on inhibition of the V-



78 
 

ATPase correlates with reduced γ-secretase activity and that it is due not to V-ATPase inhibition 

per se, but rather to impaired lysosomal acidification.  

 

 
Figure 28: V-ATPase inhibition might inhibit γ-secretase efficiency 

(A-E) To assess whether V-ATPase inhibition might reduce the efficiency of γ -secretase, an in 

vitro γ-secretase assay was performed on MCF10A (A). MCF10-A cells were treated with the 

indicated compounds and concentrations for 3 hours and a viability assay performed. None of 

the drugs were toxic (B). A lysotracker assay performed on similarly treated cells, revealed that 

unlike the controls, both FCCP and BafA1 impair intracellular acidification. For the γ-secretase 

assay, the cells were lysed and a lysosome enriched fraction prepared. The presence of 

lysosomal membranes in this preparation was established by western blotting for LAMP-1 (D). 

A late endolysosomal fraction was incubated with the γ-secretase fluorogenic substrate. 

Relative to the negative control and DAPT treated samples, FCCP and BafA1 reduce 

fluorescence to intermediate levels (E), implying that they reduce the ability of γ-secretase to 

cleave it substrates. Western blot band intensities were normalized to obtain fold LAMP-1 

band intensities relative to the organellar fraction LAMP-1 intensity. Analysis  

 

5.9 V-ATPase inhibition may repress Notch receptor expression  

 In our experiments we have inhibited the V-ATPase pump for varying lengths of time: 

acutely (3-hour inhibition), semi-chronically (3-day inhibition) and chronically (7-day 

inhibition). To ensure full inhibition of the pump upon acute treatment, we used 10nM BafA1. 

For the semi-chronic and chronic treatments we used 3nM BafA1, as this concentration is well 
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tolerated by the cells over extended periods. To examine whether V-ATPase inhibition affects 

Notch signaling activation similarly in the three experimental conditions, we stimulated 

MCF10-A cells that had been treated as described with EGTA. We then performed western blot 

analysis to measure Notch activation and compared the efficiency of cNICD-1 generation 

across the treatments (Figure 29). This analysis revealed that in all three conditions of V-

ATPase suppression, Notch cleavage was reduced relative to the negative controls, with the 

strength of Notch cleavage inhibition increasing over time. Stimulation of the cells with EGTA 

following acute treatment resulted in the generation of about 77% cNICD-1 relative to the 

amount generated in Mock treated cells (A). Stimulation of Notch cleavage with EGTA 

following semi-chronic and chronic treatments yielded 56% and 26% cNICD-1 respectively, 

when compared to cNICD-1 generation in Mock treated cells (B and C). cNICD-1 levels did not 

change under γ-secretase inhibition as DAPT consistently inhibited Notch-1 cleavage across all 

treatment conditions. No cNICD-1 generation was observed in non-stimulated cells across all 

treatment conditions using either compound (A-C).  

 

 

 

 

 

 



80 
 

 
Figure 29: Suppression of Notch activation increases with length of V-ATPase inhibition 

(A-C) MCF10-A cells were treated as indicated before stimulation (or not) with EGTA and 

western blot analysis of the extent of Notch cleavage. Loading differences between the 

samples were normalized using vinculin and the corrected band intensities used to compare 

the levels of cNICD-1 generated under the three treatment conditions. Following acute 

inhibition of the V-ATPase and EGTA treatment, the cNICD-1 generated was 77% of that 

generated in Mock (100%) treated cells – indicating a 23% drop in Notch activation (A). Similar 

analysis upon semi-chronic and chronic treatment show cNICD-1 generation at 56% and 26% 

relative to Mock (100%) treated cells respectively, corresponding with 44 and 74% drops in 

activated Notch, respectively (B and C). cNICD-1 levels do not change in conditions of γ-

secretase inhibition, or in the absence of EGTA (A-C).   

 
 

These observations raised the question why inhibition of Notch cleavage following 

suppression of V-ATPase function gets more potent with time. One possibility is that chronic 

suppression of the V-ATPase affects Notch receptor expression levels. To test whether this is 

the case, we used qPCR to measure the expression levels of Notch-1, 2 and 3 following V-

ATPase inhibition acutely, semi-chronically and chronically (Figure 30). With the exception of 

Notch-3 which appears more sensitive to V-ATPase inhibition, expression of the receptors is 

not affected by acute treatment when compared to Mock treated cells. However, Notch 

receptor expression begins to fall after 72 hours and is lowest after 7 days of treatment.  
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Figure 30: Chronic inhibition of the V-ATPase reduces Notch receptor expression  

MCF10-A cells were treated with BafA1 acutely, semi-chronically or chronically before qPCR 

analysis was done for Notch 1, 2 and 3. Except for the Notch-3 receptor, receptor mRNA levels 

are not changed upon acute treatment. Chronic treatment strongly reduces Notch receptor 

expression. These observations imply that V-ATPase inhibition may affect Notch signaling in 

two ways; a) acutely, it may affect Notch cleavage and b) chronically, it may reduce Notch 

receptor synthesis in addition to impaired Notch cleavage.  

 
 

In parallel, we analyzed localization of Notch-1 by immunostaining (Figure 31). Notch-

1 levels in acutely treated cells are comparable to those of mock treated cells (A-B) although 

relative to Mock treated cells Notch-1 is slightly accumulated in intracellular vesicles of the 

treated cells (B). As shown previously, the amount of cNICD-1 in the nucleus is reduced in 

EGTA-stimulated, acutely treated cells when compared to Mock treated ones (B’). Relative to 

Mock and acute treatment, semi-chronic treatment results in a strong intracellular 

accumulation of Notch-1 and a lower amount of Notch-1 at the cell surface membrane (C-D). 

In contrast to acutely or Mock treated cells, Notch does not translocate into the nucleus upon 

stimulation of semi-chronically treated cells with EGTA (C’-D’). Similar observations are made 

upon chronic V-ATPase inhibition (E-F and E’-F’). 
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Figure 31: Extended V-ATPase inhibition appears to reduce Notch-1 levels 

(A-F; A’-F’) The cells were treated acutely, semi-chronically or chronically before EGTA 

stimulation (or not) and staining for Notch-1. On acute treatment (B), Notch-1 levels are similar 

to those in Mock treated cells (A). EGTA stimulation sends cNICD-1 to the nucleus (A’-B’), but 

the amount of nuclear Notch is reduced in treated cells. Semi-chronically treated cells (D) 

strongly accumulate Notch intracellularly relative to control cells (C). EGTA does not induce a 

strong presence of cNICD-1 in the nucleus when compared to Mock treated cells (C’-D’). 

Chronically treated cells (F), exhibit high amounts of cytosolic Notch and lesser amounts of 

Notch when observed against control cells (E). Compared to control cells, these cells have 

much less nuclear Notch upon EGTA treatment (E’-F’).  

 

To establish whether this effect was specifically due to pump inhibition and not 

compound specific, we used siRNA to chronically knock down the expression of ATP6V0C, the 

pump’s subunit to which BafA1 binds. We observed an even stronger relocalization of Notch 

intracellularly compared to chronic inhibition of the pump with BafA1 (Figure 32).  
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Figure 32: Chronic Knockdown of V-ATPase genes resembles chronic V-ATPase inhibition 

Knocking down the V-ATPase subunit ATP6V0C, BafA1’s target phenocopies chronic inhibition 

with the compound.  

 

Collectively, these data hint at multiple modes of V-ATPase mediated regulation of 

Notch signaling. A) Under acute inhibition γ-secretase’s efficiency to process its substrates is 

reduced. B) Under chronic inhibition expression of Notch receptors is reduced. C) Notch1 is 

relocalized to intracellular compartments (most likely defective endo-lysosomes), and this 

might affect ligand dependent activation, which is mimicked by EGTA treatment. 

 

5.10 V-ATPase inhibition activates TFEB signaling  

 TFEB has recently emerged as the master regulator of lysosomal biogenesis (Sardiello 

et al. 2009). Inhibition of lysosomal function causes TFEB dephosphorylation and translocation 

from the cytosol into the nucleus (Roczniak-Ferguson et al. 2012), where TFEB upregulates 

lysosomal genes expression, including components of the V-ATPase. We therefore wondered 

whether in our experimental conditions in which we inhibit V-ATPase, TFEB translocates into 

the nucleus and whether the endolysosomal system is affected as a result. To answer the first 
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question, we chronically treated MCF10-A cells with BafA1 and then immunostained them for 

TFEB (Figure 33). Relative to the negative control, we observed increased presence of TFEB in 

the nucleus after 7 days of V-ATPase inhibition (A). This observation raised the question of 

whether the nuclear resident TFEB was transcriptionally active. As TFEB is expected to induce 

lysosomal biogenesis, we performed a staining for the lysosomal resident protein Lamp-1 to 

assess whether there was a change in the lysosomal population in chronically treated cells (B). 

This assay revealed a strong Lamp-1 staining in chronically treated cells when compared to the 

negative control, indicating a strong expansion of the lysosomal compartment. A similar 

pattern was observed in cells knocked down for the V0C subunit of the pump (C) or when 

treated cells are subjected to lysotracker assay (D-E). These observations are similar to those 

made upon overexpression of TFEB, which induces lysosomal biogenesis (Sardiello et al. 2009). 

In all, these data indicate that chronic inhibition of the V-ATPase leads to a striking expansion 

of the endolysosomal compartment. Since we observe that reduced V-ATPase function leads 

to nuclear presence of TFEB, this expansion might be due to increased and sustained 

transcriptional activity by TFEB. A qPCR analysis shows that chronically knocking down the V-

ATPase’s V1F subunit gene raises the expression of some target genes (F).  
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Figure 33: Chronic V-ATPase inhibition expands the lysosomal compartment 

(A-F) MCF10-A cells were chronically treated as shown or chronically knocked down for the 

indicated genes. Immunostaining with a TFEB antibody reveals its translocation into the 

nucleus upon treatment when compared to Mock treated cells (A). A LAMP-1 staining of 

similarly treated cells shows a strong presence of endolysosomal compartments in V-ATPase 

inhibited cells as opposed to the control cells (B). This effect is reproduced by chronic knock 

down of the pump’s V0C subunit (C). A lysotracker analysis of cells treated in this way shows a 

remarkable increment in lysotracker positive compartments in treated cells when compared 

to untreated ones (D) an outcome that is replicated by chronic knockdown of the V0C subunit 

of the pump (E). A qPCR analysis of chronically treated cells reveals an upregulation of some 

TFEB target genes (F).  

 
 
 These results expose a circuit in which ‘tuning down’ the V-ATPase forces the cells to 

attempt coping by ‘turning up’ lysosomal gene expression. The dramatic expansion that we 

see is explained by the fact that we do not withdraw the drug, essentially keeping lysosome 

biogenesis ‘turned on’. To test whether such an expanded endolysosomal compartment means 

enhanced lysosomal function, we performed a western blot analysis for Cathepsin D. Mature, 

32kDa cathepsin D develops from a 53kDa precursor (pro-cathepsin D) through a process that 
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requires optimal lysosomal function (Gieselmann et al. 1983; De Luca et al. 2014). Conditions 

that impair lysosomal activity lead to an accumulation of pro-cathepsin D. When compared to 

negative controls, maturation of cathepsin D ranges from ‘normal’ in acutely treated cells, to 

‘moderately impaired’ in semi-chronic conditions, to ‘strongly impaired’ in chronically treated 

cells (Figure 34). Thus, despite an apparent expansion of the lysosomal compartment, 

continued inhibitory pressure on the V-ATPase does not permit for normal lysosomal activity.   

 

 
Figure 34: Chronic suppression of the V-ATPase reduces lysosomal function 

MCF10-A cells were treated with BafA1 acutely, semi-chronically or chronically before western 

blot analysis for cathepsin D maturation. Relative to the acutely treated cells, semi-chronically 

and chronically treated cells display accumulation of pro-cathepsin D, indicating reduced 

lysosomal function. Western blot loading differences between the samples were equalized 

using vinculin and the corrected cathepsin D band intensities normalized to obtain fold band 

intensities relative to the mock treated sample. 

 

5.11 TFEB may regulate basal Notch signaling in human cells 

 Finally, we wondered whether a link might exist between TFEB and Notch signaling in 

human cells. To address this, we knocked down TFEB in MCF10-A cells and performed a qPCR 

analysis of Hes-1 expression as a measure of Notch signaling. As controls, we knocked down 

components of the Notch pathway (Figure 35). A qPCR analysis shows that lowering TFEB 

mRNA, results in reduced expression of the V0C subunit of the V-ATPase, as would be expected 

upon reduction of TFEB activity. In this condition, basal Notch signaling, as reported by Hes-1 

expression levels, was reduced when compared to the negative control (A). This level of 
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reduction in Notch signaling is comparable to that obtained by knocking down PSENEN (B) or 

the Notch-1 receptor (C). Knocking down ADAM-10, which mediates S2 cleavage of the Notch 

receptor does not affect Notch signaling (D). Since ligand-receptor interaction is an absolute 

requirement for Notch processing by ADAM-10, this observations suggests that the Notch 

signaling affected by reducing TFEB, is mostly ligand-independent and is likely to occur along 

the endolysosomal route. 

 

 
Figure 35: TFEB knockdown reduces basal Notch signaling  

(A-D) The indicated genes were knocked down in MCF10-A cells for 72 hours before a qPCR 

assay was done to assess the level of basal Notch signaling activity. Knocking down TFEB results 

in the downregulation of its target, V0C subunit of the V-ATPase (A) and is accompanied by 

reduced mRNA levels of the Notch target Hes-1, indicating reduced Notch signaling (A). This 

reduction in Notch signaling is comparable to that attained by knocking down PSENEN, a 

component of the γ-secretase complex (B) or the Notch-1 receptor (C). Knocking down ADAM-

10, which is needed for ligand triggered Notch cleavage, does not affect basal Notch signaling 

(D).  

 

 Together, these observations indicate that TFEB might support Notch signaling in 

mammalian cells. Such a hypothesis is within reason if one considers that reducing TFEB levels 

suppresses V-ATPase function, as expression of V-ATPase subunits is controlled by TFEB. Hence 

removal of TFEB is analogous to pharmacologic inhibition of the V-ATPase. The mechanistic 

aspects of how this might occur will be of future interest to the lab. 
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6. Discussion 

6.1 Involvement of the V-ATPase in Notch signaling 

To date, no drug capable of blocking ectopic Notch activation has been deemed safe 

for clinical applications. This is a major problem considering that the vast majority of T-ALLs 

possess oncogenic mutations in the Notch-1 receptor (Weng et al. 2004) and that a rising 

number of solid cancers, including breast, lung, melanoma, medulloblastoma, colon, and 

ovarian cancers, possess excessive Notch signaling (Roy et al. 2007). Here we find that V-

ATPase inhibition using the highly-specific but structurally unrelated inhibitors, BafA1 and Api-

A (Bowman & Bowman 2002; Osteresch et al. 2012), or by RNAi against V-ATPase subunit 

genes, phenocopies the effect of a GSI in curtailing oncogenic Notch signaling. 

Using genetic analysis in Drosophila, we and others have previously proposed the V-

ATPase as a positive modulator of Notch signaling. This proposition is based on observations 

that mutations which directly or indirectly affect proton pumping, impair Notch signaling in 

the fly (Vaccari et al. 2010; Yan et al. 2009). Given the evolutionary conservation of both the 

V-ATPase and the Notch signaling pathway, it is not surprising that crippling the pump’s 

function impairs Notch signaling in mammalian systems as well (Sethi et al. 2010; Lange et al. 

2011; Valapala et al. 2013; Kobia et al. 2014). This, coupled with the fact that gain of oncogenic 

Notch function is a major contributor to the development of multiple cancer types, makes the 

V-ATPase an attractive alternative target to γ-secretase in countering excessive Notch 

signaling. 

Despite the apparent involvement of the V-ATPase in Notch signaling, the 

mechanism(s) through which the pump directly or indirectly modulates the pathway have 

remained elusive. Reports have shown that γ-secretase cleaves its other famous substrate, the 
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APP (Amyloid Precursor Protein), along the endolysosomal route (Koo & Squazzo 1994; Koo et 

al. 1996; Yamazaki et al. 1996). This observation implies that in addition to acting at the cell 

surface, γ-secretase catalytically processes its membrane bound substrates as they are 

trafficked intracellularly. Further support for this notion is provided by findings that the γ-

secretase complex resides on the membranes of intracellular vesicles. It has been shown that 

intracellular γ-secretase is particularly enriched on lysosomal membranes, and that the low 

lysosomal pH sustains its function (Pasternak et al. 2003). Indeed, our in vitro γ-secretase assay 

shows that both the specific V-ATPase inhibitor, BafA1 and an ionophore that dissipates 

lysosomal pH without affecting pump activity, FCCP, inhibit the capacity of γ-secretase to 

process its substrates. Besides its more established role as an acidifier of intracellular 

compartments, the V-ATPase also mediates intracellular vesicular trafficking and has recently 

been proposed to modulate clathrin mediated endocytosis (Hurtado-Lorenzo et al. 2006; Kozik 

et al. 2013). Therefore by simultaneously regulating both vesicular acidification and trafficking, 

this versatile pump may conduce toward efficient γ-secretase function in two ways; a) by 

generating the low luminal pH necessary for its efficient catalytic activity, and b) by ensuring 

that γ-secretase substrates, including Notch, are spatially accessible to the enzyme. The view 

that γ-secretase processes its substrates during their trafficking is bolstered by findings that 

like APP (Koo & Squazzo 1994), Drosophila Notch is activated in the endo-lysosome. Such Notch 

activation is independent of ligand stimulation (Hori et al. 2004; Mukherjee et al. 2005; Moberg 

et al. 2005; Thompson et al. 2005; Vaccari & Bilder 2005; Vaccari et al. 2008; Wilkin et al. 2008).  

 

 



90 
 

6.2 Effect of V-ATPase inhibition on physiologic Notch signaling 

Building on evidence that impairing the V-ATPase by genetic means diminishes Notch 

signaling in model organisms (Yan et al. 2009; Vaccari et al. 2010; Lange et al. 2011; Valapala 

et al. 2013), we sought to establish whether pharmacologically inhibiting the pump would have 

similar effects. We found that specific V-ATPase inhibitors reduce physiologic Notch signaling 

in Drosophila, Zebrafish and the non-transformed human breast epithelial cell line, MCF10-A. 

We attribute the reduction in Notch signaling to inhibition of Notch receptor processing by γ-

secretase as a result of suppressed V-ATPase activity. This finding is in line with an earlier report 

that pharmacologic inhibition of the V-ATPase lowers Notch signaling (Sethi et al. 2010). That 

report however, largely focused on HaCaT, a keratinocyte cell line, and therefore on a tumor 

suppressive context of Notch signaling (Rangarajan et al. 2001; Nicolas et al. 2003; Dotto 2008). 

In this study, we have focused on the V-ATPase and Notch signaling in contexts of oncogenic 

activity. In addition we find that chronic inhibition of the V-ATPase reduces Notch expression 

levels of Notch receptors. Collectively, our findings point to a dual effect of V-ATPase inhibition 

on the Notch pathway. A) Upon acute inhibition, it reduces γ-secretase’s catalytic efficiency 

and B), upon chronic inhibition it suppresses expression of Notch receptors.  

Since the V-ATPase has been reported to be important for clathrin mediated 

endocytosis (Kozik et al. 2013), we cannot rule out repressed ligand trafficking as a contributing 

factor to the reduction in Notch signaling observed upon V-ATPase inhibition. We however 

contend that the contribution of impaired ligand trafficking to reduced Notch signaling 

following V-ATPase suppression is minimal. This is because we observe that inhibiting the V-

ATPase reduces Notch signaling in numerous instances of ligand independent Notch signaling. 

Such as in fly wing imaginal discs when endosomal sorting is blocked and ligand independent 

Notch activation is prominent, or in cases of ligand-independent Notch receptor activating 
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mutations. In this work, we did not address how V-ATPase inhibition affects Notch ligands, a 

question that deserves further scrutiny. In fact, the bulk of reports regarding the role of the V-

ATPase in Notch signaling have focused on the receptor. Only one previous report suggests an 

effect of the V-ATPase on Notch ligands. In this, it is reported that pharmacologically inhibiting 

the V-ATPase in breast cancer cells increases expression of Jagged-1 (Pamarthy & Beaman 

2014), lending support to the view that reduced Notch signaling upon V-ATPase inhibition is 

due to effects on the Notch receptor. 

 

6.3 The V-ATPase as a potential therapeutic target in Notch driven malignancies 

 Majority of the efforts proposed for curtailing oncogenic Notch signaling have relied on 

GSIs. However, most of the early promise for efficacious GSI-based therapy has been 

dampened by their high toxicities in patients (Aster & Blacklow 2012; Andersson & Lendahl 

2014). The findings that inhibiting the V-ATPase reduces Notch signaling and that it very likely 

does so by affecting the receptor, opens up the possibility of a therapeutic benefit in Notch 

dependent cancers. Here we evaluated the capacity of V-ATPase inhibition to counter 

oncogenic Notch signaling in Notch driven breast cancer cells. V-ATPase inhibition diminishes 

Notch cleavage as well as Notch signaling and associated proliferation of the GSI sensitive 

HCC1599 and HCC2218, but not the GSI insensitive HCC1187. Taken together these 

observations imply that the effect of V-ATPase inhibition on Notch is due to subdued γ-

secretase activity. Probably as a result of cell line specific responses, reduced Notch cleavage 

by the V-ATPase inhibitor is more pronounced in HCC1599 than in HCC2218. This is reflected 

in proliferation assays, which show a correspondingly stronger growth reduction of HCC1599 

than HCC2218. HCC1599 appears to have more cleaved Notch-1 than HCC2218. It therefore is 

possible that V-ATPase activity is more critically required by HCC1599 to sustain the high levels 
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of ligand independent Notch-1 cleavage. This could also explain the higher sensitivity by 

HCC1599 to V-ATPase inhibition.  

Unlike in the breast cells, V-ATPase inhibition in the T-ALL cell lines achieved very 

modest reductions in Notch-1 cleavage. This observation raises a prominent question: how is 

it that treating Notch signaling reliant breast cancer cells with the V-ATPase inhibitor reduces 

cleaved Notch-1 levels, while similar treatment of T-ALL cells fails to do so? And yet both types 

of cells rely on γ-secretase for elevated Notch cleavage?  One possibility that requires further 

examination is that T-ALL cells are less reliant on the endolysosomal system for cleavage of 

mutant Notch-1. Upon V-ATPase inhibition, we observe reduced proliferation of T-ALL cells to 

levels almost comparable to those attained with GSI.  This might result from modest inhibition 

of Notch signaling and/or suppression of another pathway(s).  

 

6.4 V-ATPase inhibition suppresses multiple cells signaling pathways 

In recent years, there have been numerous reports implicating the V-ATPase in various 

growth and proliferation signaling pathways, including Wnt and mTOR. Both pathways are 

known to be suppressed by V-ATPase inhibition (Cruciat et al. 2010; Buechling et al. 2010; 

Zoncu et al. 2011; Roczniak-Ferguson et al. 2012). Indeed, when we treat Zebrafish embryos 

with BafA1, they exhibit developmental defects similar to those reported in frog embryos 

lacking Wnt signaling due to V-ATPase inhibition (Cruciat et al. 2010). This implies that in 

addition to the reduced Notch signaling that we observe on treating the fish with BafA1, we 

also upset Wnt signaling. This is important when taken in the context of crosstalk between 

Notch and Wnt signaling in metazoans (Sanders et al. 2009; Collu et al. 2014), especially 

considering the cooperation between the two pathways in the development of some solid 

tumors and leukemias (Balint et al. 2005; Fre et al. 2005; van Es et al. 2005; Ayyanan et al. 
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2006; Staal 2007; Guo et al. 2007). Additional work is necessary to determine whether in our 

setup, the two pathways are simultaneously blocked upon V-ATPase inhibition. Nonetheless, 

within the context of crosstalk between Wnt and Notch, our observations suggest that V-

ATPase inhibition could be of therapeutic benefit against cancer types that thrive on an active 

Wnt/Notch axis.  

Some T-ALL cell lines, including CCRF-CEM, are resistant to GSIs. This resistance has 

been ascribed to the cells activating a secondary oncogenic pathway, Akt/mTOR signaling 

(Palomero et al. 2007). After treating Notch reliant T-ALL cells with the V-ATPase inhibitor, we 

observed only modest reduction in Notch activation in spite of a significant reduction in cell 

proliferation, suggesting suppression of additional pathways. An analysis of the status of Akt 

signaling revealed that V-ATPase inhibition impedes Akt activation in the GSI sensitive DND-41 

cells but not in the GSI resistant CCRF-CEM. Akt signaling was also inhibited upon V-ATPase 

suppression in the Notch dependent breast cancer cells, HCC1599 and HCC2218. This shows 

that at least in these three cell lines, part of the growth reduction upon V-ATPase inhibition is 

due to reduced Akt signaling. We postulate that this growth reduction might involve a factor(s) 

downstream of Akt, such as FOXO; a pro-apoptotic transcription factor that is active in 

conditions of inhibited Akt signaling (Zhang et al. 2011).  This observation proposes V-ATPase 

inhibition as a means of countering excessive Akt signaling in cancers. The finding that Akt 

signaling is not hampered in similarly treated CCRF-CEM, suggests the involvement of 

another/other signaling pathways. However, we could not observe any change in mTOR 

signaling. Since proliferation of CCRF-CEM is unaffected by a Wnt inhibitor, it is likely that yet 

another pathway(s) that it relies upon for proliferation is inhibited by V-ATPase inhibition. In 

fact both BafA1 and an Akt inhibitor reduce proliferation of CCRF-CEM by approximately 50%. 

Combining low doses of the two compounds results in a remarkably additive reduction in 



94 
 

proliferation of these cells. The nature of this mutual potentiation by the two inhibitors 

requires a more focused examination and could help elucidate the pathway responsible for the 

reduction in CCRF-CEM’s proliferation in the presence of BafA1. The identification of such a 

pathway would potentially unveil a new therapeutic avenue against Notch dependent, GSI 

resistant T-ALLs and possibly elucidate a novel avenue for the emergence GSI resistance in T-

ALLs. 

 

6.5 The V-ATPase as a suitable therapeutic target in cancer  

Surprisingly, we find that very low dose BafA1 (3nM or less) is well tolerated by cells in 

culture over extended periods and curtails oncogenic signaling through Notch, Akt and 

potentially other signaling pathways yet to be identified. Raising organellar pH will inevitably 

have wide ranging pleiotropic effects, including impairment of lysosomal function and 

associated compensatory signaling like activation of TFEB. Still, lysosomotropic drugs like 

chloroquine, which alkalinize acidic environments are well tolerated by patients and have been 

extensively prescribed as antimalarial agents. Commonly used over the counter proton pump 

inhibitors like omeprazole, which is used to control gastric acid have also been shown to inhibit 

V-ATPase function (Luciani et al. 2004). Such medicines have recently been gaining traction as 

potential anti-cancer agents (Luciani et al. 2004; Fan et al. 2006; Solomon & Lee 2009; Sasaki 

et al. 2010; Kimura et al. 2013; Choi et al. 2014). This interest has been spawned by the 

realization that tumors, particularly solid ones, are often faced with an ‘acid challenge’. This 

low pH problem comes from the fact that the tumor environment is poorly vascularized and 

hypoxic, forcing tumor cells into anaerobic glycolysis and resulting in acid build-up. These 

cancer cells are thought to escape the harmful effects of low intracellular pH by increasing 

their rate of extruding protons into the extracellular space. This eventually reverses the tumor 
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cells pH gradient, making the extracellular space more acidic. These events have been 

associated with numerous cancer promoting processes including metastasis, increased 

proliferation, evasion of apoptosis and multi-drug resistance (Webb et al. 2011; Kato et al. 

2013; Daniel et al. 2013). As a result, pharmacologically modulating the regulators of 

intracellular pH, including the V-ATPase, has emerged as an appealing therapeutic prospect for 

cancer treatment (McCarty & Whitaker 2010). Our data suggest that reduction of oncogenic 

cell signaling might be an additional benefit to considering V-ATPase inhibition as an anticancer 

intervention. 

Both chloroquine and BafA1 are modulators of intracellular pH, albeit through different 

mechanisms. Both appear to possess anticancer properties which have been attributed to 

induction of apoptosis (Ohta et al. 1998; Nakashima 2003; Fan et al. 2006; Maclean et al. 2008; 

Wu et al. 2009; Sasaki et al. 2010). We posit that by affecting intracellular pH, their anticancer 

properties could be through inhibition of one or several of the signaling pathways that rely on 

efficient V-ATPase/lysosomal function. These may include Notch, Akt/mTOR, Wnt signaling or 

even AMPK signaling (Cruciat et al. 2010; Zoncu et al. 2011; Kobia et al. 2014; Zhang et al. 

2014). The pathway(s) specifically affected might depend on the cancer type and how critically 

it relies on that particular pathway(s) for growth and proliferation.  

To minimize the adverse effects of drugs, clinical oncology is moving towards 

development of low-dose, multi-drug regimens (Real et al. 2009). We observe that compared 

to the effect of using any of the compounds separately, combining low doses of BafA1 with 

low doses of GSI allows significant growth inhibition in an additive manner. We therefore 

envisage that V-ATPase inhibitors could be combined with GSIs and/or other specific Notch 

inhibitors to curtail GSI toxicity while preserving or even enhancing efficacy. Because Notch 

functions along with other signaling pathways, a persistent pharmacologic inhibition of Notch 
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might induce development of resistance and addiction of the tumor cells to the other 

unsuppressed growth pathways (Palomero et al. 2007). Thus, multi-drug regimens are being 

proposed for inhibition of multiple pathways (Shepherd et al. 2013). Pharmacologic V-ATPase 

inhibition allows simultaneous reduction of Notch, Akt, maybe Wnt and at least another 

unidentified pathway. As more signaling pathways that converge at the V-ATPase/lysosomal 

signaling hub are identified, the profile of the V-ATPase as a possible therapeutic target rises. 

This is because inhibiting the V-ATPase using a single compound, can inhibit multiple pathways, 

mimicking combination therapy. Thus V-ATPase inhibitors are promising prospects for use 

alone or in combination with existing inhibitors of other pathways. 

 

6.6 Implications of chronic V-ATPase inhibition 

Curing cell signaling dysfunction in cancer will require a deep understanding of how 

signals are controlled, integrated and made to interact with each other. For instance, we note 

that chronically suppressing V-ATPase function with low amounts of inhibitor reduces the 

expression of Notch receptors. This hints at a direct or indirect function of the V-ATPase at the 

transcriptional level. Such a function, though initially unexpected, is not entirely surprising 

considering that the signaling pathways influenced by V-ATPase have wide ranging 

transcriptional outputs. For example TFEB, the only transcriptional factor so far known to 

respond to V-ATPase manipulation, is an indirect target of V-ATPase inhibitors and becomes 

transcriptionally active upon V-ATPase suppression, leading to the expression of large group 

of genes (Sardiello et al. 2009; Roczniak-Ferguson et al. 2012). This paints a complex picture as 

such changes in gene expression will undoubtedly affect the output of multiple signaling 

pathways. In our conditions of chronic V-ATPase inhibition, we observe that some signaling 

pathways including Notch are inhibited. Also, the expanded endolysosomal system observed 
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upon chronic inhibition of the pump functions sub-optimally, and yet the cells are viable. This 

raises the question of how the cells adjust to such protracted pressure and whether there are 

signaling pathways that get upregulated in such settings.  

 

6.7 Potential of chronic V-ATPase inhibition in studying LSDs 

The fact that we can inhibit the V-ATPase with low nM doses of inhibitor without killing 

the cells, suggests that this approach can be used to mimic and study lysosomal storage 

disorders (LSDs) in vitro. LSDs are a group of disorders originating from mutations that impair 

lysosomal functions and are characterized by accumulation of undegraded cellular material 

(Ballabio & Gieselmann 2009). Although chronic V-ATPase inhibition would not model specific 

LSDs, it would help address some pending but important general questions surrounding LSDs. 

For instance how cell signaling is altered in the event of impaired clearance of unnecessary 

receptors and ligands. Impaired lysosomal clearance potentially decreases lysosomal function. 

This system can thus serve as a model to study how LSD affected cells cope with sub-par 

lysosomal function. Finally, experimental approaches that restore lysosomal function in 

conditions of chronic V-ATPase inhibition might offer clues into ways of intervening in LSDs. 

This could include interventions to upregulate expression or activity of TFEB. One of the ways 

to achieve this is protracted treatment with very low doses of BafA1, which stimulates TFEB 

activity and lysosomal biogenesis. To minimize the reduction of lysosomal activity associated 

with such treatment, treatment could be pulsated, or V-ATPase inhibitor dosage could be 

further reduced. The endolysosomal system is emerging as a major signaling control and 

coordination hub for multiple cancer-relevant signaling pathways that rely on membrane-

associated factors. This work represents a step in the direction of effective pharmacological 

modulation of endocytic events to counter oncogenic cell growth. 
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7. Appendix: High Content Screen for Novel Notch signaling components 

7.1 Introduction 

The Notch signaling pathway is extremely complex. Yet it possesses a rather small core 

signaling unit that consists of Notch receptors, Notch ligands, ADAM metalloproteases, the γ-

secretase complex and the CSL transcriptional complex (Bray 2006; Andersson et al. 2011). Of 

these factors, the ligands, ADAMs and γ-secretase are required for receptor activation, leaving 

the intracellular portion of the receptor and the CSL complex, as the direct effectors of 

signaling. Given how widely Notch signaling is used throughout the life of an individual and 

how diverse its effects are in different tissues and organs (Wilson & Radtke 2006), one 

outstanding question is how is such complexity is attained.  

Part of the pathway’s complexity can be explained by posttranslational modifications 

of the main components of the pathway. Glycosylation of Notch receptors and ligands is 

thought to modulate the strength of their interactions (Stanley & Okajima 2010). 

Phosphorylation of the nuclear portion of the receptor is known to promote or inhibit Notch 

signaling depending on the Notch receptor targeted and/or kinase employed (Andersson et al. 

2011). Acetylation of the nuclear portion of Notch-1 protects it from ubiquitination and 

subsequent degradation, an event countered by deacetylation. Hence 

acetylation/deacetylation events modulate the strength and duration of Notch signaling 

(Kitajewski 2011; Guarani et al. 2011). The best characterized modulators of the strength and 

duration of Notch signaling are members of the ubiquitin system. As discussed in section 2.6.1, 

ubiquitination limits NICD’s half-life in the nucleus (Oberg et al. 2001) and as discussed in 

section 2.2, it modulates productive Notch signaling by controlling trafficking of both ligands 

and receptors.  
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A peculiar characteristic of Notch signaling, is its strong sensitivity to gene dosage. 

Whether incremental or decremental, slight variations in Notch signaling are sufficient to 

produce loss or gain of Notch function phenotypes (Andersson et al. 2011; Guruharsha et al. 

2012). As implied by modulators of intracellular trafficking (Le Borgne, Bardin, et al. 2005; 

Vaccari et al. 2008; Fortini & Bilder 2010), the remarkable complexity of this pathway might 

rely on a multitude of factors that depending on the context affect the strength and/or 

duration of signaling or even whether signaling occurs at all. The probable existence of such 

unidentified factors implies that numerous compartment-specific points might control Notch 

signaling and possibly, they could be pharmacologically modulated in pathological settings.  

Aiming to identify novel modulators of Notch signaling we performed a high content 

siRNA screen in collaboration with Dr. Mark Wade’s iit@SEMM (Italian Institute of Technology 

at the European School of Molecular Medicine) screening unit.   
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8. Specific aims of the screen  

The general aim of this HCS project is to uncover novel human genes regulating Notch 

signaling. Specifically, we aim to identify factors that might influence Notch signaling by 

affecting:  

1. Notch trafficking and subcellular localization 

2. Notch receptor stability/degradation 

3. Notch receptor synthesis  

4. Notch receptor cleavage/processing 

5. Notch signaling transcriptional output  

Since this is a subgenomic, medium-throughput and high content screen, aims 1-4 have 

been addressed simultaneously in the primary screen data analysis. Candidates selected as 

possible modulators of aims 1-4 will be subjected to a primary validation screen. Aim 5 will be 

pursued in a secondary validation that will focus on the factors that pass initial validation. The 

implementation of these aims will enable us to select leading candidates that we will study 

further to: 

6. Characterize the mechanism through which they affect Notch signaling in mammalian 

cells and if applicable, in vivo using Drosophila as a model system. 

7. Assess their potential as therapeutic targets in Notch driven cancers as the gene 

libraries screened belong to the human druggable genome.  
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9. Materials and methods 

9.1 Screen setup  

 The Notch translocation assay on MCF10-A cells was performed as described in section 

4.7. To inhibit Notch activation upon EGTA addition, the cells were treated with 3uM DAPT 

(Sigma) or as negative control, with DMSO for 3hrs. Immunostaining with the Notch-1 antibody 

and image acquisition was done as described in section 4.8. Reverse transfection to knockdown 

components of the γ-secretase complex was done as outlined in section 4.12. esiRNA targeting 

PSENEN (EHU220611), PSEN-1 (EHU073361), PSEN-2 (EHU070541), APH1A (EHU059921) and 

firefly luciferase (EHUFLUC) were purchased from sigma. PSENEN (D-008057-01-0010) siRNA 

was purchased from GE Dharmacon. 

 

9.2 Pilot screen  

Before embarking on the primary screen, we first performed a pilot screen. For the pilot 

screen, we knocked down genes belonging to two custom sub-library plates: HUSIGENSUB07 

and HUSIGENSUB08. Together, the two sub-genomic libraries contained siGenome smartpools 

targeting 560 genes. Genes represented in the two libraries were knocked down in 384-well 

format along with the following controls: a transfection positive control siRNA for monitoring 

transfection efficiency (PLK-1 SmartPool siGenome), an assay specific positive control siRNA 

(PSENEN SmartPool siGenome), siRNA targeting Renilla Luciferase (RLUC siGenome siRNA) as 

negative control and as a second negative control, non-targeting OTP (On Target Plus). These 

control siRNA were purchased from GE Dharmacon. This execution of the pilot screen was 

essential to identify the pitfalls in our procedures and to modify the pipeline to be used in the 

primary screen.  For instance, in the pilot’s image acquisition stage, we acquired 6 fields of 
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view per well using a 10X objective. Based on the quality of images, this was changed to 8 fields 

of view per well, using a 20X objective. In the pilot screen, we placed more emphasis on the 

EGTA stimulated condition. In the analysis of the pilot screen it also became apparent that the 

dynamic range of the signal is larger for non-stimulated condition, so we decided to eventually 

consider a much lower number of hits from the EGTA stimulated plate. Finally, in the pilot 

phase we did not have a marker for the cell surface membrane and this fact prevented optimal 

automatic segmentation of the images. Thus, the protocol was revised to include phalloidin 

staining in the primary screen phase. These modifications necessitated revision of the image 

data analysis pipeline. To avoid repetition, only the protocols used in the primary screen are 

described here as they are modifications of the ones applied in the pilot screen.   

 

9.3 siRNA knock-downs 

In the primary screen 2,749 genes belonging to 10 sub-genomic library plates were 

assayed. The gene knockdowns were performed in 384-well plate format, with each well 

containing a pool of four distinct siRNA oligos against different sequences of the same target 

transcript. Each library plate was knocked down in 6 replicates. 3 of the replicates were 

subjected to EGTA stimulation while the other 3 were left unstimulated. Cell culture medium 

and conditions for growing MCF10-A cells were same as described in section 4.4. For siRNA 

transfection, cells were always maintained at less than 6 passages and trypsinized for 

transfection at 60-80% confluence. All siRNA transfections were done in black 384-well, tissue 

culture treated optical plates (Corning), using the reverse method. Briefly, 25nM of the desired 

siRNA diluted in 20ul of Optimem (Invitrogen) was allowed to complex with 0.12uL of RNAiMax 

(Invitrogen), for 20 minutes at room temperature. Where indicated esiRNA was used at a 

concentration of 50nM. 700 cells suspended in 20uL of 2X medium were added to each well. 
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2X medium was prepared by using each component of the medium at 2X the concentration 

indicated in section 4.4. 2X the concentration of EGF shown in section 4.4 was freshly added 

into the cells before they were added into the wells. The cells were then cultured for 72 hours 

under the conditions described in section 4.4, in a SteriStore automated incubator (HighRes 

Biosolutions). All solutions were dispensed using the Freedom EVO automated liquid handler 

system (Tecan). 

 

9.4 Stimulation of Notch translocation 
 

  At the end of the 72 hours of gene knockdown, 3 plates from each library were treated 

with EGTA for 2 hours to stimulate Notch cleavage. To do this, 10uL of fresh medium containing 

12.5mM EGTA was directly added into the wells to have a final concentration of 2.5mM EGTA 

per/well, and a final volume of 50uL/well. 10uL of sterile water was added into the NoEGTA 

stimulated plates. The plates were then incubated for 2hrs at 37°C and then fixed with 2% PFA 

for 15 minutes at room temperature. Fixation was done by adding 50uL of 4% PFA directly into 

the wells. All solutions were dispensed into the wells using a Thermo Scientific Multidrop 

dispenser. 

 

9.5 Immunofluorescence  

Automated immunostaining was performed using a Biotek EL406 Washer/Dispenser 

equipped with a 192-tube aspiration manifold. The solution was removed from the wells and 

the cells rinsed once with 1X PBS. Cells were permeabilized with 0.05% triton in 1% BSA 

blocking solution for 1 hour at RT followed by a single wash with 1X PBS. Cells were then 

incubated for 1 hour at room temperature with anti-Notch-1 primary antibody (Sigma), diluted 

at 1:350 in 1% BSA blocking solution. The primary antibody solution was removed and the 
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plates washed twice with 1X PBS. Next, the cells were incubated for 1 hour with 1% BSA 

blocking solution containing DAPI (SIGMA) at 1:4,500, phalloidin at 1:350 and Alexa Fluor 488 

anti-rat secondary antibody (Life Technologies) at 1:400. They were then washed thrice with 

1X PBS before imaging. When imaging could not be performed immediately, the cells were 

kept at 4°C for not longer than 48 hours prior to image acquisition. 

 

9.6 Image acquisition 

For image acquisition, the 384-well plates were scanned using an automated Olympus 

Scan^R (Tokyo, Japan) microscope equipped with a Hamilton arm for plate handling. 8 fields 

of view (FOV) and three emission fluorescent channels (for DAPI, phalloidin and Alexa 488), 

were acquired for each well using a 20X objective. The image data was annotated and 

transferred to the Isilon infrastructure and network software, where it was indexed by plate 

barcodes for image data storage. In the annotation each well was assigned information 

regarding the date of the experiment, gene knocked down, the sub-genomic library it belongs 

to and the treatment (EGTA vs NoEGTA). Upon annotation, the images were uploaded to the 

Columbus server (PerkinElmer) from where they can be accessed for visual inspection and 

automated analysis.  

 

9.7 Image Analysis 

  Annotated images were used for automated image analysis. For the analysis, an in-

house Acapella (PerkinElmer) image analysis script was developed and used to batch analyze 

the images and to quantitatively describe a set of phenotypic features. All analyzed images 

were first subjected to background correction and exclusion of uneven illumination. The 

background correction was performed for each channel separately.  DAPI, which was used to 
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mask the nuclei and phalloidin, which labeled cell surfaces were used for cell segmentation. 

Segmentation was performed using a modified version of the watershed algorithm. This 

modification allowed the inversion of phalloidin channel images so as to display high pixel 

intensities in the cell and low intensities along the cell membrane; allowing application of the 

watershed approach to identify cell boundaries. This algorithm also detects and excludes 

regions of the image fields not occupied by cells. Once the cells, their membranes and 

corresponding nuclei were detected, each cell was segmented into the nucleus based on DAPI 

staining, the membrane based on phalloidin and the cytosol (region between the nuclei and 

cell surface membrane).  

 Depending on the gene targeted, RNAi may alter cellular morphology and as a result, 

cell segmentation is not always accurate. To ensure that only properly segmented cells are 

analyzed, a series of restrictions were imposed: a) Cells on the image borders were excluded 

as they are incomplete, b) Size restrictions were imposed so as to define the maximum and 

minimum areas (in pixels) in order to exclude objects segmented as cells, nuclei or cytosplasmic 

regions but were either too large or too small, c) objects with saturated intensities for Notch-

1 and DAPI staining were excluded, and d) poorly segmented cells were excluded from the 

analysis by use of the cellular compactness parameter that assesses cell shape. 

 The occurrence of out-of-focus images is unavoidable in HCS campaigns due to the 

automated mode of image acquisition. The position of the objective during imaging is 

optimized for plate type (supplier) and batch. To exclude out of focus images from the analysis, 

we used boxplot statistics on the distribution of intensity contrast values (on the DAPI channel) 

of all nuclei detected on the entire well. Using the first and the third quantiles of this 

distribution, we estimated the Lower Inferior Fence (LIF) using the 95% confidence interval. 

We then established for each field of view, the number of nuclei presenting a contrast lower 
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than the LIF. Fields were considered out of focus if more than 50% of the nuclei failed to cross 

the LIF threshold. 

Analysis of the EGTA stimulated plates, was performed independently of the 

corresponding non-stimulated plates. The quantification of each parameter, in each well (gene 

knockdown) was reported as a z-score value. For instance, Notch pixel intensities in a particular 

compartment were obtained for all cells in the wells, including the control wells. Averaging the 

intensities for the cells analyzed per well, gave single values descriptive of the effect of a gene’s 

knockdown on the parameter. These values (for each parameter) were used to calculate the z-

scores, which are statistical measures of how many standard deviations each quantification 

value falls relative to the population mean for the respective parameter (Birmingham et al. 

2009). In calculating the z-scores, it is assumed that majority of the genes knocked down will 

have no effect on the parameter under interrogation and will have a z-score close to or equal 

to 0. Factors with positive scores enhance the parameter and those with negative ones inhibit 

it. Since each gene was knocked down in triplicate (3 plates), 3 z-scores were obtained for each 

parameter. The median z-score was taken as the effect of a gene’s knockdown on the 

parameter in question. In cases where data from one of the wells was unavailable e.g. out of 

focus wells, the average z-score between the remaining two was taken. If images from more 

than one of the 3 wells were unusable, it (the well, candidate) was excluded from the analysis. 

 

9.8 Candidate selection for validation 

 For each library plate, candidates from EGTA and NoEGTA conditions were considered 

to affect respective parameters if upon knockdown, they shift the z-score positively or 

negatively. The bigger the shift, the stronger the phenotype. The main parameters quantified 

were: a) cell viability (QC1_NoOfAnalysedCells), b) Overall Notch intensity in the cell 
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(N4_CellNotch), c) nuclear Notch intensity (N1_NucNotch), d) cell surface membrane Notch 

intensity (N3_MembNotch) and, e) Notch accumulation in intracellular compartments 

(N5_PercentOfCellsWithSpots & N9_NoOfSpotsPerCell). To select candidates for subsequent 

validation, we applied filters on the z-scores and grouped the candidates into separate 

categories on the basis of whether, and how they affected the parameters, while taking into 

account the negative controls. A primary filter was applied on the parameter 

QC1_NoOfAnalysedCells in order to exclude candidates that had too few cells. A secondary 

filter on the parameter N4_CellNotch separated candidates with very low levels of Notch. An 

upper filter on N4_CellNotch identified candidates whose knock down increased overall Notch 

levels. A series of filters were sequentially imposed on the remaining candidates in order to 

group them by how they affected the remaining main parameters. The threshold at which to 

establish filters for respective parameters was determined by the following criteria:  

a) Average z-score was determined for respective parameters in the negative controls. 

b) Average z-score was determined for respective parameters in the samples (excluding 

the controls). 

c) Phenotypes of candidates with average z-scores for respective parameters (b) were 

visually compared with the phenotypes for the same parameters in negative controls 

(a). 

d) Depending on whether it was enhancers or suppressors of a respective parameter 

being sought, phenotypes of candidates with lower or higher than average z-scores for 

respective parameters were compared with phenotype for the same parameter in 

negative controls. 

For instance, the negative controls have an average z-score of +2.4 for the parameter 

QC1_NoOfAnalyzedCells and the samples an average of z-score of 0. By visually verifying the 
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images, samples with a z-score of 0 have much fewer cells relative to negative controls. 

Samples with z-scores < -0.5 have strongly reduced cell numbers relative to the negative 

controls, hence were considered to be too few for further analysis.  
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10. Results 

All primary screening experiments were performed in collaboration with Mark Wade’s 

IIT@SEMM screening unit. Cell culture and siRNA transfections were performed by Michela 

Mattioli. Immunofluorescence and imaging were performed by Fernanda Ricci. Image and 

statistical analysis were performed by Adrian Andronache. Candidate sorting and selection 

were performed with the help of Victor Alfred, a PhD student in our group.  

 

10.1 Rationale for the screen  

 To identify novel factors that modulate the Notch signaling pathway, we performed a 

HCS in MCF10-A cells. From previous work we knew that these cells express Notch signaling 

pathway components including the Notch-1 receptor and that they are amenable to induction 

of Notch receptor cleavage through Ca2+ chelation (Figure 36) (Rand et al. 2000; Kobia et al. 

2014). EGTA induced translocation of cNICD-1 into the nucleus is verifiable by staining the cells 

with an antibody that recognizes both the full-length and cleaved forms of Notch-1. This 

antibody reveals the presence of Notch-1 at the cell surface membrane of the cells (B) and that 

it relocalizes to the nucleus upon addition of EGTA (C). Notch cleavage and nuclear 

translocation is blocked by treating the cells with the γ-secretase inhibitor, DAPT (D-E) or the 

ADAM-10 metalloprotease inhibitor, GI 254023X (F-G) indicating that EGTA stimulation mimics 

ligand mediated Notch cleavage. Treatment of the cells with BafA1 causes Notch-1 to 

accumulate in intracellularly (H-I).   



110 
 

 
Figure 36: Basis of the HCS in MCF10-A cells 

The intracellular and extracellular portions of Notch receptors are non-covalently glued 

together by Ca2+, whose depletion causes ADAM-10 and γ-secretase to sequentially cleave the 

receptor at S2 and S3 respectively (A). The intracellular localization of Notch-1 can be 

monitored using an antibody that recognizes both the cleaved and the whole form of the 

receptor (B-I). In MCF10-A cells, Notch-1 resides on the cell surface membrane (B) but relocates 

to the nucleus upon stimulation with EGTA (C). Treating the cells with GI 254023X (D), prevents 

cleavage and relocation of cNICD-1 into the nucleus upon EGTA addition (E); as does treatment 

with DAPT (F-G). Inhibition of the V-ATPase pump causes Notch to accumulate in intracellular 

vesicles (H-I). These experiments indicate that we can mimic physiologic, ligand induced Notch 

activation and that we can utilize antibody staining to track the receptor intracellularly.  

 

10.2 Positive controls for inhibition of Notch cleavage 

 With the aim of establishing a positive control for impaired Notch cleavage, we knocked 

down PSENEN (Figure 37), a component of the γ-secretase complex. A qPCR assay of the level 

of PSENEN expression after 72 hours of knockdown reveals a strong reduction of its mRNA 

levels (A). At the end of 72 hours, Notch cleavage was stimulated with 10mM EGTA for 30 

minutes, followed by immunostaining for Notch-1 and confocal imaging. Relative to the mock 

knockdown cells (B-C), cells knocked down for PSENEN displayed an intermediate reduction in 

Notch cleavage and cNICD-1 presence in the nucleus (D-E).  
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Figure 37: PSENEN KD reduces Notch cleavage and nuclear translocation 

PSENEN was knocked down with siRNA for 72 hours in MCF10-A cells (A-E). A qPCR analysis 

shows that PSENEN mRNA levels are significantly reduced (A). Upon knockdown, the cells were 

stimulated with 10mM EGTA for 30 minutes and immunostained for Notch-1 (B-E). Relative to 

mock knockdown (B-C), reducing PSENEN mRNA levels intermediately inhibits Notch cleavage 

and nuclear translocation (D-E). Confocal images (B-E). 

  

Based on these observations, we elected to knockdown PSENEN as a positive control 

for suppressed Notch cleavage and translocation into the nucleus. In the pilot screen, we 

knocked down genes for 72 hours and then stimulated Notch cleavage with 2.5mM EGTA for 

2 hours, followed by immunostaining and wide-field fluorescent imaging. We however noticed 

during pilot image analysis that knocking down PSENEN, reduced overall Notch-1 levels and 

did not appear to inhibit its cleavage and nuclear translocation as expected (Figure 38).   

 



112 
 

  
Figure 38: siRNA mediated KD of PSENEN appears to reduce the overall levels of Notch-1 

Wide field fluorescence images of MCF10-A cells immunostained for the Notch-1 receptor (A-

D). siRNA was used to target the indicated genes for 72 hours after which Notch cleavage was 

stimulated (or not) with 2.5mM EGTA for 2 hours. In RLUC (mock) knockdown cells, ample 

amounts Notch localize on cell membranes (A) before moving to the nucleus upon stimulation 

with EGTA (B). Relative to mock knockdowns, PSENEN knockdown cells display a reduced 

intensity of Notch-1 staining on their cell surface (C) and in their nuclei upon EGTA addition 

(D). This is contrary to expectation as we do not see a retention of Notch at the cell surfaces 

upon EGTA stimulation of PSENEN knockdown cells (D). 

 
 

These knockdowns were performed using GE Dharmacon’s siRNA and we wondered 

whether the unexpected observations might have been due to off-targeting. To test this, we 

knocked down PSENEN using Sigma’s esiRNA for 72 hours and then stimulated the cells with 

EGTA before immunostaining for Notch-1. As with the siRNA we observed by confocal imaging 

that relative to mock knockdown, knocking down PSENEN partially impaired Notch cleavage 

and translocation into the nucleus (figure 39).  
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Figure 39: PSENEN knock down with esiRNA partially blocks Notch cleavage  

Confocal images of MCF10-A cells knocked down for PSENEN for 72 hours (A-D). The cells were 

stimulated with 10mM EGTA for 30 minutes before immunostaining for Notch-1. Relative to 

mock knockdown cells (A-B), PSENEN knockdown with esiRNA reduces Notch cleavage and 

translocation into the nucleus (C-D).  

 

We therefore decided to include both the siRNA and esiRNA as ‘positive’ controls in the 

primary screen. It was noticed during primary screen image analysis that the esiRNA too, did 

not have the expected retention of Notch at the cell surface upon EGTA addition. Its effects on 

the Notch receptor and its nuclear localization upon EGTA stimulation were identical to those 

of siRNA, albeit milder (Figure 40).  
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Figure 40: Knocking down PSENEN with esiRNA phenocopies siRNA 

Wide field fluorescence images of MCF10-A cells immunostained for the Notch-1 receptor (A-

D). esiRNA was used to knock down the indicated genes for 72 hours after which Notch 

cleavage was stimulated (or not) with 2.5mM EGTA for 2 hours. In OTP (mock) knockdown 

cells, ample amounts of Notch localize on cell membranes (A) and move to the nucleus upon 

EGTA treatment (B). Relative to mock knockdown, PSENEN knockdown cells display a lower 

amount of Notch-1 on the cells (C) and in their nuclei upon EGTA addition (D). Although milder, 

these effects on the Notch receptor are similar to those obtained with Dharmacon’s siRNA 

against PSENEN. 

 

Because PSENEN down-modulation was sub-optimal as a strong positive control for 

image data analysis, we decided to apply z-score normalization. This is a commonly used 

approach in screening data analysis whereby phenotypes are quantified and scored on the 

basis of how far they deviate from the population’s mean score for the respective phenotype 

(Birmingham et al. 2009). This approach has previously been taken in high content, multi-

parametric screening data analysis (Collinet et al. 2010) 
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10.3 Primary HCS approach 

In the primary screen we targeted 2,749 human genes belonging a 10 library subset of 

the human genome. The 10 libraries contain members of various protein families including 

kinases, phosphatases, GPCRs, peptidases, ion channels and ubiquitin ligases. The 

transfections, EGTA stimulations, immunostainings and image analysis were performed as 

described in materials and methods. An outline of the primary screen approach is shown on 

figure 41. Cell segmentation, which relied on DAPI and phalloidin partitioned the cells into 3 

compartments that Notch occupies at various stages of its cycle. These are: a) the cell 

membrane – where it resides before activation; b) the cytosol – which Notch traverses on its 

way to the nucleus upon activation, crosses on its way to the cell surface upon synthesis or 

momentarily occupies before degradation or recycling to the cell surface; and c), the nucleus 

– where the Notch cycle terminates upon signaling activation.  

 

 

 

 



116 
 

 
Figure 41: Schematic of the HCS pipeline and image analysis strategy 

The primary screen was performed on MCF10-A cells on a 384-well format (A-J). Genes 

belonging to a subset of the human genome (grouped in 10 libraries), were knocked down for 

72 hours by RNAi (A). The knockdown was performed in 6 replicates for each of the 10 libraries. 

3 of the 6 replicates (B) were stimulated with EGTA and the other 3 (B’) left unstimulated. After 

2 hours they were subjected to automated IF, image acquisition and finally image analysis (C). 

An in-house built script was used for image analysis. The nuclei were masked using DAPI 

staining (D) and a cell surface mask applied using phalloidin staining (E). The phalloidin mask 

was overlaid on the Notch channel (F) to allow quantification of cell surface membrane Notch 

(G-H). The phalloidin channel, together with the DAPI channel enabled cell segmentation and 

identification of the cytoplasmic region (H), where cytoplasmic Notch was quantified. The DAPI 

channel was used for identification of cells, assessment of cell viability, cell segmentation as 

well as quantification of nuclear resident Notch (J). This allowed each gene knockdown to be 

defined by how it affects Notch levels and presence at various stations within the cell. 

 

Various image parameters were analyzed and their quantifications reported as z-

scores. The main parameters analyzed are: 

 QC1_NoOfAnalysedCells: a measure of cell viability. Low z-scores indicate low cell 

viability upon a gene’s knock down. 

 N1_NucNotch: a measure of nuclear Notch intensity. Low z-scores indicate reduced 

levels of Notch in the nucleus. In the EGTA treated cells, this suggests inhibited 
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trafficking of Notch into the nucleus. It could also be due to a general reduction in 

cellular Notch levels.  

 N2_CytoNotch: a measure of cytoplasmic Notch intensity. High z-scores indicate 

cytoplasmic accumulation of Notch, suggesting impaired trafficking and/or 

degradation. 

 N3_MembNotch: a measure of cell surface membrane Notch levels. Low z-scores 

indicate low amounts of Notch at the cell surface. In NoEGTA conditions, this could be 

due to a general reduction in cellular Notch, increased Notch activation or impaired 

outward trafficking of Notch. High z-scores suggest increased Notch synthesis or 

impaired endocytic trafficking of Notch from the cell surface. High z-scores in EGTA 

conditions would suggest impaired Notch cleavage. 

 N4_CellNotch: a measure of total cellular Notch levels. Low z-scores indicate overall 

low levels of cellular Notch and suggest reduced Notch biosynthesis. High z-scores 

indicate overall high levels of Notch. This could be due to increased Notch synthesis or 

accumulation on Notch in the cell.  

 N9_NoOfSpotsPerCell: a measure of Notch accumulation in intracellular vesicles. High 

z-scores imply impaired Notch trafficking either inwards from the cell surface or 

outward to the cell surface.  

 N5_PercentOfCellsWithSpots: A redundant measure of Notch accumulation in 

intracellular vesicles. Used in concert with N9_NoOfSpotsPerCell.  

 

 



118 
 

10.4 Candidate sorting 

 In order to select hits for primary validation, the candidates were sorted into groups on 

the basis of their effect on respective parameters (Figure 42). Z-scores directly inform on how 

knocking down a gene affects each parameter, with a negative score indicating a negative 

effect and vice versa. The lower or higher the z-score, the stronger the effect knocking down a 

gene has on the parameter in question. Genes represented in each library plate were knocked 

down in 6 replicates, half of which were treated with EGTA. Thus for each gene knocked down, 

z-scores were obtained for each parameter in the presence and absence of induced Notch 

cleavage. The two conditions were handled as independent experiments.  

 

 
Figure 42: Steps in primary screen candidate classification 

The primary screen was run on 2,749 genes with or without EGTA stimulation. Fluorescence 

images were analyzed and the quantified parameters reported as z-score values. A stepwise 

approach based on the z-scores was taken to categorize the genes into various classes (A-F, A’-

G’). Candidates whose knock down affected cells in a relatively identical manner were grouped 

together. Broken-line arrows indicate candidate groups subtracted from the main list at each 

sorting step. Solid-line arrows indicate the remainders after each sorting step. 
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 We first filtered out candidates with low cell viability by excluding those that had z-

scores < -0.5 for QC1_NoOfAnalysedCells. These candidates were labeled ‘cytotoxic’ and their 

knockdown was considered to be strongly anti-proliferative (Figure 43). As expected, PLK-1 

knockdown belongs to this class. Candidates with z-score values > -0.5 for this parameter were 

labeled ‘viable’. Both positive controls (Dharmacon’s siRNA and Sigma’s esiRNA targeting 

PSENEN) and the negative controls fall in the viable class. 

 

 
Figure 43: Excluding anti-proliferative candidates 

Candidates with very few analyzed cells were excluded from further analysis as their 

knockdown is anti-proliferative (A-B). The same genes were knocked down in A and B and EGTA 

used to stimulate Notch cleavage in B. Each point represents a candidate’s z-score for 

QC_NoOfAnalysedCells (y-axis) against its z-score for N4_CellNotch (x-axis). Candidates with z-

scores < -0.5 for the former parameter were considered ‘cytotoxic’ (red points) and excluded 

from further analysis. The positive control for transfection efficiency, PLK-1, falls in this class. 

Candidates with values > -0.5 were considered ‘viable’ (blue points). Both positive (POS_D and 

POS_S) and the negative controls (NEG) fall into this class. Median z-scores are shown for the 

controls. Note that the negative controls have among the highest scores for number of cells 

analyzed. 
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 Some of the genes, when knocked down cause a general reduction in the cellular levels 

of Notch-1. To group such candidates together, we filtered out factors with z-scores < -0.5 for 

the parameter N4_CellNotch, which quantifies the overall levels of Notch-1 in the cell. Factors 

with z-scores below this cutoff were labeled ‘NotchReduced’ and their knockdown was 

considered to impede Notch production. Both positive controls fall in this class. Other factors 

may cause an increase in overall Notch levels. Such factors were isolated by filtering for 

candidates with a z-score > 3.0 for N4_CellNotch and were labeled ‘NotchIncreased’. 

Candidates with z-scores ranging from -0.5 to 3.0 were labeled ‘NothcUnchanged’. This 

category was considered not to affect the overall levels of cellular Notch (Figure 44). 

Candidates in this category possess a spectrum of cellular Notch levels ranging from ‘low’ in 

factors with z-scores close to -0.5 and ‘high’ for those with z-scores approaching 3.0. The 

‘NothcUnchanged’ category was carried forward for further scrutiny.  
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Figure 44: Excluding candidates with low Notch levels 

This step was performed on the ‘viable’ class of candidates (see figure 42 and 43). Those with 

too low or too high levels of Notch were separated from the rest of the candidates (A-B). Each 

point represents a candidate’s z-score for N4_CellNotch (x-axis) against its z-score for 

QC_NoOfAnalysedCells (y-axis). Candidates with z-scores < -0.5 for N4_CellNotch (red points) 

were considered to have too low levels of cellular Notch. Those with scores > 3.0 (blue points) 

were considered have high amounts of overall cellular Notch. Candidates with scores falling 

between the lower and upper thresholds were considered to have ‘unchanged’ levels of Notch 

in the cells (green points). As observed during the screen setup, both Dharmacon’s siRNA and 

Sigma’s esiRNA reduce the overall Notch levels in the cells, in both EGTA stimulated and non-

stimulated cells (A-B). The negative controls’ Notch levels fall in the middle of the 

‘NotchUnchanged’ distribution. 

 

 To identify candidates that affect Notch trafficking we relied on the parameters 

‘N9_NoOfSpotsPerCell’ and ‘N5_PercentOfCellsWithSpots’. These parameters are based on 

the fact that impairing Notch trafficking traps it in intracellular vesicles, where it appears as 

‘Notch spots’ upon immunostaining. The former parameter is an average of the number of 

Notch spots identified per cell. The latter is a quantification of the number of cells that contains 

Notch spots out of the total analyzed for each candidate. Although the two parameters are 

redundant, ‘N5_PercentOfCellsWithSpots’ allows the identification of factors that might 

escape ‘N9_NoOfSpotsPerCell’. We first set a filter on the parameter ‘N9_NoOfSpotsPerCell’ 

and classified candidates as affecting Notch trafficking if they had z-scores > 1.0 in NoEGTA or 
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> 2.0 in EGTA conditions. The remaining candidates were analyzed on the basis of 

‘N5_PercentOfCellsWithSpots’. Candidates were considered to affect trafficking of Notch if 

they had scores > 1.7 in NoEGTA conditions or > 1.3 under EGTA stimulation. The candidates 

emerging from this process were labeled ‘Trafficking’ (Figure 45). However, some candidates 

in this class might affect Notch degradation as the knock down of such factors also causes 

intracellular Notch spots. Hence the term ‘trafficking’ is loosely applied here to mean 

candidates that cause intracellular Notch accumulation. Higher cutoff thresholds were applied 

in EGTA conditions in order to limit spurious identification of candidates as affecting trafficking. 

This is necessitated by the observation that EGTA causes a ‘shrunken’ cell morphology 

characterized by a small cytoplasmic region and high nuclear Notch intensity. As such, some of 

the nuclear signal might appear cytoplasmic.  
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Figure 45: Identification of Notch trafficking candidates 

Factors affecting Notch trafficking were identified by the parameters ‘N9_NoOfSpotsPerCell’ 

and ‘N5_PercentOfCellsWithSpots’ (A-B). Each point represents a candidate’s z-score for the 

NoOfSpotsPerCell (x-axis) against the MembraneNotch intensity (y-axis). Z-scores for the 

NoOfCellsAnalyzed are color coded on a spectrum of blue to red, blue being the least and red 

the highest. Relative to negative controls (NEG), these candidates exhibit high intracellular 

Notch. A candidate’s effect on Notch trafficking can be inferred from these plots. For instance 

factors with high z-scores on the x-axis and low ones on the y-axis, may imply sub-optimal 

Notch trafficking to the cell surface. The shorter list from EGTA treated cells (B) is due to the 

application of higher z-score cutoffs and exclusion of candidates already present in the NoEGTA 

(A) list of trafficking candidates.  

 

A 

B 

NEG 

NEG 
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To identify candidates that increase membrane levels of Notch in NoEGTA conditions, 

we relied on the parameter ‘N3_MembNotch’. MCF10-A cells have a substantial amount of cell 

surface Notch, making it difficult to detect subtle changes. Therefore a high cutoff threshold 

was applied on this parameter and candidates considered to have increased ‘N3_MembNotch’ 

only if they had z-scores > 3.0 (Figure 46). This analysis was not deemed necessary in EGTA 

conditions as Notch is stripped from the cell surface membranes.  

 

 
Figure 46: Identification of candidates with increased cell surface Notch. 

Factors with increased Notch levels on the cell surface membrane were identified by the 

parameter ‘N3_MembNotch’. Each point represents a candidate’s z-score for 

‘N3_MembNotch’ (x-axis) against its z-score for QC1_NoOfCellsAnalyzed. Relative to the 

negative controls (NEG), these candidates possess high levels of Notch on their cell surfaces. 

This analysis was performed in the NoEGTA condition. 

 

 The main purpose for incorporating EGTA stimulation into the screen, was to identify 

factors that when knocked down prevent (or reduce) Notch cleavage and translocation into 

the nucleus. If present in our libraries, such candidates would have reduced amounts of nuclear 

Notch and hence low z-scores for the parameter N1_NucNotch. Low z-scores for this 

NEG 
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parameter might also be caused by trafficking factors as they may hinder Notch from getting 

into the nucleus. To ensure that we were not considering factors with reduced overall Notch 

levels, this analysis was performed on the ‘NotchUnchanged’ class of candidates (Figure 44 B). 

To identify candidates with reduced levels of nuclear Notch, we filtered for factors with z-score 

values < -0.5 in N1_NucNotch (Figure 47 A). To identify candidates with high levels of nuclear 

Notch under EGTA stimulation we filtered for those with z-scores > 1.5 in N1_NucNotch (Figure 

47 B). Such an increase in nuclear Notch upon EGTA treatment might be due to increased 

membrane Notch levels, increased efficiency of Notch activation upon knock down of 

respective genes or increased cNICD-1 stability. This might also be caused by impaired Notch 

entry into the nucleus as perinuclear Notch may appear to be nuclear. 

 

 

Figure 47: Candidates affecting nuclear Notch levels in EGTA conditions 

To identify candidates that affect levels of nuclear Notch under EGTA treatment, the 

‘NotchUnchanged’ list (figure 44 B) was analyzed on the basis of ‘N1_NucNotch’ (A-B). Z-score 

cutoffs were established so as to identify factors with reduced nuclear Notch (A) or increased 

nuclear Notch (B), in relation to the negative controls (NEG). Each point represents candidate’s 

z-score for nuclear Notch intensity against its z-score for the number of analyzed cells. Some 

of the candidates in both A and B might upon knockdown, affect Nuclear Notch by impeding 

its trafficking.  

NEG 
A B 
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To identify factors that might affect Notch cleavage at the cell surface, we plotted 

‘N1_NucNotch’ against ‘N3_MembNotch’ for the genes identified (on Figure 47 A) as having 

reduced nuclear Notch (Figure 48). We then visually inspected the candidates that had low z-

scores for ‘N1_NucNotch’ and high ones for ‘N3_MembNotch’. Such candidates were likely to 

have more Notch-1 on their cell surfaces and less in their nuclei relative to negative controls, 

implying reduced Notch cleavage. We however could not verify with confidence, any 

candidates as presenting this phenotype.  

 

 
Figure 48: Possible inhibitors of Notch cleavage upon EGTA stimulation 

To identify candidates with inhibited Notch cleavage, factors with reduced nuclear Notch 

under EGTA conditions were analyzed on the basis of ‘N1_NucNotch’ and ‘N3_MembNotch’. 

Each point represents a candidate’s z-score for nuclear Notch (x-axis) against its z-score for 

membrane Notch (y-axis). Relative to the negative controls (NEG), this group of candidates 

possesses low nuclear Notch. Low nuclear Notch levels might be due impaired Notch trafficking 

into the nucleus or reduced Notch cleavage. Upon visual inspection of the candidate’s images 

we could not confidently identify factors with the latter effect.  

 

 

 

NEG 
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Candidates that did not satisfy the criteria for grouping into any of the described 

categories, whether in the NoEGTA or EGTA conditions, were labeled ‘No effect’ (Figure 43). 

Members of this list were regarded as not to having an effect on the Notch receptor upon 

knock down. 

 

10.5 Candidate selection for validation 

 In the primary screen each gene was targeted for knock with a pool of 4 siRNA. This 

approach is aimed at minimizing off-targeting while maximizing the on-target effects (Jackson 

& Linsley 2010). However, this strategy does not rule out off-targeting and therefore 

necessitates a deconvolution step to tease apart which (and how many) of the 4 siRNA present 

in the pool are responsible for the observations made. Alternatively, one may perform the 

validation using a reagent that is unrelated to the one used for the primary screen. The latter 

approach is more feasible in terms of effort and costs. To generate a list of candidate genes for 

validation, we selected the best ranking candidates from each of the categories outlined on 

figure 42. This process yielded 231 candidates for validation using Sigma’s esiRNA (Table 1). 

The selected candidates were inspected to verify presence of the relevant phenotypes as 

reported by automated image analysis.  
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 Phenotypic class Candidates 

a Increased overall Notch EGTA 4 

b Increased overall Notch NoEGTA 12 

c In common between trafficking NoEGTA and trafficking EGTA 24 

d Increased Nuclear Notch in common with trafficking NoEGTA genes 19 

e Unique to trafficking EGTA 28 

f Increased Membrane Notch NoEGTA 9 

g Unique to increased Nuclear Notch 43 

h Reduced Notch overall 6 

i Putative inhibitors of Notch translocation 4 

j No effect  5 

k Best from the remaining trafficking NoEGTA candidates 77 

l total 231 

Table 1: Representation of candidate classes in the validation list 

The validation list was generated with representatives of the phenotypic classes shown on 

figure 43 except the ‘cytotoxic’ one. Candidates were prioritized by strength phenotype. 

Where only a few candidates were present, they were all included as long as the phenotype 

was confirmed by visual inspection of the respective images. Since some candidates emerged 

in more than one group, the various categories were compared and the candidates in common 

given first priority. For instance candidates in common between ‘trafficking EGTA’ and 

‘trafficking NoEGTA’ were considered first priority trafficking candidates. The phenotypes of 

231 selected candidates were visually confirmed from the images. Those not confirmed were 

excluded and replaced with lower priority candidates of the same phenotypic class. 

 

 Because their lists were short, all candidates belonging to the ‘increased overall Notch’ 

categories in NoEGTA and EGTA conditions were selected for validation. Out of the 8 

candidates identified under EGTA conditions, 4 were also present in the list from NoEGTA 

conditions, leaving 4 candidates for ‘increased overall Notch EGTA’. Out of the 16 candidates 

classified as causing increased ‘increased overall Notch NoEGTA’, the 12 confirmed by visual 

inspection of corresponding images were taken. 

 Since some trafficking candidates are bound to be present in the ‘trafficking NoEGTA’ 

and ‘trafficking EGTA’ classes, the lists were compared. The 24 candidates in common between 

them, were considered ‘high confidence’ mediators of Notch trafficking. The remaining 28 
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candidates ‘Unique to trafficking EGTA’ were included on the validation list as affecting Notch 

trafficking ‘only’ in the presence of EGTA. 

Depleting extracellular Ca2+ causes a ‘shrunken’ cell morphology. The cells separate 

from one another due to disruption of the Ca2+ stabilized cell junctions (Hirano et al. 1987) and 

appear rounded with a very small cytoplasmic area. Hence cytoplasmic Notch might in some 

instances be quantified as nuclear Notch. Because of this ‘shrunken’ morphology trafficking 

candidates might be grouped in the ‘increased nuclear Notch’ class under EGTA conditions. By 

comparing the ‘increased nuclear Notch EGTA’ list with the remaining ‘trafficking NoEGTA’ 

candidates, 19 candidates were found in common. These 19 were considered ‘high ranking’ 

trafficking candidates. The remaining 43 candidates unique to the ‘increased nuclear Notch 

EGTA’ group were considered to somehow increase the efficiency of Notch cleavage upon 

EGTA stimulation and were included to the list for validation.  

 All candidates belonging to the ‘Increased Membrane Notch NoEGTA’ class were 

selected for validation. 

 From the data analysis we observed that 554 and 564 candidates reduced overall levels 

of Notch in NoEGTA and EGTA conditions respectively. Candidates in this class possibly affect 

Notch synthesis and might be general regulators of transcription. We selected representative 

candidates for validation from this class by taking the highest ranking 6 in common between 

the NoEGTA and EGTA conditions.  

 Candidates that inhibit Notch cleavage upon EGTA stimulation are expected to have 

low nuclear Notch intensity and high levels of membrane Notch relative to candidates that do 

not. To select representative candidates from this class, we ranked those with reduced nuclear 

Notch by the amount of membrane Notch (Figure 48). Candidates that had the least amount 

of nuclear Notch and highest amounts of membrane Notch were visually inspected to verify 
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this phenotype. However none of them were convincingly found to possess this phenotype 

and the best 4 were selected to represent this category.  

 From the list of candidates classified as having no effect on the Notch receptor, the best 

5 were selected on the basis of their phenotypic semblance to non siRNA transfected negative 

controls. These were included in the list for validation. 

 Finally, the remaining ‘trafficking NoEGTA’ candidates were ranked by strength of 

phenotype and the highest ranking ones selected to bring the list of validation candidates to 

231. Images representing the different phenotypic classes are shown (Figure 49 A-L).  

 

 

 

 

 

 

 

 

 

 



131 
 

 

 

 
Figure 49: Representative images of the Notch phenotypic categories 

Wide field fluorescence images of MCF10-A cells immunostained for the Notch-1 receptor 

(panels I-III). The indicated genes were knocked in 384 well format for 72 hours before 

immunostaining. Where shown, EGTA was added for 2 hours prior to immunostaining. 

Following image analysis, the candidates were sorted into groups depending on how they 

affected the Notch-1 receptor. Relative to respective negative controls these phenotypic 

classes include: reduced Notch overall (A-A’), increased Notch overall (B-B’), Increased Notch 

overall in EGTA conditions (C-C’), Increased membrane Notch (D-D’), trafficking (F-F’ and J-J’), 

No effect (H-H’) and probable inhibition of Notch cleavage (L-L’). 
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11.  Discussion 

11.1 Screen design 

To uncover novel components of the Notch pathway, we coupled siRNA and 

immunofluorescence to screen for factors that affect the Notch receptor during any of the 

major events fundamental for productive Notch signaling; i.e. synthesis, trafficking, 

degradation, cleavage and nuclear translocation. Most of our knowledge of the Notch pathway 

comes from screens in Drosophila and C. elegans  (Guruharsha et al. 2012) but screens in 

human cells have also been reported (Moretti et al. 2010; Krämer et al. 2013; Roti et al. 2013; 

Izrailit et al. 2013). Compared to previous screens, ours has the following strengths: a) being 

performed in human cells, it allows identification of factors that affect mammalian Notch 

signaling, including those without orthologues in lower organisms; b) MCF10-A cells are non-

transformed, allowing identification of modulators of basal Notch signaling; c) MCF10-A 

endogenously express Notch pathway components and obviate the need to transfect 

constructs; an important factor in light of gene dosage sensitivity to Notch (Guruharsha et al. 

2012); d) Since the only manipulation is gene knockdown, phenotypes can be directly 

attributed to target genes.  

An unexpected shortcoming of our approach is the inability to confidently detect 

regulators Notch cleavage. This is due to altered cell morphology and lack of a positive control 

for impaired Notch cleavage. Physiologic NICD levels are hard to detect by 

immunofluorescence (Schroeter et al. 1998), necessitating EGTA stimulation. However, Ca2+ 

depletion disrupts cell-cell adhesion (Hirano et al. 1987), making it difficult to accurately 

segment the cells for membrane Notch quantification. Knocking down PSENEN as a potential 

positive control for impaired Notch cleavage caused reduced Notch levels. PSENEN loss is 
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reported to cause ER Ca2+ leakage (Tu et al. 2006; Bezprozvanny 2013), an event that impairs 

protein synthesis (Brostrom & Brostrom 2003). The possibility that loss of PSENEN reduces 

Notch synthesis thus deserves further attention.  

The human genes that we screened are either demonstrated or anticipated to interact 

with known drugs (Hopkins & Groom 2002; Russ & Lampel 2005). This has attractive 

implications: a) Inhibitors of promising candidates can make excellent investigative tools and 

accelerate hit characterization and b), identification of novel modulators of the Notch pathway 

against which inhibitors exist, reciprocally identifies potential drugs against Notch associated 

pathologies.    

 

11.2 Candidate classification and possible implications 

The 231 candidates belong to the different Notch phenotypic classes. The power of this 

approach in identifying factors that affect intracellular localization of Notch-1 and possibly its 

signaling output is exemplified by the identification cathepsin E (CTSE) and SORCS3. In CTSE 

knockdown cells Notch accumulates intracellularly. This is expected as loss of CTSE has been 

reported to impair lysosomal function, causing intracellular accumulation of undegraded 

material (Tsukuba et al. 2013). In SORCS3 knockdown cells, a strong increase in NICD is 

observed upon EGTA stimulation, implying increased Notch cleavage by γ-secretase upon 

SORCS3 knockdown in relation to mock knockdown cells. This is in line with reported findings 

that SORCS3 is a negative modulator of γ -secretase function (Reitz et al. 2013).  

The majority of the 231 candidates fall in the trafficking class. This is expected since we 

broadly define trafficking to cover all candidates that present cytosolic Notch accumulation. 

Such factors might affect diverse processes like Notch endocytosis, exocytosis, recycling, 
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degradation, maturation and nuclear import. While it is premature to make predictions or 

conclusions, such candidates, if modulating Notch trafficking, may present a therapeutic 

potential (Krämer et al. 2013; Roti et al. 2013). 

Some candidates appear to affect Notch trafficking in the presence of EGTA but not in 

Non-EGTA conditions, implying that they only affect trafficking of cleaved Notch. Such 

candidates would present the prospect of blocking nuclear translocation of NICD when 

ectopically generated, as happens in T-ALLs and some breast cancers (Weng et al. 2004; 

Robinson et al. 2011), while sparing wild type Notch.  

A tenth of the candidates, appear to cause cell death only conditions of EGTA 

stimulation. This suggests that the absence of such genes in the presence of excessive Notch 

activity may induce cell toxicity, an attractive prospect for selectively killing cells that possess 

oncogenic Notch function. 

A third of the candidates that do not cause cell toxicity display low Notch levels. This 

could be due to a general suppression of protein production or a transcriptional repression of 

Notch synthesis. Other candidates display strongly increased Notch levels. This could be due 

to impaired Notch turnover or increased transcriptional Notch production. Little is currently 

known about how Notch receptors are transcriptionally regulated (Wu & Bresnick 2007) and it 

will be curious to see whether such candidates act on Notch transcriptionally. Candidates that 

cause overall Notch reduction might have important implications for cancers caused by loss of 

Notch function (Rangarajan et al. 2001; Nicolas et al. 2003; Nguyen et al. 2006; Dotto 2008) 

while those causing increased Notch levels might have oncogenic Notch roles (Weijzen et al. 

2002). 
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Following EGTA stimulation, some candidates present increased nuclear Notch relative 

to negative controls. Such candidates might modulate NICD stability in the nucleus, similarly 

to FBXW7 (Oberg et al. 2001).  

It is difficult to identify candidates whose knockdown affects Notch cleavage at the cell 

surface. Such candidates are expected to have low levels of nuclear Notch and high levels of 

Notch at the cell surface following EGTA treatment. However, considering the tight regulation 

of physiological Notch signaling, only a small number of proteins are expected to affect Notch 

cleavage by γ-secretase at the cell surface. With a coverage of less than a 5th of the genome, 

this likelihood is even lower in our screen.   

 

11.3 Candidate validation and hit follow-up 

In order to exclude off-targets, the 231 candidates will be retested with esiRNA. Since 

this assay does not reveal the status of Notch signaling, we will use the Notch signal 

transduction reporter, RBP-Jκ-Luc, to identify factors that affect Notch transcriptional output. 

The validated list of novel putative regulators of Notch signaling will be analyzed to identify 

those that have clear orthologues in Drosophila. These will be knocked down in vivo, in larval 

wing imaginal discs, pupal nota, and adult follicle cells and then scored for well-characterized 

Notch associated phenotypes. To this end, we will use the inducible GAL4/UAS system to drive 

tissues specific expression of RNAi hairpins from available transgenic fly stocks. We will also 

evaluate the effects of knockdowns on Notch signaling by using established Notch reporters. 

In addition, we will immunostain Drosophila Notch to determine whether intracellular 

localization is perturbed as predicted by the screen. Validation in flies will provide initial 

evaluation of the importance of the identified genes in tissue and organ physiology. 
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