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Introduction

In Nature, symmetries help us to describe a complex physical system in a simple way

and to better understand its behavior. Indeed, symmetries are strongly related to con-

servation laws which, in quantum mechanics, translate into good quantum number to

describe the system. The search for symmetries is a fundamental goal in all fields in

physics. At the same time, the possible breaking of a symmetry can open the gates for

new and unexpected scenarios.

In a nuclear system many symmetries were identified. One of these is the isospin

symmetry, which plays a key role in nuclear structure and nuclear reaction.

The isospin symmetry was introduced by Heisenberg in 1932 to describe the exper-

imental evidence of the charge independence of the nuclear interaction. In the isospin

formalism neutrons and protons are considered as different states of a unique particle,

the nucleon, with a value of 1/2 or -1/2 of the projection Iz of the isospin operator I.

A nucleus has a well defined value of Iz=(N-Z)/2, while I, according to quantum me-

chanics rules, can assume values ranging between |(N-Z)|/26I6(N+Z)/2. The nuclear

ground state corresponds to the lower value of isospin I = Iz. Therefore, for self-conjugate

nuclei the isospin ground state is I = 0.

This symmetry, which can be viewed as a rotational invariance in isospin space, im-

plies that the nuclear Hamiltonian commutes with the total isospin operator I and thus

the nuclear states can be labelled by the isospin quantum number. The isospin quantum

number has an important role also in nuclear reaction, because it is a quantity which

must be conserved. Indeed, reactions that do not conserve isospin are strongly inhib-

ited.
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In the atomic nuclei, the presence of the Coulomb interaction between protons breaks

this symmetry and induces a mixing between nuclear states with different isospin val-

ues. In particular the stronger mixing is between states with a difference in isospin equal

to one (∆I = 1). In this situation it is impossible to assign to a nuclear state a unique

value of the isospin. This effect increases with the number of protons in the nucleus.

The knowledge of the isospin mixing is a fundamental quantity needed both to ex-

plain the properties of the isobaric analogue state (IAS) and for its connection with the

test of the unitarity of the Cabibbo-Kobayashi-Maskawa matrix (CKM). In fact, the most

precise value of the first term of the CKM matrix Vud is extracted from the ft values of

0+ → 0+ super-allowed Fermi β decays with several small corrections. One of these

corrections, called δC, depends on the isospin-mixing probability.

The breaking of isospin symmetry can be observed through decays which would be

inhibited by selection rules. This is the case of the electric dipole transition (i.e. E1 tran-

sition) from self-conjugate nuclei in a I=0 configuration. To fully exploit this property,

one should go in the region of the Giant Dipole Resonance (GDR), where most of the E1

strength is concentrated. This approach has been employed to measure the isospin mix-

ing in nuclei at finite temperature T, formed in fusion evaporation reactions. In this type

of experiments the use of self-conjugate projectile and target nuclei ensures the popula-

tion of a compound nucleus (CN) with I=0. The hindrance of the GDR gamma decay

can be measured and thus the mixing amplitude deduced. A partial restoration of the

isospin symmetry is expected at high temperature due to the decreasing of CN lifetime

for particle decay.

In the work of A. Corsi et al. [68], the isospin mixing was investigated at the N = Z =

40 value, namely in 80Zr, at T = 3 MeV, while previous works concern CN with smaller

N = Z values only. This is the heaviest N = Z nucleus that is possible to form using a

fusion reaction with stable beam and target. The work on 80Zr of Ref. [68] showed that

by using the latest prediction of the isospin mixing value (based on EDF models [49])

together with the expression giving the T dependence of the isospin mixing [52], one

finds a good agreement with the measured value at T = 3 MeV. This finding indicates that

if one has an additional experimental point at another temperature one could deduce,

from the combined analysis of the data, the value at T = 0 (with associated error bar).

The additional point has to be at temperature lower than 3 MeV in order to check the

predicted trend of the temperature dependence of the isospin mixing.

In this Thesis we report on a new study addressing the problem of isospin mixing in
80Zr, for which, for the first time, the different residual nuclei were also measured. The



aim of the Thesis is to make a combined analysis of this new datum for isospin mixing

at T ≈ 2 MeV with the previous one at T ≈ 3 MeV, in order to :

• test experimentally the trend of the temperature dependence of the isospin mixing;

• extract for the first time the value of the isospin mixing for Z = 40 at zero tempera-

ture;

• extract, for the first time, the isospin mixing correction δC necessary to obtain the

correct ft value of super-allowed Fermi transitions.

The experiment was performed at the Laboratori Nazionali di Legnaro of the Istituto

Nazionale di Fisica Nucleare (INFN, Italy) employing ion beams from the TANDEM

accelerator complex. Two fusion reactions were used: one symmetric in target and pro-

jectile, forming the compound nucleus in the isospin I=0 channel, the other forming a

very similar compound nucleus with I6=0, used in the analysis as reference. In particu-

lar, the used reactions are 40Ca + 40Ca at Ebeam = 136 MeV (I = 0 channel) leading to the

compound nucleus 80Zr at E∗ = 54 MeV and the 37Cl + 44Ca at Ebeam = 95 MeV (I 6= 0

channel) leading to 81Rb at E∗ = 54 MeV.





CHAPTER 1

Isospin symmetry in nuclear physics

In this chapter the main aspects concerning the isospin symmetry in nuclear physics

are presented. In particular, the effects of the breaking of this symmetry and how they

can be measured are described. Moreover, in order to have a clear dissertation of the

physics case, a general overview about the fusion reaction process and the Giant Dipole

Resonance is also reported.

1.1 Compound nucleus reaction

When two nuclear systems collapse forming a highly excited compound system, this

process is called Fusion Reaction. The ”new” nuclear system (the so-called Compound

Nucleus (CN)) has too much excitation energy to be stable, but it lives sufficiently long

for sharing its excitation energy uniformly among all its constituent nucleons (Fig.1.1

and all figures hereafter). The typical lifetime of the CN is greater than the orbital period

of a nucleon, 10−22. This requires that the mean free path of the projectile in the nucleus

is much shorter than the nuclear radius. Later, the CN decays via particle emission (n, p,

α or γ).

The foundations of the theory of compound nucleus reactions were laid by Niels

Bohr in 1936 ( [1, 2]) and in next years by Bethe, Weisskopf and Ewing ( [3–5]), which

developed the evaporation theory. Later, Hauser and Feshbach ( [6, 7]) developed the

quantum-mechanic formalism to describe the system.

Several review papers are present in the literature that describes the formal develop-

ment of the compound nucleus theory ( [8, 9]). In this thesis, a brief description of the

compound nucleus reaction is reported.
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1.1.1 CN formation

The formation and the one-step decay of the compound nucleus can be written schemat-

ically as:

A+B → C∗ → R∗ + r (1.1)

where R is the residual nucleus after the decay of the particle r.

The maximum excitation energy (E∗CN ), in the center of mass frame, given to the

system by the fusion reaction is provided by the formula:

E∗CN = Ecm +Q (1.2)

where Q is the Q-value of the reaction, while Ecm is the kinetic energy in the center

of mass of the incoming ion:

Ecm = Elab
Mt

Mp +Mt
(1.3)

Elab is the kinetic energy in the laboratory frame of the projectile nucleus and Mp is

its nuclear mass, while Mt is the nuclear mass of the target. Ecm must be larger than

the repulsive interaction originated from the Coulomb interaction and the centrifugal

potential:

Ecm >
Z1Z2e

2

Rc
+

~2j(j + 1)

2µRc
(1.4)

where Z1 and Z2 are the charge of the target and the projectile, Rc is the Coulomb

barrier radius, j is the angular momentum of the system and µ is the reduced mass.

The energy sharing is so complete that the system decay is completely independent

on its formation. This is the key assumption of the Bohr-independence hypothesis: the

compound nucleus decay depends only on its excitation energy, angular momentum

and parity, but not on how it is formed.

The CN is formed at high excitation energy and thus the energy distance between two

levels becomes smaller than their decay width (Γ� ∆E). In this situation, a microscopic

discrete description of the nuclear states is no more convenient and it is useful to describe

the CN using a continuum density of levels ρ. According to Bethe’s Fermi-gas formula

the level density can be written as:

ρ(E∗) ≈ e2
√
aE∗

√
48E∗

(1.5)
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FIG. 2 Bohr’s wooden toy model of the compound nucleus.
From Nature (1936).

at least in light nuclei, total isospin T ) and ask: Can
we identify generic spectral properties of a system with
strong interactions? Fig. 3 shows six spectra, all having
the same total number of levels, and spanning the same
total energy interval, and therefore having the same av-
erage level spacing. The spectra differ only in the way
the spacings between neighboring levels are distributed.
For the one–dimensional harmonic oscillator (the right-
most spectrum), all spacings are identical. The spacing
distributions differ more and more from a delta function
as we go ever more to the left. The random–matrix ap-
proach characterizes spectra by their fluctuation proper-
ties: The distribution of spacings of nearest neighbors is
the first and obvious measure for spectral fluctuations.
It is referred to as the nearest–neighbor spacing (NNS)
distribution. There are other measures such as the cor-
relation between nearest spacings, between next–nearest
spacings, etc. Some of these are introduced below.

To implement this approach, we need to develop a sta-
tistical theory of spectra. Random matrices provide the
tool to do so. Instead of considering the actual nuclear
Hamiltonian (which was not known in the 1950s) we con-
sider an ensemble of Hamiltonians (each given in matrix
form). The ensemble is defined in terms of some prob-
ability distribution for the matrix elements, hence the
name random matrices. The ensemble is chosen in such
a way that the member Hamiltonians incorporate generic
features. The spectral distribution functions are calcu-
lated as averages over the ensemble and are compared
with the actual fluctuation properties of nuclear spectra.

Canonical random–matrix theory (RMT) as developed
by Wigner and Dyson – see the compilation by Porter
(1965) – classifies systems by their symmetry properties.
Nuclei are invariant under time reversal. The matrix rep-
resentation of the nuclear Hamiltonian can accordingly
be chosen real and symmetric. The random–matrix en-
semble which is considered almost exclusively in the se-
quel is therefore an ensemble of real and symmetric ma-

FIG. 3 Six spectra with 50 levels each and the same mean
level spacing. From right to left: The one–dimensional har-
monic oscillator, a sequence of zeros of the Riemann Zeta–
function, a sequence of eigenvalues of the Sinai billiard (see
Section II.F), a sequence of resonances seen in neutron scat-
tering on 166Er, a sequence of prime numbers, and a set of
eigenvalues obeying Poisson statistics (see section II.F). From
Bohigas and Giannoni (1984).

trices.

The random–matrix approach does not aim at calculat-
ing individual spectra and at comparing them with data.
Rather, one determines the joint probability distribution
of the eigenvalues and from here calculates certain spec-
tral fluctuation measures such as the NNS distribution
as averages over the ensemble. RMT contains one (or, in
the general case, a number of) input parameter(s). In the
case of spectral fluctuations, that input parameter is the
average nuclear level spacing. The fluctuation measures
predicted by RMT are scaled by the average level spac-
ing and, thus, parameter–free. If the observed spectral
fluctuation properties agree with RMT predictions, and
if no further information on the system is available, one
concludes that the system is generic. This implies that no
information beyond the average nuclear level spacing can
be deduced from the available spectral information. If,
on the other hand, the data do not agree with RMT pre-
dictions, this indicates that the spectrum is not generic
and that the available spectral information may be used
to deduce further properties of the system. The harmonic
oscillator in one dimension is a case in point.

The random–matrix approach to spectral fluctuations
(and to other properties of complex systems) has some
similarity to classical thermodynamics. There one is also
interested in a generic description of systems in terms of

Figure 1.1: Famous picture which represents the Bohr’s wooden toy model of the compound nu-

cleus. The incident nucleon carries kinetic energy (as indicated by the billiard cue), collides with

the nucleons in the target and shares its energy with many nucleons [1].

where a is the level density parameter a = A/[7− 10]MeV −1 (see in Fig.1.2 the mea-

sured mass dependence [10]).SYSTEMATIC DESCRIPTION OF EVAPORATION SPECTRA . . . PHYSICAL REVIEW C 82, 014610 (2010)

at T = 3 MeV. The dashed curves show three transmission
coefficients associated with the three radii in Eq. (9) and the
solid curve is the final result, the average of the three dashed
curves. The more gradual rise of the transmission with kinetic
energy gives rise to a broader peak in the predicted α-particle
spectra.

Results obtained with this prescription are indicated by
the solid curves in Figs. 1 to 5 and generally reproduce the
α particle data quite well.

Because of their lower absolute Coulomb barriers, the effect
of the distribution is much less for protons and is practically
absent for neutrons. However, the agreement for protons is
generally improved.

One should note that the magnitudes of the fluctuations are
very large. For a temperature of T = 3 MeV, δr is ∼25%
of the nuclear radius for A = 160. For ellipsoidal shape
fluctuations in Ref. [51], the full width at half maximum of
the Coulomb barrier distributions was predicted to be only
∼7%. This suggests that either higher-order shape fluctuations
are required or the fluctuations are associated with density
profile.

The effects of the barrier distributions is to increase
the width of the kinetic-energy window around the barrier
where the transmission coefficients change significantly. For
example, in Fig. 7, the transmission coefficient changed from
10% to 90% over an interval of 4.5 MeV for IWBC calculation
[T R0


 (ε)]. However, with Eq. (9), this increased to 9.2 MeV. An
alternative way of increasing the width of this window would
be to make the radial width of the barrier narrower. Narrow
barriers allow for more tunneling and enhance the transmission
just below the barrier and also decrease it just above the
barrier. However, it is difficult to see how the barrier could
be made significantly narrower as the decrease in the potential
at large distances is dictated by the Coulomb potential, which
falls off slowly. Thus, barrier distributions are the most likely
explanation.

B. Level-density parameter

The slope of the exponential tail of the kinetic-energy
spectrum gives sensitivity to the nuclear temperature T

[Eq. (8)]. The temperature is dependent on the rate of change
of the level density, but not its absolute value.

The Fermi-gas level-density prescription of Sec. III can be
further refined by including the pairing interaction [55,56]. For
the spin and excitation-energy region of interest in this work,
the pairing gap has vanished and we can use a backshifted
Fermi-gas formula by substituting the following definition of
the thermal excitation energy:

U = E∗ − Eyrast(J ) + δP, (11)

where δP is the pairing correction to the empirical mass
formula.

At low excitation energies, the absolute level density can be
measured via neutron-resonance counting. The level-density
parameters extracted from such data in Ref. [57], using the
backshifted Fermi-gas formula, are plotted in Fig. 8. The
level-density parameter has strong fluctuations owing to shell

A
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 ]
−1
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FIG. 8. (Color online) Mass dependence of level-density parame-
ters. Experimental points from neutron-resonance counting are shown
as the solid square data points. The open circles are fits obtained using
Eq. (12).

effects, which can be parametrized as [58]

a(U ) = ã

[
1 − h(U/η + J/Jη)

δW

U

]
, (12)

where δW is the shell correction to the liquid-drop mass and
ã is a smoothed level-density parameter. With h(x) = tanh(x),
we obtain a best fit (open circles) to the experimental data with
η = 19 MeV and ã = A/7.3 MeV−1.

The angular-momentum dependence of h(x) is irrelevant
for neutron resonances which are S wave in nature. However,
for fusion reactions, it was decided to include a fading out of
shell effects with spin. Although at high spins and low values
of U , shell corrections are still important, the configuration of
the nucleus has changed from the ground state and the use of
the ground-state shell correction is wrong. Rather than use an
incorrect shell correction, it was decided to use no correction
at all. The parameter Jη was set to 50 h̄.

The preceding prescription for the fadeout of shell and
pairing corrections is used in all GEMINI++ calculations with
separation energies Bi , nuclear masses, shell δW , and pairing
δP corrections obtained from the tabulations of Möller et al.
[59].

Predicted kinetic-energy spectra obtained using this pairing
and shell-modified Fermi-gas level-density prescription are
shown as the long-dashed curves in Figs. 1 to 5. They
significantly underestimate the yield in the exponential tails
for the heavier systems. This disagreement gets worse with
both increasing CN mass and increasing excitation energy.
These results suggest that an excitation-dependent value of ã

is needed.
The value of the smoothed level-density parameter ã used

in these calculations is large compared to estimates from
the independent-particle model of ã = A/10−A/11 MeV−1

[60,61] and the difference has been attributed to correlations.
In particular, it is the long-range correlations associated with
coupling of nucleon single-particle degrees of freedom to
low-lying collective modes and giant resonances that are most
important.

It has been proposed that long-range correlations modify
the Fermi-gas level density in two ways. The first of these
is called collective enhancement [62,63]. For example, if
we have a deformed nucleus, then for each single-particle
configuration, one can consider collective rotations. In addi-
tion, both spherical and deformed nuclei can have collective
vibrational motions. These collective motions give rise to

014610-7

Figure 1.2: Mass dependence of level-density parameters. Experimental points from neutron-

resonance experiments are shown as the solid square data points. The blue line is the linear in-

terpolation of the data in comparison with another trend (green line). The red dots were obtained

with a more sophisticated model taking into account shell effect for the single nucleus [10].



Thanks to the Bohr-independence hypothesis and the high density of states, the CN

structure and decay can be described using a statistical approach: all the degrees of free-

dom of the system are in equilibrium and thus there is an equal probability distribution

of all states with the same quantum number (momentum J , parity π) and excitation

energy (E∗). In addition, the detailed balance is valid: the transition matrix element

associated to the reaction a+ b→ CN is the same as the decay process CN→ a+ b.

As reported in Ref. [11], the probability to find a nucleus in a state k at an energy Ek,

momentum Jk and parity πk can be defined as

pk =
δ(Ek − E∗)δ(Jk − J)δ(πk − π)

ρ(E∗)
(1.6)

where ρ(E∗) is the density of states. This probability is called micro-canonical. The

nuclear level density can be written using the entropy S of the system:

ρ = ρ0exp(S(E∗)) (1.7)

In analogy with a classical system in thermodynamical equilibrium, it is possible to

introduce the concept of nuclear temperature:

T = (
dS

dE∗
)−1 = (

1

ρ

dρ

dE∗
)−1 (1.8)

It is worth to note that in general, a statistical description of a physical system is

allowed in the limit of a large number of particles which constitute the system. Therefore,

the analogy between the nuclear system (particles ≈ 100) and a classic gas (particles ≈
1023) could be considered too simple if not completely wrong. The reason of the success

in the statistical description of the compound nucleus is the large number of states: as

example, one obtains using Eq.1.5 for a nucleus with A = 100 andE∗ = 50 MeV that there

are 1017 states).

From Eq. 1.8 and Eq. 1.5 one can write the relation between T and E∗:

E∗ = aT 2 (1.9)

The Bohr independence hypothesis has implications that can be tested experimen-

tally. It is possible, for instance, to form the same compound nucleus in different ways

checking that the particles emitted are identical. The energy distributions of these parti-

cles an be calculated and compared with the experiment, as well as their angular distri-

butions. In the continuum, the energy distributions are expected to have the Maxwellian



form (as in the classical gas) and the angular distributions are expected to be symmetric

about 90◦ ( [12,13]). Anyway, as the energy of the projectile increase, the hypothesis that

the particle emission takes place after the statistical equilibrium is less valid. Indeed,

there is an increasing likelihood that particles are emitted before the statistical equilib-

rium this is the pre-equilibrium process ( [14, 15]).

1.1.2 CN decay

The compound nucleus decay can described successfully using the statistical approach

proposed by Hauser and Feshbach ( [6, 7]), which takes into account explicitly the spin

degree of freedom. The key assumption of this formalism is that all nuclear degrees

of freedom have reached a statistical equilibrium before the cooling process. The com-

pound nucleus fusion cross section σfus depends on the total angular momentum of the

system (J):

σfus(J) =
∑
J

πλ2 2J + 1

1 + exp(
J − J0

d
)

(1.10)

The quantity J0 is the angular momentum cut-off and it can be constrained from the

fusion cross section. This is either measured, constrained from systematics, or obtained

from the Bass model [16] with a good accuracy. d is the diffuseness and it can vary from

2 to 10 ~.

The partial decay width of a CN of excitation energy E∗ and spin JCN for the evap-

oration of particle i is written as:

Γi(E
∗, JCN ) =

1

2πρCN (E∗, JCN )

∫
dε

∞∑
Jd=0

JCN+Jd∑
|JCN−Jd|

(1.11)

J+Sl∑
l=|J−Sl|

Tl(ε)ρd(E
∗ −Bi − ε) (1.12)

where Jd is the spin of the daughter nucleus; Si , J , and l, are the spin, total, and

orbital angular momenta of the evaporated particle; ε and Bi are is its kinetic and sepa-

ration energies; Tl is its transmission coefficient or barrier penetration factor; and ρd and

ρCN are the level densities of the daughter and CN, respectively.

In the case of γ decay the transmission coefficient is calculated as ( [17]):

Tl(Eγ) = ξlE
2l+1
γ (1.13)



Where ξ is a constant value which can be estimated from the strengths of transitions

between low-lying states in the mass region of interest or from the Weisskopf single-

particle estimate.

The CN decay can be divided in two main phases. After the compound system

formation, the excitation energy is higher than the nuclear binding energy (≈8 MeV)

and hence the CN loses energy emitting particles. In general, the neutron emission

is favourite because this particle does not have to cross the Coulomb barrier. In this

phase, the neutron decay is in competition with high-energy γ-decay coming from the

de-excitation of the Giant Resonances (typically with a branching ratio
Pγ
Pn
≈ 10−3). In

the second part of the CN decay the excitation energy is below the particle-emission

threshold and thus the nucleus can decay only via quadrupole γ transitions along to the

Yrast line (see the representation in Fig. 1.3).

1.2 Giant Dipole Resonance

The Giant Resonances (GR) are a nuclear excitation modes which played a key role in

the study of nuclear structure for their connection with the bulk properties of the nuclear

matter [18].

The IsoVector Giant Dipole Resonance (IVGDR), where protons oscillate against neu-

trons [19, 20], is one of the more studied resonance in the past. Its centroid is related to

the nuclear mass, while the width is related to different damping mechanisms [11, 18].

The IVGDR can be observed in photo-absorption experiments using a gamma beam

around 15 MeV. The photo-absorption cross section displayed clearly a resonant be-

haviour (see Fig.1.4) [21]. Because of the energy of the gamma projectile (~ωγ ≈ 15 MeV),

the corresponding wavelength (λγ ≈ 100fm) is larger than nuclear radius (R = 5 - 7 fm).

Therefore, the nucleus as a whole fill a constant electric field E. As a consequence protons

move in the direction of E, while neutrons move in opposite direction to keep the center

of mass at rest and to conserve momentum. On the other hand, The attractive nuclear

force acts as a restoring force which reverses the motion of the neutrons and protons.

The shape obtained in these (γ,n) experiments can be well reproduced using a Lorentzian

curve:

σ(E) =
σ0

1 + [(E2 − E2
0)2/E2Γ2]

(1.14)

where E0 and σ0 are the position and the cross section of the centroid respectively,

while Γ is the width of the distribution.



Figure 1.3: Schematic representation of the CN de-excitation. Giant Dipole Resonance radia-

tion, indicated by (1), is emitted in competition with neutrons, indicated by n. (2) indicates the

quadrupole γ ray emitted in final steps of the decay.

The excitation energy of the GDR (EGDR) is , in the case of medium-heavy nuclei,

well described by the formula:

EGDR = 31.2A−1/3 + 20.6A−1/6MeV (1.15)

where A is the nucleus mass number.

The integrated strength of the GDR (SGDR) can be estimated using the classic Thomas-

Reiche-Kuhn energy-weighted sum rule:

SGDR =

∫ Emax

Emin

σabsγ dE =
60NZ

A
MeV mb (1.16)
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merous and extensive theoretical calculations have been
performed and for which photoneutron data are available,
stands out. In order to measure the branching, Caldwell
ef al. (1967a, 1967b) used a combined neutron and photon
detection system.

The results for the decay channels leading to the first four
excited states in "Q and "N are shown in Fig. 36. Since the
'sO(y, Ps)'sN cross section had been measured at several
laboratories, both directly and by means of the inverse
"N(p, ys) reaction (Finckh and Hegel, 1961; Dodge and
Barber, 1962; Tanner et a/. , 1964), and is relatively well
known, a composite picture could be constructed for the
decay of the "0giant resonance. This synthesis is shown in
Fig. 37. Most of the decays can be seen to occur to the
negative-parity states of the residual nuclei, as is expected
from the elementary particle —hole theory. A signiicant
fraction (16%), however, decay to positive-parity states,
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guide the eye; the x's are values obtained from a measurement using a
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FIG. 35. Photonuclear cross sections for s"IT. (a) Total; (b) (y,n);
(c) (y,2a); (d) (y,f) (Saclay).

thus requiring a more detailed theoretical understanding.
The most impressive agreement to date with these data has
been achieved by Shakin and Wang (1971, 1972), whose
theoretical approach depends critically upon the inclusion
of 3 particle —3 hole states in "0 Lbut also see the eigen-
channel calculations of Barrett et al. (1973)j.

Rev. Mod. Phys. , Vol. 47, No. 3, July 19?5

Figure 1.4: photo-neutron cross section for the nucleus 208Pb [21].

IVGDR state exhausts 100% of the energy weighted sum rule for a electric dipole op-

erator and, in general, the IVGDR γ decay is characterized by the emission of an electric

dipole photon.

The width of the resonance (ΓGDR) in the nuclear ground state can be described mi-

croscopically as a sum of two contributes

ΓGDR = Γ↑ + Γ↓ (1.17)

where Γ↑ is the escape width of particle evaporation while Γ↓ is the spreading width

arising from the coupling with 2p-2h, 3p-3h,... configurations. The latter term is the larger

contribution to the GDR width. ΓGDR can vary from about 4 to 8 MeV. The narrowest

width is observed in double magic nuclei. For nuclei with a stable axial deformation, the

photo-neutron cross section is split in two parts, corresponding to a IVGDR vibration

along or perpendicular to the symmetry axis (see Fig. 1.6) [22].
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taken directly from the original paper (Bowman et al. ,
1964), since the analysis was complex and the values for the
individual data points for the (y,e) and (y,2e) cross sections
were not available. The values given in Table I for the
integrated cross sections, as well as those for other derived
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'"Th "'Ãp "'U (Saclay). All the Saclay (y,f) results
were deduced from neutron multiplicity counting, under
assumptions regarding the magnitude and dependence upon
incident photon energy of f, the average number of neutrons
emitted per fission, for these nuclei (see Veyssiere et al. ,
1973); there was no direct measurement of fission events.
Because the thorium and neptunium (oxide) samples were
radioactive, the bias on the liquid-scintillator neutron
detector had to be raised, thereby reducing the detector
eKciency to 0.4 for the thorium measurement, and 0.3 for
the neptunium measurement. This in turn resulted in large
statistical uncertainties in the "~Xp and especially in the
'"Th data, in addition to the systematic uncertainty to be
associated with any error in the choice of the linear energy
dependence for s and the parameters involved. Nonetheless,
within these limitations, the results appear to be reasonable,
and constitute an elegant demonstration of the power of the
neutron multiplicity-counting technique. The relative sizes
of the partial cross sections vary greatly: for 2"Th, o.(p,e) is
large, o.(y, 2e) is moderate, and o(y,f) (which inclu. des
o(y,lf) as wellj is small; for "rNp, o-(y, e) is moderate,
o.(y,2II) is small, and o(y, f) is large; and f.or "'U (Fig. 35),
all are about equal (see Table I). From the ratios of partial
cross sections, one can extract the ratios of neutron to fission
widths F„/I'~, which, when plotted against the fission-
ability parameter Zs/A, decrease more or less exponentially,
in agreement with data from neutron-induced reactions (see
Veyssiere et al. , 1973).
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Figure 1.5: photo neutron cross section for the isotopic chain of Nd [21].
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monochromatic positons exploited mostly at Livermore 16) and Saclay. In gzneral, 
experimental data from both these laboratories can be said to be ingood agreement but 
specific cases might none the less show some particular discrepancies, For instance, in a 
study of the Sn isotopes, Fultz et al. 17) find the width of the GDR of 116Sn to be 
F ~ 4.2 MeV which is below the F g 4.8 MeV values they find for the other doubly 
even Sn isotopes, whereas our results show that all the above isotopes have a constant 
GDR width F g 5+_.0.2 MeV. 

If one therefore wants a consistent set of experimental data, it seems preferable, if 
at all possible, to use only results obtained with the very same experimental set-up. 
All results quoted in this paper are consequently taken from previously published 
Saclay data 18-24), together with some as yet unpublished Saclay results 25-27) 
concerning molybdenum, tin and samarium isotopes. A detailed description of 
the experimental technique used at Saclay can be found in the literature 28, 29). This 
method enables one to measure the partial photoneutron cross section tr(?, n)+ 
~(?, pn), g(),, 2n) . . . . .  separately and simultaneously, thus giving direct access to the 

Figure 1.6: Width of the IVGDR along to the mass number A [22].



1.3 CN statistical GDR γ-decay

In 1951 David Brik suggested that a giant resonance state can be built on each nuclear

state and the properties of a such resonance do not depend on microscopic structure of

the nucleus but only on its bulk properties. This is the so-called the Brink-Axel hypothesis

[23, 24]. As a consequence, in a compound nucleus in thermal equilibrium there is a

nonzero probability to have populated an IVGDR built on an excited state, which can

decay emitting an electric dipole γ ray (i.e. E1). The first experimental evidence of a

IVGDR in excited state was found in 1981 by Newton et al. [25]; indeed, they found a

change in the slope of the intensity curve in the region of the resonance energy (between

10 - 20 MeV) (see Fig.1.7).

Following the idea of Bring and Axel, the GDR was investigate intensely in the past

years in hot compound nuclei (CN) at different excitation energy (E∗), angular momen-

tum (J) and temperature (T) [11,26–29]. It was found that, although the centroid is rather

constant with the nucleus excitation energy, the width increases with both temperature

and angular momentum. The main reason is the increase of the average deformation

of the nucleus because of the thermal shape fluctuations and angular momentum (see

Fig.1.9) [30, 31].

As explained before, the statistical description of CN decay is based on the assump-

tion that all the degrees of freedom have reached statistical equilibrium before the cool-

ing process (decay) and that the detailed balance is valid. Assuming the Axel-Brink

hypothesis, one can write the γ-decay width Γγ as

dΓγ(Eγ)

dEγ
∼ ρ(E∗ = Efin)

ρ(E∗ = Ein)
σabs(Eγ) = σabs(Eγ)exp−Eγ/T (1.18)

where σabs is the absorption cross section at T = 0, which has the Lorentzian shape

of Eq.1.14. If the excitation energy is above the neutron separation energy, the GDR γ-

decay is in competition with the neutron emissions. Typically the ratio between the γ

decay and the neutron decay is ≈10−3 Since the CN in thermal equilibrium, the neutron

emission cross section can be parametrized using a Maxwell-Boltzman distribution:

σn ≈ T 2exp(En −Bn)/T ≈ T 2exp−Bn/T (1.19)

where Bn is the neutron binding energy. The ratio between Γn and Γγ is:

Γγ
Γn
∝ exp((En − Eγ)/T ) (1.20)
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function of T and I. Such studies provide a new
and general method to study nuclear dynamics far
from the ground state.

For these experiments it is essential to dis-
criminate effectively against high-energy y tran-
sitions arising from light-element impurities in
the target and against cosmic rays. We made use
of a sum-spectrometer-multiplicity technique'
which selected the y rays from moderately high-
spin [-(20-65)h] states produced in heavy-ion
compound-nucleus reactions. The sum spectro-
meter consists of two 33-cm-diam & 20-cm-thick
NaI detectors facing the target 2.5 cm above and
below the beam axis, each subdivided into four
elements. Eight NaI (12.7 && 15.2 cm') detectors
were placed 50 cm from the target at angles of
+160', +100', + 80', —135', and —45' and were
shielded from each other and the beam slits by 5

cm of lead. A Ge(Li) detector, at 135', moni-
tored the reaction residues. Events were stored
only if more than six of the eight elements in the
sum spectrometer fired. Thresholds for each de-
tector were set at 1.5 to 2.5 MeV for the various
targets. This facilitated recording enough high-
energy events in a day so that the statistical y
rays could be observed over six decades, down to
the level of the cosmic-ray background.

Targets (-1 mg/cm') of "Se, "'Pd, and "'Sn
were bombarded with -10 nA of 170-MeV "Ar
ions from the Lawrence Berkeley Laboratory 88-
in. cyclotron. Spectra from the eight NaI detec-
tors, associated with three regions of sum spec-
trometer energy E, within the range -10-40 MeV,
were added. On the average, higher-E, windows
are associated with higher I. Spectra for the "Se
case are shown in Fig. 1. For 2SE ~8 MeV,
the spectra for each case show an exponentially
falling tail, composed of the statistical transitions
deexciting the product nuclei after the neutron
evaporations. All spectra rise considerably high-
er than this exponential at energies above -10
MeV, indicating a different source of y rays. Be-
yond -20 MeV the spectra are flat and probably
due to cosmic rays.

It seems likely that these 10-18-MeV y rays
are emitted in the deexcitation of the product nu-
clei formed principally from fusion for the '"Sn
and '"Pd targets, with increasing deep-inelastic
contributions for the " Pd and "Se targets. Sev-
eral experiments were made to rule out other
origins of the high-energy shoulder. Light ele-
ments are an unlikely cause since the yield from
a short run on an Al target (beam energy 1.9
times the Coulomb barrier, E~) was found to be
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FIG. 1. NaI spectra corresponding to E =10—40 MeV
and three windows within this range for the Se+ Ar
system. The sloping lines show exponential extrapola-
tions of the lower E~ parts of the spectra. The shapes
of the true p-ray spectra are not expected to differ
greatly from the se, and hence the ordinate in trans i-
tions per MeV" should be approximately correct.

approximately the same as from the Sn target
(1.2E~). Pulse-pileup effects were shown to be
small by varying the distance from the target to
some of the NaI detectors. The Pb backing alone
gave a spectrum ten to twenty times weaker than
that from the targets. Finally, several meas-
urements indicated that the constant background
for E ~ 20 MeV was mostly due to random coin-
cidences between cosmic rays and the beam-as-
sociated events.

The reason for the steep slopes in Fig. 1 is that
the level densities for the final states, to which
the transition probabilities are proportional, vary
approximately exponentially with E„[and thus as
exp(- E /T)]. A rough way to see the shape of
the y-ray strength functions is to remove the lev-
el density dependence by multiplying by exp(E /
T, ), where T, is an effective T. For E„&8Me&,
T, =1 MeV, whereas above 10 MeV the curves are
flatter, indicating that these y rays are emitted
at much higher T, . We have somewhat arbitrari-

Figure 1.7: γ-rat spectra measured for different angular momentum in the fusion reaction 82Se +

40Ar. It is clearly visible the resonance structure for energy above 10 MeV [25].

where En is the total energy carry out by a neutron (kinetic energy plus binding

energy). Since En is approximately equal to 2T, the probability for the emission of a γ

ray with Eγ > Bn + 2T increases with T (see Eq.1.20). As consequence, the high energy

γ-ray of the IVGDR is emitted preferably at high temperature and thus in the first-step

decay. On the other hand, for Eγ < Bn + 2T the γ-decay probability increases as T

decreases. Consequently the γ rays are emitted in the end of the cascade decay. The



different contributions to the total γ-ray spectrum at different temperature are shown in

Fig.1.8.

The total width Γ of the GDR built on a CN is sensitively larger than the one obtained

in a photo-absorption experiment and it increases with the nuclear temperature [32] and

the Angular momentum (J) [31, 33].

This observation is not in contrast with the Brink-Axel hypothesis, indeed the in-

crease of the width can be explained with the fact that the nucleus experiences a contin-

uous range of deformations and space orientations as described by the Thermal Fluctu-

ation Model (TFM). Each deformation is parametrized using the coordinates (β, γ) and

the probability to found the nucleus is a certain deformation is:

P (β, γ) ∼ exp(−F (T, β, γ)/T ) (1.21)

where F is the free energy of the system. the resulting GDR strength function is a

weighted superposition of many Lorentzian distributions associated to a deformation:

σ(E) =

∫ 3∑
k=1

σk(E, β, γ)P (T, β, γ)β4| sin(3γ)|dβdγ (1.22)

Studying the thermal effects, one finds that the βeq , corresponding to the minimum of

the total free energy, can be sensitively different to the average value 〈β(J, T,A)〉, defined

as:

〈β(J, T,A)〉 ≈
∫
βP (T, β, γ)β4| sin(3γ)|dβdγ sin θ (1.23)

A linear relation between the average nuclear deformation 〈β(J, T,A)〉 and the in-

crease of the FWHM of the Lorentzian distribution used to reproduce the GDR spectrum

has been proposed in [33] and plotted in Fig.1.9.

In addition, with increasing angular momentum, the nucleus tends to undergo oblate

flattening due to centrifugal effects. the equilibrium deformation, βeq , increases rapidly

with angular momentum, and as a consequence, the total GDR strength function under-

goes a further splitting, which increases the FWHM.

Studying the available experimental data Kusnezov et al. [31] obtained a phenomeno-

logical formula to describe the global dependence of the GDR width on temperature,

spin, and mass:



Γ(T, J,A) = Γ(T, J = 0, A)[L(
J

A5/6
)]4/[(T/T0)+3] (1.24)

Γ(T, J = 0, A) = Γ0(A) + c(A)ln(1 + T/T0)

where Γ0 is usually extracted from the measured ground state GDR, T0 = 1 MeV,

c(A) ≈ 6.45− A/100 and the function L(ξ =
J

A5/6
) can be written as L(ξ) = 1 + 1.8[1 +

e(1.3−ξ)/0.2]−1. In Fig. 1.10 the comparison between experimental data and theoretical

calculation is shown [31].
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Fig. 8. Comparison of the experimentally measured “central” y-ray spectrum for the 160 + ‘r*Sn system 
at E(160) = 200 MeV with results from a CASCADE calculation (short-dashed curve). The long-dashed 
curve is obtained from fitting the experimental y-ray data with an exponentially decreasing function 
after subtracting the contribution ascribed to statistical y-ray decay. The solid curve is the sum of both 

curves. 

level-density parameter of a =A/9 MeV-1 might be more appropriate 1251. In 
order to estimate the effect such a change in the level-density parameter a might 
have on the extracted values for E, and r an additional CASCADE calculation 
was performed with a =A/9 MeV-’ keeping the other input parameters of 
CASCADE unchanged. 

In all CASCADE calculations it will be assumed that preceding the formation 
of an equilibrated compound system the projectile and target nuclei have fused 
completely. However, from the measured systematics of the average linear- 
momentum transferred to the compound system [191 this quantity was shown to 
decrease with incident beam energy, indicating the growing role that incomplete 
fusion processes play in the formation of the compound nucleus. In order to get an 
impression of the systematic errors in E, and r introduced by constraining the 
statistical calculations to a completely fused compound system an additional 
CASCADE calculation has been performed in which only part of the projectile is 
assumed to have fused with the target nucleus. 

The computer time required for a single CASCADE calculation with given 
input parameters increases drastically with increasing excitation energy in the 
initial compound nucleus. This makes the fitting procedure very time-consuming, 
even if only E, and r have to be varied. In order to reduce the required computer 
time the calculated -y-ray spectra obtained from a number of CASCADE calcula- 
tions were parametrized using a conveniently chosen analytical form. To this end a 
first guess for the input parameters E, and r of the CASCADE calculation was 

Figure 1.8: typical γ-ray spectrum obtained from a fusion evaporation reaction (16O + 118Sn) [34].

The full line is a fit to the data, the dashed line is the bremsstrahlung contribution while the dotted

line is the CN decay.
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Figure 2.8: Comparison between measured and calculated GDR widths as a function of
the effective nuclear temperature T [1, 55]. The data are taken at ⟨J⟩=45 ! (filled dots),
⟨J⟩=8-16 ! (up-pointing triangle), ⟨J⟩=23-27 ! (down-pointing triangle). The thin (thick)
continuous line shows TFM calculations without (with) CN decay width, while the dashed
line shows the average deformation ⟨β⟩ calculated with TFM.

Figure 2.9: Linear relation between average nuclear deformation ⟨β(J,T,A)⟩ and GDR
width Γ(J,T,A) (continuous line), valid for mass 44 ≤ A ≤ 208, T ≤ 4 MeV and J ≤ 60
!. The symbols represent 44Ti (×), 90Zr (+), 120Sn (⋄), 168Er (✷), 208Pb (◦) [57].

Figure 1.9: Linear relation between average nuclear deformation 〈β(J, T,A)〉 and GDR width

Γ(J,T,A) (continuous line) [31].
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FIG. 2. Temperature dependence of the width. Left:G (for
J & 20h̄) as a function ofT for 59,63Cu from experiment
(symbols) and theory (solid line). Right:GsT , J ­ 0, Ad 2 G0
as a function ofT for 90Zr from the LD calculations (boxes), a
fit to csAd lns1 1 TyT0d (solid line) and a

p
T behavior (dotted

line) which generally fits well at largeT .

for the LD free energy (withB constant), we can re-
move the temperature dependence in the Boltzmann factor
expf2Bb2yTg, by scalingb by

p
T . This works well only

for temperaturesT * 2 MeV, and a much better global fit
is obtained fromGsT , J ­ 0, Ad 2 G0sAd ø csAd lns1 1

TyT0d, whereT0 ­ 1 MeV is the reference temperature
and csAd is a constant depending weakly onA. In the
right panel of Fig. 2, we show this fitting function for90Zr
(solid line) and compare it with the liquid drop calculations
(squares). The dashed line demonstrates the

p
T behavior

at largeT . The functioncsAd depends on the choice ofG0,
since increasing the widthG0 does not result in a constant
shift of the width at all temperatures, but rather a modi-
fication of the prefactorcsAd. A parametrization which
seems to work well over the mass range studied (and for
our physical choices ofG0) is csAd ø 6.45 2 Ay100.

We conclude that a good phenomenological formula to
describe the global dependence of the LD GDR width on
temperature, spin, and mass is

GsT , J, Ad ­ GsT , J ­ 0, Ad

"
L

√
J

A5y6

!#4yfsTyT0d13g

GsT , J ­ 0, Ad ­ G0sAd 1 csAd lns1 1 TyT0d .
(4)

G0sAd is usually extracted from the measured ground state
GDR, andT0 ­ 1 MeV is a reference temperature.Lsjd
is the scaling function shown in Fig. 1(f), which can be ap-
proximately fitted byLsjd 2 1 ø 1.8f1 1 es1.32jdy0.2g21.
Equations (4) provide an approximate description of the
systematic behavior of the GDR width in nuclei where the
LD model is valid, i.e., in nuclei where shell effects are
small or at temperatures where shell effects have already
melted. In the top panel of Fig. 3 we correlate the theo-
retical estimates based on (4) with known experimental re-
sults [6–9]. In the bottom panel of Fig. 3(b) we show the
ratio between the experimental widthGexpsT , J, Ad and the
“theoretical” widthGsT , J ­ 0, Ad calculated from (4) as
a function ofj.

FIG. 3. Comparison of experimental widths with the phe-
nomenological width formula (4). Top: ExperimentalG vs
theoretical scaledG for selected nuclei in the mass range
A , 45 to 208. Bottom: Ratio of experimentalG to theoreti-
cal scaledGsT , J ­ 0, Ad vs j ­ JyA5y6. The solid line is the
scaling functionLsjd.

The scaling functionLsjd is seen to be essentially con-
stant forj & 0.6 [indicated by dashed line in Fig. 1(f)].
Thus the width is approximately spin independent up to
a spin of J1 , 0.6A5y6. It is interesting to compareJ1

with the maximal angular momentaJmaxsAd for which the
fission barrier height is still larger than,8 MeV, guaran-
teeing reasonable stability against fission [16]. We find
that for nuclei withA * 200, Jmax # J1, and there is no
significant spin dependence of the GDR width [see, e.g.,
208Pb in Fig. 1(c)].

Shell corrections can play a role at lower tempera-
tures. Here we focus on two nuclei of recent experi-
mental [9] and theoretical [17] interest,120Sn and208Pb.
Figure 4 shows the results of our calculations of the width
as a function of temperature using both LD (dotted line)
and NS (solid line) free energy surfaces. We have used
G0 ­ 3.8 MeV [13] for 120Sn and208Pb. Our results are
compared with the recent calculations of Ref. [17], also
shown in Fig. 4 (dashes and dot-dashes) [18]. For208Pb
our calculated widths at temperatures above 1 MeV are
significantly larger than those of Ref. [17]. Similarly,
for 120Sn, our calculated widths are larger than those of
Ref. [17] at large temperatures even though our assumed
G0 (3.8 MeV) is smaller than the one used in Ref. [17]
(5 MeV). When compared with our newly calculated
widths, the experimental results of Refs. [9] (open dia-
monds in Fig. 4) show significant deviations. We have
reevaluated the temperatures corresponding to the120Sn
and 208Pb inelastic scattering data, and found new tem-
peratures (solid diamonds in Fig. 4) that are substantially

544

Figure 1.10: Angular momentum dependence of the GDR width. The line is the theoretical calcu-

lation obtained using Eq.1.25. Taken from Ref. [31]



obtained with the Ni-induced reaction corresponding to a
symmetric mass entrance channel system. Extensive analy-
ses of the LCP spectra for both symmetric and asymmetric
reactions will be the subject of a future paper [18,19].

The �-ray spectra measured in coincidence with the
recoiling residual nuclei are shown in Fig. 2 (symbols)
together with the best fitting statistical model calculations
(solid line) [20,21]. The calculations were folded with the
response function of the BaF2 array calculated using the
GEANT [22] libraries and were then normalized at around
8 MeV. The width was obtained from the best fit to the data
using a �2 minimization procedure between 12 and
22 MeV. Because of the exponential nature of the spectra,
the �2 of this fit is dominated by the low energy part and it
is relatively insensitive to the high energy region.
Consequently, the best fitting GDR parameters were
chosen to be those minimizing the �2 divided by the
number of counts as, for example, in Ref. [12].

A single Lorentzian strength function centered at
EGDR � 14 MeV (lower than the T � 0 MeV value) as
in [23] and a value of the energy-weighted sum rule
(EWSR) corresponding to �100% of the Thomas-
Reiche-Kuhn sum rule were used. In order to display the
spectra on a linear scale to emphasize the GDR region, the
quantity F�E��Y

expt
� �E��=Y

calc
� �E��was plotted in the insets

of Fig. 2. Yexpt
� �E�� is the experimental spectrum and

Ycalc
� �E�� the best fit calculated spectrum, corresponding

to the single Lorentzian function F�E��. The resonance
width and centroid were treated as free parameters of the
fit. For the level density description the Reisdorf formalism
of Ignatyuk [24,25] was used with a value of the level
density parameter a (MeV�1) between A=10 and A=9 for
E� < 100 MeV. At higher excitation energies we used a
level density parameter, as deduced from [26,27], which
decreases linearly to A=11 up to E� < 170 MeV and satu-
rates down to A=12:5 for E� > 170 MeV.

Since at these experimental bombarding energies there
is a saturation of the angular momentum of the compound
nucleus (CN), an average value of hJi � 45 @ and maxi-
mum of Lmax � 70@ was used for all the present calcula-
tions. The best fitting values deduced from the analysis of
the GDR region correspond to a width �GDR � 8	 1:5,
12:4	 1:2, and 14:1	 1:3 MeV at E� � 100, 150, and
200 MeV, respectively. Note that the statistical model
calculation of the � spectra at bombarding energy of
500 MeV of Fig. 1 (right-bottom panel) was made with
the same excitation energy values.

The nuclear temperature of the compound nucleus
associated with the GDR decay was calculated with the
expression T � 1=
d� ln����=dE�, as discussed in
Refs. [28,29], where � is the level density. The resulting
value for the present data is not substantially different from
the one calculated using the relation T2 � 
�Ex � Erot �
EGDR�=a��, where Erot is the rotational energy. To take into
account that the � rays from the GDR region (12–25 MeV)
are emitted at different steps of the CN decay, one has to

make a weighted average for the temperature. Before doing
this we have investigated the excitation energy interval to
be taken for the average by examining how the sensitivity
to the GDR width changes in the various steps on the decay.
We noted that a considerable change (outside the error
bars) of the GDR width in the low temperature part of
the CN decay does not affect the fit to the data. Therefore at
the present excitation energies the performed average cor-
responds to approximately 50% of the total yield. The
obtained values for the average temperature are 1.9,
2.8, and 3.7 MeV, for Ebeam � 300, 400, and 500 MeV,
respectively.

The measured values of the GDR width are shown in
Fig. 3. The error bar in the width is the statistical error
connected to the �2 minimization. The horizontal bar
represents the average temperature range associated to
75% (lower value) and 25% (upper value) of the gamma
yield. The neglected yield in the average represents the
decay at the end of the CN cascade that is not sensitive to
the GDR width because of its spectra shape. In the same
figure we show the existing data at lower temperature,
which correspond to reactions leading to fully thermalized
compound nuclei [30,31].

The data for the Ce isotopes are also compared with
theoretical predictions based on the TFM of the nuclear
shape. Within this model, the GDR strength function is
calculated by averaging the line shape corresponding to the
different possible deformations. The averaging over the
distribution of shapes is weighted with a Boltzmann factor
P��;�� / exp
�F��;��=T�, where F is the free energy
and T is the nuclear temperature [2,32,33]. At each defor-
mation point the intrinsic width �0 of the resonance was
chosen equal to the zero temperature value, namely,
4.5 MeV, as it was generally done to reproduce the existing
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FIG. 3. Comparison between measured (solid circles) and cal-
culated GDR widths at hJi � 45@. The thin continuous line
shows the thermal shape fluctuations simulation, while the thick
continuous line includes also the CN lifetime. The data from
Garman et al. [30] (up-pointing triangle) correspond to an
angular momentum value between hJi � 8@ and 16@, while
those of Voijtech et al. [31] (down-pointing triangles) to hJi �
23@ and 27@. The dashed line shows the average deformation h�i
calculated by the TFM [7,33] (scale on the right axis).
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Figure 1.11: Comparison between measured and calculated GDR widths as a function of the ef-

fective nuclear temperature T. The data are taken at J = 45 ~ (filled dots), J = 8-16 ~ (up-pointing

triangle), J = 23-27 ~ (down-pointing triangle). The thin (thick) continuous line shows TFM calcu-

lations without (with) CN decay width, while the dashed line shows the average deformation 〈β〉

calculated with TFM. Taken form [32].



1.4 Isospin formalism

In Nature, symmetries help us to describe a complex physical system in a simple way

and to understand better its behaviour. Indeed, symmetries are strongly related to con-

servation laws which, in quantum mechanics, translate into good quantum number to

describe the system. Therefore, the search for a symmetry it is a fundamental goal in

all fields in physics. At the same time, the study of the breaking of a symmetry is very

important because it can open the gates for new and unexpected scenarios.

In a nuclear system many symmetries are identified. One of these is the isospin sym-

metry, which plays a key role in nuclear structure and nuclear nuclear reaction.

The isospin symmetry was introduced by Heisenberg in 1932 [37] to describe the

identical behaviour of neutrons and protons in a nuclear field. It means that neutrons

and protons cab be considered as different quantum states of the same particle, the nu-

cleon. The Heisenberg’ s idea was born from the observation that in nucleus does not

exist only the protons (mp = 938.272 MeV/c2), but also another no-charge particle, the

neutron, with a vary similar mass (mn = 939.566 MeV/c2). The isospin symmetry implies

the charge invariance of the nuclear interaction.

A new coordinate is needed to distinguish neutrons and protons, the isospin (or iso-

baric spin) I [38], which was formally introduced in analogy with the spin (this is the

reason of the similar name). A nucleon has isospin I = 1/2, the two nucleons are labelled

with the third component I3 of the isospin operator:

|p〉 ≡ |I =
1

2
, I3 = +

1

2
〉 |n〉 ≡ |I =

1

2
, I3 = −1

2
〉 (1.25)

A similar case is the situation of two particles with different spin projection ms: in

absence of a magnetic field B they have the same energy, but if B is present they exhibit

different energy depending on the orientation of ms.

The concept of isospin can be extended to the nucleus as a whole: the total isospin is

the sum of the single nucleon contribution:

I =

A∑
i=1

I(i) (1.26)

where A is the mass number of the nucleus. Also the charge operator Q can be ex-

pressed using the isospin quantum number:

Q = e(1/2− I0) (1.27)



1.4.1 Charge invariance of nuclear interaction

The assumption that the attractive nuclear force is independent of the charge of the in-

dividual nucleons (or equivalently that the isospin symmetry exists) can be divided in

two separated ideas: i) The first idea is that the nuclear interaction is charge symmet-

ric, which requires that the interaction between neutron-neutron (nn) and proton-proton

(pp, neglecting the Coulomb interaction effect) is the same; ii) the second idea is that

the nuclear interaction is charge independent, which means that not only nn and pp

interactions are equal, but also np interaction.

As any assumption in physics, it important to test experimentally these ideas. A very

powerful test for studying the nature of the nuclear interaction is a low-energy scatter-

ing experiment between different pairs of nucleons (nn,pp,np). The scattering length

obtained are reported in the Table.1.1. the values related to pp scattering were corrected

by Coulomb interaction effect. The data are similar, but not compatible between each

others. The differences can be interpreted as a charge not symmetric and not indepen-

dent component of the nuclear interaction. Many theoretical works were made to de-

scribe this difference ( [39–41] and the references therein). For instance, the difference

between nn(pp) and np scattering length can be explained partially with the presence

of an ”exchange” process, which is impossible to distinguish from the direct process [?].

Of course, the difference in mass between n and p (∆M ≈2 MeV [42] neutron is about

0.14% heavier) is one of the origin of the charge-independence breaking.

It is worth to be noted that these data are related to a free-nucleon interaction and

not to a effective-nuclear interaction in nuclear medium. Although, these symmetries

are weakly broken, in the nuclear behaviour the isospin symmetry can be considered a

good ”approximated” symmetry [43, 44].

a [fm] r[fm]

pp -17.3 ± 0.4 2.794 ± 0.015

nn -18.9 ± 0.4 2.84 ± 0.03

np -23.74 ± 0.02 2.73 ± 0.03

Table 1.1: Scattering length (a) and effective range (r) obtained in low-energy scattering experi-

ment. the pp values were corrected by taking into account the Coulomb interaction effect. Data

taken from Ref. [41].



1.4.2 mirror nuclei

Formally, In the isospin space charge independence of the nuclear force implies that the

nuclear Hamiltonian H commutes with the third component of the isospin operator:

[H, I0] = 0 (1.28)

and also with the square of the isospin operator:

[H, I2] = 0 (1.29)

Therefore the nuclear wave-function does not change if one replaces a neutron by

protons or vice versa. A clear indication of the presence of the isospin symmetry in

nuclear medium is the comparison of the level schemes of two mirror nuclei [44, 45].

These nuclei are characterized for having the same number of mass A, but with the

number of neutrons and protons exchanges. Therefore, within the isospin formalism

these two nuclei are completely identical. For instance, the partial level scheme of 67Se

(N = 33, Z = 34) and 67As (N = 34, Z = 33) are shown in Fig.1.12. The spectra, as well

as the properties of various states, are very similar to each other and this is an evidence

of the charge independence of nuclear force. The differences between the corresponding

levels of the two spectra may be attributed to the Coulomb interaction [46, 47](the so-

called Coulomb Energy Distance, CED).

1.5 isospin and electromagnetic transitions

The isospin is not a physical observable which can be measured in an experiment. Thus,

if one wants to test the isospin invariance, it important to find an observable sensitive to

the isospsin. The Electromagnetic transition is an example.

Starting from the Fermi’s golden rule and following Ref. [48], it is possible to write

the width of an electromagnetic transition between two nuclear states a and b:

Γγ(L) = 8πk
∑
M,Mb

| 〈JbMb; IbI3b|H(L,M) |JaMa; IaI3a〉 |2 (1.30)

where H is the general electromagnetic Hamiltonian defined as:

H(L,M) =
1

c

∫
jN (r) ·A∗LM (r)dτ (1.31)



The nuclei of interest were produced in the fusion-
evaporation reactions 40Cað32S; �pÞ67As and
40Cað32S; �nÞ67Se. The 90-MeV 32S beam, pulsed with a
period of 82.5 ns, was provided by the ATLAS accelerator
at Argonne National Laboratory. The target was made of
550 �g cm�2 of 40Ca evaporated onto a Au backing of
10 mg cm�2, and covered by a 30 �g cm�2 Au front layer
to prevent it from oxidizing. The emitted � rays were
detected by the Gammasphere array [9], which at the
time of the experiment consisted of 77 HPGe detectors.
The high selectivity required for the identification of the
different reaction channels was obtained with the employ-
ment of the 95-element 4� CsI(Tl) Microball [10] and the
30-element liquid-scintillator neutron shell [11] for detec-
tion of evaporated charged particles (particularly protons
and � particles) and neutrons, respectively. The neutron
shell occupied the five forward rings of Gammasphere. A
mixed trigger was applied: either a minimum of 3 coinci-
dent � rays or a liquid-scintillator event plus 2 coincident �
rays. Data were sorted into two- and three-dimensional
matrices under the conditions of detecting either 1 �
particle and 1 proton (67As), or 1 � particle and 1 neutron
(67Se). Without the five forward Gammasphere rings, the
measured intensity of a given �-ray line is affected by the
�-ray angular distribution. To correct for this bias, the
different ring contributions were combined with different
weights, chosen to cancel the effect of the angular-
distribution terms of rank 2 and 4. An additional require-
ment of minimizing the statistical error was imposed to
determine the ensemble of weights.

The partial level schemes of 67As and 67Se, determined
in this work, are presented in Fig. 1. These findings overall
confirm the level scheme of 67As published by Jenkins
et al. [12], but the previously reported 1602-keV line was
not observed; a 1518-keV line connecting the 15=2þ and
13=2þ states was seen instead. Eight new �-ray transitions
have been added to the previously known level scheme of
67Se [13]. The measured branching ratios of the 717-, 303-,
and 1364-keV �-ray lines, which deexcite the 9=2þ state
are shown in the third column of Table I.

The lifetimes of the 9=2þ states were determined by
measuring the centroid shifts of the relative-time spectra
for coincident Ge detectors [14]. Time spectra were ob-
tained by setting energy gates on the first two axes of a
Eð�1ÞEð�2Þ�T cube, where�T ¼ Tð�2Þ � Tð�1Þ. By gat-
ing on transitions above and below the 9=2þ isomeric state,
the centroid of the time distribution undergoes a shift with
respect to the prompt position, equivalent to the lifetime of
the state; by reversing the ordering of the �-ray gates, the
time distribution shifts by the same amount in the opposite
direction. In the absence of other effects, the difference
between these centroid positions, properly calibrated, cor-
responds to twice the lifetime of the isomeric state [15].
The dependence of the centroid shift on the signal ampli-
tude, which becomes important at lower energies, was
determined from the study of prompt �-ray transitions,
and taken into account in the analysis. The applicability

of this technique to the present case was tested against the
known lifetime of the 9=2þ state in 69As, which in this
work was measured to be 2.1(2) ns, in excellent agreement
with the published value of 1.94(5) ns [17]. This result
supports the validity of the method in the time range of
interest.
The time spectra obtained using gates both above and

below the 9=2þ states in 67As and 67Se, and with the same
gates but in reversed order, were compared with those of
prompt pairs, chosen to be either both above or below the
state of interest. A representative set of measured centroid
shifts is reported in Fig. 2. Combining the results, the
determined 9=2þ-state lifetimes in 67As and 67Se are,
respectively, � ¼ 0:7ð2Þ ns and � ¼ 1:5ð6Þ ns. No trace
was found of the reported 12(2)-ns isomer in 67As [12],
nor of a similarly long-lived isomer in 67Se.
To extract the BðE1Þ strengths, the multipole character

of the transitions had to be determined. The mixing ratio of
the lines of interest was determined from the ratios of
angular distributions from oriented states, also known as
ADO ratios. The ADO ratio for the transition �1 in coin-
cidence with a feeding transition �2 is defined as

RADO ¼ I�1
ðat �1 weighted coinc. with�2Þ

I�1
ðat �2 weighted coinc. with�2Þ :

Ratios were normalized to those corresponding to pure
quadrupole transitions. The aforesaid weights were used
to cancel the effects induced by the anisotropy of Gamma-
sphere. The available data enabled the measurement of
ADO ratios in different pairs of rings, 90� vs 162.7�,
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FIG. 1. Proposed partial level schemes for (left) 67Se [16] and
(right) 67As determined from the present data. The energy labels
are given in keV and the widths of the arrows are proportional to
the relative intensities of the � rays. Spin and parity assignments
in 67Se are based on symmetry considerations and on the
measured ADO ratios (see text).

PRL 103, 052501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
31 JULY 2009

052501-2

Figure 1.12: Partial level schemes for (left) 67Se and (right) 67As determined from the experimental

data. The energy labels are given in keV and the widths of the arrows are proportional to the

relative intensities of the γ rays. [45]

jN and A∗LM are the the nuclear current density and the electromagnetic vector po-

tential respectively. jN can be expressed in the isospin formalism as:

jN (r) =
1

2
e
∑
j

(1− 2I
(j)
3 )[

pj
2Mp

δ(r− rj) + δ(r− rj)
pj

2Mp
] (1.32)

+
1

2
c(

e~
2Mpc

)
∑
j

[µ+ + µ−2I
(j)
3 ]∇× σjδ(r− rj) (1.33)

where µ+ = µn + µp and µ+ = µn − µp (µn and µp are the neutron and proton nuclear

magnetic moments. According the isospin dependence, Eq. 1.33 can be divided in two

terms: an isoscalar term j0N , independent of I3, and an isovector term, linearly dependent

on I3.



j0N (r) =
1

2
e
∑
j

[
pj

2Mp
δ(r− rj) + δ(r− rj)

pj
2Mp

] (1.34)

+
1

2
cµ+(

e~
2Mpc

)
∑
j

∇× σjδ(r− rj) (1.35)

j1N (r) =− 1

2
e
∑
j

2I
(j)
3 [

pj
2Mp

δ(r− rj) + δ(r− rj)
pj

2Mp
] (1.36)

+
1

2
cµ−(

e~
2Mpc

)
∑
j

2I
(j)
3 ∇× σjδ(r− rj) (1.37)

As a consequence, even the Hamiltonian in Eq. 1.30 can be splitted in two parts H =

H0 +H1, where H0 is the isoscalar interaction and H1 the isovector interaction. In order

to understand the isospin properties of an electromagnetic transition, it is useful at this

point to rewrite Eq. 1.30 extracting the I3 dependence with the Wigner-Eckhart theorem.

This implies:

〈JbMb; IbI3b|H0 +H1 |JaMa; IaI3a〉 = (1.38)

= (−1)Ib−I3b

 Ib 0 Ia

−I3b 0 I3a

 〈JbMb; Ib|H0 |JaMa; Ia〉 (1.39)

+ (−1)Ib−I3b

 Ib 1 Ia

−I3b 0 I3a

 〈JbMb; Ib|H1 |JaMa; Ia〉 (1.40)

From Eq. 1.40 one can easily observe that both isoscalar and isovector interaction do

not vanish only if I3b = I3a. This is the first isospin selection rule: ∆I3 = 0. Physically,

this means that an electromagnetic transition cannot occure between different nuclei (as

expected).

From the Wigner coefficients in Eq. 1.40 it is possible to deduce another selection rule.

For the isoscalar part of the Eq. 1.40 the coefficient is equal to:

(−1)Ib−I3b

 Ib 0 Ia

−I3b 0 I3a

 = (2Ia + 1)−1/2δIbIa (1.41)

This implies that the isoscalar part vanishes expect if Ia = Ib. For the isovector term,

where Ib = Ia + 1 (Ib = Ia − 1, Ia, Ia + 1)the Wigner coefficient is equal to:

(−1)Ib−I3b

 Ib 1 Ia

−I3b 0 I3a

 = (−1)Ib−Ia [
I2
> − I2

3

I>(2I> − 1)(2I> + 1)
]1/2 (1.42)



where I> = max(Ia, Ia). From Eq.1.44 it is possible do deduce an important rule: if

I3 = 0 (self conjugate nuclei) transition the isovector ∆I = 0 contribute vanishes. As we

will see later this fact play an important rule in E1 transition.

In the long wave approximation (kγr � 1) all terms of order (kγr)
2 and higer are

neglected. In this situation the electric dipole operator (E1) can be simply written using

the isopin formalism as:

H(L = 1,M) '
A∑
j

qjrj '
A∑
j

(
1

2
− I3j)rj) =

1

2

A∑
j

rj −
A∑
j

I3jrj (1.43)

= HI=0(L = 1,M) +HI=1(L = 1,M) (1.44)

The isoscalar term HI=0 is proportional to the center of mass coordinates (RCM =∑
j rj and thus cannot induce any nuclear excitation: the matrix element of such op-

erator vanishes). Therefore in the long-wave approximation the E1 operator is totally

isovector.

The fact that E1 operator does not have any isoscalr contribution provides an im-

portant rule: a ∆I = 0 E1 transition in self-conjugate nuclei is forbidden. Only ∆I = 1

transition occurs. As consequence the total E1 strength is reduced.

As explained in the previous paragraph the γ decay of the GDR has an E1 character.

Thus in self-conjugate nucleus the γ decay is strongly inhibit. It is worth noting that only

the first step of the γ decay is inhibited. In fact, after a proton or a neutron evaporation

(which is the favourite decay) a self-conjugate nucleus is no more in a I3 = 0 state and

thus also isovector ∆I = 1 transition can occur.

1.6 Isospin mixing

The isospin symmetry was introduced neglecting in the Hamiltonian the Coulomb in-

teraction between protons. This was reasonable because the latter is, in general, much

weaker than nuclear interaction.

Nevertheless, considering the nucleus as a whole, the short-range nuclear interaction

increases linearly with the number of nucleons, while the Coulomb interaction, which

has a long rang effect, increases quadratically with the number of protons. Consequently

, the effect of Coulomb interaction becomes significant in medium-heavy proton-rich

nuclei and the total interaction in the nucleus is no more charge independent, hence the

isospin symmetry is broken.



To understand the effects of the Coulomb interaction in the microscopic structure of

the nucleus in useful to write it in the isosin formalism:

VC =
∑
k<j

e2 (1/2− I3k)(1/2− I3j)
rjk

(1.45)

that can be decomposed in three terms in isospin space: isoscalar (V (0)
C ), isovector

(V (1)
C ), isotensor (V (2)

C ):

V
(0)
C =

∑
k<j

1

4

e2

rjk
[1 +

4

3
I(j) · I(k)]

V
(1)
C = −

∑
k<j

1

2

e2

rjk
[I

(j)
3 + I

(k)
3 ]

V
(2)
C =

∑
k<j

1

4

e2

rjk
[4I

(j)
3 I

(k)
3 − 4

3
I(j) · I(k)] (1.46)

The isoscalar part has no relevant effects and it can be added to the isoscalar nuclear

interaction. On the other hand, the isovector and isotensor part lead to isospin impuri-

ties in the wave function with ∆I = 1 and ∆I = 2 respectively. These impurities are

responsible to the breaking of isospin symmetry. This is the so-called isospin mixing.

1.6.1 Isospin Mixing in the ground state

Since the Coulomb interaction remain smaller than the nuclear interaction the isospin

mixing can be treated using a perturbative approach. For a nucleus in a I = 0 state the

probability to have a I = 1 impurity α2 is:

α2 =
∑
I=1

| 〈I = 1|V (1)
C |I = 0〉 |2

(EI=0 − EI=1)2
(1.47)

and the ground state (g.s.) is a linear combination between the two isospin states.

|g.s.〉 = β |0〉+ α |1〉 (1.48)

Two points are worth to be noted in Eq. 1.47: i) Because of the denominator in the

formula the isospin mixing probability is important only between states close together

in energy; ii) The Coulomb potential varies slowly in the nucleus (considered it as a



charged sphere) and it preserves spin and parity, so the Coulomb interaction lead to

large mixing between states with the same Jπ .

In brief, the isospin mixing is large only between nearby states having the same spin

and parity and a large overlap between their spatial wave functions. The tensor part

induce a mixing with ∆I = 2 states. These states lye much higher in energy than ∆I = 1

states and thus the mixing contribution of these states is smaller (due to the denominator

of Eq. 1.47). For this reason the tensor part is neglected.

Figure 1.13: Degree of mixing α2 in the ground states for N = Z nuclei, obtained using an Energy

Density Functional approach and a SLy4 nuclear interaction [49].

The knowledge of the degree of mixing in the g.s. gives a direct information about

how much the isospin is a good quantum number for the system.

Particular effort has been made during the years to deduce, in the best possible way,

the value of isospin mixing for proton-rich nuclei and the mass dependence ofα2 [49–55].

This was encouraged by the possibility to reach very exotic nuclei in the proton-

rich zone of the nuclear chart, where the isospin mixing is expected to be large and not

negligible. This is the case of 100Sn, which is the heaviest N = Z nucleus existing in the

nuclear chart where the α2 is largest.

In the past years many theoretical calculations of the isospin mixing in the ground

state were performed using several approaches. In Fig.1.13 the isospin mixing mass

dependence using an Energy Density Functional (EDF) approach is shown [49]. As ex-

pected, the α2 value increases with the mass number, since the Coulomb interaction

increases.

In Tab.1.2 different theoretical calculations of the isospin mxing in 80Zr are given.



The values differ for the method (second column) and the effective interaction (third

column) used in the calculations. the values vary between 1 - 4.5%. In Fig.1.14 each

value corresponds to a different nuclear interaction used in the EDF calculations.

α2 method interaction Ref.

1 analytic [103]

3.6 HF+TDA SG2 [54]

3.1 HF+TDA SIII [54]

3 HF spherical SIII [55]

2.5 HF deformed SIII [55]

3.9 HF SIII [53]

2.2 analytic [53]

4.5 EDF SLy4 [49]

Table 1.2: Available theoretical calculations of α2 for 80Zr are reported from the references listed

in the last column. HF stands for Hartree-Fock, EDF for Energy Density Functionals, TDA for

Tamm-Dancoff approximation. In the third column the parametrization of Skyrme interaction

used is given only for non-analytic approaches.



Figure 1.14: Degree of mixing in 80Zr using an EDF approach with different parametrizations of

the nuclear interaction [49].



1.6.2 Isospin mixing in the IAS

The Isobaric Analogue State (IAS) is a particular excited state of the nucleus, obtained

exchanging a neutron with a proton. The parent nucleus |π〉 and the |IAS〉 have the

same isospin [46]. As a consequence, this state preserves the the parent nucleus wave

function and thus it has the same internal structure. This is true despite the fact that

the IAS lies at higher excitation energy ∼ 15 MeV due to the larger Coulomb interaction

energy. Since the excitation energy of the IAS is above the particle separation energy, the

IAS can decay via proton or neutron decay and thus it exhibit a width Γ (see Fig.1.15 for

a schematic representation), wich can be written as:

Γ = Γ↑ + Γ↓ (1.49)

The Γ↑ quantity is the sum for all partial particle decay width and it is dominated

by the allowed proton decay. The Γ↑ quantity is the spreading width of the IAS which

is dominated by the isospin-forbidden neutron decay. This quantity is generated by the

isospin mixing with the IsoVector Monopole State and it is of particular interest because

it is a way to study the Coulomb interaction effects in the nuclear medium [56–58]. The

value of the spreading width is expected to increase with the number of protons in the

nucleus because of the increase of the Coulomb interaction. This idea was confirmed by

many experimental results (see Fig.1.16 and Fig.1.16).

In the mass region nearby 80Zr, the Coulomb spreading width of the IAS was mea-

sured in the nucleus 80Se, obtaining Γ↓IAS = 9.9 ± 0.6 keV [57].

1.6.3 Isospin Mixing at low and high excitation energy

As the excitation energy increases the levels lie close together. Using Eq.1.47, α2 increases

as the level spacing ∆E decreases. At the same time, the states acquire a finite particle

decay width, as the excitation energy exceed the particle binding energy.

The Eq.1.47 is no more valid in this situation and it must be replaced with:

α2 =
∑
I=1

| 〈I = 1|V (1)
C |I = 0〉 |2

((EI=0 + iΓ/2I=0)− (EI=1 + iΓ/2I=1))2
(1.50)

Γ is the decay width of the level. When the decay width of the levels is almost equal

to their energy distance the mixing probability is maximum.
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3. Isospin forbidden particle decaysfrom T = ~and T = 2 states

In thissectionwe discussproton(neutron)decaysfrom T= ~, T~= — ~) statesto the T= 0 levelsin
the T~= 0 nucleusas well as decaysfrom T= 2 (T~= 0) statesto T = ~ (T~= —~) levels by proton
emission.We alsodiscussbriefly the problemof a decaysfrom T= 2 statesto T = 0 levels.

The decaysare termed“forbidden” becausethe isospinquantumnumberis not conservedin these
decaysand one or two units of isospin are “lost” in the process.As we will see,such decaysprovide
importantinformationconcerningthe isospin-mixingmechanismin light nuclei. Note that in the caseof
forbiddendecayswe are dealingwith the secondand third membersof an isospin multiplet. As we
proceedtoheavynucleisuchexperimentalinformationisnot available.In heavynucleionehasinformation
only aboutthefirst (the parentstate)andthe second(analogresonance)membersof the multiplet. The
only exceptionis thework of ref. [25]whereit was suggestedthatadoubleanalogresonanceof 210Pb(third
memberof the multiplet) hasbeenseenin 210Po.This resultstill awaitsconfirmation.

3.1. Forbiddenproton (neutron)decaysfrom T = ~ states

3.1.1. Experiment
In fig. 4 we show the schemeof decayfrom anisobaricanalogresonance.We deal first with the case

when T = ~. In this case,an analogoussituationexistswith protonsandneutronsinterchanged.
The T = ~ statesin the T~= ±~membersare usually populatedby using two-nucleontransfer

reactionsand in some caseswere observedas resonancesin the nucleon-plustarget system [26].
Experimentalinformationhasbeenavailablefor sometime, but in recentyearsa largeamountof new
andimproveddataappeared[27,28]. The new experimentsyield systematicdataon the T = ~ forbidden
decaysin all the ground-statemultiplets of nuclei with A = 4n + 1 for 2� n � 10. In all casesboth
neutronandproton decayswere measured.The total widths of the (T = ~, T~= ±~)resonancesrange
betweenseveral tens of eV and several keY. The proton and neutron escapewidths to the T = 0,
T~= 0 groundstatesarebetween50 and400eV. In manycases,thebranchingratiosto the groundand
excitedstatesof the final nucleushavepronouncedasymmetrieswhen the proton and neutrondecays
arecompared.

IAR J”~T

71-> fT N-I,Z _____ T—!
N,Z ‘ T T-1 N-2,Z~l

N-I Z+l J~,T-l Z 2 T
2 ~T-~

T2 ~T-l
Fig. 4. The decayschemefrom an IAR with a neutronexcessparent.Theallowed andforbiddendecaysareindicated.For a T = 3/2 multiplet an
analogoussituationoccursalsowhenneutronsandprotonsareinterchangedand theparenthasa protonexcess.Figure 1.15: Shematic representation of the IAS particle decay. The allowed and forbidden decays

are shown [46].

Figure 1.16: Experimental IAS spreading widths (circles) compared with theoretical calculations

(lines) [58].



Wilkinson [59] and Morinaga [60] first suggested that at high excitation energy the

nuclear decay width becomes so large to overwhelm the Coulomb interaction effects and

restore the isospin symmetry.

This process can be view in a time-dependent approach where the compound nucleus

is formed and it decays before the time necessary to mix the states. The mixing proba-

bility is determined by the competition between the nuclear lifetime and the Coulomb

interaction time scale. The time-independent description of the isospin mixing in Eq.1.50

is no more suitable to describe this dynamical mechanism.

To understand better this point is useful to introduce a picket-fence model, which

describes the dynamical competition between two effects (see Ref. [103] [62]).

Suppose to have a set of I = 0 levels with the same energy distance D. A state with

I = 1 lies at an energy EI=1 between two I = 0 states and a perturbation apply to the

system. The perturbation connects the state with I = 1 with the underlie I = 0 states

and it has a constant matrix element v In the limit v � D, the probability to have I = 1

configuration per unit energy interval is given by the Breit-Wigner distribution:

PI=1[E] =
1

2π

Γ↓

(EI=1 − E)2 + (Γ↓/2)2

Γ↓ =
2πv2

D
(1.51)

where Γ↓ is the spreading width of the I = 1 state. Suppose now to analyse the

problem in a time dependent approach, considering that at t = 0 only the I = 0 state is

populated. The probability to find the system at I = 1 is:

P (t, I = 1) = exp[−Γ↓

2
t− i

~
EI=1t]

2 (1.52)

The state I = 1 decay (mix) to I = 0 state with an exponential decay time equal to

Γ↓/~ and this process is in competition with the natural decay of the state. In the case of

isospin mixing problem Γ↓ is the Coulomb spreading width associated to the Coulomb

interaction time scale: if the decay width becomes much larger than the Coulomb spread-

ing width (hence the decay is faster than the Coulomb interaction) no isospin impurities

affect the decay. The isospin symmetry is restored.

1.6.4 Isospin mixing parametrizations in compound nuclei

Harney, Ritcher and Weidenmüller [61] proposed a coherent isospin mixing description

in the compound nucleus, which took into account both the isospin mixing formalism



and the CN statistical behaviour.

The model, which used the S-matrix formalism, assumes no mixing in the entrance

channel, before the formation of the compound nucleus. On the other hand after the CN

formation isospin mixing is allowed between two classes of states I< = Iz and I> =

Iz + 1. The Coulomb spreading width Γ↓> for the state I> is expressed as:

Γ↓> = 2π| 〈I<|HC |I<〉 |2ρ[I<]] (1.53)

where the Coulomb matrix element is averaged over all possible states. This model

assume that the two states are centred at the same excitation energy, therefore the Coulomb

matrix element is the same also for I< states, so that

Γ↓> =
ρ[I<]

ρ[I>]
Γ↓< (1.54)

Harney, Ritcher and Weidenmüller write the isospin mixing term using a single pa-

rameter z, that is given by:

z = 4π2H2
Cρ[T<]ρ[T>] = (1.55)

= 2πΓ↓>ρ[T>] =

= 2πΓ↓<ρ[T<]

using this equation, it is possible to derive the fraction α2
> of states I> which mix

with I< states.

α2
> =

Γ↓>/Γ>

1 + Γ↓>/Γ> + Γ↓</Γ<
(1.56)

and similarly the fraction α2
< of states I< which mix with I> states.

α2
< =

Γ↓</Γ<

1 + Γ↓</Γ< + Γ↓>/Γ>
(1.57)

where Γ>(<) is the total decay width of the states I>(<). For small mixing the Eq. 1.57

is reduced to Γ↓</Γ< = τCN/τmix and confirms the Wilkinson’s hypothesis that the mix-

ing at finite excitation energy depends only on the competition between the mixing and

the CN decay. For intermediate value of the mixing it is necessary include the terms in

the denominator Γ↓<(>)/Γ<(>), which take into account also the probability that I<(>)

states mix back to I>(<)



Many theoretical works proposed the idea that the Γ↓> obtained in a statistical reac-

tion could be the same as the spreading width measured with the IAS. The reason is that

both quantities are originated by the isospin mixing effects with the IsoVector Monopole

State. This idea was supported by many experimental results, as shown in Fig.5.5.
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where L is the length of the energy interval over which
coupling between class one states and class two states
occurs. We see that the main energy and mass-number
dependence of Hc arises from the exponential dependence
of Di.

Table I also contains evidence that isospin mixing (or
I z/I q) decreases with increasing excitation energy E„.
(Qualitatively, this would be expected if I 2 were indeed
constant, since I z increases strongly with increasing E„.)
Figure 16 further illustrates this statement and the limita-
tions of the data presently available, for the case of the
compound nucleus ' F*. We reproduce the excitation
functions by Schwenzel et al. (1981) and by Sokol and
Browne (1978) of the isospin-allowed reactions ' C( I.i,a)
populating the ground and second excited states of ' N
(upper part of the figure). The cross sections for both
transitions are about equal, and are reasonably well repro-
duced by Hauser-Feshbach calculations (Kuhlm ann,
1984) (uppermost solid curve). The lower solid curve is
the prediction of Hauser-Feshbach theory with full break-
ing of isospin symmetry for the transition to the first ex-

cited state in ' N. This transition is isospin forbidden,
and the data accordingly lie below the Hauser-Feshbach
prediction. The distance from the data to the Hauser-
Feshbach curve is an indicator of isospin conservation:
The larger the distance, the better isospin is conserved.
The dashed line merely summarizes the trend of the data.
There is a gap that widens with excitation energy, espe-
cially at the data point with highest excitation energy. A
similarly strong effect was observed by Richter et al.
(1970) in the compound nucleus P. A quantitative
analysis of this behavior in terms of the expected depen-
dence of I 2 has not been performed, however.

Vill. CONCLUSlONS

In this review we have compared the statistical theory
of isospin breaking in statistical compound-nucleus reac-
tions developed in Secs. IV and V, and in Appendix A,
with the available body of data. As emphasized in the In-
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Figure 1.17: Experimental spreading width obtained from the IAS (circles) and statistical reactions

(triangles) [61].

1.6.5 Isospin mixing temperature dependence

The problem of the isospin symmetry restoration at high excitation energy was treated

by Sagawa, Colò and Bortignon [52] using a microscopic model. The model is based

on the Feshbach projection method and provide the isospin mixing temperature depen-

dence through its relation with the spreading width of the IAS. Indeed, the authors as-

sume that the Coulomb spreading width of a CN it is the same of the corresponding IAS,

because both are originated by the isospin mixing.

The coulomb spreading width of the IAS can be expressed as:

Γ↓IAS = (Γ↑C(E∗) + ΓM (E∗)α2
T0+1(T0 + 1) (1.58)



Figure 1.18: Degree of mixing α2
> in the nucleus 208Pb as a function of nuclear temperature [52].

and thus the mixing probability α2 is given by

α2
T0+1 =

1

T0 + 1

Γ↓IAS
Γ↑C(E∗) + ΓM (EIAS)

(1.59)

where Γ↑C(E∗) is the compound nucleus decay width, Γ↓IAS is the Coulomb spreading

width of the IAS, ΓM is the width of the Isovector Monopole Resonance (IVM) at the ex-

citation energy of the IAS. The latter quantity it is impossible to measure experimentally

and it can be considered as a parameter of the model.

Γ↑C(E∗) increases exponentially with the temperature (ΓCN ≈ e−∆E/T , ∆E is the

energy removed by the emitted particle) while the other two quantities are expected to

remain constant with temperature. Nevertheless, the authors introduce a smooth linear

dependence of the Γ↓IAS obtaining for 208Pb the trend reported in Fig.1.18. The mixing

probability remains rather constant with the nuclear temperature and then decreases

sharply because of the short lifetime of the nucleus.

1.6.6 Isospin mixing: experimental methods and recent results

Isospin mixing amplitude can be measured experimentally studying transitions which

would be forbidden if isospin is a good quantum number. This is the case of a E1 γ decay

in N = Z nuclei [63–68] or a β decay in nuclei with different isospin [69]. Both transition

are forbidden in the hypothesis of pure isospin states. The analysis reported in this thesis

is based on the first method.



Since the E1 strength is almost exhausted by the Giant Dipole Resonance [11], this

resonant state is the best state if one wants to test E1 properties as the isospin mixing.

The best way to excite the GDR state in a I = 0 configuration is using a fusion reaction

with a N = Z beam and target combination. Using the formalism proposed by Harney,

Richter and Weidenmüller in the statistical model used to fit the data, one can extract

the isospin mixing amplitude at a certain value of excitation energy (or equivalently

temperature), giving also an estimation of the Coulomb spreading width.

In principle, comparing experimental data at different excitation energy one can give

a proof of Wilkinson’s suggestion.

The GDR γ-decay was used for the first time by M. Harakeh [65] as test of the isospin

symmetry (see Fig.1.19). In the past years the Washington University group and the

Warsaw group performed experiments with the goal to verify the Wilkinson’s sugges-

tion and see clearly the isospin symmetry restoration at high temperature [64,66]. In the

work of A. Corsi and Milano group [68], the isospin mixing was investigated at the Z

= N = 40 value, namely in 80Zr, at an excitation energy E∗ = 84 MeV. In that work the

Coulomb spreading width was found to be Γ↓ = 10 ± 3 keV and the mixing probability

α2 = 5% ± 1% (see Fig.1.20).

As shown in Fig.1.21, all these experimental data show the expected mass and tem-

perature dependence. Anyway, the validity of this comparison is limited by the errors

bars and by the fact that these data are related to different nuclei in mass and in temper-

ature. A systematic study of the same nucleus at different temperature does not exist in

literature.
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backgrounds were negligible. Cosmic rays produc- 
ing pulses in the region of interest were sup- 
pressed by an anticoincidence condition with the 
plastic shield. Pile-up effects were accounted for 
by two methods: (i) a fast pile-up circuitry was 
used to suppress piled-up pulses, and (ii) long runs 
were taken with half the beam intensity allowing 
for subtraction of residual pile-up contributions 
which were not electronically removed. Absolute 
y-ray cross sections for the various reactions were 
determined from the detected number of counts 
after correction for pile-up and computer 
deadtime, making use of the measured target 
thicknesses, accumulated charge, solid angle of the 
NaI crystal and y-ray detection efficiency. The 
measured cross sections for the various reactions 
are shown in figs. 1 and 2. 

In fig. 1, a y-ray spectrum from 3He+25Mg 
(histogram in top of fig. 1) which populates T = 0 
and T =  1 entrance channels equally in the 28Si* 
compound nucleus is compared with a spectrum 
from 160 +~2C (histogram in bottom of fig. 1) 
which populates only the T = 0 entrance channel. 
The bombarding energies for both reactions were 
chosen so that the compound nucleus was popu- 
lated at about the same excitation energy. It is 
interesting to note that in the y-ray energy interval 
12-26 MeV, the absolute y-ray cross section for 
the 3He+25Mg reaction is about an order of 
magnitude larger than that observed for the 160 
+ 12 C reaction. We ascribe this effect to an inhibi- 
tion of high energy E1 y-decay in the T = 0 ,  
160 + 12C channel due to good isospin purity. A 
similar conclusion can be drawn by comparing the 
high energy y-yields from 13C + 13 C and 13C + 12 C 
(histograms in top and middle of fig. 2) and 
]2C + 12C (histogram in bottom of fig. 2), which 
have isospin T =  1, T =  1/2  and T = 0 ,  respec- 
tively. 

In order to obtain a quantitative estimate 
of isospin mixing, the statistical model code 
CASCADE [12] ,2 was modified to perform 
calculations in good isospin and parity. Isospin 
Clebsch-Gordan coefficients ( T f T ~ f t t  z ] TiTzi), 
where T i and Tf are the isospin of the initial and 

*2The program CASCADE was modified extensively to per- 
form calculations in good isospin and parity. 

I05 I I I I I [ 

102 ~ 

io ~ 25Mg.,.SHe 

~° o ~ 1 t i  MeV 

~ IO-I _ 

,,, 
,oO_ %,.16o 
Lo -zl°-II ~ , ~  E (160)=40.2 MeV 

i 0  -~ _ "...... ",.\ - 

i o  -4  ~~111, L . . . . . .  JL,,  L, 
I ) ] I I I 

0 I0 20 30 
E 7 (MeV) 

Fig. 1. y-ray cross sections as functions of y-ray energy for the 
reactions 3 He + 25Mg (top) and 160 + 12C (bottom). The curves 
are the results of statistical model calculations. Solid curves: 
least squars fits allowing isospin mixing. 160+ 12C: dot-dashed 
curve - complete isospin mixing, dashed curve - pure isospin, 

dotted curve - E2 only. 

final states, respectively, and t is the isospin of the 
decay 7 or particle, were introduced into the 
calculation of both particle and y transmission 
coefficients [13]. Proper treatment of T< and T~ 
level densities was included by calculating T~ 
level densities using the back-shifted level density 
parameters of Dilg et al. [14] at excitation energies 
further shifted by the energy of the isobaric analog 
state. The T< level density was determined by the 
condition that the sum of the T< and T> densities 
at a given excitation energy is equal to the 
total level density obtained from the normal 
back-shifted level density parameters without ref- 
erence to isospin. Isospin mixing was introduced 

298 

Figure 1.19: γ-ray spectra for the reactions 25Mg + 3He (I 6=0) and 12C + 16O (I=0). In the latter

spectrum the effect of the isospin mixing is shown. Dot-dashed curve: full mixing. Dot curve: no

mixing. Dashed curve: best fitting curve [65].
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performed on the γ spectrum emitted by 80Zr. The spectrum calculated with this set of
parameters is plotted in Fig. 7.4 together with the spectra obtained with two extreme
values of Γ↓

>.

CN centroid(MeV) ΓGDR(MeV) strength(%) Γ↓
>(keV)

80Zr 16.2±0.17 10.8±0.2 90±3.5 10

Table 7.3: GDR parameters giving the best fit of the measured γ decay of 81Rb and Γ↓
>

giving the best fit of the measured γ decay of 80Zr.

The Coulomb spreading width Γ↓
> is physically equivalent to the spreading width of

the IAS Γ↓
IAS. This datum has not been measured for 80Zr but several measurements are

available in this mass region. We find a good agreement between our best-fitting value
of Γ↓

>=10±3 keV and the value Γ↓
IAS=9.9±0.6 keV measured by Kailas et al. [78] for

80Se, which has the same mass as 80Zr but I0=6 and a smaller ground-state quadrupole
deformation (β=0.23 [79]).
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Figure 7.4: Left panel: measured γ-ray spectrum of 80Zr compared with Statistical Model
calculations without isospin mixing (red), with isospin mixing given by Γ↓

> obtained from
χ2 minimization (blue) and with a large degree of isospin mixing (green). Right panel:
the same, divided by an exponential spectrum to highlight the effect of isospin mixing.

Figure 1.20: Left panel: measured γ-ray spectrum of 80Zr compared with Statistical Model calcu-

lations without isospin mixing (red), with isospin mixing given by the best fitting Γ↓> (blue) and

with a large degree of isospin mixing (green). Right panel: the same, divided by an exponential

spectrum to highlight the effect of isospin mixing [68].
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In order to be consistent with the approach used up to now, we have performed the aver-
age using as a weight the γ yield at each J. This procedure yields an average α2

<=0.05±0.01
for 80Zr∗ CN at T∼2 MeV. A more detailed discussion on the interpretation of the results
obtained from Statistical Model analysis will be done in Sect. 7.4.

7.3.1 Comparison with systematics at finite temperature

We compare in Fig. 7.10 our result with the existing systematics on isospin mixing. This
comparison will be limited to the results obtained from measurements of GDR decay in
self-conjugate nuclei which have been analyzed with the same approach of Sect. 2.3.1.
For better clarity we divide the results in two groups, the first one including the results
obtained by the Washington University group [10, 32], the second one by the Warsaw group
[13, 45, 46]. The second group includes also the result obtained in this work. The lighter
systems (A=26, 28) populated at higher temperature (T=3-4 MeV) belong to the first
group while the heavier ones (A=32-80) populated at lower temperature (T=2-3 MeV) to
the second one. We remark that each of the two groups contains systems with different Z
and T. The results of the two groups are shown in Fig. 7.10 as function of Z (left) and T
(right).
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Figure 7.10: Systematics of α2
< measured via GDR decay of the hot CN with Z=13-14 and

T=3-4 MeV (triangles) and with Z=16-40 and T=2-3 MeV (dots). The result obtained
from the analysis described in this Thesis belongs to the second group and is plotted with
a red dot. The left panel displays the dependence of α2

< on atomic number Z, the right
panel the dependence on nuclear temperature T.

Within the first group it is not possible to recognize a clear trend in Z and T de-
pendence. Conversely, within the second group a decrease of the degree of mixing with
increasing T and an increase with increasing Z can be observed. In order to make more
stringent statements it is necessary to disentangle the two effects by performing new mea-
surements where only Z or T are varied.

Figure 1.21: Systematics of α2
< along to Z (left panel) and T (right panel) measured via GDR

decay of the hot CN with Z=13-14 and T=3-4 MeV (triangles) and with Z=16-40 and T=2-3 MeV

(dots) [68].



1.7 Isospin mixing beyond nuclear structure: The CKM matrix

In the Standard Model (SM) the Cabibbo Kobaiashi Maskawa matrix (CKM matrix) [71]

contains the informations about the transitions between quarks. In the SM this matrix is

hypothesised to be unitary. Testing the unitary one can provide a very important test of

the validity of the SM.

The first element Vud of the CKM provides the coupling between the quarks u and d,

which is the basis of the β-decay transitions in nuclei. The most precise value of the Vud
term is obtained from the ft values of 0+ → 0+ superallowed Fermi β transition:

ft =
K

G2
V |MF |

(1.60)

where K/(~c)6 = 2π3~ln2/(mec
2)5 =(8120.2787±0.0011)×10−10GeV−4s, GV is the

vector coupling constant obtained from semileptonic weak interaction and MF is the

Fermi matrix element.

All these quantities are true constant and not renormalized to another value in nu-

clear medium. Consequently, also ft should be nuclear independent. In practice, mea-

suring ft values for nuclei in different mass region one realizes that this quantity change

with the mass number, due to effects that are not take into account in the Eq1.60. Firstly,there

are radiative corrections (δR) because of the emission of bremsstrahlung photons coming

from emitted electrons. Secondly, the isospin is not a good quantum number and the ma-

trix element must be corrected introducing an isospin-symmetry-breaking correction δC
and the matrix element becomes |MF |2 = |M0|2(1− δC), where M0 is the matrix element

in the case of true symmetry. Using these corrections it is possible define a ”corrected”

Ft value defined as:

Ft ≡ ft(1 + δR)(1− δC) (1.61)

From Ft one can in principle extract the value of GV and the value of Vud, using the

relation Vud =
GV
GF

, where GF is the well known weak interaction constant.

However, it is important taking many Ft values, coming from nuclei in different

mass region. If they are statistically consistent one can extract the value of GV and

Vud (and the associated error) from the average value of Ft. For this scope it is im-

portant to have a good estimation of the corrections, see [72, 73] and reference therein.

For the isospin-symmetry-breaking correction many theoretical approaches are used to



parametrized its behaviour along to the mass number [74, 75]. Unfortunately, δc is not a

quantity directly measurable.

N. Auerbach in Ref. [76] proposed a simple analytic relation between the δC term and

the isospin mixing probability:

δC = 4(I + 1)
V1

41ξA2/3
α2 (1.62)

where V1 = 100 MeV and ξ = 3, while α2 is the isospin impurity in the ground state

and I is the isospin of the nucleus.

In Fig.1.23 the experimental values of δC along to the mass number in comparison

with two theoretical calculations. The experimental values were obtained using the β-

decay ft [72] and the mass measurement in the case of 74Rb [77]. It is worth to note that

these experimental values were obtained using Eq.1.61 assuming the other known quan-

tities and considering Ft as an adjustable parameter equal for all nuclei. This method is

limited by the precision in the ftmeasurement (especially for short lifetime) and because

it assumes valid the constance of Ft.

1.8 isospin mixing: from finite to zero temperature

As we noted before, the γ decay of the GDR it is a powerful observable when one wants

to measure the isospin mixing of the nucleus, but it can provide the α2 value only at

T>0. That is a clear disadvantage of our technique when one is interested in the value of

the isospin mixing in the ground state for checking the effects on the nuclear structure,

for the determination of the δc or for the comparison with the theoretical caluclations at

T = 0. Therefore, it is very important to find a way to extrapolate the T = 0 starting from

the GDR data at T > 0.

The work on 80Zr of Ref. [68] shows the possibility to deduce the isospin mixing at

zero temperature starting from a finite temperature value using the theoretical model de-

scribed in Sec. 1.6.5, even if the analysis has some limitations because of the availability

of only one data point. From that work, the need for, at least, an additional experimental

point is evidenced to provide a more stringent test to model predictions [49].

In this thesis a new study addressing the problem of isospin mixing in 80Zr is re-

ported. The goals of this work is to determine the isospin mixing value at T = 0, using

a combined analysis of the new and existing data and to extract, for the first time, the

isospin mixing correction δC in Z = 40 nucleus necessary to obtain the correct ft value of

super-allowed Fermi transitions.
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element is

M0 =
∑
α,π

|〈f |a†
α|π〉|2. (5)

If isospin is not an exact symmetry, then |i〉 and |f 〉 are not
isospin analogs and a correction to M0 needs to be evaluated.
This is the isospin-symmetry-breaking correction, δC , we seek
to determine. It is defined by

M2
F = M2

0 (1 − δC). (6)

Ideally, to obtain δC one would compute Eq. (4) using the shell
model and introduce Coulomb and other charge-dependent
terms into the shell-model Hamiltonian. However, because the
Coulomb force is long range, the shell-model space would
have to be huge to include all the potential states with which
the Coulomb interaction might connect. Currently, this is not
a practical proposition.

To proceed with a manageable calculation, we have devel-
oped a model approach [7,178,179] in which δC is divided into
two parts:

δC = δC1 + δC2. (7)

For δC1, we compute∑
α,π

〈f̄ |a†
α|π〉〈π |bα|ı〉 = M0(1 − δC1)1/2, (8)

055502-12

Figure 1.22: The uncorrected ft values for the twelve best known superallowed decays (top panel),

compared with the same results after application of δR, δC and δNS correction terms. The grey

band in the bottom panel is the average Ft value, including its uncertainty.
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points extracted from β decay as reported in Ref. [72], the blue triangle is the value obtained from

the mass measurement in Ref. [77].





CHAPTER 2

Experimental setup: description

The experiment was performed at the Laboratori Nazionali di Legnaro (LNL), Italy, dur-

ing May 2011. The experimental setup was composed by an array of segmented HPGe,

called AGATA (Advanced GAmma Tracking Array) Demonstrator, coupled with an ar-

ray of large volume LaBr3:Ce detectors, called HECTOR+ (see Fig.2.1). This apparatus

was used to measure the γ radiation emitted by the compound nuclei 80Zr and 81Rb.

These nuclei were formed using a fusion reaction. In this chapter the main features of

the used reactions and the used experimental setup are presented.

2.1 The experiment

In the first phase of the experiment, the 81Rb nucleus was formed using a beam of 37Cl

(Ebeam ≈ 95 MeV, Ibeam ≈3 pnA) with a target of 44Ca (0.5 mg/cm2). This phase was ∼
70 hours long. In the second phase, the 80Zr nucleus was formed using a beam of 40Ca

(Ebeam ≈ 136 MeV, Ibeam ≈3.5 pnA) with a target of 40Ca (0.5 mg/cm2). This phase was

∼ 110 hours long. In Tab.4.2 the main characteristics of the reaction are summarized.

reaction Elab (MeV) Ibeam [pnA] Eloss (MeV) t (µg/cm2) σ (mb)
40Ca + 40Ca 136 3.5 7 500 500
37Cl + 44Ca 95 3 6 500 250

Table 2.1: Elab is the energy of the incoming beam, Ibeam is the beam current, Eloss is the energy

loss in the target of thickness t, calculated with LISE++ code [81]. σ is the fusion cross section

calculated with PACE4 [80].

The ion beams were provided by the TANDEM tandem linear accelerator complex.
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Figure 2.1: Picture of the experimental setup used in the experiment analysed in this work. 7

LaBr3:Ce and 4 triple clusters of the AGATA Demostrator are visible.

2.2 AGATA Demostrator

AGATA is an European project aimed to the development of a 4π segmented-HPGe de-

tector for the γ-ray detection [82–86]. This new detector is based on the principle of the

γ-ray tracking [84], namely the reconstruction the sequence of interactions of the single

γ-ray in the crystal, which makes possible to achieve a good suppression of the Compton

background, without using a detected ancillary. As a consequence a good efficiency and

high peak to total ratio (P/T) are obtained. In the experiment described in this thesis

AGATA Demonstrator was composed by 4 triple clusters of HPGe crystals for a total of

12 crystals and it was place at 155 cm from the target.



Figure 2.2: Picture of the AGATA Demonstrator at LNL. Taken from [83]

2.2.1 AGATA geometry

The geometrical structure of AGATA was studied with the goal of maximizing the solid

angle covered by the array and, at the same time, minimizing development and mainte-

nance cost. As discussed in more detail in Ref. [85], GEANT4 simulations were used to

decide the best performing configuration, here only the main features are reported. The

AGATA geometry is based on the geodesic tiling of a sphere with 12 regular pentagons

and 180 irregular hexagons with three different shapes (see Fig.2.3). The detectors are

grouped in 60 identical triple-clusters, each containing a ”red”, a ”green”, and a ”blue”

crystal arranged in one cryostat (see Fig.2.3).

In the standard configuration, the inner radius of the array is 23.5 cm. The full sphere

has a total solid angle covered by HPGe material close to 80% and the photo-peak effi-

ciency is as high as 50% for individual 1 MeV 1γ rays.

In Table 2.2 the AGATA photo-peak efficiency and the peak to total ratio (P/T) are

given in comparison with an hypothetical sphere of HPGe material and the EUROBALL

array [87], which was the previous array composed by HPGe detectors. Although a

realistic detector can achieve only about 50% of the performance of the ideal sphere of

HPGe, the efficiency gain of AGATA respect to EUROBALL is evident. Even in the case

of experiment with high γ-ray multiplicity, one obtains a good efficiency and P/T.



Array # crystals εph(%) εph(%) P/T(%) P/T(%)

(Mγ=1) (Mγ=30) (Mγ=1) (Mγ=30)

EUROBALL 239 9 6 56 37

AGATA 180 38 24 53 44

HPGe sphere 1 65 36 58 60

Table 2.2: Estimated performances of AGATA at Eγ= 1 MeV, compared to those of an ideal shell of

HPGe and those of EUROBALL; εph is the photo-peak efficiency and P/T is the peak to total ratio.

These quantities were calculated taking into account the number of γ-rays emitted in coincidence

(i.e γ-ray multiplicity, Mγ). Taken form [84].

Another important aspect of the AGATA array is its capability to identify the direc-

tion of the incident γ-ray, with a precision close to 1◦. This provides an improvement for

the energy resolution for the radiation emitted by recoiling nuclei, which is affected by

the Doppler effect.

Figure 2.3: Computer aided design images of the tiling of the sphere (left) and the 180 crystal

configuration (right). The cryostats and the detector encapsulation are not shown. Taken from [83]

2.2.2 Segmented detectors

In order to achieve a large tracking efficiency, one should have a 5 mm precision in the

determination of 1 MeV γ-ray interaction point in the crystal. This corresponds to an

effective granularity that is impossible to obtained with a physical segmentation of the

crystal. However, using an electronic segmentation and using a Pulse Shape Algorithm



Figure 2.4: On the left, picture of an AGATA triple cluster. On the right, a triple cluster of the

AGATA Demonstrator

method (PSA), it is possible to achieve this accuracy.

The AGATA detector is composed by HPGe crystals in a semi-coaxial geometry, di-

vided in 36 segments. The crystals are 90 mm long and with a diameter of 80 mm; the

weight of a single crystal is around 2 kg. All crystals are n-type semi-conductors with an

impurity concentration of around 0.4 - 1.8 1010 cm−3.

The crystals are encapsulated hermetically in a alloy capsule (with a thickness of 0.8

mm). The sector-wise segmentation goes through the middle of each hexagonal side,

the longitudinal segmentation forms rings of varying thickness, optimised for a uniform

distribution of the gamma-ray interactions. Because of their complexity and the need of

packing them very close to each other, these detectors use the encapsulation technology

developed for the clusters of EUROBALL.

In the single crystal there are 37 wires (36 for the segments + 1 central contact) passing

very close to each other (the segment thickness is ∼ 2cm, see Fig.2.5), therefore a good

electrostatic shielding is necessary for each channel. The central contact, which is used

to apply the low voltage signal in the crystal has a ceramic shielding.

As already noted, the AGATA array is organized in triple clusters. All three crystals

of a cluster are placed in a unique cryostat cooled at a temperature of 90 K with a liquid

nitrogen system. The pre-amplifiers for all segment and core signals are also cooled to

130 K; even though the power dissipated by each pre-amplifier is rather small, the sum

of all 111 channels in a triple-cluster builds up to ≈2.3 W.



(a) crystal geometry

(b) segmented crystal

Figure 2.5: Drawing of the three AGATA crystal geometries. The AGATA triple cluster detector

combines the three different crystal shapes. The side view (lower right) shows the position of the

segmentation lines. All dimensions are given in mm. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.) Taken form [83]

2.2.3 Digital electronics and Pulse Shape Analysis (PSA)

The electronic signal generated by a γ ray that interacts in the crystal has a shape that

depends on the interaction position. Therefore, in principle, one can extract positional



informations studying the shape of the acquired signals. This is the core idea of the Pulse

Shape Analysis (PSA) technique.

The Pulse Shape Analysis technique requires that the shape of each signal in the

detector is recorded and processed digitally. Therefore, for each crystal, 37 signals (36

segments + central electrode) are digitalised at 100 MHz after the pre-amplifier by a fast

ADC. The digitalized signal provide all informations (energy, time and position) about

the interaction of each γ ray. Digital processing allows to use filters that have no analogic

counterpart such as the Moving Window Deconvolution algorithm [88], which allows

to reconstruct the original charge collection by removing the effect of the pre-amplifier

response. A good energy resolution can be achieved with shorter shaping time; in this

way the array is able to sustain a counting rate per detector 5 times higher than the

”traditional” apparatuses (50 kHz per detector instead of 10 kHz).

As explain above, the tracking algorithm need a precise position information of the

interacting γ-ray (maximum 5 mm). The PSA techniques provide the requested preci-

sion.

In general, the PSA technique is based on the comparison between the digitalized

signals and a reference sample of signals. Each signal of the sample corresponds to a

defined interaction point. For AGATA, the PSA has 37 signals (Sj(E, t)) as input, coming

from each segment of the crystal. Since the detector response is linear, Sj(E, t) ca be

written as a superposition of signals corresponding to a single interaction Sj(xi, yi, zi, t),

weighted on the deposited energy in the crystal Ei:

Sj(E, t) =

N∑
i=1

EiSj(xi, yi, zi, t) (2.1)

where N is the number of interaction points in the segment and Ei is the total de-

posited enrgy in the segment. If N = 1 the equation is reduced to

Sj(E, t) = ESj(xi, yi, zi, t) (2.2)

The solution of this equation provides the position (xi, yi, zi), which reproduce better

the detected signal.

In order to achieve the request precision, the PSA is apply not only in the segment

where the interaction took place, but also to the adjacent ones where a transient signal

is generated. In Fig.2.6, the shapes acquired in different segments of the crystals (blue

lines) are comparing with the reference signals (red line).



quasi-planar nature of the electric field leading to short charge
collection times through the 13 mm distance from the front face to
the hole drill depth in the crystal. These plots also show the
influence of the face-centred cubic lattice orientation of the Ge
crystal on the rise times. For pulses measured at the same radius, a
maximum variation of 30% with respect to the crystal axes is
observed for the time required to collect the charge carriers. This
effect must be taken into account in the theoretical simulation, if a
reliable validation is to be achieved.

The coincidence between an AGATA detector and an array of
scintillator crystals can be used to select interactions at a specific
location within the crystals. In practice, several events for each
location are needed in order to average the corresponding wave-
forms and eliminate, as much as possible, the effects of the noise.
The averaging procedure, performed for each location, starts with
a scaling of each waveform by pre-calculated gain factors, derived
from the 152Eu baseline difference energy calibration, and with a
baseline subtraction. The baseline is derived for each individual
trace from an average of the initial 10 samples in each trace.

Waveforms are then interpolated to allow for more accurate
time alignment. The pulse amplitudes are subsequently normal-
ised in order to have the same maximum amplitude for all of
them. Finally, the best fit average waveforms corresponding to
each location are obtained through a w2 minimisation procedure.
Only the central contact, the segment with net charge deposition
and its neighbours are considered in the fit. ‘‘Noisy’’ events which
give a large w2 contribution are excluded from the fit procedure.
The final result is exemplified in Fig. 13, where the average (thick
red line) and the constituent (thin blue lines) pulse shapes are
shown for a net charge deposition in segment c3. The effect of the
cancellation of the random noise across the pulses is clearly
visible. The standard deviation of the baseline noise for the
average pulses is 0.9 keV, as opposed to 4.7 keV for single pulses.
The pulse shapes illustrated in Fig. 13 also demonstrate the signal
induced on the neighbouring segments b3, c2,c4 and d3. These
transient signals are those induced on adjacent electrodes to the
primary interaction due to the drift of the charge carriers inside
the germanium crystal.

4.2. Orsay scanning system

The Orsay scanning system is based on the same concept as
the Liverpool system, i.e. a well collimated strong radioactive
source, an accurate moving system and an array of scintillator
detectors to define the z position of the scattering through
coincidence measurements. The main difference is that the
z-coordinate can be continuously scanned due to the absence of
the scatter collimators, which are replaced by special tungsten
collimators described below.

A schematic view of the scanning setup based at CSNSM Orsay
is shown in Fig. 14 [29]. A 477 MBq 137Cs source is encapsulated
in a stainless steel cylindrical container with a diameter of 4 mm,
a height of 6 mm and window thickness of 0.4 mm. This container
is inserted into a collimator made of densimet (W–Ni–Fe alloy,
density 18.5 g/cm3). The g rays emitted by the source are
collimated by a hole with a diameter of 1.6 mm and a length of
155 mm.

Six modules of the TOHR (TOmographe Haute Résolution)
detector are used to perform the coincidence measurements.
Each module is made of a stack of 80 tungsten plates with a
triangular shape and a thickness of 200 mm. These plateshave
400 mm diameter holes positioned on a hexagonal lattice and the
geometry of each stack acts as a many slit collimator (about 8000
slits) with a focal distance of � 7 cm. At the back of each stack of
plates, there is a NaI(Tl) crystal for the detection of g rays. The six
modules are positioned in a compact semi-circle at710.21 from
the horizontal plane around the AGATA detector, all having the
same focal point in the germanium crystal. The position of the
common focal point can be changed by translating the TOHR
array or by turning the AGATA detector about its central axis;
thus allowing for a full 3D scan of the AGATA detector. A more
detailed description and measurements can be found in Ref. [30].

Fig. 14. A schematic diagram showing the CSNSM Orsay scanning table assembly

(top) and a closer view (bottom) showing the six NaI(Tl) detectors and the

mechanical support for the TOHR, the AGATA detector and the collimated intense
137Cs source.
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Fig. 13. Average (thick red line) and all constituent (thin blue lines) pulse shapes

for a typical interaction in segment c3 following the w2 rejection (see text). The

signal induced in the core and in the neighbouring segments b3, c2, c4 and d3 are

also shown. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

S. Akkoyun et al. / Nuclear Instruments and Methods in Physics Research A 668 (2012) 26–5836

Figure 2.6: Average (thick red line) and all constituent (thin blue lines) pulse shapes for a typical

interaction in segment c3. The signal induced in the core and in the close segments b3, c2, c4 and

d3 are also shown. Taken from [83].

It is worth to be noted that the PSA efficiency depends strongly on the quality of the

reference sample. Up to now, a precise experimental sample is not available. However,

using the PSA in AGATA one can have 1 deg precision in the interaction point. Such a

precision allows a good Doppler correction.

Thanks to the position resolution, a precise Doppler correction can be made. Indeed,

the limit of the Doppler correction is the uncertainty in the position determination that

originates a width broadening of the peak in the energy spectrum (the so-called Doppler

broadening). The performance of AGATA Demonstrator for the Doppler correction was

tested at 15.1 MeV, with a in-flight γ ray, coming from the reaction d(11B,nγ)12C [89]. An

energy resolution of about 119 keV was obtained after Doppler correction. It is worth

to be noted that the energy resolution obtained is worst than the expected trend (see

Fig.2.10); the reason is that the 15.1 MeV γ ray is emitted in flight.

In Fig.2.7 is shown the in-flight γ-ray energy spectrum without the Doppler correc-

tion (dots), with the Doppler correction and considering the center of the crystal as po-



This solution was chosen since the efficiency of the standard
tracking algorithm [69] was found to significantly decrease in the
10–20 MeV energy range. In particular, after applying the tracking
algorithm [69] on both simulated and experimental data the ratio
between the events in the 15.1 MeV full energy peak for the
tracked spectrum and the standard add-back with PSAþ1HitID is
0.25 only. This is related to the fact that the used tracking
algorithm was not optimized to treat gamma rays in the 10–
20 MeV range, where the pair production becomes the dominant
interaction mechanism. In addition, in the present in-beam test
the 15.1 MeV gamma-ray is produced by the direct decay into the
ground state of 12C, therefore the multiplicity is always one. This
fact justifies the use of a simpler approach as the PSAþ1HitID.

It is important to stress that the ‘‘multiplicity¼1’’ condition is
fulfilled in several AGATA physics cases where the measurement
of high-energy gamma rays is required (e.g. in the measurement
of the Pygmy Dipole Resonance [1]).

In the used reaction (see Section 2) 12C is produced with a b of
�5%, however the velocity of the 12C ions was not measured.
Therefore, in order to Doppler correct in the optimal way the
detected gamma-ray energy we determined the value of b which
better optimizes the centroid and width of the 15.1 MeV full
energy peak. In such a way we extracted an averaged velocity
vector of magnitude 0.046 (b) and components (0, 0.85, 0.51) in
the AGATA frame of reference; the AGATA reference frame is a
right handed reference frame where the z axis coincides with the
optical axis of PRISMA (magnetic spectrometer of LNL-INFN lab)
and the x axis points downward (see Refs. [15,36,56,57]).

The components of the velocity vector are compatible with the
beam direction. It is interesting to note that the best value of the
extracted velocity is consistent with the results of simulations of
the 12C ion velocity distribution performed with PACE4 [72–74]
giving a mean b of 0.048. More specifically we found that the 95%
confidence interval for the b value is between 0.042 and 0.058
and between 01 and 101 for the deviation angle with respect to
the beam direction in the AGATA frame of reference.

The spectra in the region of 15 MeV are shown in the panels of
Fig. 10. In particular, different Doppler corrections were applied,
using as gamma-ray emission direction the different options
listed at the beginning of this section. In the top panel of Fig. 10
the spectrum obtained without Doppler correction (dashed black
line) is compared to (i) the spectrum obtained by applying the
Doppler correction using the central position of the segment with
the largest energy deposit (thin black line) and (ii) the spectrum
obtained by using the full information provided by the PSA
‘‘PSAþ1HitID’’ (thin gray line). By looking at the spectra displayed
in the bottom panel of Fig. 10 one can note the marked improve-
ment in the FWHM of the 15.1 MeV peak passing from the
spectrum obtained by applying the Doppler correction using the
central position of the HPGe crystal with the largest energy
deposit (i.e. detectors operated in standard mode, thick black
line, FWHM larger than 160 keV) to the ‘‘PSAþ1HitID’’ (gray line,
119 keV FWHM, see also Table 1).

It is important to stress that, in this particular case, PSA
techniques do not improve in a significant way the energy resolu-
tion as compared with the spectrum where Doppler correction was
made using segment centers. In fact the FWHM slightly improves
from 122 to 119 keV (see Table 2). This fact is due to the uncertainty
in 12C ion vector velocity. The missing reconstruction on event by
event basis of the 12C ion velocity vector represents in this case the
main limiting factor in the Doppler broadening correction capability.

In order to verify the different contributions to the final width
(119 keV) of the 15.1 MeV peak Geant4 simulation were per-
formed and compared to the experimental result, see Fig. 11.
This simulation was performed using the AGATA code [56,57],
applying then the same algorithm used to process the

experimental data. The 12C ion velocity distribution was calcu-
lated using PACE4 [72–74] as discussed earlier. In the simulation
the value of the intrinsic energy resolution of the detectors was
extrapolated using the E�1/2 law (see Fig. 3) and set to 8 keV at
15.1 MeV. It should be pointed out, however, that this value has
negligible impact on the final energy resolution obtained in the
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Fig. 10. Gamma-ray spectra acquired during the in-beam test, displayed in the

region around 15 MeV. In the top panel the spectrum without Doppler correction

(dashed black line) is compared to: (i) the spectrum obtained using only the

central position of segments (thin black line) and (ii) the spectrum obtained using

the PSAþ1HitID(thin gray line). In the bottom panel the spectra showing the

performance of the detectors when operated in standard mode (Doppler correc-

tion using only the central position of the HPGe crystal with the largest energy

deposit, thick black line) and using the PSAþ1HitID (gray line) are displayed.

Table 2
Values for the FWHM of the 15.1 MeV gamma line obtained with Doppler

correction using different position information, as described in the text. The main

factor limiting the FWHM of the 15.1 MeV gamma line was found to be the

uncertainty due to the missing event by event reconstruction of the 12C ion

velocity vector. However, it is important to point out that considering the trend

showed by the data displayed in Fig. 3, an intrinsic resolution of the order of

10 keV should be expected at the energy of 15 MeV.

FWHM of 15.1 MeV peak

PSAþ1HitID 119 keV

Segments 122 keV

Crystals 4160 keV

F.C.L. Crespi et al. / Nuclear Instruments and Methods in Physics Research A 705 (2013) 47–5452

Figure 2.7: Gamma-ray spectra acquired during the in-beam test, displayed in the region around

15MeV. The spectrum without Doppler correction (dashed black line)is compared to:(i)the spec-

trum obtained using only the central position of segments(thin black line)and(ii)the spectrum ob-

tained using the (thin gray line). Taken from [89]

sition (black line) and, finally, considering the position obtained with a PSA technique

(red line).

2.2.4 Tracking algorithm

The γ radiation interacts in the material in three different modes [90], as illustrated is Fig

2.13:

• photo-electric effect: the radiation is completely adsorbed by the material in a sin-

gle hit. This is the dominant process up to 0.3 MeV.

• Compton effect: the radiation losses a part of its energy and it scatters in a precise

direction. This is the dominant process in a energy range between 0.3 - 3 MeV.

• Pair production: Owing to the interaction with the atomic nucleus of the material,

the γ ray annihilates in a pair e−/e+. e+ annihilates emitting two γ rays of 511 keV

in opposite direction. This the dominant process for energy grater than 3 MeV.



Since the γ-ray interaction is a stochastic process, a γ ray has a certain probability to

interact in a material with one of these three processes. The probability, depends mainly

on the γ-ray energy and the charge of the material Z.
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Figure 1. The relevant γ–ray interaction mechanisms and the features exploited by the
tracking algorithms.

points. It is important to remark that, due to experimental uncertainties but also because
of fundamental limits, every conceivable algorithm will always accept some background
events (corresponding e.g. to partial energy release in the detector) and reject good ones.
The amount of accepted background can normally be reduced at the cost of an increased
rejection of good events: i.e. better P/T implies lower efficiency.
Real events involve in general several coincident γ–rays and are reconstructed following,

essentially, two procedures. In the first one, we exploit the fact that the interaction
points of transitions emitted into sufficiently separated directions tend to “cluster” into
spatially isolated groups. We then search for cluster of interaction using different methods
and validate them as individual transitions with the methods explained above. The
reconstruction performance of our algorithms is often benchmarked using an ideal detector
consisting of a shell of germanium with an inner radius of 15 cm and a thickness of
9 cm. Assuming a position resolution of 5 mm, the cluster–tracking yields εph = 36% and
P/T = 60%, for Mγ = 30. In the other approach, called “backtracking” [4], one starts
from points with energy in the ∼ 100 keV range (likely to be the last, i.e. photoelectric,
interaction of a transition) and then proceeds back, step by step, to the origin of the
incident γ–ray looking for the correct Compton scattering vertices. Backtracking is more
sensitive to position errors (and to the electron Compton profile) but is, possibly, better
suited for gamma-ray imaging purposes.
Highly segmented germanium detectors. Several laboratories are pursuing the

development of highly segmented germanium detectors, both of the cylindrical and the
planar configuration. The following brief summary is limited to closed–end coaxial detec-
tors, which are believed to be more suited for the construction of 4π tracking arrays. The

D. Bazzacco / Nuclear Physics A 746 (2004) 248c–254c250c

Figure 2.8: The relevant γ-ray interaction mechanisms and the features exploited by the tracking

algorithms. Taken from [84].

Typically, the distance between two consecutive interactions from the same γ ray

is around 1 cm or less. The time resolution of the detector is some ns, therefore all

consecutive interactions are simultaneous for the detector.

The scope of the tracking algorithm is to reorganize temporally the interactions and

to reconstruct the γ-ray path in the crystal. Two main typologies of algorithms exist:

tracking forward [84] and backtracking [91].

In the tracking forward algorithm the first step is the identification of clusters of in-

teraction points that may belong to a single γ-ray. Looking at the forward peaking of

Compton scattering cross-section, clusters are identified as a set of interaction points

with an angular distance ≤ θ0 between each other (link algorithm) or with respect to a

given point (leader algorithm). Secondly, each cluster is evaluated to determine whether

it contains all the interaction points belonging to a single gamma-ray with the following

criteria:

• Do the interaction points satisfy the Compton scattering formula? In this case,

the tracking algorithm uses the angle-energy relation of Compton scattering to de-

termine the most likely scattering sequence from the position and energy of the

interaction points. The cluster is defined good using a χ square procedure.



• If the cluster is composed by a single interaction point, does the energy satisfy

photoelectric conditions? The algorithm evaluates if the mean free path of the

radiation with the deposited energy is compatible with a photoelectric process.

A monte-Carlo approach is used to decide if to consider the interaction point as

an actual photoelectric event or if to discard it as an isolated Compton scattering

event.

• Do the interaction points correspond to a pair production event? If there are two

gamma-rays of energy equal to 511 keV and an interaction point in the middle with

energy greater than 1022 keV, the three energies are summed and considered as a

single gamma-ray.

This technique allows a reconstruction of the total energy deposited in the crystal for

a γ-ray and it is an alternative to the standard Add-Back technique

The clusters which do not satisfy any of the above criteria are rejected, thus improv-

ing the P/T (peak to total) ratio of the spectra without the need for Compton suppression

shields. If a large solid angle is covered with segmented germanium detectors, the com-

bination of PSA and gamma-ray tracking allows for a very high photo-peak efficiency

together with a good P/T ratio.

The backtracking algorithm is based on the fact that the photoelectric energy depo-

sition is almost independent from the incident energy and is peaked around 100-250

keV; it assumes that the interaction points within a given deposited energy interval

Emin ≤ Ei ≤ Emax are the last interaction (in time) of a fully absorbed gamma-ray;

the algorithm then finds the closest interaction to the photoelectric one, it computes the

scattering angle using the incident and the scattered energies and, finally, it searches

for the other previous interactions along this direction; such process is iterated until the

direction points directly to the target. This algorithm, however, was found to be less

efficient and showed a worse P/T in the reconstructed spectra, and therefore it was not

used for our analysis.

2.2.5 AGATA Demonstrator performances

The energy resolution is one of the main features of any HPGe detector. The response of

AGATA was tested in an energy range between 2 and 9 MeV using an Am-Be-Fe source,

as reported in Ref. [89]. In Fig.2.10, the energy resolution is plotted and one can see that

the experimental data follow the expected E−1/2 trend (indicated by the black dashed

line). The FWHM of the highest-energy gamma line (i.e. 9297.8 keV) is 6.1 keV in the
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points identified by the tracking as belonging to a single gamma-ray, while the green 

squares correspond to clusters that are discarded. 

 
Fig. 3.4 - Plot of all interaction points in a 4π HPGe shell from a simulated event with 30 

gammas of 1.3 MeV; red circles represent clusters which are identify as belonging to a single 

gamma-ray, while green squares represent clusters that are discarded by the tracking. 

The forward tracking algorithm is the basis for the Mars Gamma-ray Tracking 

(MGT) code [70] that was used both for the experimental data and the GEANT4 

simulations. 

The backtracking algorithm [87] is based on the fact that the photoelectric energy 

deposition is almost independent from the incident energy and is peaked around 

100-250 keV; it assumes that the interaction points within a given deposited energy 

interval              are the last interaction (in time) of a fully absorbed 

gamma-ray; the algorithm then finds the closest interaction to the photoelectric one, 

it computes the scattering angle using the incident and the scattered energies and, 

finally, it searches for the other previous interactions along this direction; such 

process is iterated until the direction points directly to the target. This algorithm, 

Figure 2.9: Plot of all interaction points in a 4π HPGe shell from a simulated event with 30 gammas

of 1.3 MeV; red circles represent clusters which are identify as belonging to a single gamma-ray,

while green squares represent clusters that are discarded by the tracking

case of the single crystal with the best performances, and 7.6 keV using an Add-Back

procedure. Another important feature of a HPGe detector is the linearity of its response

along to the deposited energy. Percent deviation of the experimental data from tabulated

energies is reported in Fig.2.10 as a function of γ-ray energy. The deviation is defined as

the difference between measured and tabulated energy divided by measured energy. As

expected data corresponding to gamma rays emitted in-flight show larger error bars. It

is found that the total deviations from ideal linearity are lower than 0.1% in the energy

range 2 – 15 MeV.

The other fundamental property of a detector is the efficiency in the detection pro-

cess. The detector efficiency is defined as the total photo-peak absorption probability

over the 4π solid angle. In the experiment the efficiency can depend on many factors:

the energy of the γ-ray detected, the distance of the detector, the number of γ-ray emit-

ted in the reaction (i.e. γ-ray multiplicity), the recoil nucleus velocity and, in the case



3. Energy resolution and linearity

In Fig. 3 the relative energy resolution (i.e. FWHM/Egamma) as a
function of the gamma-ray energy is displayed. The data
associated to the single crystal showing the best performance
are reported with empty black circles. The black triangles repre-
sent, instead, the energy resolution obtained by summing the
energies detected by the crystals that fired in each event (add-
back).

All the spectra analyzed in this section were extracted without
using any kind of filter, but only summing the energy measured in
each segment; this procedure is feasible because of the low
gamma-ray multiplicity(see e.g. Section 4). These segment ener-
gies are extracted at pre-processing level by applying the moving
window deconvolution (MWD) algorithm [64,65] to the incoming
data streams. In this way it was possible to perform (offline) a fine
gain matching of all segments. This latter procedure turned out to
be extremely important especially when high-energy gamma rays
are involved. In addition, for each crystal, the sum energy of the
segments was forced to be equal to the energy extracted from the
core signal, in order to recover the segment energy resolution,
degraded by neutron damage [66]. It is important to mention that
a more sophisticated method to recover neutron damage in
segmented HPGe detectors, exploiting position information pro-
vided by PSA algorithms, was recently developed [67]. However,
such a procedure is not expected to provide a significant
improvement for the specific case of high-energy gamma rays,
considered in this work.

As can be seen from Fig. 3, the experimental data follow the
expected E�1/2 trend (indicated by the black dashed line). The
FWHM of the highest-energy gamma line (i.e. 9297.8 keV) is
6.1 keV in the case of the single crystal with the best perfor-
mances, and 7.6 keV for the add-back case. The energy resolution
obtained for the 15.1 MeV gamma emitted in the in-beam test is
not displayed since the FWHM of the peak is, in this case,
dominated by the Doppler broadening induced by the reaction
mechanism (see Section 5 for details). However, considering the
trend showed by the data displayed in Fig. 3, an intrinsic
resolution of the order of 10 keV is expected at the energy of
15 MeV.

In the following we present the study of the linearity for the
energy to pulse-height conversion up to 15 MeV.

The plot in Fig. 4 displays the measured energy versus the
tabulated energy for gamma lines of the Am–Be–Fe source and for
the 4.4 and 15.1 MeV gamma rays from the in-beam reaction. The
measured energy is obtained with a linear calibration using the
1173 and 1332 keV lines of a 60Co source. In addition, a fine gain
matching of the detector segments was performed. This proce-
dure allowed us to refine the calibration coefficients obtained
using only 60Co source. The gain matching coefficients for each
single segment were extracted performing linear interpolation of
the 846.8, 2223.2 and 2614.5 keV gamma lines, on spectra
incremented only if the highest energy release in the event was
registered in the selected segment.

Percent deviation of the experimental data from tabulated
energies is reported in Fig. 5 as a function of energy. The deviation
is defined as the difference between measured and tabulated
energy divided by measured energy (Deviation¼(Emeas�Etab)/
Emeas). As expected data corresponding to gamma rays emitted
in-flight show larger error bars. It is found that the total devia-
tions from ideal linearity are lower than 0.1% in the energy range
2–15 MeV. Such results are consistent with those reported in [13]
for the case of EUROBALL [7–10] clusters.
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Figure 2.10: Relative energy resolution of the AGATA detectors is given for the Am–Be–Fe source

data.The data for the best performing single detector are shown by empty black circles. The black

triangles represent instead the energy resolution for the add-back procedure,performed among all

crystals that fired in each event.The experimental data follow the expected E1/2 trend (indicated

by the dashed black line. Taken from [89].

of AGATA Demonstrator, the tracking algorithm. The reference position of AGATA

Demonstrator is placed at 23.5 cm from the target, The simulated photo-peak efficiency

as a function of the shift towards the geometrical centre and the γ-ray multiplicity is

shown in Fig.2.12 [85].



3. Energy resolution and linearity

In Fig. 3 the relative energy resolution (i.e. FWHM/Egamma) as a
function of the gamma-ray energy is displayed. The data
associated to the single crystal showing the best performance
are reported with empty black circles. The black triangles repre-
sent, instead, the energy resolution obtained by summing the
energies detected by the crystals that fired in each event (add-
back).

All the spectra analyzed in this section were extracted without
using any kind of filter, but only summing the energy measured in
each segment; this procedure is feasible because of the low
gamma-ray multiplicity(see e.g. Section 4). These segment ener-
gies are extracted at pre-processing level by applying the moving
window deconvolution (MWD) algorithm [64,65] to the incoming
data streams. In this way it was possible to perform (offline) a fine
gain matching of all segments. This latter procedure turned out to
be extremely important especially when high-energy gamma rays
are involved. In addition, for each crystal, the sum energy of the
segments was forced to be equal to the energy extracted from the
core signal, in order to recover the segment energy resolution,
degraded by neutron damage [66]. It is important to mention that
a more sophisticated method to recover neutron damage in
segmented HPGe detectors, exploiting position information pro-
vided by PSA algorithms, was recently developed [67]. However,
such a procedure is not expected to provide a significant
improvement for the specific case of high-energy gamma rays,
considered in this work.

As can be seen from Fig. 3, the experimental data follow the
expected E�1/2 trend (indicated by the black dashed line). The
FWHM of the highest-energy gamma line (i.e. 9297.8 keV) is
6.1 keV in the case of the single crystal with the best perfor-
mances, and 7.6 keV for the add-back case. The energy resolution
obtained for the 15.1 MeV gamma emitted in the in-beam test is
not displayed since the FWHM of the peak is, in this case,
dominated by the Doppler broadening induced by the reaction
mechanism (see Section 5 for details). However, considering the
trend showed by the data displayed in Fig. 3, an intrinsic
resolution of the order of 10 keV is expected at the energy of
15 MeV.

In the following we present the study of the linearity for the
energy to pulse-height conversion up to 15 MeV.

The plot in Fig. 4 displays the measured energy versus the
tabulated energy for gamma lines of the Am–Be–Fe source and for
the 4.4 and 15.1 MeV gamma rays from the in-beam reaction. The
measured energy is obtained with a linear calibration using the
1173 and 1332 keV lines of a 60Co source. In addition, a fine gain
matching of the detector segments was performed. This proce-
dure allowed us to refine the calibration coefficients obtained
using only 60Co source. The gain matching coefficients for each
single segment were extracted performing linear interpolation of
the 846.8, 2223.2 and 2614.5 keV gamma lines, on spectra
incremented only if the highest energy release in the event was
registered in the selected segment.

Percent deviation of the experimental data from tabulated
energies is reported in Fig. 5 as a function of energy. The deviation
is defined as the difference between measured and tabulated
energy divided by measured energy (Deviation¼(Emeas�Etab)/
Emeas). As expected data corresponding to gamma rays emitted
in-flight show larger error bars. It is found that the total devia-
tions from ideal linearity are lower than 0.1% in the energy range
2–15 MeV. Such results are consistent with those reported in [13]
for the case of EUROBALL [7–10] clusters.
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Figure 2.11: Deviation of the measured energies from the tabulated energy for each gamma line

of the Am–Be–Fe source and for the 4.4 and 15.1 MeV gammas from the in-beam test. Taken

from [89].

for each crystal, which should be compared with the correspond-
ing value of 0.5 kg per crystal in the configurations based on 120
detectors. As a matter of fact, the reduction in wasted germanium
material choosing the A180 configuration is equivalent to seven
full crystals.

The final configuration for AGATA was chosen to be based on
180 hexagonal crystals. In the case of GRETA, the final geometry
was chosen to be based on the A120C4 configuration and initially
will use warm FETs instead, thus avoiding the reliability problems
at the expense of a worse energy resolution at low energies. In the
following sections we will refer to the A180 configuration as the
AGATA array.

5. The AGATA Demonstrator and the early configurations of
the AGATA array

The AGATA tracking array project definition [9] includes an
array prototyping phase to build a limited subset of the whole
system, named the AGATA Demonstrator Array, which has been
used as a benchmark for the full spectrometer. Of particular
relevance is the test of the reliability of the novel technology
associated with the highly segmented hexagonal Ge crystal
detectors and the large number of high-resolution electronics
channels per detector cluster (and by extension for the full
system). The strong dependency of the performance on the pulse
shape analysis and g�ray tracking algorithms, deduced from
simulations, makes it compulsory to develop a tracking system
prototype and to confirm experimentally the expectations. In
addition, a critical issue in the final development of the AGATA
array is that pulse shape analysis and g�ray tracking should be
performed in real time in order to reduce the data stream to
amounts treatable with the present technology, as well as to be
able to perform the on-line diagnostics of the experimental
activity.

The earliest implementation of the AGATA Array is an
arrangement of the first five triple clusters, of the 60 which will
compose the final array. The detectors will be distributed
symmetrically around a pentagonal hole that will be used as
beam input in several experimental conditions. The sub-array was
commissioned at its first installation site, namely the Laboratori
Nazionali di Legnaro (LNL), where the first experimental cam-
paign will be carried out. Later it will be used for early physics
campaigns to be performed in selected European nuclear physics
accelerator facilities.

The following sections will report on the simulated perfor-
mance figures of the five triple clusters sub-array as well as in the
sub-array with fifteen triple cluster that corresponds to the next
phase of AGATA, presently under construction.

5.1. The simulations of the AGATA five triple cluster sub-array

In a ‘‘conventional’’ array of germanium detectors, a collimator
is placed in front of each detector in order to minimise the
scattering of photons between different crystals. Therefore, only a
small region around the target position is actually visible from the
detectors. In case of the AGATA five cluster sub-array, no
collimators are present, thus it is possible to modify the
placement of the detectors relative to the target position
depending on the specific measurement. In particular, given the
lack of spherical symmetry and the limited solid angle coverage, it
is feasible to place the detectors closer to the target position
compared to the ‘‘reference’’ 23.5 cm distance of the full AGATA
array in order to cover a larger solid angle. The simulated
photopeak efficiency and P/T ratio as a function of the shift
towards the geometrical centre are shown in Fig. 7. The

simulations assumed 1 MeV photons emitted from a point
source at rest in the laboratory reference frame. The shift
towards the geometrical centre of the sphere is calculated
assuming to move the sub-array as a whole towards the target
position. It should be remarked that the actual scattering chamber
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Figure 2.12: Photo-peak efficiency of the AGATA Demonstrator for 1 MeV photons emitted from

a point source at rest. Taken from [85]



2.3 LaBr3:Ce

The Cerium doped Lanthanum bromide (LaBr3:Ce) crystal is an inorganic scintallator,

made available to the scientific community only few years ago. The excellent properties

of this new material has generated a large interest in the scientific community. Indeed,

thanks to very good intrinsic time (< 1 ns), energy resolution (≈ 3% at 661 keV) and

the good detection efficiency, LaBr3:Ce detectors can provide at the same time clean

spectroscopic information from a few ten keV up to tens of MeV and an excellent time

resolution which allows a good timing measurement and an efficient γ-n discrimina-

tion. Moreover, thanks to the availability of crystals in volumes larger than 1000 cc, a

LaBr3:Ce-based array can operate as an extremely efficient setup in γ-ray experiments,

as the study of Giant Resonance states or experiments with radioactive beams. The main

intrinsic features of LaBr3:Ce scintillators are summarized in Tab.2.3 and compared with

those of other scintillators (see also Fig.2.13).

The properties of LaBr3:Ce were largely investigated in the recent years. An intense

R&D activity was conducted in Milano group to test the crystal performances and to

find the best possible detector configuration (photo-tube, read-out electronics, acquisi-

tion system, etc..) [92, 93].

In the experiment described in this thesis 6 large LaBr3:Ce (3.5” x 8”) and 1 smaller

LaBr3:Ce (3” x 3”) were used and placed at 25 cm from the target.

Scintillator Light Yield (103fotoni/MeV) Decay Times(ns) Density(g/cm3)

NaI:Tl 38 250 3.67

LaCl3:Ce 49 28 3.85

LaBr3:Ce 63 16 5.08

BaF2 1.8 0.7 4.88

BGO 9 300 7.13

Table 2.3: Comparison between the properties of some scintillators used in nuclear physics. Light

Yield is the number of photons emitted per MeV deposited in the crystal, which is related to the

energy resolution of the detector. Decay Time is the time needed to emit photons and it is related

to the time resolution.



This is an essential point in the measurement of continuum
spectra (see, e.g. Refs. [9–11]). The approach of using the
internal activity of the detector has been extensively used in
measurements of the g decay from the giant dipole
resonance in hot rotating nuclei with BaF2 detectors.
Therefore, an accurate investigation of the properties of
LaBr3:Ce crystal is important also in this connection.

In the past years (when LaBr3:Ce was not commercially
available) few very accurate studies of the self-activity in
LaCl3:Ce [12–15], very similar to that of LaBr3:Ce, were
made. It was found that in LaCl3:Ce crystals the self-
activity is due by two sources: the presence of the unstable
138La isotope and a contamination with the element 227Ac,
being the lanthanum chemical homologue. Presently, there
is only one work in literature focusing on the problem of
the self-activity in LaBr3:Ce [16], although the problem was
raised also in other papers (see for example Ref. [5]). In the
work of Ref. [16], the self-activity was studied for a 100 � 100

LaCl3 crystal and for a smaller LaBr3:Ce crystal (0.5 g) in a
low-background counting chamber setup. However, only
signals ‘‘in singles’’ were recorded for the LaBr3:Ce crystal,
and no coincidence or anticoincidence measurements with
other detectors were made. It should be noted that
coincidence measurements are indeed very useful to isolate
the different contributions of the internal activity.

Another property of these detectors to be investigated is
the efficiency at different g-ray energies, information that
will be useful in view of their potential use in nuclear
structure studies through in-beam g-ray spectroscopy
involving g-ray energies ranging from 100 keV to
15–20MeV. For this, in addition to the measurements
with the available LaBr3:Ce detectors, it is useful to
perform simulations of the detector response to deduce
the efficiency of larger size crystals that could become
available in a near future.

In the present paper, we present a detailed study of the
self-activity for a commercial 100 � 100 LaBr3:Ce together
with data on the efficiency for g-ray detection. The
efficiency was measured at around 1MeV and simulated
in the interval 0.5–15MeV for different detector sizes.

2. The LaBr3:Ce detector

The investigated LaBr3:Ce detector is a commercially
available 100 � 100 crystal coupled to an XP2060 photo-
multiplier. The used voltage divider, delivered together
with the detector, is model AS20 having 490V as recom-
mended operational voltage. The working voltage has to be
kept rather low because of the extremely high photon yield
produced by the crystal and of the fast photon emission
time (smaller than 100 ns), which could cause a saturation
of either the phototube or of the following electronic
chain. For this reason, we determined how the dynamic
range in which there is linearity between the signal and the
energy can vary as a function of the applied voltage. This
was made using the 152Eu and 60Co sources and by
changing the voltage from 330 to 525V. The linearity is

maintained up to 500V and the saturation appears at
higher values.
The detector anode signals were directly fed into a

spectroscopy amplifier CAEN model N568B. The amplifier
was modified to remove the differentiation and to have the
maximum gain in the first stage of the amplification. A
shaping time of 0.5 ms was used. In Fig. 1 the measured
energy resolution is shown as a function of g-ray energy
from various g sources between 100 keV and 1.5MeV,
together with the expected E�1/2 behaviour [17] normalized
at the value of 2.8% at 662 keV, as declared by the
manufacturer. An alternative approach, using a Silena
QDC 4418 in a CAMAC-ECL data acquisition system, has
produced an energy resolution 20% worse than the one
obtained with the CAEN amplifier. In Fig. 2, the spectrum
of the 60Co source measured with the LaBr3:Ce crystal is
shown and compared with two other spectra, one measured
with a hexagonal crystal 200 � 300 of BaF2 (from the
HELENA multiplicity filter [18]) and the other measured
with a 300 � 300 NaI detector. One can see that for the two
g-rays at 1173 and 1332 keV the energy resolution of
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Figure 2.13: Comparison of the 60Co energy spectrum measured with the 1” x 1” LaBr3:Ce with

those measured with a NaI and with a BaF2 detector. Taken from [92].

while the third term ‘c’ accounts for all the previously mentioned gain
drift effects. We fitted the two experimental datasets using Eq. (1) and
obtained the results summarized in Table 4.

We additionally required that the “b” values, accounting for the
generation noise contribution to the energy resolution, must be a
priori equal for the two scintillators. The equivalent noise charge,
represented by the “a” values, turns out to be much higher for the
“analog” acquisition, as a result of a much more complex and
partially not optimized acquisition set-up. From Figs. 11 and 12 the
importance of the third term in Eq. (1), for energies above 2 MeV,
is evident, as experimental data do not follow anymore the
statistical behavior.

It is still unclear whether such a behavior is mainly caused by
crystal non-homogeneity (resulting in light yield fluctuation and
hence in signal gain fluctuation) rather than being determined by
small, unnoticed changes in high voltage power supply level or even
PMT gain fluctuations due to temperature changes (as a matter of fact,
high-energy γ-ray measurements usually last for several hours). In
order to better understand the origin of the energy resolution limit,
additional and systematic measurements should be performed in a
controlled environment, with a higher number of detectors, state-of-
the-art high voltage power supplies and processing electronics.

As a direct evidence of the inherent quality of the energy resolution
of large volume 3.5″�8″ LaBr3:Ce detectors, Fig. 13 shows two low
energy γ-rays spectra obtained with the acquisition setup in Milano,
using 137Cs, 152Eu and 133Ba sources. Specifically, the inset spectrum
shows the 5.6 keV and the 37.4 keV X-ray peaks of 138Ba [38] and the
corresponding FWHM energy resolutions of 1.8 keV and 5.3 keV
respectively, thus proving the excellent detector performance even
for such low energy X rays. Fig. 14 shows the energy spectrum
measured at the ATOMKI Institute in Debrecen with the S/N

K628CS_B LaBr3:Ce detector, the “LABRVD” active voltage divider
and the analog electronics, in case of 17.6 and 22.6 MeV monochro-
matic γ rays (see Table 3). It is worth noticing the much higher
detector efficiency (as compared, for example, with that of 2″�2″
LaBr3:Ce detectors [32]), the complete separation between the full
energy and the first escape peak and the complete absence of the
second escape peak. As already mentioned, LaBr3:Ce is nowadays the
only scintillator able to separate the full energy peak from the first
escape peak, up to at least 25 MeV γ-ray energy.

The top panel of Fig. 15 shows the energy spectrum measured
with the S/N M0249CS_B LaBr3:Ce detector, the “LABRVD” active
voltage divider, free running ADCs and digital processing, using
the Am–Be–Ni source, up to 9 MeV γ-ray energy (see Section 4.1).
As an additional comparison, the bottom panel of Fig. 15 shows the
same energy spectrum acquired using a HPGe detector with 80%
detection efficiency with respect to a 3″�3″ NaI scintillator.

4.5. Time resolution

The time resolution obtainable with LaBr3:Ce detectors is not
uniquely determined by the crystal properties. Sometimes, more
technology-related aspects may eventually act as limiting factors,
e.g. the rise-time of the detector signals, the choice of the photo-
detector (PMT, APD, etc.), of the voltage divider (in case of PMTs)
and of the applied high voltage power supply level (see Fig. 1) and,
finally, the quality of the time pick-off electronics.

Table 4
The fitting values for the three parameters (a, b, c) in Eq. (1), for the dataset of
Fig. 11 (obtained with analog electronics) and the dataset of Fig. 12 (obtained with
digital approach).

Analog approach Digital approach

a 400 6.3
b 0.625 0.625
c 28�10�6 35�10�6
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Fig. 14. The energy spectrum measured at the ATOMKI Institute, with the S/N
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A. Giaz et al. / Nuclear Instruments and Methods in Physics Research A 729 (2013) 910–921918

Figure 2.14: The energy spectrum measured at the ATOMKI Institute with a 17.6 MeV mono-

chromatic γ rays. Taken from [93].

2.3.1 LaBr3:Ce performances

The energy response of a large volume LaBr3 detector was investigated from few keV

up to 20 MeV [93]. The energy resolution is a crucial factor in case of high-energy γ-ray



measurements and LaBr3:Ce allows to have a clear separation of the full energy peak

and the first escape peak up to 20 - 30 MeV (see Fig.2.14).

In Figure is plotted the energy resolution of a detector as a function of the γ-ray en-

ergy, using a digital acquisition system. As shown in Fig.2.15, the energy resolution trend

deviates from the standard E−1/2 curve (dashed line), showing that the energy resolu-

tion saturates in the detection of high-energy γ rays. The solid curve take into account

even the saturation phenomenon, introducing another term in the standard formula for

the energy resolution:

ER =
√
a+ bE + cE2 (2.3)

The a term represents the noise contribution unrelated to the measured energy, b is

the contribution for the statistical noise while c is the saturation term.

The absolute full energy peak efficiency of the γ-ray detection was investigated with

a 60Co source (two γ-rays in coincidence), using the ’sum peak’ technique. This method

provide the absolute photo-peak efficiency at 1173 keV and 1332 keV. The results are

in very good agreement with those obtained using the simulation code GEANT3. In

Fig.2.16 the comparison between the experimental data and the simulation is shown.



up to 30 MeV energy, using the “LABRVD” voltage divider the PMT
gain should be accordingly reduced and possibly halved with
respect to the values used in this work.

Such results in terms of detector linearity are similar to those
already reported in the literature [32,37,54,55] where the PMTs
have either smaller surface, or are underpowered or have an
inherent lower nominal gain thanks to the reduced number of
dynode stages.

As a last remark, it is important to point out that PMT behavior
in terms of linearity is seldom reproducible (within 1% precision)
so that actual detector energy response linearity might change,
after PMT replacements [39].

4.4. Energy resolution

We estimated the energy resolution performance of large
volume LaBr3:Ce detectors with two different methods: (i) a
standard analog approach, based on shaping amplifiers and peak
sensing ADCs and (ii) a digital approach, based on free running
ADC signal acquisition and subsequent digital processing.

The measurements with analog electronics were performed
during the in-beam experiment at the ATOMKI Institute; we used
an amplifier derived from the BaFPRO NIM module [42,49,50] with
bipolar shaping time of about 700 ns, followed by a peak sensing
VME ADC (CAEN model V875) controlled by a specifically devel-
oped KMAX-based acquisition software [59,60]. The energy of the
measured γ rays ranged from 1 MeV up to 22.6 MeV (see Table 3).

The measurements based on the digital approach were performed
in the Milano Detectors Laboratory, a much more controlled environ-
ment inside the Physics Department of “Università degli Studi di
Milano”. Detector pulses were acquired using a 400 MHz, 5 GHz
sampling frequency oscilloscope (LeCroy Waverunner 44 Xi). Because
of very high energy dynamic range required and the poor ADC
resolution (8 bits only), the analog front-end gain of the oscilloscope
was adjusted from time to time to best fit the amplitude of the specific
γ-ray pulses of interest (from 5 keV up to 9 MeV). The estimation of
the released energy was performed using a straightforward box-car
integration algorithm (over 250 ns) with the additional subtraction of
the pulse baseline level (calculated over 250 ns).

We used two different 3.5″�8″ LaBr3:Ce crystals during the tests
(S/N K628CS_B at the ATOMKI and S/N M0249CS_B in Milano),
coupled to R10233-100SEL PMTs equipped with “LABRVD” active
voltage dividers.

According to Saint-Gobain Crystals' datasheets, the two crystals
should provide almost equivalent energy resolution at 661 keV (3.0%
FWHM for S/N K628CS_B operated at 658 V and 3.1% for S/N
M0249CS_B operated at 696 V, measured with XP3540FLB2 PMTs
and standard voltage dividers). Gain variance of 0.4% along the 8” axis
of the crystal with S/N M0249CS_B was additionally quoted, while no
corresponding information was provided for S/N K628CS_B crystal.

We estimated the FWHM energy resolutions of the two
detectors as a function of γ-ray energy. Results are reported in
Fig. 11 for the analog and in Fig. 12 for the digital approach. In both
cases, the energy resolution of the LaBr3:Ce detectors deviates
from a strictly statistical behavior, i.e. E1/2 asymptotic curve, in
case of high-energy γ rays showing that the energy resolution of
LaBr3:Ce detectors tends to saturate at constant value around
0.5–1%, as already reported in the literature [32,37].

This limitation is more likely to appear when pair production is the
major γ-ray interaction mechanism, namely when a large fraction
of the crystal volume is likely to be involved in the absorption process.
This limit in the relative precision of energy estimation can be
modeled as a simple linear dependence of the energy resolution with
respect to the measured γ-ray energy. We then tried to interpret our
experimental results for energy resolution in Figs. 11 and 12 not just in
terms of the two basic contributions, i.e. electronic noise and quantum

generation noise in the scintillation crystal, but also taking into
account a third contribution due to energy resolution saturation:

ERFWHM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bE þ cE2

q
ð1Þ

In the previous equation, the first term ‘a’ represents the total
amount of noise unrelated to the measured energy, namely the
equivalent noise charge of measurement (electronic noise); the second
term ‘b’ modulates the contribution of the statistical generation noise,

Fig. 11. The FWHM energy resolution in the energy range between 1 and 22.6 MeV
obtained at the ATOMKI Institute, with the S/N K628CS_B LaBr3:Ce detector
coupled to the “LABRVD” active voltage divider and the analog electronics. The
continuous line represents the complete function of Eq. (1) with the corresponding
fitting parameters of Table 4, while the dashed line represents only the first two
contributions associated to the ‘a’ and ‘b’ parameters, namely the electronic noise
and the statistical contribution.

Fig. 12. The FWHM energy resolution in the energy range between 5 keV and
9 MeV measured with the S/N M0249CS_B LaBr3:Ce detector coupled to the
“LABRVD” active voltage divider, free running ADCs and digital processing. The
continuous line represents the complete function of Eq. (1) with the corresponding
fitting parameters of Table 4 while the dashed line represents only the first two
contributions associated to the ‘a’ and ‘b’ parameters, namely the electronic noise
and the statistical contribution.
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Figure 2.15: The FWHM energy resolution in the energy range between 5keV and 9 MeV measured

with the a 3.5” x 8” LaBr3:Ce detector using digital electronics. The dashed line represent the

best trend using the ’classic’ FWHM formula (FWHM =
√

(a+ bE)) which takes into account the

electronic noise (a) and the statistical contribution (b). while the solid line takes into account also

a third contribution which causes the energy resolution saturation (FWHM =
√

(a + bE + cE2)).

Taken from [93].



We noticed, for example, that in case of LaBr3:Ce detector
signals, the time resolution obtainable with constant fraction
discrimination (CFD) modules significantly changes not only with
the time delay implemented, as discussed in [8], but also among
the various models provided by different manufacturers.

The time resolution measurements were performed with an
ORTEC CF8000 CFD, using a 60Co source and setting the CFD lower
threshold limit at about 1 MeV. Slightly worse, but still compar-
able results were obtained with a digital CFD and the BAFPRO
module of Refs. [49,50].

Coincidence-based measurements were performed using an
additional 3″�2″ (76 mm�50 mm) hexagonally shaped HELENA
[61] BaF2 scintillator as the reference time detector, providing
370 ps FWHM intrinsic time resolution (with 2 ns time delay),
while the electronics provided better than 50 ps FWHM intrinsic
time resolution.

We tested the four LaBr3;Ce detector configurations, reported
in Table 5, with the associated PMT, voltage divider, high voltage
power supply level and CFD time delay. It is worth mentioning
that cases 1, 2 crystals (see Table 5), unlike the other two, came
within a sealed capsule and that the two CFD time delay values of
case 3, 4 (see Table 5) were not likely to be the optimum ones but
rather the maximum ones allowed by the CFD module.

The intrinsic time resolutions measured for the four detector
configurations are reported in Table 5. As expected from the rise
time measurements of Section 2, as a general trend the intrinsic

time resolution worsens with increasing crystal volume, as already
observed in the literature for scintillation crystals up to 2″�3″ in
size [1,7]. Indeed, two effects are present: first, the rise-time of the
average detector pulse increases, because of more light reflections
inside the crystal and slower PMT rise-time, as reported in Section
2 (see Figs. 1 and 2), secondly the individual pulse lineshapes are
subject to fluctuations because of the random light reflections.

However, we were still able to obtain an intrinsic time resolu-
tion slightly better than 1 ns FWHM for our 3.5″�8″ detectors,
which is of course a worse result with respect to the intrinsic time
resolution of LaBr3:Ce, obtainable for example with a 1″�1″
crystal (230 ps [14]), but nonetheless still acceptable for most
applications.

5. Simulated and measured efficiency

The absolute γ�ray detection full energy peak efficiency of
3.5″�8″ large volume detectors was estimated by means of the
‘sum peak’ technique [58]. We used a 60Co source positioned at a
distance of 10 mm (71 mm) from the detector front face (see
Fig. 16). In case of 60Co, the ‘sum peak’ technique is based on the
comparison of the energy spectrum counts in the two full energy
peaks at 1173 keV and 1332 keV, against the counts in the ‘sum
peak’ line (at 2505 keV). This method relies on the assumption
that the two detector efficiencies (at 1173 keV and 1332 keV) have
almost equal value, which is a very reasonable assumption in case
of very large volume detectors. Fig. 16 shows the experimental
results, together with the GEANT3 simulation results (from
100 keV up to 30 MeV), very well in agreement with each other.

We can then use the predictive power of the simulations to
reproduce the efficiency for a source positioned at 200 mm from the
detector front-face, as shown in Fig. 17. Note that absolute detection
efficiency at arbitrary distance from the detector front-face is not easily
determinable by means of simple scaling factors, as it depends on the
solid angle subtended by the detector, the γ-ray entrance angle and
the γ-ray energy, namely on the main mechanism of γ-ray interaction.

6. Conclusions

In this work we reported the results of a series of tests
performed on 3.5″�8″ LaBr3:Ce scintillation detectors, among
the largest ones available at the time of writing, evaluating many
properties not directly scalable from the ones of smaller detectors.

Table 5
The four detector configurations that we tested for time resolution, with the
associated crystal size, PMT, voltage divider and CFD time delay. The last column
lists the measured time resolution. The estimated error in the measured FWHM is
35 ps.

# Detector
size

PMT Voltage
divider

HV
(V)

CFD T.D.
(ns)

Int. FWHM
[ps]

A 1″�1″ XP 20 D0B 184K/T �500 16 363
B 1.5″�1.5″ R6231 AS20 +500 16 646
C 3″�3″ R6233-

100SEL
LABRVD �500 20 671

D 3.5″�8″ R10233-
100SEL

LABRVD �500 20 880
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Fig. 15. Top panel: the energy spectrum measured with the S/N M0249CS_B LaBr3:
Ce detector, the “LABRVD” active voltage divider, free running ADCs and digital
processing, using the Am–Be–Ni source (see Section 4.1). Bottom panel: as a
reference, the same energy spectrum measured using a HPGe detector.
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Fig. 16. Simulated and experimentally measured values of absolute full energy
peak efficiency for a large volume 3.5″�8″ LaBr3:Ce detector, with a 60Co source
positioned 10 mm away from the detector surface. The inset plot shows a
magnified portion of the main graph up to 5 MeV energy range.
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Figure 2.16: Simulated and experimentally measured values of absolute full-energy peak effi-

ciency for a large volume 3.5” x 8” LaBr3:Ce detector,with a 60Co source positioned 10mm a way

from the detector surface. The inset plot shows a magnified portion of them a in graph up to 5MeV

energy range. Taken from [93]



2.4 Data AcQuisition (DAQ) system

Each of the 36 signals coming from a crystal of AGATA was digitalized using a sampling

frequency of 100 MHz at 14 bits precision. For each segment, a pulse trace of 60 samples

is recorded. In order to have an on-line analysis of the acquired data, the PSA needs to

work on the single trance in real time and the tracking algorithm must reconstruct the

detected γ rays.

Therefore, the Data Acquisition software (DAQ) has to handle a large amount of data,

control a computing farm for the PSA and tracking algorithms, and coordinate the flow

of information between the digitizers, the computing farm, and the disk server where all

the data are written. All of this is performed by a NARVAL-based DAQ software [94].

The ancillar detectors (as Hector+) are controlled by an independent data acquisition

system, which works in a KMAX framework [95], which communicates with NARVAL

using a TPC/IP protocol.

In NARVAL every actions is operated by an actor, which is a process running on a

Linux machine. Three different actors exist:

• producer: they interface with the hardware and read out the data;

• intermediary: they perform operations on the data, receiving input and sending

output from/to one or more other actors;

• consumer: they can only receive input from the other actors, and store the data to

disk.

For NARVAL each crystal of AGATA is considered as a separate entity and the whole

detector as a set of data synchronized between each other. The data synchronization is

guaranteed by the Global Trigger and Synchronization (GTS) hardware using a common

digital clock.

For each AGATA detector there is a producer actor reading the pulse traces from the

front-end electronics; the traces are sent (together with the timestamp information) to an

intermediary that performs the PSA and to a consumer that writes them to disk; the PSA

data from all detectors are sent to an intermediary that acts as event builder, matching

the data from different detectors through the timestamp information.

For the ancillary detectors (as HECTOR+ in this analysis), there is a producer actor

that receives the data from the KMAX acquisition, kept synchronized to the GTS via

the AGAVA (AGATA Ancillary VME Adapter) module. The producer sends the VME



data to a consumer that writes them to disk and to an intermediary that decodes the

VME words and sends only the actual data words to the event builder, discarding VME

header and trailer words. The builder then matches the ancillary data to the AGATA

data and sends the event to another intermediary that performs the online tracking, for

AGATA Demonstrator only.

2.4.1 Trigger conditions and event selection

When a γ-ray is detected in an AGATA crystal, a trigger request is formed and sent

via the GTS to the trigger processor, which can validate the request, meaning that all

the traces for the event are acquired, written and processed, or reject it. This software

trigger can be used to make multiplicity requirements on the AGATA crystals, or to make

a coincidence between AGATA and the ancillary detectors via the AGAVA module.

OR AGATA

OR HECTOR+

OR AGATA

OR HECTOR+

HECTOR+

Multiplicity≥2

Rate divider

OR AGATA

Master

Gate
OR

AND

Figure 2.17: Schematic representation of the trigger conditions in the data acquisition system of

the experiment.

This method, however, was not suitable for our experiment due to the complexity of

our trigger condition. Therefore, we used standard NIM electronics to build the master

gate, which was sent via AGAVA as a trigger request, and had the software trigger vali-

date it. The master gate is schematically described in Fig.2.17 and is the logical ”OR” of

four conditions:

• coincidence between AGATA detector and HECTOR+ (marker AGATA& LaBr)

• Multiplicity detected larger or equal than two in HECTOR+ (marker LaBrM2)



• the AGATA scaled-down single (marker AGATA single)

• the HECTOR+ scaled-down single (marker LaBr single)

the logic signal ”OR” of AGATA detector was made using the analogical output of

each AGATA detector, sent to a standard CFD modules and then to a logical OR. The

logical signal ”OR” of HECTOR+ and the logical signal of the multiplicity were provided

by the BaFPro module. In order to separate the different classes of event, four channels

of the TDCs were used as markers as shown in Fig.2.18.
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Figure 2.18: marker spectra for different trigger conditions. the larger part of the data is concen-

trated in narrow and separated peak.

Using the marker information, in the sort code we identified four classes of events:

• AGATA event: event with the coincidence between AGATA detector and HECTOR+,

it characterized by the follow conditions in the sort:

– marker AGATA& LaBr> 0;

– marker AGATA single = 0;

• LaBr3:Ce event: event with the coincidence between two LaBr3:Ce and without

any coincidence with AGATA, it characterized by the follow conditions in the sort:

– marker LaBrM2> 0;

– marker marker AGATA& LaBr = 0;

– marker LaBr single = 0;



• AGATA single event: event with only AGATA scaled-down single

• LaBr3:Ce single event: event with only LaBr3:Ce scaled-down single.

(a) 40Ca + 40Ca

Trigger # events [%] Events # events [%]

Agata& LaBr 84% Agata 81%

LaBrM2 20% LaBr3:Ce 11%

Agata single 4.3% Agata single 4.3%

LaBr single 1.8% LaBr3:Ce single 1.8%

(b) 37Cl + 44Ca

Trigger # events [%] Events # events [%]

Agata& LaBr 83% Agata 76%

LaBrM2 21% LaBr3:Ce 12%

Agata single 5% Agata single 1.8%

LaBr single 1.8% LaBr3:Ce single 5%

Table 2.4: number of events for each trigger and for each class of event is reported. An acquired

event more than one marker could be activated; this is the reason because the sum of the trigger

events is larger than 100%.

In Table 2.4 the number of events for each trigger and for each class of event is re-

ported. It is worth to note that for an acquired event more than one marker could be

activated; this is the reason because the sum of the trigger events in Table 2.4 is larger

than 100%. A half of the events with trigger LaBrM2 are detected also with AGATA and

then are considered as Agata events in the sort code.

A small part of the total events is rejected during the sort code because the time

information or the energy information were corrupted; this is the reason because the

sum of events is not 100%.





CHAPTER 3

Experimental setup: data analysis

This chapter reports the first steps of the data analysis: the performances of the AGATA

Demonstrator and HECTOR+ were studied (energy resolution, linearity, time resolution)

as well as their response functions. All these informations were used in the next step of

the analysis, where the physical informations were extracted.

For testing the performances of the detectors and to have a high-energy calibration

point, a 11B + D = 13C∗ (Ebeam ≈ 20 MeV) fusion reaction was also studied. Indeed, 13C∗

emitts a 15.1 MeV γ ray in flight. Therefore, this reaction can be used for testing the

detector response to a high-energy γ-ray (at an energy similar to the γ-ray emitted by

the GDR).

Unfortunately, for a problem in the acquisition system during the experiment, only

the AGATA Demonstrator data were available for this reaction.

3.1 AGATA Demonstrator

As described in Chapter 2, the performances of the AGATA Demonstrator are based on

the principles of PSA and γ-ray tracking. During the experiment, these operations are

performed in real time by the NARVAL Data AcQuisition (DAQ) system, but they also

can be performed again after the experiment with a C++ emulator of NARVAL. This

process is possible because the DAQ writes a list-mode file with the digitalized signals

and the time informations of each crystal of AGATA.

The NARVAL emulator can process all files, performing again the PSA and merging

the informations from different crystals. This is the so-called replay procedure, because,

in a sense, it is a repetition of the experiment. The data replay is divided in two phases:

in the first phase, the PSA is made and all the informations are written on the disk; in
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the second phase, the γ-ray tracking is implemented. The PSA is a very low process

and it occupies a lot of memory and CPU: 6 computers worked in parallel for 1 week to

perform the PSA of 180 hours of measurement. On the other hand, the γ-ray tracking is

a fast process and it can be easily repeated changing the algorithm parameters.

After the PSA and the γ-ray tracking the data are saved in a ROOT tree structure

[96], containing, for each event, all the relevant informations (γ-ray energy, position and

time), provided by each detector. A sort code was developed for the analysis of the data.

3.1.1 Time resolution

For each γ-ray reconstructed, a timestamp is associated by the tracking algorithm. This is

the measurement of the absolute time from the start of the GTS clock in 10 ns steps. A

more precise information is provided by the PSA, which calculates the starting point of

the signal using a linear interpolation.

The sum of these two values gives the detection time of the γ ray relative to the start

time of the GTS. To obtain an useful physical information, however, the detection time in

AGATA must be correlated with the detection time in the ancillary detectors (LaBr3:Ce

detectors in this experiment). The latter time information is given by the GTS timestamp

of the ancillary, in step of 10 ns; a better precision is obtained by adding to the timestamp

the so-called ”phase shift”, which is acquired by one channel of the TDCs and measures

when the VME master gate was opened relative to the GTS clock.

Therefore, the time associated to an event is defined as:

tγ = TAGATA − TAGAV A + TPSA − Tphaseshift (3.1)

where TAGATA and TAGAV A are the AGATA timestamp and the ancillary timestamp

respectively. In Fig. 3.1, it is plotted the AGATA time spectrum for the reaction 40Ca +
40Ca obtained using the Eq.3.1. Several structures are visible. They correspond to the

different trigger conditions in the acquisition process (see Fig.3.2).

As already noted in the previous chapter, the larger part of the data are events related

to a coincidence between AGATA Demonstrator and HECTOR+ (AGATA&LaBr event,

as defined in Chapter 2). The time distribution associated to these events has a FWHM of

≈ 25 ns. This time resolution is not good enough to distinguish temporally the detection

of neutrons or γ in the array.
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Figure 3.1: Time spectrum of AGATA Demonstrator obtained using Eq.3.1, without any condition

in the sort. Several structure are visible.
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clear the origin of the structure in Fig 3.1.



3.1.2 Energy resolution and linearity

The energy calibration of AGATA was performed during the PSA. The calibration coeffi-

cients were calculated using a 60Co source (1173 keV and 1332 keV). Since the γ-rays are

emitted in flight, a Doppler correction is necessary to have the γ-ray energy spectrum in

the Center of Mass (CM) system.

The relation between the energy detected (ELAB) and the energy emitted (ECM ) is:

ECM = ELAB
(1− β cos θ)√

1− β2
(3.2)

where β = v \ c is the velocity of the nucleus, while θ is the angle between the nu-

cleus direction (which can be considered the same as the beam direction) and the γ-ray

emitted. The latter quantity can be obtained with a good precision using the position

information of AGATA Detector as explained in Chapter 2.

Using Eq. 3.2, therefore, it is possible to recalibrate the spectrum, and using the CM

reference system. The angular uncertainty (∆θ) of the γ-ray emitted introduce a bias in

the energy calculation (∆E), which is responsible to the Doppler broadening, equal to:

∆E = 2ECMβ sin θ∆θ (3.3)

Thanks to the PSA, however, the position resolution of the γ-ray detected in AGATA

(namely ∆θ) is good and thus ∆E is expected to remain small, as ECM ,θ,∆θ are known.

In Eq.3.2 only the β value remains to determine. This value can be obtained by the

experimental data searching for the value which maximizes the intensity and minimizes

the width (i.e. smaller Doppler broadening) of a low-energy transition peak in the energy

spectrum. In the case of 11B + D we we can only use the 15.1 MeV as reference peak,

because no low-energy transitions were present. Another way to determine the β value

is using a statistical code.

In the Table 4.2 the experimental values are compared with the values obtained using

the statistical code PACE4. In general βEXP are smaller than βSIM . A possible explana-

tion is that βSIM is the v/c value when the compound nucleus is formed, while βEXP is

the value at the moment of the γ decay.

In the analysis, the β value obtained from the experimental data was used in the sort

code to perform the Doppler correction

Fig.3.3 shows the 11B + D spectrum before and after the Doppler correction. Without

the Doppler correction (black line) only a bump is visible. On the other hand, thanks to



reaction βSIM βEXP

40Ca + 40Ca 0.042 0.038
37Cl + 44Ca 0.035 0.028

11B + D 0.05 0.046

Table 3.1: βSIM and βEXP for all reactions are reported. The simulated values were obtained using

the PACE4 code, while the experimental value were obtained studying the low-energy peaks of

the reactions as explained in the text.

the Doppler correction (red line) and using the PSA technique, the photo-peak is visible

(FWHM≈130 keV)and it is located at the correct energy (≈15.1 MeV), the first-escape

peak is clearly visible. The width of the 15.1 MeV peak is in good agreement with that

reported in Ref. [89]
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Figure 3.3: 11B + D spectrum before and after the Doppler correction. The black line was obtained

without the Doppler correction. The red line was obtained performing the Doppler correction.

The FWHM = 130 keV of the photo-peak is in good agreement with that found in Ref.

The low-energy part of the AGATA spectrum is characterized by the last γ-ray tran-

sitions of the residual nuclei populated in the CN particle decay. In Fig. 3.4 (40Ca +
40Ca reaction) and Fig. 3.5 (37Cl + 44Ca reaction) the low-energy spectrum of AGATA

is shown before (black line) and after (red line) the Doppler correction. Thanks to the

Doppler correction all peaks transitions are clearly visible, separated and placed in the
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Figure 3.4: Energy spectrum of AGATA demonstrator in the reaction 40Ca + 40Ca. The black line

was obtained without the Doppler correction. The red line was obtained performing the Doppler

correction.
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Figure 3.5: Energy spectrum of AGATA demonstrator in the reaction 37Cl + 44Ca.The black line

was obtained without the Doppler correction. The red line was obtained performing the Doppler

correction.



right energy position. This allows to recognise all the transitions and to identify the

residual nuclei populated. As we will discuss in the next chapter, this information is

used in the next steps of the analysis for checking the validity of the statistical model

calculations.

In Fig. 3.6 and 3.7 the energy resolution (defined as FWHM/Eγ) trend for both re-

actions is shown. It is evident that the measured energy resolution follow the expected

1/∆E trend, corresponding to the red solid curve in the plots.

In Fig.3.8 the deviation between measured γ-ray energies (Emeasured) and the tab-

ulated values is shown (Etabulated, taken from Ref.). This quantity was calculated as

(Emeasured-Etabulated)/Etabulated and the values are all less than 1%.
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Figure 3.6: Energy resolution trend obtained in the reaction 40Ca +40Ca studying the much more

intense low-energy γ transitions. The experimental data follow the expected E−1/2 trend (red line).
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Figure 3.7: Energy resolution trend obtained in the reaction 37Cl +44Ca studying the much more

intense low-energy γ transitions. The experimental data follow the expected E−1/2 trend (red line).
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Figure 3.8: Deviation between measured γ-ray energy and the tabulated values is shown. The dots

are related to 40Ca + 40Ca (black dots), 37Cl + 44Ca (red dots) and 11B + D (green dot) reaction.



3.2 HECTOR+

3.2.1 Time resolution

For each LaBr3:Ce detector a time spectrum was acquired during the experiment. The

time information was provided to a TDC (Time to Digital Converter) by a CFD (Constant

Fraction Discriminator). All TDC had as START signal the Master-Gate signal (as defined

in Chapter 2), while as STOP signal they had the CFD signal (after a delay). The time

calibration was performed using a 60Co source.

In Fig.3.9, it is shown the time spectrum of one LaBr3:Ce detector without any con-

dition on the data. It is clear that the spectrum is composed by the superposition of

several structures, which can be easily identify adding the trigger conditions in the sort

procedure (as shown in Fig.3.10).

The main structure of the spectrum (FWHM≈20 ns) was originated by the events

with the AGATA& LABR trigger condition (the width is so large because the START

signal came form the AGATA detector). The narrow peaks (FWHM≈2 ns), at around

75 ns and 85 ns, were originated by the LaBrM2 trigger condition. These events were

characterized by an optimum time resolution. The spike presents at 70 ns is the auto-

coincidence peak.
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Figure 3.9: Time spectrum of one LaBr3:Ce obtained without any condition in the sort. Several

structure are visible.
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Figure 3.10: Time spectra of one LaBr3:Ce correspond to different trigger conditions. In this way,

it is clear the origin of the structure in Fig 3.1.

3.2.2 Energy resolution and linearity

LaBr3:Ce detectors are calibrated using γ-ray sources (60Co, 137Cs, 133Ba, 188Y) and the

data acquisition was performed before and after the experiment. Thanks to this dou-

ble check, it was possible to verify that the detectors remained stable along to all the

experiment.

The Doppler correction was performed in order to have the energy spectra in the

center of mass system. The detector positions were measured before the experiment,

while the β value was the same as the value found with AGATA. Fig.3.11 and Fig.3.12

show the spectra before and after Doppler correction. The energy resolution follows the

expected E−1/2 trend (see Fig.3.13 and Fig.3.14) and the deviation remain smaller than

1% (see Fig.3.15).
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Figure 3.11: Energy spectrum of all LaBr3:Ce in the reaction 40Ca + 40Ca. The black line was

obtained without the Doppler correction. The red line was obtained performing the Doppler cor-

rection.
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Figure 3.12: Energy spectrum of all LaBr3:Ce in the reaction 37Cl + 44Ca.The black line was ob-

tained without the Doppler correction. The red line was obtained performing the Doppler correc-

tion.
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Figure 3.13: Energy resolution trend obtained in the reaction 40Ca +40Ca studying the much more

intense low-energy γ transitions. The experimental data follow the expected E−1/2 trend (red line).
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Figure 3.14: Energy resolution trend obtained in the reaction 37Cl +44Ca studying the much more

intense low-energy γ transitions. The experimental data follow the expected E−1/2 trend (red line).
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3.3 Multiplicity response

As explained in Chapter 1, in a fusion reaction, the CN spin distribution can be mea-

sured county the number of γ-rays emitted in the decay, the so-called γ-ray multiplicity

(Mγ). Obviously, the number of γ-rays measured in the apparatus (the so-called γ-ray

fold, Fγ) is always less than Mγ , because of the efficiency of the apparatus. Different Fγ
correspond to a different Mγ distribution and thus to a different CN spin distribution.

Since the spin distribution is a fundamental input for the statistical model used in the

analysis, it is important to know the conversion between Fγ and Mγ of the apparatus.

The relation between Mγ and Fγ was calculated using a simple recursive algorithm

proposed by Holm [98]. This algorithm calculates the probability P (Fγ ,Mγ) of measur-

ing Fγ γ-rays using N detectors and with a cascade of Mγ γ-rays. As input, it is used the

experimentally pre-determined total efficiency Ω of the apparatus and the intra-detector

scattering probability ξ:

P (Fγ ,Mγ) = aFP (Fγ ,Mγ − 1) + bFP (Fγ − 1,Mγ − 1) + cFP (Fγ − 2,Mγ − 1) (3.4)

with:

aF = 1− (N − Fγ)ω(1 + ξ
Fγ

N − 1
) (3.5)

bF = (N − Fγ + 1)ω(1− ξN − 2Fγ + 1

N − 1
) (3.6)

cF = (N − Fγ + 2)ωχ
N − Fγ + 1

N − 1
) (3.7)

(3.8)

P (Fγ ,Mγ) = 0 for Fγ <0 or Mγ <0, P (0, 0)=0. The efficiency of each detector of the

apparatus is ω, i.e. Nω = Ω. In our case we neglected the scattering probability ξ, i.e. ξ

= 0.

P (Fγ ,Mγ) was calculated for a γ-ray energy of ∼1.2 MeV (which is the γ-transition

energy of the 60Co source). The efficiencies of AGATA Demonstrator and HECTOR+

were calculated in two ways: with a Monte-Carlo simulation (using GEANT4 libraries

[97]) and with 60Co source.

The latter method consisted in using AGATA Demonstrator as trigger and the events

are considered only if the 1.33 MeV γ ray from the 60Co source results in a full energy

peak, ensuring that exactly one gamma-ray of 1.17 MeV is presented in the array.



Experiment Simulation

AGATA HECTOR+ AGATA HECTOR+

εph 3% 2% 4% 2%

εriv 7% 5% 9% 4%

Table 3.2: Values of photo-peak efficiency (εph) and total efficiency (εriv) are reported in the table

for both detectors. In the left side of the table the experimental value of the efficiencies are re-

ported, while in the right side the values obtained with simulations are reported. See the text for

the details.
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Figure 3.16: Simulated and experimental spectra for a 1.1 MeV γ-ray are shown. The experimental

spectrum (obtained as explained in the text) has a visible background contribution at low energy.

In addition, the total number of measured 1.17 MeV γ rays is equal to the area of the

1.33 MeV full energy peak (we assumed that the efficiency for a γ ray of 1.17 MeV and

1.3 MeV could be the same). This trick is necessary when one does not know the activity

of the source.

The results obtained with this method are reported in Table 3.2 in comparison with

the simulated values. In the case of LaBr3 : Ce one should remember the presence of

low-energy background: as shown in Fig.3.16, there is a difference in the low-energy



part of the spectrum between the simulated spectrum and the experimental spectrum.

After a background subtraction the total efficiency value that we obtained is∼ 5%, which

is in agreement with the simulation.

In the analysis of this experiment, the experimental efficiency of AGATA Demon-

strator was used as input of Formula 3.4; on the other hand the simulated efficiency of

HECTOR+ was used in the calculations.

The P (Fγ ,Mγ) distributions are shown in Fig.3.17 (for AGATA) and in Fig.3.18 (for

HECTOR+). To be noted that the granularity of the two detectors is very different: 12

HpGe detectors in AGATA and 7 detectors in HECTOR+.
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Figure 3.17: Probability distribution P (Fγ ,Mγ) of triggering Fγ in AGATA Demonstrator by a cas-

cade of Mγ γ-rays. Three Fγ conditions are considered. A total efficiency εriv = 7% was considered

in the calculations.

Since the detection of a γ-ray in AGATA Demonstrator is statistically independent

on the detection of another γ-ray in HECTOR+, the probability distribution P (Fγ ,Mγ)

associated to a trigger condition corresponding to a coincidence between AGATA and

HECTOR+ was obtained multiplying theP (Fγ ,Mγ) of the two detectors. In Fig. 3.19 the

probability distribution for three different trigger conditions is shown.
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Figure 3.18: Probability distribution P (Fγ ,Mγ) of triggering Fγ in HECTOR+ by a cascade of Mγ

γ-rays. Three Fγ conditions are considered. A total efficiency εriv = 4% was considered in the

calculations.
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Figure 3.19: Probability distribution P (Fγ ,Mγ) of triggering a coincidence between AGATA

Demonstrator and HECTOR+ by a cascade of Mγ γ-rays. Three trigger conditions are considered.



3.4 HECTOR+ response function

The absolute photo-peak efficiency of HECTOR+ array in this configuration is ∼2% at

1 MeV, but it is ∼0.3% at 15 MeV . The deformation of the γ-ray spectrum emitted by

the CN induced by the detection process (i.e. response function) is shown in Fig.3.20. In

order to have a correct comparison between the detected γ-ray spectrum and the simu-

lated one, the latter must be folded with the response function of the detector, following

a standard procedure as reported in [99].

For this purpose we simulated the γ-ray interaction in the detectors starting from 1

MeV γ ray up to 32 MeV, obtaining 32 simulated spectra. These spectra were considered

as columns of a 32 x 32 matrix, where each element of the matrix (Edet,Eγ) is the number

of γ detected with Edet energy when a γ ray with an energy of Eγ interacts.

This matrix (called A) represents the response function of the detector. Indeed, if v is

the incoming γ ray spectrum and w is the real detected spectrum, it is possible write the

relation:

w = A ∗ v (3.9)

where the symbol ∗ represent the vector product. The dashed curve in Fig.3.20 was

obtained using this procedure.
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CHAPTER 4

Results and discussion I

The data analysis was mainly based on three steps: i) the first consists to check that the

statistical model CASCADE [100,101] correctly reproduces the measured residual nuclei

distribution; ii) the second concerns in the statistical model analysis of the 81Rb γ-ray

spectrum to deduce the GDR parameters; and iii) the last consists in the analysis of the
80Zr spectrum to deduce the isospin mixing as the only free parameter.

As reported in the Chapter 1, the analysis method that we use is based on the as-

sumption that the statistical model parameters used to describe the γ decay of 81Rb and
80Zr have the same features. The conditions that, if fulfilled, guarantee the validity of

this assumption are that the average CN temperature, mass and shape are similar. As a

consequence the GDR parameters used to describe the statistical decay (centroid, width

and strength) will be the same. The condition on mass is satisfied by choosing two CN

with A=81 and 80, respectively, that can be assumed as equal in the description of statis-

tical decay from hot nuclei.

In this Chapter, we will present preliminary calculations showing that the conditions

on temperature and shape are satisfied to a very good extent by the systems we have

chosen, i.e. the GDR parameters of 81Rb and 80Zr are expected to be practically the

same.

Since the largest part of the data is characterized by a coincidence between AGATA

and HECTOR+, the data analysis was concentrated on this class of events.

4.1 Kinematics of reaction

The internal energy of the CN can be calculated according to Eq. 4.2:

89



Eint(E
∗, J) = E∗ − Erot(J) = (4.1)

=
Atarget

Apro +Atarget
Ebeam +Q− Erot(J) (4.2)

where A is the mass number of nucleus (projectile or target), Ebeam is the beam energy

corrected for energy loss in the target, Q is the Q-value of the reaction and Erot(J) is the

rotational energy after the formation of the CN.

In the discussed experiment the beam energies have been chosen in order to match

Eint (calculated with Eq. 4.2) after correcting Elab for energy loss in the target, as shown

in Tab. 4.2. The beam was delivered by the TANDEM accelerator.

reaction Elab (MeV) Eloss (MeV) t (µg/cm2) Q (MeV) E∗ (MeV) σ (mb)
40Ca + 40Ca 136 7 500 -14 54 500
37Cl + 44Ca 95 6 500 2 54 250

Table 4.1: Elab is the energy of the incoming beam, Eloss is the energy loss in the target of thickness

t, calculated with LISE++ code, Q is the Q-value of the reaction calculated with PACE4, E∗ is the

excitation energy calculated with Eq. 4.2 , σ is the fusion cross section calculated according to Bass

Model with PACE4 code.

As explained in Chapter 1, the nuclear temperature (T) is a fundamental quantity for

the description of the CN system. Moreover, the GDR width depends on this quantity

and thus it is important to verify if the temperature is the same for both reactions. The

temperature of the CN is defined as:

T (J) =

√
Eint(J)

a(A,Eint, J)
(4.3)

whereEint(E∗, J) = E∗−Erot(J) is the internal energy of the system and a(A,Eint, J)

is the level density parameter, calculated using the Reisdorf parametrization.

In order to calculate Erot(J) and, therefore, the internal energy of the CN, one has

to perform an average on the rotational energy as a function of spin J (the yrast line

displayed in Fig.4.1 in our systems) using the spin distribution as a weight (see Fig.4.2).

In our calculation we have adopted the Rotating Liquid Drop Model yrast line used

within GEMINI++ Statistical Model calculation. Since the CN can be formed at different

angular momenta, it fills different temperatures. For this reason, it is useful to introduce
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Figure 4.1: Yrast-line calculated with the GEMINI++ Statistical Model, using the Lublin-

Strasbourg Liquid Drop (LSD) model.
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Figure 4.2: spin distribution of the fusion cross section for both nuclei.



a mean value of the temperature 〈T (J)〉, corresponding to the temperature value at the

mean value of the angular momentum distribution 〈J〉. It means that 〈T (J)〉 = T (〈J〉).

In Table 4.2 the mean value of the temperature and the angular momentum are re-

ported.

Although the spin distributions are different, the kinematic of the reaction allow to

have similar temperature for both reactions.

CN 〈J〉(~) 〈Erot〉(MeV) 〈T 〉(MeV)
80Zr 21 10 2.0
81Rb 15 5 2.1

Table 4.2: mean values of angular momentum 〈J〉, rotational energy 〈Erot〉 and temperature 〈T 〉

are reported.

As explained in the previous chapter, the spin distribution changes with the number

of γ-rays detected (Fγ) in the array (therefore also the rotational energy changes). The

larger part of the acquired events are related to Fγ = 2 (1 γ-ray detected in AGATA and 1

γ-ray detected in HECTOR+). For this reason our analysis was concentrated on this class

of events. The spin distributions associated to this fold condition are shown in Fig.4.3.

These spin distributions were obtained using the P (Fγ ,Mγ) distributions obtained in

the previous chapter.

Since the rotation energy changes with the Fγ, the temperature felt by the CN changes

as well. In Table 4.3 the features of this class of events are summarised. Also in this case

the temperature values are similar.

CN 〈J〉(~) 〈Erot〉(MeV) 〈T 〉(MeV)
80Zr 25 13 1.9
81Rb 17 6 2.1

Table 4.3: mean values of angular momentum 〈J〉(~), 〈Erot〉 and temperature of Fγ = 2 events are

reported.
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Figure 4.3: spin distribution related to Fγ = 2 events.

4.2 CN particle decay

4.2.1 Neutron emission

The neutrons interact in the crystal via several reactions, which can distort the γ-ray

spectra detected and thus they must be rejected in the analysis, especially when the

physical observable is small (as in the case of the isospin mixing in 40Ca + 40Ca reaction).

The 80Zr nucleus lies in the neutron-deficient region of the Segrè chart, while the
81Rb is in the stability valley (see Fig.4.4). For 80Zr the neutron separation energy is

so high (∼16 MeV) that the neutron emission is strongly inhibited. On the other hand,
81Rb nucleus is far to the proton drip-line and the neutron emission is expected to be

dominant.

The presence of neutrons can be observed in the time spectrum. Indeed, the neutron

events are delayed because the neutrons have a smaller velocity than the γ rays.

The neutron contribution is clearly visible in the time spectrum of 37Cl + 44Ca reac-

tion (black line) at ≈ 100 ns (the γ-ray peak is placed at ≈ 90 ns). On the other hand, no

neutron peak is present in the 40Ca + 40Ca time spectrum, as expected.

In Fig.4.6 it is shown the energy spectrum and the associated time spectrum of the



neutrons emitted by 81Rb. The energy spectrum was obtained using the PACE4 code.

The time spectrum was obtained converting the neutron kinetic energy in the neutron ve-

locity and considering the time needed to a neutron to travel 25 cm (distance of HECTOR+)

respect to a γ-ray. The energy distribution is peaked at ≈ 3 MeV, while the associated

time distribution is peaked at ≈ 10 ns. The latter value is in good agreement with that

we found observing the time spectrum in Fig.4.5.

It is worth to be noted that the absence of neutrons in the reaction means that no neu-

tron background is present. As the evaporated charge particles are stopped by the scat-

tering chamber, we do not expect particles induced background in 80Zr γ-ray spectrum.

This is an important point when one wants to measure a small effect as the ispospin

mixing.

Figure 4.4: Region of nuclear chart where 80Zr and 81Rb lies. The color code represent the neutron

separation energy. The large separation energy should inhibit the neutron decay of 80Zr
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4.2.2 Residues population
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Figure 4.7: The low-energy spectra of the AGATA Demonstrator are shown. The top panel is

related to the 80Zr decay, while the bottom panel is related to the 81Rb decay. The circles represent

the transitions of the more populated residues. The spectra were obtained without any conditions

in the sort code.

The compound nucleus emits mainly particles until the the excitation energy remains

above the particle separation energy, then it can decay only via γ-ray emission. The

nuclei populated after the particle decay process are called residue nuclei.

The γ rays associated to the low-energy transitions of the residue nuclei were de-

tected using the AGATA Demonstrator. These discrete transitions were used to identify

the residue and to extract, using their intensity, the CN populated residue population.

In Fig.4.7 the γ-ray spectra of the AGATA Demonstrator are shown. The main in-

tense peaks were identified, using the RADWARE archive as reference. The residue

population can be extracted also using the statistical model. The comparison between

the experimental and the simulated population distribution is an excellent tool to check

the validity of the statistical model predictions.

In particular, we have preformed two different checks: i) evaluation of the variation



of the residue population as a function of coincidence fold (and thus for different spin

distribution, as explained in Chapter 3); ii) the evaluation of the residues distribution as

a function of the γ-ray energy detected in HECTOR+. In both cases the variation of the

residues population is originated by the change of the phase-space available for particle

emission.

The residue population extracted using the AGATA Demonstrator as a function of

the γ-ray energy detected in HECTOR+ is shown in Fig. 4.8. The experimental data

were corrected by the AGATA Demonstrator efficiency. The statistical model calculation

was performed using a Monte-Carlo version of the CASCADE code. In Fig. 4.8 and

Fig.4.9, one can clearly see that the 77Rb residue (3p emission) is strongly populated in

coincidence with a high-energy γ ray (in the GDR region); on the other hand the 76 Kr

residue is manly populated in coincidence with the emission of low-energy γ rays. This

fact reflects two different regions of the phase space; indeed, gating on an high-energy

γ-ray less phase-space is available for particle emission and thus the residue with less

particles emitted is favorite. In general the three most strongly populated residual nuclei

(76Kr, 74Kr and 77Rb) are found to be rather well reproduced by the statistical model.

The variation of the residues population as a function of the Fγ detected in HECTOR+

and AGATA Demonstrator is shown in Fig. 4.8. The spin distribution used in the statis-

tical model calculation was corrected using the response function calculated in Chapter

3. From Fig. 4.8 and Fig.4.11, one can clearly see that the 77Rb residue (3p emission) is

strongly populated in coincidence with a high-energy γ ray (in the GDR region); on the

other hand the 76 Kr residue is manly populated in coincidence with the emission of a

low-energy γ ray. Also in this case, this fact reflects the population of different regions

of the phase space; indeed, the Fγ = 4 trigger request corresponds to a higher mean spin

value than Fγ = 2 and thus the phase-space is smaller in the latter case.



Statistical Model
re

sid
ue

s
po

pu
la

tio
n 

[%
]

0
10
20
30
40
50
60
70

76Kr 74Kr 77Rb

Eγ 0-6 MeV
Eγ 6-12 MeV
Eγ 12-18 MeV

Experiment

re
sid

ue
s

po
pu

la
tio

n 
[%

]

0
10
20
30
40
50
60
70

 
76Kr 74Kr 77Rb

Eγ 0-6 MeV
Eγ 6-12 MeV
Eγ 12-18 MeV

Figure 4.8: Residues population obtained from the analysis of the AGATA Demonstrator spectrum

as a function of the energy detected in HECTOR+ array. The experimental data was corrected by

the AGATA Demonstrator efficiency. The statistical model calculation was performed using a

Monte-Carlo CASCADE code.
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4.3 High-energy spectra
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Figure 4.12: Time spectrum of HECTOR+. The red region is the time gate condition applied in the

sort code.

The high-energy γ rays emitted in the CN decay were detected by the HECTOR+

array. The largest part of data was detected with a coincidence between HECTOR+ and

AGATA Demonstrator. In order to reject background events, a gating condition on the

time of the events was applied (see Fig.4.12).

It is important to note here that the time selection of this class of events is not exclu-

sive enough to reject the neutron background. Nevertheless, since we verified the ab-

sence of neutrons in the 80Zr (see Fig.4.5), we are sure to do not introduce a background

with our time condition.

In Fig. 4.13 the γ-ray spectra detected in HECTOR+ are shown. In spite the time

condition, in the high-energy part of the spectrum there is a strong background, which

can be originated by N-N Bremsstrahlung or cosmic rays. This high-energy γ-rays can

interact with the neighbouring material and the pair-production is the favourite reaction

mechanism. Indeed, no γ-ray transitions were observed in AGATA Demonstrator in

coincidence with Eγ > 20MeV in HECTOR+, the only strong contribution seems to be

the 511 keV peak (see Fig. 4.14).

In the Eγ-Eγ matrix of the energy detected in AGATA Demonstrator versus the en-

ergy detected in HECTOR+ (see the matrix in Fig.4.15),it is clearly visible a region (Eγ ≈
18 MeV in AGATA) due to the pre-amplifier saturation of the AGATA Demonstrator.

In addition, it is visible that many events were characterized by the coincidence be-
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tween two high-energy γ-rays.

In the CN decay, this kind of events are very unlucky, because, in general, only one

high-energy γ-ray is emitted in the cooling process. Therefore, we considered these

events as background, which must be subtracted.

As a proof of our considerations, in Fig.4.16 is shown the comparison between the

HECTOR+ spectrum in coincidence with a high-energy γ-ray (Eγ ≥ 10MeV ) and a low-

energy γ-ray (Eγ ≤ 4MeV ) detected in AGATA. As expected, the high-energy spectra

in coincidence with another high-energy γ-ray exhibit a flat shape, on the other hand

the other spectra exhibit a change in the slop at ∼ 10 MeV, typical of the presence of the

Giant Dipole Resonance. Moreover, the background spectra of both reactions are very

similar, as shown in the left panel of Fig.4.16, and this is an additional proof that these

events are independent by the reactions and no physical information is present in these

data.

Since the background contribution in the high-energy part of the spectrum is the
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Figure 4.14: Low-energy spectrum of AGATA Demonstrator in coincidence with a high-energy γ

ray (Eγ ≥ 20MeV ) detected in HECTOR+. No residue transitions are visible and only the 511 keV
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same for both reactions, the average of the spectra obtained in coincidence with a high-

energy γ ray detected in AGATA was taken as the best parametrization of the back-

ground and a linear function was used to fit the data (see Fig.4.17). The spectra obtained

after a background subtraction are shown in Fig.4.18 with empty dots and the typical

GDR shape is clearly visible in the region between 10 MeV and 20 MeV.
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CHAPTER 5

Results and discussion II

In this chapter is reported the statistical model analysis of the γ-ray spectra detected with

HECTOR+. The analysis of the spectrum of 81Rb provided the GDR parameters, while

the analysis of 80Zr provided the value of the isospin mixing probability.

As already discussed, the AGATA coincidence spectra were used to validate the sta-

tistical model calculations, not to extract the high-energy γ-ray spectra.

The temperature dependence of the isospin mixing was obtained and the zero-temperature

value deduced using the theoretical parametrisation reported in Ref. [52].

The isospin-symmetry-breaking correction δC used for the Fermi super-allowed tran-

sitions was extracted using the result of the present analysis.

All these results were published in Ref. [102].

5.1 Isospin in the statistical model

The statistical model analysis was performed using the CASCADE code [100, 101] in

which the isospin formalism was included, in order to be sensitive to the isospin mixing

effect. The original version of the CASCADE code was modified first by M.N. Harakeh

and later on by the Washington University group, according to the formalism of Harney,

Ritch, Weidenmuller reported in Ref. [61].

Three features are relevant for including the isospin in the statistical model:

• The population cross section matrices and level densities are labelled with the

quantum number for isospin (in addition to excitation energy, angular momentum

and parity).

• The states with different isospin are mixed before nay type of decay (according to

the CN hypothesis).
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• The transmission coefficients are multiplied by isospin Clebsch-Gordan coefficients

In the statistical model two classes of isospin are considered: I< = Iz and I> = Iz+1.

The initial compound nucleus is populated in the state I< = Iz according to the ispospin

conservation in nuclear reactions. States with I > Iz correspond to configurations with

a lower binding energy and, therefore, a higher excitation energy.

To calculate the isospin dependence of the level density, we equate the I> level den-

sity with the total level density of the isobaric analogue nucleus, shifted appropriately

to the energy of the I> state in the parent nucleus (see Ref. [70] for a clear dissertation

of the problem). Therefore, the energy of the I> state is calculated as the energy of the

equivalent state in the isobaric analogue nucleus with the same mass A but Z = Z-1 and

N = N+1, using the formula [48]:

∆I<,I> = M(AAnalog)−M(A) + ∆EC − (mn −mp) (5.1)

where ∆EC is the difference due to the Coulomb energy, while the quantity (mn−mp)

takes into account the difference in mass between neutrons and protons. In the case of
80Zr ∆I<,I> is equal to 5.4 MeV. The level density ρ is calculated as:

ρ(E∗, J) =
2J + 1

12Θ3/2(U + T )2

√
ae2
√
aU (5.2)

where Θ is the moment of inertia, T is the temperature, U is the internal energy of the

system and a is the level density parameter. In the statistical model the internal energy

U for the state I< is calculated as U = E∗ − Erot − EGDR = aT 2, while for the state I<
is calculated as U = E∗ − Erot − EGDR − ∆I<,I> . This means that ρ(I>) < ρ(I<). The

level-density parameter a was chosen equal to a = A/8. It is important to to note that in

the calculation of U we subtracts also the GDR energy contribution.

The use of the statistical model to reproduce measured γ-ray spectra allows to extract

the values of the Coulomb spreading width, Γ↓≷, and the isospin mixing,α2
≷ for both

states.

5.2 Data analysis

The statistical model provides the γ-ray spectrum of the CN, which was compared (after

the folding with the detector response function and normalizing to the data at around 5

MeV) with the experimental data. The GDR parameters were derived from the best fit

to the data in the region between 8 and 15 MeV. Because of the exponential nature of the



spectra, the standard χ2 is not a suitable quantity because of its weak sensitivity to the

low yield part of the spectrum. For this reason, the fit minimization was applied to a

Figure Of Merit (FOM) defined as:

FOM =

E=15MeV∑
E=8MeV

(Yi −Mi)
2

Y 2
i

(5.3)

where Yi an Mi are the experimental and simulated counts per bin respectively. Eq.

5.3 was obtained dividing the standard χ2 over the number of counts for each bin. In

this way, the sensitivity to the low yield part of the spectrum is increased.

The statistical errors were calculated performing a Monte-Carlo simulation: 104 spec-

tra were created adding to the number of the experimental counts a fluctuation randomly

extracted from a Gaussian distribution centred at zero and with a standard deviation

equal to the statistical error on the number of counts per bin (σ =
√
Yi). For each spec-

trum the best fitting parameter (obtained from the minimum of the FOM) was extracted.

The 104 parameter values are distributed following a Gaussian. The statistical error of

the parameter values is taken as the standard deviation of the Gaussian distribution.

This procedures was used for the analysis of 81Rb.

The error in the isospin mixing value has two sources of errors:

• The first comes from the propagation of the GDR parameter errors in 81Rb.

• The second comes from the statistical fluctuations of the experimental data as in

the case of 81Rb.

We decided to take the sum of the square deviations as the best estimation of the

error.

5.3 Fit results

For 81Rb the best-fitting values of the centroid, width and strength of GDR were found to

be: EGDR = 16.4± 0.2 MeV, ΓGDR = 7.0± 0.2 MeV and SGDR = 90± 5 %, as summarized

in Table 5.1. The data and the corresponding statistical model calculations are shown in

the left top panel of Fig.5.2; in the right top panel of the same figure the ΓGDR FOM is

plotted.

To extract the isospin mixing in 80Zr the Coulomb spreading width was treated as the

only free parameter to fit the 80Zr data. The best fit of the 80Zr data was obtained when

the Coulomb spreading width is equal to Γ↓> = 12 ±3 keV. The plot of the corresponding



CN EGDR [MeV] ΓGDR [MeV] SGDR [%] Γ↓ [keV]
81Rb 16.4 ± 0.2 7.0 ± 0.2 90 ± 5 -
80Zr 16.4 7.0 90 12 ± 3

Table 5.1: Best fitting values are reported for both CN. For the statistical model analysis of the

spectrum associated to 80Zr the isospin mixing plays a role while all the other parameters were

fixed from the 81Rb analysis.

FOM is shown in the bottom-right panel of Fig. 5.2. The statistical error coming from

the statistical fluctuation of the experimental data was estimated equal to 2 keV, using

the same procedure of 81Rb. Moreover the propagation of the 81Rb GDR parameters

uncertainty was estimated equal to 2 keV. Therefore, the total error in the value of the

Coulomb spreading width is of the order of 3 keV. In Fig.5.1 the Γ↓> best-fitting distribu-

tion is shown as example.
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Figure 5.1: Γ↓ distribution obtained from the fit procedure of the simulated 104 spectra, as ex-

plained in the text. the standard deviation represents the statistical error (≈ 2 keV).

It is worth to be noted that the fitting procedure is sensitive mainly in the 10-17 MeV

region of the spectrum (where the GDR strength is concentrated). Indeed (see e.g. Ref.

[26]) the gamma yield in region below 9 MeV is mainly originated by the emission in the



final steps of the de-excitation process after neutron, proton evaporation. The CN is not

in a I = 0 state after the neutron, proton evaporation and thus it has lost the sensitivity

to the isospin mixing. Only the first step of the GDR γ decay, before proton and neutron

emission, is sensitive to the selection rule for E1 decay.

In order to emphasize the GDR region, the experimental and simulated data were di-

vided by an exponential curve, obtaining a linearized spectrum. The exponential curves

of both CN were obtained performing a statistical model calculation with a constant

B(E1) (i.e. no GDR strength). This procedure allows to see clearly the effect of the isospin

mixing in the GDR region. In Fig.5.3 calculations were also made assuming full mixing

(the dashed blue line) and no mixing (the green dashed line).

As explained before, the fit procedure of the 80Zr data was made fixing the GDR pa-

rameters and varying only the isospin mixing contribution. Obviously, in this analysis,

the presence of the isospin mixing was assumed. To be noted that the 80Zr experimental

data could be well reproduced by the statistical model also without the isospin mixing

contribution, using a smaller GDR width. Indeed, if in the fit procedure the Γ↓ is fixed to

0, the fit procedure converges at ΓGDR = 5.8 MeV (see Fig. 5.4). Although the 80Zr data

are well reproduced, the GDR width is completely different than the value obtained in
81Rb . This is an indirect proof of the presence of the isospin mixing effect in 80Zr data.
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Ref. [102].
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5.4 Coulomb spreading width Γ↓ in 80Zr

The statistical analysis of the 80Zr allowed to extract the value of the Coulomb spreading

width. The value found was Γ↓> = 12 ± 3 keV. This value is good agreement with that

found by A. Corsi Γ↓> = 10 ± 3 keV. It means that the Coulomb spreading width is an

intrinsic property of the system and it does not depend on its excitation energy.

In addition, our value is consistent with that found in the 80Se studying the width of

the IAS Γ↓IAS = 9.9± 1.6 keV [57]. This result supports the idea that the Coulomb spread-

ing width of the CN and the IAS are the same quantities because they are originated by

the isospin mixing.

In the Fig.5.5, our value of Γ↓ is compared with the values available in literature. Our

datum (blue diamond) is in good agreemtn with the experimental trend: the Γ↓ values

increase with the mass of the nucleus. This trend can be caused by the increases of the

Coulomb interaction effects in the nucleus.
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Figure 5.5: Values of the Coulomb spreading width obtained in the IAS (black dots) and in the CN

(red triangle) [56, 61]. The blue diamond is the value obtained in this work, while the green star is

the value obtained in the Ref. [68].



5.5 Isospin mixing in 80Zr at T = 2 MeV
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Figure 5.6: Degree of mixing α> (red diamond) and α< (black dots) along to the CN angular

momentum.

In the statistical model the value of Γ↓> is kept fixed while the corresponding value is

obtained using the detailed balance (Eq. 1.54). Using the values Γ↓≷, the statistical model

provides as output the value of α2
≷(J) distribution. The spin dependence of the isospin

mixing (see Fig.5.9) is due to the fact the internal energy of the system (and thus the

nuclear temperature) depends on the rotational energy of the system. The increase of the

degree of mixing along to J of the system, reflects the stronger effect of isospin-breaking

interaction on colder and longer-lived CN. In order to obtain the average value 〈α2
≷〉,

one has to weigh the α2
≷(J) values with the CN cross section and the γ-ray branching

for each J. The mean values obtained were 〈α2
>〉 =8.5% ± 2% and 〈α2

<〉 = 8.0% ± 2%.

Our values are sensitively larger than those obtained by A. Corsi in Ref. [68] (see

Table 5.2 for a comparison). The reason is that in this work we formed a nucleus at

smaller internal energy and thus smaller(larger) decay width(lifetime). These differences

can be viewed in Fig.5.7 where the lifetimes and the internal energies of the CN 80Zr in

both experiments are shown. This supports the concept that the mixing probability is a

dynamical mechanism in the nucleus, governed by the lifetime of the system and thus it

decreases with the excitation energy.



Ref. 〈U〉 [MeV] 〈Γ↑CN 〉 [MeV] 〈τCN 〉 [s] 〈α2
<〉

[68] 36 0.5 1.4 10−21 0.05 ± 0.01

This work 24 0.13 5 10−21 0.08 ± 0.02

Table 5.2: Comparison of the compound nucleus average features (internal energy 〈U〉, decay

width 〈Γ↑CN 〉 and lifetime 〈τCN 〉) between this work and Ref. [68]. The value of 〈α2
<〉 is also re-

ported in the last column.
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Figure 5.7: Top panel: internal energy of the compound nucleus 80Zr in this experiment (red line)

and in the experiment of Ref. [68] (red line). Bottom panel: lifetime of the compound nucleus in

this experiment (red line) and in the experiment of Ref. [68] (black line).

In Fig.5.8 the value of 〈α2
<〉 is plotted together with the available data present in

literature obtained using the GDR γ decay technique.

All these data were analysed using the same statistical model approach. Although
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Figure 5.8: Comparison between α2
< values obtained using the GDR γ decay. The red star is the

value obtained in this analysis, the green dot is the value from Ref. [68], the black diamonds are

the values from Ref. [66] and empty triangle are the value from Ref. [62]

the experimental data correspond to different nuclei (and some of them have large error

bars), the experimental data exhibit the expected temperature dependence. This trend is

a clear confirmation to the Wilkinson’s hypothesis.

5.6 Isospin mixing in 80Zr at T =0

Using the γ decay of the GDR technique we extracted the value of isospin mixing at T ≈
1.5 MeV. However, since most of the theoretical calculations regard the isospin mixing

in the ground state and its influence on nuclear structure, it is important to find a way to

extrapolate the T = 0 value starting from the data at T > 0.

To compare the two data for 80Zr at finite T with the predictions for the ground state,

we used the model of Ref. [52], which describes the variation of the mixing probability

with T. The isospin mixing probability for a nucleus at a finite temperature is defined as

α2
>(T) =

1

I0 + 1

Γ↓IAS

ΓCN(T) + ΓIVM(IAS)
(5.4)

where Γ↓IAS is the Coulomb spreading width of the IAS, considered equal to Γ↓>,

ΓIVM(IAS) is the width of the Isovector Monopole Resonance (IVM) at the excitation

energy of the IAS, which is expected to be constant with T.



This model does not take into account the nuclear angular momentum and thus the

effect of the rotational energy on the degree of mixing. Since the α2
> depends on the

angular momentum, we followed Ref. [68] and we expressed the degree of mixing at

angular momentum J = 0 and we obtained a value of α2
> = 4.6% ± 0.7%. Neglecting the

rotational energy the temperature of the system increases and T(J=0) ≈ 1.8 MeV.

Using Eq. 5.4 it is possible to compare the experimental data with the theoretical ones.

According to the systematic for the present case one has ΓIVM(IAS) = 240 keV [51, 53].

ΓCN(T) is the CN decay width increasing with T.

In Fig. 5.9 the values of α2
> calculated using Eq. 5.4 are shown as a function of T. The

red line is obtained with a value of Γ↓> = 11.0 ± 2.1 keV, corresponding to the average of

the two experimental values (the lower and upper curves corresponding to 8.9 and 13.1

keV, respectively).

This calculation gives at T = 0 α2
> = 4.6% ± 0.9%, in rather good agreement with

the prediction in Ref. [49]. Following the discussion in Ref. [52], we also considered

a weak linear dependence on T of the Coulomb spreading width given by Γ↓>(T ) =

Γ↓>0(1+cT ). In this expression the chosen slope parameter c = 0.1 MeV−1 is such that the

value of Γ↓> stays within the experimental error bar. The blue band in Fig. 5.9 displays

the dependence of α2
> with T when such weak dependence of Γ↓> is considered (the

limiting curves correspond to Γ↓>0=8.9 and 13.1 keV).

We performed also two calculations using Γ↓> = 11.0 keV and ΓIVM(IAS)= 220 and 260

keV (see Fig.5.10)and we found that these two curves are well within the two coloured

bands of Fig. 5.9.
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Figure 5.9: The isospin mixing α2
> as a function of T obtained with the procedure of [52] corre-

sponding to Γ↓> = 11.0 ± 2.1 keV (red region), constant with T. For the blue band Γ↓> was assumed

to vary mildly and linearly with T. The blue triangle is the theoretical value at T = 0 from [49],

the green circle is the datum from [68], the black diamond is the datum of this work. Taken form

Ref. [102].
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Figure 5.10: The isospin mixing α2
> as a function of T obtained with ΓIVM = 220 keV (blue band),

ΓIVM = 240 keV (dashed black line) and ΓIVM = 260 keV (solid black line).



5.7 δC in 80Zr

The value of the isospin mixing at T = 0 obtained in this analysis can be used to estimate

the isospin mixing breaking correction term δC for the Vud calculation. As already re-

ported in Chaper 1, the δC is not a measurable quantity and its relation with the degree

of mixing can be written as [76]:

δC = 4(I + 1)
V1

41ξA2/3
α2 (5.5)

where V1 = 100 MeV and ξ = 3, while α2 is the isospin impurity in the ground state

and I is the isospin of the nucleus. Using Eq. 5.5 the value δC = 0.81(16)% was obtained

for 80Zr.

Usually the δC value is calculated using the β-decay ft value [72,73] or a very precise

Q-value measurement (as in the case of 74Rb [77]).

It is important to note that in these works these experimental values were obtained

assuming that the Ft value is constant and finding the best δC term which satisfies this

assumption. On the other hand, in our case, we can give an experimental estimate of

the δC starting from the physical observable which originates this phenomenon, i.e. the

isospin mixing probability.

The value of δC obtained in this analysis is shown in the Fig. 5.11 in comparison with

two different theoretical calculations from Ref. [72] and other experimental values of δC

at lower Z obtained from β-decay [72] and mass measurement data [77]. The present

result is consistent (within the error bars) with data for 74Rb and the trend of predictions

is also in agreement with the present new point. No calculations of the type of Ref. [72]

are available for A = 80 and the δC data for 74Rb are the only existing ones close to N = Z

= 40.
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Figure 5.11: The isospin mixing correction δC as a function of the nuclear mass number A. The

dashed black line is the prediction from the Damgaard model [78], while the red line is a shell

model with Saxon-Woods radial wave function prediction [79]. Black circles are the experimental

points extracted form β decay as reported in Ref. [72], the blue triangle is the value obtained from

the mass measurement in Ref. [77]. The red star is the value of δC extracted in this work. It is

plotted the quantity δC/I+1 since β-decay measurements are for I = 1 nuclei, while that for 80Zr is

I = 0. Taken form Ref. [102].





Conclusions

In this thesis, we studied the GDR γ-decay in the CN 81Rb and 80Zr at T≈2 MeV. The

statistical model analysis allowed to extract the 81Rb GDR parameters and the isospin

mixing probability in 80Zr, which is the heaviest nucleus available using a fusion reaction

with stable beam and target.

The comparison between our result and the values obtained obtained with the same

approach and for systems with Z = 13-40 at T = 2-4 MeV, allowed to test the tempera-

ture dependence of the degree of mixing, as suggested by Wilkinson. In particular the

comparison with the value of A. Corsi [68] obtained in the same CN but with a larger

excitation energy, show clearly the key role of the lifetime in this process.

In addition, in this analysis, we extracted the value of the Coulomb spreading width

Γ↓> which is in good agreement with that found by A. Corsi and the value obtained

studying the IAS of 80Se by Kailas [57]. This means that: i) the Coulomb spreading

width is an intrinsic property of the nucleus and it does not depend on the excitation

energy ii) The value obtained in the statistical analysis of the CN is the same of that

obtained in the IAS, because it is originated by the same process.

Using our result and that obtained by A. Corsi, we studied the temperature depen-

dence of the isospin mixing using the theoretical model reported in Ref. [52]. The value

extrapolated at T = 0 is in good agreement with the theoretical calculation available in
80Zr. This result suggests that using two or more experimental data at finite temperature

is possible to deduce the value at T = 0.

This could open the way for a intense study of the isospin mixing in different mass

region, with a systematic comparison between experimental and theoretical data, which
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now is missing in literature.

In addition, The isospin-symmetry-breaking correction δC used for the Fermi super-

allowed transitions was extracted in 80Zr. No experimental or theoretical data are avail-

able for this nucleus. Nevertheless, our result is in good agreement with the theoretical

and experimental mass-trend.

In conclusion, for the first time the T dependence of the isospin mixing was obtained

for the 80Zr nucleus, the heaviest that can be formed with stable nuclei. The T=0 value

was deduced and provides a stringent test to theory. The isospin correction term used

in the β-decay analysis was also extracted for the first time for A = 80 and found to be

consistent with systematics from β-decay and mass measurements. This result supports

the validity of the method based on the GDR at finite T to obtain isospin mixing in

regions of Z not directly accessible at T = 0.



APPENDIX A

Papers

Part of the work reported in this thesis was published in the following papers:

S. Ceruti et al., ”Isospin Mixing in 80Zr: From Finite to Zero Temperature”, Physical re-

view letters 115 (22), 222502.

S. Ceruti et al., ”Isospin mixing in 80Zr at finite temperature”, Acta Physica Polonica B

46 (3).

A. Bracco, S. Ceruti and L. Pellegri, ”Nuclear Structure aspects of gamma decay from

giant resonances”, EPJ Web of Conferences 78, 06002.
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