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Introduction

In Nature, symmetries help us to describe a complex physical system in a simple way
and to better understand its behavior. Indeed, symmetries are strongly related to con-
servation laws which, in quantum mechanics, translate into good quantum number to
describe the system. The search for symmetries is a fundamental goal in all fields in
physics. At the same time, the possible breaking of a symmetry can open the gates for
new and unexpected scenarios.

In a nuclear system many symmetries were identified. One of these is the isospin
symmetry, which plays a key role in nuclear structure and nuclear reaction.

The isospin symmetry was introduced by Heisenberg in 1932 to describe the exper-
imental evidence of the charge independence of the nuclear interaction. In the isospin
formalism neutrons and protons are considered as different states of a unique particle,
the nucleon, with a value of 1/2 or -1/2 of the projection I, of the isospin operator I.

A nucleus has a well defined value of I,=(N-Z)/2, while I, according to quantum me-
chanics rules, can assume values ranging between |(N-Z)|/2<I<(N+Z)/2. The nuclear
ground state corresponds to the lower value of isospin I = I,. Therefore, for self-conjugate
nuclei the isospin ground state is I = 0.

This symmetry, which can be viewed as a rotational invariance in isospin space, im-
plies that the nuclear Hamiltonian commutes with the total isospin operator I and thus
the nuclear states can be labelled by the isospin quantum number. The isospin quantum
number has an important role also in nuclear reaction, because it is a quantity which
must be conserved. Indeed, reactions that do not conserve isospin are strongly inhib-
ited.



In the atomic nuclei, the presence of the Coulomb interaction between protons breaks
this symmetry and induces a mixing between nuclear states with different isospin val-
ues. In particular the stronger mixing is between states with a difference in isospin equal
to one (Al = 1). In this situation it is impossible to assign to a nuclear state a unique
value of the isospin. This effect increases with the number of protons in the nucleus.

The knowledge of the isospin mixing is a fundamental quantity needed both to ex-
plain the properties of the isobaric analogue state (IAS) and for its connection with the
test of the unitarity of the Cabibbo-Kobayashi-Maskawa matrix (CKM). In fact, the most
precise value of the first term of the CKM matrix V,q is extracted from the ft values of
0t — 07 super-allowed Fermi (3 decays with several small corrections. One of these
corrections, called dc, depends on the isospin-mixing probability.

The breaking of isospin symmetry can be observed through decays which would be
inhibited by selection rules. This is the case of the electric dipole transition (i.e. E1 tran-
sition) from self-conjugate nuclei in a I=0 configuration. To fully exploit this property,
one should go in the region of the Giant Dipole Resonance (GDR), where most of the E1
strength is concentrated. This approach has been employed to measure the isospin mix-
ing in nuclei at finite temperature T, formed in fusion evaporation reactions. In this type
of experiments the use of self-conjugate projectile and target nuclei ensures the popula-
tion of a compound nucleus (CN) with I=0. The hindrance of the GDR gamma decay
can be measured and thus the mixing amplitude deduced. A partial restoration of the
isospin symmetry is expected at high temperature due to the decreasing of CN lifetime
for particle decay.

In the work of A. Corsi et al. [68], the isospin mixing was investigated at the N = Z =
40 value, namely in 8°Zr, at T = 3 MeV, while previous works concern CN with smaller
N = Z values only. This is the heaviest N = Z nucleus that is possible to form using a
fusion reaction with stable beam and target. The work on 8°Zr of Ref. [68] showed that
by using the latest prediction of the isospin mixing value (based on EDF models [49])
together with the expression giving the T dependence of the isospin mixing [52], one
finds a good agreement with the measured value at T = 3 MeV. This finding indicates that
if one has an additional experimental point at another temperature one could deduce,
from the combined analysis of the data, the value at T = 0 (with associated error bar).
The additional point has to be at temperature lower than 3 MeV in order to check the
predicted trend of the temperature dependence of the isospin mixing.

In this Thesis we report on a new study addressing the problem of isospin mixing in

807y, for which, for the first time, the different residual nuclei were also measured. The



aim of the Thesis is to make a combined analysis of this new datum for isospin mixing

at T =~ 2 MeV with the previous one at T ~ 3 MeV, in order to :
o test experimentally the trend of the temperature dependence of the isospin mixing;

o extract for the first time the value of the isospin mixing for Z = 40 at zero tempera-

ture;

e extract, for the first time, the isospin mixing correction dc necessary to obtain the

correct ft value of super-allowed Fermi transitions.

The experiment was performed at the Laboratori Nazionali di Legnaro of the Istituto
Nazionale di Fisica Nucleare (INFN, Italy) employing ion beams from the TANDEM
accelerator complex. Two fusion reactions were used: one symmetric in target and pro-
jectile, forming the compound nucleus in the isospin I=0 channel, the other forming a
very similar compound nucleus with I#0, used in the analysis as reference. In particu-
lar, the used reactions are “°Ca + 1°Ca at Epear = 136 MeV (I = 0 channel) leading to the
compound nucleus 3°Zr at E* = 54 MeV and the 37Cl + **Ca at Epeam = 95 MeV (I # 0
channel) leading to ®'Rb at E* = 54 MeV.






CHAPTER 1

Isospin symmetry in nuclear physics

In this chapter the main aspects concerning the isospin symmetry in nuclear physics
are presented. In particular, the effects of the breaking of this symmetry and how they
can be measured are described. Moreover, in order to have a clear dissertation of the
physics case, a general overview about the fusion reaction process and the Giant Dipole

Resonance is also reported.

1.1 Compound nucleus reaction

When two nuclear systems collapse forming a highly excited compound system, this
process is called Fusion Reaction. The “new” nuclear system (the so-called Compound
Nucleus (CN)) has too much excitation energy to be stable, but it lives sufficiently long
for sharing its excitation energy uniformly among all its constituent nucleons (Fig.1.1
and all figures hereafter). The typical lifetime of the CN is greater than the orbital period
of a nucleon, 10722, This requires that the mean free path of the projectile in the nucleus
is much shorter than the nuclear radius. Later, the CN decays via particle emission (n, p,
o or 7).

The foundations of the theory of compound nucleus reactions were laid by Niels
Bohr in 1936 ( [1,2]) and in next years by Bethe, Weisskopf and Ewing ( [3-5]), which
developed the evaporation theory. Later, Hauser and Feshbach ( [6,7]) developed the
quantum-mechanic formalism to describe the system.

Several review papers are present in the literature that describes the formal develop-
ment of the compound nucleus theory ( [8,9]). In this thesis, a brief description of the

compound nucleus reaction is reported.



1.1.1 CN formation

The formation and the one-step decay of the compound nucleus can be written schemat-

ically as:

A+B—-C"—> R +r (1.1)

where R is the residual nucleus after the decay of the particle r.
The maximum excitation energy (E¢ ), in the center of mass frame, given to the

system by the fusion reaction is provided by the formula:

Een = Ean + @Q (1.2)

where @) is the (-value of the reaction, while E.,, is the kinetic energy in the center
of mass of the incoming ion:
M;

Eeom = Blgp——-+ 1.3
Ty (13)

Ejqp is the kinetic energy in the laboratory frame of the projectile nucleus and M,, is
its nuclear mass, while M, is the nuclear mass of the target. E.,, must be larger than
the repulsive interaction originated from the Coulomb interaction and the centrifugal

potential:

212262 n h2j(] + 1)
R. 2uR,
where Z; and Z, are the charge of the target and the projectile, R, is the Coulomb

Eun > (1.4)

barrier radius, j is the angular momentum of the system and y is the reduced mass.

The energy sharing is so complete that the system decay is completely independent
on its formation. This is the key assumption of the Bohr-independence hypothesis: the
compound nucleus decay depends only on its excitation energy, angular momentum
and parity, but not on how it is formed.

The CN is formed at high excitation energy and thus the energy distance between two
levels becomes smaller than their decay width (I' >> AE). In this situation, a microscopic
discrete description of the nuclear states is no more convenient and it is useful to describe
the CN using a continuum density of levels p. According to Bethe’s Fermi-gas formula

the level density can be written as:

(1.5)



Figure 1.1: Famous picture which represents the Bohr’s wooden toy model of the compound nu-
cleus. The incident nucleon carries kinetic energy (as indicated by the billiard cue), collides with

the nucleons in the target and shares its energy with many nucleons [1].

where a is the level density parameter a = A/[7 — 10]MeV ~! (see in Fig.1.2 the mea-

sured mass dependence [10]).
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Figure 1.2: Mass dependence of level-density parameters. Experimental points from neutron-
resonance experiments are shown as the solid square data points. The blue line is the linear in-
terpolation of the data in comparison with another trend (green line). The red dots were obtained

with a more sophisticated model taking into account shell effect for the single nucleus [10].



Thanks to the Bohr-independence hypothesis and the high density of states, the CN
structure and decay can be described using a statistical approach: all the degrees of free-
dom of the system are in equilibrium and thus there is an equal probability distribution
of all states with the same quantum number (momentum J, parity 7) and excitation
energy (£*). In addition, the detailed balance is valid: the transition matrix element
associated to the reaction a + b — CN is the same as the decay process CN— a + b.

As reported in Ref. [11], the probability to find a nucleus in a state k at an energy Ey,

momentum Jj, and parity 7, can be defined as

5(Ek - E*)é(Jk - J)5(7Tk - 7T)
p(E*)
where p(E*) is the density of states. This probability is called micro-canonical. The

Pe = (1.6)

nuclear level density can be written using the entropy S of the system:

p = poexp(S(E™)) (17)

In analogy with a classical system in thermodynamical equilibrium, it is possible to

introduce the concept of nuclear temperature:

ds 1 dp

— 1 _ (=
T= (dE*) N (pdE*

)~ (1.8)

It is worth to note that in general, a statistical description of a physical system is
allowed in the limit of a large number of particles which constitute the system. Therefore,
the analogy between the nuclear system (particles ~ 100) and a classic gas (particles ~
102%) could be considered too simple if not completely wrong. The reason of the success
in the statistical description of the compound nucleus is the large number of states: as
example, one obtains using Eq.1.5 for a nucleus with A =100 and £* = 50 MeV that there
are 10'7 states).

From Eq. 1.8 and Eq. 1.5 one can write the relation between 7" and E*:

E* = aT? (1.9)

The Bohr independence hypothesis has implications that can be tested experimen-
tally. It is possible, for instance, to form the same compound nucleus in different ways
checking that the particles emitted are identical. The energy distributions of these parti-
cles an be calculated and compared with the experiment, as well as their angular distri-

butions. In the continuum, the energy distributions are expected to have the Maxwellian



form (as in the classical gas) and the angular distributions are expected to be symmetric
about 90° ([12,13]). Anyway, as the energy of the projectile increase, the hypothesis that
the particle emission takes place after the statistical equilibrium is less valid. Indeed,
there is an increasing likelihood that particles are emitted before the statistical equilib-

rium this is the pre-equilibrium process ( [14, 15]).

1.1.2 CN decay

The compound nucleus decay can described successfully using the statistical approach
proposed by Hauser and Feshbach ( [6,7]), which takes into account explicitly the spin
degree of freedom. The key assumption of this formalism is that all nuclear degrees
of freedom have reached a statistical equilibrium before the cooling process. The com-
pound nucleus fusion cross section 0,5 depends on the total angular momentum of the

system (J):

2J+1

J —Jo
7 )

The quantity Jj is the angular momentum cut-off and it can be constrained from the

Ofus(J) = 271')\2
J 1+ exp(

(1.10)

fusion cross section. This is either measured, constrained from systematics, or obtained
from the Bass model [16] with a good accuracy. d is the diffuseness and it can vary from
2t0 10 h.

The partial decay width of a CN of excitation energy E* and spin J¢n for the evap-

oration of particle 7 is written as:

oo Joen+Ja

. B 1
Li(E*, Jon) = omoon B Jon) /de > (1.11)

Ja=0|Jocn—Jal

J+5;
3" Tye)pa(E* ~ B; —¢) (112)
1=|J—S|
where J; is the spin of the daughter nucleus; S; , J , and [, are the spin, total, and
orbital angular momenta of the evaporated particle; e and B; are is its kinetic and sepa-
ration energies; T; is its transmission coefficient or barrier penetration factor; and pg and
pcn are the level densities of the daughter and CN, respectively.

In the case of v decay the transmission coefficient is calculated as ( [17]):

T(E,) = GE! (1.13)



Where ¢ is a constant value which can be estimated from the strengths of transitions
between low-lying states in the mass region of interest or from the Weisskopf single-
particle estimate.

The CN decay can be divided in two main phases. After the compound system
formation, the excitation energy is higher than the nuclear binding energy (~8 MeV)
and hence the CN loses energy emitting particles. In general, the neutron emission
is favourite because this particle does not have to cross the Coulomb barrier. In this
phase, the neutron decay is in competition with high-energy +-decay coming from the
de-excitation of the Giant Resonances (typically with a branching ratio P—Z ~ 1073). In
the second part of the CN decay the excitation energy is below the particle-emission
threshold and thus the nucleus can decay only via quadrupole v transitions along to the

Yrast line (see the representation in Fig. 1.3).

1.2 Giant Dipole Resonance

The Giant Resonances (GR) are a nuclear excitation modes which played a key role in
the study of nuclear structure for their connection with the bulk properties of the nuclear
matter [18].

The IsoVector Giant Dipole Resonance (IVGDR), where protons oscillate against neu-
trons [19,20], is one of the more studied resonance in the past. Its centroid is related to
the nuclear mass, while the width is related to different damping mechanisms [11,18].

The IVGDR can be observed in photo-absorption experiments using a gamma beam
around 15 MeV. The photo-absorption cross section displayed clearly a resonant be-
haviour (see Fig.1.4) [21]. Because of the energy of the gamma projectile (Aw., =~ 15 MeV),
the corresponding wavelength (A, ~ 100fm) is larger than nuclear radius (R =5 - 7 fm).
Therefore, the nucleus as a whole fill a constant electric field E. As a consequence protons
move in the direction of E, while neutrons move in opposite direction to keep the center
of mass at rest and to conserve momentum. On the other hand, The attractive nuclear
force acts as a restoring force which reverses the motion of the neutrons and protons.

The shape obtained in these (,n) experiments can be well reproduced using a Lorentzian

curve:

o)

1+ [(E? — E2)2/E%T?)

where Ey and o are the position and the cross section of the centroid respectively,
while I is the width of the distribution.

o(E) =

(1.14)
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Figure 1.3: Schematic representation of the CN de-excitation. Giant Dipole Resonance radia-
tion, indicated by (1), is emitted in competition with neutrons, indicated by n. (2) indicates the

quadrupole « ray emitted in final steps of the decay.

The excitation energy of the GDR (E¢pr) is , in the case of medium-heavy nuclei,

well described by the formula:

Eapr = 31.2A7Y3 4 20.6A" Y MeV (1.15)

where A is the nucleus mass number.
The integrated strength of the GDR (S p r) can be estimated using the classic Thomas-

Reiche-Kuhn energy-weighted sum rule:

E

mas 60NZ

Sepr = / ol dE = —1 MeVmb (1.16)
Em,in
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Figure 1.4: photo-neutron cross section for the nucleus 208pp [21].

IVGDR state exhausts 100% of the energy weighted sum rule for a electric dipole op-
erator and, in general, the IVGDR +y decay is characterized by the emission of an electric
dipole photon.

The width of the resonance (I'¢ pr) in the nuclear ground state can be described mi-

croscopically as a sum of two contributes

Tepr=IT+T¢ (1.17)

where I'" is the escape width of particle evaporation while I'V is the spreading width
arising from the coupling with 2p-2h, 3p-3h,... configurations. The latter term is the larger
contribution to the GDR width. I'cpr can vary from about 4 to 8 MeV. The narrowest
width is observed in double magic nuclei. For nuclei with a stable axial deformation, the
photo-neutron cross section is split in two parts, corresponding to a IVGDR vibration

along or perpendicular to the symmetry axis (see Fig. 1.6) [22].
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Figure 1.5: photo neutron cross section for the isotopic chain of Nd [21].
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Figure 1.6: Width of the IVGDR along to the mass number A [22].



1.3 CN statistical GDR ~-decay

In 1951 David Brik suggested that a giant resonance state can be built on each nuclear
state and the properties of a such resonance do not depend on microscopic structure of
the nucleus but only on its bulk properties. This is the so-called the Brink-Axel hypothesis
[23,24]. As a consequence, in a compound nucleus in thermal equilibrium there is a
nonzero probability to have populated an IVGDR built on an excited state, which can
decay emitting an electric dipole v ray (i.e. El). The first experimental evidence of a
IVGDR in excited state was found in 1981 by Newton et al. [25]; indeed, they found a
change in the slope of the intensity curve in the region of the resonance energy (between
10 - 20 MeV) (see Fig.1.7).

Following the idea of Bring and Axel, the GDR was investigate intensely in the past
years in hot compound nuclei (CN) at different excitation energy (E*), angular momen-
tum (J) and temperature (T) [11,26-29]. It was found that, although the centroid is rather
constant with the nucleus excitation energy, the width increases with both temperature
and angular momentum. The main reason is the increase of the average deformation
of the nucleus because of the thermal shape fluctuations and angular momentum (see
Fig.1.9) [30,31].

As explained before, the statistical description of CN decay is based on the assump-
tion that all the degrees of freedom have reached statistical equilibrium before the cool-
ing process (decay) and that the detailed balance is valid. Assuming the Axel-Brink

hypothesis, one can write the y-decay width I, as

drfy(Ev) -~ p(E* = Efin)
dE, p(E* = Eyp)

Oabs(Ey) = 0aps(Ey)exp—E, /T (1.18)

where o, is the absorption cross section at T = 0, which has the Lorentzian shape
of Eq.1.14. If the excitation energy is above the neutron separation energy, the GDR -
decay is in competition with the neutron emissions. Typically the ratio between the ~y
decay and the neutron decay is ~10~3 Since the CN in thermal equilibrium, the neutron

emission cross section can be parametrized using a Maxwell-Boltzman distribution:

on ~ T?exp(E, — B,)/T ~ T?ecxp—B,,/T (1.19)

where B, is the neutron binding energy. The ratio between I, and I', is:

o eapl(Bn — By)/T) (120)
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Figure 1.7: y-rat spectra measured for different angular momentum in the fusion reaction 82Se +

40Ar. It is clearly visible the resonance structure for energy above 10 MeV [25].

where E, is the total energy carry out by a neutron (kinetic energy plus binding
energy). Since E,, is approximately equal to 2T, the probability for the emission of a ~
ray with £, > B,, + 2T increases with T (see Eq.1.20). As consequence, the high energy
~-ray of the IVGDR is emitted preferably at high temperature and thus in the first-step
decay. On the other hand, for £, < B, + 2T the vy-decay probability increases as T

decreases. Consequently the v rays are emitted in the end of the cascade decay. The



different contributions to the total y-ray spectrum at different temperature are shown in
Fig.1.8.

The total width I' of the GDR built on a CN is sensitively larger than the one obtained
in a photo-absorption experiment and it increases with the nuclear temperature [32] and
the Angular momentum (J) [31,33].

This observation is not in contrast with the Brink-Axel hypothesis, indeed the in-
crease of the width can be explained with the fact that the nucleus experiences a contin-
uous range of deformations and space orientations as described by the Thermal Fluctu-
ation Model (TFM). Each deformation is parametrized using the coordinates (8, y) and

the probability to found the nucleus is a certain deformation is:

P(B,7) ~ exp(=F(T, 3,7)/T) (1.21)

where F' is the free energy of the system. the resulting GDR strength function is a

weighted superposition of many Lorentzian distributions associated to a deformation:

3
o(E) = / > owl(E, B,9)P(T, B,7)3*| sin(37)|dBdy (1.22)
k=1

Studying the thermal effects, one finds that the .4, corresponding to the minimum of
the total free energy, can be sensitively different to the average value (5(J, T, A)), defined

as:

(B(J,T, A)) ~ / BP(T, B,)8"| sin(37)|dBdy sin 0 (1.23)

A linear relation between the average nuclear deformation (5(J, T, A)) and the in-
crease of the FWHM of the Lorentzian distribution used to reproduce the GDR spectrum
has been proposed in [33] and plotted in Fig.1.9.

In addition, with increasing angular momentum, the nucleus tends to undergo oblate
flattening due to centrifugal effects. the equilibrium deformation, .4, increases rapidly
with angular momentum, and as a consequence, the total GDR strength function under-
goes a further splitting, which increases the FWHM.

Studying the available experimental data Kusnezov et al. [31] obtained a phenomeno-
logical formula to describe the global dependence of the GDR width on temperature,

spin, and mass:



S
A5/6

I(T,J,A) = I(T,J=0,A)L(
I(T,J =0, A)

)/ (T/To)+3] (1.24)

where Ty is usually extracted from the measured ground state GDR, T, = 1 MeV,
¢(A) =~ 6.45 — A/100 and the function L(¢

= A5/6) can be written as L(§) = 1+ 1.8[1 +

e(1:3=9/02171 In Fig. 1.10 the comparison between experimental data and theoretical

calculation is shown [31].
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Figure 1.8: typical y-ray spectrum obtained from a fusion evaporation reaction (**O + *'%Sn) [34].
The full line is a fit to the data, the dashed line is the bremsstrahlung contribution while the dotted
line is the CN decay.
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Figure 1.10: Angular momentum dependence of the GDR width. The line is the theoretical calcu-
lation obtained using Eq.1.25. Taken from Ref. [31]
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1.4 Isospin formalism

In Nature, symmetries help us to describe a complex physical system in a simple way
and to understand better its behaviour. Indeed, symmetries are strongly related to con-
servation laws which, in quantum mechanics, translate into good quantum number to
describe the system. Therefore, the search for a symmetry it is a fundamental goal in
all fields in physics. At the same time, the study of the breaking of a symmetry is very
important because it can open the gates for new and unexpected scenarios.

In a nuclear system many symmetries are identified. One of these is the isospin sym-
metry, which plays a key role in nuclear structure and nuclear nuclear reaction.

The isospin symmetry was introduced by Heisenberg in 1932 [37] to describe the
identical behaviour of neutrons and protons in a nuclear field. It means that neutrons
and protons cab be considered as different quantum states of the same particle, the nu-
cleon. The Heisenberg’ s idea was born from the observation that in nucleus does not
exist only the protons (m, = 938.272 MeV/c?), but also another no-charge particle, the
neutron, with a vary similar mass (m,, = 939.566 MeV /c?). The isospin symmetry implies
the charge invariance of the nuclear interaction.

A new coordinate is needed to distinguish neutrons and protons, the isospin (or iso-
baric spin) I [38], which was formally introduced in analogy with the spin (this is the
reason of the similar name). A nucleon has isospin I = 1/2, the two nucleons are labelled
with the third component I3 of the isospin operator:

1 1 1 1

5,13 = +§> In) = I = 5,[3 = *§> (1.25)

A similar case is the situation of two particles with different spin projection m,: in

p) =1 =

absence of a magnetic field B they have the same energy, but if B is present they exhibit
different energy depending on the orientation of m,.
The concept of isospin can be extended to the nucleus as a whole: the total isospin is

the sum of the single nucleon contribution:

I= Z I(i) (1.26)

where A is the mass number of the nucleus. Also the charge operator Q can be ex-

pressed using the isospin quantum number:

Q=c¢e(1/2—1I) (1.27)



1.4.1 Charge invariance of nuclear interaction

The assumption that the attractive nuclear force is independent of the charge of the in-
dividual nucleons (or equivalently that the isospin symmetry exists) can be divided in
two separated ideas: i) The first idea is that the nuclear interaction is charge symmet-
ric, which requires that the interaction between neutron-neutron (nn) and proton-proton
(pp, neglecting the Coulomb interaction effect) is the same; ii) the second idea is that
the nuclear interaction is charge independent, which means that not only nn and pp

interactions are equal, but also np interaction.

As any assumption in physics, it important to test experimentally these ideas. A very
powerful test for studying the nature of the nuclear interaction is a low-energy scatter-
ing experiment between different pairs of nucleons (nn,pp,np). The scattering length
obtained are reported in the Table.1.1. the values related to pp scattering were corrected
by Coulomb interaction effect. The data are similar, but not compatible between each
others. The differences can be interpreted as a charge not symmetric and not indepen-
dent component of the nuclear interaction. Many theoretical works were made to de-
scribe this difference ( [39—-41] and the references therein). For instance, the difference
between nn(pp) and np scattering length can be explained partially with the presence
of an “exchange” process, which is impossible to distinguish from the direct process [?].
Of course, the difference in mass between n and p (AM ~2 MeV [42] neutron is about

0.14% heavier) is one of the origin of the charge-independence breaking.

It is worth to be noted that these data are related to a free-nucleon interaction and
not to a effective-nuclear interaction in nuclear medium. Although, these symmetries
are weakly broken, in the nuclear behaviour the isospin symmetry can be considered a

good “approximated” symmetry [43,44].

a [fm] r[fm]
PP -17.3+ 0.4 2.794 + 0.015
nn -189+ 0.4 2.84 +0.03
np -23.74+0.02 2.73 +0.03

Table 1.1: Scattering length (a) and effective range (r) obtained in low-energy scattering experi-
ment. the pp values were corrected by taking into account the Coulomb interaction effect. Data

taken from Ref. [41].



1.4.2 mirror nuclei

Formally, In the isospin space charge independence of the nuclear force implies that the

nuclear Hamiltonian H commutes with the third component of the isospin operator:

[H,To] =0 (1.28)

and also with the square of the isospin operator:

[H,T?] =0 (1.29)

Therefore the nuclear wave-function does not change if one replaces a neutron by
protons or vice versa. A clear indication of the presence of the isospin symmetry in
nuclear medium is the comparison of the level schemes of two mirror nuclei [44, 45].
These nuclei are characterized for having the same number of mass A, but with the
number of neutrons and protons exchanges. Therefore, within the isospin formalism
these two nuclei are completely identical. For instance, the partial level scheme of 57Se
(N =33, Z =34) and °"As (N = 34, Z = 33) are shown in Fig.1.12. The spectra, as well
as the properties of various states, are very similar to each other and this is an evidence
of the charge independence of nuclear force. The differences between the corresponding
levels of the two spectra may be attributed to the Coulomb interaction [46,47](the so-
called Coulomb Energy Distance, CED).

1.5 isospin and electromagnetic transitions

The isospin is not a physical observable which can be measured in an experiment. Thus,
if one wants to test the isospin invariance, it important to find an observable sensitive to
the isospsin. The Electromagnetic transition is an example.

Starting from the Fermi’s golden rule and following Ref. [48], it is possible to write

the width of an electromagnetic transition between two nuclear states a and b:

Ty(L) =87k > [ (JyMpy; IyIs| H(L, M) |JoMq; IoI3a) |* (1.30)
M, M,

where H is the general electromagnetic Hamiltonian defined as:

1) = ¢ [[i30- Ay (s (131)
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Figure 1.12: Partial level schemes for (left) ®"Se and (right) °” As determined from the experimental
data. The energy labels are given in keV and the widths of the arrows are proportional to the

relative intensities of the «y rays. [45]

jn and A7, are the the nuclear current density and the electromagnetic vector po-

tential respectively. j can be expressed in the isospin formalism as:

P p;
fe E — 2T =L §(r—rj)+6(r—rj)2]\2p} (1.32)
—&-lc( ch )E [y + p_ 21V x 056(r — 1) (1.33)
2 2M,c’ T TS J ? '

J

where 4 = pin, + pp and py = p, — pp (14, and g, are the neutron and proton nuclear
magnetic moments. According the isospin dependence, Eq. 1.33 can be divided in two
terms: an isoscalar term j%;, independent of I3, and an isovector term, linearly dependent

on I3.



fez L& 5 )+ 0(r—r1)) L ] (1.34)

2M,
1
1 ) P] _ o\ Py
ZQI 5 1) +6(r r])ZMp} (1.36)
+1 ( S(r—1;) (1.37)
5 CH— 2M r—r; .

As a consequence, even the Hamiltonian in Eq. 1.30 can be splitted in two parts H =
H° + H', where H? is the isoscalar interaction and H' the isovector interaction. In order
to understand the isospin properties of an electromagnetic transition, it is useful at this

point to rewrite Eq. 1.30 extracting the I3 dependence with the Wigner-Eckhart theorem.

This implies:

<Jbe§ IbISb|HO + Hl |JaMa; I(LI3(L> = (138)

I 0o I,
= (1T | (JoMpy; I| Ho |JoMa; L) (1.39)

—I3, 0 I3,

L 1 I,
+ (=1)fv =10 ’ (JoMy; Iy| Hy |JoMq; o) (1.40)

=13, 0 I3,

From Eq. 1.40 one can easily observe that both isoscalar and isovector interaction do
not vanish only if I, = I3,. This is the first isospin selection rule: Alz = 0. Physically,
this means that an electromagnetic transition cannot occure between different nuclei (as
expected).

From the Wigner coefficients in Eq. 1.40 it is possible to deduce another selection rule.

For the isoscalar part of the Eq. 1.40 the coefficient is equal to:

I 0o I,
=13, 0 I3,

(—1)fofor = (2L +1)" 65,1, (141)

This implies that the isoscalar part vanishes expect if I, = I;. For the isovector term,
where Iy, = I, + 1 (I, = I, — 1, I, I, + 1)the Wigner coefficient is equal to:

(71)11,7131, Iy LI _ (71)1;,7[&[ Ii — I??

—Isy, 0 I3 I, (21 — 1)(21s + 1)

11/2 (1.42)



where I. = maxz(I,,1,). From Eq.1.44 it is possible do deduce an important rule: if
Is = 0 (self conjugate nuclei) transition the isovector Al = 0 contribute vanishes. As we
will see later this fact play an important rule in E1 transition.

In the long wave approximation (k. < 1) all terms of order (k.r)? and higer are
neglected. In this situation the electric dipole operator (E1) can be simply written using

the isopin formalism as:

A A A A
1 1
H(L=1,M)~Y gr;~ Z(i —Isj)rj) = 5 Sori =Y Iy, (1.43)
J J J J
=H=%L=1,M)+H=(L=1,M) (1.44)

The isoscalar term H=0 is proportional to the center of mass coordinates (Rcyr =
>_;rj and thus cannot induce any nuclear excitation: the matrix element of such op-
erator vanishes). Therefore in the long-wave approximation the E1 operator is totally
isovector.

The fact that E1 operator does not have any isoscalr contribution provides an im-
portant rule: a Al = 0 E1 transition in self-conjugate nuclei is forbidden. Only Al =1
transition occurs. As consequence the total E1 strength is reduced.

As explained in the previous paragraph the v decay of the GDR has an E1 character.
Thus in self-conjugate nucleus the v decay is strongly inhibit. It is worth noting that only
the first step of the vy decay is inhibited. In fact, after a proton or a neutron evaporation
(which is the favourite decay) a self-conjugate nucleus is no more in a I3 = 0 state and

thus also isovector AI = 1 transition can occur.

1.6 Isospin mixing

The isospin symmetry was introduced neglecting in the Hamiltonian the Coulomb in-
teraction between protons. This was reasonable because the latter is, in general, much
weaker than nuclear interaction.

Nevertheless, considering the nucleus as a whole, the short-range nuclear interaction
increases linearly with the number of nucleons, while the Coulomb interaction, which
has a long rang effect, increases quadratically with the number of protons. Consequently
, the effect of Coulomb interaction becomes significant in medium-heavy proton-rich
nuclei and the total interaction in the nucleus is no more charge independent, hence the

isospin symmetry is broken.



To understand the effects of the Coulomb interaction in the microscopic structure of

the nucleus in useful to write it in the isosin formalism:

Vo3¢ (1/2 — I3x)(1/2 — I3;) (145)

Tjk

k<j

that can be decomposed in three terms in isospin space: isoscalar (Véo)), isovector

(VC(I) ), isotensor (VC(2) ):

v _ 1 I(J) J Q)
c Z 4T]k[ + 3 ]

k<j
1 le k
VC('):_ZQT. [I(])-i-I( )]
k<j = 7
2) _ G k) LGy e
41 Y — —19 . 1 1.4
ve 24% . ) (1.46)

The isoscalar part has no relevant effects and it can be added to the isoscalar nuclear
interaction. On the other hand, the isovector and isotensor part lead to isospin impuri-
ties in the wave function with A = 1 and Al = 2 respectively. These impurities are

responsible to the breaking of isospin symmetry. This is the so-called isospin mixing.

1.6.1 Isospin Mixing in the ground state

Since the Coulomb interaction remain smaller than the nuclear interaction the isospin
mixing can be treated using a perturbative approach. For a nucleus in a I = 0 state the

probability to have a I = 1 impurity o is:

=1V =02
o? = 1.47
Z (Er=o — Er1=1)? ( )

and the ground state (g.s.) is a linear combination between the two isospin states.

lg.s.) = B10) + a|1) (1.48)

Two points are worth to be noted in Eq. 1.47: i) Because of the denominator in the
formula the isospin mixing probability is important only between states close together

in energy; ii) The Coulomb potential varies slowly in the nucleus (considered it as a



charged sphere) and it preserves spin and parity, so the Coulomb interaction lead to
large mixing between states with the same J7.

In brief, the isospin mixing is large only between nearby states having the same spin
and parity and a large overlap between their spatial wave functions. The tensor part
induce a mixing with Al = 2 states. These states lye much higher in energy than AT =1
states and thus the mixing contribution of these states is smaller (due to the denominator

of Eq. 1.47). For this reason the tensor part is neglected.
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Figure 1.13: Degree of mixing o in the ground states for N = Z nuclei, obtained using an Energy

Density Functional approach and a SLy4 nuclear interaction [49].

The knowledge of the degree of mixing in the g.s. gives a direct information about
how much the isospin is a good quantum number for the system.

Particular effort has been made during the years to deduce, in the best possible way,
the value of isospin mixing for proton-rich nuclei and the mass dependence of o [49-55].

This was encouraged by the possibility to reach very exotic nuclei in the proton-
rich zone of the nuclear chart, where the isospin mixing is expected to be large and not
negligible. This is the case of 1°°Sn, which is the heaviest N = Z nucleus existing in the
nuclear chart where the o is largest.

In the past years many theoretical calculations of the isospin mixing in the ground
state were performed using several approaches. In Fig.1.13 the isospin mixing mass
dependence using an Energy Density Functional (EDF) approach is shown [49]. As ex-
pected, the o? value increases with the mass number, since the Coulomb interaction
increases.

In Tab.1.2 different theoretical calculations of the isospin mxing in 89Zr are given.



The values differ for the method (second column) and the effective interaction (third
column) used in the calculations. the values vary between 1 - 4.5%. In Fig.1.14 each

value corresponds to a different nuclear interaction used in the EDF calculations.

a? method interaction  Ref.

1 analytic [103]
36  HF+TDA SG2 [54]
31  HF+TDA SIII [54]

3  HF spherical SIII [55]
2.5 HF deformed SIII [55]
3.9 HF SIII [53]
2.2 analytic [53]
45 EDF SLy4 [49]

Table 1.2: Available theoretical calculations of o for 8°Zr are reported from the references listed
in the last column. HF stands for Hartree-Fock, EDF for Energy Density Functionals, TDA for
Tamm-Dancoff approximation. In the third column the parametrization of Skyrme interaction

used is given only for non-analytic approaches.
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1.6.2 Isospin mixing in the IAS

The Isobaric Analogue State (IAS) is a particular excited state of the nucleus, obtained
exchanging a neutron with a proton. The parent nucleus |7) and the |[IAS) have the
same isospin [46]. As a consequence, this state preserves the the parent nucleus wave
function and thus it has the same internal structure. This is true despite the fact that
the IAS lies at higher excitation energy ~ 15 MeV due to the larger Coulomb interaction
energy. Since the excitation energy of the IAS is above the particle separation energy, the
IAS can decay via proton or neutron decay and thus it exhibit a width I" (see Fig.1.15 for

a schematic representation), wich can be written as:

r=T"4+1¢ (1.49)

The I'" quantity is the sum for all partial particle decay width and it is dominated
by the allowed proton decay. The I'" quantity is the spreading width of the IAS which
is dominated by the isospin-forbidden neutron decay. This quantity is generated by the
isospin mixing with the IsoVector Monopole State and it is of particular interest because
it is a way to study the Coulomb interaction effects in the nuclear medium [56-58]. The
value of the spreading width is expected to increase with the number of protons in the
nucleus because of the increase of the Coulomb interaction. This idea was confirmed by
many experimental results (see Fig.1.16 and Fig.1.16).

In the mass region nearby 8°Zr, the Coulomb spreading width of the IAS was mea-
sured in the nucleus %°Se, obtaining T'} , ¢ = 9.9 + 0.6 keV [57].

1.6.3 Isospin Mixing at low and high excitation energy

As the excitation energy increases the levels lie close together. Using Eq.1.47, o? increases
as the level spacing AE decreases. At the same time, the states acquire a finite particle
decay width, as the excitation energy exceed the particle binding energy.

The Eq.1.47 is no more valid in this situation and it must be replaced with:

W =1V T=0)P (150)
= ((Er=o +il'/21—0) — (E1=1 +il'/2121))?

I' is the decay width of the level. When the decay width of the levels is almost equal

to their energy distance the mixing probability is maximum.
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Figure 1.15: Shematic representation of the IAS particle decay. The allowed and forbidden decays

are shown [46].
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Wilkinson [59] and Morinaga [60] first suggested that at high excitation energy the
nuclear decay width becomes so large to overwhelm the Coulomb interaction effects and
restore the isospin symmetry.

This process can be view in a time-dependent approach where the compound nucleus
is formed and it decays before the time necessary to mix the states. The mixing proba-
bility is determined by the competition between the nuclear lifetime and the Coulomb
interaction time scale. The time-independent description of the isospin mixing in Eq.1.50
is no more suitable to describe this dynamical mechanism.

To understand better this point is useful to introduce a picket-fence model, which
describes the dynamical competition between two effects (see Ref. [103] [62]).

Suppose to have a set of I = 0 levels with the same energy distance D. A state with
I =1 lies at an energy E;—; between two I = 0 states and a perturbation apply to the
system. The perturbation connects the state with I = 1 with the underlie I = 0 states
and it has a constant matrix element v In the limit v < D, the probability to have I =1

configuration per unit energy interval is given by the Breit-Wigner distribution:

1 r

T 21 (B — E)2 4 (T4/2)?
_ 2702

D

P4 [F]

T

(1.51)

where TV is the spreading width of the I = 1 state. Suppose now to analyse the
problem in a time dependent approach, considering that at ¢ = 0 only the / = 0 state is
populated. The probability to find the system at I = 1 is:
oo

r
Pt,I=1)= ea?p[—?t — ﬁEHt}z (1.52)

The state I = 1 decay (mix) to / = 0 state with an exponential decay time equal to
't /h and this process is in competition with the natural decay of the state. In the case of
isospin mixing problem I'* is the Coulomb spreading width associated to the Coulomb
interaction time scale: if the decay width becomes much larger than the Coulomb spread-
ing width (hence the decay is faster than the Coulomb interaction) no isospin impurities

affect the decay. The isospin symmetry is restored.

1.6.4 Isospin mixing parametrizations in compound nuclei

Harney, Ritcher and Weidenmiiller [61] proposed a coherent isospin mixing description

in the compound nucleus, which took into account both the isospin mixing formalism



and the CN statistical behaviour.

The model, which used the S-matrix formalism, assumes no mixing in the entrance
channel, before the formation of the compound nucleus. On the other hand after the CN
formation isospin mixing is allowed between two classes of states I = I, and I. =

I. + 1. The Coulomb spreading width T'%, for the state I is expressed as:

F¢> :27T|<I<|HC‘I<>|QP[I<]] (1.53)

where the Coulomb matrix element is averaged over all possible states. This model
assume that the two states are centred at the same excitation energy, therefore the Coulomb

matrix element is the same also for I states, so that

_ plI<]
plI>]

Harney, Ritcher and Weidenmidiller write the isospin mixing term using a single pa-

rL rL (1.54)

rameter z, that is given by:

2 = An*HEp[T<p[T] = (1.55)
= QWFiP[Tﬂ =
= 27TF¢<P[T<]

using this equation, it is possible to derive the fraction a2 of states I. which mix

with I states.

rL/r
a2 = T >/T> T (1.56)
14Ty /TS +T2 /T
and similarly the fraction a2 of states I which mix with I states.
rL/r
a? </T< (1.57)

TS T S

where I';, ) is the total decay width of the states I, (. For small mixing the Eq. 1.57
is reduced to I‘i /T« = ToN /Tmis and confirms the Wilkinson’s hypothesis that the mix-
ing at finite excitation energy depends only on the competition between the mixing and
the CN decay. For intermediate value of the mixing it is necessary include the terms in
the denominator I‘¢<(>) /T <(>), which take into account also the probability that I,

states mix back to I ()



Many theoretical works proposed the idea that the 'y obtained in a statistical reac-
tion could be the same as the spreading width measured with the IAS. The reason is that
both quantities are originated by the isospin mixing effects with the IsoVector Monopole

State. This idea was supported by many experimental results, as shown in Fig.5.5.
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Figure 1.17: Experimental spreading width obtained from the IAS (circles) and statistical reactions
(triangles) [61].

1.6.5 Isospin mixing temperature dependence

The problem of the isospin symmetry restoration at high excitation energy was treated
by Sagawa, Colo and Bortignon [52] using a microscopic model. The model is based
on the Feshbach projection method and provide the isospin mixing temperature depen-
dence through its relation with the spreading width of the IAS. Indeed, the authors as-
sume that the Coulomb spreading width of a CN it is the same of the corresponding IAS,

because both are originated by the isospin mixing.

The coulomb spreading width of the IAS can be expressed as:

I us = (CL(E) + Tar(E*)od 41 (To + 1) (1.58)
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Figure 1.18: Degree of mixing o2 in the nucleus 2°®Pb as a function of nuclear temperature [52].
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and thus the mixing probability o? is given by

o = I as (1.59)
T T+ 1T (E*) + T (Eras)

where I'L,(E*) is the compound nucleus decay width, I'} , ¢ is the Coulomb spreading
width of the IAS, I' s is the width of the Isovector Monopole Resonance (IVM) at the ex-
citation energy of the IAS. The latter quantity it is impossible to measure experimentally
and it can be considered as a parameter of the model.

T'L(E*) increases exponentially with the temperature (Toy ~ e 2F/T, AFE is the
energy removed by the emitted particle) while the other two quantities are expected to
remain constant with temperature. Nevertheless, the authors introduce a smooth linear
dependence of the T'} , 5 obtaining for 2°®Pb the trend reported in Fig.1.18. The mixing
probability remains rather constant with the nuclear temperature and then decreases

sharply because of the short lifetime of the nucleus.

1.6.6 Isospin mixing: experimental methods and recent results

Isospin mixing amplitude can be measured experimentally studying transitions which
would be forbidden if isospin is a good quantum number. This is the case of a E1 v decay
in N = Z nuclei [63-68] or a § decay in nuclei with different isospin [69]. Both transition
are forbidden in the hypothesis of pure isospin states. The analysis reported in this thesis

is based on the first method.



Since the E1 strength is almost exhausted by the Giant Dipole Resonance [11], this
resonant state is the best state if one wants to test E1 properties as the isospin mixing.
The best way to excite the GDR state in a I = 0 configuration is using a fusion reaction
with a N = Z beam and target combination. Using the formalism proposed by Harney,
Richter and Weidenmiiller in the statistical model used to fit the data, one can extract
the isospin mixing amplitude at a certain value of excitation energy (or equivalently
temperature), giving also an estimation of the Coulomb spreading width.

In principle, comparing experimental data at different excitation energy one can give
a proof of Wilkinson's suggestion.

The GDR v-decay was used for the first time by M. Harakeh [65] as test of the isospin
symmetry (see Fig.1.19). In the past years the Washington University group and the
Warsaw group performed experiments with the goal to verify the Wilkinson’s sugges-
tion and see clearly the isospin symmetry restoration at high temperature [64,66]. In the
work of A. Corsi and Milano group [68], the isospin mixing was investigated at the Z
= N = 40 value, namely in %°Zr, at an excitation energy E* = 84 MeV. In that work the
Coulomb spreading width was found to be I'¥ = 10 + 3 keV and the mixing probability
a? =5% % 1% (see Fig.1.20).

As shown in Fig.1.21, all these experimental data show the expected mass and tem-
perature dependence. Anyway, the validity of this comparison is limited by the errors
bars and by the fact that these data are related to different nuclei in mass and in temper-
ature. A systematic study of the same nucleus at different temperature does not exist in

literature.
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1.7 Isospin mixing beyond nuclear structure: The CKM matrix

In the Standard Model (SM) the Cabibbo Kobaiashi Maskawa matrix (CKM matrix) [71]
contains the informations about the transitions between quarks. In the SM this matrix is
hypothesised to be unitary. Testing the unitary one can provide a very important test of
the validity of the SM.

The first element V,,4 of the CKM provides the coupling between the quarks v and d,
which is the basis of the §-decay transitions in nuclei. The most precise value of the V4

term is obtained from the ft values of 0% — 0" superallowed Fermi § transition:

K

L
= @ty

(1.60)

where K/(he)® = 273hIn2/(m.c?)® =(8120.2787+0.0011)x 10~ °GeV~*s, Gy is the
vector coupling constant obtained from semileptonic weak interaction and M is the
Fermi matrix element.

All these quantities are true constant and not renormalized to another value in nu-
clear medium. Consequently, also ft should be nuclear independent. In practice, mea-
suring ft values for nuclei in different mass region one realizes that this quantity change
with the mass number, due to effects that are not take into account in the Eq1.60. Firstly,there
are radiative corrections (0 g) because of the emission of bremsstrahlung photons coming
from emitted electrons. Secondly, the isospin is not a good quantum number and the ma-
trix element must be corrected introducing an isospin-symmetry-breaking correction d¢
and the matrix element becomes | Mp|? = |My|?(1 — §¢), where M is the matrix element
in the case of true symmetry. Using these corrections it is possible define a “corrected”

F't value defined as:

Ft = ft(1+dp)(1 - dc) (1.61)

From F't one can in principle extract the value of Gy and the value of V, 4, using the
relation V,,4 = G—Z, where G is the well known weak interaction constant.

However, it is important taking many F't values, coming from nuclei in different
mass region. If they are statistically consistent one can extract the value of Gy and
Vud (and the associated error) from the average value of F't. For this scope it is im-
portant to have a good estimation of the corrections, see [72,73] and reference therein.

For the isospin-symmetry-breaking correction many theoretical approaches are used to



parametrized its behaviour along to the mass number [74,75]. Unfortunately, J. is not a
quantity directly measurable.
N. Auerbach in Ref. [76] proposed a simple analytic relation between the ¢ term and

the isospin mixing probability:

Vi o2
41€A2/3
where V; = 100 MeV and ¢ = 3, while o is the isospin impurity in the ground state

5o = 4(I +1) (1.62)

and [ is the isospin of the nucleus.

In Fig.1.23 the experimental values of §c along to the mass number in comparison
with two theoretical calculations. The experimental values were obtained using the /-
decay ft [72] and the mass measurement in the case of “*Rb [77]. It is worth to note that
these experimental values were obtained using Eq.1.61 assuming the other known quan-
tities and considering F't as an adjustable parameter equal for all nuclei. This method is
limited by the precision in the ft measurement (especially for short lifetime) and because

it assumes valid the constance of F't.

1.8 isospin mixing: from finite to zero temperature

As we noted before, the v decay of the GDR it is a powerful observable when one wants
to measure the isospin mixing of the nucleus, but it can provide the o value only at
T>0. That is a clear disadvantage of our technique when one is interested in the value of
the isospin mixing in the ground state for checking the effects on the nuclear structure,
for the determination of the d. or for the comparison with the theoretical caluclations at
T = 0. Therefore, it is very important to find a way to extrapolate the T = 0 starting from
the GDR data at T > 0.

The work on 80Zr of Ref. [68] shows the possibility to deduce the isospin mixing at
zero temperature starting from a finite temperature value using the theoretical model de-
scribed in Sec. 1.6.5, even if the analysis has some limitations because of the availability
of only one data point. From that work, the need for, at least, an additional experimental
point is evidenced to provide a more stringent test to model predictions [49].

In this thesis a new study addressing the problem of isospin mixing in 3°Zr is re-
ported. The goals of this work is to determine the isospin mixing value at T = 0, using
a combined analysis of the new and existing data and to extract, for the first time, the
isospin mixing correction dc in Z = 40 nucleus necessary to obtain the correct ft value of

super-allowed Fermi transitions.
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CHAPTER 2

Experimental setup: description

The experiment was performed at the Laboratori Nazionali di Legnaro (LNL), Italy, dur-
ing May 2011. The experimental setup was composed by an array of segmented HPGe,
called AGATA (Advanced GAmma Tracking Array) Demonstrator, coupled with an ar-
ray of large volume LaBr;:Ce detectors, called HECTOR™ (see Fig.2.1). This apparatus
was used to measure the v radiation emitted by the compound nuclei *Zr and *'Rb.
These nuclei were formed using a fusion reaction. In this chapter the main features of

the used reactions and the used experimental setup are presented.

2.1 The experiment

In the first phase of the experiment, the 8 Rb nucleus was formed using a beam of *7Cl
(Ebeam ~ 95 MeV, Lyearm ~3 pnA) with a target of **Ca (0.5 mg/cm?). This phase was ~
70 hours long. In the second phase, the 8°Zr nucleus was formed using a beam of “°Ca
(Ebeam =~ 136 MeV, Lyeqm ~3.5 pnA) with a target of °Ca (0.5 mg/cm?). This phase was

~ 110 hours long. In Tab.4.2 the main characteristics of the reaction are summarized.

reaction Eiab MeV)  Tpeam [pnA] - Ejpss MeV)  t (ug/em?) o (mb)
40Ca + 40Ca 136 3.5 7 500 500
37Cl + **Ca 95 3 6 500 250

Table 2.1: E;q is the energy of the incoming beam, Iycam is the beam current, E;o,s is the energy
loss in the target of thickness t, calculated with LISE++ code [81]. o is the fusion cross section
calculated with PACE4 [80].

The ion beams were provided by the TANDEM tandem linear accelerator complex.

45



Figure 2.1: Picture of the experimental setup used in the experiment analysed in this work. 7

LaBr3:Ce and 4 triple clusters of the AGATA Demostrator are visible.

2.2 AGATA Demostrator

AGATA is an European project aimed to the development of a 47 segmented-HPGe de-
tector for the y-ray detection [82-86]. This new detector is based on the principle of the
y-ray tracking [84], namely the reconstruction the sequence of interactions of the single
~-ray in the crystal, which makes possible to achieve a good suppression of the Compton
background, without using a detected ancillary. As a consequence a good efficiency and
high peak to total ratio (P/T) are obtained. In the experiment described in this thesis
AGATA Demonstrator was composed by 4 triple clusters of HPGe crystals for a total of

12 crystals and it was place at 155 cm from the target.



Figure 2.2: Picture of the AGATA Demonstrator at LNL. Taken from [83]

221 AGATA geometry

The geometrical structure of AGATA was studied with the goal of maximizing the solid
angle covered by the array and, at the same time, minimizing development and mainte-
nance cost. As discussed in more detail in Ref. [85], GEANT4 simulations were used to
decide the best performing configuration, here only the main features are reported. The
AGATA geometry is based on the geodesic tiling of a sphere with 12 regular pentagons
and 180 irregular hexagons with three different shapes (see Fig.2.3). The detectors are
grouped in 60 identical triple-clusters, each containing a “red”, a “green”, and a “blue”

crystal arranged in one cryostat (see Fig.2.3).

In the standard configuration, the inner radius of the array is 23.5 cm. The full sphere
has a total solid angle covered by HPGe material close to 80% and the photo-peak effi-
ciency is as high as 50% for individual 1 MeV 1+ rays.

In Table 2.2 the AGATA photo-peak efficiency and the peak to total ratio (P/T) are
given in comparison with an hypothetical sphere of HPGe material and the EUROBALL
array [87], which was the previous array composed by HPGe detectors. Although a
realistic detector can achieve only about 50% of the performance of the ideal sphere of
HPGe, the efficiency gain of AGATA respect to EUROBALL is evident. Even in the case
of experiment with high ~-ray multiplicity, one obtains a good efficiency and P/T.



Array # crystals  e,n(%) epn(%)  P/T(%) P/T(%)
(M,=1) (M,=30) (M,=1) (M,=30)

EUROBALL 239 9 6 56 37
AGATA 180 38 24 53 44
HPGe sphere 1 65 36 58 60

Table 2.2: Estimated performances of AGATA at E,= 1 MeV, compared to those of an ideal shell of
HPGe and those of EUROBALL; €, is the photo-peak efficiency and P/T is the peak to total ratio.
These quantities were calculated taking into account the number of vy-rays emitted in coincidence

(i.e y-ray multiplicity, M,). Taken form [84].

Another important aspect of the AGATA array is its capability to identify the direc-
tion of the incident y-ray, with a precision close to 1°. This provides an improvement for
the energy resolution for the radiation emitted by recoiling nuclei, which is affected by

the Doppler effect.

Figure 2.3: Computer aided design images of the tiling of the sphere (left) and the 180 crystal

configuration (right). The cryostats and the detector encapsulation are not shown. Taken from [83]

2.2.2 Segmented detectors

In order to achieve a large tracking efficiency, one should have a 5 mm precision in the
determination of 1 MeV ~-ray interaction point in the crystal. This corresponds to an
effective granularity that is impossible to obtained with a physical segmentation of the

crystal. However, using an electronic segmentation and using a Pulse Shape Algorithm



Figure 2.4: On the left, picture of an AGATA triple cluster. On the right, a triple cluster of the
AGATA Demonstrator

method (PSA), it is possible to achieve this accuracy.

The AGATA detector is composed by HPGe crystals in a semi-coaxial geometry, di-
vided in 36 segments. The crystals are 90 mm long and with a diameter of 80 mm; the
weight of a single crystal is around 2 kg. All crystals are n-type semi-conductors with an

impurity concentration of around 0.4 - 1.8 10'° cm 3.

The crystals are encapsulated hermetically in a alloy capsule (with a thickness of 0.8
mm). The sector-wise segmentation goes through the middle of each hexagonal side,
the longitudinal segmentation forms rings of varying thickness, optimised for a uniform
distribution of the gamma-ray interactions. Because of their complexity and the need of
packing them very close to each other, these detectors use the encapsulation technology
developed for the clusters of EUROBALL.

In the single crystal there are 37 wires (36 for the segments + 1 central contact) passing
very close to each other (the segment thickness is ~ 2cm, see Fig.2.5), therefore a good
electrostatic shielding is necessary for each channel. The central contact, which is used

to apply the low voltage signal in the crystal has a ceramic shielding.

As already noted, the AGATA array is organized in triple clusters. All three crystals
of a cluster are placed in a unique cryostat cooled at a temperature of 90 K with a liquid
nitrogen system. The pre-amplifiers for all segment and core signals are also cooled to
130 K; even though the power dissipated by each pre-amplifier is rather small, the sum

of all 111 channels in a triple-cluster builds up to ~2.3 W.
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(a) crystal geometry

(b) segmented crystal

Figure 2.5: Drawing of the three AGATA crystal geometries. The AGATA triple cluster detector
combines the three different crystal shapes. The side view (lower right) shows the position of the
segmentation lines. All dimensions are given in mm. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.) Taken form [83]

2.2.3 Digital electronics and Pulse Shape Analysis (PSA)

The electronic signal generated by a +y ray that interacts in the crystal has a shape that

depends on the interaction position. Therefore, in principle, one can extract positional



informations studying the shape of the acquired signals. This is the core idea of the Pulse
Shape Analysis (PSA) technique.

The Pulse Shape Analysis technique requires that the shape of each signal in the
detector is recorded and processed digitally. Therefore, for each crystal, 37 signals (36
segments + central electrode) are digitalised at 100 MHz after the pre-amplifier by a fast
ADC. The digitalized signal provide all informations (energy, time and position) about
the interaction of each v ray. Digital processing allows to use filters that have no analogic
counterpart such as the Moving Window Deconvolution algorithm [88], which allows
to reconstruct the original charge collection by removing the effect of the pre-amplifier
response. A good energy resolution can be achieved with shorter shaping time; in this
way the array is able to sustain a counting rate per detector 5 times higher than the
“traditional” apparatuses (50 kHz per detector instead of 10 kHz).

As explain above, the tracking algorithm need a precise position information of the
interacting y-ray (maximum 5 mm). The PSA techniques provide the requested preci-
sion.

In general, the PSA technique is based on the comparison between the digitalized
signals and a reference sample of signals. Each signal of the sample corresponds to a
defined interaction point. For AGATA, the PSA has 37 signals (S; (£, t)) as input, coming
from each segment of the crystal. Since the detector response is linear, S;(E,t) ca be
written as a superposition of signals corresponding to a single interaction S; (z;, v;, 2, t),

weighted on the deposited energy in the crystal £;:

N

i=1
where N is the number of interaction points in the segment and E; is the total de-

posited enrgy in the segment. If N = 1 the equation is reduced to

The solution of this equation provides the position (z;, y;, z;), which reproduce better
the detected signal.

In order to achieve the request precision, the PSA is apply not only in the segment
where the interaction took place, but also to the adjacent ones where a transient signal
is generated. In Fig.2.6, the shapes acquired in different segments of the crystals (blue

lines) are comparing with the reference signals (red line).
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Figure 2.6: Average (thick red line) and all constituent (thin blue lines) pulse shapes for a typical
interaction in segment c3. The signal induced in the core and in the close segments b3, c2, c4 and

d3 are also shown. Taken from [83].

It is worth to be noted that the PSA efficiency depends strongly on the quality of the
reference sample. Up to now, a precise experimental sample is not available. However,
using the PSA in AGATA one can have 1 deg precision in the interaction point. Such a
precision allows a good Doppler correction.

Thanks to the position resolution, a precise Doppler correction can be made. Indeed,
the limit of the Doppler correction is the uncertainty in the position determination that
originates a width broadening of the peak in the energy spectrum (the so-called Doppler
broadening). The performance of AGATA Demonstrator for the Doppler correction was
tested at 15.1 MeV, with a in-flight y ray, coming from the reaction d(*!B,ny)'2C [89]. An
energy resolution of about 119 keV was obtained after Doppler correction. It is worth
to be noted that the energy resolution obtained is worst than the expected trend (see
Fig.2.10); the reason is that the 15.1 MeV 7 ray is emitted in flight.

In Fig.2.7 is shown the in-flight y-ray energy spectrum without the Doppler correc-

tion (dots), with the Doppler correction and considering the center of the crystal as po-
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Figure 2.7: Gamma-ray spectra acquired during the in-beam test, displayed in the region around
15MeV. The spectrum without Doppler correction (dashed black line)is compared to:(i)the spec-
trum obtained using only the central position of segments(thin black line)and(ii)the spectrum ob-

tained using the (thin gray line). Taken from [89]

sition (black line) and, finally, considering the position obtained with a PSA technique
(red line).

2.2.4 Tracking algorithm

The ~ radiation interacts in the material in three different modes [90], as illustrated is Fig
2.13:

o photo-electric effect: the radiation is completely adsorbed by the material in a sin-

gle hit. This is the dominant process up to 0.3 MeV.

o Compton effect: the radiation losses a part of its energy and it scatters in a precise

direction. This is the dominant process in a energy range between 0.3 - 3 MeV.

e Pair production: Owing to the interaction with the atomic nucleus of the material,
the  ray annihilates in a pair e~ /e™. e™ annihilates emitting two v rays of 511 keV

in opposite direction. This the dominant process for energy grater than 3 MeV.



Since the y-ray interaction is a stochastic process, a v ray has a certain probability to
interact in a material with one of these three processes. The probability, depends mainly

on the y-ray energy and the charge of the material Z.
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Figure 2.8: The relevant y-ray interaction mechanisms and the features exploited by the tracking

algorithms. Taken from [84].

Typically, the distance between two consecutive interactions from the same v ray
is around 1 cm or less. The time resolution of the detector is some ns, therefore all
consecutive interactions are simultaneous for the detector.

The scope of the tracking algorithm is to reorganize temporally the interactions and
to reconstruct the y-ray path in the crystal. Two main typologies of algorithms exist:
tracking forward [84] and backtracking [91].

In the tracking forward algorithm the first step is the identification of clusters of in-
teraction points that may belong to a single y-ray. Looking at the forward peaking of
Compton scattering cross-section, clusters are identified as a set of interaction points
with an angular distance < 6, between each other (link algorithm) or with respect to a
given point (leader algorithm). Secondly, each cluster is evaluated to determine whether
it contains all the interaction points belonging to a single gamma-ray with the following

criteria:

e Do the interaction points satisfy the Compton scattering formula? In this case,
the tracking algorithm uses the angle-energy relation of Compton scattering to de-
termine the most likely scattering sequence from the position and energy of the

interaction points. The cluster is defined good using a x square procedure.



o If the cluster is composed by a single interaction point, does the energy satisfy
photoelectric conditions? The algorithm evaluates if the mean free path of the
radiation with the deposited energy is compatible with a photoelectric process.
A monte-Carlo approach is used to decide if to consider the interaction point as
an actual photoelectric event or if to discard it as an isolated Compton scattering

event.

e Do the interaction points correspond to a pair production event? If there are two
gamma-rays of energy equal to 511 keV and an interaction point in the middle with
energy greater than 1022 keV, the three energies are summed and considered as a

single gamma-ray.

This technique allows a reconstruction of the total energy deposited in the crystal for
a y-ray and it is an alternative to the standard Add-Back technique

The clusters which do not satisfy any of the above criteria are rejected, thus improv-
ing the P/T (peak to total) ratio of the spectra without the need for Compton suppression
shields. If a large solid angle is covered with segmented germanium detectors, the com-
bination of PSA and gamma-ray tracking allows for a very high photo-peak efficiency
together with a good P/T ratio.

The backtracking algorithm is based on the fact that the photoelectric energy depo-
sition is almost independent from the incident energy and is peaked around 100-250
keV; it assumes that the interaction points within a given deposited energy interval
Enin < E; < B4, are the last interaction (in time) of a fully absorbed gamma-ray;
the algorithm then finds the closest interaction to the photoelectric one, it computes the
scattering angle using the incident and the scattered energies and, finally, it searches
for the other previous interactions along this direction; such process is iterated until the
direction points directly to the target. This algorithm, however, was found to be less
efficient and showed a worse P/T in the reconstructed spectra, and therefore it was not

used for our analysis.

2.2.5 AGATA Demonstrator performances

The energy resolution is one of the main features of any HPGe detector. The response of
AGATA was tested in an energy range between 2 and 9 MeV using an Am-Be-Fe source,
as reported in Ref. [89]. In Fig.2.10, the energy resolution is plotted and one can see that
the experimental data follow the expected E~'/2 trend (indicated by the black dashed
line). The FWHM of the highest-energy gamma line (i.e. 9297.8 keV) is 6.1 keV in the
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Figure 2.9: Plot of all interaction points in a 47 HPGe shell from a simulated event with 30 gammas
of 1.3 MeV; red circles represent clusters which are identify as belonging to a single gamma-ray,

while green squares represent clusters that are discarded by the tracking

case of the single crystal with the best performances, and 7.6 keV using an Add-Back
procedure. Another important feature of a HPGe detector is the linearity of its response
along to the deposited energy. Percent deviation of the experimental data from tabulated
energies is reported in Fig.2.10 as a function of y-ray energy. The deviation is defined as
the difference between measured and tabulated energy divided by measured energy. As
expected data corresponding to gamma rays emitted in-flight show larger error bars. It
is found that the total deviations from ideal linearity are lower than 0.1% in the energy
range 2 — 15 MeV.

The other fundamental property of a detector is the efficiency in the detection pro-
cess. The detector efficiency is defined as the total photo-peak absorption probability
over the 47 solid angle. In the experiment the efficiency can depend on many factors:
the energy of the y-ray detected, the distance of the detector, the number of y-ray emit-

ted in the reaction (i.e. y-ray multiplicity), the recoil nucleus velocity and, in the case



0.2

-~ 0.18 A O Single Crystal
5 .
'qg 0.16 @3“ nmmm Expected Trend
[ %

0.14
é (tﬁé A Add-back
>, 0.12 @,
(o)) AN
e 0.1
: - ....
i é@ s
© 006 @
(]
o

0.04

0 2000 4000 6000 8000 10000

Energy (keV)

Figure 2.10: Relative energy resolution of the AGATA detectors is given for the Am-Be—Fe source
data.The data for the best performing single detector are shown by empty black circles. The black
triangles represent instead the energy resolution for the add-back procedure,performed among all
crystals that fired in each event.The experimental data follow the expected E'/? trend (indicated

by the dashed black line. Taken from [89].

of AGATA Demonstrator, the tracking algorithm. The reference position of AGATA
Demonstrator is placed at 23.5 cm from the target, The simulated photo-peak efficiency

as a function of the shift towards the geometrical centre and the y-ray multiplicity is
shown in Fig.2.12 [85].
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Figure 2.11: Deviation of the measured energies from the tabulated energy for each gamma line
of the Am—Be-Fe source and for the 4.4 and 15.1 MeV gammas from the in-beam test. Taken
from [89].
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Figure 2.12: Photo-peak efficiency of the AGATA Demonstrator for 1 MeV photons emitted from

a point source at rest. Taken from [85]



2.3 LaBr;:Ce

The Cerium doped Lanthanum bromide (LaBr;:Ce) crystal is an inorganic scintallator,
made available to the scientific community only few years ago. The excellent properties
of this new material has generated a large interest in the scientific community. Indeed,
thanks to very good intrinsic time (< 1 ns), energy resolution (=~ 3% at 661 keV) and
the good detection efficiency, LaBr;:Ce detectors can provide at the same time clean
spectroscopic information from a few ten keV up to tens of MeV and an excellent time
resolution which allows a good timing measurement and an efficient y-n discrimina-
tion. Moreover, thanks to the availability of crystals in volumes larger than 1000 cc, a
LaBrs:Ce-based array can operate as an extremely efficient setup in y-ray experiments,
as the study of Giant Resonance states or experiments with radioactive beams. The main
intrinsic features of LaBr3:Ce scintillators are summarized in Tab.2.3 and compared with

those of other scintillators (see also Fig.2.13).

The properties of LaBrs:Ce were largely investigated in the recent years. An intense
R&D activity was conducted in Milano group to test the crystal performances and to
find the best possible detector configuration (photo-tube, read-out electronics, acquisi-

tion system, etc..) [92,93].

In the experiment described in this thesis 6 large LaBrs:Ce (3.5” x 8”) and 1 smaller

LaBrs:Ce (3” x 3”) were used and placed at 25 cm from the target.

Scintillator  Light Yield (103fotoni/MeV) Decay Times(ns) Density(g/cm?)

Nal:Tl 38 250 3.67
LaCl3:Ce 49 28 3.85
LaBr;:Ce 63 16 5.08

BaF, 1.8 0.7 4.88
BGO 9 300 7.13

Table 2.3: Comparison between the properties of some scintillators used in nuclear physics. Light
Yield is the number of photons emitted per MeV deposited in the crystal, which is related to the
energy resolution of the detector. Decay Time is the time needed to emit photons and it is related

to the time resolution.
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Figure 2.13: Comparison of the °°Co energy spectrum measured with the 1” x 1” LaBrz:Ce with

those measured with a Nal and with a BaF; detector. Taken from [92].
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Figure 2.14: The energy spectrum measured at the ATOMKI Institute with a 17.6 MeV mono-
chromatic y rays. Taken from [93].
2.3.1 LaBr;:Ce performances

The energy response of a large volume LaBrz detector was investigated from few keV

up to 20 MeV [93]. The energy resolution is a crucial factor in case of high-energy ~-ray



measurements and LaBrs:Ce allows to have a clear separation of the full energy peak
and the first escape peak up to 20 - 30 MeV (see Fig.2.14).

In Figure is plotted the energy resolution of a detector as a function of the y-ray en-
ergy, using a digital acquisition system. As shown in Fig.2.15, the energy resolution trend
deviates from the standard E~'/2 curve (dashed line), showing that the energy resolu-
tion saturates in the detection of high-energy ~ rays. The solid curve take into account
even the saturation phenomenon, introducing another term in the standard formula for

the energy resolution:

ER = +/a+bE + cE2 2.3)

The a term represents the noise contribution unrelated to the measured energy, b is
the contribution for the statistical noise while c is the saturation term.

The absolute full energy peak efficiency of the y-ray detection was investigated with
a 60Co source (two 7-rays in coincidence), using the ‘sum peak’ technique. This method
provide the absolute photo-peak efficiency at 1173 keV and 1332 keV. The results are
in very good agreement with those obtained using the simulation code GEANT3. In

Fig.2.16 the comparison between the experimental data and the simulation is shown.



= 100;
[} B
=, L
= I
T I
=
L L
©
g
> 10
o L
GJ C
= L
T e
1 1 L1l 1 Ll 1 L1l 1 Lol I
2 20 200 2000 20000

v-ray energy [keV]

Figure 2.15: The FWHM energy resolution in the energy range between 5keV and 9 MeV measured
with the a 3.5” x 8” LaBr3:Ce detector using digital electronics. The dashed line represent the
best trend using the “classic’ FWHM formula (FWHM = \f(a + bE)) which takes into account the
electronic noise (a) and the statistical contribution (b). while the solid line takes into account also
a third contribution which causes the energy resolution saturation (FWHM = \/(a + bE + cE?)).
Taken from [93].
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2.4 Data AcQuisition (DAQ) system

Each of the 36 signals coming from a crystal of AGATA was digitalized using a sampling
frequency of 100 MHz at 14 bits precision. For each segment, a pulse trace of 60 samples
is recorded. In order to have an on-line analysis of the acquired data, the PSA needs to
work on the single trance in real time and the tracking algorithm must reconstruct the
detected  rays.

Therefore, the Data Acquisition software (DAQ) has to handle a large amount of data,
control a computing farm for the PSA and tracking algorithms, and coordinate the flow
of information between the digitizers, the computing farm, and the disk server where all
the data are written. All of this is performed by a NARVAL-based DAQ software [94].

The ancillar detectors (as Hector™) are controlled by an independent data acquisition
system, which works in a KMAX framework [95], which communicates with NARVAL
using a TPC/IP protocol.

In NARVAL every actions is operated by an actor, which is a process running on a

Linux machine. Three different actors exist:

o producer: they interface with the hardware and read out the data;

o intermediary: they perform operations on the data, receiving input and sending

output from/to one or more other actors;

e consumer: they can only receive input from the other actors, and store the data to
disk.

For NARVAL each crystal of AGATA is considered as a separate entity and the whole
detector as a set of data synchronized between each other. The data synchronization is
guaranteed by the Global Trigger and Synchronization (GTS) hardware using a common
digital clock.

For each AGATA detector there is a producer actor reading the pulse traces from the
front-end electronics; the traces are sent (together with the timestamp information) to an
intermediary that performs the PSA and to a consumer that writes them to disk; the PSA
data from all detectors are sent to an intermediary that acts as event builder, matching
the data from different detectors through the timestamp information.

For the ancillary detectors (as HECTOR™ in this analysis), there is a producer actor
that receives the data from the KMAX acquisition, kept synchronized to the GTS via
the AGAVA (AGATA Ancillary VME Adapter) module. The producer sends the VME



data to a consumer that writes them to disk and to an intermediary that decodes the
VME words and sends only the actual data words to the event builder, discarding VME
header and trailer words. The builder then matches the ancillary data to the AGATA
data and sends the event to another intermediary that performs the online tracking, for
AGATA Demonstrator only.

2.4.1 Trigger conditions and event selection

When a ~-ray is detected in an AGATA crystal, a trigger request is formed and sent
via the GTS to the trigger processor, which can validate the request, meaning that all
the traces for the event are acquired, written and processed, or reject it. This software
trigger can be used to make multiplicity requirements on the AGATA crystals, or to make

a coincidence between AGATA and the ancillary detectors via the AGAVA module.

OR AGATA
OR HECTOR*

|_orHECTOR* |—— ORAGATA

HECTOR*
Multiplicity>2

Figure 2.17: Schematic representation of the trigger conditions in the data acquisition system of

the experiment.

This method, however, was not suitable for our experiment due to the complexity of
our trigger condition. Therefore, we used standard NIM electronics to build the master
gate, which was sent via AGAVA as a trigger request, and had the software trigger vali-
date it. The master gate is schematically described in Fig.2.17 and is the logical “OR” of

four conditions:
e coincidence between AGATA detector and HECTOR™ (marker AGATA& LaBr)

e Multiplicity detected larger or equal than two in HECTOR™ (marker LaBrM2)



e the AGATA scaled-down single (marker AGATA single)
e the HECTOR™ scaled-down single (marker LaBr single)

the logic signal "OR” of AGATA detector was made using the analogical output of
each AGATA detector, sent to a standard CFD modules and then to a logical OR. The
logical signal “OR” of HECTOR™ and the logical signal of the multiplicity were provided
by the BaFPro module. In order to separate the different classes of event, four channels

of the TDCs were used as markers as shown in Fig.2.18.
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Figure 2.18: marker spectra for different trigger conditions. the larger part of the data is concen-

trated in narrow and separated peak.

Using the marker information, in the sort code we identified four classes of events:

o AGATA event: event with the coincidence between AGATA detector and HECTORT,

it characterized by the follow conditions in the sort:

— marker AGATA& LaBr> 0;
— marker AGATA single = 0;

e LaBr;:Ce event: event with the coincidence between two LaBr;:Ce and without

any coincidence with AGATA, it characterized by the follow conditions in the sort:

— marker LaBrM2> 0;
— marker marker AGATA& LaBr = 0;

- marker LaBr single = 0;



e AGATA single event: event with only AGATA scaled-down single

e LaBrs:Ce single event: event with only LaBr;:Ce scaled-down single.

(a) 49Ca +40Ca

Trigger # events [%] Events # events [%]
Agata& LaBr 84% Agata 81%
LaBrM2 20% LaBrs:Ce 11%
Agata single 4.3% Agata single 4.3%
LaBr single 1.8% LaBrs;:Ce single 1.8%
(b) 37Cl + 44Ca
Trigger # events [%] Events # events [%]
Agata& LaBr 83% Agata 76%
LaBrM2 21% LaBr;:Ce 12%
Agata single 5% Agata single 1.8%
LaBr single 1.8% LaBr;:Ce single 5%

Table 2.4: number of events for each trigger and for each class of event is reported. An acquired
event more than one marker could be activated; this is the reason because the sum of the trigger

events is larger than 100%.

In Table 2.4 the number of events for each trigger and for each class of event is re-
ported. It is worth to note that for an acquired event more than one marker could be
activated; this is the reason because the sum of the trigger events in Table 2.4 is larger
than 100%. A half of the events with trigger LaBrM2 are detected also with AGATA and
then are considered as Agata events in the sort code.

A small part of the total events is rejected during the sort code because the time
information or the energy information were corrupted; this is the reason because the

sum of events is not 100%.






CHAPTER 3

Experimental setup: data analysis

This chapter reports the first steps of the data analysis: the performances of the AGATA
Demonstrator and HECTOR ™ were studied (energy resolution, linearity, time resolution)
as well as their response functions. All these informations were used in the next step of
the analysis, where the physical informations were extracted.

For testing the performances of the detectors and to have a high-energy calibration
point, a 1'B + D = 3C* (Epeam ~ 20 MeV) fusion reaction was also studied. Indeed, 13C*
emitts a 15.1 MeV ~ ray in flight. Therefore, this reaction can be used for testing the
detector response to a high-energy vy-ray (at an energy similar to the y-ray emitted by
the GDR).

Unfortunately, for a problem in the acquisition system during the experiment, only

the AGATA Demonstrator data were available for this reaction.

3.1 AGATA Demonstrator

As described in Chapter 2, the performances of the AGATA Demonstrator are based on
the principles of PSA and ~-ray tracking. During the experiment, these operations are
performed in real time by the NARVAL Data AcQuisition (DAQ) system, but they also
can be performed again after the experiment with a C++ emulator of NARVAL. This
process is possible because the DAQ writes a list-mode file with the digitalized signals
and the time informations of each crystal of AGATA.

The NARVAL emulator can process all files, performing again the PSA and merging
the informations from different crystals. This is the so-called replay procedure, because,
in a sense, it is a repetition of the experiment. The data replay is divided in two phases:

in the first phase, the PSA is made and all the informations are written on the disk; in
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the second phase, the y-ray tracking is implemented. The PSA is a very low process
and it occupies a lot of memory and CPU: 6 computers worked in parallel for 1 week to
perform the PSA of 180 hours of measurement. On the other hand, the y-ray tracking is
a fast process and it can be easily repeated changing the algorithm parameters.

After the PSA and the v-ray tracking the data are saved in a ROOT tree structure
[96], containing, for each event, all the relevant informations (y-ray energy, position and

time), provided by each detector. A sort code was developed for the analysis of the data.

3.1.1 Time resolution

For each vy-ray reconstructed, a timestamp is associated by the tracking algorithm. This is
the measurement of the absolute time from the start of the GTS clock in 10 ns steps. A
more precise information is provided by the PSA, which calculates the starting point of
the signal using a linear interpolation.

The sum of these two values gives the detection time of the + ray relative to the start
time of the GTS. To obtain an useful physical information, however, the detection time in
AGATA must be correlated with the detection time in the ancillary detectors (LaBrs:Ce
detectors in this experiment). The latter time information is given by the GTS timestamp
of the ancillary, in step of 10 ns; a better precision is obtained by adding to the timestamp
the so-called “phase shift”, which is acquired by one channel of the TDCs and measures
when the VME master gate was opened relative to the GTS clock.

Therefore, the time associated to an event is defined as:

ty =Tacara —Tacava +Tpsa — Tphaseshift (3.1)

where T'agara and Tagav a are the AGATA timestamp and the ancillary timestamp
respectively. In Fig. 3.1, it is plotted the AGATA time spectrum for the reaction *°Ca +
40Ca obtained using the Eq.3.1. Several structures are visible. They correspond to the
different trigger conditions in the acquisition process (see Fig.3.2).

As already noted in the previous chapter, the larger part of the data are events related
to a coincidence between AGATA Demonstrator and HECTOR' (AGATA&LaBr event,
as defined in Chapter 2). The time distribution associated to these events has a FWHM of
~ 25 ns. This time resolution is not good enough to distinguish temporally the detection

of neutrons or v in the array.
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Figure 3.1: Time spectrum of AGATA Demonstrator obtained using Eq.3.1, without any condition

in the sort. Several structure are visible.
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Figure 3.2: Time spectra of AGATA correspond to different trigger conditions. In this way, it is

clear the origin of the structure in Fig 3.1.



3.1.2 Energy resolution and linearity

The energy calibration of AGATA was performed during the PSA. The calibration coeffi-
cients were calculated using a %°Co source (1173 keV and 1332 keV). Since the y-rays are
emitted in flight, a Doppler correction is necessary to have the y-ray energy spectrum in
the Center of Mass (CM) system.

The relation between the energy detected (Er 4g) and the energy emitted (Ecy) is:

(1 — Bcosb)
Eeng = Epap—2"27)
oM LAB N

where 8 = v \ ¢ is the velocity of the nucleus, while § is the angle between the nu-

(3.2)

cleus direction (which can be considered the same as the beam direction) and the ~-ray
emitted. The latter quantity can be obtained with a good precision using the position
information of AGATA Detector as explained in Chapter 2.

Using Eq. 3.2, therefore, it is possible to recalibrate the spectrum, and using the CM
reference system. The angular uncertainty (A6) of the y-ray emitted introduce a bias in

the energy calculation (A E), which is responsible to the Doppler broadening, equal to:

AE = 2Ec 1 8sin A0 (3.3)

Thanks to the PSA, however, the position resolution of the y-ray detected in AGATA
(namely A#) is good and thus AE is expected to remain small, as Ecar,0,A0 are known.

In Eq.3.2 only the  value remains to determine. This value can be obtained by the
experimental data searching for the value which maximizes the intensity and minimizes
the width (i.e. smaller Doppler broadening) of a low-energy transition peak in the energy
spectrum. In the case of ''B + D we we can only use the 15.1 MeV as reference peak,
because no low-energy transitions were present. Another way to determine the 5 value
is using a statistical code.

In the Table 4.2 the experimental values are compared with the values obtained using
the statistical code PACE4. In general S x p are smaller than B¢7)s. A possible explana-
tion is that Sgras is the v/c value when the compound nucleus is formed, while Sgxp is
the value at the moment of the vy decay.

In the analysis, the 8 value obtained from the experimental data was used in the sort
code to perform the Doppler correction

Fig.3.3 shows the !B + D spectrum before and after the Doppler correction. Without
the Doppler correction (black line) only a bump is visible. On the other hand, thanks to



reaction  Bsiv Bexp
0Ca +4Ca 0.042 0.038
37Cl1+%Ca 0.035 0.028
HUB+D 0.05  0.046

Table 3.1: Ssra and Srx p for all reactions are reported. The simulated values were obtained using
the PACE4 code, while the experimental value were obtained studying the low-energy peaks of

the reactions as explained in the text.

the Doppler correction (red line) and using the PSA technique, the photo-peak is visible
(FWHM~130 keV)and it is located at the correct energy (~15.1 MeV), the first-escape
peak is clearly visible. The width of the 15.1 MeV peak is in good agreement with that
reported in Ref. [89]
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Figure 3.3: ''B + D spectrum before and after the Doppler correction. The black line was obtained
without the Doppler correction. The red line was obtained performing the Doppler correction.

The FWHM = 130 keV of the photo-peak is in good agreement with that found in Ref.

The low-energy part of the AGATA spectrum is characterized by the last v-ray tran-
sitions of the residual nuclei populated in the CN particle decay. In Fig. 3.4 (°Ca +
40Ca reaction) and Fig. 3.5 (3"Cl + %4Ca reaction) the low-energy spectrum of AGATA
is shown before (black line) and after (red line) the Doppler correction. Thanks to the

Doppler correction all peaks transitions are clearly visible, separated and placed in the
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Figure 3.4: Energy spectrum of AGATA demonstrator in the reaction *°Ca + *°Ca. The black line

was obtained without the Doppler correction. The red line was obtained performing the Doppler

correction.
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Figure 3.5: Energy spectrum of AGATA demonstrator in the reaction *’Cl + **Ca.The black line
was obtained without the Doppler correction. The red line was obtained performing the Doppler

correction.



right energy position. This allows to recognise all the transitions and to identify the
residual nuclei populated. As we will discuss in the next chapter, this information is
used in the next steps of the analysis for checking the validity of the statistical model
calculations.

In Fig. 3.6 and 3.7 the energy resolution (defined as FWHM/E,) trend for both re-
actions is shown. It is evident that the measured energy resolution follow the expected
1/AFE trend, corresponding to the red solid curve in the plots.

In Fig.3.8 the deviation between measured ~-ray energies (E;,cqsureqd) and the tab-
ulated values is shown (Eiqpuiated, taken from Ref.). This quantity was calculated as

(Erneasured-Etabulated)/ Btapuiateda and the values are all less than 1%.
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Figure 3.6: Energy resolution trend obtained in the reaction “°Ca +°Ca studying the much more

intense low-energy ~ transitions. The experimental data follow the expected E~'/2 trend (red line).
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Figure 3.7: Energy resolution trend obtained in the reaction *"Cl +**Ca studying the much more

intense low-energy + transitions. The experimental data follow the expected E~*/? trend (red line).
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Figure 3.8: Deviation between measured -ray energy and the tabulated values is shown. The dots

are related to *°Ca + *°Ca (black dots), *"Cl + **Ca (red dots) and ''B + D (green dot) reaction.



3.2 HECTOR™"

3.2.1 Time resolution

For each LaBr3:Ce detector a time spectrum was acquired during the experiment. The
time information was provided to a TDC (Time to Digital Converter) by a CFD (Constant
Fraction Discriminator). All TDC had as START signal the Master-Gate signal (as defined
in Chapter 2), while as STOP signal they had the CFD signal (after a delay). The time
calibration was performed using a %°Co source.

In Fig.3.9, it is shown the time spectrum of one LaBr3:Ce detector without any con-
dition on the data. It is clear that the spectrum is composed by the superposition of
several structures, which can be easily identify adding the trigger conditions in the sort
procedure (as shown in Fig.3.10).

The main structure of the spectrum (FWHM=~20 ns) was originated by the events
with the AGATA& LABR trigger condition (the width is so large because the START
signal came form the AGATA detector). The narrow peaks (FWHM~2 ns), at around
75 ns and 85 ns, were originated by the LaBrM2 trigger condition. These events were
characterized by an optimum time resolution. The spike presents at 70 ns is the auto-

coincidence peak.
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Figure 3.9: Time spectrum of one LaBrs:Ce obtained without any condition in the sort. Several

structure are visible.
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Figure 3.10: Time spectra of one LaBr3:Ce correspond to different trigger conditions. In this way,

it is clear the origin of the structure in Fig 3.1.

3.2.2 Energy resolution and linearity

LaBr3:Ce detectors are calibrated using v-ray sources (°°Co, 137Cs, 133Ba, 188Y) and the
data acquisition was performed before and after the experiment. Thanks to this dou-
ble check, it was possible to verify that the detectors remained stable along to all the
experiment.

The Doppler correction was performed in order to have the energy spectra in the
center of mass system. The detector positions were measured before the experiment,
while the 5 value was the same as the value found with AGATA. Fig.3.11 and Fig.3.12
show the spectra before and after Doppler correction. The energy resolution follows the
expected E~1/2 trend (see Fig.3.13 and Fig.3.14) and the deviation remain smaller than
1% (see Fig.3.15).
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Figure 3.11: Energy spectrum of all LaBrs:Ce in the reaction “°Ca + “°Ca. The black line was

obtained without the Doppler correction. The red line was obtained performing the Doppler cor-

rection.
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Figure 3.12: Energy spectrum of all LaBrs:Ce in the reaction *"Cl + **Ca.The black line was ob-
tained without the Doppler correction. The red line was obtained performing the Doppler correc-

tion.
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Figure 3.13: Energy resolution trend obtained in the reaction 40Ca +%9Ca studying the much more

intense low-energy + transitions. The experimental data follow the expected E~*/? trend (red line).
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Figure 3.14: Energy resolution trend obtained in the reaction *”Cl +**Ca studying the much more

intense low-energy ~ transitions. The experimental data follow the expected E~Y/2 trend (red line).
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Figure 3.15: Deviation between measured v-ray energy and the tabulated values is shown. The

dots are related to *°Ca + °Ca (black dots), 3"Cl + “*Ca (red dots) reaction.



3.3 Multiplicity response

As explained in Chapter 1, in a fusion reaction, the CN spin distribution can be mea-
sured county the number of y-rays emitted in the decay, the so-called y-ray multiplicity
(M,). Obviously, the number of y-rays measured in the apparatus (the so-called y-ray
fold, F.,) is always less than M., because of the efficiency of the apparatus. Different F,,
correspond to a different M., distribution and thus to a different CN spin distribution.
Since the spin distribution is a fundamental input for the statistical model used in the
analysis, it is important to know the conversion between F., and M, of the apparatus.
The relation between M, and F,, was calculated using a simple recursive algorithm
proposed by Holm [98]. This algorithm calculates the probability P(F’,, M,) of measur-
ing F., v-rays using N detectors and with a cascade of M, y-rays. As input, it is used the
experimentally pre-determined total efficiency 2 of the apparatus and the intra-detector

scattering probability &:

P(Fy, M,) = apP(Fy, My — 1) + bp P(Fy — 1, M, — 1) + cp P(Fy — 2, M, — 1) (3.4)

with:

L

ar =1 (N = F)o(l + €5 22) (35)
br = (N = 4 (1 — e~ (3.6)
er = (N = By + 2oy (3.7)

3.8)

P(F,,M,)=0for F, <0 or M, <0, P(0,0)=0. The efficiency of each detector of the
apparatus is w, i.e. Nw = 2. In our case we neglected the scattering probability &, i.e. £
=0.

P(F,, M.,) was calculated for a y-ray energy of ~1.2 MeV (which is the y-transition
energy of the ®°Co source). The efficiencies of AGATA Demonstrator and HECTOR™
were calculated in two ways: with a Monte-Carlo simulation (using GEANT4 libraries
[97]) and with %°Co source.

The latter method consisted in using AGATA Demonstrator as trigger and the events
are considered only if the 1.33 MeV v ray from the %°Co source results in a full energy

peak, ensuring that exactly one gamma-ray of 1.17 MeV is presented in the array.



Experiment Simulation
AGATA  HECTORT AGATA  HECTOR*
€ph 3% 2% 4% 2%
Eriv 7% 5% 9% 4%

Table 3.2: Values of photo-peak efficiency (e,1) and total efficiency (e:,) are reported in the table
for both detectors. In the left side of the table the experimental value of the efficiencies are re-
ported, while in the right side the values obtained with simulations are reported. See the text for

the details.
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Figure 3.16: Simulated and experimental spectra for a 1.1 MeV ~-ray are shown. The experimental

spectrum (obtained as explained in the text) has a visible background contribution at low energy.

In addition, the total number of measured 1.17 MeV ~ rays is equal to the area of the
1.33 MeV full energy peak (we assumed that the efficiency for a y ray of 1.17 MeV and
1.3 MeV could be the same). This trick is necessary when one does not know the activity
of the source.

The results obtained with this method are reported in Table 3.2 in comparison with
the simulated values. In the case of LaBrs : Ce one should remember the presence of

low-energy background: as shown in Fig.3.16, there is a difference in the low-energy



part of the spectrum between the simulated spectrum and the experimental spectrum.
After a background subtraction the total efficiency value that we obtained is ~ 5%, which
is in agreement with the simulation.

In the analysis of this experiment, the experimental efficiency of AGATA Demon-
strator was used as input of Formula 3.4; on the other hand the simulated efficiency of
HECTORT was used in the calculations.

The P(F,, M,) distributions are shown in Fig.3.17 (for AGATA) and in Fig.3.18 (for
HECTORT). To be noted that the granularity of the two detectors is very different: 12
HpGe detectors in AGATA and 7 detectors in HECTOR™.
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Figure 3.17: Probability distribution P(F},, M) of triggering F., in AGATA Demonstrator by a cas-
cade of M, y-rays. Three F, conditions are considered. A total efficiency €, = 7% was considered

in the calculations.

Since the detection of a y-ray in AGATA Demonstrator is statistically independent
on the detection of another y-ray in HECTOR™, the probability distribution P(F,, M.)
associated to a trigger condition corresponding to a coincidence between AGATA and
HECTORT™ was obtained multiplying the P(F.,, M,,) of the two detectors. In Fig. 3.19 the

probability distribution for three different trigger conditions is shown.
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Figure 3.19: Probability distribution P(F,, M, ) of triggering a coincidence between AGATA

Demonstrator and HECTOR™ by a cascade of M., y-rays. Three trigger conditions are considered.



3.4 HECTORT response function

The absolute photo-peak efficiency of HECTOR™ array in this configuration is ~2% at
1 MeV, but it is ~0.3% at 15 MeV . The deformation of the y-ray spectrum emitted by
the CN induced by the detection process (i.e. response function) is shown in Fig.3.20. In
order to have a correct comparison between the detected y-ray spectrum and the simu-
lated one, the latter must be folded with the response function of the detector, following
a standard procedure as reported in [99].

For this purpose we simulated the v-ray interaction in the detectors starting from 1
MeV ~ ray up to 32 MeV, obtaining 32 simulated spectra. These spectra were considered
as columns of a 32 x 32 matrix, where each element of the matrix (Ege¢,E+) is the number
of v detected with E,.; energy when a v ray with an energy of E, interacts.

This matrix (called A) represents the response function of the detector. Indeed, if v is
the incoming v ray spectrum and w is the real detected spectrum, it is possible write the

relation:

w=Axv (3.9

where the symbol * represent the vector product. The dashed curve in Fig.3.20 was

obtained using this procedure.
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CHAPTER 4

Results and discussion I

The data analysis was mainly based on three steps: i) the first consists to check that the
statistical model CASCADE [100,101] correctly reproduces the measured residual nuclei
distribution; ii) the second concerns in the statistical model analysis of the 8'Rb ~-ray
spectrum to deduce the GDR parameters; and iii) the last consists in the analysis of the
80Zr spectrum to deduce the isospin mixing as the only free parameter.

As reported in the Chapter 1, the analysis method that we use is based on the as-
sumption that the statistical model parameters used to describe the v decay of 3! Rb and
80Zr have the same features. The conditions that, if fulfilled, guarantee the validity of
this assumption are that the average CN temperature, mass and shape are similar. As a
consequence the GDR parameters used to describe the statistical decay (centroid, width
and strength) will be the same. The condition on mass is satisfied by choosing two CN
with A=81 and 80, respectively, that can be assumed as equal in the description of statis-
tical decay from hot nuclei.

In this Chapter, we will present preliminary calculations showing that the conditions
on temperature and shape are satisfied to a very good extent by the systems we have
chosen, i.e. the GDR parameters of ®'Rb and 8°Zr are expected to be practically the
same.

Since the largest part of the data is characterized by a coincidence between AGATA

and HECTORT, the data analysis was concentrated on this class of events.

4.1 Kinematics of reaction

The internal energy of the CN can be calculated according to Eq. 4.2:

89



Eint(E*) J) =FE - Erot(']) = (41)

Atarget
= taroet g+ Q — Eor(J 4.2
Apro + Atarget ’ Q t( ) ( )

where A is the mass number of nucleus (projectile or target), Epcqm, is the beam energy
corrected for energy loss in the target, Q is the Q-value of the reaction and E,.,.(J) is the
rotational energy after the formation of the CN.

In the discussed experiment the beam energies have been chosen in order to match
Ein: (calculated with Eq. 4.2) after correcting E;,;, for energy loss in the target, as shown
in Tab. 4.2. The beam was delivered by the TANDEM accelerator.

reaction Eiuo MeV)  Ejpss MeV)  t (ug/cm?) Q(MeV) E* (MeV) o (mb)

40Ca + 49Ca 136 7 500 -14 54 500
37Cl + *Ca 95 6 500 2 54 250

Table 4.1: E;; is the energy of the incoming beam, E;oss is the energy loss in the target of thickness
t, calculated with LISE++ code, Q is the Q-value of the reaction calculated with PACE4, E* is the
excitation energy calculated with Eq. 4.2, ¢ is the fusion cross section calculated according to Bass
Model with PACE4 code.

As explained in Chapter 1, the nuclear temperature (T) is a fundamental quantity for
the description of the CN system. Moreover, the GDR width depends on this quantity
and thus it is important to verify if the temperature is the same for both reactions. The

temperature of the CN is defined as:

T(J) B CL(A, Eint7 J)

(4.3)

where E;,, (E*, J) = E*—E,,(J) is the internal energy of the system and a(A, E;y,, J)
is the level density parameter, calculated using the Reisdorf parametrization.

In order to calculate E,.;(.J) and, therefore, the internal energy of the CN, one has
to perform an average on the rotational energy as a function of spin J (the yrast line
displayed in Fig.4.1 in our systems) using the spin distribution as a weight (see Fig.4.2).

In our calculation we have adopted the Rotating Liquid Drop Model yrast line used
within GEMINI++ Statistical Model calculation. Since the CN can be formed at different

angular momenta, it fills different temperatures. For this reason, it is useful to introduce
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Figure 4.1: Yrast-line calculated with the GEMINI++ Statistical Model, using the Lublin-
Strasbourg Liquid Drop (LSD) model.
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Figure 4.2: spin distribution of the fusion cross section for both nuclei.



a mean value of the temperature (T'(.J)), corresponding to the temperature value at the

mean value of the angular momentum distribution (.J). It means that (T'(.J)) = T'((J}).

In Table 4.2 the mean value of the temperature and the angular momentum are re-

ported.

Although the spin distributions are different, the kinematic of the reaction allow to

have similar temperature for both reactions.

CN  ()() (Erot)(MeV) (T)(MeV)
80zr 21 10 2.0
SIRb 15 5 2.1

Table 4.2: mean values of angular momentum (.J), rotational energy (E;.¢) and temperature (T")

are reported.

As explained in the previous chapter, the spin distribution changes with the number
of y-rays detected (F,) in the array (therefore also the rotational energy changes). The
larger part of the acquired events are related to F., = 2 (1 y-ray detected in AGATA and 1
y-ray detected in HECTOR™). For this reason our analysis was concentrated on this class
of events. The spin distributions associated to this fold condition are shown in Fig.4.3.
These spin distributions were obtained using the P(F,, M,) distributions obtained in

the previous chapter.

Since the rotation energy changes with the Fy, the temperature felt by the CN changes
as well. In Table 4.3 the features of this class of events are summarised. Also in this case

the temperature values are similar.

CN  (J)(h) (Erot)(MeV) (T)(MeV)
807y 25 13 1.9
SIRb 17 6 2.1

Table 4.3: mean values of angular momentum (.J)(h), (Ero¢) and temperature of F, = 2 events are

reported.
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Figure 4.3: spin distribution related to F, = 2 events.

4.2 CN particle decay

4.2.1 Neutron emission

The neutrons interact in the crystal via several reactions, which can distort the ~-ray
spectra detected and thus they must be rejected in the analysis, especially when the
physical observable is small (as in the case of the isospin mixing in *°Ca + “°Ca reaction).

The 3Zr nucleus lies in the neutron-deficient region of the Segreé chart, while the
8IRb is in the stability valley (see Fig.4.4). For 8°Zr the neutron separation energy is
so high (~16 MeV) that the neutron emission is strongly inhibited. On the other hand,
81Rb nucleus is far to the proton drip-line and the neutron emission is expected to be
dominant.

The presence of neutrons can be observed in the time spectrum. Indeed, the neutron
events are delayed because the neutrons have a smaller velocity than the v rays.

The neutron contribution is clearly visible in the time spectrum of 37Cl + *4Ca reac-
tion (black line) at ~ 100 ns (the v-ray peak is placed at ~ 90 ns). On the other hand, no

neutron peak is present in the °Ca + 4°Ca time spectrum, as expected.

In Fig.4.6 it is shown the energy spectrum and the associated time spectrum of the



neutrons emitted by 8!Rb. The energy spectrum was obtained using the PACE4 code.
The time spectrum was obtained converting the neutron kinetic energy in the neutron ve-
locity and considering the time needed to a neutron to travel 25 cm (distance of HECTOR™)
respect to a y-ray. The energy distribution is peaked at ~ 3 MeV, while the associated
time distribution is peaked at ~ 10 ns. The latter value is in good agreement with that
we found observing the time spectrum in Fig.4.5.

It is worth to be noted that the absence of neutrons in the reaction means that no neu-
tron background is present. As the evaporated charge particles are stopped by the scat-
tering chamber, we do not expect particles induced background in 8°Zr y-ray spectrum.
This is an important point when one wants to measure a small effect as the ispospin

mixing.
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Figure 4.4: Region of nuclear chart where ®°Zr and ' Rb lies. The color code represent the neutron

separation energy. The large separation energy should inhibit the neutron decay of *°Zr
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Figure 4.5: Time spectra of LaBr3:Ce detector for both reactions, in the case of LaBr events. In

37Cl + **Ca reaction the neutron contribution is clearly visible. On the other hand, in 40Ca +4Ca

reaction there is not evidence of the presence of neutrons.
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Figure 4.6: Top panel: simulated energy spectrum of neutrons emitted by *'Rb in the cooling
process. Bottom panel: time spectrum of neutrons emitted by ®'Rb and detected by HECTOR™.

In the x-axis it is plotted the difference between the detection time of neutrons and ~.



4.2.2 Residues population
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Figure 4.7: The low-energy spectra of the AGATA Demonstrator are shown. The top panel is
related to the ®°Zr decay, while the bottom panel is related to the ®' Rb decay. The circles represent
the transitions of the more populated residues. The spectra were obtained without any conditions

in the sort code.

The compound nucleus emits mainly particles until the the excitation energy remains
above the particle separation energy, then it can decay only via y-ray emission. The
nuclei populated after the particle decay process are called residue nuclei.

The « rays associated to the low-energy transitions of the residue nuclei were de-
tected using the AGATA Demonstrator. These discrete transitions were used to identify
the residue and to extract, using their intensity, the CN populated residue population.

In Fig.4.7 the -ray spectra of the AGATA Demonstrator are shown. The main in-
tense peaks were identified, using the RADWARE archive as reference. The residue
population can be extracted also using the statistical model. The comparison between
the experimental and the simulated population distribution is an excellent tool to check
the validity of the statistical model predictions.

In particular, we have preformed two different checks: i) evaluation of the variation



of the residue population as a function of coincidence fold (and thus for different spin
distribution, as explained in Chapter 3); ii) the evaluation of the residues distribution as
a function of the y-ray energy detected in HECTOR™. In both cases the variation of the
residues population is originated by the change of the phase-space available for particle
emission.

The residue population extracted using the AGATA Demonstrator as a function of
the y-ray energy detected in HECTOR™ is shown in Fig. 4.8. The experimental data
were corrected by the AGATA Demonstrator efficiency. The statistical model calculation
was performed using a Monte-Carlo version of the CASCADE code. In Fig. 4.8 and
Fig.4.9, one can clearly see that the ""Rb residue (3p emission) is strongly populated in
coincidence with a high-energy ~ ray (in the GDR region); on the other hand the "® Kr
residue is manly populated in coincidence with the emission of low-energy ~ rays. This
fact reflects two different regions of the phase space; indeed, gating on an high-energy
~-ray less phase-space is available for particle emission and thus the residue with less
particles emitted is favorite. In general the three most strongly populated residual nuclei
("5Kr, ™Kr and ""Rb) are found to be rather well reproduced by the statistical model.

The variation of the residues population as a function of the F, detected in HECTOR™
and AGATA Demonstrator is shown in Fig. 4.8. The spin distribution used in the statis-
tical model calculation was corrected using the response function calculated in Chapter
3. From Fig. 4.8 and Fig.4.11, one can clearly see that the “"Rb residue (3p emission) is
strongly populated in coincidence with a high-energy v ray (in the GDR region); on the
other hand the "¢ Kr residue is manly populated in coincidence with the emission of a
low-energy ~ ray. Also in this case, this fact reflects the population of different regions
of the phase space; indeed, the F,, = 4 trigger request corresponds to a higher mean spin

value than F,, = 2 and thus the phase-space is smaller in the latter case.
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Figure 4.8: Residues population obtained from the analysis of the AGATA Demonstrator spectrum

as a function of the energy detected in HECTOR™ array. The experimental data was corrected by

the AGATA Demonstrator efficiency. The statistical model calculation was performed using a
Monte-Carlo CASCADE code.
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Figure 4.9: Energy spectra of AGATA Demonstrator in the reaction 40Ca + *°Ca related to two

different conditions: (top panel) when a E, <9 MeV ~-ray was detected in HECTOR™; (bottom
panel) when a E, >9 MeV v-ray was detected in HECTOR™.
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distribution in input was weighed by the associated response function.
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Figure 4.11: Energy spectra of AGATA Demonstrator in the reaction *°Ca + “°Ca related to two
different conditions: (top panel) when a F., = 2 event was detected in HECTOR™; (bottom panel)

when a F,, = 4 event was detected.



4.3 High-energy spectra
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Figure 4.12: Time spectrum of HECTOR™. The red region is the time gate condition applied in the

sort code.

The high-energy v rays emitted in the CN decay were detected by the HECTOR™"
array. The largest part of data was detected with a coincidence between HECTOR™ and
AGATA Demonstrator. In order to reject background events, a gating condition on the
time of the events was applied (see Fig.4.12).

It is important to note here that the time selection of this class of events is not exclu-
sive enough to reject the neutron background. Nevertheless, since we verified the ab-
sence of neutrons in the 8Zr (see Fig.4.5), we are sure to do not introduce a background
with our time condition.

In Fig. 4.13 the y-ray spectra detected in HECTOR™ are shown. In spite the time
condition, in the high-energy part of the spectrum there is a strong background, which
can be originated by N-N Bremsstrahlung or cosmic rays. This high-energy ~-rays can
interact with the neighbouring material and the pair-production is the favourite reaction
mechanism. Indeed, no y-ray transitions were observed in AGATA Demonstrator in
coincidence with E,, > 20MeV in HECTOR™, the only strong contribution seems to be
the 511 keV peak (see Fig. 4.14).

In the E,-E, matrix of the energy detected in AGATA Demonstrator versus the en-
ergy detected in HECTOR™ (see the matrix in Fig.4.15),it is clearly visible a region (E., ~
18 MeV in AGATA) due to the pre-amplifier saturation of the AGATA Demonstrator.

In addition, it is visible that many events were characterized by the coincidence be-
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Figure 4.13: Comparison between the inclusive v-ray spectra (filled dots) and the time gated -ray
spectra (empty dots). The *'Cl + 44Ca spectra are plotted on the left, whereas the 0*°Ca + 40Ca
spectra are plotted on the left.

tween two high-energy vy-rays.

In the CN decay, this kind of events are very unlucky, because, in general, only one
high-energy ~-ray is emitted in the cooling process. Therefore, we considered these
events as background, which must be subtracted.

As a proof of our considerations, in Fig.4.16 is shown the comparison between the
HECTOR™ spectrum in coincidence with a high-energy y-ray (E, > 10MeV) and a low-
energy y-ray (E, < 4MeV) detected in AGATA. As expected, the high-energy spectra
in coincidence with another high-energy ~-ray exhibit a flat shape, on the other hand
the other spectra exhibit a change in the slop at ~ 10 MeV, typical of the presence of the
Giant Dipole Resonance. Moreover, the background spectra of both reactions are very
similar, as shown in the left panel of Fig.4.16, and this is an additional proof that these
events are independent by the reactions and no physical information is present in these
data.

Since the background contribution in the high-energy part of the spectrum is the
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Figure 4.14: Low-energy spectrum of AGATA Demonstrator in coincidence with a high-energy
ray (E, > 20MeV) detected in HECTOR™. No residue transitions are visible and only the 511 keV

peak is present.

same for both reactions, the average of the spectra obtained in coincidence with a high-
energy ~ ray detected in AGATA was taken as the best parametrization of the back-
ground and a linear function was used to fit the data (see Fig.4.17). The spectra obtained
after a background subtraction are shown in Fig.4.18 with empty dots and the typical
GDR shape is clearly visible in the region between 10 MeV and 20 MeV.
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CHAPTER 5

Results and discussion I1

In this chapter is reported the statistical model analysis of the y-ray spectra detected with
HECTOR™. The analysis of the spectrum of ®'Rb provided the GDR parameters, while
the analysis of 8°Zr provided the value of the isospin mixing probability.

As already discussed, the AGATA coincidence spectra were used to validate the sta-
tistical model calculations, not to extract the high-energy ~-ray spectra.

The temperature dependence of the isospin mixing was obtained and the zero-temperature
value deduced using the theoretical parametrisation reported in Ref. [52].

The isospin-symmetry-breaking correction dc used for the Fermi super-allowed tran-
sitions was extracted using the result of the present analysis.

All these results were published in Ref. [102].

5.1 Isospin in the statistical model

The statistical model analysis was performed using the CASCADE code [100, 101] in
which the isospin formalism was included, in order to be sensitive to the isospin mixing
effect. The original version of the CASCADE code was modified first by M.N. Harakeh
and later on by the Washington University group, according to the formalism of Harney,
Ritch, Weidenmuller reported in Ref. [61].

Three features are relevant for including the isospin in the statistical model:

e The population cross section matrices and level densities are labelled with the
quantum number for isospin (in addition to excitation energy, angular momentum

and parity).

o The states with different isospin are mixed before nay type of decay (according to
the CN hypothesis).
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e The transmission coefficients are multiplied by isospin Clebsch-Gordan coefficients

In the statistical model two classes of isospin are considered: I = I, and I = I, +1.
The initial compound nucleus is populated in the state /. = I, according to the ispospin
conservation in nuclear reactions. States with I > I, correspond to configurations with
a lower binding energy and, therefore, a higher excitation energy.

To calculate the isospin dependence of the level density, we equate the /- level den-
sity with the total level density of the isobaric analogue nucleus, shifted appropriately
to the energy of the I- state in the parent nucleus (see Ref. [70] for a clear dissertation
of the problem). Therefore, the energy of the /. state is calculated as the energy of the
equivalent state in the isobaric analogue nucleus with the same mass A but Z = Z-1 and

N = N+1, using the formula [48]:

A]<)[> = M(AAnalog) — M(A) + AEC — (mn — mp) (51)

where AE( is the difference due to the Coulomb energy, while the quantity (m,,—m,,)
takes into account the difference in mass between neutrons and protons. In the case of

80Zr A;_ 1. is equal to 5.4 MeV. The level density p is calculated as:

7 2J +1
©1203/2(U 4+ T)2

where © is the moment of inertia, T is the temperature, U is the internal energy of the

p(E*,J) Vae?VeU (5.2)

system and a is the level density parameter. In the statistical model the internal energy
U for the state I is calculated as U = E* — E,.., — Egpr = aT?, while for the state I
is calculated as U = E* — E,o; — Egpr — Ar_ 1. This means that p(Is) < p(I<). The
level-density parameter a was chosen equal to a = A/8. It is important to to note that in
the calculation of U we subtracts also the GDR energy contribution.

The use of the statistical model to reproduce measured ~-ray spectra allows to extract
the values of the Coulomb spreading width, Fé, and the isospin mixing,a% for both

states.

5.2 Data analysis

The statistical model provides the y-ray spectrum of the CN, which was compared (after
the folding with the detector response function and normalizing to the data at around 5
MeV) with the experimental data. The GDR parameters were derived from the best fit

to the data in the region between 8 and 15 MeV. Because of the exponential nature of the



spectra, the standard x?2 is not a suitable quantity because of its weak sensitivity to the
low yield part of the spectrum. For this reason, the fit minimization was applied to a
Figure Of Merit (FOM) defined as:

E=15MeV

L )2
FOM= Y (Yyiiw) (5.3)
E=8MeV i

where Y; an M; are the experimental and simulated counts per bin respectively. Eq.
5.3 was obtained dividing the standard x? over the number of counts for each bin. In
this way, the sensitivity to the low yield part of the spectrum is increased.

The statistical errors were calculated performing a Monte-Carlo simulation: 10* spec-
tra were created adding to the number of the experimental counts a fluctuation randomly
extracted from a Gaussian distribution centred at zero and with a standard deviation
equal to the statistical error on the number of counts per bin (0 = /Y;). For each spec-
trum the best fitting parameter (obtained from the minimum of the FOM) was extracted.
The 10* parameter values are distributed following a Gaussian. The statistical error of
the parameter values is taken as the standard deviation of the Gaussian distribution.
This procedures was used for the analysis of 8'Rb.

The error in the isospin mixing value has two sources of errors:
e The first comes from the propagation of the GDR parameter errors in 3! Rb.

e The second comes from the statistical fluctuations of the experimental data as in
the case of 8'Rb.

We decided to take the sum of the square deviations as the best estimation of the

error.

5.3 Fit results

For 81Rb the best-fitting values of the centroid, width and strength of GDR were found to
be: Eqpr =164+ 02MeV,T'¢pr=7.0+0.2MeV and Sgpr =90 + 5 %, as summarized
in Table 5.1. The data and the corresponding statistical model calculations are shown in
the left top panel of Fig.5.2; in the right top panel of the same figure the I'¢pr FOM is
plotted.

To extract the isospin mixing in 3°Zr the Coulomb spreading width was treated as the
only free parameter to fit the 0Zr data. The best fit of the 8°Zr data was obtained when

the Coulomb spreading width is equal to I'Y =12 +3 keV. The plot of the corresponding



CN  Egpr[MeV] Tepr[MeV] Scpr[%] TV [keV]
81Rb 16.4 + 0.2 70+0.2 90 £5 -
807y 16.4 7.0 90 12+3

Table 5.1: Best fitting values are reported for both CN. For the statistical model analysis of the
spectrum associated to ®°Zr the isospin mixing plays a role while all the other parameters were

fixed from the ®'Rb analysis.

FOM is shown in the bottom-right panel of Fig. 5.2. The statistical error coming from
the statistical fluctuation of the experimental data was estimated equal to 2 keV, using
the same procedure of 'Rb. Moreover the propagation of the 8'Rb GDR parameters
uncertainty was estimated equal to 2 keV. Therefore, the total error in the value of the
Coulomb spreading width is of the order of 3 keV. In Fig.5.1 the I'y. best-fitting distribu-

tion is shown as example.

2000

1500

1000

counts

500

0 5 10 15 20
I [keV]

Figure 5.1: I'* distribution obtained from the fit procedure of the simulated 10* spectra, as ex-

plained in the text. the standard deviation represents the statistical error (= 2 keV).

It is worth to be noted that the fitting procedure is sensitive mainly in the 10-17 MeV
region of the spectrum (where the GDR strength is concentrated). Indeed (see e.g. Ref.

[26]) the gamma yield in region below 9 MeV is mainly originated by the emission in the



final steps of the de-excitation process after neutron, proton evaporation. The CN is not
in a I = 0 state after the neutron, proton evaporation and thus it has lost the sensitivity
to the isospin mixing. Only the first step of the GDR + decay, before proton and neutron
emission, is sensitive to the selection rule for E1 decay.

In order to emphasize the GDR region, the experimental and simulated data were di-
vided by an exponential curve, obtaining a linearized spectrum. The exponential curves
of both CN were obtained performing a statistical model calculation with a constant
B(E1) (i.e. no GDR strength). This procedure allows to see clearly the effect of the isospin
mixing in the GDR region. In Fig.5.3 calculations were also made assuming full mixing
(the dashed blue line) and no mixing (the green dashed line).

As explained before, the fit procedure of the 8°Zr data was made fixing the GDR pa-
rameters and varying only the isospin mixing contribution. Obviously, in this analysis,
the presence of the isospin mixing was assumed. To be noted that the 39Zr experimental
data could be well reproduced by the statistical model also without the isospin mixing
contribution, using a smaller GDR width. Indeed, if in the fit procedure the ! is fixed to
0, the fit procedure converges at I'cpr = 5.8 MeV (see Fig. 5.4). Although the 3°Zr data
are well reproduced, the GDR width is completely different than the value obtained in

81Rb . This is an indirect proof of the presence of the isospin mixing effect in 8°Zr data.
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5.4 Coulomb spreading width I'* in 30Zr

The statistical analysis of the 3°Zr allowed to extract the value of the Coulomb spreading
width. The value found was T, = 12 + 3 keV. This value is good agreement with that
found by A. Corsi I'Y, = 10 + 3 keV. It means that the Coulomb spreading width is an
intrinsic property of the system and it does not depend on its excitation energy.

In addition, our value is consistent with that found in the 8°Se studying the width of
the IAS I‘} 45 = 9.9 £ 1.6keV [57]. This result supports the idea that the Coulomb spread-
ing width of the CN and the IAS are the same quantities because they are originated by
the isospin mixing.

In the Fig.5.5, our value of I'tis compared with the values available in literature. Our
datum (blue diamond) is in good agreemtn with the experimental trend: the I'* values
increase with the mass of the nucleus. This trend can be caused by the increases of the

Coulomb interaction effects in the nucleus.

40— — e —
120:, e [AS ]
a2 CN ]
;100 A. Corsi ]
£ 80F  + This work ]
= 60- # ]
o [ { ¢ 1
40 } }; I}E E
20+ i ~ .
A i

0 50 100 150 200 250

A

Figure 5.5: Values of the Coulomb spreading width obtained in the IAS (black dots) and in the CN
(red triangle) [56,61]. The blue diamond is the value obtained in this work, while the green star is

the value obtained in the Ref. [68].



5.5 Isospin mixing in *Zr at T =2 MeV
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Figure 5.6: Degree of mixing o> (red diamond) and a< (black dots) along to the CN angular

momentum.

In the statistical model the value of I', is kept fixed while the corresponding value is
obtained using the detailed balance (Eq. 1.54). Using the values Fé, the statistical model
provides as output the value of 0‘22 (J) distribution. The spin dependence of the isospin
mixing (see Fig.5.9) is due to the fact the internal energy of the system (and thus the
nuclear temperature) depends on the rotational energy of the system. The increase of the
degree of mixing along to J of the system, reflects the stronger effect of isospin-breaking
interaction on colder and longer-lived CN. In order to obtain the average value <0‘22>’
one has to weigh the oé(J ) values with the CN cross section and the y-ray branching
for each J. The mean values obtained were (a2 ) =8.5% + 2% and (%) = 8.0% =+ 2%.

Our values are sensitively larger than those obtained by A. Corsi in Ref. [68] (see
Table 5.2 for a comparison). The reason is that in this work we formed a nucleus at
smaller internal energy and thus smaller(larger) decay width(lifetime). These differences
can be viewed in Fig.5.7 where the lifetimes and the internal energies of the CN 80Zr in
both experiments are shown. This supports the concept that the mixing probability is a
dynamical mechanism in the nucleus, governed by the lifetime of the system and thus it

decreases with the excitation energy.



Ref. (U) [MeV] (TLy) [MeV] (o) [s] (a%)
[68] 36 0.5 1.41072'  0.05+0.01
This work 24 0.13 51021  0.08 + 0.02

Table 5.2: Comparison of the compound nucleus average features (internal energy (U), decay
width (I'}, ) and lifetime (7cx)) between this work and Ref. [68]. The value of (a2) is also re-

ported in the last column.
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Figure 5.7: Top panel: internal energy of the compound nucleus *°Zr in this experiment (red line)
and in the experiment of Ref. [68] (red line). Bottom panel: lifetime of the compound nucleus in

this experiment (red line) and in the experiment of Ref. [68] (black line).

In Fig.5.8 the value of (a2) is plotted together with the available data present in
literature obtained using the GDR ~ decay technique.

All these data were analysed using the same statistical model approach. Although
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the experimental data correspond to different nuclei (and some of them have large error
bars), the experimental data exhibit the expected temperature dependence. This trend is

a clear confirmation to the Wilkinson’s hypothesis.

5.6 Isospin mixing in %°Zr at T =0

Using the v decay of the GDR technique we extracted the value of isospin mixing at T ~
1.5 MeV. However, since most of the theoretical calculations regard the isospin mixing
in the ground state and its influence on nuclear structure, it is important to find a way to
extrapolate the T = 0 value starting from the data at T > 0.

To compare the two data for 9Zr at finite T with the predictions for the ground state,
we used the model of Ref. [52], which describes the variation of the mixing probability

with T. The isospin mixing probability for a nucleus at a finite temperature is defined as

_ 1 Ths
Ip+1 FCN(T) + FIVM(IAS)

o2 (T) (5.4)

where F%AS is the Coulomb spreading width of the IAS, considered equal to 'y,
I'vm(IAS) is the width of the Isovector Monopole Resonance (IVM) at the excitation
energy of the IAS, which is expected to be constant with T.



This model does not take into account the nuclear angular momentum and thus the
effect of the rotational energy on the degree of mixing. Since the o2 depends on the
angular momentum, we followed Ref. [68] and we expressed the degree of mixing at
angular momentum J = 0 and we obtained a value of o~ =4.6% =+ 0.7%. Neglecting the
rotational energy the temperature of the system increases and T(J=0) ~ 1.8 MeV.

Using Eq. 5.4 it is possible to compare the experimental data with the theoretical ones.
According to the systematic for the present case one has I'ym(IAS) = 240 keV [51,53].
I'en(T) is the CN decay width increasing with T.

In Fig. 5.9 the values of o2 calculated using Eq. 5.4 are shown as a function of T. The
red line is obtained with a value of I'y, = 11.0 + 2.1 keV, corresponding to the average of
the two experimental values (the lower and upper curves corresponding to 8.9 and 13.1
keV, respectively).

This calculation gives at T = 0 a2 = 4.6% + 0.9%, in rather good agreement with
the prediction in Ref. [49]. Following the discussion in Ref. [52], we also considered
a weak linear dependence on T of the Coulomb spreading width given by I'y (T') =
'Y o(1+¢T). In this expression the chosen slope parameter ¢ = 0.1 MeV " is such that the
value of I'} stays within the experimental error bar. The blue band in Fig. 5.9 displays
the dependence of o2 with T when such weak dependence of I'Y is considered (the
limiting curves correspond to 'Y, ;=8.9 and 13.1 keV).

We performed also two calculations using F¢> =11.0 keV and I'tym (IAS)= 220 and 260
keV (see Fig.5.10)and we found that these two curves are well within the two coloured

bands of Fig. 5.9.
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Figure 5.9: The isospin mixing a2 as a function of T obtained with the procedure of [52] corre-
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5.7 o in ®Zr

The value of the isospin mixing at T = 0 obtained in this analysis can be used to estimate
the isospin mixing breaking correction term d¢ for the V4 calculation. As already re-
ported in Chaper 1, the ¢ is not a measurable quantity and its relation with the degree

of mixing can be written as [76]:

V1 2

(5.5

where V; =100 MeV and ¢ = 3, while o is the isospin impurity in the ground state
and I is the isospin of the nucleus. Using Eq. 5.5 the value c = 0.81(16)% was obtained
for 80Zr.

Usually the §¢ value is calculated using the 5-decay ft value [72,73] or a very precise
Q-value measurement (as in the case of "“Rb [77]).

It is important to note that in these works these experimental values were obtained
assuming that the F't value is constant and finding the best §- term which satisfies this
assumption. On the other hand, in our case, we can give an experimental estimate of
the d¢ starting from the physical observable which originates this phenomenon, i.e. the
isospin mixing probability.

The value of dc obtained in this analysis is shown in the Fig. 5.11 in comparison with
two different theoretical calculations from Ref. [72] and other experimental values of ¢
at lower Z obtained from j-decay [72] and mass measurement data [77]. The present
result is consistent (within the error bars) with data for “Rb and the trend of predictions
is also in agreement with the present new point. No calculations of the type of Ref. [72]
are available for A = 80 and the ¢ data for "*Rb are the only existing ones close to N = Z
=40.
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Conclusions

In this thesis, we studied the GDR ~-decay in the CN *'Rb and *Zr at T~2 MeV. The
statistical model analysis allowed to extract the 8'Rb GDR parameters and the isospin
mixing probability in 8Zr, which is the heaviest nucleus available using a fusion reaction
with stable beam and target.

The comparison between our result and the values obtained obtained with the same
approach and for systems with Z = 13-40 at T = 2-4 MeV, allowed to test the tempera-
ture dependence of the degree of mixing, as suggested by Wilkinson. In particular the
comparison with the value of A. Corsi [68] obtained in the same CN but with a larger
excitation energy, show clearly the key role of the lifetime in this process.

In addition, in this analysis, we extracted the value of the Coulomb spreading width
'Y which is in good agreement with that found by A. Corsi and the value obtained
studying the IAS of 8°Se by Kailas [57]. This means that: i) the Coulomb spreading
width is an intrinsic property of the nucleus and it does not depend on the excitation
energy ii) The value obtained in the statistical analysis of the CN is the same of that
obtained in the IAS, because it is originated by the same process.

Using our result and that obtained by A. Corsi, we studied the temperature depen-
dence of the isospin mixing using the theoretical model reported in Ref. [52]. The value
extrapolated at T = 0 is in good agreement with the theoretical calculation available in
80Zr. This result suggests that using two or more experimental data at finite temperature
is possible to deduce the value at T = 0.

This could open the way for a intense study of the isospin mixing in different mass

region, with a systematic comparison between experimental and theoretical data, which
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now is missing in literature.

In addition, The isospin-symmetry-breaking correction dc used for the Fermi super-
allowed transitions was extracted in 3°Zr. No experimental or theoretical data are avail-
able for this nucleus. Nevertheless, our result is in good agreement with the theoretical
and experimental mass-trend.

In conclusion, for the first time the T dependence of the isospin mixing was obtained
for the 8°Zr nucleus, the heaviest that can be formed with stable nuclei. The T=0 value
was deduced and provides a stringent test to theory. The isospin correction term used
in the 8-decay analysis was also extracted for the first time for A = 80 and found to be
consistent with systematics from S-decay and mass measurements. This result supports
the validity of the method based on the GDR at finite T to obtain isospin mixing in

regions of Z not directly accessible at T = 0.



APPENDIX A

Papers

Part of the work reported in this thesis was published in the following papers:

S. Ceruti et al., “Isospin Mixing in 80Zr: From Finite to Zero Temperature”, Physical re-
view letters 115 (22), 222502.

S. Ceruti et al., "Isospin mixing in 3°Zr at finite temperature”, Acta Physica Polonica B
46 (3).

A. Bracco, S. Ceruti and L. Pellegri, “"Nuclear Structure aspects of gamma decay from

giant resonances”, EP] Web of Conferences 78, 06002.
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