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Abstract: One of the major causes of land degradation and loss of fertility is the soil erosion due to water 
runoff. In Italy, the 77% of the territory is estimated to be threatened by accelerated erosion, because of both 
its natural structure and anthropic action. This leads to the need of developing modelling tools able to 
provide useful information for runoff risk assessment. This paper presents a detailed description of HIRM-KW 
(Hydrological Infiltration Runoff Model), a physics-based hydrological model for simulating the dynamics of 
water runoff and infiltration in lowland soils. The model was developed by coupling a Kinematic Wave model 
with the Smith-Parlange infiltration theory and by making use of the basic laws of motion. Moreover, it was 
built up step by step in order to obtain a system of equations, lending itself to numerical treatment. HIRM-KW 
performances were evaluated, for demonstration purposes, by comparing the results of three simulations 
with corresponding outputs provided by the EUROSEM (European Soil Erosion Model), resulting in a good 
degree of agreement. HIRM-KW is implemented by a freeware software and the executable program can be 
requested to the Authors. 
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1. INTRODUCTION 

Soil erosion by water is one of the major issues of land 
conservation and it can be effectively limited by adopting 
efficient agricultural techniques (EC 232, 2006), as a 
consequence the knowledge of soil hydrological response 
to water dynamics is essential. Such knowledge is 
provided, for example, by inflow/outflow models, which 
can be applied to lowland soils, often being affected by 
problems connected to excess-water management, 
small-scale border or rainfall irrigation. Moreover, these 
models can be exploited to deal with water storage 
decreasing and erosion caused by the reduction of the 
cultivated soil layer and frequently occurring on steep 
slope lands. 
The dynamic modelling of erosion is nowadays one of the 
most popular instrument to risk evaluation and 
identification, as it has been demonstrated that several 
problems concerning water runoff can be adequately 
treated by means of a variety of simplified physics-based 
models, such as the Diffusion-Wave model and the 
Kinematic-Wave model (Eagleson, 1970; Linsley et al., 
1982; Miller, 1984; Stephenson and Meadows, 1986; Chow 
et al., 1988; Singh, 1996). 
Actually, despite the simplifying assumptions required by 
the equations governing the numerous processes involved, 
fully physics-based models allow to improve the 
understanding of the system, being particularly efficient 
when applied at farmland scale or to small catchments. 
The most common approach for simulating the surface 

water movement is based on the Kinematic-Wave 
equation, often integrated with infiltration models. 
However, there are some restrictions to its applicability to 
lowland soils, due to the bed slopes problem. It is well 
known that the Kinematic-Wave model is unable to 
correctly reproduce water runoff dynamics, when the bed 
slope is very small or locally adverse. In order to overcome 
this problem, several approximate models based on 
Diffusion-Wave equation have been proposed (e.g. Singh, 
1996). 
The main objective of this paper is the step by step 
development of a software tool for field-scale runoff 
modelling. As the theoretical background of soil water 
dynamics involves advanced mathematical and physical 
concepts, which usually are not easy to be understood, are 
also provided (i) a review of the basic physics of water 
surface runoff and other related processes and (ii) 
numerical methods for their practical application in 
hydrological modelling. 
In particular, we provide an exhaustive of HIRM-KW 
(Hydrological Infiltration Runoff Model), a physics-based 
hydrological model, for simulating the dynamics of surface 
runoff and water infiltration at field scale, over a single 
plane or over a cascade planes. The model was built up 
step by step in order to obtain an system of equations, 
lending itself to numerical treatment, and the main 
mathematical details are explicitly reported in the main 
text and in the appendices, since they are not usually 
outlined in the documentation of the most popular runoff 
models. 
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The theoretical model elaboration has gone hand in hand 
with the development of a freeware software, whose main 
features are simplicity and flexibility, granted by an 
object-oriented software architecture. The numerical 
libraries of the program are entirely written in C++ (see 
e.g. Press et al., 2002; Lippman et al., 2000, Malik, 2011) 
and they can be easily interfaced with a C# graphical 
front-end for the management of input/output data (see 
e.g., Nash, 2010). This led to the creation of an up-to-date 
software framework, allowing the assembling of more 
complex hydrological models and the integration of its 
main computational components into other simulation 
programs like the ARMOSA simulation crop model (Perego 
et al., 2013). 
Section 2 describes the basic physical notions of soil water 
dynamics, implemented by HIRM-KW. Section 3 describes 
the HIRM-KW step by step development, clarifying how the 
equations of motion are first derived and assembled into a 
physical-mathematical model, and then numerically solved 
by non-linear finite difference methods. 
Section 4 shows, for demonstration purposes, the results 
of some infiltration and runoff simulations, which in the 
end were compared to the corresponding EUROSEM 
outputs (Morgan et al., 1998). 

2. BASIC PHYSICAL THEORIS 

2.1 Kinematic Wave flow routing models 

The equations of motion for the surface runoff are usually 
derived by the well-known De Saint-Venant dynamic 
equations. They represent the mathematical expressions of 
the conservation laws for mass and momentum and they 
form a system of two Partial Differential Equations (PDE) 
of first order of the hyperbolic type. Such equations are 
highly nonlinear and analytical solutions can be obtained 
only in very few cases (see e.g. Yen and Chow et al., 1974; 
Miller, 1984; Chow et al., 1988; Brass, 1990; Singh, 1996). 
Starting from these equations, the most general models for 
simulating the surface runoff motion, are those based on 
the Dynamic Wave equations (for mathematical details, see 
Eqs. from (A.1.1) to (A.1.9)). Due to their hight 
non-linearity, a first approximation is usually adopted, 
represented by the Diffusion Wave models, from wich in 
turn an approximate form can be derived. 
In Appendix A.2 the derivation of the Diffusion Wave 
equation from the Dynamic Wave model is reported (see 
Eqs.(A.2.1)-(A.2.4)), while in Appendix A.3 mathematical 
details are listed, to obtain its approximate form (see Eqs. 
from (A.3.1) to (A.3.8)). 
Despite such approximations, still the Diffusion Wave 
model is highly non-linear, being not easy to be used for 
dynamic modelling of overland flow. Consequently, a 
further approximation is usually adopted, being referred to 
as Kinematic Wave models (for mathematical details, see 
Eqs. from (A.4.1) to (A.4.6)). 

HIRM-KW was developed by coupling a Kinematic-Wave 
model with the Smith-Parlange infiltration theory and by 
making use of the basic laws of motion. 
The main features of the Kinematic Wave model, 
implemented by HIRM-KW, are reported in the fellowing 
subsections. 

2.1.1. Kinematic-Wave model for overland flow 

As discussed in Appendix A, the Kinematic-Wave equation 
(Eq.(A.4.6)) is based on a combination of the full continuity 
equation with the momentum equation for steady, uniform 
flow. 
Considering a channel with large rectangular section A, 
width 𝑊 and height ℎ(𝑥, 𝑡) equal to the depth of flow, such 
as 𝑊 ≫ ℎ, this channel can be assimilated to an inclined 
plane, where the wetted perimeter 𝑃 and the hydraulic 
radius 𝑅𝑎 can be approximated by 𝑃 = 2ℎ +𝑊 ≈ 𝑊 and 
𝑅𝑎 = 𝐴 𝑃⁄ ≈ ℎ. In other words, the wetted perimeter is 
approximately equal to the plane width and the hydraulic 
radius is reduced to the flow depth ℎ (see e.g. Miller, 1984; 
Chow et al., 1988; Singh, 1996). 
If the Kinematic-Wave approximation is applied, the 
friction slope 𝑆𝑓 and the bed 𝑆0 slope are approximately 

equal, while the average speed 𝑈(𝑥, 𝑡), of the flow in the 
direction of motion simplifies to 

𝑈 ≈
𝑁√𝑆0

𝑃𝛽−1
𝐴𝛽−1 ≡ 𝛼0ℎ

𝛽−1                          (1) 

where 𝛼0 is a roughness coefficient. 

If the Chezy relationship is used, then 𝛼0 ≡ 𝐶√𝑆0 has the 

dimensions of [𝐿1 2⁄ 𝑇⁄ ]; on the other hand, if the Manning 

relationship is used, then 𝛼0 ≡ √𝑆0 𝑛⁄  has the dimensions 

of [𝐿1 3⁄ 𝑇⁄ ]. 

Eq.(A.4.6), can then be written as 

𝜕ℎ

𝜕𝑡
+ 𝛽𝛼0ℎ

𝛽−1 𝜕ℎ

𝜕𝑥
= 𝑞̃𝐸                              (2) 

and Eq.(A.4.2) simplifies to 

𝑄 = 𝑈𝐴 ≃ 𝛼0𝑊ℎ
𝛽                                (3) 

where 𝑄(𝑥, 𝑡) has the dimensions of a volumetric flow rate 
[𝐿3 𝑇⁄ ]. 
Eq.(2) is referred to as the Kinematic-Wave approximation 
and it is used in hydrological models for simulating 
overland flow runoff. 

2.1.2. Wave celerity of the Kinematic-Wave model 

The wave celerity 𝑐𝐾 [𝐿 𝑇⁄ ] of the Kinematic-Wave model 
(Eq.(2)) can be obtained from Eq.(A.4.8), based on the 
velocity law adopted; thus, resulting 

𝑐𝐾(ℎ) ≡ 𝛽𝑈 ≡ 𝛽𝛼0ℎ
𝛽−1                           (4) 

2.1.3. Criterion of applicability of the Kinematic-Wave model 

Analysing runoff characteristics in different flow 
conditions, Woolhiser et al. (1967, 1970), Singh, (1996, 
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2002) and Moramarco et al (2002), concluded that the 
Kinematc-Wave assumption is accurate within an error of 
10%, if the kinematic flow number 𝐾 is greater than 20 
and the Froude number 𝐹𝑟 is greater than 1 2⁄ , leading to 

the application criterium 𝐹𝑟
2𝐾 > 5.  

Several authors confirmed Woolisher’s conclusions, 
showing that Eq.(2) provides a good approximation for 
describing surface runoff and erosion in most flow 
conditions (Chow et al., 1988; Brass, 1990; Singh, 1996). 
Furthermore, it has been demonstrated that when 
𝑆0 < 0.02  or 𝑆0 > 0.10 , the kinematic assumption is 
violated (Henderson, 1966; Govindaraju et al., 1988a,b). 
Even if this approach introduces a strong simplification, it 
has been successfully applied in several practical cases 
(see e.g., Ogden and Julien, 1993), including the numerical 
analysis of the water flux of macropores in soil proposed 
by Alaoui et al, (2003). 

2.2 Rainfall intensity excess (or Total Runoff) 

In Eq.(2), the lateral flow, 𝑞̃𝐸(𝑥, 𝑡) [𝐿/𝑇] is a surface flow 
per unit width. When it refers to a plane, it may include 
different terms, such as net rainfall, 𝑅𝑁𝐸𝑇 , irrigation, 
melting snow, etc. Assuming bare soil, absence of irrigation 
inputs and neglecting water evaporation from the soil 
surface, the term 𝑞̃𝐸(𝑥, 𝑡)  represents the difference 
between rainfall intensity 𝑖(𝑥, 𝑡)  and infiltration rate 
𝑓(𝑥, 𝑡): 

𝑞̃𝐸(𝑥, 𝑡) =
𝑞𝐸(𝑥,𝑡)

𝑊
≡

𝑖(𝑥,𝑡)−𝑓(𝑥,𝑡)

𝑊
, (𝑊 ≡ 1 [𝐿])           (5) 

Eq.(5) holds in general; however, considering relatively 
small surfaces (e.g. agricultural fields) with homogeneous 
soils, the 𝑥-dependence of both 𝑖 and 𝑓 is negligible. As a 
consequence, it can be approximated as 𝑞̃𝐸(𝑥, 𝑡) ≈
[𝑖(𝑡) − 𝑓(𝑡)] 𝑊⁄ , where 𝑖(𝑡) = 𝑑𝑅𝑁𝐸𝑇 𝑑𝑡⁄  and 𝑓(𝑡) =
𝑑𝐹 𝑑𝑡⁄ . The term 𝐹(𝑡)  [𝐿]  defines the cumulative 
infiltration, while 𝑞̃𝐸(𝑥, 𝑡) is generally known as rainfall 
intensity excess per unit width or total runoff. 
It is important to underline that this approximation is not 
valid in the case of a river basin. 

2.3 Distribution of rainfall periods 

The set of rainfall periods required by runoff simulation is 
displayed in Fig.1, where the rainfall intensity of the 𝑗𝑡ℎ 
period is given by 𝑖𝑗 = 𝑃𝑗 𝐷𝑗⁄  [𝐿/𝑇], 𝑃𝑗  representing the 

precipitation amount and 𝐷𝑗  the corresponding time 

interval. 
Accordingly, the maximum rate of rainfall inflow is defined 
as the maximum specific intensity 𝑖𝑚𝑎𝑥 = 𝑃𝑚𝑎𝑥 𝐷𝑗𝑚𝑎𝑥⁄ , 

where 𝑃𝑚𝑎𝑥  is the maximum precipitation amount 
occurring. 
Rainfall events are subsequently transformed into a 
distribution of periods with a constant timestep (𝛥𝑡) of the 
order of a few minutes, while the rainfall intensity 𝑖(𝑡) is 
calculated as 𝑅𝑁𝐸𝑇 ∆𝑡⁄ , where 𝑅𝑁𝐸𝑇 [𝐿] is the net rainfall 

reaching the soil surface. 

 

Fig.1 - Example of rainfall hyetograph used in the HIRM-KW 
model. The ordinate shows the amount of rain Pj refers to the 

j-th event duration Dj. 

The net rainfall is usually estimated by a hydrological 
balance equation, involving several agro-meteorological 
processes: 

𝑅𝑁𝐸𝑇 ≅ 𝑃 − (𝐸𝑃 + 𝑇𝑝 + 𝐼𝑛𝑡 +⋯)                   (6) 

where 𝑃 [𝐿] is the natural rainfall; 𝐸𝑝 + 𝑇𝑝 is the water lost 

by evapotranspiration 𝐸𝑇𝑃; 𝐼𝑛𝑡 [𝐿] is the amount of water 
intercepted by standing vegetation.  
Many models are available to compute interception as a 
static or dynamic process but they are not considered here. 
Moreover, the amount of water lost by 𝐸𝑇𝑃 during a rain 
event turns out to be negligible, therefore it is not taken 
into account. 

2.4 Soil water infiltration models 

In this subsections, the fundamentals of infiltration theory 
are employed to derive an analytical function for both the 
potential infiltration rate 𝑓(𝑡)  end the cumulative 
infiltration depth 𝐹(𝑡), and to obtain the effective capillary 
drive term 𝐺(𝜃𝐼 , 𝜃0) , through the Brooks and Corey 
equation. 

Smith-Parlange cumulative infiltration model 

The function 𝐹(𝑡) [𝐿] is the cumulative infiltration depth 
and it is defined as: 

𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
                                 (7) 

where 𝑓(𝑡) [𝐿/𝑇] is the infiltration rate. 
Several physics-based models relate 𝐹(𝑡) to sorptivity 𝑆𝑃 

[𝐿 𝑇1 2⁄⁄ ] and hydraulic conductivity at saturation 𝐾𝑠 [𝐿/𝑇], 

allowing to estimate these two quantities from infiltration 
data and by applying Eq.(7). One of the possible 
formulations of this relationship is given by the implicit 
equation proposed by Smith (2002): 

𝐹(𝑡) ≅ 𝐾𝑠𝑡 −
𝑆𝑃

2

2𝐾𝑠
(𝑒

−
2𝐾𝑠𝐹(𝑡)

𝑆𝑃
2
− 1)                    (8) 
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Being Eq.(8) an implicit equation, 𝐹(𝑡) can be obtained by 
applying iterative methods (we adopt the 
Newton-Raphson method). 

Smith-Parlange infiltrability model 

One of the most common approaches for estimating 
infiltrability 𝑓𝑐(𝑡)  [𝐿/𝑇]  (also known as infiltration 
capacity), is through the application of the Smith-Parlange 
model (Parlange 1971, 1972, 1975a, b; Smith and Parlange, 
1978; Parlange et. al., 1982; Smith, 2002) with three 
parameters: 

𝑓𝑐(𝑡) ≅ 𝐾𝑠 (1 +
𝛾

𝑒2𝛾𝐾𝑠𝐹(𝑡) 𝑆𝑃
2⁄ −1
) ,      𝛾 > 0             (9) 

Clearly, 𝑓𝑐(𝑡) is obtained by substituting F(t), calculated via 
Eq.(8). 
It is worth to underline that, the best fit value for 𝛾 ranges 
from 0.80 to 0.85 (Parlange et al., 1982; Smith et al., 2002). 
Moreover, the sorptivity 𝑆𝑃 in Eqs.(8)-(9) is defined as: 

𝑆𝑝 = √2𝐾𝑠𝐺(𝜃𝐼 , 𝜃0)∆𝜃 ≡ √2𝐾𝑠𝐵                   (10) 

where 

𝐵 = 𝐺(𝜃𝐼 , 𝜃0)∆𝜃.
∆𝜃 ≡ (𝜃𝑆 − 𝜃𝐼) ≡ Φ(𝑆𝑆 − 𝑆𝐼) ,

𝑆𝑆 = 𝜃𝑆 Φ⁄  ,   𝑆𝐼 = 𝜃𝐼 Φ⁄  ,

                     (11) 

Φ [𝐿3/𝐿3] is the effective soil porosity; 𝜃0 [𝐿3/𝐿3] is the 
water content at the soil surface; 𝜃𝑆 [𝐿3/𝐿3] and 𝜃𝐼 [𝐿

3/𝐿3] 
are the saturated and initial soil water content, 
respectively; 𝑆𝑆  and 𝑆𝐼  are the relative and initial soil 
saturation, respectively; ∆𝜃 is the initial soil water content 
deficit; 𝐵 [L], is the deficit of saturation of the soil. The 
hydraulic parameters 𝐾𝑠 , 𝐺 , 𝜃𝑆 , 𝜃𝐼  and Φ, are related to 
sorptivity through Eq.(10). 
The term 𝐺 [𝐿] is the integral of the effective capillary drive 
through the saturated front under initially dry conditions 
and it was defined (Ogden et al., 1997) as: 

𝐺(𝜃𝐼 , 𝜃0) = ∫ 𝐾𝑟(𝜓)𝑑𝜓
0

𝜓𝐼
,   𝐾(𝜓) = 𝐾𝑠𝐾𝑟(𝜓)         (12) 

where 𝐾(𝜓)  [𝐿/𝑇]  and 𝐾𝑟(𝜓)  [𝐿/𝑇]  are the hydraulic 
conductivity and the relative unsaturated hydraulic 
conductivity functions; 𝜓  [𝐿]  is the soil water capillary 
pressure head (i.e. the negative of matric suction head) and 
𝜓𝐼 [𝐿] is the capillary pressure head at at 𝜃 = 𝜃𝐼 . 

Evaluation of effective capillary drive term 

Several analytical expressions of 𝐺 exist, depending on the 
form of soil water retention and unsaturated conductivity 
functions (Morel-Seytoux et al., 1996 and 1999; Ogden et 
al., 1997; Smith et al., 2002). 𝐺 also depends on the initial 
capillary suction 𝜓𝐼 [𝐿] and it can be estimated knowing 
𝐾(𝜓).  
For example, using Brooks and Corey equations (Brooks 
and Corey, 1964)  

{
 
 

 
 
𝐾(𝜓) = 𝐾𝑠(𝜓𝐵 𝜓⁄ )3+2 𝜆⁄ ;    𝑖𝑓 𝜓 ≤ 𝜓𝐵
𝐾(𝜓) = 𝐾𝑠;                             𝑖𝑓 𝜓 > 𝜓𝐵

𝜗 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
= (

𝜓𝐵

𝜓
)
𝜆
 ;              𝑖𝑓 𝜓 ≤ 𝜓𝐵 

𝜗 = 1;                                       𝑖𝑓 𝜓 > 𝜓𝐵

             (13) 

and substituting in the Eq.(12), Ogden et al (1997) has 
proposed the following expression of 𝐺 (see Appendix A.5 
for details): 

𝐺(𝜃𝐼 , 𝜃0) = −
𝜓𝐵

𝜆
(
1−𝜗𝐼

3+1 𝜆⁄

3+1 𝜆⁄
)                       (14) 

where 𝜗𝐼 = (𝜃𝐼 − 𝜃𝑟) (𝜃𝑠 − 𝜃𝑟)⁄  is the relative initial 
volumetric water content (dimensionless); 𝜓𝐵  [𝐿] is the 
bubbling pressure head; 𝜃𝑟 [𝐿3 𝐿3⁄ ] is the residual water 
content of the soil profile, and 𝜆 (dimensionless) is the 
pore-size distribution index. 
In this study we assuming that the initial water content is 
equal to the residual saturation (i.e. 𝜓𝐼  = ∞, 𝜗𝐼  = 0), then 
the effective net capillary drive 𝐺0 [𝐿], can be approximated 
by the following formula (Ogden et al., 1997; 
Morel-Seytoux et al 1996 and 1999; Rawls et al., 1982; 
Smith et al., 2002): 

𝐺0 ≅ −𝜓𝐵
(2+3𝜆)

(1+3𝜆)
                                (15) 

holding after a long rain break. 𝜓𝐵  and 𝜆 can be also 
obtained by fitting the Brooks and Corey equation to an 
experimental data set (Rawls et al., 1982). In Eqs.(12)-(15) 
the sign of the terms 𝜓 , 𝜓𝐼 and 𝜓𝐵 has to be considered as 
negative. 
In HIRM-KW the quantity 𝐺0 may be either assigned as an 
input parameter or evaluated by means of Eq.(15). 
𝐺(𝜃𝐼 , 𝜃0)  could also be calculated by using other 
conductivity functions (e.g. Mualem, 1976; Van Genuchten, 
1980; Rawls and Pachepsky, 2004). 
The soil-water characteristic (𝜓𝐼  , 𝜓𝐵  and 𝐾𝑠 ) can be 
indirectly estimated from the physical properties of the 
soil (i.e., clay, sand, silt, organic matter soil density), 
applying pedotransfer functions (e.g. Saxton et al., 1986; 
Acutis et al., 2003; Rawls and Pachepsky, 2004).  
Moreover effective porosity, appearing in Eqs.(11), can be 
estimated from real and apparent soil density. 

Infiltration capacity during a rainfall pause 

Eqs.(7)-(11) hold in general, when 𝑖(𝑡) ≥ 𝐾𝑠 ; however, 
during a real precipitation event different periods may 
exist, with 0 ≤ 𝑖(𝑡) < 𝐾𝑠 (i.e., almost absence of rain). 
As long as the water remains on the surface (satisfying the 
conditions of existence of the infiltration capacity 𝑓𝑐(𝑡)), 
the Smith-Parlange theory still covers small or absent 
rainfall events of very short duration. 
On the contrary, when longer dry periods occur, part or 
the whole soil surface is free from water, the process of 
water redistribution in soil occurs and the theory is no 
longer valid. 
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3. HIRM-KW FIELD-SCALE RUNOFF MODEL 

3.1 Unified equations of the model 

As already stated, in HIRM-KW, the Kinematic Wave model 
is coupled with the two-parameters Smith-Parlange 
infiltration model (9). Consequently, considering a single 
runoff plane (see Fig.2), the physical model described in 
the previous sections can be summarized by the following 
set of equations: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑆𝑃 ≅ √2𝐾𝑠𝐺0(𝜃𝑆 − 𝜃𝐼)

𝐹(𝑡) ≅ 𝐾𝑠𝑡 −
𝑆𝑃

2

2𝐾𝑠
{𝑒
(−

2𝐾𝑠𝐹(𝑡)

𝑆𝑃
2 )

− 1}

𝑓(𝑡) = 𝐾𝑠
𝑒
(
2𝐾𝑠𝐹(𝑡)

𝑆𝑃
2 )

𝑒
(
2𝐾𝑠𝐹(𝑡)

𝑆𝑃
2 )

−1

𝑞̃𝐸(𝑡) =
[𝑖(𝑡)−𝑓(𝑡)]

𝑊
, (𝑊 ≡ 1 [𝐿])

𝜕ℎ

𝜕𝑡
+ 𝛽𝛼0ℎ

𝛽−1 𝜕ℎ

𝜕𝑥
= 𝑞̃𝐸

𝑄(ℎ) = 𝑊𝛼0ℎ
𝛽

                 (16) 

where 𝛽 (≡ 5 3⁄ ), 𝛼0, is the Manning roughness coefficient 
and a Smith-Parlange model with two parameters is 
adopted, setting 𝛾 ≡ 1 in Eq.(9). 

 

Fig.2 – Dynamics of surface runoff in a plane of the length L and 
width W creating an excess of rainfall (𝑞), conveyed in an open 

channel. 

The evaluation of the overland flow is then obtained 
starting from the set of equations (16) and looking for 
solutions of the type ℎ(𝑥, 𝑡) in the domain of variation 
Ω = {0 ≤ 𝑥 ≤ 𝐿;  0 ≤ 𝑡 ≤ 𝑇𝑀𝐴𝑋}. Values of ℎ(𝑥 = 𝐿, 𝑡) are 
finally employed to calculate the outflow rate 𝑄(𝑥 = 𝐿, 𝑡) 
through Eq.(3). Eq.(3) applies even if the plane is the first 
of a sequence of planes and the conditions specified by the 
set equations (16) can be extended to a sequence of 
cascade planes (see Fig.3). 

 

Fig.3 – Dynamic of surface runoff for a set of planes of equal 
width (W) connected in cascade where the runoff is conveyed in 

an open channel. 

3.1.1. Equations in dimensionless form 

The set of equations (16) are expressed in dimensional 
form. However, many internal calculations of our model, 
can be carried out by using variables in dimensionless 
form (with appropriate scaling factors). For clarity sake, 
we recall that the formulation of a problem in 
dimensionless form requires to switch a reference system 
of units intrinsic to the same problem (Bridgman, 1923); 
apart from that, any formal difficulty arising from the 
change of variables is overcome by some major 
advantages: 

1. simpler mathematical relationships, because of the 
reduction of the number of parameters; 

2. calculation efficiency; 
3. assessment of the relative weights of the terms in the 

equations and of their influence on the process; 
4. possibility of establishing comparison criteria: the 

values of the dimensionless variables are 
independent of the measurement system; 

5. the possible appearance of a small parameter value 
would indicate the minor role of the terms containing 
it. 

We define the new dimensionless variables (denoted by 
the symbol ~) by assuming: 

𝑡̃ =
𝐾𝑠𝑡

𝐵
, 𝑥̃ =

𝐾𝑠𝑥

𝛼0𝛽𝐵
, 𝑓 =

𝑓

𝐾𝑠
,

𝐹̃ =
𝐹

𝐵
,   𝑖̃ =

𝑖

𝐾𝑠
, ℎ̃ =

ℎ

𝐵

𝑄̃ =
𝑄

𝛼0𝑊𝐵
𝛽 ,

                       (17) 

where 𝛼0 is the roughness coefficient and 𝐵 ≅ 𝐺0(𝜃𝑠 − 𝜃𝐼) 
[𝐿], the deficit of saturation of the soil are given by 
Eqs.(11).  
The set of equations (16) become, in the case of 
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dimensionless variables: 

{
 
 

 
 
𝐹̃ = 𝑡̃ − {𝑒−𝐹̃ − 1}

𝑓 =
𝑒𝐹̃

𝑒𝐹̃−1

𝜕ℎ̃

𝜕𝑡̃
+ ℎ̃𝛽−1

𝜕ℎ̃

𝜕𝑥̃
= (𝑖̃ − 𝑓)

𝑄̃(𝑥̃, 𝑡̃) = ℎ̃(𝑥̃, 𝑡̃)𝛽

                          (18) 

In HIRM-KW the surface runoff is modelled by numerically 
solving the system of equations (18), according to the 
Manning law of resistance and the criterion of applicability 
of the Kinematic-Wave model (see Appendix A.4.4). 
It is worth to observe that, in dimensionless form, the 
number of equations is reduced to four. 

3.1.2. Initial and boundary conditions 

Before the beginning of the rain event, HIRM-KW sets an 
initial soil water content 𝜃𝐼; moreover, for a single plane of 
length 𝐿 the initial (𝐼𝐶) and boundary (𝐵𝐶) conditions are 
identical (see Fig.2). Therefore 

{
𝐼𝐶: ℎ(𝑥, 0) = 0; 𝑞𝐸(𝑥, 0) = 0;        0 ≤ 𝑥 ≤ 𝐿

 𝐵𝐶: ℎ(0, 𝑡) = 0; 𝑞𝐸(0, 𝑡) = 0;   0 ≤ 𝑡 ≤ 𝑇𝑀𝐴𝑋
        (19) 

where 𝑇𝑀𝐴𝑋 is the total duration of the rainfall event. 𝑄 
[𝐿3/𝑇] can be calculated by applying Eq.(3) at 𝑥 = 𝐿, then 
obtaining: 

𝑄(𝐿, 𝑡) ≡ 𝑊𝑄̃(𝐿, 𝑡) ≡ 𝛼𝑊[ℎ(𝐿, 𝑡)]𝛽                 (20) 

where 𝑊 is the width of the plane; 𝑄̃ is the flow rate per 

unit width and 𝛼 ≡
1

𝑛
√𝑆0. 

In the case of a sequence of planes (Fig.2), the boundary 
conditions at each must be defined. Actually, being 𝑄̃𝑢,𝑛 the 

unitary flow of plane 𝑛 at the upper contour (𝑢) and 𝑄̃𝑙,𝑛−1 

the unitary flow of plane 𝑛 − 1 at the lower contour (𝑙), it 
is possible to apply Eq.(20) at the intersection point 
𝑥𝑢 ≡ 𝑥𝑙 ≡ 𝐿𝑛−1 (being 𝑊𝑢,𝑛 and 𝑊𝑙,𝑛−1, the plane widths), 
obtaining: 

𝑄̃𝑢,𝑛(𝑥𝑢, 𝑡)𝑊𝑢,𝑛 ≡ 𝑄̃𝑙,𝑛−1(𝑥𝑙 , 𝑡)𝑊𝑙,𝑛−1,

𝑡 > 0, 0 ≤ 𝑥𝑢 ≤ 𝐿𝑛, 0 ≤ 𝑥𝑙 ≤ 𝐿𝑛−1 
               (21) 

and consequently, following Woolhiser et al. (1970): 

𝑄̃𝑢,𝑛(𝑥𝑢, 𝑡) = 𝑄̃𝑙,𝑛−1(𝑥𝑙 , 𝑡)
𝑊𝑙,𝑛−1

𝑊𝑢,𝑛
                    (22) 

Focusing on the flow depth ℎ at the intersection point, the 
inflow heights of flow ℎ𝑢,𝑛(𝑥𝑢, 𝑡) at the lower plane 𝐿𝑛, and 
the outflow heights of flow ℎ𝑙,𝑛−1(𝑥𝑙 , 𝑡) at the upper plane 

𝐿𝑛−1 , coincide, except for a multiplication factor. By 
adapting Eq.(20) into Eq.(22), we have: 

ℎ𝑢,𝑛(𝑥𝑢, 𝑡) = (
𝛼𝑢,𝑛−1𝑊𝑙,𝑛−1

𝛼𝑙,𝑛𝑊𝑢,𝑛
)

1

𝛽
ℎ𝑙,𝑛−1(𝑥𝑙 , 𝑡)             (23) 

Eq.(23) implies that the same law of Manning’s resistance 
holds at the two planes. 
In the particular case of two consecutive planes, with the 

same width 𝑊, Eqs.(21) becomes 𝑄̃𝑢,𝑛(𝑥𝑢, 𝑡) = 𝑄̃𝑙,𝑛−1(𝑥𝑙, 𝑡) 
and, as a consequence, Eq.(23) can be written as follows: 

ℎ𝑢,𝑛(𝑥𝑢, 𝑡) = (
𝛼𝑢,𝑛−1

𝛼𝑙,𝑛
)

1

𝛽
ℎ𝑙,𝑛−1(𝑥𝑙 , 𝑡)                  (24) 

where 𝛼𝑙,𝑛 and 𝛼𝑢,𝑛−1 are the roughness coefficients for 

the lower (𝑛) and the upper (𝑛 − 1) plane, respectively. 

3.1.3. Global Volume Balance (GVB) 

When a modelling process exploits any numerical solution 
of differential equations, the volume balance between 
system Inflow and Outflow system must be evaluated. In 
our case, such balance can be written as: 

𝑑𝑉

𝑑𝑡
= 𝐴𝑞𝐸(𝑡) − 𝑄𝑠(𝑥, 𝑡)

     ≡ 𝐴𝑖(𝑡) − [𝐴𝑓(𝑡) +𝑊𝑄̃𝑠(𝑥, 𝑡)]
                  (25) 

where 𝑞𝐸(𝑡) = 𝑖(𝑡) − 𝑓(𝑡) is the intensity of rainfall excess 
[𝐿/𝑇] , 𝐴 = 𝐿𝑊 , 𝐿  and 𝑊  are respectively: surface [𝐿2 ], 
length [𝐿] and width [𝐿] of an overland flow on a 
rectangular surface.  
Moreover, 𝑄̃𝑠 [𝐿2/𝑇] is the flow intensity per unit width 𝑊, 
which can be calculated by means of the followining 
equation (Huber and Dickinson, 1988): 

𝑄𝑠(𝑥, 𝑡) ≡ 𝑊𝑄̃𝑠(𝑥, 𝑡) = 𝑊𝛼0[ℎ(𝑥, 𝑡) − ℎ𝑑]
𝛽          (26) 

where 𝛼0  is the roughness coefficient; ℎ𝑑  [𝐿], is called 
depression storage depth and it takes into account the 
fraction of water remaining on the ground surface, when 
no infiltration occurs.  
In HIRM-KW ℎ𝑑 can be calculate as ℎ𝑑 = 𝑒

(−6.66+0.27𝑅𝐹𝑅) 
(Auerswald, 1992), where 𝑅𝐹𝑅  [L/L], is a downslope 
roughness ratio based on field measurement and 
published table of experimentally determined values 
(Morgan et al., 1998; Folly et al., 1999). 
Water in depression storage does not directly contribute to 
overland flow runoff because it either evaporates or 
infiltrates later. 
Eq.(25) can be integrated between the starting time (𝑡𝐼𝑁𝐼) 
and the final time (𝑡𝐸𝑁𝐷) of the rainfall event, thus 
obtaining the balance equation in integral form: 

∆𝑉 ≡ 𝐴∫ 𝑖(𝐿, 𝑡)𝑑𝑡 −
𝑡𝐸𝑁𝐷
𝑡𝐼𝑁𝐼

           ∫ [𝐴𝑓(𝐿, 𝑡) +𝑊𝑄̃𝑠(𝐿, 𝑡)]𝑑𝑡
𝑡𝐸𝑁𝐷
𝑡𝐼𝑁𝐼

                (27) 

Although Eq.(27) is expressed in [𝐿3], it is often practical to 
express it in terms of flow depth ∆ℎ [𝐿]. Moreover, being 

𝑑𝑉

𝑑𝑡
≡ 𝐴

𝑑ℎ

𝑑𝑡
, 𝑄̃𝑠(𝑥, 𝑡) ≡

𝑄𝑠(𝑥,𝑡)

𝑊
                       (28) 

Eq.(27) can be written as 

∆ℎ ≡ ∫ 𝑖(𝐿, 𝑡)𝑑𝑡 −
𝑡𝐸𝑁𝐷
𝑡𝐼𝑁𝐼

          ∫ {𝑓(𝐿, 𝑡) +
𝑊𝛼0

𝐴
[ℎ(𝐿, 𝑡) − ℎ𝑑]}

𝛽
𝑑𝑡

𝑡𝐸𝑁𝐷
𝑡𝐼𝑁𝐼

         (29) 
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where 𝑖(𝐿, 𝑡), 𝑓(𝐿, 𝑡) and 𝑄̃𝑠(𝐿, 𝑡) are the rainfall intensity 
[L/T], the infiltration rate [L/T] and the flow intensity per 
unit length [L2/T], respectively. They are all evaluated at 
𝑥 = 𝐿, for the entire rainfall duration.  
Finally, in the calculation of the percentage of Global 
Volume Error (% 𝐺𝑉𝐸), we used the formula 

𝐺𝑉𝐸 = 100 |
𝑅𝑁𝐸𝑇−∆ℎ

𝑅𝑁𝐸𝑇
|                             (30) 

where 𝑅𝑁𝐸𝑇 [𝐿] is the net rainfall reaching the soil surface. 
Eqs.(27), (29) and (30) are exploited to control the Global 
Volume Balance (GVB) of HIRM-KW simulations (see 
Section 4). 

3.2 Assumptions and limitations 

If the applicability conditions of the Kinematic-Wave 
model defined in the Section 2.1.3 are satisfied, then the 
theory described in Section 2.1 can be a valid 
simplification for surface runoff.  
The validity of the hydrological model (16) however, is 
subject to some limitations: 

1. precipitation occurs without interruption and it is 
constant over the entire space integration domain 𝑥, 
consequently rainfall intensity changes in time but 
not in space (i.e. 𝑖(𝑥, 𝑡) ≈ 𝑖(𝑡)); 

2. the theory described in the Section 2.4 can be applied 
when the rainfall intensity is greater than the 
hydraulic conductivity at saturation (i.e. 𝑖(𝑡)  >  𝐾𝑠 , 
according to the Hortonian overland flow approach); 

3. the model does not take into account the water 
redistribution process; therefore, the effective 
capillary drive (𝐺), can be assigned parameter or can 
be estimated by Eq.(15); 

4. the friction slope 𝑆𝑓 coincides with the topographic 

slope 𝑆0 (see Eq.(A.4.1)); 
5. the hydraulic conductivity (𝐾), effective capillary 

drive (𝐺) and the infiltration rate (𝑓) are constant 
over the space integration domain on the plane; 
furthermore 𝐾 and 𝐺 does not vary with the depth 𝑧, 
and we assume only one layer of homogeneous soil, 
for which 𝐾(𝑥, 𝑧) ≈ 𝐾𝑠 and 𝑓(𝑥, 𝑡) ≈ 𝑓(𝑡); 

6. Manning roughness parameter 𝑛 is constant over the 
entire space integration domain 𝑥 and it is estimated 
by using Eq.(A.4.13); 

7. during the whole rainfall absence of interception is 
assumed (i.e. 𝐼𝑛𝑡 ≈  0 ), Eq.(6) then reduces to 
𝑅𝑁𝐸𝑇  ≈  𝑃; 

8. an initial soil water content (𝜃𝐼) is assumed constant 
over the depth of wetting but varies between stoms, 
being the runoff surface regular in shape with width 
𝑊, length 𝐿 and bed slope 𝑆0. 

9. the model (16) does not consider erosion, rill, 
presence of surface snow and percolation losses. 

 

3.3 Numerical solutions of the model 

The equation to be solved (Eq.(2)) is a first order 
hyperbolic PDE, nonlinear in ℎ, simulating the change of 
water depth (ℎ) on the grid plane (𝑥, 𝑡). Analytical 
solutions exist in very few special cases and most of them 
are of little practical interest. As a consequence, the 
solution is usually numerically sought, by applying the 
Finite Differences (FD) method or the Finite Elements (FE) 
method. 
In HIRM-KW the runoff simulation is performed by seeking 
a solution ℎ(𝑥, 𝑡) for the flow rate 𝑄(𝑥, 𝑡) (Eq.(3)) and then 
solving Eq.(2) with FD methods (see Appendix B). 
HIRM-KW allows to use both a 3-points linear schemes 
(Fig.B.1) and a 4-points nonlinear schemes (Fig.B.2). 
Figs.(B.1) and (B.2) represent the uniform mesh solution of 
the Finite Difference Backward scheme (FDB) used to 
calculate the partial derivatives of Eqs.(2) (Singh, 1996; 
Chow et al., 1988; Holden and Stephenson, 1988, 1995; 
Wood, 1993). 
Applying the FD methods, Eq.(2) in the dimensionless form 
(see Eqs.(17)) can be re-written as follows (omitting the 
symbol ~ here and after in the text): 

𝜕ℎ

𝜕𝑡
+ ℎ𝛽−1

𝜕ℎ

𝜕𝑥
= 𝑞𝐸                               (31) 

or in the equivalent form 

𝜕ℎ

𝜕𝑡
+

1

𝛽

𝜕ℎ𝛽

𝜕𝑥
= 𝑞𝐸                                  (32) 

where 𝑞𝐸 ≡ (𝑖 − 𝑓). 

Linear 3-points FDB scheme for Kinematic-Wave Eq.(31): 

By replacing Eq.(B.1.1) into Eq.(31), we have a system of 

linear equations in the unknown ℎ𝑖+1
𝑗+1

, whose explicit 

solution is given by the formula (Chow et al.,1988; 
Kazezyılmaz-Alhana et al., 2005): 

ℎ𝑖+1
𝑗+1

=
 ℎ𝑖+1
𝑗

+𝐶𝑟 ℎ𝑖
𝑗+1

+𝑞̅𝐸∆𝑡

1+𝐶𝑟
, 𝐶𝑟 ≡ 𝑐𝑘

∆𝑡

∆𝑥
≡ ℎ̅𝐶

𝛽−1 ∆𝑡

∆𝑥
      (33) 

where 𝐶𝑟  <  1  is the Courant number; 𝑐𝑘  is the wave 

celerity and ℎ̅𝐶 ≈ 0.5(ℎ𝑖
𝑗+1

+ ℎ𝑖+1
𝑗
). 

Linear 3-points FDB scheme for Kinematic-Wave Eq.(32) 

Replacing Eq.(B.2.1) into Eq.(32), we have a system of 

linear equations in the unknown ℎ𝑖+1
𝑗+1

 whose explicit 

solution is given by: 

ℎ𝑖+1
𝑗+1

= ℎ𝑖+1
𝑗

− 𝐴ℎ𝑖+1
𝑗

+ 𝐵ℎ𝑖
𝑗
+ 𝑞̅𝐸  ∆𝑡                (34) 

where 

𝐴 ≡
∆𝑡

𝛽∆𝑥
(ℎ𝑖+1

𝑗
)
𝛽−1

, 𝐵 ≡
∆𝑡

𝛽∆𝑥
(ℎ𝑖

𝑗
)
𝛽−1

                 (35) 

Numerical stability of schemes (33) and (34) 

The numerical stability condition to be satisfied in the FDB 
schemes (33) and (34) is the Courant condition (Kibler and 
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Woolhiser, 1970): 

∆𝑡

∆𝑥
≥ 𝑐𝑘,𝑚𝑎𝑥 = 𝛼0ℎ𝑚𝑎𝑥

𝛽−1
                            (36) 

where 𝑐𝑘,𝑚𝑎𝑥 is the maximum wave celerity for flow and 
ℎ𝑚𝑎𝑥 is the maximum flow depth. If 𝐿 is the length of an 
overland flow (see Fig.2 and Fig.3), ∆𝑥  can be 

approximated as ∆𝑥 ≃
𝐿

𝑁
, where 𝑁 ∈ {10 ÷ 20}, such range 

being based on a numerical experimentation; however, 
this is an empirical criterion and it should be used just as 
basis guideline. Numerical scheme (33) is unconditionally 
stable but nonconvergent for any value of 𝐶𝑟 (Singh, 1996). 

Nonlinear 4-points FD scheme for Kinematic-Wave Eq.(31) 

In HIRM-KW the solution of the Kinematic-Wave equation 
is obtained from a general implicit 4-points scheme, with 
weight factors for ℎ(𝑥, 𝑡) and 𝑄(𝑥, 𝑡), using Eq.(33) (or 
(34)) for the initial estimate of ℎ. Substituting (B.3.1) and 
(B.3.2) into Eq.(31), we get the finite difference equation: 

𝑎ℎ𝑖+1
𝑗+1

+ 𝜆(ℎ𝑖+1
𝑗+1
)
𝛽
= 𝐹

𝐹 ≡ 𝑎ℎ𝑖+1
𝑗

− (1 − 𝑎)(ℎ𝑖
𝑗+1

− ℎ𝑖
𝑗
) + 𝐻 + ∆𝑡𝑞𝐸

         (37) 

where 

𝜆 ≡ 𝑏
∆𝑡

∆𝑥
 ,

𝐻 = 𝜆 {(ℎ𝑖
𝑗+1
)
𝛽
−
(1−𝑏)

𝑏
[(ℎ𝑖+1

𝑗
)
𝛽
− (ℎ𝑖

𝑗
)
𝛽
]} 

          (38) 

Eq.(37) is nonlinear in the unknown ℎ𝑖+1
𝑗+1

, which can only 

be indirectly determined by solving, at each step, a system 
of linear equations (Press et al., 2002; Epperson, 2002). 

Since 𝐹 contains only known terms, the unknown ℎ𝑖+1
𝑗+1

 is 

calculated by the Newton-Raphson method, solving the 

equation 𝑔(ℎ𝑖+1
𝑗+1
) = 0 and re-writing Eq.(37) as: 

𝑣𝑘+1 = 𝑣𝑘 −
𝑔(𝑣𝑘)

𝑔′(𝑣𝑘)
,

𝑔(𝑣𝑘) = 𝜆𝑣𝑘
𝛽 + 𝑎𝑣𝑘 − 𝐹,

𝑔′(𝑣𝑘) =
𝑑𝑔(𝑣𝑘)

𝑑𝑣𝑘

                        (39) 

where 𝑣𝑘 = ℎ𝑖+1
𝑗+1

 is the value of ℎ𝑖+1
𝑗+1

 at the kth iteration. 

The convergence of the iterative process of Eq.(39) is 
reached when |𝑣𝑘+1 − 𝑣𝑘| ≤ 𝜀, where 𝜀 is a dimensionless 
critical parameter. 

A variant of FD scheme (37) 

By replacing (B.3.3) and (B.3.4) into Eq.(31) (or Eq.(32)), 
we obtain the equation: 

1

2
ℎ𝑖+1
𝑗+1

+ 𝜆(ℎ𝑖+1
𝑗+1
)
𝛽
= 𝐹

𝐹 ≡
1

2
(ℎ𝑖+1

𝑗
+ ℎ𝑖

𝑗
− ℎ𝑖

𝑗+1
) + 𝐻 + 𝑞𝐸∆𝑡

               (40) 

where 𝜆  and 𝐻  are defined by Eq.(38), 𝑎 ≡ 0.5  and 
0 ≤ 𝑏 ≤ 1 . Since Eq.(40) is a particular case of Eq.(37) 

with 𝑎 = 0.5 , its solution is iteratively obtained, by 
adapting the method described by Eqs.(39). Eqs.(37) and 
(40) are unconditionally stable, with an accuracy of the 
second order for 𝑏 > 0.5. It is worth to recall that accuracy 
is highly dependent on the choice of 𝛥𝑥 and 𝛥𝑡 in the 
implicit schemes (Ponce et al., 1978; Smith, 1985; Thomas, 
1995; Strikwerda, 2004). Eq.(40) may by also written in 
matrix form 

𝐴𝑖ℎ𝑖
𝑗+1

+ 𝐵𝑖ℎ𝑖+1
𝑗+1

= 𝐹

𝐹 ≡ ℎ𝑖
𝑗
(1 + 𝛿−𝐷𝑖

𝑗
) + ℎ𝑖+1

𝑗
(1 − 𝛿−𝐷𝑖+1

𝑗
) + 2𝑞𝐸∆𝑡

      (41) 

where 𝐴𝑖 , and 𝐵𝑖  are given by 

𝐴𝑖 ≡ (1 − 𝛿+𝐷𝑖
𝑗+1
), 𝐵𝑖 ≡ (1 + 𝛿+𝐷𝑖+1

𝑗+1
),

𝛿− ≡
2(1−𝑏)∆𝑡

∆𝑥
, 𝛿+ ≡

2𝑏∆𝑡

∆𝑥
 .

            (42) 

and 

𝐷𝑖
𝑗
≡

1

𝛽
(ℎ𝑖

𝑗
)
𝛽−1

, 𝐷𝑖
𝑗+1

≡
1

𝛽
(ℎ𝑖

𝑗+1
)
𝛽−1

,

𝐷𝑖+1
𝑗

≡
1

𝛽
(ℎ𝑖+1

𝑗
)
𝛽−1

, 𝐷𝑖+1
𝑗+1

≡
1

𝛽
(ℎ𝑖+1

𝑗+1
)
𝛽−1

 
           (43) 

For all the internal nodes, the system (41), can be 
consequently written as a tridiagonal square matrix which 
can be inverted by the Thomas algorithm (Thomas, 1995), 
allowing to solve the system: 

[
 
 
 
 
 
1
𝐴1
0
⋮
0
0

0
𝐵1
𝐴2
0
⋮
0

0
0
𝐵2
0
⋮
0

⋯
⋯
⋯
⋯
⋯
⋯

0
0
⋯
⋯
𝐴𝑁−1
0

0
0
0
⋮

𝐵𝑁−1
1 ]
 
 
 
 
 

[
 
 
 
 
 
 
 ℎ0

𝑗+1

ℎ1
𝑗+1

ℎ2
𝑗+1

⋮

ℎ𝑁−1
𝑗+1

ℎ𝑁
𝑗+1

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝐹0

𝑗

𝐹1
𝑗

𝐹2
𝑗

⋮

𝐹𝑁−1
𝑗

𝐹𝑁
𝑗
]
 
 
 
 
 
 
 

               (44) 

3.4 The software tool HIRM-KW 

The software tool HIRM-KW is based on the diagram 
presented in Fig.4, displaying the main processes involved 
during a dynamic simulation (see blocks A, B, C, D), 
including the surface runoff.  

 

Fig.4 - Conceptual model of the main hydrological processes 
simulated by HIRM-KW. 
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It is important to underline that HIRM-KW takes into 
account only Hortonian overland flow (D) and soil 
infiltration (C). For what concerns its component-based 
architecture, the HIRM-KW logical structure is reported in 
Fig.5. 

 

Fig.5 - Logical structure of the software tool HIRM-KW. 

The software was deliberately developed to simulate few 
processes, being aimed at the dynamic simulation of 
infiltration-runoff in lowland soils characterized by very 
low slopes, and it is able to simulate surface runoff on a 
single field or on different fields, subject to rainfall events 
without interruption. In order to perform a simulation 
with HIRM-KW, first of all the following field-related 
parameters must be defined: width (𝑊), length (𝐿), 
topographic slope (𝑆0) and a Manning’s surface roughness 
coefficient 𝑛0 . Moreover, physical and hydrological 
characteristics, namely the saturated hydraulic 
conductivity (𝐾𝑠), and the effective net capillary drive (𝐺𝑂) 
need to be known. The surface depression storage depth 
(ℎ𝑑) instead is estimated using a surface soil roughness 
ratio (𝑅𝐹𝑅). During a simulation, the runoff estimated by 
the Kinematic-Wave model starts when the infiltration 
capacity of the soil, evaluated with the Smith-Parlange 
equation, is exceeded. At the end of each simulation, the 
software provides several information: cumulative rainfall 
𝑅𝐶(𝑡); flow depth ℎ(𝑥, 𝑡); runoff expressed in terms of flow 
rate 𝑄(𝑥, 𝑡); cumulative infiltration 𝐹(𝑡), infiltration rate 
𝑓(𝑡), and infiltration capacity 𝑓𝑐(𝑡), obtained applying the 
two-parameters Smith-Parlange equation (Eq.(9), wiht 
𝛾 = 1). 

Tab.1 - Parameters calculated by the HIRM-KW model during a 
simulation. 

GLOBAL VOLUME BALANCE RUNOFF SUMMARY 

RAIN 
(mm) 

Total Rainfall depth 
PRR 

(mm/h) 
Peak of Rainfall 

Rate 

PSTO 
(mm) 

Water moisture remaining 
on the plane 

TRUN 
(min) 

Time of Runoff 

TINF 
(mm) 

Total volume infiltration 
DRUN 
(min) 

Duration of 
Runoff 

TRUN 
(mm) 

Total volume Runoff 
TPFR 
(min) 

Time to Peak 
Flow Rate 

TBAL 
(mm) 

Total storage, 
infiltration/Runoff terms 

PFR 
(mm/h) 

Peak of Flow 
Rate 

GVE (%) % Global Volume Error   

The Global Volume Balance (GVB) and a summary of the 
runoff process are also provided (see Tab.1). 
Unlike other similar models e.g.: KINEROS (Woolhiser et 
al., 1990), EUROSEM (Morgan et al., 1998), WEPP 
(Flanagan and Nearing, 1995; Laflen et al., 1991), 
HIRM-KW offers flexibility and usability because of the 
simplicity of its Graphical User Interface (see Fig.6 for a 
temporary screenshot), designed under MS.NET 
environment. 

 

Fig.6 – Screenshot of the HIRM-KW Graphic User Interface. 

Technically, the numerical core of HIRM-KW is written in 
standard C++ language (Press et al., 2002), and the GUI 
(Graphical User Interface) is written in C# (Nash, 2010). 
The numerical libraries are compiled as .net DLL (Dynamic 
Link Library) for allowing code portability into other 
components and applications (Lippman et al., 2000; Malik, 
2011). 

3.5 The EUROSEM Model 

EUROSEM (European Soil Erosion Model) is a single-event, 
process-based model for predicting soil erosion by water 
from fields and small cathments (Morgan et al., 1998). The 
model is based on a physical description of the erosion 
processes and operates for short time steps of about 
one-minute. During the simulation, rainfall is first 
intercepted by the plant canopy and then split into direct 
throughfall and leaf drainage and stemflow. After 
determining the kinetic energy of these components, 
EUROSEM calculates soil splash detachment and models 
infiltration in accordance with the numerical approach of 
Smith and Parlange (1978). Runoff is then routed over the 
soil surface using the Kinematic-Wave equation 
accompanied by the modeling of soil erosion as a 
continuous exchange of particles between the flow and the 
soil surface. The main model outputs are total runoff, total 
soil loss, the storm hydrograph and storm sediment graph. 
An accurate description of the model is provided by 
Morgan et al. (1998). EUROSEM model was extensively 
tested by several authors (e.g. Morgan et al., 1998; Folly et 
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al., 1999; Rosenmund et al., 2005; Mati et al., 2006;Velardo, 
2009); the software is freeware and free use and operates 
with a very rough command line and text interface (DOS 
like console in all Windows OS). 

4. HIRM-KW PERFORMANCES EVALUATION 

The current section is dedicated to present the results of 
some tests made to assess the computing performances of 
our model. The model validation is beyond the scope of 
this work. 

4.1 Running conditions 

Three different simulations were carried out, assuming an 
overland flow surface subject to the limitations described 
in Section 3.2.  

Tab.2 - Fixed parameters list. 

id Parameters Symbols Values Unit 

1 Length of field 𝐿 160 m 

2 Width of field 𝑊 120 m 

3 Bed slope 𝑆0 0.01 m/m 

4 Soil porosity 𝛷 0.48 m3/m3 

5 Basic Manning roughness coef. 𝑛𝑜 0.030 s/m1/3 

6 Effective net capillary drive 𝐺0 526 mm 

7 Initial value of soil water content 𝜃𝐼  0.35 m3/m3 

8 surface soil roughness ratio 𝑅𝐹𝑅 15 % 

9 Saturated soil water content 𝜃𝑆  0.42 m3/m3 

10 Net rainfall 𝑅𝑁𝐸𝑇 15 mm/h 

11 Total time of rainfall periods 𝑇𝑀𝐴𝑋 390 min 

Parameters kept fixed for all simulations are listed in 
Tab.2, while three values of 𝐾𝑠 were taken into account: 
2.5, 4.5 and 6.5 mm/h. Moreover, a thin layer of uniform 
flow was assumed as initial condition. 

4.2 Rainfall periods 

The overland flow plane was assumed to be subject to a 
constant rainfall regime of precipitation 𝑃𝑗  (mm); each 

period having equal duration 𝐷𝑗 (min). In other words, the 

rainfall excess was assumed to be uniformly distributed 
throughout the plane. The test hyetograph is composed by 
13 rainfall periods, width a rainfall rate of 15 mm/h. Then, 
the total duration is equal to 6.5 h and the cumulative 
rainfall, at the end of the simulation, is 97.25 mm. 

4.3 Numerical solution 

In the three simulations, a single overland plane was 
considered as shown in Fig.2 and the Kinematic-Wave 
model described in Section 3 was used, applying the 
non-linear implicit numerical scheme given by Eq.(40) and 
Eq.(33) (or (34)) for the initial estimate of ℎ . The 
numerical solution of the system was obtained using an 
1-minute time-step (∆𝑡 = 1) and a space-step (∆𝑥 ≃ 𝐿 𝑁⁄ ) 

about equal to 11.43 m (𝐿 = 160 𝑚, 𝑁 = 14). This latter 
value was iteratively calculated by varying the 
dimensionless parameter 𝑁  in order to satisfy the 
numerical stability, finally obtaining 15 equidistant nodes 
on the entire length (𝐿) of the plane. 

4.4 Simulations results comparison 

Results of the three simulations described above, were 
compared with analogous output data produced by 
EUROSEM model. 

 

 

Fig.7 - Comparison between Infiltration capacity 𝑓𝑐(𝑡) (fig.A) 
and Flow Rate 𝑄(𝑥, 𝑡)  (fig.B), simulated by EUROSEM 
(continuous-line) and HIRM-KW (dashed-line) corresponding to 
(a) 𝐾𝑠 = 2.5 𝑚𝑚/ℎ; (b) 𝐾𝑠 = 4.5 𝑚𝑚/ℎ; (c) 𝐾𝑠 = 6.5 𝑚𝑚/ℎ. 

The comparison is reported in Tab.3, focusing on two key 
variables: the infiltration capacity 𝑓𝑐(𝑡) and the water flow 
runoff 𝑄(𝑥, 𝑡) (Fig.7). 

Tab.3 – EUROSEM and HIRM-KW simulations results. 
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As clearly displayed, the output of the two models almost 
coincide for both variables. 

5. CONCLUSIONS 

This paper can be considered as a useful resource for 
anyone interested in the mathematical details behind soil 
water runoff process, as it outlines all steps from the basic 
laws of motion to the numerical solutions of partial 
differential equations, describing soil water dynamics. 
For what concers its simulation performances, the 
numerical output provided by HIRM-KW for runoff and 
infiltration processes was compared with the one 
produced by EUROSEM (one of the most popular soil 
erosion models), obtaining a good degree of agreement. 
Moreover, the HIRM-KW software was developed to be 
intuitive and simple to use, making it a valuable tool to 
produce reliable estimates or to support courses on 
numerical modelling of soil water dynamics, hydrological 
modelling and water agricultural management. 
Finally, it can be easily expanded by removing some of the 
limitations introduced in Section 3.2 (e.g. by keeping into 
account cover crops, variable rainfall distributions, wave 
diffusion for low bottom slopes, etc..), and by adapting it to 
the agricultural management of water resources. 
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APPENDIX A: BASIC FLOW-ROUTING EQUATIONS 

A.1 – Dynamic Wave models 

The equations of motion for free surface (or open-channel) flows 
in non-stationary conditions are commonly referred to as 
Dynamic-Wave equations. Dynamic-Wave models of surface 
runoff assume that the motion is described by a succession of 
instantly locally non-uniform motions, slowly varying in space 
and time (Eagleson, 1970; Chow et al., 1988; Brass, 1990; Linsley 
et al., 1982). 
In the one-dimensional form, they include the dynamic 
momentum equation: 

𝜕𝑈

𝜕𝑡
+ 𝑔

𝜕ℎ

𝜕𝑥
+ 𝑈

𝜕𝑈

𝜕𝑥
− 𝑔(𝑆0 − 𝑆f) = 0                  (A.1.1) 

where external inputs are negligible (Eagleson, 1970), and the 
continuity equation: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑞𝐸 , 𝑄 = 𝑈𝐴                           (A.1.2) 

By definition, 𝑄(𝑥, 𝑡) [𝐿3 𝑇⁄ ] is the volumetric flow rate crossing 
a section with velocity 𝑈(𝑥, 𝑡) per time unit 𝑡; 𝑈(𝑥, 𝑡) [𝐿/𝑇] is the 
average speed of the flow section in the direction of motion; 
ℎ(𝑥, 𝑡) [𝐿] is the portion of free surface (or flow depth) with 
respect to a reference plane; 𝐴(𝑥, 𝑡) [𝐿2] is the area of the liquid 
cross-section; 𝑆𝑓  is the (dimensionless) friction slope (i.e. the 

rate at which energy is lost along a given length channel); 
𝑆0 = tan𝜗 is bed slope (where 0 ≤ 𝜗 ≤ 90° is the inclination 
angle in degrees); 𝑔 [𝐿 𝑇2⁄ ] is the gravity acceleration; 𝑡 is time; 
𝑥  is the horizontal coordinate oriented in the direction of 
motion; 𝑞𝐸(𝑥, 𝑡) [𝐿

2 𝑇⁄ ] is the sum of the flows entering and 
leaving the section (also called lateral flow). 
In order to solve the system (A.1.1)-(A.1.2) and consequently 
find a solution for 𝑄(𝑥, 𝑡), it is necessary to know the average 
speed variation as a function of the independent variables 𝑡 and 
𝑥. 
For the open-channel flow several empirical formulas exist, 
holding for the cross-section averaged flow velocity (Henderson, 
1966; Chow, 1959). The most common ones the Chezy formula 
and the Manning formula, which can be expressed with the 
following general formulation: 

𝑈 = 𝑁√𝑆𝑓𝑅𝑎
𝛽−1 ≡

𝑁√𝑆𝑓

𝑃𝛽−1
𝐴𝛽−1                      (A.1.3) 

where 𝑅𝑎 = 𝐴 𝑃⁄  [𝐿] is the hydraulic radius, defined as the flow 
cross-sectional area 𝐴 divided by the wetted perimeter 𝑃 [𝐿] of 𝐴 
and 𝛽 is an index of nonlinearity. If the Chezy relationship is used, 

then 𝛽 ≡
3

2
 and 𝑁 ≡ 𝐶  (Chezy roughness coefficient 𝐶  has the 

dimensions [𝐿1 2⁄ 𝑇⁄ ]). If the Manning relationship is used, then 

𝛽 ≡
5

3
, and 

1

𝑁
≡ 𝑛  (Manning roughness coefficient 𝑛  as the 

dimensions [𝑇 𝐿1 3⁄⁄ ]). 

In natural channels 𝑛 and 𝐶 depend both on the geometry and 
the roughness of the wet perimeter; in cultivated land they also 
depend on surface roughness and vegetation cover. 
From the definition 𝑄 = 𝑈𝐴 and from the (Manning or Chezy) 
law of resistance (A.1.3) we obtain 

𝑄 = 𝛼 𝐴𝛽                                    (A.1.4) 

where 

𝛼 ≡
𝑁√𝑆𝑓

𝑃𝛽−1
≡

𝑁

𝑃𝛽−1
√𝑆0 −

1

𝑔
(
𝜕𝑈

𝜕𝑡
+ 𝑔

𝜕ℎ

𝜕𝑥
+ 𝑈

𝜕𝑈

𝜕𝑥
)            (A.1.5) 

substituting (A.1.4) into (A.1.2) 

𝜕𝐴

𝜕𝑡
+

𝜕

𝜕𝑥
(𝛼𝐴𝛽) = 𝑞𝐸                              (A.1.6) 

differentiating the second partial derivative of (A.1.6) 

𝜕

𝜕𝑥
(𝛼𝐴𝛽) = 𝛼

𝜕

𝜕𝑥
𝐴𝛽 + 𝐴𝛽

𝜕𝛼

𝜕𝑥
                       (A.1.7) 

performing the derivative 

𝜕

𝜕𝑥
𝐴𝛽 = 𝛽𝐴𝛽−1

𝜕𝐴

𝜕𝑥
                               (A.1.8) 

and substituting (A.1.8) into (A.1.7) finally leads  

𝜕𝐴

𝜕𝑡
+  𝛽𝛼𝐴𝛽−1

𝜕𝐴

𝜕𝑥
+ 𝐴𝛽

𝜕𝛼

𝜕𝑥
= 𝑞𝐸                      (A.1.9) 

Eqs.(A.1.4) and (A.1.9) are called Dynamics-Wave equations. 

A.2 – Approximate form of the Dynamic-Wave equation 

When the convective accelerations of a slow flow in non-uniform 
motion through a section 𝐴 are only locally negligible and both 
𝜕𝑈 𝜕𝑡⁄  and 𝜕𝑈 𝜕𝑥⁄  in (A.1.1) are approximately zero, the friction 
slope 𝑆𝑓  can be approximated as follows: 

𝑆𝑓 ≈ 𝑆0 −
𝜕ℎ

𝜕𝑥
≡ 𝑆̂𝑓 ,   (𝑆0 = tan𝜗)                    (A.2.1) 

For a wide channel of rectangular section, having width 𝑊 and 
height equal to the flow depth ℎ, the cross section is equal to 
𝐴 = 𝑊ℎ, and the wet perimeter becomes 𝑃 = 2ℎ +𝑊. So that, 
(A.1.9) can be re-written as: 

𝜕ℎ

𝜕𝑡
+ 𝛽𝛼𝐶ℎ

𝛽−1 𝜕ℎ

𝜕𝑥
+ ℎ𝛽

𝜕𝛼𝑐
𝜕𝑥

= 𝑞̃𝐸                     (A.2.2) 

where 𝑞̃𝐸 ≡ 𝑞𝐸 𝑊⁄  [L/T] is a flow speed (i.e. flow per unit width 
W) and 

𝛼𝐶(𝑥, 𝑡) ≡ (
𝑊

2ℎ+𝑊
)
𝛽−1

𝑁√𝑆̂𝑓                       (A.2.3) 

Now combining (A.2.3) with (A.1.4) we get 

𝑄 = 𝑊𝛼𝐶ℎ
𝛽                                    (A.2.4) 

In other words, the general discharge rate 𝑄 depends on both ℎ 

and the gradient 𝜕ℎ 𝜕𝑥⁄  through the term 𝑆̂𝑓 . Eq.(A.2.2) is 

referred to as Diffusion-Wave equations. 

A.3 – Approximate form of the Diffusion-Wave equation 

The Manning and Chezy resistance law (A.2.3) for the 
Diffusion-Wave (A.2.2) can be written as: 

𝛼𝐶(𝑥, 𝑡) = 𝑅√𝑆𝑓 ≅ 𝑅√𝑆0 −
𝜕ℎ

𝜕𝑥
                     (A.3.1) 

where 

𝑅 ≡ {
(

𝑊

2ℎ+𝑊
)
𝛽−1

𝐶,   𝛽 ≡
3

2
   (𝐶ℎ𝑒𝑧𝑦)

(
𝑊

2ℎ+𝑊
)
𝛽−1 1

𝑛
,   𝛽 ≡

5

3
   (𝑀𝑎𝑛𝑛𝑖𝑛𝑔)

              (A.3.2) 

If R is constant (or 𝑊 >> ℎ), then the second term of (A.2.2) can 
be expanded as follows 
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𝜕𝛼𝑐
𝜕𝑥

= 𝑅
𝜕

𝜕𝑥
(𝑆𝑓

1
2⁄ ) =

𝑅

2𝑆𝑓
1
2⁄

𝜕𝑆𝑓

𝜕𝑥
                      (A.3.3) 

then calculating 

𝜕𝑆𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑆0 −

𝜕ℎ

𝜕𝑥
) = −

𝜕

𝜕𝑥
(
𝜕ℎ

𝜕𝑥
) = −

𝜕2ℎ

𝜕𝑥2
               (A.3.4) 

and substituting into Eq.(A.3.3) 

𝜕𝛼𝑐
𝜕𝑥

= −
𝑅

2𝑆𝑓
1
2⁄

𝜕2ℎ

𝜕𝑥2
= −

𝛼𝑐
2𝑆

𝜕2ℎ

𝜕𝑥2
                       (A.3.5) 

we are finally able to obtain the diffusive term of (A.2.2) in the 
form 

ℎ𝛽
𝜕𝛼𝑐
𝜕𝑥

= −ℎ𝛽
𝛼𝑐
2𝑆

𝜕2ℎ

𝜕𝑥2
= −𝑘(ℎ)

𝜕2ℎ

𝜕𝑥2
                    (A.3.6) 

substituting (A.3.6) into Eq.(A.2.2), the Diffusion-Wave can be 
written as: 

𝜕ℎ

𝜕𝑡
+ 𝑐𝐾(ℎ)

𝜕ℎ

𝜕𝑥
− 𝑘(ℎ)

𝜕2ℎ

𝜕𝑥2
= 𝑞̃𝐸                       (A.3.7) 

where 

𝑐𝐾(ℎ) ≡ 𝛽𝛼𝐶ℎ
𝛽−1,   𝑘(ℎ) ≡

𝛼𝐶

2𝑆̂𝑓
ℎ𝛽                    (A.3.8) 

The coefficients 𝑐𝐾  [𝐿/𝑇] and 𝑘 [𝐿2 𝑇⁄ ] are the celerity and the 
hydraulic diffusivity of the approximate form of the 
Diffusion-Wave (DW), respectively. 
In (A.3.7), the flow is convective-diffusive, while the extra term 

𝑘(ℎ)
𝜕2ℎ

𝜕𝑥2
 is a standard form of Diffusion-Wave equation, arising 

from the inclusion of the pressure term in (A.2.1).  
(A.3.7) is formally similar to equations (11.34), (11.39) and 
(11.41) proposed by Singh (1996). 

A.4 – Kinematic Wave approximation 

The most radical approximation in Eqs.(A.2.2) and (A.3.7), 
known as the Kinematic-Wave (KW) approximation, neglects any 
inertial and gravitational effect induced by non-parallelism 
between the free surface and the bottom of the flow. At regime, 
the motion is considered as uniform, so the flow conditions at 
each point do not depend on time.  
As a consequence, friction slope and bed slope are approximately 
equal, and (A.1.1) and (A.2.1) can be approximated by: 

𝑆𝑓 ≈ 𝑆0 ≡ tan 𝜗                                (A.4.1) 

A.4.1.- Channels with arbitrary section 

When the approximation (A.4.1) is applied to a free surface 
channel, (A.1.4) is drastically simplified to: 

𝑄 =
𝑁√𝑆0

𝑃𝛽−1
𝐴𝛽 ≡ 𝛼𝐶𝐴

𝛽                             (A.4.2) 

Recalling (A.1.5), if the Chezy relationship is used, then 

𝛼𝐶 ≡ 𝐶√𝑆0 𝑃𝛽−1⁄ ; on the other hand, if the Manning relationship 

is used, then 𝛼𝐶 ≡ √𝑆0 𝑛𝑃𝛽−1⁄ . 

Dealing with motion in channels of arbitrary section, it is more 
appropriate to write the Kinematic-Wave equation in terms of 𝑄. 
We get then, from Eq.(A.4.2): 

𝐴 = 𝛼∗𝑄
𝛽∗                                     (A.4.3) 

where 𝛼∗ ≡ (1 𝛼𝐶⁄ )𝛽∗ , and 𝛽∗ ≡ 1 𝛽⁄ . According to (A.3.2), 
𝛽∗ ≡ 3 5⁄  in the Manning formula and 𝛽∗ ≡ 2 3⁄  in the Chezy 

formula. Combining (A.4.2) with the continuity equation (A.1.2), 
we can conclude: 

𝜕𝑄

𝜕𝑡
+ 𝑐𝐾

𝜕𝑄

𝜕𝑥
= 𝑐𝐾𝑞𝐸                               (A.4.4) 

where 

𝑐𝐾 ≡
1

𝛼∗𝛽∗𝑄
𝛽∗−1

                                  (A.4.5) 

Eq.(A.4.4) is the most common form of the Kinematic-Wave 
equation, used to calculate an open-channel flow passing 
through any channel section, under the assumption of uniform 
motion. 

A.4.2.- Channels with a rectangular section 

Because of the approximation (A.4.1), the coefficient 𝛼𝐶  in 
(A.2.2) includes only the assigned parameters 𝑛 (or 𝐶), 𝑃 and 𝑆0. 
It follows that 𝜕𝛼𝐶 𝜕𝑥 = 0⁄ , and consequently: 

𝜕ℎ

𝜕𝑡
+ 𝑐𝐾

𝜕ℎ

𝜕𝑥
= 𝑞̃𝐸                                  (A.4.6) 

where 

𝑐𝐾 ≡ 𝛽𝛼𝐶ℎ
𝛽−1                                 (A.4.7) 

In this case the discharge rate 𝑄 is defined by (A.4.2), namely the 
Kinematic-Wave approximation for uniform flows across 
rectangular section channels. 

A.4.3.- Wave Celerity of the Kinematic-Wave equation 

From a physical point of view, celerity is the speed at which the 
wave propagates in the direction of motion; in other terms, it is 
the celerity at which a wave crosses a section 𝐴. Celerity 𝑐𝐾  has 
the dimensions of [𝐿/𝑇] and derives from the definition of wave 
velocity 𝑐𝐾 = 𝑑𝑥 𝑑𝑡⁄  leading to 𝑐𝐾 = 𝛽𝑈(𝑥, 𝑡)  where 𝑈  [𝐿/𝑇]  is 
the average wave propagation speed (Singh, 1996). 
In the Kinematic-Wave models (A.4.4) and (A.4.6) , celerity 𝑐𝐾  
defined by  

𝑐𝐾 = 𝛽𝑈(𝑥, 𝑡) {
≡ 𝛽𝛼𝐶ℎ

𝛽−1  (𝑝𝑙𝑎𝑛𝑒𝑠)

≡ 𝛽
𝛼𝐶
1 𝛽⁄

𝑄(1−𝛽) 𝛽⁄
, (𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)

            (A.4.8) 

Clearly, celerity 𝑐𝐾  is a function of the flow depth ℎ and of the 
resistance law adopted (see e.g. Singh, 1996; Brass, 1990; Chow, 
1982). In the explicit numerical finite difference schemes, the 
wave celerity is used to control numerical stability. 

A.4.4.- Criterion of applicability of the Kinematic-Wave model 

Woolhiser and Liggett (1967) have derived a criterion for 
judging the goodness of kinematic wave approximation in 
modelling flow over a sloping plane subject to rainfall or lateral 
inflow. 
The criterion of applicability of the Kinematic-Wave model is 
based on two dimensionless coefficients:  

the Froude number, defined by 

𝐹𝑟
2 =

𝑈2

𝑔ℎ𝐿
                                     (A.4.9) 

and the Kinematic flow number, defined by 

𝐾 =
𝐿 𝑆0

ℎ𝐿 𝐹𝑟
2 ≡

𝐿 𝑆0 𝑔

𝑈2
                             (A.4.10) 

where 𝑆0 is the bed slope of plane; 𝐿 is the length of plane or 
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channel, 𝑔 is the gravity acceleration, ℎ𝐿  is the flow height at 
𝑥 = 𝐿 . Sometimes these two parameters are indicated by 

𝐹𝑟
2𝐾 ≡ 𝐿 𝑆0 ℎ𝐿⁄  . 

In planes or channels with rectangular section, (A.4.9)-(A.4.10) 
can be based on physically significant and measurable 
parameters: 

𝐾 ≡
𝑔 𝑛1.2𝑆0

0.4𝐿0.2

𝑖𝑚𝑎𝑥
0.8 ;   𝐹𝑟 ≡

𝑆0
0.45(𝐿 𝑖𝑚𝑎𝑥)

0.1

𝑛0.9√𝑔
 .              (A.4.11) 

if the Manning formula is used. 

𝐾 ≡
𝑔 (𝑆0 𝐿)

0.33

𝐶1.33 𝑖𝑚𝑎𝑥
0.66 ;   𝐹𝑟 ≡ 𝐶 √

𝑆0

𝑔
                     (A.4.12) 

if the Chezy formula is used. The term 𝑖𝑚𝑎𝑥  [𝐿/𝑇] is the maximum 
rate of lateral inflow. 
As we already known, it is defined as the maximum specific 
intensity 𝑖𝑚𝑎𝑥 = 𝑃𝑚𝑎𝑥 𝐷𝑚𝑎𝑥⁄ , where 𝑃𝑚𝑎𝑥  is the maximum 
precipitation amount, occurring in the 𝐷𝑚𝑎𝑥  time interval. 

A.4.5.- Estimation of Manning coefficient 𝑛 

Manning coefficient n is used in HIRM-KW to describe the 
roughness imparted to the flow and its value represents the 
summation of roughness (friction) effects (Chow, 1959): 

𝑛 ≅ (𝑛0 + 𝑛𝑔 + 𝑛𝑣 + 𝑛𝑚)𝑚𝑛                      (A.4.13) 

where 𝑛0  is the initial roughness coefficient, 𝑛𝑔  is the grain 

roughness due to the soil particles, 𝑛𝑣 is the roughness imparted 
by vegetation, and 𝑛𝑚 is the micro-topographic roughness of the 
soil surface; 𝑚𝑛 is a parameter ranging between 1.0 (bare soil) 
and 1.2. Since 𝑛 cannot be directly measured, its value needs to 
be estimated.  
In general, standard textbooks (e.g., Chow, 1959; Linsley et al., 
1982) provide typical 𝑛 values for open-channel flow. 

A.5 – Derivation of effective capillary drive 𝑮, from Eq.(13) 

By substituting Brooks and Corey Eqs.(13) into Eq.(12) and 
integrating between 𝜃𝐼 and 𝜃, we get 

𝐺(𝜃) = ∫ 𝜗(𝜃)3+2 𝜆⁄ (
𝑑𝜓

𝑑𝜃
) 𝑑𝜃

𝜃

𝜃𝐼
                      (A.5.1) 

where 

𝜗(𝜃) =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
= (

𝛹𝐵

𝛹
)
𝜆

                           (A.5.2) 

(dimensionless) is the relative volumetric water content of the 

soil profile with suction head 𝜓  . The derivative 
𝑑𝜓

𝑑𝜃
 can be 

evaluated by 

𝑑𝜓

𝑑𝜃
= −

𝜓𝐵

𝜆 𝜗1+1 𝜆⁄

𝑑𝜗

𝑑𝜃
                               (A.5.3) 

Then, by substituting (A.5.3) into (A.5.1) we get 

𝐺(𝜃𝐼 , 𝜃) = −
𝜓𝐵

𝜆
∫

𝜗3+2 𝜆⁄

𝜗1+1 𝜆⁄ 𝑑𝜗
𝜃

𝜃𝐼
≡ −

𝜓𝐵

𝜆
∫ 𝜗2+1 𝜆⁄ 𝑑𝜗
𝜃

𝜃𝐼
        (A.5.4) 

In the end, Eq.(A.5.4) can be obtained by performing the definite 
integral (Ogden et al., 1997): 

𝐺(𝜃𝐼 , 𝜃) = −
𝜓𝐵

𝜆
(
𝜗3+1 𝜆⁄ −𝜗𝐼

3+1 𝜆⁄

3+1 𝜆⁄
)                     (A.5.5) 

Note that when 𝜓 → 0 (at the saturation) then 𝜃 → 𝜃𝑆 end 𝜗(𝜃) ≡ 1 

and consequently Eq.(A.5.5) reduced to Eq.(14). 

APPENDIX B: FINITE DIFFERENCE METHODS (FDM) 
Finite differencing is a technique thanks to which continuous 
phenomena can be approximated by discrete functions. The 
basic FDM idea is to replace each derivative with a finite 
incremental ratio (see e.g. Strikwerda, 2004; Holden and 
Stephenson, 1995; Smith, 1995). 
Doing so a PDE can be converted into an algebraic equation 
involving values assumed by the equation variables at certain 
discrete points in space and time (Figs.B). 
Such discrete points are often called nodes and the intervals in 
space and time are called mesh increments. Nodes and mesh 
increments form a solution mesh. The mesh increment size may 
or may not be equal in all spatial directions used, and they may 
or may not be uniform throughout the solution mesh (Hillel, 
1980, Smith, 1985).  
The main additional restriction of a finite difference model is its 
accuracy, in comparison with the solution of PDE itself. However, 
if a finite-difference model is valid, then it converges to the PDE 
as the mesh increments approach to zero (Richtmyer and 
Morton, 1967). 

 

Fig.B.1: solution mesh of the linear 3-points FDB scheme. The unknown 

node ℎ𝑖+1
𝑗+1

 is determinate by known node ℎ𝑖
𝑗
 , ℎ𝑖

𝑗+1
 , ℎ𝑖+1

𝑗
 . 

 

Fig.B.2: solution mesh of the nonlinear 4-points FD scheme. In this case 

the unknown node ℎ𝑖+1
𝑗+1

 can be determinate only by using an iterative 

method. 

Different approximations for the derivatives lead to different 
numerical schemes: Full Implicit/Explicit, Lax-Friedrichs, 
Crank-Nicolson, Preissmann, etc.  
Depending on the solving scheme of the problem, these methods 
are divided in two types: implicit and explicit. In the first case, the 
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solution is directly found by linearly expressing the variable to 
be determined; in the second case, the solution is obtained 
iteratively by non-linear methods (e.g. Press et al., 2002; 
Epperson, 2002; Liggett and Cunge, 1975). 
Fig.B.1 shows the FDB of the linear 3-points scheme, while Fig.B.2 
displays the nonlinear 4-points FD scheme, where "a" and "b" are 
the weight factors of the partial derivatives (see e.g. Singh, 1996; 
Preissmann, 1961; Wood, 1993; Holden and Stephenson, 1988, 
1995). 
The explicit finite differences schemes lend themselves to 
approximate problems of linear type, or related to linear type. 
They have the disadvantage of easily becoming unstable, 
meaning the inevitable approximation errors become so large 
that the solution is destroyed (Linsley et al., 1982). Since it is 
often difficult, or even impossible, to prove the convergence of a 
numerical method (i.e. the existence of a unique approximated 
solution), hence a less restrictive (necessary but not sufficient) 
stability condition is generally imposed. This restriction is called 
Courant- Friedrichs-Lewy Condition (Courant et al., 1967), and 
the corresponding explicit schemes are called conditionally 
stable. In an explicit scheme the pattern on the discretized plane 
(𝑥𝑖 , 𝑡𝑗) is built with time step ∆𝑡, and spatial step ∆𝑥, which have 

to be adequately chosen at the beginning of calculation. The 
subscripts 𝑖 and 𝑗 denote incremented space and time levels, 
respectively. 

B.1 – Linear 3-points FDB schemes of Eq.(33) 

If the initial conditions are the nodal points ℎ𝑖
𝑗
,  ℎ𝑖

𝑗+1
,  ℎ𝑖+1

𝑗
 then 

we obtain an implicit linear three-point backward scheme and the 
FD approximations for the derivative is given by: 

𝜕ℎ

𝜕𝑡
≈

 ℎ𝑖+1
𝑗+1

−ℎ𝑖+1
𝑗

∆𝑡
                       (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡𝑖𝑚𝑒),

𝜕ℎ

𝜕𝑥
≈

 ℎ𝑖+1
𝑗+1

−ℎ𝑖
𝑗+1

∆𝑥
                       (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑖𝑛 𝑠𝑝𝑎𝑐𝑒),

 𝑞̅𝐸 ≈ 0.5( 𝑞𝑖+1
𝑗

+ 𝑞𝑖
𝑗+1
),

𝑞𝑖+1
𝑗

≡ (𝑖 − 𝑓)𝑖+1
𝑗
,   𝑞𝑖

𝑗+1
≡ (𝑖 − 𝑓)𝑖

𝑗+1
.

        (B.1.1) 

B.2 – Linear 3-points FDB schemes of Eq.(34) 

If the initial conditions correspond to the nodal points ℎ𝑖
𝑗
, ℎ𝑖

𝑗+1
, 

ℎ𝑖+1
𝑗

, we obtain an explicit linear three-point backward scheme of 

the form: 

𝜕ℎ

𝜕𝑡
≈

ℎ𝑖+1
𝑗+1

−ℎ𝑖+1
𝑗

∆𝑡
      (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡𝑖𝑚𝑒),

𝜕ℎ

𝜕𝑥
≈

ℎ𝑖+1
𝑗

−ℎ𝑖
𝑗

∆𝑥
         (𝑏𝑎𝑘𝑤𝑎𝑟𝑑 𝑖𝑛 𝑠𝑝𝑎𝑐𝑒),

𝑞̅𝐸 ≈ 0.5( 𝑞𝑖
𝑗+1

+ 𝑞𝑖
𝑗
),

𝑞𝑖
𝑗
≡ (𝑖 − 𝑓)𝑖

𝑗
,   𝑞𝑖

𝑗+1
≡ (𝑖 − 𝑓)𝑖

𝑗+1
.

                (B.2.1) 

B.3 – Nonlinear 4-points FD Schemes of Eq.(37) 

In order to reduce the problems of numerical stability and 
convergence in linear explicit systems, various authors suggest 
the employment of nonlinear implicit schemes, which turn out to 
be much more stable. These schemes are classified as 
unconditionally stable and they are not subject to the 
Courant-Friedrichs-Lewy condition (Ponce et al., 1978). 
Considering ℎ as a variable of the system and referring to the 

scheme of Fig.B.2, the terms ℎ , 𝑞𝐸  , 
𝜕ℎ

𝜕𝑥
 and 

𝜕ℎ

𝜕𝑡
, can be 

approximated as follows (Preissmann, 1961; Holden and 
Stephenson, 1988, 1995; Wood, 1993): 

𝜕ℎ

𝜕𝑡
≈

(1−𝑎)

∆𝑡
(ℎ𝑖+1

𝑗+1
− ℎ𝑖

𝑗
) +

𝑎

∆𝑡
(ℎ𝑖+1

𝑗+1
− ℎ𝑖+1

𝑗
),

𝜕ℎ

𝜕𝑥
≈

(1−𝑏)

∆𝑥
(ℎ𝑖+1

𝑗
− ℎ𝑖

𝑗
) +

𝑏

∆𝑥
(ℎ𝑖+1

𝑗+1
− ℎ𝑖

𝑗+1
)

             (B.3.1) 

and (B.3.2) 

ℎ ≈ (1 − 𝑏)(𝑎ℎ𝑖+1
𝑗

+ (1 − 𝑎)ℎ𝑖
𝑗
) + 𝑏(𝑎ℎ𝑖+1

𝑗+1
+ (1 − 𝑎)ℎ𝑖

𝑗+1
)

𝑞𝐸 ≈ (1 − 𝑏)(𝑎𝑞𝑖+1
𝑗

+ (1 − 𝑎)𝑞𝑖
𝑗
) + 𝑏(𝑎𝑞𝑖+1

𝑗+1
+ (1 − 𝑎)𝑞𝑖

𝑗+1
)
  

where ℎ𝑖
𝑗

, ℎ𝑖
𝑗+1

, ℎ𝑖+1
𝑗

 are the assigned nodal points; ℎ𝑖+1
𝑗+1

 is 

indirectly calculated from known points; 𝑎 is the space weighting 
parameter; 𝑏 is the time weighting parameter (see Fig.B.2). The 
coefficients 𝑎 and 𝑏 are dimensionless, ranging between 0 and 1 
(typical values are 0.6 ≤ 𝑏 ≤ 0.7  and 𝑎 = 0.5  - Ponce et al., 
1978).  
By assigning suitable values to 𝑎  and 𝑏  in (B.3.1), different 
implicit and explicit patterns can be obtained (e.g., setting 
𝑎 = 1/2 and 𝑏 = 1 results in a fully explicit numerical scheme). 

Modified Preissmann scheme 

A widely employed variant of formulas (B.3.1) and (B.3.2) 

derives by setting 𝑎 ≡
1

2
, 0.6 ≤ 𝑏 ≤ 1, resulting in the 4-points 

implicit scheme: 

𝜕ℎ

𝜕𝑡
≈

(ℎ𝑖+1
𝑗+1

−ℎ𝑖+1
𝑗

+ℎ𝑖
𝑗+1

−ℎ𝑖
𝑗
)

2∆𝑡
,

𝜕ℎ

𝜕𝑥
≈

(1−𝑏)

∆𝑥
(ℎ𝑖+1

𝑗
− ℎ𝑖

𝑗
) +

𝑏

∆𝑥
(ℎ𝑖+1

𝑗+1
− ℎ𝑖

𝑗+1
)

              (B.3.3) 

and 

ℎ ≈
1

2
[𝑏(ℎ𝑖+1

𝑗+1
− ℎ𝑖

𝑗+1
) + (1 − 𝑏)(ℎ𝑖+1

𝑗
− ℎ𝑖

𝑗
)],

𝑞𝐸 ≈ 𝑏𝑞̅
𝑗+1 + (1 − 𝑏)𝑞̅𝑗

   

𝑞̅𝑗+1 ≡
1

2
( 𝑞𝑖+1

𝑗+1
+ 𝑞𝑖

𝑗+1
), 𝑞̅𝑗 ≡

1

2
( 𝑞𝑖+1

𝑗
+ 𝑞𝑖

𝑗
),

           (B.3.4) 

where the terms 
𝜕ℎ

𝜕𝑥
, ℎ and 𝑞𝐸  are weighted by 𝑏. 


