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INTERACTING GENERALIZED PÓLYA URN SYSTEMS

GIACOMO ALETTI AND ANDREA GHIGLIETTI

Abstract. We consider a system of interacting Generalized Pólya Urns (GPUs) having irreducible
mean replacement matrices. The interaction is modeled through the probability to sample the
colors from each urn, that is defined as convex combination of the urn proportions in the system.
From the weights of these combinations we individuate subsystems of urns evolving with different
behaviors. We provide a complete description of the asymptotic properties of urn proportions in
each subsystem by establishing limiting proportions, convergence rates and Central Limit Theorems.
The main proofs are based on a detailed eigenanalysis and stochastic approximation techniques.

Keywords. Interacting systems, Generalized Pólya urn models, Central Limit Theorems, Strong
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1. Introduction

The stochastic evolution of systems composed by elements which interact among each other has
always been of great interest in several areas of application, e.g. in medicine a tumor growth is
the evolution of a system of interacting cells [34], in socio-economics and life sciences a collective
phenomenon reflects the result of the interactions among the individuals [27], in physics the con-
centration of certain molecules within cells varies over time due to interactions between different
cells [31]. In the last decade several models have been proposed in which the elements of the system
are represented by urns containing balls of different colors, in which the urn proportions reflect the
status of the elements, and the evolution of the system is established by studying the dynamics at
discrete times of this collection of dependent urn processes. The main reason of this popularity is
concerned with the urn dynamics, which is (i) suitable to describe random phenomena in different
scientific fields (see e.g. [21]), (ii) flexible to cover a wide range of possible asymptotic behaviors,
(iii) intuitive and easy to be implemented in several fields of application.

The dynamics of a single urn typically consists in a sequential repetition of a sampling phase,
when a ball is sampled from the urn, and a replacement phase, when a certain quantity of balls is
replaced in the urn. The basic model is the Pólya’s urn proposed in [16]: from an urn containing
balls of two colors, balls are sequentially sampled and then replaced in the urn with a new ball of
the same color. This updating scheme is then iterated generating a sequence of urn proportions
whose almost sure limit is random and Beta distributed. Starting from this simple model, several
interesting variations have been suggested by considering different distributions in the sampling
phase, e.g. [19, 20], or in the replacement phase, e.g. [3, 18, 30]. In a general K−colors urn model,
the sampled color is usually represented by a vector Xn such that Xk,n = 1 when the color is
k ∈ {1, ..,K}, Xk,n = 0 otherwise; the quantities of balls replaced in the urn are typically defined
by a matrix Dn such that Dik,n indicates the number of balls of color i replaced in the urn when the
color k is sampled. Considering {Dn;n ≥ 1} as an i.i.d. sequence, a crucial element to characterize
the asymptotic behavior of the urn is the mean replacement matrix H := E[Dn], typically called
generating matrix.
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The class of urn models considered in this paper is commonly denoted by Generalized Pòlya’s
Urn (GPU), or Generalized Friedman’s Urn (GFU). The GPU model was introduced in [18] and
its extensions and their asymptotic behavior have been studied in several works, see e.g. [4, 5, 6,
33]. The GPU considered in this paper is characterized by a non-negative irreducible generating
matrix H with average constant balance, i.e. the columns of H sum up at the same constant∑K

i=1Hik = c > 0 for any k ∈ {1, ..,K}, which implies that its maximum eigenvalues λmax(H) = c
has multiplicity one. The irreducibility of H distinguishes the GPU from the Randomly Reinforced
Urn (RRU) model, which includes the classical Pòlya’s Urn, whose replacement matrix is diagonal:
when the color k is sampled, the GPU replaces in the urn more colors following the distribution of
the kth column of Dn while the RRU only adds balls of colors k; hence, the probability to sample
color k at next step is reinforced in the RRU, while it may increase or decrease according to the
current urn composition in the GPU. As a consequence, the asymptotic behavior is in general very
different: in a GPU the urn proportion converges to a deterministic equilibrium identified by H
(see e.g. [4, 5, 6, 33]), while in a RRU the limit is random and its distribution depends on the initial
composition (see e.g. [1, 2, 15]).

The model proposed in this paper is a collection of N ≥ 1 GPUs that interact among each other
during the sampling phase: the probability to sample a color k in each urn j is a convex combination
of the urn proportions of the entire system. Hence, a crucial role to describe the system dynamics is
played by the interacting matrix W made by the weights of those combinations. Since the properties
of the single GPUs are determined by the corresponding generating matrices {Hj ; 1 ≤ j ≤ N} and
the interaction among them are ruled by W , the system dynamics has been studied by defining
a new object Q that merges the information contained in {Hj ; 1 ≤ j ≤ N} and W . From the
analysis of the eigenstructure of Q, we are able to establish the convergence and the second-order
asymptotic behavior of the urn proportions in the entire system. Hence, this paper extends the
theory on GPU models in the sense that, in the special case of no interaction, i.e. W = I, the
results presented for the system reduce to the well-known results for a single GPU.

Several interacting urn models have been proposed in the last decade, especially for RRU models.
An early work is represented by [29] that considered a collection of two-colors RRU in which the
sequence {Dn;n ≥ 1} is not i.i.d. since the replacements in each urn depend on the colors sampled
in the rest of the system. Therefore, in [29] the interaction is modeled through the definition of Dn,
instead of Xn as in our model. A complete different updating rule has been used in the two-color
urn model proposed in [26], in which sampling color 1 in the urn j increases the composition of
color 1 in the urn j, while sampling color 2 increases the composition of color 2 in the neighbor urns
i 6= j and the urn j comes back to the initial composition. Asymptotic properties for this system
have been obtained in [26] where there is no convergence of the urn proportions. Other models in
which the interaction enters in the replacement matrices are for instance [11, 10, 8].

Recently there have been more works concerning urn systems in which the interaction is modeled
through the sampling probabilities as in our model. They differ from this paper since all of them
consider RRUs and the interaction is only modeled as mean-field interaction tuned by a parameter
α ∈ (0, 1), i.e. the urns interact among each other only through the average composition in the
entire system. As a consequence, their asymptotic results lead to the synchronization property
in which all the urn proportions of the system converge to the same random limit. In particular,
in [24, 25] the asymptotic behavior of the urn system has been studied for a model that defines the
sampling probabilities through the exponential of the urn compositions. In [13, 12] the sampling
probabilities are defined directly using the urn compositions and the synchronization property has
been proved; moreover, different convergence rates and second-order asymptotic distributions for
the urn proportion have been established for different values of the tuning parameter α. Since we
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consider GPU models the asymptotic results established in this paper are totally different from
those proved in [13, 12], e.g. our limiting proportion is not random and it does not depend on the
initial compositions.

It is also significant to highlight that this work allows a general structure for the urn interaction,
which reduces to the mean-filed interaction only for a particular choice of the interacting matrixW .
Moreover, from the analysis of the structure of W we are able to individuate subsystems of urns
evolving with different behaviors: (i) the leading systems, whose dynamics is independent of the rest
of the system and (ii) the following systems, whose dynamics “follows” the evolution of other urns
of the system; in the special case of irreducible interacting matrix, which includes the mean-filed
interaction considered in [13, 12], there is a unique leading system and no following systems. These
two classes of systems have been studied separately, in order to provide an exhaustive description of
the asymptotic behavior in any part of the system. In fact, since different systems may converge at
different rates, a unique central limit theorem would not been able to characterize the convergence
of any urn proportion. Hence, through a careful analysis on the eigen-structure of Q, we individuate
the components of the urn processes in the system that actually “lead” or influence the following
systems, so that we can establish the right convergence rate and a non-degenerate asymptotic
distribution for any subsystem.

A pivotal technique in the proofs consists in revisiting the dynamics of the urn proportions of
the system in the stochastic approximation (SA) framework, as suggested for the composition of a
single GPU in [23]. To this end, the dynamics of the urn proportions has been properly modified
here to embed the processes of the urn proportion into the whole space R

K .
The structure of the paper is the following. In Section 2 the interacting GPU model is described

and the main assumptions are presented. Section 2 is also dedicated to analyze the structure of
the interacting matrix and hence to define the leading and the following systems. In Section 3 the
system dynamics is expressed in the stochastic approximation form and the necessary notation is
introduced. The asymptotic results for the leading and following systems are presented in Section 4
and 5, respectively. Section 6 contains a brief discussion on further possible extensions of the
interacting GPU model. Finally, the proofs are presented in Section 7.

2. Model Setting and main Assumptions

Consider a collection of N ≥ 1 urns containing balls of K ≥ 1 different colors. At any time

n ≥ 0 and for any urn j ∈ {1, .., N}, let Y j
k,n > 0 be the number of balls of color k ∈ {1, ..,K},

T j
n :=

∑K
k=1 Y

j
k,n be the total number of balls and let Zj

k,n := Y j
k,n/T

j
n be the proportion of color k.

2.1. Model. We now describe precisely how the system evolves at any time n ≥ 1. Denote by
Fn−1 the σ-algebra generated by the urn compositions of the entire system up to time (n− 1), i.e.

Fn−1 := σ
(
Y j
k,n−1, 1 ≤ j ≤ N, 1 ≤ k ≤ K

)
.

The dynamics of the system is described by two main phases: sampling and replacement.

Sampling phase: for each urn j ∈ {1, .., N}, a ball is virtually sampled and its color is represented

as follows: Xj
k,n = 1 indicates that the sampled ball is of color k, Xj

k,n = 0 otherwise. We denote

by Z̃j
k,n−1 the probability to sample a ball of color k in the urn j at time n, i.e.

Z̃j
k,n−1 := E

[
Xj

k,n | Fn−1

]
.
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Given the sampling probabilities {Z̃j
k,n−1, 1 ≤ j ≤ N, 1 ≤ k ≤ K}, the colors are sampled in-

dependently in all the urns of the system and hence, for any k ∈ {1, ..,K}, X1
k,n, ..,X

N
k,n are

independent conditionally on Fn−1. We define the sampling probabilities as convex combinations
of the urn proportions of the system. Formally, for any urn j ∈ {1, .., N} we introduce the weights

{wjh; 1 ≤ h ≤ N} such that 0 ≤ wjh ≤ 1 and
∑N

h=1wjh = 1. Thus, the probability to sample the
color k in the urn j is defined as follows

(1) Z̃j
k,n−1 :=

N∑

h=1

wjhZ
h
k,n−1.

Replacement phase: after that a ball of color k has been sampled from the urn j, we replace

Dj
ik,n balls of color i ∈ {1, ..,K} in the urn j. For any urn j we assume that {Dj

n;n ≥ 1} is a

sequence of i.i.d. non-negative random matrices, where Dj
n := [Dj

ik,n]ik. We will refer to Dj
n as

replacement matrix and to Hj := E[Dj
n] as generating matrix. Notice that Hj are time-independent

since {Dj
n;n ≥ 1} are identically distributed (see Subsection 6 for possible extensions). Moreover,

we assume that at any time n the replacement matrix for the urn j, i.e. Dj
n, is independent of the

sampled colors, i.e. {Xj
k,n; 1 ≤ j ≤ N}, and independent of the replacement matrices of the other

urns of the system, i.e. Dj0
n with j0 6= j.

In conclusion, the composition of the color i ∈ {1, ..,K} in the urn j ∈ {1, .., N} evolves at time
n ≥ 1 as follows:

(2) Y j
i,n = Y j

i,n−1 +
K∑

k=1

Dj
ik,nX

j
k,n.

2.2. Main assumptions. We now present the main conditions required to establish the results
of the paper. The first assumption is concerned with bounds for the moments of the replacement
distributions. Specifically, we require the following condition:

(A1) there exists δ > 0 and a constant 0 < Cδ < ∞ such that, for any j ∈ {1, .., N} and any

i, k ∈ {1, ..,K}, E[(Dj
ik,n)

2+δ ] < Cδ.

Note that Cδ does not depend on n since {Dj
n;n ≥ 1} are identically distributed.

The second assumption is the average constant balance of the urns in the system and it is imposed
by the following condition on the generating matrices H1, ..,HN :

(A2) for any j ∈ {1, .., N} and k ∈ {1, ..,K}, there exists a constant 0 < cj < ∞ such that∑K
i=1H

j
ik = cj .

Note that (A2) guarantees that the average number of balls replaced in any urn is constant, re-
gardless its composition. Assumption (A2) is essential to obtain the asymptotic configuration of
the system, i.e. the limiting urn proportions. The second-order asymptotic properties of the inter-
acting urn system, namely the rate of convergence and the limiting distributions, are obtained by
assuming a stricter assumption than (A2). This condition is expressed as follows:

(A’2) for any j ∈ {1, .., N}, k ∈ {1, ..,K}, P
( ∑K

i=1D
j
ik,n = cj

)
= 1, i.e. each urn is updated

with a constant total amount of balls.



INTERACTING GENERALIZED PÓLYA URN SYSTEMS 5

Without loss of generality, we may (and do) assume that cj = 1 for all j ∈ {1, .., N}. In fact, by

defining Ŷ j
k,n = (cj)−1Y j

k,n and D̂j
ik,n = (cj)−1Dj

ik,n for all n ≥ 1, the urn dynamics in (2) can be

expressed in the following equivalent form:

Ŷ j
i,n = Ŷ j

i,n−1 +
K∑

k=1

D̂j
ik,n ·Xj

k,n, Ẑj
k,n−1 =

Ŷ j
k,n−1∑K

k=1 Ŷ
j
k,n−1

=
Y j
k,n−1∑K

k=1 Y
j
k,n−1

= Zj
k,n−1.

Therefore, from now on we will denote by Y j
k,n and Dj

ik,n the normalized quantities Ŷ j
k,n and D̂j

ik,n

and hence (A2) and (A’2) are replaced by the following conditions:

(A2) for any j ∈ {1, .., N} and k ∈ {1, ..,K}, ∑K
i=1H

j
ik = 1.

(A’2) for any j ∈ {1, .., N} and k ∈ {1, ..,K}, P
( ∑K

i=1D
j
ik,n = 1

)
= 1.

Finally, we consider Generalized Pòlya urn (GPU) with irreducible generating matrices, as ex-
pressed in the following condition:

(A3) for any j ∈ {1, .., N}, Hj is irreducible.

This assumption will guarantee deterministic asymptotic configurations for the urn proportions in
the system. Less restrictive conditions to establish deterministic limiting proportion are possible
but this analysis is not the focus of this paper.

Remark 2.1. It is worth highlighting that extensions to non-homogeneous generating matrices
{Hn;n ≥ 0} are possible, as discussed in Section 6. In that case, assumption (A2) should be

referred to the the limiting matrix Hj := a.s.− limn→∞Hj
n.

2.3. A preliminary result. Assumptions (A2) and (A’2) on the constant balance are essential to
obtain the following result on the total number of balls in the urns of the system:

Theorem 2.1. Under assumptions (A1) and (A2), {T j
n − n;n ≥ 1} is an L2 martingale and, for

any α < 1/2,

(3) nα

(
T j
n

n
− 1

)
a.s./L2

−→ 0.

Moreover, under assumption (A’2), T j
n = T j

0 + n a.s. and hence (3) holds for any α < 1.

2.4. The interacting matrix. The interaction among the urns of the system is modeled through

the sampling probabilities Z̃j
k,n−1, that are defined in (1) as convex combination of the urn pro-

portions of the system. Formally, we denote by W the N × N matrix composed by the weights
{wjh, 1 ≤ j, h ≤ N} of such linear combinations and we refer to it as interacting matrix. We
now consider a particular decomposition of W that individuates subsystems of urns evolving with
different behaviors. The same decomposition is applied to the transition matrix in the context
of discrete-time Markov chains (see [28]) to individuate communicating classes Sl, l ∈ L, and to
establish which classes are recurrent, l ∈ LL, and which are transient, l ∈ LF .

Accordingly, let us denote by nL ≥ 1 the multiplicity of λmax(W ) = 1, and define the integers
nF ≥ 0 and 1 ≤ rL1 < .. < rLnL < rF1 < .. < rFnF = N such that the interacting matrix can be
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decomposed as follows:

(4)

W :=

[
WL 0

WLF WF

]
, WL :=




WL1 0 ... 0

0 WL2 ... ...

... ... ... 0

0 0 ... WLnL



,

WLF :=



WL1F1 ... WLn

L
F1

... ... ...

WL1FnF ... WLnL
FnF


 , WF :=




WF1 0 ... 0

WF1F2 WF2 ... 0

... ... ... ...

WF1Fn
F WF2Fn

F ... WFn
F



.

where:

(1) L := LL ∪ LF , LL := {L1, .., LnL} and LF := {F 1, .., FnF } are sets of labels that identify
subsystems of urns (LF = ∅ when nF = 0);

(2) for any l ∈ L, W l is an sl×sl irreducible matrix, where we let sl := rl−rl− and l− indicates
the element in L that precedes l (by convention L−

1 ≡ ∅ and F−
1 ≡ LnL

);

(3) for any l2 ∈ LF , there is at least an l1 ∈ L, l1 6= l2, such thatW l1l2 6= 0; hence, λmax(W
l) = 1

if l ∈ LL and λmax(W
l) < 1 if l ∈ LF .

Naturally, when nF = 0 the elements in WLF and WF do not exist and we consider rLnL = N .
This occurs, for instance, when W is irreducible and hence nL = 1 and r1 = N .

Remark 2.2. It is worth highlighting that extensions to random and time-dependent interacting
matrices {Wn;n ≥ 0} are possible, as discussed in Section 6. In that case, the structure presented
in (4) is concerned with the limiting matrix W := a.s.− limn→∞Wn.

Since the urns of the system interact among each other only through the sampling probabilities

Z̃j
n,k, the structure of the matrix W that characterizes such interaction is essential to describe the

asymptotic behavior of the system. Specifically, from (4) we individuate

(i) the leading systems Sl := {rl−+1 < j ≤ rl}, l ∈ LL, that evolve independently with respect
to the rest of the system;

(ii) if nF ≥ 0, the following systems Sl := {rl− +1 < j ≤ rl}, l ∈ LF , that evolve depending on

the proportions of the urns in the leaders SL1 , .., SLnL and their upper followers SF1 , .., Sl− .

As we will see in the following sections, the asymptotic behaviors of the leading systems and the
following systems are quite different. For completeness of the paper, we will present the results for
both the types of systems, assuming that nF ≥ 1.

3. The interacting urn system in the stochastic approximation framework

A crucial technique to characterize the behavior of the interacting urn system consists in revisiting
its dynamics into the stochastic approximation (SA) framework. To this end, we need to rewrite
the system dynamics expressed in (2) in the classical SA form: given a filtered probability space
(Ω,A, (Fn)n≥0,P), we consider the following recursive procedure

(5) ∀n ≥ 1, θn = θn−1 −
1

n
f(θn−1) +

1

n
(∆Mn +Rn) ,

where f : Rd → R
d is a locally Lipschitz continuous function, θn an Fn-measurable finite random

vector and, for every n ≥ 1, ∆Mn is an Fn−1-martingale increment and Rn is an Fn-adapted
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remainder term. To this end, we need a compact notation that jointly describes the composition
of the urns in the same subsystem Sl, l ∈ L.

3.1. Notation. The quantities related to the urn j ∈ {1, .., N} at time n are denoted by:

(1) Y j
n = (Y j

1,n, .., Y
j
K,n)

′ ∈ R
K
+ ,

(2) Xj
n = (Xj

1,n, ..,X
j
K,n)

′ ∈ {0, 1}K ,

(3) Zj
n = (Zj

1,n, .., Z
j
K,n)

′ ∈ (0, 1)K ,

(4) Z̃j
n = (Z̃j

1,n, .., Z̃
j
K,n)

′ ∈ (0, 1)K ,

while the corresponding terms of the system Sl, l ∈ L, given by the sl urns labeled by {rl−+1, .., rl},
are denoted by:

(1) Yl
n := (Y rl

−

+1
n , .., Y rl

n )′ ∈ R
slK
+ ,

(2) Xl
n := (Xrl

−

+1
n , ..,Xrl

n )′ ∈ {0, 1}slK ,

(3) Zl
n := (Zrl

−

+1
n , .., Zrl

n )′ ∈ SslK , where SslK indicates the composition of sl simpleces where

Zrl
−

+1
n , .., Zrl

n are defined.

(4) Z̃l
n := (Z̃rl

−

+1
n , .., Z̃rl

n )′ ∈ SslK ,

(5) Tl
n := (T rl

−

+1
n 1K , .., T

rl
n 1K)′ ∈ R

slK
+ , where 1K indicates the K-vector of all ones.

The replacement matrix for the system Sl is defined by a block diagonal matrix Dl
n ∈ R

slK×slK
+ ,

where the sl blocks are the replacement matrices of the urns {rl−+1, .., rl} in Sl, i.e. Drl
−

+1
n , ..,Drl

n .

Analogously, the generating matrix for Sl is defined by a block diagonal matrix Hl ∈ R
slK×slK
+ ,

where the sl blocks are Hrl
−

+1, ..,Hrl
n . The interaction within the system Sl is modeled by the

matrix Wl ∈ (0, 1)s
lK×slK obtained by replacing in W l (4) the weights wih with the corresponding

diagonal matrix wihIK , where IK indicates a K-identity matrix. Analogously, the interaction
between a following system Sl1 , l ∈ LF , and another system Sl2 , l2 ∈ {L1, .., l

−
1 }, is modeled by

the matrix Wl1l2 ∈ (0, 1)s
l1K×sl2K , obtained by replacing in W l1l2 (4) the weights wih with the

corresponding diagonal matrix wihIK .

3.2. The system dynamics in the SA form. For any system Sl, l ∈ L, the dynamics in (2)
can be written, using the notation of Subsection 3.1, as follows:

(6) Yl
n = Yl

n−1 + Dl
nX

l
n.

We now express (6) in the SA form (5), where the process {θn;n ≥ 1} is represented by the urn
proportions of the system Sl, i.e. {Zl

n;n ≥ 1}. Since Yl
n = diag(Tl

n)Z
l
n for any n ≥ 1, from (6) we

have

diag(Tl
n)Z

l
n = diag(Tl

n−1)Z
l
n−1 + Dl

nX
l
n,

that is equivalent to

(7) diag(Tl
n)(Z

l
n − Zl

n−1) = −diag(Tl
n −Tl

n−1)Z
l
n−1 + Dl

nX
l
n.

Now, notice that, for any n ≥ 1,

(1) E[diag(Tl
n −Tl

n−1)|Fn−1] = I by Theorem 2.1;

(2) E[Dl
nX

l
n|Fn−1] = E[Dl

n|Fn−1]E[Xl
n|Fn−1] = HlZ̃l

n−1, since D
l
n and Xl

n are independent
conditionally on Fn−1.
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Hence, defining the martingale increment

(8) ∆Ml
n := Dl

nX
l
n −HlZ̃l

n−1 − (diag(Tl
n −Tl

n−1)− I)Zl
n−1,

we can express (7) as follows:

(9) diag(Tl
n)(Z

l
n − Zl

n−1) = −Zl
n−1 + HlZ̃l

n−1 + ∆Ml
n.

Now, multiplying by diag(Tl
n)

−1 and defining the remainder term

(10) Rl
n :=

(
n · diag(Tl

n)
−1 − I

)(
−Zl

n−1 + HlZ̃l
n−1 + ∆Ml

n

)
,

we can write (9) as follows:

(11) Zl
n − Zl

n−1 = − 1

n
(Zl

n−1 − HlZ̃l
n−1) +

1

n

(
∆Ml

n + Rl
n

)
.

The term (Zl
n−1−HlZ̃l

n−1) in (11) should represent the function f in (5) in the SA form. However,

although in a leader Sl, l ∈ LL, we have that Z̃l
n−1 only depends on Zl

n−1, in a follower Sl,

l ∈ LF , the term Z̃l
n−1 is in general a function of the composition of all the urns of the system,

i.e. ZL1
n−1, ..,Z

l
n−1. Hence, the dynamics of a leading system can be expressed as in (11), while the

dynamics of a following system needs to be incorporated with other systems to be fully described.
For this reason, the asymptotic behavior of these two types of systems are studied separately: the
leading systems in Section 4 and the following systems in Section 5.

4. Leading systems

In this section we present the main asymptotic results concerning the leading systems Sl, l ∈ LL.
We recall that these systems are characterized by irreducible interacting matrices W l such that
λmax(W

l) = 1 (see (4) in Subsection 2.4). For this reason, their dynamics is independent of the

rest of the system and hence, by using Z̃l
n−1 = WlZl

n−1 in (11), we have

(12)
Zl
n − Zl

n−1 = − 1

n
hl(Zl

n−1) +
1

n

(
∆Ml

n + Rl
n

)
,

hl(x) := (I−Ql)x, Ql := HlWl

4.1. Extension of the urn dynamics to R
slK. Since hl is defined on R

slK , while the process

{Zl
n;n ≥ 0} takes values in the subset SslK , then applying theorems based on the SA directly

to (12) may lead to improper results for the process Zl
n. To address this issue, we appropriately

modify the dynamics (12) by replacing hl with a suitable function f lm := hl +mgl, where m > 0 is

an arbitrary constant and gl is a function defined in R
slK that satisfies the following properties:

(i) the derivative Dgl is positive semi-definite and its kernel is Span{(x − y) : x, y ∈ SslK}:
hence, gl does not modify the eigen-structure of Dhl(x) on the subspace SslK , where the

process Zl
n is defined, while the eigen-structure outside SslK can be arbitrary redefined;

(ii) gl(z) = 0 for any z ∈ SslK : hence, since f lm(z) = hl(z) for any z ∈ SslK , the modified

dynamics restricted to the subset SslK represents the same dynamics as in (12).

Let us now provide an analytic expression of gl. First note that, since by definition of convex
combination we always have W l1sl = 1sl , the left eigenvectors of W l are such that U ′

11sl = 1 and
U ′
i1sl = 0 for all i 6= 1. Denote by Sp(A) the set of the eigenvalues of a matrix A and note that,

since by (A2) we always have 1′KH
j = 1′K , then Sp(W l) ⊂ Sp(Ql) and the sl left eigenvectors

of Ql associated to any λi ∈ Sp(W l) ⊂ Sp(Ql), i ∈ {1, .., sl}, present the following structure:
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Ui := (Ui11K , .., Uisl1K)′. As a consequence, for any z ∈ SslK , we have U′
1z = U ′

11sl = 1 and
U′

iz = U ′
i1sl = 0 for all i ∈ {2, .., sl}. Hence, denoting by V2 and U2 the matrices whose columns

are V2, ..,Vsl and U2, ..,Usl , respectively, we define the function gl as follows:

(13) gl(x) := V1

(
U′

1x− 1
)

+ V2U
′
2x,

and the dynamics of the process Zl
n in (12) can be replaced by the following:

(14)
Zl
n − Zl

n−1 = − 1

n
f lm(Zl

n−1) +
1

n

(
∆Ml

n + Rl
n

)
,

f lm(x) := (I−Ql)x + mV1

(
U′

1x− 1
)

+ mV2U
′
2x.

4.2. First-order asymptotic results. We now present the main convergence result concerning
the limiting proportion of the urns in the leading systems.

Theorem 4.1. Assume (A1), (A2) and (A3). Thus, for any leading system Sl, l ∈ LL, we have
that

(15) Zl
n

a.s.−→ Zl
∞ := V1,

where V1 indicates the right-eigenvector associated to the simple eigenvalue λ = 1 of the matrix
Ql, with

∑
i V1i = 1.

Remark 4.1. Note that when the interacting matrix is the identity matrix, i.e. W = I, nL = N
and nF = 0, each urn represents a leading system and it evolves independently of the rest of the
system. In this case, (15) expresses the usual result for a single GPU, where the urn proportion
converges to the eigenvector associated to the maximum eigenvalue of the generating matrix, see
e.g. [4, 5, 6, 33].

Remark 4.2. In Theorem 4.1, condition (A3) implies that the maximum eigenvalue λ = 1 of
Ql has multiplicity one, which guarantees V1 to be the unique global attractor for the system Sl.
Without assumption (A3), there could be multiple attractors and hence the limiting proportions of
the system would be a random variable, as in [13, 12] where the RRU model is considered.

4.3. Second-order asymptotic results. We now establish the rate of convergence and the as-
ymptotic distribution of the urn proportions in the leading systems Sl, l ∈ LL. Since to obtain
these results we need to apply the Central Limit Theorem of the SA (see Theorem A.2 in Appen-
dix) to the dynamics (14), a crucial role is played by the spectrum of the Ksl ×Ksl-matrix of the

first-order derivative of f lm defined as follows: for any x ∈ R
Ksl

(16) Fl
m := Df lm(x) = (I−Ql) + mV1U

′
1 + mV2U

′
2.

Moreover, since the asymptotic variance depends on the second moments of the replacement ma-

trices, we denote by Cj(k) the covariance matrix of the kth column of Dj
n, i.e. Cj(k) := Cov[Dj

·k,n],

where Dj
·k,n := (Dj

1k,n, ..,D
j
Kk,n)

′; note that (A1) ensures the existence of Cj(k). Hence, denoting

by Hj(k) := E[Hj
·k(H

j
·k)

′] where Hj
·k := (Hj

1k, ..,H
j
Kk)

′, we let

(17) Gj :=
K∑

k=1

(
Cj(k) +Hj(k)

)
Z̃j
k,∞ − Zj

∞(Zj
∞)

′

,

where Z̃j
k,∞ =

∑N
i=1wjiZ

i
k,∞. Then, for any leading system Sl, l ∈ LL, we denote by Gl the block

diagonal matrix made by the sl blocks Grl
−

+1, .., Grl .
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The following theorem shows the rate of convergence and the limiting distribution of the urn
proportions in the leading systems.

Theorem 4.2. Assume (A1), (A′2) and (A3). For any leading system Sl, l ∈ LL, let λ
∗l be the

maximum eigenvalue in Sp(Ql) \ Sp(W l). Thus, we have that λ∗l ≡ 1−minSp(Fl
m) and

(a) if λ∗l < 1/2, then

√
n(Zl

n − Zl
∞)

d−→ N
(
0,Σl

)
, Σl := lim

m→∞

∫ ∞

0
eu(

I

2
−Fl

m)Gleu(
I

2
−Fl

m)′du.

(b) if λ∗l = 1/2, then √
n

log(n)
(Zl

n − Zl
∞)

d−→ N
(
0,Σl

)
.

(c) if λ∗l > 1/2, then there exists a finite random variable ψl such that

n1−λ∗l

(Zl
n − Zl

∞)
a.s.−→ ψl.

Remark 4.3. When the interacting matrix W is the identity matrix, each urn represents a leading
system and hence W l = 1 and Ql ≡ H l. In that case, λ∗ is the second largest eigenvalue of the
generating matrix H l and hence Theorem 4.2 expresses the usual Central Limit Theorem for a
single GPU, see e.g. [4, 5, 6, 33].

Remark 4.4. The role of Ql in Theorem 4.2 shows that the convergence rate of the urns in Sl does

not depend only on their generating matrices {Hj , rl
−

+ 1 ≤ j ≤ rl} but also on their interaction
expressed in W l. For instance, consider two single GPUs whose generating matrices H1 and H2

are such that the convergence rates of the urn proportions Z1
n and Z2

n are different. Then, an
interaction between these urns with an irreducible W l would make Z1

n and Z2
n converge at the same

rate that would depend on the choice of W l.

5. Following systems

In this section we establish asymptotic properties concerning the following systems Sl, l ∈ LF .
Since the dynamics of these systems can be properly expressed in the SA form (5) only through a
joint model with the urns in the systems {SL1 , .., Sl}, we need a special notation to study collections
of more systems. In particular, we will replace the label l with (l) whenever an object is referred

to the joint system S(l) := {SL1 , .., Sl} instead of to the single system Sl. For instance, the vector

Y
(l)
n ∈ R

Krl indicates (YL1
n , ..,Yl

n)
′, and D

(l)
n indicates the block diagonal (Krl × Krl)-matrix,

whose blocks are made by DL1
n , ..,Dl

n. Then, from (4) we can express the sampling probabilities in
the follower Sl as follows:

Z̃l
n−1 =

∑

i∈{L1,..l−}

WilZi
n−1 +WlZl

n−1.

Hence, from (11) we obtain

(18)

Zl
n − Zl

n−1 = − 1

n
hl(Z

(l−)
n−1,Z

l
n−1) +

1

n

(
∆Ml

n + Rl
n

)
,

hl(x1,x2) := −Ql(l−)x1 + (I−Ql)x2,

Ql(l−) :=
[
HlWL1l ... HlWl−l

]
, Ql := HlWl
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Since hl is not only a function of Zl
n−1, the dynamics in (18) is not already expressed in the

SA form (5). To address this issue, we need to consider a joint model for the global system

S(l) = S(l−) ∪ Sl = SL1 ∪ .. ∪ Sl as follows:

(19)
Z(l)
n − Z

(l)
n−1 = − 1

n
h(l)(Z

(l)
n−1) +

1

n

(
∆M(l)

n + R(l)
n

)
,

h(l)(x) :=
(
I−Q(l)

)
x,

where Q(l) can be recursively defined as follows:

(20) Q(l) :=

[
Q(l−) 0

Q(l−)l Ql

]
, Q(LnL

) :=



QL1 .. 0

... ... ...

0 .. QLnL ,


 ,

where by convention F−
1 = LnL

.

5.1. Extension of the urn dynamics to R
rlK. Since h(l) in (19) is defined in R

rlK , while the

process {Z(l)
n ;n ≥ 0} lies in the subspace SrlK , then applying theorems based on the SA directly

to (18) may lead to improper results for the process Z
(l)
n .

For this reason, we replace h(l) in (18) with a suitable function f
(l)
m := h(l)+mg(l) such thatm > 0

is an arbitrary constant and g(l) is a function defined as in (13), where in this case {Ui; 1 ≤ i ≤ rl}
and {Vi; 1 ≤ i ≤ rl}, indicate, respectively, the left and right eigenvectors of Q(l). Hence, the

dynamics of the process Z
(l)
n (18) is replaced by the following:

(21)
Z(l)
n − Z

(l)
n−1 = − 1

n
f (l)m (Z

(l)
n−1) +

1

n

(
∆M(l)

n + R(l)
n

)
,

f (l)m (x) :=
(
I−Q(l)

)
x + mV1

(
U′

1x− 1
)

+ mV2U
′
2x.

Note that in the joint system S(l) the eigenvalue λ = 1 of Q(l) may not have multiplicity one; in that
case, V1 is univocally identified as the right eigenvector ofQ(l) associated to λ = 1 such that, letting
Ui := (Ui11K , .., Uirl1K)′ and U ′

iW
(l) = λiU

′
i for any i ∈ {1, .., rl}, we have U′

1V1 = U ′
11rl = 1 and

U′
iV1 = U ′

i1rl = 0 when i 6= 1.

5.2. Removal of unnecessary components. The following system Sl may not depend on all

the components of S(l−) and hence the convergence in Sl may be faster than the rate in S(l−).
When this occurs, the asymptotic distribution obtained for the urn proportions in S(l) restricted
to the urns in Sl is degenerate. To address this issue and characterize the asymptotic behavior in

the following system Sl, we need to reduce the dimensionality of Z
(l)
n by deleting those components

which do not influence the dynamics of Zl
n. Since the interaction between Sl and the systems in

S(l−) is expressed by Q(l)l− , we exclude the components of Z
(l−)
n defined on the Kernel of Q(l−)l.

Formally, consider the following decomposition:

Sp(Q(l)) = Sp(Ql) ∪ Sp(Q(l−)) = AIN ∪ AOUT ,

where

AOUT :=
{
λ ∈ Sp(Q(l−)) : ∃v{Q(l−)v = λv} ∩ {Q(l−)lv = 0}

}

AIN := Sp(Ql) ∪
(
Sp(Q(l−)) \ AOUT

)
.
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Then, the eigenspace of Q(l) associated to λ ∈ AOUT will be removed from the dynamics in (21).
To do this, let us denote by:

(1) UIN and VIN the matrices whose columns are the left and right eigenvectors of Q(l),
respectively, associated to eigenvalues in AIN ;

(2) UOUT and VOUT the matrices whose columns are the left and right eigenvectors of Q(l),
respectively, associated to eigenvalues in AOUT ;

Since we do not want to modify the process Z
(l)
n on Sl, i.e. Zl

n, we now construct two conjugate
basis in Im(UIN) and Im(VIN) that are invariant on Sl. Note that, since Sp(Ql) ⊂ AIN , there
exists a non-singular matrix P such that the following decompositions hold:

B := VINP =

[
B̂ 0

0 I,

]
, C := P−1U′

IN =

[
Ĉ 0

0 I,

]
.

Since Ĉ′B̂ = I and B̂Ĉ′ = VINUIN
′, Ĉ and B̂ represent conjugate basis in Im(UIN ) and

Im(VIN ), respectively. Thus, for any x = (x(l−),xl)′ ∈ R
Krl, we have the following decompo-

sition

(22) x = VINUIN
′x + VOUTUOUT

′x = B̂x̂ + VOUTxOUT,

where

x̂ := Ĉ′x =

[
C′x(l−)

xl

]
, xOUT := UOUT

′x.

In particular, we consider the process {Ẑ(l)
n , n ≥ 1} defined as follows:

(23) Ẑ(l)
n := Ĉ′Z(l)

n =

[
C′Z(l−)

n

Zl
n

]
;

now, multiplying by Ĉ′ to (21) and applying the decomposition (22) in (21), since Ĉ′
V2U

′
2VOUT =

0, U′
1VOUT = 0 and Ĉ′VOUT = 0, we have that

(24)
Ẑ(l)
n − Ẑ

(l)
n−1 = − 1

n
f̂ (l)m (Ẑ

(l)
n−1) +

1

n
Ĉ′
(
∆M(l)

n + R(l)
n

)
,

f̂ (l)m (x̂) :=
(
I− Ĉ′Q(l)B̂

)
x̂ + mV̂1

(
Û′

1x̂− 1
)

+ mV̂2Û
′
2x̂,

where Û′
1 := U′

1B̂, Û2 := U
′
2B̂, V̂1 := Ĉ′V1 and V̂2 := Ĉ′

V2 represent the left and right eigenvec-

tors of Ĉ′Q(l)B̂ associated to λ ∈ Sp(W (l)) \ AOUT . Since f̂
(l)
m is a function of Ẑ

(l)
n , the dynamics

in (24) is now expressed in the SA form (5).

Remark 5.1. It is worth highlighting that the interacting matrix W lonely is not enough to indi-
viduate the components of the system that actually influence a following system, but it is necessary
to study the eigen-structure of Q(l), that joins the information of W and of the generating matrices
{Hj , 1 ≤ j ≤ rl} of the urns in S(l). This may be surprising since W is the only element that
defines the interaction among the urns in the system. Nevertheless, when Hj is singular, different

values of Z̃j
n may give the same average replacements, HjZ̃j

n, which is equivalent as having singu-

larities in W , where different values of {Zi
n; 1 ≤ i ≤ rl} may give the same Z̃j

k,n, and hence same

HjZ̃j
n. For instance, if all the columns of Hj were equal to a given vector vj , the urn j would be

updated on average by vj regardless the value of Z̃j
n−1 and hence the urns in S(l−) would not play

any role in the dynamics of the urn j for any choice of W . The eigen-structure of Q(l) perfectly
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explains this behavior, since in this case the matrix Q(l−)l would be composed by all zeros and hence

Sp(Q(l−)) ≡ AOUT and Sp(Ql) ≡ AIN .

5.3. First-order asymptotic results. We now present the convergence result concerning the

limiting proportion of the urns in the following systems. The asymptotic behavior of Z
(l)
n is obtained

recursively from Z
(l−)
∞ := a.s.− limn→∞Z

(l−)
n .

Theorem 5.1. Assume (A1), (A2) and (A3). Thus, for any l ∈ LF , we have that

Ẑ(l)
n

a.s.−→ Ẑ(l)
∞ := V̂1;

hence, from (23), in the following system Sl we have that

Zl
n

a.s.−→ Zl
∞ :=

(
I−Ql

)−1
Q(l−)lZ(l−)

∞ .

5.4. Second-order asymptotic results. We now present the results concerning the rate of con-
vergence and the asymptotic distribution of the urn proportions in the following systems. To this
end, let us introduce the Ksl ×Ksl-matrix of the first-order derivative of f̂ lm:

(25)
F̂(l)
m := Ĉ′F(l)

m B̂

= (I− Ĉ′Q(l)B̂) + mV̂1Û
′
1 + mV̂2Û

′
2.

Moreover, the asymptotic variance will be based on the quantity Ĝ(l) := Ĉ′G(l)B̂, where G(l) is

the block diagonal matrix made by G1, .., Grl (see (17)).
The following theorem shows the rate of convergence and the limiting distribution of the urn

proportions in the following systems.

Theorem 5.2. Assume (A1), (A′2) and (A3). For any following system Sl, l ∈ LF , let λ
∗l be the

maximum eigenvalue in Sp(Q(l)) \ (Sp(W (l)) ∪ AOUT ). Thus, we have that λ∗l ≡ 1−minSp(F̂
(l)
m )

and

(a) if λ∗l < 1/2, then

√
n(Ẑ(l)

n − Ẑ(l)
∞)

d−→ N
(
0, Σ̂(l)

)
, Σ̂(l) := lim

m→∞

∫ ∞

0
eu(

I

2
−F̂

(l)
m )Ĝ(l)eu(

I

2
−F̂

(l)
m )′du.

(b) if λ∗l = 1/2, then
√

n

log(n)
(Ẑ(l)

n − Ẑ(l)
∞)

d−→ N
(
0,Σ(l)

)
.

(c) if λ∗l > 1/2, then there exists a finite random variable ψ(l) such that

n1−λ∗l

(Ẑ(l)
n − Ẑ(l)

∞)
a.s.−→ ψ(l).

Remark 5.2. It is worth noticing that, since from (23) Ẑ
(l)
n = (C′Z

(l−)
n ,Zl

n)
′, Theorem 5.2 explicitly

states the limiting distribution and the asymptotic covariance structure of the urn proportions in
any following system Zl

n, l ∈ LF . In addition, Theorem 5.2 also determines the correlation between
Zl
n and the components of the urn proportions in the other systems Sl, l ∈ {L1, .., l

−}, that actually
influence the dynamics of Zl

n.

Remark 5.3. We highlight that condition (A3), i.e. irreducibility of the generating matrices Hj ,
may be relaxed in Theorems 5.1 and 5.2, by requiring (A3) only for the urns in the leading systems.
In fact, we can note from the proof that (A3) is not needed for the urns that belong to the following
systems.
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6. Further extensions

In this section, we discuss some possible extensions of the interacting urn model presented in
this paper.

6.1. Random and time-dependent interacting matrix. Although we consider a constant
interacting matrix W , the results of this paper may be extended to a system characterized by

a random sequence of interacting matrices {Wn;n ≥ 0}, i.e. Wn = [wjh,n] ∈ Fn and Zj
k,n =

∑N
h=1wjh,nZ

h
k,n for any k ∈ {1, ..,K}. In that case, it is essential to assume the existence of a

deterministic matrix W such that Wn
a.s.−→ W , which individuates the leading and the following

systems, as in Subsection 2.4.
The dynamics with random and time-dependent interacting matrices could be also expressed in

the SA form (5), by including the difference (Wn −W ) in the remainder term (10). Naturally, the
asymptotic behavior of the urn proportions would depend on the limiting interacting matrix W
and on the rate of convergence of the sequence {Wn;n ≥ 0}. Specifically, the convergence of the

urn proportions could be obtained with the only assumption Wn
a.s.−→ W , while extensions for the

second-order results presented in would require nE[‖Wn −W‖2] → 0.

6.2. Non-homogeneous generating matrices. The independence and identically distribution
of the replacement matrices is an assumption that could be relaxed by assuming that the sequence

of generating matrices {Hj
n;n ≥ 0}, Hj

n−1 := E[Dj
n|Fn−1], converges to some deterministic matrix

Hj . Thus, the urn dynamics could be expressed in the SA form (5), by including the difference

(Hj
n −Hj) in the remainder term (10), and the asymptotic behavior would depend on Hj and on

the rate of convergence of Hj
n. Specifically, the second-order results would require an additional

assumption as nE[‖Hj
n −Hj‖2] → 0.

7. Proofs

The proof of Theorem 2.1 requires the following auxiliary result on the martingale convergence:

Lemma 7.1. Let {Sn;n ≥ 1}, Sn :=
∑n

i=1 ∆Si, be a zero-mean martingale with respect to a
filtration {Fn;n ≥ 1} and let {bn;n ≥ 1} be a non-decreasing sequence of positive numbers such
that

(26)

∞∑

i=1

b−2
i E[(∆Si)

2|Fi−1] < ∞, a.s.

Then, b−1
n Sn

a.s.−→ 0.

Proof. Let us define the zero-mean martingale S̃n :=
∑n

i=1 b
−1
i ∆Si, where by (26) we have that S̃n

converges a.s. Thus, the result follows by using Kronacker’s Lemma (see Lemma IV.3.2 in [32]). �

Proof of Theorem 2.1. By using Lemma 7.1 with bn := n1−α and Sn := T j
n − n, the proof follows

by showing that T j
n − n is a martingale whose increments have bounded second moments. Now,

since

T j
n − T j

n−1 =

K∑

k=1

(Y j
k,n − Y j

k,n−1) =

K∑

k=1

K∑

i=1

(Dj
ki,nX

j
i,n),

the result follows by establishing that

(a) supn≥1E

[(∑K
k=1

∑K
i=1D

j
ki,nX

j
i,n

)2 ∣∣Fn−1

]
<∞;
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(b)
∑K

k=1

∑K
i=1 E

[
Dj

ki,nX
j
i,n|Fn−1

]
= 1.

For part (a), by using |Xj
i,n| ≤ 1 and (A1), we have that

sup
n≥1

E



(

K∑

k=1

K∑

i=1

(Dj
n,kiX

j
i,n)

)2 ∣∣Fn−1


 ≤ K2 sup

n≥1
max

j∈{1,..,N}
max

i,k∈{1,..,K}
E
[
(Dj

ki,n)
2
]
< ∞.

For part (b), since
∑K

k=1H
j
ki = 1 by (A2) and since Dj

ki,n and Xj
i,n are independent conditionally

on Fn−1, we obtain

K∑

k=1

K∑

i=1

E
[
Dj

ki,nX
j
i,n |Fn−1

]
=

K∑

k=1

K∑

i=1

Hj
kiZ̃

j
i,n−1 =

K∑

i=1

Z̃j
i,n−1

K∑

k=1

Hj
ki =

K∑

i=1

Z̃j
i,n−1.

Finally, by the definition of Z̃j
i,n−1 in (1), we have

K∑

i=1

Z̃j
i,n−1 =

K∑

i=1

N∑

h=1

wjhZ
h
i,n−1 =

N∑

h=1

wjh

K∑

i=1

Zh
i,n−1 =

N∑

h=1

wjh = 1,

which concludes the proof of (3) for α < 1/2 under assumption (A2).
Concerning the proof of (3) for α < 1, first note that under assumption (A’2) we have

T j
n − T j

n−1 =
K∑

k=1

K∑

i=1

(Dj
n,kiX

j
i,n) =

K∑

i=1

Xj
i,n = 1;

hence, T j
n = T j

0 + n a.s. and, for any α < 1,

nα

(
T j
n

n
− 1

)
=

T j
0

n1−α

a.s./L2

−→ 0.

�

7.1. Proofs on the leading systems.

Proof of Theorem 4.1. Fix l ∈ LL and consider the leading system Sl = {rl− + 1 ≤ j ≤ rl}
with interacting matrix W l. Since the dynamic of the urn proportions Zl

n in Sl has been expressed
in (14) in the SA form (5), we can establish the convergence result stated in Theorem 4.1 by applying
Theorem A.1 in Appendix. To this end, we will show that the assumptions of Theorem A.1 are
satisfied by the process {Zl

n;n ≥ 1} of the system Sl:

(1) the function f lm defined in (14) is a linear transformation and hence locally Lipschitz.

(2) from (8), we have that supn≥1E
[∥∥∆Ml

n

∥∥2 |Fn−1

]
<∞ is satisfied by establishing

(2a) supn≥1E
[∥∥Dl

nX
l
n

∥∥2 |Fn−1

]
<∞;

(2b) supn≥1E
[∥∥diag(Tl

n −Tl
n−1)Z

l
n−1

∥∥2 |Fn−1

]
<∞.

Concerning (2a), since Xj
k,n ∈ {0, 1} a.s., we have that

∥∥∥Dl
nX

l
n

∥∥∥
2

≤
∑

j∈Sl

K∑

k=1

K∑

i=1

(
Dj

ki,n

)2
, a.s.
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Thus, (2a) follows by assumption (A1), since

sup
n≥1

E

[∥∥∥Dl
nX

l
n

∥∥∥
2
|Fn−1

]
≤
∑

j∈Sl

K∑

k=1

K∑

i=1

sup
n≥1

E

[(
Dj

ki,n

)2]
≤ slK2Cδ.

Concerning (2b), since
∑K

k=1(Z
j
k,n)

2 ≤ 1, we have

(27)
∥∥∥diag(Tl

n −Tl
n−1)Z

l
n−1

∥∥∥
2

≤
∑

j∈Sl

(T j
n − T j

n−1)
2, a.s.

where we recall that

(28) T j
n − T j

n−1 =

K∑

k=1

(Y j
k,n − Y j

k,n−1) =

K∑

k=1

K∑

i=1

(Dj
ki,nX

j
i,n).

Hence, combining (27) and (28), since Xj
i,n ∈ {0, 1} and

∑K
i=1X

j
i,n = 1 a.s., we obtain that

∥∥∥diag(Tl
n −Tl

n−1)Z
l
n−1

∥∥∥
2

≤
∑

j∈Sl

(
K∑

k=1

K∑

i=1

(Dj
ki,nX

j
i,n)

)2

≤
∑

j∈Sl

K∑

i=1

(
K∑

k=1

Dj
ki,n

)2

, a.s.

Finally, using the relation (
∑K

k=1 a
2
k ≤ K2

∑K
k=1 a

2
k, (2b) follows by assumption (A1), since

sup
n≥1

E

[∥∥∥diag(Tl
n −Tl

n−1)Z
l
n−1

∥∥∥
2
|Fn−1

]
≤ sup

n≥1

∑

j∈Sl

K∑

i=1

K2
K∑

k=1

E

[(
Dj

ki,n

)2]
≤ slK4Cδ.

(3) from (10), we show ‖Rl
n‖

a.s.−→ 0 by establishing that, for any (2 + δ)−1 < α < 2−1,

(3a) nα
∥∥n · diag(Tl

n)
−1 − I

∥∥ a.s.−→ 0,

(3b) n−α
∥∥∥Zl

n−1 −HlZ̃l
n−1

∥∥∥ a.s.−→ 0,

(3c) n−α
∥∥∆Ml

n

∥∥ a.s.−→ 0,
where we recall that δ > 0 is defined in assumption (A1) (see Subsection 2.2). Since (3a)
follows straightforwardly by Theorem 2.1, consider (3b). For any ǫ > 0, using Markov’s
inequality we obtain

P
(∥∥∥Zl

n−1 −HlZ̃l
n−1

∥∥∥ > ǫnα
)

≤ (ǫnα)−(2+δ)E

[∥∥∥Zl
n−1 −HlZ̃l

n−1

∥∥∥
(2+δ)

]
.

Hence, (3b) follows by Borel-Cantelli Lemma since α · (2 + δ) > 1 and

sup
n≥0

E

[∥∥∥Zl
n−1 −HlZ̃l

n−1

∥∥∥
(2+δ)

]
≤
∑

j∈Sl

2(2+δ) < ∞.

Concerning (3c), we can apply again Markov’s inequality and the same arguments of part
(3b) since by assumption (A1) we have that

sup
n≥0

E

[∥∥∥Dl
nX

l
n −HlZ̃l

n−1

∥∥∥
(2+δ)

]
≤ sup

n≥0

∑

j∈Sl

K∑

k=1

K∑

i=1

E
[
(Dl

ki,n)
(2+δ)

]
< ∞.
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Thus, by applying Theorem A.1 to the dynamics in (14), we have that the limiting values of Zl
n

are included in the set {
x ∈ R

Ksl : f lm(x) = 0
}
.

Now, denote by V3 and U3 the matrices whose columns are, respectively, the right and left eigen-
vectors of Ql associated to the eigenvalues λ ∈ Sp(Ql) \ Sp(W l). Hence, we have the following
decomposition

(29) Ql = V1U
′
1 + V2J2U

′
2 + V3J3U

′
3,

where J2 and J3 represent the corresponding jordan blocks. Since the eigenvectors of Ql represent

a basis of RKsl, for any x ∈ R
Ksl there exists a ∈ R, b ∈ R

sl−1 and c ∈ R
sl(K−1) such that

(30) x = V1a + V2b + V3c.

Hence, by using (29) and (30), we obtain

hl(x) = V2(I− J2)b + V3(I− J3)c,

gl(x) = V1(a− 1) + V2b,

which, since f lm(x) = hl(x) +mgl(x), it gives us

(31) f lm(x) = mV1(a− 1) + V2((1 +m)I− J2)b + V3(I− J3)c.

From the irreducibility of Hj assumed in (A3), for all λ ∈ Sp(Ql) \ Sp(W l) we have λ < 1 and
hence (I−J3) is positive definite. Therefore, since m > 0, from (31) we have that f lm(x) = 0 if and
only if a = 1 and b = c = 0, i.e. x = V1.

It just remains to prove that V1 is a global attractor in R
Ksl. To this end, we will show that

Df lm(x) is positive definite for any x ∈ R
Ksl. We recall that, from (16) we have

(32) Fl
m = Df lm(x) = mV1U

′
1 + V2((1 +m)I− J2)U

′
2 + V3(I− J3)U

′
3.

Hence, sincem > 0 and (I−J3) is positive definite by assumption (A3), we have that Fl
m is positive

definite for any m > 0. This concludes the proof. �

Proof of Theorem 4.2. The proof consists in showing that the assumptions of the CLT for pro-
cesses in the SA form (Theorem A.2 in Appendix) are satisfied by the dynamics in (21) of the urn
proportions Zl

n in the leading system Sl.

First, we show that condition {Sp(Df(θ∗)) > 1/2} in Theorem A.2 is equivalent to {λ∗l < 1/2}.
Note that the function f of the SA form (5) is represented in our case by f lm defined in (14).
Similarly, the term θ∗ in Appendix indicates the deterministic limiting proportion Zl

∞, whileDh(θ∗)
is represented by Fl

m defined in (16).
Now, consider the eigen-structure of Ql and note that Fl

m has been expressed in (32) as follows:

Fl
m = mV1U

′
1 + V2((1 +m)I− J2)U

′
2 + V3(I− J3)U

′
3,

Hence, it is easy to see that the eigenvectors of Fl
m and Ql are the same, since

(1) Fl
mV1 = mV1,

(2) Fl
mV2 = V2((1 +m)I− J2),

(3) Fl
mV3 = V3(I− J3),
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and hence

Sp(Fl
m) = {m} ∪

{
(1 +m)− λ, λ ∈ Sp(W l) \ {1}

}
∪
{
1− λ, λ ∈ Sp(Ql) \ Sp(W l)

}
,

which, setting m > 0 arbitrary large, implies that {Sp(Df(θ∗)) > 1/2} ≡ {λ∗l < 1/2}.

Then, by following analogous arguments of point (2) in the proof of Theorem 4.1, assumption
(A1) implies that condition (36) is satisfied, since

sup
n≥1

E[‖∆Ml
n‖2+δ|Fn−1] ≤ K2+δ

N∑

j=1

K∑

i=1

K∑

k=1

sup
n≥1

E[(Dj
ik,n)

2+δ ] ≤ NK4+δCδ;

moreover, concerning condition (37), we will show that for any l ∈ LL

E[∆Ml
n(∆Ml

n)
′ |Fn−1]

a.s.−→ Gl, E[∆Ml1
n (∆Ml2

n )
′

] = 0 ∀l1 6= l2.

To this end, we first show that, for any urn j ∈ Sl, E[∆M j
n(∆M

j
n)′|Fn−1]

a.s.−→ Gj . Note that

E[∆M j
n(∆M

j
n)

′ |Fn−1] = E[(Dj
nX

j
n)(D

j
nX

j
n)

′ |Fn−1] − (HjZ̃j
n−1)(H

j Z̃j
n−1)

′

;

then, concerning the first term, we have that

E[(Dj
nX

j
n)(D

j
nX

j
n)

′ |Fn−1] =

K∑

k=1

E[Dj
·k,n(D

j
·k,n)

′ |Fn−1]P(Xj
k,n = 1|Fn−1)

=
K∑

k=1

(Cj(k) +Hj(k))Z̃j
k,n.

Hence, letting n increase to infinity, from (17) we have

E[∆M j
n(∆M

j
n)

′ |Fn−1]
a.s.−→

K∑

k=1

(Cj(k) +Hj(k))Z̃j
k,∞ − Zj

∞(Zj
∞)

′

= Gj .

Since, for any j1 6= j2, D
j1
n X

j1
n and Dj2

n X
j2
n are independent conditionally on Fn−1, we have that

E[∆M j1
n (∆M j2

n )
′ |Fn−1] = 0 and hence E[∆Ml1

n (∆Ml2
n )

′

] = 0 for any l1 6= l2.

It remains to check that the remainder sequence {Rl
n;n ≥ 1} satisfies (38) for any ǫ > 0, i.e.

(33) E
[
n‖Rl

n‖21{‖Zl
n−Zl

∞‖≤ǫ}

]
−→ 0.

Combining (10) and part (3b) in the proof of Theorem 4.1, we can obtain (33) by establishing

E

[
n
∥∥∥n · diag(Tl

n)
−1 − I

∥∥∥
2
]
−→ 0,

that follows by using assumption (A’2) in Theorem 2.1.

Since the assumptions are all satisfied, we can apply Theorem A.2 to any leading system Sl,
l ∈ LL, so obtaining the CLT of Theorem 4.2, with asymptotic variance

Σl = lim
m→∞

∫ ∞

0
eu(

I

2
−Fl

m)Gleu(
I

2
−Fl

m)′du.

This concludes the proof. �
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7.2. Proofs on the following systems.

Proof of Theorem 5.1. Consider the joint system S(l) = ∪i∈{L1,..l}S
i, for l ∈ LF , composed by the

leading systems SL1 , ..SLnL and the following systems SF1 , ..Sl, where we recall Sl := {rl− + 1 ≤
j ≤ rl}. As explained in Section 5, we focus on the reduced process Ẑ

(l)
n := Ĉ′Z

(l)
n , whose dynamics

is expressed in (24) as follows:

(34)
Ẑ(l)
n − Ẑ

(l)
n−1 = − 1

n
f̂ (l)m (Ẑ

(l)
n−1) +

1

n
Ĉ′
(
∆M(l)

n + R(l)
n

)
,

f̂ (l)m (x̂) :=
(
I− Ĉ′Q(l)B̂

)
x̂ + mV̂1

(
Û′

1x̂− 1
)

+ mV̂2Û
′
2x̂,

where the function f in the SA form (5) is here represented by f̂
(l)
m that takes values in Span{VIN}.

Analogously to the proof of Theorem 4.1 for the leading systems, one can show that all the
assumptions of Theorem A.1 are satisfied by the dynamics in (34) and hence the limiting values

of Ẑ
(l)
n are represented by those x ∈ Span{VIN} such that f̂

(l)
m (x) = 0. By using the analogous

decompositions of (29) for Ĉ′Q(l)B̂ and (30) for x ∈ Span{VIN}, we have that

(35) f̂ lm(x) = mV̂1(a− 1) + V̂2((1 +m)I− Ĵ2)b + V̂3(I− Ĵ3)c,

where Ĵ2 := Ĉ′J2B̂ and Ĵ3 := Ĉ′J3B̂. From the irreducibility of Hj required in (A3), for all

λ ∈ AIN \ Sp(W (l)) we have λ < 1 and hence (I− Ĵ3) is positive definite. Therefore, since m > 0,

from (35) we have that f̂ lm(x) = 0 if and only if a = 1 and b = c = 0, i.e. x = V̂1.
We highlight that, when (A3) does not hold, the matrix (I − J3) in (35) may not be positive

definite and hence the solution V̂1 would not be unique. However, since in the following systems
Sl, l ∈ LF , we have λmax(W

l) < 1 and this implies λmax(Q
l) < 1, the irreducibility assumption of

Hj required in (A3) is not necessary for the following systems, but it is only essential in the leading
systems in which λmax(W

l) = 1.

Now, since by definition of Q(l) in (20) we have that

Ĉ′Q(l)B̂ =

[
C′Q(l−)B 0

Q(l−)lB Ql

]
,

we can express V̂1 = (V̂
(l−)
1 , V̂l

1)
′ as follows:

V̂1 =


 V̂

(l−)
1

(I −Ql)−1Q(l−)lBV̂
(l−)
1


 =


C′V

(l−)
1

(I−Ql)−1Q(l−)lBC′V
(l−)
1


 .

Then, notice that, since V
(l−)
1 ∈ Im(VIN), we have BC′V

(l−)
1 = VINU′

INV
(l−)
1 = V

(l−)
1 .

Finally, since from (25) F̂
(l)
m = Ĉ′F

(l)
m B̂, we have that Sp(F̂

(l)
m ) ⊂ Sp(F

(l)
m ) and hence F̂

(l)
m is

positive definite for any m > 0. As a consequence, V̂1 is a global attractor in Span{VIN} and this
concludes the proof. �

Proof of Theorem 5.2. Consider the joint system S(l) = ∪i∈{L1,..l}S
i, for l ∈ LF , composed by the

leading systems SL1 , ..SLnL and the following systems SF1 , ..Sl, where we recall Sl := {rl− + 1 ≤
j ≤ rl}. As explained in Section 5, we focus on the reduced process Ẑ

(l)
n := Ĉ′Z

(l)
n , whose dynamics



20 G. ALETTI AND A. GHIGLIETTI

is expressed in (24) as follows:

Ẑ(l)
n − Ẑ

(l)
n−1 = − 1

n
f̂ (l)m (Ẑ

(l)
n−1) +

1

n
Ĉ′
(
∆M(l)

n + R(l)
n

)
,

f̂ (l)m (x̂) :=
(
I− Ĉ′Q(l)B̂

)
x̂ + mV̂1

(
Û′

1x̂− 1
)

+ mV̂2Û
′
2x̂,

where the function f in the SA form in (5) is here represented by f̂
(l)
m . The proof will be realized by

showing that the assumptions of the CLT for processes in the SA form (Theorem A.2 in Appendix)

are satisfied by the process Ẑ
(l)
n . Hence the results of Theorem 5.2 follow by applying Theorem A.2,

where θ∗ indicates the deterministic limiting proportion Ẑ
(l)
∞ , while Df(θ∗) is represented by F̂

(l)
m

defined in (25).
First, we show that condition {Sp(Df(θ∗)) > 1/2} in Theorem A.2 is equivalent to {λ∗l < 1/2}.

To this end, analogously to the proof of Theorem 4.2 for the leading systems, note that

(1) F̂
(l)
m V̂1 = mV̂1,

(2) F̂
(l)
m V̂2 = V̂2((1 +m)I− J2),

(3) F̂
(l)
m V̂3 = V̂3(I− J3).

Hence, the eigenvectors of F̂
(l)
m and Ĉ′Q(l)B̂ are the same and then

Sp(F̂(l)
m ) = {m}∪

{
(1 +m)− λ, λ ∈ Sp(W (l)) \ ({1} ∪ AOUT )

}
∪
{
1− λ, λ ∈ Sp(Q(l)) \ (Sp(W (l)) ∪ AOUT )

}
,

which implies {Sp(Df(θ∗)) > 1/2} ≡ {λ∗l < 1/2}.
Then, by using analogous arguments of the proof of Theorem 4.2 for the leading systems, it is

straightforward showing that

E[Ĉ′∆M(l)
n (∆M(l)

n )
′

Ĉ|Fn−1]
a.s.−→ Ĝ(l), E[Ĉ′∆M(l1)

n (∆M(l2)
n )

′

Ĉ] = 0 ∀l1 6= l2,

and for any ǫ > 0

E

[
n‖Ĉ′R(l)

n ‖21
{
∥

∥

∥

Ẑ
(l)
n −Ẑ

(l)
∞

∥

∥

∥

≤ǫ}

]
−→ 0.

Since the assumptions are all satisfied, we can apply Theorem A.2 to obtain the CLT with asymp-
totic variance

Σ̂(l) :=

∫ ∞

0
eu(

I

2
−F̂

(l)
m )Ĝ(l)eu(

I

2
−F̂

(l)
m )′du.

This concludes the proof. �

Appendix

Appendix A. Basic tools of Stochastic Approximation

Consider the recursive procedure define in (5) on a filtered probability space (Ω,A, (Fn)n≥0,P),
i.e.

∀n ≥ 1, θn = θn−1 −
1

n
f(θn−1) +

1

n
(∆Mn +Rn) ,

where f : Rd → R
d is a locally Lipschitz continuous function, θn an Fn-measurable finite random

vector and, for every n ≥ 1, ∆Mn is an Fn−1-martingale increment and Rn is an Fn-adapted
remainder term.
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Theorem A.1. (A.s. convergence with ODE method, see e.g. [9, 14, 22, 17, 7]). Assume that f
is locally Lipschitz, that

Rn
a.s.−→ 0 and sup

n≥1
E
[
‖∆Mn‖2 | Fn−1

]
< +∞ a.s..

Then the set Θ∞ of its limiting values as n → +∞ is a.s. a compact connected set, stable by the
flow of

ODEf ≡ θ̇ = −f(θ).
Furthermore if θ∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of ODEf , then

θn
a.s.−→ θ∗.

Comments. By uniformly stable we mean that

sup
θ∈Θ∞

|θ(θ0, t)− θ∗| −→ 0 as t→ +∞,

where θ(θ0, t)θ0∈Θ∞,t∈R+ is the flow of ODEf on Θ∞.

We say that the function f is ǫ-differentiable, ǫ > 0, at θ∗ if

f(θ) = f(θ∗) +Df(θ∗)(θ − θ∗) + o(‖θ − θ∗‖1+ǫ) as θ → θ∗.

Theorem A.2. (Rate of convergence see [14] Theorem 3.III.14 p.131 (for CLT see also e.g. [9,
22])). Let θ∗ be an equilibrium point of {f = 0}. Assume that the function f is differentiable at θ∗

and all the eigenvalues of Df(θ∗) have positive real parts. Assume that for some δ > 0,

(36) sup
n≥1

E
[
‖∆Mn‖2+δ | Fn−1

]
< +∞ a.s.,

and

(37) E
[
∆Mn∆M

′
n | Fn−1

] a.s.−→
n→+∞

Γ,

where Γ∈ S+(d,R) (deterministic symmetric positive matrix) and for an ǫ > 0,

(38) nE
[
‖Rn‖2 1{‖θn−1−θ∗‖≤ǫ}

]
−→

n→+∞
0.

(a) If Λ := ℜe(λmin) >
1
2 , where λmin denotes the eigenvalue of Df(θ∗) with lowest real part, the

above a.s. convergence is ruled on the set Df{θn → θ∗} by the following Central Limit Theorem

√
n (θn − θ∗)

L−→
n→∞

N (0,Σ) with Σ :=

∫ +∞

0
e(Id/2−Df(θ∗))uΓe(Id/2−Df(θ∗))

′

udu.

(b) If λmin = 1
2 , then √

n

log n
(θn − θ∗)

L−→
n→∞

N (0,Σ) as n→ +∞.

(c) If λmin∈ (0, 12 ), then n
λmin (θn − θ∗) a.s. converges as n→ +∞ towards a finite random variable.
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[11] P. Cirillo, P. Gallegati and J. Hüsler. A Pólya lattice model to study leverage dynamics and contagion financial
fragility. Adv. Complex Systems, 15, 2012.

[12] I. Crimaldi, P. D. Pra and I. G. Minelli. Fluctuation theorems for synchronization of interacting Pòlya’s urns.
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20133 Milano, Italy

E-mail address: andrea.ghiglietti@unimi.it


	1. Introduction
	2. Model Setting and main Assumptions
	2.1. Model
	2.2. Main assumptions
	2.3. A preliminary result
	2.4. The interacting matrix

	3. The interacting urn system in the stochastic approximation framework
	3.1. Notation
	3.2. The system dynamics in the SA form

	4. Leading systems
	4.1. Extension of the urn dynamics to Rsl K
	4.2. First-order asymptotic results
	4.3. Second-order asymptotic results

	5. Following systems
	5.1. Extension of the urn dynamics to Rrl K
	5.2. Removal of unnecessary components
	5.3. First-order asymptotic results
	5.4. Second-order asymptotic results

	6. Further extensions
	6.1. Random and time-dependent interacting matrix
	6.2. Non-homogeneous generating matrices

	7. Proofs
	7.1. Proofs on the leading systems
	7.2. Proofs on the following systems

	Appendix A. Basic tools of Stochastic Approximation
	References

