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ABSTRACT 

 

Background  

Cardiovascular malformations have a higher incidence in patients with NF1 microdeletion 

syndrome compared to NF1 patients with intragenic mutation, presumably owing to 

haploinsufficiency of one or more genes included in the deletion interval and involved in heart 

development. In order to identify which genes could be responsible for cardiovascular 

malformations in the deleted patients, we carried out expression studies in mouse embryos and 

functional studies in zebrafish. 

Methods and results 

The expression analysis of three candidate genes included in the NF1 deletion interval, ADAP2, 

SUZ12 and UTP6, performed by in situ hybridization, showed the expression of ADAP2 murine 

ortholog in heart during fundamental phases of cardiac morphogenesis.  

In order to investigate the role of ADAP2 in cardiac development, we performed loss-of-function 

experiments of zebrafish ADAP2 ortholog, adap2, by injecting two different morpholino oligos 

(adap2-MO and UTR-adap2-MO). adap2-MOs injected embryos (morphants) displayed in vivo 

circulatory and heart shape defects. The molecular characterization of morphants with cardiac 

specific markers showed that the injection of adap2-MOs causes defects in heart jogging and 

looping. In addition, morphological and molecular analysis of adap2 morphants demonstrated that 

the loss of adap2 function leads to defective valvulogenesis, suggesting a correlation between 

ADAP2 haploinsufficiency and the occurrence of valve defects in NF1-microdeleted patients. 

Conclusions 

Overall, our findings indicate that ADAP2 has a role in heart development and might be a reliable 

candidate gene for the occurrence of cardiovascular malformations in patients with NF1 

microdeletion and, more generally, for the occurrence of a subset of congenital heart defects. 
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INTRODUCTION 

NF1 microdeletion syndrome [MIM 613675] is a rare disorder caused by the haploinsufficiency of 

NF1 and contiguous genes. NF1-microdeleted patients carry a heterozygous deletion of 17q11.2 

region typically spanning about 1-1.4 Mb.[1,2] NF1 microdeletion syndrome is often characterized 

by a more severe phenotype compared to the one observed in NF1 with intragenic mutation.[3] 

Comparing the clinical phenotype between NF1-microdeleted patients and the whole NF1 

population, we found that cardiovascular malformations (CVMs) are significantly more frequent in 

NF1 patients with microdeletion syndrome than in those with neurofibromatosis caused by 

intragenic mutation.[4] The CMVs found in the NF1-deleted patients include pulmonic stenosis, 

atrial/ventricular septal defects and valve defects, and show an incidence of 18% versus 2.1% 

displayed by NF1 patients with intragenic mutation.[4,5]  

The higher incidence of CVMs in NF1-microdeleted patients is most likely dependent on the 

haploinsufficiency of genes lying in the deletion interval, presumably involved in heart 

morphogenesis. Our previous search for candidate genes by Northern blotting and RT-PCR analysis 

evidenced that three genes encompassed by NF1 microdeletion, SUZ12, ADAP2 (formerly 

CENTA2) and UTP6 (formerly C17ORF40) are highly expressed in human fetal heart and during 

the early developmental stages of mouse embryonic heart,[6] thus deserving further analysis. 

SUZ12 (Suppressor of Zeste 12 Homolog (Drosophila)) is the human ortholog of the Drosophila 

Su(z)12 polycomb gene, encoding a protein which is implicated in developmental mechanisms in 

Drosophila.[7] Mice lacking Suz12 are not viable and die around 7.5 days post coitum (dpc), 

displaying severe developmental and proliferative defects.[8] 

ADAP2 (ArfGAP with Dual PH domains 2) encodes a protein named Centaurin-alpha-2, which 

belongs to the centaurins protein family. Centaurin-alpha-2 is recruited to the plasma membrane 

where it specifically regulates actin cytoskeleton remodeling via ARF6, indicating an important role 

in exocytosis and cell motility.[9] Moreover, it was recently shown to interact with microtubules 

and to increase their stability.[10]  
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UTP6 (small subunit (SSU) processome component, homolog (yeast)) is the human homolog of 

yeast small subunit (SSU) processome component. The UTP6 gene is essential for efficient pre-

rRNA processing [11] and seems to be involved in the positive regulation of apoptosis.[12] 

Here, we investigated the spatio-temporal expression profile of ADAP2, SUZ12 and UTP6 murine 

orthologs during mouse embryonic and fetal development by in situ hybridization. Based on this 

analysis, we held ADAP2 the most interesting candidate gene for CVMs occurrence and used 

zebrafish as a model organism to investigate in vivo the role of adap2, the ADAP2 zebrafish 

ortholog, during vertebrate heart development by loss-of-function experiments.  

 

RESULTS 

Expression analysis of Suz12, Utp6 and Adap2 genes in mouse reveals that Adap2 is Expressed 

During Key Stages of Heart Development 

In order to elucidate the expression pattern of Suz12, Utp6 and Adap2 genes in mouse, we 

performed in situ hybridizations using whole mounts at different stages of development, ranging 

from 7.5 to 11.5 dpc.  

The gene which revealed the most interesting expression pattern was Adap2, since it was visible in 

heart between 9 dpc and 10.5 dpc (figure 1) during fundamental phases of cardiac morphogenesis, 

namely heart looping (beginning at 8 dpc), endocardial cushion formation (10 dpc), and septation of 

the outflow tract, atria, and ventricles (10.5 dpc). In particular, the strongest Adap2 mRNA 

hybridization signal was seen in the heart atria and ventricles at 9.5 dpc (figure 1E), but its 

expression in the heart was visible as of 9 dpc (figure 1C) and was still present in both atria and 

ventricles at 10.5 dpc (figure 1F). We also performed in situ hybridizations on cryosections of 15.5 

dpc embryos in order to assess if Adap2 transcript is also present in the heart during the later stages 

of fetal cardiac development. Our experiments demonstrated that the expression of Adap2 in the 

heart continues to be maintained at least until 15.5 dpc, in both the ventricles and atria (figure 1H). 
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Conversely, Suz12 evidenced a more spatially and temporally restricted expression in heart, with a 

clear hybridization signal only at 10.5 dpc in the atrium, while Utp6 revealed no expression in heart 

at any analyzed stages (figure S1).  

Based on this evidence, we held ADAP2 the most interesting candidate gene for CVMs occurrence 

and we used zebrafish as a model organism to investigate in vivo its role during vertebrate heart 

development. 

 

adap2, the ADAP2 Zebrafish Ortholog, is Required for Proper Cardiac Morphogenesis  

In order to explore the spatio-temporal expression pattern of adap2, the ADAP2 zebrafish ortholog 

(Ensembl Gene ID: ENSDARG00000070565), we performed RT-PCR and whole mount in situ 

hybridization assays. adap2 transcript was detected by RT-PCR at all analyzed stages, from 

cleavage up to 120 hpf (hours post fertilization), as well as in the oocytes, indicating that the gene is 

both maternally and zygotically expressed. Furthermore, adap2 mRNA was present in all analyzed 

adult tissues, including heart (figure S2). Whole-mount in situ hybridization revealed that adap2 

transcript was present in the heart at 2 dpf (days post fertilization) and 3 dpf stages, in the region 

corresponding to bulbus arteriosus (figure S2).  

In order to investigate the potential role of adap2 during zebrafish heart development in vivo, we 

performed loss-of-function experiments by injecting two independent translation-blocking 

morpholinos (adap2-MO and UTR-adap2-MO) which target the region surrounding adap2 

translation start codon and the 5’-UTR region, respectively. The injection of a control morpholino 

(std-MO) with no targets in zebrafish was used as control of the microinjection. At 2 dpf, most of 

embryos injected with 0.3 pmol of adap2-MO (morphants), unlike std-MO injected embryos, 

displayed blood circulation defects and curved tail (figure 2). Lower doses caused no circulatory 

defects. For the analysis of injected embryos, we focused our attention on 2 dpf, stage at which the 

circulation is surely started and the cardiac looping occurred in control embryos. At this stage, 61% 

(n=94) of embryos injected with 0.3 pmol/embryo of adap2-MO showed one or more blood 
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circulatory defects, such as the total loss of circulation (21%), accumulation of blood cells in the 

trunk and/or tail region (48%) and blood stases in the head (13%) (figure 2D-F,G). All these 

circulatory defects were noticed in both adap2 morphants which showed a body axis comparable to 

that of control embryos and morphants which displayed a bent tail phenotype (71%, n=94). The 

injection of the second translation-blocking MO, UTR-adap2-MO, caused in vivo qualitatively 

similar defects to the first injected MO, though with a different penetrance (figure S3). 

To rule out that circulation defects could be caused by alterations of vascular development, we 

carried out adap2 loss-of-function experiments in the tg(flk1:EGFP) zebrafish transgenic line,[13] 

where EGFP expression is controlled by the endothelial specific flk1 promoter (figure S4; figure 

S5). At 2 dpf, adap2 knocked down embryos revealed no gross defects in vascular development, 

with correct development of main axial vessels, Dorsal Aorta (DA) and Cardinal Vein (CV), 

indicating a normal vasculogenesis. Weak defects in intersomitic vessels (Se) were observed only in 

those embryos with a marked curved tail, suggesting that these alterations were likely caused by 

structural defects of body axis rather than by angiogenesis abnormalities.  

The evidence that two independent morpholinos gave the same in vivo phenotypes confirmed the 

specificity of the adap2 morpholinos. Consequently, we present here data obtained on embryos 

injected with the adap2-MO, which we indicate as adap2 morphants. 

The evidence that circulatory defects in adap2 morphants were not caused by vascular defects 

suggested that they were most likely derived from an abnormal heart development and 

functionality. To test this hypothesis, we injected adap2-MO or std-MO in embryos belonging to 

the tg(gata1:dsRed)
sd2
;tg(flk1:EGFP)

S843
 double transgenic line,[14] in which erythrocytes are 

labeled in red and endothelial cells are labeled in green; we observed the injected embryos under a 

confocal microscope (figure 3). At 2 dpf, control embryos displayed a normal heart morphology 

(figure 3A), while adap2 morphants showed a reduction of atrioventricular (AV) canal bending, a 

partial lack of atrium and ventricle separation, as well as a reduced ventricle size (figure 3B-C). All 

analyzed embryos displayed blood circulation. 
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The in vivo analysis of adap2 phenotype in morphants prompted us to investigate their heart 

morphology by a molecular approach, through whole mount in situ hybridization assays with the 

cardiac specific marker cmlc2 (cardiac myosin light chain 2) (figure 4, table S1, table S2). At 26 

hpf, std-MO injected embryos showed the linear cardiac tube correctly positioned ventrally in the 

left region of the embryo (left jog) (figure 4A). On the contrary, only 39% (n=59) of adap2-MO 

injected embryos displayed, at the same stage, the correct leftward cardiac jogging (figure 4B), 

while another 39% showed no jog, with the heart tube situated centrally along the midline of the 

embryo (figure 4C). Finally, the remaining 22% of adap2 morphants was characterized by an 

inverted cardiac jogging (right jog) (figure 4D). At 2 dpf, std-MO injected embryos hybridized with 

the cmlc2 specific probe presented a normal S-shaped heart with the ventricle positioned on the 

right of the atrium, indicating a correct D-looping process (figure 4E). Differently, only 22% (n=49) 

of adap2 morphants showed a heart morphology comparable to control embryos (figure 4F). The 

remaining adap2 injected embryos displayed either an intermediate phenotype with reduced looping 

(18%), or absence of looping with a completely linear heart tube (47%), or a reversed heart looping 

with the ventricle on the left of the atrium (12%) (figure 4G-I). Moreover, whole mount in situ 

hybridization assays with the ventricle specific marker vmhc (ventricular myosin heavy chain) 

evidenced, at 2 dpf, a marked reduction of ventricle size in 64% (n=39) of adap2 morphants, 

confirming the in vivo observations (figure S6). The reduction of ventricle size was observed 

regardless of the heart looping phenotype (D-loop, no loop or reversed loop). Notably, the 

percentage of embryos showing reduced ventricle size was similar in adap2 morphants with or 

without blood circulation, 65% (n=29) and 60% (n=10) respectively, suggesting no relation 

between this defect and circulatory complications. 

 

adap2 Loss-Of-Function Affects Atrioventricular Valve Development 

In order to shed light on the effect of adap2 knockdown on cardiac functionality, we analyzed AV 

valve formation in zebrafish by carrying out histological sections of AV valve in std-MO and 
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adap2-MO injected embryos at different developmental stages. At 3 dpf stage, control embryos 

displayed correctly formed endocardial cushions in the AV canal connecting the two cardiac 

chambers (figure 5A). The adap2 morphants morphologically more similar to std-MO injected 

embryos still showed proper heart morphology with normal endocardial cushions, the only evident 

defect being a mild reduction of ventricle size, as already evidenced (figure 5B). In adap2 injected 

embryos which in vivo showed an intermediate phenotype (bent tail and presence of blood 

circulation), a visible alteration of the endocardial cushions was observed, with a marked 

disorganization of the cellular elements that will be forming the mature AV valve (figure 5C). 

Embryos with severe phenotype, i.e. curved tail and absent circulation, showed serious alterations 

in the heart morphology, making impossible any consideration on endocardial cushion formation 

(figure 5D). The histological analysis of std-MO injected embryos at 5 dpf evidenced a properly 

developed mature valve, recognizable as two flap-like structures in correspondence to the AV canal 

(figure 5E). At this stage, adap2-MO injected embryos showing an in vivo mild phenotype were 

already characterized by evident defects of mature AV valve, whose cells resulted disorganized and 

poorly compact (figure 5F). The morphology of mature valves in morphants with curved phenotype 

and with blood circulation appeared more compromised, structurally disorganized, without the 

typical valvular shape and with cells irregularly disposed (figure 5G). Finally, the most affected 

adap2 morphants showed severe cardiac malformations: the heart appeared essentially as a linear-

shaped structure, without a clear separation between the two chambers, and consequently it was 

impossible to analyze mature cardiac valve conformation (figure 5H). Moreover, longitudinal 

histological sections of adap2 morphants at 5 dpf evidenced an endocardial detachment from the 

myocardial layer notably in the atrial chamber (figure 5F-G). 

To characterize at molecular level the cardiac AV valve defects displayed by embryos as a 

consequence of adap2 functional inactivation we analyzed, by means of in situ hybridization 

experiments, the expression pattern of two markers, bmp4 (bone morphogenetic protein 4) and 

notch1b (notch homolog 1b), which at 2 dpf are specifically expressed within the myocardial and 
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endocardial component of AV canal, respectively (figure 6A,E). At 2 dpf stage, 91% (n=46) of 

control embryos showed a bmp4 specific hybridization signal precisely marking the myocardial 

component of AV canal, as expected (figure 6B). Differently, 51% (n=41) of adap2-MO injected 

embryos displayed a disorganized and ectopically expanded bmp4 specific expression domain, 

notably as the ventricular chamber is concerned (figure 6C-D). These defects were observed in all 

the phenotypic classes of heart development. Similar results were obtained from the analysis of 

notch1b marker at the same stage, with 49% (n=43) of adap2-MO injected embryos displaying an 

expanded and disorganized notch1b expression pattern (figure 6G-H). All these data highlight 

adap2 function in fundamental processes of zebrafish cardiac morphogenesis, notably heart 

jogging, heart looping, determination of ventricular size and AV valve formation.  

Overall, our findings provide compelling evidence that ADAP2 is involved in heart development, 

pointing to it as the most plausible candidate gene for the occurrence of congenital CVMs in NF1 

microdeletion syndrome and, more generally, for the occurrence of sporadic and familial congenital 

CVMs. 

 

DISCUSSION 

Microdeletion syndromes are a group of disorders characterized by the deletion of a chromosomal 

segment spanning multiple disease genes, each potentially contributing to the phenotype 

independently. Microdeletion syndromes are often characterized by a complex clinical and 

behavioral phenotype resulting from the imbalance of normal dosage of genes located in that 

particular chromosomal segment.[15] 

NF1 microdeletion syndrome is caused by heterozygous deletions involving the NF1 gene and, in 

the most common 1.4 Mb deletion, other 14 genes.[2] A more severe clinical phenotype has often 

been reported in NF1 patients carrying the microdeletion compared to patients with intragenic NF1 

mutations.[3] By reviewing the phenotype of 92 patients with NF1 microdeletion, we found that 

CVMs occurred at a significantly higher incidence in this patient population as compared to NF1 
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patients with intragenic mutations,[4] suggesting that the whole gene deletion segment encompasses 

important genes involved in heart development. Subsequent expression studies indicated three 

possible candidate genes for CVMs that warranted further studies: ADAP2 (formerly known as 

CENTA2), SUZ12 and UTP6 (previously called C17ORF40).[6] 

Here, we analyzed the spatio-temporal expression profile of the above mentioned genes during 

mouse embryonic and fetal development. Based on this analysis, Adap2 seems to be expressed in 

heart starting from 9 dpc, during key phases of cardiac development, that is when the heart tube is 

elongating and looping, and atrial and ventricular septa, as well as AV valves, are forming.[16] 

Moreover, Adap2 expression in heart continues even in the later stages of development, at least 

until 15.5 dpc. Of note, Adap2 expression is not restricted to a particular cardiac compartment or 

structure, but rather seems to localize in both atria and ventricles. Suz12 was also detected in heart 

during mouse development, but its expression seems to be restricted to a short period around 10.5 

dpc and to the heart atria. Differently, Utp6 showed no expression in the developing heart at all.  

Since the expression of ADAP2 mouse ortholog in heart during fundamental stages of cardiac 

morphogenesis was suggestive of a role in heart development, we studied the possible role of 

ADAP2 in heart development by employing zebrafish as a model system. Over the recent years, 

zebrafish has proven to be a valid model for studying cardiovascular development. Despite its 

apparent simplicity, the zebrafish heart shares common structural, developmental and genetics 

features with avian and mammalian heart.[17-19] In addition, because of their small size, they 

receive enough oxygen by passive diffusion from external medium to survive and continue to 

develop in a relatively normal fashion for several days even in the complete absence of blood 

circulation, allowing a detailed phenotypic analysis of animals with severe cardiovascular defects 

that would be lethal in other organisms.[20] 

The functional inactivation of adap2, the ADAP2 zebrafish ortholog, obtained by the injection of 

two MO oligos targeting different adap2 mRNA regions (translation start site and 5’-UTR), caused 

the same circulatory defects, proving the specificity of the phenotypes. We also designed a splice-
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blocking MO, which was predicted to cause exon 2 skipping and to produce an altered form of 

adap2 transcript with the generation of a premature stop codon. However, the injection of this MO 

at different doses did not cause any evident phenotypic defects. RT-PCR analysis, performed to test 

the efficacy of the splice-blocking MO, showed that only a fraction of adap2 mRNA was 

incorrectly spliced. Consequently, we reason that the partial expression of the wild-type protein 

could be enough to prevent the occurrence of the phenotypic defects. This evidence, along with the 

presence in the embryo of the maternal transcript, which is targeted only by translation-blocking 

MOs, might explain the absence of alterations following the injection of this MO. 

Our molecular results suggested adap2 involvement in the cardiac jogging process, the 

morphogenetic process in which the heart cone is displaced to the left with respect to the anterior-

posterior axis, which is one of the first evident breaks in left-right symmetry of the primitive 

zebrafish heart tube.[21] Moreover, adap2 also appeared fundamental for the subsequent D-looping 

process, the bend of the heart tube to the right, which by 36 hpf leads to the typical S-shaped heart, 

with the ventricle positioned on the right of the atrium. This was supported by the high number of 

adap2 morphants which at 2 dpf, when D-looping is normally completed, showed a linear heart, a 

reduced loop or a reversed loop, all defects ascribable to alterations of the heart bending taking 

place during the D-looping process. 

Functional inactivation of adap2 also evidenced its important role during AV valve morphogenesis, 

since the earliest stages of endocardial cushion formation. Our results strongly suggest that a 

defective valvulogenesis results in impaired cardiac functionality, therefore AV valve 

morphological alterations are most likely accounting for the in vivo blood circulation defects 

displayed by adap2 morphants. Valve defects, including mitral valve prolapse, pulmonary valve 

stenosis and aortic valve anomalies, constitute a significant proportion of CVMs observed in 

patients with NF1 microdeletion syndrome.[3,4] Taking into account our findings on ADAP2 role in 

valve morphogenesis, a correlation between ADAP2 haploinsufficiency and the onset of valvular 

defects in NF1-microdeleted patients can be hypothesized. In addition, the detachment between 
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endocardium and myocardium observed in adap2 morphants, particularly in the atrial chamber, 

could be caused by increased amounts of the extracellular matrix (cardiac jelly) juxtaposed between 

the two cardiac layers. Normal valve development involves multiple signaling pathways and 

extracellular matrix components take part in this process. Interestingly, dysregulation of 

components of the extracellular matrix seems to have a role in the myxomatous degeneration, the 

leaflet thickening and redundancy, typical of valvular abnormalities, such as mitral valve 

prolapse.[22] 

ADAP2 is known to regulate microtubule stability [10] and the activity of ARF6, a GTPase 

involved in cellular motility, adhesion and polarity by regulating cytoskeleton remodeling and 

cortical actin formation [9]. The alteration of these functions might impair adhesion and migration 

properties of AV valve cells, explaining their disorganization and the irregular valve architecture 

observed in adap2 morphants. 

During the early phases of valve morphogenesis, the myocardial component of AV junction is 

fundamental for the signaling events leading endocardial cells to begin the formation of cushions, 

which will be later remodeled to create flap-like valvular structures.[23] The marked alteration of 

bmp4 myocardial expression in adap2 morphants suggests a compromised signaling from 

myocardium to endocardium, which might result in the structural valve defects observed at 5 dpf.  

Overall, our study points to ADAP2 as a gene involved in heart development and as a plausible 

candidate gene for the occurrence of CVMs in NF1-microdeleted patients and in the general 

population, constituting an advance towards a better comprehension of the complex phenotypic 

spectrum of the syndrome, as well as of the genetic basis of CVMs. 

 

MATERIALS AND METHODS 

 

Animals 
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The mice used were of the CD1 strain (Charles River Laboratories International, Inc.) and were 

housed in the pathogen-free facility at the San Raffaele Scientific Institute (Milano-Italy). Zebrafish 

(Danio rerio) embryos, collected by natural spawning, were raised and maintained according to 

established techniques.[24] Embryos were staged according to Kimmel and colleagues [25] and 

raised at 28°C in fish water (Instant Ocean, 0,1% Methylene Blue) in Petri dishes. Beginning from 

24 hpf, embryos were cultured in fish water containing 0.003% PTU (1-phenyl-2-thiourea; SIGMA) 

to prevent pigmentation. The following lines were used: AB (obtained from the Wilson lab, 

University College London, London, United Kingdom); tg(flk1:EGFP) [13] (from the Stainier lab, 

University of California at San Francisco), tg(gata1:dsRed)
sd2
; tg(flk1:EGFP)

S843 
[14] (From the 

Santoro lab, Molecular Biotechnology Center, Università di Torino, Torino, Italy).  

 

RT-PCR 

RT-PCR was performed on total RNA extracted from oocytes, embryos (about 30 embryos per 

sample) at different developmental stages and adult organs using the TOTALLY RNA isolation kit 

(Ambion), treated with RQ1 RNase-Free DNase (Promega) and oligo(dT)-reverse transcribed using 

Super-Script II RT (Invitrogen), according to manufacturers' instructions. The following primers 

were used for PCR reactions: adap2_fw 5'-GCTTAGACTTCTGGGATG-3', adap2_rev 5'-

CGAGATAACGGTTTTCAAGGC-3'. PCR products were loaded and resolved onto 2% agarose 

gels. 

 

In Situ Hybridization 

Probes were isolated by RT-PCR using specific primers (table S3) and cloned into the pCRII-TOPO 

vector (Invitrogen). Antisense and sense riboprobes were in vitro labeled with modified nucleotides 

(digoxigenin-UTP, Roche). Whole-mount In Situ Hybridization (WISH) was performed on mouse 

embryos as described in.[26] At least 8 embryos per stage were analyzed. Prehybridization was 

performed in a formamide-tween20 solution, after which the DIG-labelled riboprobes were added to 
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the embryos and incubated at 65°. In situ hybridization on mouse cryostat sections was performed 

according to.[27] 

WISH on zebrafish embryos was substantially carried out as described in [28] on embryos fixed for 

2 hours at room temperature in 4% paraformaldehyde/phosphate buffered saline, then rinsed with 

PBS-Tween, dehydrated in 100% methanol and stored at -20°C until processed for WISH.[29] A 

minimum of 20 embryos/time point were analyzed.  

The following probes were synthesized as described in the corresponding papers: cmlc2 and vmhc, 

[30]  notch1b [31] and bmp4.[32] 

Images of stained embryos were taken with a Leica MZFLIII epifluorescence stereomicroscope 

equipped with a DFC 480 digital camera and IM50 Leica imaging software (Leica). 

For histological sections, stained embryos were re-fixed in 4% PFA, dehydrated, wax embedded, 

sectioned (8 µm) by a microtome (Leitz 1516) and stained with eosin. Images were taken with an 

Olympus BH2 microscope, equipped with a Leica DFC 320 digital camera and the IM50 software 

(Leica). 

 

Morpholino Injections and Phenotype Analysis  

Antisense morpholinos (MOs; Gene Tools) were designed against the AUG translation start site 

region and the coding sequence, adap2-MO (5’-TTGTTCTTTTCCCGATTTGCCATAG-3’) and 

against the 5’-UTR region, UTR-adap2-MO (5’- AAAACACTCCTGTCGCGTCAGAATC-3’). As 

a control for unspecific effects, each experiment was performed in parallel with a std-MO (standard 

control oligo) with no target in zebrafish.  

All morpholinos were diluted in Danieau solution [33] and injected at 1-2 cells stage. Rhodamine 

dextran (Molecular Probes) was usually co-injected as a tracer. After injection, embryos were raised in 

fish water at 28ºC and observed up to the stage of interest. For a better observation, the injected embryos 

were anaesthetized using 0.016% tricaine (Ethyl 3-aminobenzoate methanesulfonate salt, SIGMA) in fish 

water. 
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Images were acquired by using a Leica MZ FLIII epifluorescence microscope equipped with a 

Leica DCF 480 digital camera and the IM50 software (Leica). Confocal microscopy was performed 

with a Leica TCSNT confocal microscope equipped with an Ar/Kr laser (blocking filter BP 530/30 

for EGFP and blocking filter LP 590 for ds Red).  

For histological analysis 3 dpf and 5 dpf zebrafish early larvae were fixed overnight at 4°C with 

bouin fixative. The samples
 
were then dehydrated in a graded ethanol series, wax embedded, 

sectioned (8 µm) by a microtome (Leitz 1516) and stained with hematoxylin/eosin. Images were 

taken with a Leica DM6000 B microscope equipped with a Leica DCF480 digital camera and the  

LAS software. 
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LEGENDS TO FIGURES 

 

Figure 1 

Expression of Adap2 in Whole Mount Mouse Embryos and Mouse Cryosections. (A-G) Whole 

mount in situ hybridization on embryos from 8.25 dpc to 11.5 dpc with an Adap2 specific probe. 

(A) 8.25 dpc, expression at the midbrain/hindbrain boundary. (B) 8.5 dpc, expression in the gut 

tube. (C) 9 dpc, expression in forebrain, midbrain, hindbrain, heart (arrow), otic vesicles, gut tube. 

(D) 9.25 dpc, expression in forebrain, midbrain, hindbrain, otic vesicles, heart (arrow), posterior 

part of the gut tube. (E) 9.5 dpc, expression in forebrain, midbrain, hindbrain, otic vesicles, heart 

(arrow), gut tube. (F) 10.5 dpc, expression in forebrain, midbrain, hindbrain, otic vesicles, heart 

(arrow), gut tube. (G) 11.5 dpc expression in midbrain, inner ear, forelimbs, weakly in hindlimbs. 

(H) In situ hybridization on cryosection of a 15.5 dpc embryo showing Adap2 expression in heart 

atrium (a) and ventricle (v).  

 

Figure 2 

adap2 Knockdown Causes Circulation Defects in Zebrafish. (A) Lateral view and (B) detailed 

image of the trunk-tail region of std-MO injected embryos at 2 dpf. (C, E-F) Lateral view and (D) 

detailed image of the trunk-tail region of adap2-MO injected embryos at 2 dpf. Anterior to the left. 

Black arrows: blood stases in the tail region; arrowhead: blood stasis in the head. (G) Percentage of 

circulation defects in adap2 morphants at 2 dpf (n=94): 21% of the adap2 morphants displayed no 

blood circulation, 48% blood stases in the trunk-tail region and 13% blood stases in the cephalic 

region. 

 

Figure 3 

adap2 Loss-of-Function Affects Normal Heart Morphogenesis in Zebrafish. The hearts of 

double transgenic tg(gata1:dsRed)
sd2
;tg(flk1:EGFP)

S843 
embryos injected with std-MO or adap2-
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MO were examined in vivo by confocal microscopy at 2 dpf. Erythrocytes and endocardium are 

labeled in red and green, respectively. Confocal images of the heart in (A) std-MO injected embryo, 

in (B) adap2 morphant displaying normal morphology and in (C) adap2-MO injected embryo with 

bent tail. All analyzed embryos presented blood circulation. 

 

Figure 4 

adap2 Loss-of-Function Experiments Perturbs Zebrafish Heart Jogging and Heart Looping. 

Analysis of cmlc2 expression by in situ hybridization was performed on std-MO and adap2-MO 

injected embryos at 26 hpf and 2 dpf. The heart position in injected embryos was scored as left jog 

(normal; A-B), no jog (C) and right (reversed) jog (D) at 26hpf and as D-loop (normal; E-F), 

reduced loop (G), no loop (H) and reversed loop (I) at 2dpf. V: ventricle; A: atrium. (A-D) Dorsal 

views through the head, anterior to the bottom; (E-I) frontal views, head to the top. 

 

Figure 5 

adap2 Knockdown Impairs the Normal Endocardial Cushions and Mature Valve Formation. 

Histological sections of std-MO and adap2-MO injected embryos at 3 dpf (transversal sections) and 

5 dpf (longitudinal sections) stained with hematoxylin and eosin. (A, E) Heart sections of control 

embryos at 3 dpf (A) and 5 dpf, with magnification of the valve region (E). (B, F) Heart sections of 

adap2 morphants with blood circulation and morphology comparable to controls at 3 dpf (B) and 5 

dpf, with magnification of the valve region (F). (C, G) Heart sections of adap2 morphants with 

blood circulation and bent tail at 3 dpf (C) and 5 dpf, with magnification of the valve region (G). 

(D, H) Heart sections of adap2 morphants with no blood circulation and curved tail at 3 dpf (D) and 

5 dpf, with magnification of the valve region (H). Arrowheads: endocardial cushions; double 

arrows: extracellular matrix (cardiac jelly) located between myocardium and endocardium. 

 

Figure 6 
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The Expression of Atrio-ventricular Boundary Markers is Affected in adap2 Morphants. 

analysis of bmp4 and notch1b expression by in situ hybridization was performed on std-MO and 

adap2-MO injected embryos at 2 dpf. (A, E) Schematic representation of bmp4 and notch1b 

expression domain in zebrafish heart at 2 dpf. The myocardium and endocardium specific territories 

of bmp4 and notch1b expression are depicted in magenta. (B, F) Embryos injected with std-MO 

displaying a normal hybridization signal. (C-D, G-H) Embryos injected with adap2-MO displaying 

expanded and disorganized bmp4 and notch1b expression domains. Frontal views are shown. 

 

Figure S1  

Expression of Suz12 and Utp6 in Whole Mount Mouse Embryos. (A-D) Whole mount in situ 

hybridization on embryos from 8.75 dpc to 11.5 dpc with a Suz12 specific probe. (A) 8.75 dpc, 

expression in the telencephalic vesicle. (B) 9.5 dpc, expression in the branchial arches, weak signal 

in the heart (arrow). (C) 10.5 dpc, expression in branchial arches, limb buds, heart atrium (arrow). 

(D) 11.5 dpc, expression in forebrain, hindbrain, fore and hindlimbs. (E-H) Whole mount in situ 

hybridization on embryos from 9.25 dpc to 11.5 dpc with an Utp6 specific probe. (E) 9.25 dpc, 

expression in the branchial arches, weak expression in the forebrain. No hybridization signal in the 

heart (arrow). (F) 10.25 dpc, expression in branchial arches, limb buds, otic vesicles. (G) 10.75 dpc, 

expression in branchial arches, limb buds, otic vesicles. (H) 11.5 dpc, expression in forebrain, limb 

buds, otic vesicles, inner ear. 

 

Figure S2 

Spatio-temporal Expression Pattern of adap2 in Zebrafish. (A) RT-PCR analysis of adap2 

expression in zebrafish, performed on total RNAs extracted from oocytes and different embryonic 

and larval stages (from 8 cells to 120 hpf) and adult organs. (B-D) adap2 spatial expression 

analyzed by WISH at 2 dpf and 3 dpf stages. (B) Lateral views of the cephalic region of 2 dpf and 

(C) 3 dpf stained embryos oriented with anterior to the left and posterior to the right. (D) 
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Hystological transverse section of a 2 dpf stained embryo. (B, D) At 2 dpf, adap2 expression is 

mainly localized in the cephalic region, with a faint signal in the cardiac region corresponding to the 

bulbus arteriosus (arrowhead). (C) At 3 dpf, the signal in the cephalic region, as well in the bulbus 

arteriosus (arrowhead), becomes stronger. 

 

Figure S3 

UTR-adap2-MO injection gives qualitatively similar results to adap2-MO injection, such as 

circulation defects and blood stases in the trunk/tail and in the head at 2dpf. (A) Lateral view 

and (B) detailed image of the tail region of std-MO injected embryos. (C, E) Lateral views and (D-

F) detailed images of the head and tail region of two different UTR-adap2-MO injected embryos. 

Anterior to the left.Arrowhead: blood stasis in the head; black arrows: blood stases in the tail 

region. (G) Percentage of circulation defects in UTR-adap2 morphants at 2 dpf (n=128), after the 

injection of 0.65 pmol/embryo: 42% of the UTR-adap2 morphants displayed no blood circulation, 

21% blood stases in the trunk-tail region and 5% blood stases in the cephalic region. 

 

Figure S4 

adap2-MO Injection does not Grossly Affect Vasculogenesis and Angiogenesis at 2 dpf. In vivo 

analysis of tg(flk1:EGFP) embryos injected with (A-D) std-MO or (E-L) adap2-MO. (A-B) Bright 

field images of std-MO injected embryos. (E-F, I) Bright field images of adap2-MO injected 

embryos. (C-D) Fluorescence images of std-MO injected embryos. (G-H, L) Fluorescence images 

of adap2-MO injected embryos. (B, D, F, H) Detailed view of the caudal region. Lateral views, 

anterior to the left. Se: intersomitic vessels; DA: dorsal aorta; CV: caudal vein. 

 

Figure S5 

UTR-adap2-MO Injection does not Grossly Affect Vasculogenesis and Angiogenesis at 2 dpf 

similarly to adap2-MO Injection. In vivo analysis of tg(flk1:EGFP) embryos injected with (A-D) 
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std-MO or (E-L) UTR-adap2-MO. (A-B) Bright field images of std-MO injected embryos. (E-F, I-

J) Bright field images of UTR-adap2-MO injected embryos. (C-D) Fluorescence images of std-MO 

injected embryos. (G-H, K-L) Fluorescence images of UTR-adap2-MO injected embryos. (B, D, F, 

H, J, L) Detailed views of the caudal region. Lateral views, anterior to the left. Se: intersomitic 

vessels; DA: dorsal aorta; CV: caudal vein. 

 

Figure S6 

Reduction of Ventricle Size in adap2 Morphants. In situ hybridization analysis of vmhc 

performed on std-MO and adap2-MO injected embryos at 2 dpf. (A) Embryos injected with std-

MO. (B-D) Embryos injected with adap2-MO showing a reduced ventricle size. V: ventricle. All 

embryos are shown in frontal view. 
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Figure 1  
Expression of Adap2 in Whole Mount Mouse Embryos and Mouse Cryosections. (A-G) Whole mount in situ 

hybridization on embryos from 8.25 dpc to 11.5 dpc with an Adap2 specific probe. (A) 8.25 dpc, expression 

at the midbrain/hindbrain boundary. (B) 8.5 dpc, expression in the gut tube. (C) 9 dpc, expression in 
forebrain, midbrain, hindbrain, heart (arrow), otic vesicles, gut tube. (D) 9.25 dpc, expression in forebrain, 
midbrain, hindbrain, otic vesicles, heart (arrow), posterior part of the gut tube. (E) 9.5 dpc, expression in 
forebrain, midbrain, hindbrain, otic vesicles, heart (arrow), gut tube. (F) 10.5 dpc, expression in forebrain, 
midbrain, hindbrain, otic vesicles, heart (arrow), gut tube. (G) 11.5 dpc expression in midbrain, inner ear, 

forelimbs, weakly in hindlimbs. (H) In situ hybridization on cryosection of a 15.5 dpc embryo showing Adap2 
expression in heart atrium (a) and ventricle (v).  
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Figure 2  
adap2 Knockdown Causes Circulation Defects in Zebrafish. (A) Lateral view and (B) detailed image of the 
trunk-tail region of std-MO injected embryos at 2 dpf. (C, E-F) Lateral view and (D) detailed image of the 
trunk-tail region of adap2-MO injected embryos at 2 dpf. Anterior to the left. Black arrows: blood stases in 

the tail region; arrowhead: blood stasis in the head. (G) Percentage of circulation defects in adap2 
morphants at 2 dpf (n=94): 21% of the adap2 morphants displayed no blood circulation, 48% blood stases 

in the trunk-tail region and 13% blood stases in the cephalic region.  
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Figure 3  
adap2 Loss-of-Function Affects Normal Heart Morphogenesis in Zebrafish. The hearts of double transgenic 
tg(gata1:dsRed)sd2;tg(flk1:EGFP)S843 embryos injected with std-MO or adap2-MO were examined in vivo 

by confocal microscopy at 2 dpf. Erythrocytes and endocardium are labeled in red and green, respectively. 
Confocal images of the heart in (A) std-MO injected embryo, in (B) adap2 morphant displaying normal 
morphology and in (C) adap2-MO injected embryo with bent tail. All analyzed embryos presented blood 

circulation.  
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Figure 4  
adap2 Loss-of-Function Experiments Perturbs Zebrafish Heart Jogging and Heart Looping. Analysis of cmlc2 
expression by in situ hybridization was performed on std-MO and adap2-MO injected embryos at 26 hpf and 

2 dpf. The heart position in injected embryos was scored as left jog (normal; A-B), no jog (C) and right 
(reversed) jog (D) at 26hpf and as D-loop (normal; E-F), reduced loop (G), no loop (H) and reversed loop 

(I) at 2dpf. V: ventricle; A: atrium. (A-D) Dorsal views through the head, anterior to the bottom; (E-I) 
frontal views, head to the top.  
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Figure 5  
adap2 Knockdown Impairs the Normal Endocardial Cushions and Mature Valve Formation. Histological 

sections of std-MO and adap2-MO injected embryos at 3 dpf (transversal sections) and 5 dpf (longitudinal 

sections) stained with hematoxylin and eosin. (A, E) Heart sections of control embryos at 3 dpf (A) and 5 
dpf, with magnification of the valve region (E). (B, F) Heart sections of adap2 morphants with blood 

circulation and morphology comparable to controls at 3 dpf (B) and 5 dpf, with magnification of the valve 
region (F). (C, G) Heart sections of adap2 morphants with blood circulation and bent tail at 3 dpf (C) and 5 
dpf, with magnification of the valve region (G). (D, H) Heart sections of adap2 morphants with no blood 
circulation and curved tail at 3 dpf (D) and 5 dpf, with magnification of the valve region (H). Arrowheads: 
endocardial cushions; double arrows: extracellular matrix (cardiac jelly) located between myocardium and 

endocardium.  
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Figure 6  
The Expression of Atrio-ventricular Boundary Markers is Affected in adap2 Morphants. analysis of bmp4 and 
notch1b expression by in situ hybridization was performed on std-MO and adap2-MO injected embryos at 2 
dpf. (A, E) Schematic representation of bmp4 and notch1b expression domain in zebrafish heart at 2 dpf. 
The myocardium and endocardium specific territories of bmp4 and notch1b expression are depicted in 

magenta. (B, F) Embryos injected with std-MO displaying a normal hybridization signal. (C-D, G-H) Embryos 
injected with adap2-MO displaying expanded and disorganized bmp4 and notch1b expression domains. 

Frontal views are shown.  
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Figure S1  
Expression of Suz12 and Utp6 in Whole Mount Mouse Embryos. (A-D) Whole mount in situ hybridization on 

embryos from 8.75 dpc to 11.5 dpc with a Suz12 specific probe. (A) 8.75 dpc, expression in the 

telencephalic vesicle. (B) 9.5 dpc, expression in the branchial arches, weak signal in the heart (arrow). (C) 
10.5 dpc, expression in branchial arches, limb buds, heart atrium (arrow). (D) 11.5 dpc, expression in 

forebrain, hindbrain, fore and hindlimbs. (E-H) Whole mount in situ hybridization on embryos from 9.25 dpc 
to 11.5 dpc with an Utp6 specific probe. (E) 9.25 dpc, expression in the branchial arches, weak expression in 

the forebrain. No hybridization signal in the heart (arrow). (F) 10.25 dpc, expression in branchial arches, 
limb buds, otic vesicles. (G) 10.75 dpc, expression in branchial arches, limb buds, otic vesicles. (H) 11.5 

dpc, expression in forebrain, limb buds, otic vesicles, inner ear.  
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Figure S2  
Spatio-temporal Expression Pattern of adap2 in Zebrafish. (A) RT-PCR analysis of adap2 expression in 

zebrafish, performed on total RNAs extracted from oocytes and different embryonic and larval stages (from 

8 cells to 120 hpf) and adult organs. (B-D) adap2 spatial expression analyzed by WISH at 2 dpf and 3 dpf 
stages. (B) Lateral views of the cephalic region of 2 dpf and (C) 3 dpf stained embryos oriented with anterior 
to the left and posterior to the right. (D) Hystological transverse section of a 2 dpf stained embryo. (B, D) At 
2 dpf, adap2 expression is mainly localized in the cephalic region, with a faint signal in the cardiac region 

corresponding to the bulbus arteriosus (arrowhead). (C) At 3 dpf, the signal in the cephalic region, as well in 
the bulbus arteriosus (arrowhead), becomes stronger.  

79x51mm (300 x 300 DPI)  
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Figure S3  
UTR-adap2-MO injection gives qualitatively similar results to adap2-MO injection, such as circulation defects 
and blood stases in the trunk/tail and in the head at 2dpf. (A) Lateral view and (B) detailed image of the tail 

region of std-MO injected embryos. (C, E) Lateral views and (D-F) detailed images of the head and tail 
region of two different UTR-adap2-MO injected embryos. Anterior to the left.Arrowhead: blood stasis in the 
head; black arrows: blood stases in the tail region. (G) Percentage of circulation defects in UTR-adap2 

morphants at 2 dpf (n=128), after the injection of 0.65 pmol/embryo: 42% of the UTR-adap2 morphants 
displayed no blood circulation, 21% blood stases in the trunk-tail region and 5% blood stases in the cephalic 

region.  
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Figure S4  
adap2-MO Injection does not Grossly Affect Vasculogenesis and Angiogenesis at 2 dpf. In vivo analysis of 
tg(flk1:EGFP) embryos injected with (A-D) std-MO or (E-L) adap2-MO. (A-B) Bright field images of std-MO 
injected embryos. (E-F, I) Bright field images of adap2-MO injected embryos. (C-D) Fluorescence images of 

std-MO injected embryos. (G-H, L) Fluorescence images of adap2-MO injected embryos. (B, D, F, H) 
Detailed view of the caudal region. Lateral views, anterior to the left. Se: intersomitic vessels; DA: dorsal 

aorta; CV: caudal vein.  
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Figure S5  
UTR-adap2-MO Injection does not Grossly Affect Vasculogenesis and Angiogenesis at 2 dpf similarly to 
adap2-MO Injection. In vivo analysis of tg(flk1:EGFP) embryos injected with (A-D) std-MO or (E-L) UTR-
adap2-MO. (A-B) Bright field images of std-MO injected embryos. (E-F, I-J) Bright field images of UTR-

adap2-MO injected embryos. (C-D) Fluorescence images of std-MO injected embryos. (G-H, K-L) 
Fluorescence images of UTR-adap2-MO injected embryos. (B, D, F, H, J, L) Detailed views of the caudal 
region. Lateral views, anterior to the left. Se: intersomitic vessels; DA: dorsal aorta; CV: caudal vein.  
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Figure S6  
Reduction of Ventricle Size in adap2 Morphants. In situ hybridization analysis of vmhc performed on std-MO 
and adap2-MO injected embryos at 2 dpf. (A) Embryos injected with std-MO. (B-D) Embryos injected with 

adap2-MO showing a reduced ventricle size. V: ventricle. All embryos are shown in frontal view.  
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TABLES 

 

Table S1: heart jogging defects in std-MO and adap2-MO injected embryos at 26 hpf as shown by 

cmlc2 expression pattern analysis (Figure 4). n. = total number of injected embryos. 

 

  Heart jog (%) 

Injected morpholino n. Left jog No jog Right jog Total heart jogging defects 

      
std-MO 53  98 2 0 2 

adap2-MO 59 39 39 22 61 

 

 

Table S2: heart looping defects in std-MO and adap2-MO injected embryos at 2 dpf as shown by 

cmlc2 expression pattern analysis (Figure 4). n. = total number of injected embryos. 

 

  Heart loop (%) 

Injected 

morpholino n. D-loop Reduced loop No loop 

Reversed 

loop 

Total heart  

looping defects 

       
std-MO 53  96 0 4 0 4 

adap2-MO 49 22 18 47 12 77 

 

 

Table S3: Primers Used to Generate the Probes for Whole-Mount In Situ Hybridization 

Experiments. 

 

Name Sequence (5’-3’) Tm 

  
 

Adap2P_fw CTCGTGCCTCTCATCACCAG 64°C 

Adap2P_rev CCAGTGTAGTCCAGGTTGTC 62°C 

Suz12P_fw AGCATAATGTCAATAGATAAAGC 60°C 

Suz12P_rev CATCTTCTGAATCTCCAACTG 60°C 

Utp6P_fw GCTCCAGGTGCTCATTGACTC 66°C 

Utp6P_rev GGTTGAGGCAGTCCATCCAC 64°C 

adap2P_fw CTTTCCAACTGCTAGTGATGTAG 66°C 

adap2P_rev CGCCAGACAGAGACAAGACTC 66°C 

 

Page 39 of 39

http://mc.manuscriptcentral.com/jmedgenet

Journal of Medical Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


