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Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1), and the paralogues rcor2 and rcor3 encode
CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST pro-
teins with the histone demethylase LSD1/KDM1A and histone deacetylases 1 and 2 (HDAC1/2) and the finding that all three
CoRESTs are expressed in the adult rat brain. CoRESTs interact equally strongly with LSD1/KDM1A. Structural analysis shows
that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcrip-
tional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads
to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is
resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2, which is barely present in LSD1/KDM1A-
CoREST2 complexes. A nonconserved leucine in the first SANT domain of CoREST2 severely weakens its association with
HDAC1/2. Furthermore, CoREST2 mutants with increased HDAC1/2 interaction and those without HDAC1/2 interaction ex-
hibit equivalent transcriptional repression capacities, indicating that CoREST2 represses in an HDAC-independent manner. In
conclusion, differences among CoREST proteins are instrumental in the modulation of protein-protein interactions and cata-
lytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine-tuning gene expression regulation.

Gene expression regulation is exerted by activator or repressor
transcriptional complexes that are targeted to specific loci in

the chromatin. CoREST was initially described as a transcriptional
corepressor for REST (repressor element 1-silencing transcription
factor [1]) and later purified as part of a transcriptional corepres-
sor complex, comprising also the histone demethylase LSD1/
KDM1A and the histone deacetylases 1 and 2 (HDAC1/2) (2, 3),
here referred to as the LCH complex. REST recruits CoREST to
specifically repress the expression of neuronal genes in nonneuro-
nal cells and neural stem cells (4, 5). However, in neural stem cells,
CoREST targets a group of genes which are not REST targets,
suggesting other relevant mechanisms in neuronal specification
(6, 7). A variety of transcription factors have indeed been shown to
interact with CoREST and/or LSD1/KDM1A, thus bringing the
LCH complex to transiently repress or silence target genes in both
neuronal and nonneuronal systems (8, 9). For instance, in hema-
topoietic cells, the zinc finger transcription factor Gfi (growth fac-
tor independent) recruits CoREST to regulate the expression of
target genes during erythroid differentiation (9, 10). CoREST also
controls the expression of certain genes during physiopathological
processes, as exemplified by its participation in repressing the heat
shock (11) and proinflammatory (12) responses.

The components of the LCH complex operate sequentially and
interdependently to epigenetically modify histones in the vicinity
of regulated genes. First, HDAC1/2 deacetylates the H3 histone
tail, allowing LSD1/KDM1A to demethylate mono- and dimethy-
lated lysine 4 of histone H3 (13–15). The presence of CoREST in
the complex is essential for the recognition of the nucleosomal
substrate and its deacetylation and demethylation by HDAC1/2
and LSD1/KDM1A, respectively (14–17). CoREST is highly pre-
served throughout evolution, and homologs in Drosophila (18),
Xenopus (19), and Caenorhabditis elegans (20), where it regulates

specific cell phenotypes acquisition (18, 20–22), have been de-
scribed. In humans, CoREST is encoded by the gene rcor1 and has
482 amino acids with a molecular mass of 66 kDa (1). CoREST
harbors three highly conserved domains: one ELM2 (Egl-27 and
MTA homology 2) and two SANT (SWI/SNF, ADA, NCoR, and
TFIIIB) domains (14). The ELM2 and the first SANT domain
(SANT1) participate in the interaction with HDAC1/2 (3, 16, 23–
25), whereas the second SANT domain (SANT2) binds to LSD1/
KDMA1, forming a very tight protein complex (15, 17, 26).

Two other genes, rcor2 and rcor3, with strong homology to the
CoREST (CoREST1 hereafter) gene have been found in humans
and in other species (27, 28). In humans, rcor2 encodes CoREST2,
a protein of 523 amino acids, whereas rcor3 encodes CoREST3, a
protein with four isoforms of 436, 449, 495, and 553 amino acids
generated by alternative splicing. It has been shown that CoREST2
is capable of interacting with LSD1/KDM1A (29), and CoREST3
has been copurified in LSD1/KDM1A complexes (15). Although
the three proteins exhibit high sequence identity, little is known
about CoREST2 and CoREST3 transcriptional activities, their
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functional partnerships, and their expression profile in mamma-
lian brain. Here we show the specific properties and functional
partnerships of each CoREST protein and their expression in the
adult rat brain.

MATERIALS AND METHODS
Animals. Adult male Sprague-Dawley rats weighing 250 to 300 g were
used. Rats were maintained on a 12-h-light/12-h-dark cycle with food and
water available ad libitum. The procedures were conducted in accordance
with national and institutional policies (Comisión Nacional de Investi-
gación Científica y Tecnológica [CONICYT] and Pontificia Universidad
Católica de Chile).

Cell culture conditions. HEK293 and HEK293T cell lines were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum and 1% penicillin-streptomycin and main-
tained at 37°C and 5% CO2.

Antibodies. Polyclonal anti-Gal4 DNA binding domain (DBD) (sc-
577) and monoclonal anti-Myc (9E10) antibodies were obtained from
Santa Cruz Biotechnology. Two monoclonal anti-CoREST1 antibodies
were used: K72/8 from Neuromab and 612146 from BD Transduction
Laboratories. Anti-HDAC1 (10E2), anti-HDAC2 (3F3), polyclonal anti-
Myc (ab9106), polyclonal anti-CoREST3 (ab76921), and polyclonal anti-
LSD1/KDM1A (ab17721) antibodies were obtained from Abcam. Poly-
clonal antibodies against LSD1/KDM1A (2139) and CoREST1 (07-455)
were obtained from Millipore. Polyclonal anti-CoREST2 (HPA021638)
and anti-�-tubulin (T5168) antibodies were obtained from Sigma.

Plasmids. To obtain recombinant Gal4-CoREST expression plasmids,
full-length rat CoREST2 cDNA (NM_001013994.1) and rat CoREST3
cDNA (NM_001134985.1) were generated by PCR from pEXPRESS and
cloned into the vector pSG424 in the KpnI and XbaI sites. The human
Gal4-CoREST1 was described previously (1). Human Myc-CoREST1 was
subcloned from pcDNA-CoREST (1) into the vector pCS2�MT, which
encodes a 6� Myc epitope. Myc-CoREST2- and Myc-CoREST3-express-
ing plasmids were generated by PCR from pEXPRESS and cloned into
pCS2�MT. Myc-CoREST2 lacking the ELM2 domain, Myc-CoREST2
with the ELM2 of CoREST1, and CoREST2 containing point mutations
were generated using previously described protocols (30). Mutants of
CoREST2 were subcloned from pCS2�MT into pSG424 using standard
cloning methods. All plasmids encoding fusion protein constructs were
sequenced across the junction to confirm that inserts were in frame. All
constructs generated by PCR were completely sequenced.

Coimmunoprecipitation and Western blotting. HEK293T cells
(3.5 � 106 cells) were transfected with 2.5 �g of Myc-CoREST1, Myc-
CoREST2, or Myc-CoREST3 and harvested 48 h after transfection. Coim-
munoprecipitation assays and Western blot assays were carried out as
described previously (11). To quantify the amount of coprecipitated pro-
teins (HDACs and LSD1/KDM1A), specific bands of Western blots were
quantified with ImageJ software, and values were corrected by the relative
amount of each Myc-CoREST protein precipitated.

Transient-transfection and reporter gene assays. Transient-trans-
fection and reporter gene assays were performed as we described previ-
ously (30). We used the reporter plasmid G5S4tkLuc, which encodes fire-
fly luciferase and is driven by a system containing 5 upstream activation
sequences (UAS) and four elements for the SP1 transcriptional activator,
upstream of the thymidine kinase promoter (0.102 �g), at molar ratios of
1:1, 1:0.5, and 1:0.25 relative to Gal4-CoREST expression vectors. Control
experiments were carried out using equivalent molar amounts of the
empty vector (pSG424) that encodes Gal4-DBD (amino acids 1 to 147).
Suberoylanilide hydroxamic acid (SAHA; 0.5, 2.0, and 5.0 �M) and tri-
chostatin A (TSA; 0.03, 0.1, 0.5, 1.0, and 2.0 �M) solutions or vehicle
(dimethyl sulfoxide [DMSO]) was added to cultured cells 24 h before cell
harvesting.

In vitro histone deacetylation assay (HDAC assay). Immunoprecipi-
tates with anti-Myc antibodies obtained from 2 mg of whole HEK293 cell
extracts were tested for their associated histone deacetylase activity as we

described previously (31). Briefly, immunoprecipitates were incubated
for 60 min with a short peptide substrate containing an acetylated lysine
residue that can be deacetylated by class I, II, and IV HDAC enzymes. We
used fluorescent acetylated histone peptides as the substrate (Active Mo-
tif, Inc., Carlsbad, CA) and measured HDAC activity as relative fluores-
cence units (RFU)/h. HeLa nuclear extract (5 �g) was used as a positive
control. Myc immunoprecipitates from mock-transfected cells were used
as a negative control (see Fig. S2B in the supplemental material). The
reaction was read using a Wallac 1420 Victor3 V microplate reader
(PerkinElmer, Waltham, MA).

Immunofluorescence assays. Immunofluorescence assays were per-
formed essentially as described previously (32). Brain slices were incu-
bated with anti-CoREST1 (612146 from BD Transduction Laboratories)
for 48 h at 4°C, and then anti-CoREST2 (HPA021638 from Sigma) was
added, followed by incubation for 12 h. Subsequently, slices were
mounted on glass slides and incubated with secondary anti-rabbit IgG
coupled to Alexa Fluor 594 and anti-mouse IgG coupled to Alexa Fluor
488. Finally, analysis and photomicrography were carried out with a con-
focal microscope (Olympus FV-1000).

Enzymatic studies. Escherichia coli overexpression, purification, and
crystallization of the human LSD1/KDM1A-CoREST3 complex were car-
ried out following the procedures previously described for LSD1/
KDM1A-CoREST1 (26). Briefly, a His-SUMO-tagged recombinant form
of LSD1/KDM1A (residues 123 to 852) was copurified with a glutathione
S-transferase (GST)-tagged CoREST3 protein (residues 258 to 418 with
reference to NP_001129695.1) by tandem-affinity chromatography fol-
lowed by gel filtration on a Superdex200 column (GE Healthcare). The
enzymatic activity of purified LSD1/KDM1A-CoREST3 was measured on
a 21-residue H3-monomethylated peptide on Lys4 (Thermo Electron
Corporation) by the peroxidase-coupled assay at 25°C using a Cary 100
UV/visible spectrophotometer (Varian Inc.) (33). The demethylation re-
action was performed by adding 1 �M protein solution to the reaction
mixtures (150 �l) consisting of 50 mM HEPES-NaOH buffer (pH 7.5), 0.1
mM 4-aminoantipyrine, 1 mM 3.5-dichloro-2-hydroxybenzenesulfonic
acid, 0.35 �M horseradish peroxidase, and variable concentrations (2 to
100 �M) of the monomethylated H3-K4 peptide. The best fit was ob-
tained with the equation describing a competitive inhibition by using
GraphPad Prism 5 software (Table 1).

Structural biology. The LSD1/KDM1A-CoREST3 complex was crys-
tallized by the hanging-drop vapor diffusion method at 20°C following
previously described protocols (26). The resulting crystals were screened
at beamlines of the SLS and ESRF synchrotrons, and data processing and
scaling were carried out using MOSFLM (34) and programs of the CCP4
package (1994). The structure of the LSD1/KDM1A-CoREST1 complex
(26) (PDB entry 2V1D) was used as the initial model for refinement after
removal of all water atoms. Crystallographic refinement (Table 2) was
performed with Refmac5 (35), and manual rebuilding was done with
Coot (36). Pictures were produced with CCP4MG software (http://www
.ccp4.ac.uk/MG/). Vertebrate CoREST protein sequences available at Na-
tional Center for Biotechnology Information (http://www.ncbi.nlm.nih
.gov/protein) were compared. Protein sequence alignment (CoREST1,
NP_055971.1; CoREST2, NP_775858.2; and the longest spliced variant of
CoREST3 [CoREST3a], NP_001129695.1) was performed using the tools
at the website of the European Bioinformatics Institute (http://www.ebi
.ac.uk/Tools/msa/clustalw2/), and identity was calculated with the follow-

TABLE 1 Kinetic parameters of LSD1/KDM1A-CoREST1 and LSD1/
KDM1A-CoREST3 complexesa

Complex kcat (min�1) KM (�M)

LSD1/KDM1A-CoREST1 7.35 � 0.28b 5.12 � 1.04b

LSD1/KDM1A-CoREST3 3.76 � 0.15 16.39 � 1.88
a Apparent steady-state kinetic parameters were determined by using a 21-amino-acid
H3 peptide monomethylated at Lys4, as described previously (47).
b Data taken from reference 26.
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ing formula: % amino acid identity � (number of identical amino acids/
number of aligned amino acids) � 100. To search for functional structural
domains, we used the UniProt database (http://www.uniprot.org/) and
tools from EBI InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan).

Statistical analysis. The nonparametric Mann-Whitney U test for
comparison of 2 groups and two-way analysis of variance (ANOVA) fol-
lowed by a Bonferroni post hoc test for comparison of multiple groups
were used to determine the statistical significance of differences.

Protein structure accession number. Coordinates and structure fac-
tors for LSD1/KDM1A-CoREST3 have been deposited with the Protein
Data Bank as entry 4CZZ.

RESULTS
CoREST2 and CoREST3 behave as transcriptional repressors.
To evaluate whether CoREST2 and CoREST3 are transcriptional
repressors, like CoREST1, we performed luciferase reporter assays
using a promoter harboring 5 upstream activation sequence
(UAS) elements for the yeast transcription factor Gal4 and 4 ele-
ments for the mammalian transcription factor SP1, which confers
a high basal transcriptional rate. All CoRESTs fused to the Gal4
DNA binding domain (DBD) significantly repressed the expres-
sion of the reporter (Fig. 1A). CoREST1 showed the highest tran-
scriptional repression among the three proteins. CoREST2 and
CoREST3 exhibited transcriptional repression activities, although
they were significantly lower than that of CoREST1 at all reporter/

TABLE 2 Data collection and refinement statistics for LSD1/KDM1A-
CoREST3 complex

Parameter Resulta

Space group I222
Unit cell (Å) a � 118.0, b � 177.4, c � 235.8
Resolution (Å) 3.0
Rsym

b (%) 18.7 (82.3)
CC 1/2b (%) 99.2 (53.3)
Completeness (%) 99.8 (100)
Redundancy 5.1 (5.3)
	/
 6.5 (1.3)
Rcryst

cd (%) 19.7
Rfree

d (%) 23.6
RMSe bond length (Å) 0.012
RMS bond angles (°) 1.6
a Values in parentheses are for reflections in the highest-resolution shell.
b Rsym � �h�i|I(h)i � �I(h)|/�h�iI(h), where I(h)i is the scaled observed intensity of
the ith symmetry-related observation for reflection h and �I(h) is the average intensity.
CC 1/2 is the half-data-set correlation.
c The final model consists of residues 171 to 836 of LSD1/KDM1A, a FAD molecule,
and residues 273 to 405 of CoREST3.
d Rcryst � �|Fobs � Fcalc|/�Fobs, where Fobs and Fcalc are the observed and calculated
structure factor amplitudes, respectively. The set of reflections used for Rfree

calculations and excluded from refinement was extracted from the structure factor file
relative to PDB entry 2V1D (26).
e RMS, root mean square.

FIG 1 CoREST2 and CoREST3 are transcriptional repressors with lower repressive capacity than CoREST1. (A) Recombinant Gal4-DBDs fused to full-length
CoREST1, CoREST2, and CoREST3 were assayed for their ability to repress the luciferase reporter gene (G5S4tkLuc) in HEK293T cells at increasing reporter/
repressor molar ratios (1:0.25; 1:0.5, and 1:1). Values are means � standard errors of the mean (SEM), expressed as the increase in luciferase (Luc) activity over
the control (Gal4-DBD empty vector). *, P � 0.05, and ***, P � 0.001, according to the nonparametric Mann-Whitney U test. (B) Plasmids encoding
Gal4-CoREST fusion proteins were transfected into HEK293T cells, and their expression was detected by Western blotting using an anti-Gal4-DBD antibody.
Tubulin (Tub) was used as a loading control.
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repressor molar ratios (Fig. 1A). Gal4-CoREST protein levels in
HEK293T cells were equivalent, and the proteins were located in
the nuclei of the cells, demonstrating that the differences observed
in transcriptional repression were not due to differences in the
expression levels and/or subcellular distribution of the proteins
(Fig. 1B; also, see Fig. S1 in the supplemental material).

Epigenetic modifications mediated by CoREST1 depend on its
interaction with HDAC1/2 and LSD1/KDM1A. In order to deter-
mine whether histone deacetylation activity is involved in
CoREST2- and CoREST3-dependent transcriptional repression,
we studied the effect of HDAC inhibitors (37) on the transcrip-
tional repression of Gal4-CoREST recombinant proteins. As
shown in Fig. 2A (also, see Table S1 in the supplemental material),
SAHA reversed the transcriptional repressor effect of Gal4-CoR-
EST1 and Gal4-CoREST3 in a concentration-dependent manner.
Conversely, Gal4-CoREST2 maintained its transcriptional repres-
sion in the presence of SAHA (Fig. 2A). Similar results were ob-
served using TSA (Fig. 2B). These data suggest that the repressor
capacities of CoREST1 and CoREST3 but not of CoREST2 depend
on HDACs sensitive to TSA and SAHA.

Differential interaction of CoREST proteins with HDAC1/2.
These first observations prompted us to test the ability of

CoREST2 and CoREST3 to interact with HDAC1/2 by coimmu-
noprecipitation assays. In line with data presented above, Myc-
CoREST2 precipitated a significantly smaller amount of HDAC1
and HDAC2 than Myc-CoREST1 and Myc-CoREST3, which co-
precipitated the deacetylases with similar efficiencies (Fig. 3A and
B; also, see Fig. S2A in the supplemental material). To further
verify the different capacity of each CoREST protein to interact
with HDAC1/2, we carried out in vitro histone deacetylase activity
assays with each Myc-CoREST-isolated immunocomplex. We
found that Myc-CoREST2 immunoprecipitates showed a signifi-
cantly lower HDAC-associated enzymatic activity than Myc-
CoREST1 and Myc-CoREST3 immunoprecipitates (Fig. 3C; Myc-
CoREST2, 2.77- � 0.26-fold greater than the control [P � 0.0011
versus Myc-CoREST1 and P � 0.023 versus Myc-CoREST3]),
whereas Myc-CoREST1 and Myc-CoREST3 immunocomplexes
exhibited HDAC-associated enzymatic activities 7.52- � 0.62-
fold and 10.37- � 2.05-fold greater than those of the controls,
respectively (Fig. 3C). Taken together, the data show that
CoREST2 has a significantly lower capacity to form complexes
with HDAC1/2.

A nonconserved leucine on SANT1 domain weakens the in-
teraction of CoREST2 with HDACs. CoREST proteins are highly
conserved through evolution, showing sequence identity ranging
from 90% for CoREST1 to 95% for CoREST3, among reported
mammal sequences, suggesting specific functions for each of
them. To uncover particular features of CoREST2 explaining its
lower interaction with HDACs, we compared human CoREST
family members (Fig. 4A; also, see Fig. S3 in the supplemental
material for complete CoREST sequence alignment).

First, we validated the notion that the ELM2 domain is es-
sential for HDAC1/2 recruitment (23). As was reported for
CoREST1 (24), we found that CoREST2 protein lacking the
ELM2 domain (CoREST2�ELM2) completely lost its weak
ability to precipitate HDAC2 (Fig. 4B), and as expected, Myc-
CoREST2�ELM2 immunoprecipitates displayed barely detect-
able HDAC enzymatic activity (Fig. 4C). To reveal whether the
differences in the ELM2 domain of CoREST2, compared with
the ELM domains of CoREST1 and CoREST3, are responsible
for its lower interaction with HDAC2, we switched the ELM2
domains between CoREST1 and CoREST2. The chimera
CoREST2/ELM2(CoREST1), in which we replaced the ELM2
domain of CoREST2 with the ELM2 of CoREST1, had an in-
creased capacity to precipitate HDAC2, which, however, was
not accompanied by an equal increase in HDAC enzymatic
activity (Fig. 4B and C). To uncover the residues of CoREST2
responsible for its lower capacity to interact with HDACs, we
replaced four amino acids in the ELM2 domain of CoREST1
(Fig. 4A) with those found in CoREST2 (F169L, N174D, I175V,
and P183A). These residues stand out in the sequence align-
ment because they are located in the highly conserved C-ter-
minal part of the ELM2 and are identical in CoREST1 and
CoREST3 but not in CoREST2 (Fig. 4A). However, these amino
acid replacements on CoREST1 did not produce any effect on
its interaction with HDAC1/2 (data not shown). Next we
looked into the highly conserved SANT1 domain of CoRESTs,
considering that many proteins that interact with class I
HDACs also display the ELM2-SANT domain organization
(23, 25). From the sequence alignment of the ELM2-SANT1
domain of CoREST proteins (Fig. 4A), we noticed that amino
acid 165 in CoREST2 is a leucine, whereas in CoREST1,

FIG 2 CoREST2-dependent transcriptional repression is insensitive to HDAC
inhibition. The reporter plasmid G5S4tkLuc was cotransfected with each Gal4-
CoREST-expressing plasmid in HEK293T cells. Twenty-four hours after
transfection, cells were treated with different SAHA (0.5, 2.0, and 5.0 �M) (A)
or TSA (0.03, 0.1, 0.5, 1.0, and 2.0 �M) (B) concentrations, and they were
harvested 24 h later. Values are means � SEM, expressed as the increase over
control luciferase (Luc) activity values (Gal4-DBD empty vector) at every in-
dicated inhibitor concentration. *, P � 0.05, **, P � 0.01, and ***, P � 0.001,
according to two-way ANOVA.
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CoREST3, and other HDAC-interacting proteins, the corre-
sponding amino acid is a serine or a threonine (38). Remark-
ably, the mutation of leucine 165 to a serine in CoREST2 ex-
hibited a drastic effect, inducing a significant increase in the
capacity of CoREST2 to interact with HDAC2 (Fig. 4B), which
was corroborated by a notable HDAC activity associated with
this mutant (Fig. 4C). Altogether, the data indicate that leucine
165 in SANT1 is the main factor limiting the interaction of the
ELM2-SANT1 domains of CoREST2 with HDAC1/2.

We studied whether the increased interaction and HDAC

activity associated with the CoREST2L165S mutant resulted in
a greater transcriptional repression capacity and/or sensitivity
to the HDAC inhibitor SAHA. As shown in Fig. 4D, Gal4-
CoREST2L165S displayed a transcriptional repression similar
to that of wild-type Gal4-CoREST2, which is also insensitive to
the presence of SAHA (Fig. 4D). Furthermore, CoREST2 with-
out the ELM2 domain displayed the same transcriptional re-
pression as the wild type and was similarly insensitive to the
presence of SAHA (Fig. 4D). Taken together, the data indicate
that CoREST2 transcriptional repression is independent of

FIG 3 CoREST2 recruits less HDAC1/2 than CoREST1 and CoREST3. (A) Whole-cell extracts of HEK293T cells transfected with Myc-CoREST1, Myc-
CoREST2, or Myc-CoREST3 were immunoprecipitated with anti-Myc antibody, and complexes were fractionated on SDS-PAGE. Specific anti-HDAC1 or
anti-HDAC2 antibodies were used to detect endogenous HDAC1 and HDAC2 in Western blots. (B) Densitometry quantification of 3 independent experiments
performed as described for panel A. The amount of HDAC1/2 precipitated is expressed relative to the amount precipitated with Myc-CoREST1, and values were
corrected for the amount of each Myc-CoREST (CoREST1, -2, and -3) found in the precipitation. (C) HDAC activity associated with precipitated Myc
immunocomplexes from whole extracts of HEK293 cells transfected as described for panel A. Values are means � SEM from 3 independent experiments,
expressed as the increase over the value obtained with mock transfection (transfection with Myc empty vector) and corrected by the amount of Myc-CoREST
(CoREST1, -2, and -3) found in each precipitation. *, P � 0.05, according to the nonparametric Mann-Whitney U test.
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FIG 4 Leucine 165 of SANT1 domain controls CoREST2 interaction with HDAC2. (A) Sequence alignment of the ELM2-SANT1 region of Homo sapiens
CoREST (CoREST1, -2, and -3) protein (NP_055971.1, NP_775858.2, and NP_001129695.1). Nonconserved amino acids in the three CoRESTs are shown in
gray. #, amino acid corresponding to the site of a point mutation in CoREST1. The L165S mutation studied in CoREST2 and the amino acids in the equivalent
position on CoREST1 and CoREST3 are boxed and in bold. (B) Whole-cell extracts of HEK293T cells transfected with recombinant wild-type Myc-CoREST1,
wild-type Myc-CoREST2, chimeric Myc-CoREST2, and CoREST2 mutants were immunoprecipitated with anti-Myc antibody and fractionated on SDS-PAGE.
(Top) Western blot assays of immunoprecipitates were carried out with anti-HDAC2 and anti-Myc antibodies. (Bottom) Densitometry quantification from 3
independent experiments. *, P � 0.05, according to the nonparametric Mann-Whitney U test. (C) HDAC activity associated with precipitated Myc immuno-
complexes from whole-cell extracts of HEK293 cells transfected as described for panel B. Values correspond to one experiment performed in duplicate, expressed
as the increase over the activity in mock transfection conditions and corrected by the amount of Myc-CoREST2 mutant found in each precipitation. (D) The
reporter plasmid G5S4tkLuc was cotransfected with each Gal4-CoREST2 mutant-expressing plasmid into HEK293T cells. Twenty-four hours after transfection,
cells were treated with 5.0 �M SAHA, and they were harvested 24 h later. Values are means � SEM from 4 independent experiments performed in triplicate and
are expressed as the increase over control values (Gal4-DBD empty vector). ***, P � 0.001, according to two-way ANOVA.
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HDAC activity and it is mediated by a different domain than
ELM2.

All CoREST proteins form complexes with LSD1/KDM1A.
CoREST1 strongly interacts with LSD1/KDM1A, and it is essential
for nucleosome demethylation (14, 15). To see if CoREST2
and CoREST3 similarly interact with LSD1/KDM1A, we car-
ried out coimmunoprecipitation assays. Myc-CoREST2 and
Myc-CoREST3 interacted with LSD1/KDM1A with strength sim-
ilar to that of Myc-CoREST1 (Fig. 5A). Having discarded a defect
in the interaction of CoREST2 and CoREST3 with LSD1/KDM1A,
we evaluated whether the enzymatic activity of LSD1/KDM1A was
affected when the demethylase was in complex with CoREST2 or
CoREST3, considering that it is known that LSD1/KDM1A stabil-
ity and full enzymatic activity depend on CoREST1 interaction
(26). Previous studies showed that LSD1/KDM1A-CoREST2 is
active on the nucleosomes (29), but we were unable to further
investigate the enzymatic properties of this complex, because re-
combinant CoREST2 proved to be biochemically intractable due
to a strong tendency to aggregate. Conversely, the enzymatic
properties of LSD1/KDM1A-CoREST3 could be investigated, re-
vealing potentially significant differences compared to LSD1/
KDM1A-CoREST1. Specifically, the Km value for the substrate is

�5-fold higher and is associated with a relevant 6-fold-lower
kcat/Km ratio (Table 1). The three-dimensional structural analysis
of LSD1/KDM1A-CoREST3 shows that LSD1/KDM1A-CoREST3
adopts a conformation identical to that of a complex with
CoREST1 (Fig. 5B; Table 2). All amino acid changes (a total of 34
out of 133 residues visible in electron density) affect side chains on
the protein surface, with no overall or local effects on the protein
conformation. Nevertheless, these changes might exert some ef-
fects on catalysis (as gathered from the decreased kcat/Km ratio)
through long-range electrostatic interactions affecting the binding
of the highly charged N-terminal tail to the LSD1/KDM1A active
site. Collectively, the data indicate that the lower transcriptional
repressive capacity of CoREST3 than of CoREST1 is not due to a
diminished interaction with LSD1/KDM1A, but it might arise
from the lower catalytic efficiency, although other factors might
also contribute to this effect.

CoREST type determines complex composition. The LCH
complex exists as a multiprotein entity. Nonetheless, the data pre-
sented in this work suggest that the composition could be more
dynamic than initially suspected. We wondered whether CoREST
proteins determine the constitution of the complexes. First, we
overexpressed LSD1/KDM1A with CoREST2 or CoREST3 in
HEK293T cells and analyzed the presence of the endogenous
HDAC1 and HDAC2 in LSD1/KDM1A-immunoprecipitated
complexes. The results showed that when Myc-CoREST2 was
overexpressed, LSD1/KDM1A complexes barely harbored
HDAC1 and HDAC2 proteins (Fig. 6A). In contrast, when Myc-
CoREST3 was overexpressed, LSD1/KDM1A immunoprecipita-
tion yielded substantial amounts of both HDAC1 and HDAC2
(Fig. 6B). Next, we explored the ability of CoREST2 and CoREST3
to interact with CoREST1. Endogenous CoREST1 was strongly
precipitated in complexes with Myc-CoREST1, whereas Myc-
CoREST2 and Myc-CoREST3 showed a very low interaction with
CoREST1 (Fig. 6C and D), confirmed by reverse coimmunopre-
cipitation (Fig. 6C, bottom). Anti-Myc immunoprecipitates from
mock-transfected cells did not show any CoREST1 signal, ruling
out unspecific interaction (Fig. 6C). These data confirm that
CoREST proteins are the HDAC recruiters in the complex and
support the existence of higher-order protein complexes between
CoRESTs.

CoREST proteins share common brain territories. CoREST1
plays key roles in the regulation of neuronal gene expression (5).
To learn whether CoREST2 and CoREST3 accompany CoREST1
in regulating the expression of genes in mature neurons, we stud-
ied the expression of CoREST family in the adult rat brain. We
performed different experimental approaches depending on the
capacity of each specific antibody. We checked the specificity of
each antibody by Western blot and immunofluorescence assays
(see Fig. S4 in the supplemental material). Total protein extracts
were obtained from different nuclei of adult rat brain, and West-
ern blot assays were performed for the identification of CoREST1,
CoREST3, and LSD1/KDM1A. Figure 7A shows that CoREST1,
CoREST3, and LSD1/KDM1A are expressed in all tested brain
nuclei, indicating ubiquitous expression of these proteins in the
adult rat brain. Immunofluorescence assays revealed ample ex-
pression of CoREST2, with positive cells all over the cortex, hip-
pocampus, and striatum, which were also positive for CoREST1
and/or CoREST3 (Fig. 7B; also, see Fig. S4 in the supplemental
material for antibodies’ specificity). Detailed observation of im-
munofluorescence in brain slices showed cells with no signal, sug-

FIG 5 CoREST 2 and CoREST3 interact with LSD1/KDM1A. (A) Whole-cell
extracts of HEK293T cells transfected with Myc-CoREST1, Myc-CoREST2, or
Myc-CoREST3 were immunoprecipitated with anti-Myc antibody, and com-
plexes were fractionated on SDS-PAGE. Specific antibody was used to detect
endogenous LSD1/KDM1A in Western blots. (B) Comparative structural
analysis of CoREST1-LSD1/KDM1A (PDB entry 2V1D) and CoREST3-LSD1/
KDM1A complexes. LSD1/KDM1A (residues 171 to 836) is in dark blue,
CoREST3 (residues 273 to 405) is in red, superimposed CoREST1 (residues
308 to 440) is in light blue, and the histone H3 peptide (residues 1 to 16) is in
green. The FAD cofactor is in yellow. The root mean square deviation between
666 C� atoms of LSD1/KDM1A is 0.4 Å, whereas the root mean square devi-
ation of 133 atoms of CoREST is 0.7 Å.
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gesting that a few cells express little or no CoREST proteins. In
addition, the intensity of green (CoREST1/CoREST3) and red
(CoREST2) fluorescence in the hippocampus indicates that gran-
ular neurons of the dentate gyrus express more CoREST1 (or
CoREST3) than CoREST2, in contrast to the hilum, where a more
intense signal for CoREST2 is observed, and a few cells show only
CoREST2-positive immunofluorescence (Fig. 7B). Together, the
data indicate a wide expression of CoREST proteins in the brain,
with a variable degree of colocalization in different cells.

DISCUSSION

The presence of 3 rcor genes in 5 classes of vertebrates is indicative
that these genes were present in a common vertebrate ancestor
and have been preserved throughout evolution. As stated by Pres-
graves (39), duplicate genes survive because they evolve new and
essential functions. The data presented here show that transcrip-
tional complexes formed by CoREST proteins have different pro-
tein compositions and transcriptional repressor strengths, sug-

gesting that each CoREST-containing complex has evolved
different and essential functions.

The data shown indicate that CoREST3 is the most similar
to CoREST1. CoREST3 interaction with LSD1/KDM1A and
HDAC1/2 resembles that of CoREST1, and its transcriptional re-
pression is abolished by HDAC inhibitors, as happens with
CoREST1. Therefore, CoREST3 could be functionally redundant
with CoREST1. Nonetheless, CoREST3 exhibited a significantly
lower repressive capacity than CoREST1, implying that CoREST3
likely has functions other than a role redundant with that of
CoREST1. The small but significant decrease in catalytic efficiency
(especially with regard to the higher Km value) might contribute to
a lower transcriptional repressive action of the LSD1/KDM1A-
CoREST3 complex.

Three lines of evidence indicate that complexes formed with
CoREST2 are different from those formed with CoREST1 or
CoREST3: (i) CoREST2-dependent transcriptional repression is
not inhibited by SAHA or TSA, (ii) CoREST2 immunocomplexes

FIG 6 CoREST type determines complex composition. (A and B) CoREST2 impairs LSD1/KDM1A interaction with HDAC1/2. Whole-cell extracts of HEK293T
cells cotransfected with HA-LSD1/KDM1A and Myc-CoREST2 (A) or Myc-CoREST3 (B) were immunoprecipitated with anti-HA antibody or control IgG and
fractionated on SDS-PAGE. Specific antibodies were used to detect endogenous HDAC1 and HDAC2. (C) Self-association of CoREST1. Whole-cell extracts of
HEK293T cells transfected with Myc-CoREST1, Myc-CoREST2, Myc-CoREST3, or Myc empty vector (control) were immunoprecipitated with the indicated
antibodies and fractionated on SDS-PAGE. Western blots were developed with anti-Myc or anti-CoREST1 antibodies, as indicated. (D) Densitometry quanti-
fication of endogenous CoREST1 precipitated by recombinant Myc-CoRESTs.
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display significantly lower HDAC activity than those constituted
by CoREST1 or CoREST3, and (iii) coimmunoprecipitation as-
says show that the interaction of CoREST2 with HDAC1/2 is sig-
nificantly lower than those exhibited by CoREST1 or CoREST3.
On the other hand, the interaction between CoREST2 and LSD1/
KDM1A is similar to that of CoREST1 and CoREST3 with LSD1/
KDM1A. Supporting our data, a human complexome study
showed strong interactions of LSD1/KDM1A with the 3 CoRESTs
and of HDAC1 and HDAC2 with CoREST1 and CoREST3, but to
a lesser extent with CoREST2 (40).

Comparative protein sequence analysis among CoRESTs
showed that amino acid differences exist, especially in the N-ter-
minal portion of the ELM2 domain of CoREST2. Replacing the
ELM2 of CoREST2 with the ELM2 of CoREST1 increased the
interaction with HDAC2, and deleting the ELM2 abolished

HDAC interaction and HDAC activity associated with CoREST2.
Remarkably, we found that leucine 165 in the SANT1 domain of
CoREST2 restricts the interaction of the ELM2 with HDACs. In
fact, just replacing leucine 165 of CoREST2 with a serine, found in
the equivalent position of CoREST1, enhanced both HDAC inter-
action and activity associated with CoREST2. These findings dem-
onstrate that the ELM2 of CoREST2 is capable of interacting with
HDACs. This interaction is controlled by specific features in the
sequence of the SANT1 domain, in agreement with the notion that
ELM2 and SANT domains are jointly responsible for the selection
of and association with deacetylases in corepressors featuring this
two-domain module. In this regard, Millard et al. (41) showed
that the corepressor SMRT (silencing mediator for retinoid and
thyroid hormone receptors) forms complexes with the class I his-
tone deacetylase HDAC3 but not with HDAC1, whereas the core-

FIG 7 All CoRESTs are expressed in the adult rat brain. (A) Thirty micrograms of protein extracts obtained from different nuclei of adult rat brains was
fractionated on SDS-PAGE. Western blot assays were performed for the identification of CoREST1, CoREST3, LSD1/KDM1A, and �-actin (loading control) in
the brain cortex (C), hippocampus (H), midbrain (M), and parabrachial nucleus (PB). (B) Thirty-micrometer-thick paraformaldehyde-fixed adult rat brain
slices were incubated with rabbit anti-CoREST2 and mouse anti-CoREST1. Twenty-four hours later, slices were incubated with fluorescent secondary antibodies.
Hoechst is a nuclear stain. Images were taken with a confocal microscope.
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pressor MTA1 (metastasis-associated protein 1) forms complexes
with HDAC1 but not with HDAC3, despite the high homology
between HDAC1 and HDAC3 (57% identical) (41). MTA1, like
CoREST proteins, presents an ELM2-SANT organization,
whereas SMRT displays an ELM2-like–SANT organization (38,
41), further supporting the significance of these domains in the
specificity of the HDAC recruited in the transcriptional com-
plexes. The findings showing that the ELM2-SANT1 region of the
CoREST proteins determines the strength of the interaction with
HDAC1/2 confirm CoRESTs as the HDAC recruiters in the com-
plex and further highlights how finely tuned class I HDAC recruit-
ment to different corepressor complexes is.

The data demonstrate that, unlike with CoREST1 and
CoREST3, the transcriptional repression exerted by CoREST2 is
HDAC independent. Actually, the mutant CoREST2�ELM2,
which is unable to recruit HDACs and does not have associated
HDAC activity, displayed the same repressor strength as wild-type
CoREST2. Moreover, the mutant CoREST2L165S, which has a
higher capacity to recruit HDACs, is not a better repressor than
wild-type CoREST2, nor was its repression sensitive to HDAC
inhibitors, strongly indicating that CoREST2 represses via an
HDAC-independent mechanism. The CoREST2 mechanism of
transcriptional repression may involve posttranslational modifi-
cations and/or specific CoREST2-interacting proteins, possibly
including other kinds of deacetylases. Supporting distinctive fea-
tures among CoRESTs, it was reported that CoREST1 binds di-
rectly and noncovalently to SUMO 2/3 peptides in a SUMO inter-
action motif (SIM)-dependent form; this characteristic is specific
to CoREST1, since no SIM motifs were identified in CoREST3 and
no association with SUMO was found for CoREST2 (42).

Transcriptional complexes contain multiple interchangeable
subunits, giving plasticity to gene expression regulation (43, 44).
The fact that the LSD1/KDM1A-CoREST2 complex is poor in
HDAC1/2 content suggests that LSD1/KDM1A activity could be
diminished in complexes with CoREST2, since LSD1/KDM1A de-
methylase function on the histone H3 tail is fully efficient only on
deacetylated substrates (15, 24, 45, 46). In addition, the fact that
the LSD1/KDM1A-CoREST3 complex has a lower demethylase
activity than the LSD1/KDM1A-CoREST1 complex suggests that
the CoREST homolog controls the associated LSD1/KDM1A ac-
tivity. Intriguingly, it was reported that CoREST2 could replace
CoREST1 for efficient enzymatic reactions catalyzed by LSD1/
KDM1A on purified nucleosomes (28, 29). Our data support the
existence of higher-order protein complexes between CoRESTs.
Coimmunoprecipitation assays indicate that CoREST1 has a
strong tendency to interact with itself and to a lesser extent with
CoREST2 and CoREST3, supporting a wider range of interactions
and regulatory functions.

Increasing the complexity of existing mechanisms enhances
the possibility of adapting and better responding to different stim-
uli. Our findings that CoREST2 and CoREST3 add different levels
of control of HDAC1/2 recruitment and LSD1/KDM1A activity
plus their abundance in the mature brain suggest that neuronal
gene expression regulation by LCH complexes is a dynamic and
finely tuned process. The physiological implications of this versa-
tility in the constitution and transcriptional repression of com-
plexes formed by members of the CoREST family remain to be
determined.
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