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SOMMARIO 

Il gene tm9sf4 codifica per una proteina appartenente alla famiglia Transmembrane 
9 Protein Superfamily, caratterizzata dalla presenza di nove domini trans-
membrana e da un grado elevato di conservazione a livello evolutivo. In origine, 
essa è stata identificata in Dictyostelium e Drosophila come una proteina coinvolta 
nell’adesione cellulare e nella fagocitosi. 
Studi più recenti hanno dimostrato che la proteina Tm9sf4 è espressa nelle cellule 
di melanoma derivate da metastasi ed è coinvolta in un processo chiamato “tumor 
cell cannibalism”, che sembrerebbe essere una proprietà esclusiva delle cellule 
metastatiche. Le cellule tumorali sono in grado di fagocitare oltre a materiale 
amorfo, sia cellule tumorali sorelle, sia linfociti T diretti contro le cellule tumorali 
stesse. Pertanto, il cannibalismo consente alle cellule tumorali di rifuggire dal 
sistema immunitario dell’ospite, ne promuove la sopravvivenza in un ambiente 
ostile, caratterizzato da scarsità di nutrienti e ipossia, e consente loro di rimodellare 
la matrice extracellulare e di invaderla. 
Nel nostro laboratorio, questo gene è stato messo in evidenza grazie alla linea 
cellulare LA7, che costituisce un modello di cellula staminale cancerosa (CSC, 
cancer stem cell) della ghiandola mammaria. I nostri dati preliminari dimostrano 
che il livello di espressione di tm9sf4 è maggiore nelle LA7 CSCs rispetto alla loro 
controparte differenziata. Inoltre, abbiamo osservato che la sotto-regolazione del 
gene induce le LA7 CSCs a trans-differenziare a cellule mesenchimali e provoca 
un aumento del livello di espressione di specifici marcatori di “epithelial to 
mesenchymal transition” (EMT), suggerendo che il gene potrebbe essere coinvolto 
in questa transizione. 

Lo scopo di questo lavoro è l’identificazione della funzione di tm9sf4 nelle cellule 
normali e tumorali. Basandoci sulla considerazione che tutti i vertebrati mostrano 
conservazione nelle vie di trasduzione del segnale coinvolte in processi come la 
diramazione di tessuti che si differenziano in strutture tubulari, la migrazione 
cellulare e lo sprouting, abbiamo studiato il ruolo della proteina nello sviluppo 
embrionale di zebrafish (Danio rerio), che è stato recentemente indicato come un 
modello adatto allo studio delle malattie umane e dei processi associati 
all’oncogenesi. 
Inoltre, il processo di EMT è stato proposto come il principale elemento guida sia 
per la morfogenesi durante lo sviluppo embrionale sia per la progressione dei 
tumori, coinvolgendo processi cellulari e cascate di segnale molto conservati. 

L’espressione di tm9sf4 è stata analizzata mediante RT-PCR su RNA provenienti 
da embrioni a diversi stadi di sviluppo e tramite WISH (Whole Mount In Situ 
Hybridization), realizzando in seguito sezioni istologiche degli embrioni ibridati. 
Sono stati eseguiti esperimenti di genetica inversa (loss-of-function), iniettando 
embrioni allo stadio di 1-4 cellule con oligonucleotidi antisenso (morfolino), allo 
scopo di reprimere l’espressione di tm9sf4, utilizzando sia linee wild type sia la 
linea transgenica tg(gata1:dsRed)

sd2
/tg(flk1:EGFP)

S843
. Successivamente, è stata 

analizzata l’espressione di specifici marcatori del sistema nervoso centrale (CNS) e 
di EMT da parte degli embrioni precedentemente iniettati con i morfolino (morfanti), 
mediante ibridazione in situ e Real Time PCR. 
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Abbiamo dimostrato che durante lo sviluppo embrionale di zebrafish il gene è 
espresso in tutti gli stadi analizzati, da oocita a cinque giorni dopo la fecondazione 
(dpf, days post fertilization), indicando che l’espressione è sia materna sia zigotica. 
Inoltre, il gene è espresso principalmente nel CNS e, in seguito a sotto-regolazione 
della proteina, gli embrioni riportano necrosi a livello della testa e una ridotta 
definizione delle strutture cerebrali. L’analisi di espressione di marcatori di 
specifiche regioni del CNS ha evidenziato che tutte queste strutture sono formate 
nei morfanti, ma sono meno organizzate rispetto a quelle osservate negli embrioni 
di controllo. Inoltre, la sotto-regolazione della proteina induce un aumento del 
livello di espressione di fgf8, shha, wnt1 e una diminuzione dl livello di otx2. Questi 
risultati suggeriscono una funzione della proteina nello sviluppo del CNS. 
D’altra parte, i morfanti a 24 ore dopo la fecondazione (hpf, hours post fertilization) 
riportano difetti nella regione denominata ICM (Intermediate Cell Mass), dove 
avvengono l’ematopoiesi primitiva e lo sviluppo dei vasi. A 48 hpf la circolazione è 
compromessa e si osservano edema cardiaco e stasi a livello della coda, dove si 
riscontrano difetti nei vasi intersomitici, che si formano per angiogenesi. E’ 
importante evidenziare che l’angiogenesi rappresenta un modello per diversi 
processi biologici, tra cui la migrazione cellulare.  
In seguito, abbiamo dimostrato che la sotto-regolazione di Tm9sf4 induce un 
aumento dei livelli di zeb2 e twist2 da parte dei morfanti a 24 hpf, suggerendo che 
la proteina potrebbe essere coinvolta nella soppressione di questi fattori, inibendo 
la repressione trascrizionale di E-caderina e promuovendo di conseguenza 
l’adesione cellulare. Questa ipotesi confermerebbe i precedenti studi, che 
attribuiscono a Tm9sf4 un ruolo nell’adesione cellulare. Inoltre, abbiamo osservato 
che il gene è maggiormente espresso nelle regioni periventricolari di diencefalo e 
mesencefalo, dove si trovano cellule in proliferazione, che sono in procinto di 
migrare e che vanno probabilmente incontro a EMT. Pertanto, abbiamo ipotizzato 
che la proteina potrebbe avere un ruolo nel reprimere il processo di EMT durante la 
neurulazione. Coerentemente con le nostre ipotesi, abbiamo dimostrato che la 
sotto-regolazione della proteina induce una diminuzione del livello di E-caderina in 
gastrulazione, promuovendo probabilmente la perdita dell’adesione cellulare. 

In futuro, saranno condotti ulteriori studi, determinando in quali cellule del CNS il 
gene tm9sf4 è espresso e valutando l’effetto della sotto-regolazione della proteina 
sull’espressione di altri componenti della cascata che regola il processo di EMT, 
sia durante la gastrulazione, sia durante la neurulazione. Inoltre, sarà analizzata 
l’espressione di altri marcatori del CNS mediante ibridazione in situ, per stabilire 
nello specifico quali regioni sono compromesse in seguito a sotto-regolazione della 
proteina e, possibilmente, quali sono le vie di trasduzione del segnale coinvolte. 
Infine, saranno studiati più approfonditamente i problemi circolatori osservati nei 
nostri morfanti, sia mediante un approccio di genetica inversa con specifiche linee 
transgeniche, sia tramite l’analisi dell’espressione di marcatori cardiaci, allo scopo 
di stabilire se i problemi alla circolazione siano causati da difetti nello sviluppo del 
cuore, o se, al contrario, l’edema cardiaco sia provocato dai difetti morfologici 
osservati nei vasi intersomitici.  
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ABSTRACT 

The tm9sf4 gene encodes a member of Transmembrane 9 Protein Superfamily, 
characterized by the presence of nine transmembrane domains and a high degree 
of evolutionary conservation.

 
It was originally identified in Dictyostelium and 

Drosophila as a protein involved in cell adhesion and phagocytosis. 
More recent studies reported that tm9sf4 is expressed in metastatic melanoma 
cells and it is involved in the process of tumor cell cannibalism, which might be 
unique to metastatic cells. Tumor cells indiscriminately phagocytize both sibling 
tumor cells and lymphocytes, in addition to amorphous material, thereby allowing 
tumor cells to escape from the immune response, promoting cell survival in a 
hostile microenvironment with low nutrient supplies and hypoxia conditions and 
allowing them to remodel and migrate through the extracellular matrix. 

Tm9sf4 gene was brought to our attention by LA7 cells, which represent a cancer 
stem cell (CSC) model system. Our preliminary data showed that the expression 
level of tm9sf4 gene was higher in LA7 CSCs if compared to the differentiated 
counterpart. Tm9sf4 downregulation by RNA interference induced LA7 CSCs to 
trans-differentiate to mesenchymal-like cells and caused an increase of the 
expression level of EMT-associated markers, suggesting that the gene is involved 
in epithelial to mesenchymal transition (EMT). 

The aim of my PhD project is to identify the function of tm9sf4 in normal and cancer 
cells. Based on the assumption that all vertebrates share common pathways 
involved in biological processes including morphogenesis-associated development 
of branched structures, cell migration and sprouting, we investigated Tm9sf4 
protein function in zebrafish (Danio rerio), to further investigate its role in normal 
development. Zebrafish was recently proven to be a powerful model, to study not 
only human diseases, but also processes associated with oncogenesis. 
Additionally, EMT was suggested to be the major driver of both embryonic 
morphogenesis and tumor progression, involving highly conserved cellular 
processes and signaling pathways. 

Tm9sf4 expression analyses were performed by both RT-PCR on RNA from 
embryos at different developmental stages and whole mount in situ hybridization 
(WISH). Histological sections of the stained embryos were performed. In addition, 
loss-of-function analyses were carried out by the injection of 1-4 cell stage embryos 
with antisense oligonucleotide morpholinos, using the zebrafish AB line (wild type) 
and the double transgenic line tg(gata1:dsRed)

sd2
/tg(flk1:EGFP)

S843
. The 

expression of specific brain markers and EMT-associated markers was assessed 
by WISH and Real Time PCR on embryos previously injected with morpholino 
oligos (morphants).  

We demonstrated that during zebrafish embryogenesis the gene was expressed 
from oocytes to 5 days post fertilization (dpf), suggesting that the expression is 
both maternal and zygotic. Moreover, it was found to be mainly expressed in the 
central nervous system (CNS).  
Following tm9sf4 downregulation, the embryos displayed head necrosis and an 
impaired brain compartmentation. Expression analysis of specific brain markers 
suggested that all of the targeted sub-structures were present in morphants, while 
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they were less well organized than in control embryos. Additionally, tm9sf4 
downregulation induced an increase of the expression levels of fgf8, shha, wnt1 
and a reduction of otx2 level. These findings suggested that the gene has a role in 
CNS development.  
At 24 hours post fertilization (hpf) the morphants displayed tail bending and defects 
in the intermediate cell mass (ICM) region, where primitive hematopoiesis and 
vessel development occur. At 48 hpf the circulation was significantly impaired by 
protein downregulation, which caused cardiac edema and blood stasis in the tail, 
where morphological defects were detected in intersomitic vessels, which are 
formed by angiogenesis. It was suggested that angiogenesis represents a model 
for many core biological processes, including morphogenesis-related development 
of branched structures and cell migration, all of which are involved in the 
morphogenesis of many other organ systems.  
We demonstrated that tm9sf4 downregulation induced an increase of zeb2 and 
twist2 expression levels by 24 hpf embryos, suggesting that tm9sf4 induces 
negative regulation of these factors, inhibiting E-cadherin transcriptional 
repression, resulting in its upregulation, which promotes cell-cell adhesion. This 
hypothesis is consistent with previous studies, which suggested a protein role in 
cell adhesion. Interestingly, we found the tm9sf4 gene to be most strongly 
expressed in the periventricular regions of the diencephalon and mesencephalon, 
where there are proliferating cells that are going to migrate and could undergo 
epithelial to mesenchymal transition. Hence, tm9sf4 could have a role in repressing 
EMT during zebrafish neurulation. We also demonstrated that during gastrulation 
Tm9sf4 protein downregulation induced a decrease of E-cadherin expression level, 
which could promote the loss of cell-cell adhesion. 

In the near future we are going to further investigate the role of tm9sf4 in EMT, by 
determining in which specific CNS cells the tm9sf4 gene is expressed and by 
studying its effect on the expression of other components of the EMT signaling 
pathways, both in zebrafish gastrulation and neurulation.  
WISH analysis of other brain markers is now in progress, to individuate the specific 
regions and, possibly, the pathways affected by Tm9sf4 protein downregulation. 
Additionally, further investigations on circulation defects will be carried out, by both 
loss-of-function analyses on specific transgenic lines and cardiac markers 
expression studies, in order to establish whether the circulation problems are 
caused by defects in the heart development or rather the cardiac edema is due to 
the defective intersomitic vessels development. 
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1. INTRODUCTION 

1.1 From eating to feed to eating to defend 

TM9SF4 was originally identified in Dictyostelium discoideum as a protein 

involved in cell adhesion and phagocytosis [1], [2]. The gene was named 

phg1 and it encoded a member of Transmembrane 9 Protein Superfamily, 

or nonaspanins, characterized by a potential N-terminal signal sequence, 

followed by a large non-cytoplasmic domain and nine putative membrane-

spanning segments. This family displays a high degree of evolutionary 

conservation. 

In higher eukaryotes, phagocytic cells are essential players of the host 

defense against invading pathogens. The mechanisms involved in 

phagocytosis by Dictyostelium cells are very similar to those used by 

mammalian phagocytes. Phagocytosis involves adhesion of the phagocytic 

cell to the pathogen surface, and reorganization of the actin cytoskeleton to 

allow pathogen engulfment.  

 

Figure 1 Scanning electron microscopy showing adhesion of wild-type (WT) and 

phg1 mutant Dictyostelium cells to their substrate. Scale bar 1 m. Distinct 

mutations in phg1 gene (right) cause a reduced ability to adhere to phagocytic 

substrates by Dictyostelium cells, with respect to wild type cells (left) [1]. 
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It was shown that phg1 mutant cells displayed a reduced ability to 

internalize particles, when incubated in the presence of latex beads. Phg1 

mutation did not affect fluid phase uptake, suggesting that the machinery 

responsible for formation of endocytic vacuoles was intact. On the other 

end, the ability of mutant cells to adhere to the phagocytic substrates was 

impaired (Figure 1) [1]. 

Moreover, TM9SF4 protein was demonstrated to be involved in Drosophila 

immunity [3], [4]. In fact, tm9sf4 is expressed in main immune tissues, such 

as gut, fat body cells, with the highest level in the plasmatocytes. In 

Drosophila, plasmatocytes are the most abundant type of circulating 

hemocytes and they are required for bacterial phagocytosis in innate 

response. On the other end, upon infection by parasites, plasmatocytes can 

attach to the invader and then signal to the lymph gland to promote the 

differentiation of another kind of hemocyte, called lamellocytes. Drosophila 

also has a sophisticated humoral response, which includes the synthesis of 

antimicrobial peptides by fat body cells, under control of Toll and 

Immunodeficiency pathways, which are stimulated by Gram-negative (G-) 

and Gram-positive (G+) bacteria, respectively. Mutant flies that did not 

produce a functional protein were shown to be sensitive to G- pathogenic 

bacteria. In this flies Toll pathway was not affected; in contrast, 

phagocytosis of G- bacteria by mutant plasmatocytes was two times less 

efficient with respect to wild type cells. The sensitivity of the mutant flies to 

G- bacteria was supposed to be due to the impaired ability of 

plasmatocytes to adhere to the pathogen surface, because of the defects in 

actin organization. Confocal analysis of the chromatin network showed that 

plasmatocytes from mutant flies had heterogeneous sizes and morphology 

and displayed disorganized long actin spikes and punctate actin 

accumulation [3].   
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1.2 Tumor cell cannibalism 

In humans, four tm9sf genes have been identified. Tm9sf4 is characterized 

by a high degree of evolutionary conservation, suggesting that 

Dictyostelium, Drosophila and human proteins may have similar functions. 

More recent studies suggested that human TM9SF4 protein is involved in 

the process of tumor cell cannibalism [2], [5], [6]. 

Cannibal behaving tumor cells were identified more than a century ago 

(Steinhaus, 1891; Stroebe, 1982) in malignant tumors with different 

histology, including breast carcinoma, hematological malignancies, bladder 

cancer, medulloblastoma, gastric adenocarcinoma, melanoma and skin 

carcinomas. They were described as tumor cells containing engulfed 

material of different origin in large vacuoles that push the nucleus to the cell 

periphery. Figure 2 shows a human melanoma cell with a large vacuole 

containing an apparently live neighboring cell, which pushes the melanoma 

cell nucleus to the periphery (right) and a melanoma cell containing cell 

remnants in its internal vacuole (left) [7]. This behavior might be a hallmark 

of metastatic cells, since it was not observed in cells derived from primary 

tumors [8]i.  

 

Figure 2 Immunocytochemistry depicting two human melanoma cells in different 

stages of the cannibalism process. Lysosomal membrane protein-1 (LAMP-1) 

staining [7]. 
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Tumor cells indiscriminately internalize amorphous material as well as 

apoptotic and healthy cells; in particular, they phagocytose both sibling 

tumor cells and lymphocytes that should kill them. In addition, it has been 

demonstrated that the percentage of surviving tumor cells increases, in the 

absence of serum or amino acids, when the melanoma cells are co-

cultured in the presence of T-cells [5]. Hence, the main functions of this 

behavior are to feed upon other cells, to nibble the extracellular matrix and 

to escape from the specific immune response. These characteristics are 

peculiar of highly invasive and metastatic tumor cells, because they 

promote cell survival in a hostile microenvironment, with low nutrient 

supplies and hypoxia conditions, and allow them to remodel and migrate 

through the extracellular matrix. 

This process is different from the typical phagocytosis, where the 

engulfment is preceded by the formation of ruffles and pseudopods, 

embracing the external body. In this case, the internalization occurs 

through a sequence of events, including early interaction between the two 

cells (Figure 3, E-F), tumor cell invagination (Figure 3, G-H) and 

entrapment of lymphocyte within the melanoma cell (Figure 3, I-J) [5]. In 

particular, this process requires big caveolar-like vacuoles (Figure 4) in the 

site of the interaction between the tumor cell and the lymphocyte and a link 

between caveolin 1 expressing vacuoles and the actin cytoskeleton. The 

connection may be provided by the actin-linker molecule ezrin, which 

belongs to the ERM actin binding protein family (ERM, Ezrin, Radixin, 

Moesin) [5]. Furthermore, the pH of vesicles is lower in metastatic 

melanoma cells respect to primary melanoma cells. The acidic environment 

activates proteolytic enzymes, like cathepsin B, which is required for 

cannibalistic activity [2], [5]. 

Each of the components of the cannibal framework may represent specific 

tumor targets for future new strategies against cancer. 
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Figure 3 Scanning electron microscopy (SEM), on the left, and transition electron 

microscopy (TEM) analysis, on the right, after co-culture of metastatic melanoma 

cell monolayer with live autologous tumor-specifc CD8
+
 T-cells, recognizing the 

melanoma antigen MART-1 [5]. 

 

Figure 4 TEM analysis of an internalized lymphocyte undergoing degeneration [5]. 

For which concerns the role of tm9sf4 in this process, it’s important to 

notice that the gene is expressed in metastatic melanoma cells, having 

cannibalistic activity, but not in primary melanoma cells, which do not 

display this behavior. The protein is localized in early endosomes. It is 

involved in phagocytic and cannibal activity of metastatic melanoma cells, 
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since tm9sf4 knock-down by RNA interference significantly impairs the 

phagocytic activity of these cells against yeast and the cannibal activity 

against autologous lymphocytes. Furthermore, tm9sf4 silencing induces an 

increase of intravesicular pH of melanoma cells and a decrease of cytosolic 

pH, suggesting a protein role as an ion channel component or an ion 

channel regulating element, involved in the control of intracellular vesicle 

pH [2]. 

1.3 LA7: a cancer stem cell model system 

Tm9sf4 gene was brought to our attention by LA7 cell line, which 

represents a model of mammary gland cancer stem cell (CSC), which 

allows us to study the dynamics of tumor formation at the single cell level 

and to investigate certain aspects of normal mammary gland development. 

LA7 cells, characterized by a polygonal epithelial morphology, were 

isolated by Renato Dulbecco from a chemically induced rat 

adenocarcinoma [9]. 

According to cancer stem cell hypothesis, tumors are derived from mutated 

stem cells that have retained the properties of self-renewal and 

differentiation potential or from progenitors that have regained these 

characteristics. These kinds of tumor contain a hierarchical population of 

cells, composed by a majority of differentiated cells and a small number of 

tumor initiating cells. Since mammary tumors have been demonstrated to 

be often clonal in origin, they are supposed to be generated from a single 

mutated stem cell [10]. 

In our laboratory, it has been shown that LA7 cells can be propagated 

indefinitely both in monolayer and in suspension culture. In non-adherent 

conditions LA7 mammospheres could be regenerated indefinitely from cells 

derived from previously dissociated mammospheres. In these conditions 
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LA7 cells maintain their undifferentiated status, since they do not express 

mammary gland lineage specific cell markers. 

The mammary gland is composed of stem cells, which possess the 

capacity of indefinite self-renewing, lineage-committed progenitor cells, that 

have lost this capacity, but still possess proliferation and differentiation 

potential, and terminally differentiated cells, belonging to three cell 

lineages: luminal, alveolar and myoepithelial cells. LA7 stem cells confluent 

monolayer cultures, treated with differentiation inducers, are able to form 

domes, which are structures reminding mammary gland alveoli. A single 

mammosphere seeded onto collagen-coated dishes can give origin to 

branched-like structures, reminiscent of tubules, that are composed of myo-

epithelial and luminal cells, expressing cytokeratin 14 (K14) and cytokeratin 

18 (K18) respectively. When treated with lactogenic hormones, LA7 

mammosphere-derived outgrowths produce milk proteins such as -casein, 

which is a marker specific for functional terminally differentiated alveolar 

cells [11]. 

Hence, in vitro, LA7 cells have the ability to serially regenerate 

mammospheres in long-term non adherent cultures, the differentiation 

potential to generate all the cell lineages of the mammary gland and to 

develop tubular structures that recapitulate, morphologically and 

functionally, the ductal-alveolar-like architecture of the mammary tree 

(Figure 5) [11], [12]. 

In vivo, when injected at the single cell level in nonobese diabetic severe 

combined immunodeficient (NOD-SCID) immunocompromised mice, they 

are able to generate tumors with a heterogeneous morphology and 

containing cells with different ability to self-renewing and three dimensional 

organotypic growths. The tumor heterogeneity is the result of the clonal 

expansion of a single LA7 cell in all the cell lineages of the tissue of origin. 

[11] (Figure 6). 
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Figure 5 LA7 cells in vitro properties. (A) Self-renewing mammospheres generated 

by LA7 cells. (B) Tubuli generated from a single LA7 cell in collagen. (C) Confocal 

microscopy of tubular elongated structures and cross-sections of hollow tubuli 

(staining with Hoechst nuclear dye). (D) Cyst-like structures generated by LA7 cells 

in matrigel. (E) Expression of mammary gland specific markers by undifferentiated 

cells (lane 1) and by cells collected from LA7-derived tubules (lane 2). 

 

Figure 6 Histology and marker expression of the tumor generated from a single 

LA7 cell. The invasive front of the tumor expresses EMT markers (bottom), 

whereas the tumor core displays differentiation markers and reduced vimentin and 

-catenin (top). 
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In particular, the tumor contains highly proliferating cells, expressing Ki67, 

and terminal differentiated cells, expressing K18 or K14. The cells 

expressing K14 or K18 are not randomly dispersed, but they are organized 

in structures reminding tubuli typical of the tissue of origin. 

After tumor dissection, three different populations of LA7-derived cells 

could be identified, based on their morphology: a population having 

epithelial polygonal morphology, another one having fibroblast-like 

elongated morphology, called LA7 Elongated (LA7E), and a population of 

mesenchyme-like cells. The last one displays a limited expansion capacity 

ex vivo and it is not able to generate spheres and organotypic structures. In 

contrast, polygonal cells are cancer stem cells with the property of self-

renewing, while LA7 elongated cells are lineage-committed progenitor cells. 

These two cell types have different ability to serially regenerate 

mammospheres and to generate three-dimensional structures in vitro and 

they differ for the capacity to develop and to sustain tumors in vivo [13]. 

A microarray-based expression analysis showed that tm9sf4 was one of the 

top 50 genes found to be differentially expressed in LA7 CSCs respect to 

LA7 Elongated cells with high significance (unpublished data). This result 

was validated by real time PCR, which confirmed that tm9sf4 expression 

level was higher in LA7 CSCs, if compared to the differentiated counterpart 

(Figure 7). Therefore, loss-of-function experiments were performed on LA7 

CSCs by RNA interference, demonstrating that tm9sf4 downregulation 

caused changes in LA7 CSCs morphology, inducing them to trans-

differentiate to mesenchymal-like cells (Figure 8, unpublished data). 

Hence, we hypothesized that the changes in cell morphology observed in 

LA7 CSCs following siRNA treatment were associated with an epithelial to 

mesenchymal transition (EMT) process. 
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Figure 7 Distinct cell populations derived from tumor dissection (top). Expression 

level of tm9sf4 (bottom) in LA7 CSCs compared to LA7 progeny, measured by 

qRT-PCR (endogenous control HPRT).  

 

Figure 8 Loss-of-function analysis on LA7 CSCs. 
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To answer this question, we assessed the expression level of specific EMT 

markers (twist1, twist2, zeb2), by qRT-PCR, in LA7 CSCs, after tm9sf4 

downregulation. All the markers analyzed resulted upregulated in tm9sf4 

siRNA treated cells, with respect to control cells (Figure 9, unpublished 

data). 

 

Figure 9 Analysis of EMT marker expression, performed by Real time PCR assay 

on LA7 cells treated with 25 nM tm9sf4 siRNA for 48 hours compared to mock 

control cells, treated with just the transfection agent InterferIN. 

1.4 Danio rerio as a model system 

Since zebrafish (Danio rerio) was proven to be a powerful model, to study 

human diseases and processes associated with oncogenesis, we decided 

to investigate the role of Tm9sf4 protein in zebrafish embryonic 

development [14]–[18]. 
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Zebrafish is a freshwater tropical fish, native to the streams of the 

southeastern Himalayan region and it is found in India, Pakistan, 

Bangladesh, Nepal, and Burma (Figure 10). The name derives from the 

blue stripes on the side of the body, which extend to the end of the caudal 

fin. The zebrafish can grow up to 6.4 cm. They are characterized by a 

torpedo shape. Females have a larger belly and they exhibit a small genital 

papilla in front of the anal fin origin. Its lifespan in captivity is around two to 

three years, although in ideal conditions, it may be extended to over five 

years. 

 

Figure 10 Zebrafish female (top) and male (bottom). 

Zebrafish have a fully mapped genome, which has significant homology 

with the human genome, including noncoding regions, suggesting that 

numerous genes involved in human diseases have conserved sequence 

and function in zebrafish.  

They are cheap and easy to house and care of, due to their small size and 

the relatively simple environment conditions required. 

The impact of any genetic mutation or drug treatment and the early 

developmental processes are easy to see, because the larvae are 

transparent up to 7 days post fertilization (dpf); in addition, this can be 

extended to up to 9–14 dpf with the addition of melanocyte inhibitors. 

Moreover, the availability of transparent adult zebrafish, such as the Casper 

line, adds new imaging possibilities [19]. The transparency of zebrafish, 
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associated to sophisticated fluorescent technologies, permits to mark 

signaling proteins or cellular entities, allowing for the imaging of biological 

and disease processes. Zebrafish are highly fecund: a pair of zebrafish 

produces over 100 embryos per clutch, which are usable for larval 

experiments. The embryos breed and develop very quickly: in fact, an adult 

zebrafish develops in 3 months. The first cellular division occurs after 

approximately 45 minutes. During the first 8 hours of development, it is 

possible to observe the embryonic cells to cleave on the top of the yolk, 

followed by epiboly, in which cells move down and establish the anterior-

posterior axis. The formation of different organ systems can be followed 

under the microscope. At 24 hours post fertilization (hpf), the embryo 

displays well defined morphological characteristics: for example, it shares a 

vascular system and a well-organized nervous system; moreover, eyes, 

otolites, somites, pronephric ducts and blood cells precursors can be 

observed. At 48 hpf, also a cardiac pump and blood circulation can be 

visualized. The developing gastrointestinal system can be detected using 

specific molecular markers, whereas it will be possible to analyze its 

morphology at 5 dpf. Furthermore, a liver with histology similar to mammals 

is detectable. 

In addition, knock-down (morpholino injection) and forward genetic 

(mutagenesis, transgenic lines) techniques are well established and 

commonly used to manipulate and characterize zebrafish gene function. 

The embryos can be easily injected at the 1-4 cell stage with antisense 

morpholino oligonucleotides, targeting specific gene transcripts, to perform 

loss-of-function studies. 

Additionally, since zebrafish is a vertebrate, it has many features commonly 

found in mammals, including an innate immune system, composed of 

neutrophils, NK cells, and monocytes/macrophages, that become functional 

by 48 hpf [20] and an adaptive immune system that is fully functional at 4–6 
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weeks post fertilization [15]. The adaptive immune system, as in mammals, 

includes T-cells and B-cells that undergo Rag-dependent V(D)J-

recombination. 

A wide range of larval and adult zebrafish models that recapitulate human 

diseases is available, including different branches of pathology, such as 

wound healing, gastrointestinal disease, microbe-host interactions, genetic 

diseases and drug screens [21]. 

Zebrafish is particularly useful for the study of hematopoiesis [22]. Blood 

circulation begins approximately at 24 hpf and the number and morphology 

of circulating cells are visible under a microscope. The hematopoietic 

process is conserved throughout vertebrate evolution: in fact, many mouse 

and human homologues of blood specific genes have been cloned in 

zebrafish (scl, lmo-2, gata-1, and c-myb). More than 50 mutants with 

hematopoietic defects have been identified [16]. 

Furthermore, zebrafish can be used to study cardiovascular disorders. The 

zebrafish embryonic heart resembles the heart of a human embryo at three 

weeks of gestation. It is divided into atrial and ventricular chambers and it is 

lined by endocardium, with cardiac valves forming at the chambers 

boundaries. The heart starts to beat at approximately at 22 hpf with a 

peristaltic wave and, by 36 hpf, the beating is generated by coordinate 

contractions of atrium and ventricle. Studying the heart in zebrafish is 

particularly convenient, because the heart function can be assessed 

visually; moreover, the fish, unlike mouse, is not dependent from blood 

circulation for survival in early development [16]. 

Zebrafish represent a useful model system for kidney disorders. The 

pronephric kidney is composed by two nephrons with fused glomeruli and 

bilateral pronephric ducts. Zebrafish kidney development and function 

resemble for many aspects higher vertebrates kidney [23]. 
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Finally, D. rerio has been proposed to be an ideal vertebrate system in 

which to model cancer [14]. Teleosts develop a wide variety of benign and 

malignant tumors in virtually all organs, with a histology resembling that of 

human tumors. Cell-cycle genes, tumor suppressors and oncogenes are 

conserved between human and zebrafish genome sequence. Hence, 

mutagenesis screens targeted to these pathways could be designed, to 

analyze the resulting phenotypes in the developing embryos. This system 

also provides a way to check if a mutation causing an embryonic phenotype 

is related to a cancer predisposition in adults. Zebrafish system can be 

used for chemical genetic screens, to identify drugs active in multicellular 

organisms [24]. In fact, embryos exhibit many features of cancer, like 

rapidly dividing cells, extensive apoptosis and angiogenesis. Screens for 

compounds that affect these properties could identify drugs potentially 

useful for cancer treatment. Transgenic lines could be used to express 

oncogenes or to follow gene expression through the use of GFP and rapid 

short-term analysis of gene function could be carried out using morpholinos 

that are often successfully used to phenocopy mutants. 

Interestingly, it has been suggested that all vertebrates share common 

pathways involved in processes like development of branched structures, 

cell migration and neurogenesis [25]. Our hypothesis is that tm9sf4 could 

be involved in one of these pathways. Hence, studying the protein function 

in this model may help us to understand its role in normal embryonic 

development and in tumorigenesis. 

1.5 Transmembrane 9 protein superfamily in zebrafish 

In zebrafish five genes belonging to transmembrane 9 protein superfamily 

have been identified: tm9sf1 (NM_001003550), tm9sf2 (NM_212728), 

tm9sf3 (BC046021), tm9sf4 (NM_200510) and tm9sf5 (XP_686483) [26].  
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Splice variants could be found in databanks for all the human genes, in 

most cases in the N-terminal variable part. In particular, four variants were 

reported for human tm9sf4, while in zebrafish no splice variants were 

identified. 

Zebrafish tm9sf4 gene is located on chromosome 23 and it is composed by 

16 exons, while the human gene resides on chromosome 20 and it includes 

18 exons. Tm9sf genes were found to be ubiquitously expressed in tissues 

of adult zebrafish. During embryonic development, the expression of all 

tm9sf genes was detected from fertilization up to 4 dpf [26]. 

Bioinformatics analysis of 80 Tm9sf protein sequences from yeast, plants 

and animals showed that the protein have a conserved structure. Based on 

preliminary bioinformatics analyses, zebrafish Tm9sf4 protein was 

predicted to be composed by 9 transmembrane regions, a large variable 

region facing the non-cytoplasmic side, a C-terminal end orientated to the 

cytoplasmic side. At the N-terminus, a small cytoplasmic N-terminal part or 

another transmembrane region could be present [26] (Figure 11). 

 

Figure 11 Prediction of the Tm9sf4 protein membrane topology 

Two ITIM-like (Immunoreceptor Tyrosine-based Inhibition Motif) sequences 

could be present at the C-terminal end, close to transmembrane regions 7 

and 9, respectively. A putative TRAF-2 (Tumor Necrosis Factor Receptor-

Associated Factor 2) binding site is present between transmembrane 

regions 1 and 2. These domains are conserved in all Tm9sf proteins [26]. 

ITIMs have been found in a large number of immune receptors that were 
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shown to negatively regulate cellular processes including endocytosis, 

phagocytosis and cell adhesion. When ITIM-containing receptors are 

engaged, they become tyrosine phosphorylated and then they transmit 

inhibitory signals by binding and activating SH2 (Src homology domain) 

containing phosphatases. In many cases the target is Vav1, a guanine 

nucleotide exchange factor, which participates in several processes 

requiring cytoskeletal reorganization. Hence, the presence of ITIM motifs 

could place Tm9sf proteins in signal transduction pathways that may 

regulate processes such as adhesion and phagocytosis. On the other end, 

recently, ITIM and ITIM-like motifs have also been detected in proteins that 

are not directly involved in immunity, such as G-proteins in which it 

mediates apoptosis. 

TRAF proteins are signal transducers for members of the TNF receptor 

family, even if TRAF signaling is not restricted to these receptors. TNF 

receptor-mediated TRAF2 signaling may lead to cell proliferation, cell 

activation and cytokine secretion. TRAF2 has also a role in cell 

differentiation or maturation in B cells, osteoclasts and macrophages. As 

TRAF2 protein is ubiquitous, a role of this protein in not direct immune 

functions may also be expected. TRAF2 could be involved in the induction 

of autophagy in the unfolded protein response (UPR), where TRAF2 is 

recruited by the endoplasmic reticulum serine/threonine kinase IRE1. 

However, this prediction suggests that Tm9sf proteins could be involved in 

zebrafish immunity and it is consistent with the previous works, which 

shown protein involvement in the innate immunity of Drosophila and 

Dictyostelium [1], [3], [4].  

Despite of this, the expression of tm9sf genes was not affected by 

incubation of the embryos with PAMPs (Pathogen Associated Molecular 

Patterns), such as LPS, CpG, poly I:C, at any concentration or length of 

exposure [26]. Therefore, the role of Tm9sf4 protein in zebrafish immune 
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system could be related to signaling. According to this hypothesis, it was 

suggested that Tm9sf proteins may transduce signals from PAMPs [26]. 

1.6 Epithelial to mesenchymal transition 

Most adult tissues develop from a series of conversions of epithelial cells to 

mesenchymal cells, through the epithelial to mesenchymal transition (EMT) 

and the reverse process, mesenchymal to epithelial transition (MET). 

Several rounds of EMT and MET are required for final cell differentiation 

and the development of the complex structure of organs (primary, 

secondary, tertiary EMT). Primary EMT includes the formation of 

mesoderm from the primitive ectoderm and the repositioning of the three 

primary germ layers, as well as the definition of the anteroposterior and 

dorsoventral axes in the developing embryo, by mesendodermal 

progenitors undergoing EMT during gastrulation, and, successively, the 

formation of dorsal neural tube by neural crest delamination. Secondary 

EMT involves early mesodermal cells (axial, paraxial, intermediate, lateral 

plate cells), which condense into transient secondary epithelial structures 

(notochord, somites, somatopleure and splanchnopleure respectively), that 

will undergo EMT, leading to the generation of mesenchymal cells, that 

differentiate into specific cell types: for instance, endodermal tissues, 

including pancreas bud and liver diverticulum, undergo the dissociation of 

endocrine cells and hepatoblasts from their epithelial primordia. An 

example of tertiary EMT occurs in the heart during the formation of cushion 

mesenchyme, which is the precursor of cardiac valves, from the 

atrioventricular canal or the outflow tract.  

Epithelial cells establish close contact with their neighbors and an 

apicobasal axis of polarity. They maintain global communication through 

specialized junction structures and they remain separated from adjacent 
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tissues by the basal lamina. In contrast, mesenchymal cells are dispersed 

in a three-dimensional extracellular matrix and comprise connective tissues 

adjacent to epithelia. In general, the EMT process involves morphological 

changes of epithelial cells, the loss of cell-cell adhesion and cell polarity, in 

addition to the acquisition of migratory and invasive properties. 

Furthermore, the expression of specific proteins occurs: cell-cell junction 

proteins and cytokeratin intermediate filaments are replaced by vimentin 

filaments and fibronectin. 

Mesoderm formation and neural crest delamination represent the key 

embryonic EMT programs. Some of the most important elements involved 

in this process are conserved through evolution [27]. The genetic pathways 

governing gastrulation in amniotes, which are substantially maintained in 

zebrafish, are shown in figure 12 [27]. 

 

Figure 12 Genetic pathways controlling gastrulation in amniotes [27]. 
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In early development, at the onset of gastrulation, activation of canonical 

Wnt (Wingless-type MMTV integration site family) signaling leads to the 

formation of the primitive streak or blastopore in the posterior part of the 

embryo, which is the region where cells involute or ingress and that 

establish a bilateral symmetry in most vertebrates. In zebrafish, the 

blastopore is not present and the cells involute at the blastoderm margin. In 

this region, convergence movements produce a local accumulation of cells, 

known as the embryonic shield in zebrafish (node in mammals), which is an 

organizing center, regulating cell movements and specification [28]. The 

formation of this structure is promoted by -catenin, which, in turn, is 

regulated by Wnt and is transported in the dorsal part of the embryo by a 

maternal program of microtubule dependent transport, activating 

transcription factors and secreted signals in dorsal blastomers. Later, 

members of TGF- superfamily (i.e. Nodal) mark the beginning of 

gastrulation, in both zebrafish and Xenopus. Nodal signaling and FGF 

(Fibroblast Growth Factor) family control the specification of mesoderm in 

all vertebrates. Members of TGF- superfamily induce Snail1 and Snail2 

(SNAI1 and SNAI2 in humans), which are E-cadherin repressors and 

control cell-cell adhesion, cell shape and motility. In addition, they are 

essential for EMT and mesodermal cells migration. FGF signaling is 

required to maintain their expression and for gastrulation to proceed [29]. 

The cell delamination is allowed by microtubule disruption and basal 

membrane breakdown, induced by Net1 (RhoGEF protein), which inhibits 

RhoA in the blastopore [30]. On the other end, FLRT3 maintains the basal 

membrane integrity in other areas [31]. 

In particular, zebrafish gastrulation involves a set of movements: 

blastoderm expansion around the syncytial yolk cell, which is associated 

with its thinning (epiboly), the migration of mesodermal and endodermal 

precursors from the blastula surface beneath the ectodermal layer, forming 
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an internal layer, the so called hypoblast (ingression), the conversion 

movements narrowing embryonic tissues mediolaterally and extension 

movements elongating tissues along the anteroposterior axis (Figure 13) 

[28]. Finally, deep cell layer (DEL) cells, adjacent to the blastoderm margin, 

become lineage restricted. 

 

Figure 13 Gastrulation movements in zebrafish. (a) Midblastula stage. (b, c) 

Gastrulation. (d) 16 hpf embryo. Abbreviations: AP, animal pole; D, dorsal; E-YSL, 

external yolk syncytial layer; I-YSL, internal YSL; SMO, Spemann-Mangold 

organizer; V, ventral; VP, vegetal pole; YSN, yolk syncytial nuclei. Color code: red, 

mesoderm; dark red, prechordal mesoderm; yellow, endoderm; light blue, non-

neural ectoderm; dark blue, neural ectoderm. The black arrow indicates the 

proximodistal blastopore axis [28]. 

Interestingly, many genes controlling these cell movements are involved in 

cell adhesion [28]. Moreover, it has been recently demonstrated that E-

cadherin (cdh1) is involved in epiboly, convergence and extension 
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movements in zebrafish [32], [33]. In particular, E-cadherin-mediated 

adhesion between enveloping layer (EVL) and DEL cells could play a role 

in epiboly. 

Furthermore, in the embryonic shield, prechordal mesendodermal cells 

internalize by synchronized ingression and successively they migrate 

towards the animal pole [32]. Activation of stat3 downstream to catenin is 

essential for convergence and extension movements in the axial tissues 

[33]. The main effector of stat3 is liv1, a zebrafish homolog of a breast 

cancer-associated zinc transporter, which promotes the nuclear localization 

of snail, a transcription factor that negatively regulates E-cadherin 

expression. It has been proposed that liv1 promotes EMT in prechordal 

mesendodermal cells [34].  

Wnt non-canonical signaling, mediated by wnt11, is also required for this 

process and it has been proposed to modulate cell adhesion by regulating 

E-cadherin activity [35]. Moreover, the T-box gene notail, the zebrafish 

homolog of Brachyury, and wnt11 are required for the migration of the 

notochord precursors [36], [37]. 

Despite the heterogeneity of the mechanisms involved in gastrulation 

movements, E-cadherin has been shown to be essential for different cell 

behaviors underlying these processes [28]. The role of E-cadherin is 

conserved through evolution. It is unclear how E-cadherin function is 

regulated in terms of transcription, translation and protein activity. Since the 

gastrulation events occur very rapidly, many pathways should cooperate to 

ensure a dynamic and rapid regulation of E-cadherin. 

After gastrulation the epidermal and neural (neuroectoderm) territories are 

progressively defined and the neural crest forms from ectoderm at the 

boundary between these two territories, characterized by an intermediate 

BMP (Bone Morphogenic Protein) signaling. BMP proteins belong to TGF- 

superfamily. Neural crest is a transient population of embryonic progenitors, 
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which constitute the dorsal midline of the early neural tube and have the 

ability to undergo EMT and migrate as single cells over extraordinarily long 

distances. After migration they generate a wide variety of derivatives, 

including, among others, craniofacial structures, most of the peripheral 

nervous system, some endocrine cells and melanocytes. Canonical Wnt 

signaling is important for neural crest precursors induction and stabilization, 

whereas non-canonical Wnt signaling is required for neural crest migration 

[38]. One critical component of neural crest migration is the extracellular 

matrix: high levels of fibronectin and hyaluronan appear in the neural crest 

area just before migration. 

In both developmental processes and carcinoma progression and 

metastasis, functional loss of E-cadherin in epithelial cells is considered a 

hallmark of EMT. Therefore, a pivotal importance represents the 

understanding of pathways through which E-cadherin is regulated. A wide 

range of transcription factors, including Snail and ZEB, are able to repress 

E-cadherin transcription by directly binding E-box elements present on its 

promoter [39]–[41]. Other factors, including the bHLH factor Twist, regulate 

E-cadherin indirectly [42], [43]. Interestingly, most of these factors are 

involved in various EMT processes, occurring both during embryogenesis 

and in tumor malignancy and metastatization. 
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2. AIMS 

The aim of my PhD project is the identification of Tm9sf4 protein function in 

normal and cancer cells, in particular in mammary gland stem cell 

maintenance and in tumor initiation and progression. 

Based on the assumption that all vertebrates share common pathways 

involved in many important biological processes, including tissue 

branching, cell migration, sprouting and neurogenesis [25], Zebrafish 

(Danio rerio) was used as an in vivo model system, to investigate Tm9sf4 

protein function in embryonic development.  

D. rerio was recently proven to be a powerful model to study not only 

human diseases, but also processes associated with oncogenesis. Since 

zebrafish is a vertebrate organism, it shares genetic similarity to humans 

and, to date, all proteins studied for their involvement in many human 

diseases have conserved sequences and functions in fish and mammals. 

Moreover, the zebrafish are easy to house and care for. The impact of any 

genetic mutation or drug treatment is easy to visualize under microscope, 

because the embryos are completely transparent. They produce a large 

number of eggs per mating and the embryos breed and develop very 

quickly. 

Interestingly, most of the processes associated with EMT are conserved for 

many aspects in zebrafish embryonic development and human tumor 

progression [27], [44]. Our hypothesis is that tm9sf4 is involved in one of 

these pathways. In particular, it could have a role in the regulation of EMT 

in various embryonic tissues and in tumor progression. Therefore, studying 

Tm9sf4 protein function in zebrafish may help us to understand its role in 

normal embryonic development and in tumorigenesis. 
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3. MATHERIALS AND METHODS 

3.1 Zebrafish maintenance 

Adult zebrafish were kept at 28 °C in a cabinet equipped with fish tanks 

(Figure 14), each one containing 3-5 liters of fish water, composed by a 

solution of 34 g of Instant Ocean Sea Salt per liter of dH2O, further diluted 

1:200 in dH2O. They were fed three times per day with Artemia Salina and 

dried flake food. The light/dark cycle was 14/10 hours. Males and females 

were kept in separate tanks until mating.  

In order to permit reproduction, a male and a female were combined, after 

the dark period, in 1 liter tanks, equipped with a mesh, to prevent adults 

from cannibalism and allow fertilized eggs to settle to the bottom. Zebrafish 

embryos obtained from natural spawning were collected in Petri dishes 

containing fish water, added with 0.01% methylene blue, to prevent fungal 

growth, and maintained at 28 °C until they reached the desired 

developmental stage, according to established techniques [Westerfield, M. 

1995, The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish 

(Danio rerio), 3rd Edition. Eugene, OR, University of Oregon Press, 385]. 

The embryos were staged according to morphological criteria [45]. 

Beginning from 24 hpf they were cultured in fish water containing 0.003% 

PTU (1-phenyl-2-thiourea; SIGMA) to prevent pigmentation and 0.01% 

methylene blue. 

For this study the following animal lines were used: 

 AB: wild type line, obtained from the Wilson lab, University College 

London, London, United Kingdom. 

 tg(gata1:dsRed)sd2/tg(flk1:EGFP)S843 (from the Santoro lab, 

Molecular Biotechnology Center, Università di Torino, Torino, Italy), 
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a double transgenic line in which dsRed is under control of promoter 

of gata1 gene, whereas GFP is under control of promoter of flk1 

gene [46]. 

.  

Figure 14 Aquarium for fish breeding and mating. 

3.2 RT-PCR analysis 

RNA extraction and retrotranscription 

Total RNAs were prepared from zebrafish oocytes and embryos at different 

developmental stages, using the RNAgents Total RNA Isolation System 

(Promega, Madison, WI), treated with DNaseI RNase free (Roche, Basel, 

Switzerland), to avoid possible contamination from genomic DNA, and then 

reverse transcribed using the ImProm-II Reverse Transcription System 

(Promega) and Random primers according to manufacturers' instructions. 

Primers specific for actin were used to check cDNA quality and possible 

genomic contamination.  
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PCR amplification 

The cDNAs were then subjected to PCR amplification using GOTaq 

polymerase (Promega) for both pattern expression analysis and full-length 

sequence cloning. PCR products were separated by electrophoresis on a 

1% agarose gel and stained with ethidium bromide. Primers are listed in 

Table 1.  

Name Sequence Amplicon length 

Expression analysis and probes production 

tm9sf4.Fprobe 5’-CTGCACAGCAACTCTTTACCC-3’ 

1002 bp 

tm9sf4.Rprobe 5’-ATGAGACCCAGCCCAAAAAT-5’ 

Full-length sequence cloning 

tm9sf4.F 5’-ATGACACGTGTATTCAAGATGG-3’ 
2279 bp 

tm9sf4.R 5’-TTCAAAAGCATGAGACCCAG-3’ 

Exon-skipping validation 

tm9I3E4.F 5´-CGTGTATTCAAGATGGCGGC-3´ 
604/435 bp 

tm9I3E4.R 5´-CCTCTGCGTCCTCCAACTTT-3´ 

Table 1 List of primers used for RT-PCR 

3.3 Cloning and sequencing 

PCR products were cloned into the pGEM-T easy Vector (Promega) and 

the plasmids were used to transform chemically competent cells DH5TM 

cells (Invitrogen) according to standard protocols. Plasmid DNA, after 

column purification with Wizard Plus SV Midipreps DNA Purification 



Materials and Methods 
 

28 
 

System (PROMEGA), was analyzed by electrophoresis on a 1% agarose 

gel and then the insert was controlled by Sanger sequencing. 

3.4 Probes preparation 

Template cloning 

A 1002 bp cDNA template was generated by RT-PCR on total RNA 

extracted from 5 dpf (days post fertilization) embryos and primers listed in 

Table 1, as described before (Paragraph 3.3). 

Plasmid digestion 

The cDNA-containing plasmid was linearized with PstI restriction 

endonuclease and transcribed with T7 RNA polymerase (Roche) for the 

sense riboprobe synthesis or linearized with ApaI and transcribed with SP6 

RNA polymerase (Roche) to synthesize the antisense probe. 

The enzymatic digestions were performed using the following mix (100 l): 

- 10 g plasmidic DNA in water solution 

- Restriction endonuclease (3 U enzyme/g DNA) 

- Buffer 10X 

- BSA 10X 

- Nuclease-free H2O  

The reaction mix were incubated for at least 2 hours at 37 °C and the 

digestion were assessed by electrophoresis on 1% agarose gel. The DNA 

was extracted with 1 volume of phenol and following centrifugation the 

aqueous phase was collected and added with 10-1 volumes of sodium 

acetate and 2.5 volumes of ethanol. The mixture was incubated overnight 

at -20 °C, to precipitate DNA. After centrifugation, the pellet was washed 

with 70% ethanol and resuspended in nuclease-free H2O. 
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Probe transcription 

Probes were synthetized using MAXIscriptTM kit (Life Technologies) and 

dygoxigenin-UTP, according to manufacturers’ instructions. The reaction 

mix was then treated with DNase at 37 °C for 15 minutes. The probes were 

purified using Sigma SpinTM sequencing Reaction Clean-Up columns 

(Sigma) and analyzed by electrophoresis on 1% agarose gel, to determine 

the concentration. 

3.5 Whole-mount in situ hybridization (WISH) 

Embryos fixing 

Embryos at the desired stage, after mechanical removal of chorion, were 

fixed with a solution of 4% PFA in PBS for 1 hour at room temperature, 

dehydrated with a graded methanol series in PBS and stored in 100% 

methanol at -20 °C. 

Hybridization procedure 

Whole-mount in situ hybridization (WISH) was performed as described by 

Thisse C. and colleagues [47] using 60% formamide, a hybridization 

temperature of 65 °C and 300 ng of probe per sample. 

First day: 

Embryos were rehydrated with a decreasing methanol series in PBS and 

they were washed four times in PBT (PBS 1X/1% Tween 20). 

Successively, they were treated with a solution of 10 g/ml proteinase K in 

PBT for different times, depending on the developmental stage. 

The solution was removed and the reaction was blocked by incubation in 

PFA for 20 minutes at room temperature. 
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The embryos were washed 5 times with PBT and incubated in hybridization 

mix (HM) for 2-5 hours at 65 °C. 

Successively, they were incubated overnight at 65 °C in HM, previously 

added with the probe. 

Second day: 

The following washes were performed: 

 HM wash, 65 °C 

 75% HM wash/25% SSC 2X (15 minutes, 65 °C) 

 50% HM wash/50% SSC 2X (15 minutes, 65 °C) 

 25% HM wash/75% SSC 2X (15 minutes, 65 °C) 

 SSC 2X (15 minutes, 65 °C) 

 SSC 0.1X (30 minutes, 65 °C, X2) 

 75% SSC 0.1X/25% PBT (10 minutes, RT) 

 50% SSC 0.1X/50% PBT (10 minutes, RT) 

 25% SSC 0.1X/75% PBT (10 minutes, RT) 

 PBT (10 minutes, RT) 

The embryos were incubated in a PBT solution containing 2% sheep serum 

and 2 mg/ml BSA, for at least 2 hours at room temperature. Then, they 

were incubated in the same solution, previously added with anti-DIG 

antibody (1:5000), overnight at 4 °C. 

Third day: 

After antibody removal, embryos were washed 6 times with PBT at room 

temperature for 15 minutes and, then, 3 times with staining buffer for 5 

minutes at room temperature. 

The embryos were incubated in staining buffer added with 2.3 l/ml NBT 

and 3.5 l/ml BCIP.  

To stop the staining, the buffer was removed and the embryos were 

washed in PBT.  
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Finally, a post-fixing was carried out by incubation in 1% PFA at room 

temperature for 30 minutes. 

The embryos were washed with PBS and stored at 4 °C in PBS. 

Solutions 

10X PBS buffer: 180 g NaCl; 2 g KCl; 14.4 g Na2HPO4; 2.4 g KH2PO4, in 

milliQ H2O (1 l final volume). 

PBT buffer: 1% Tween 20 in 1X PBS 

20X SSC pH 7 (Saline Sodium Citrate Buffer): 300 mM trisodium citrate; 

3 M sodium citrate pH 7.0. 

HM wash: 60% formamide; 5X SSC; 1M citric acid pH 6; 0.1% Tween 20; 

milliQ H2O. 

Hybridation mix (HM): HM wash; 500 g/ml Yeast RNA; 50 g/ml eparin. 

Staining buffer: 100 mM NaCl; 100 mM Tris HCl pH 9.5; 50 mM MgCl2; 

0.1% Tween 20, milliQ H2O. 

Imaging 

The embryos were transitioned to 87% glycerol/13% PBS 1X, by 

performing washes with a graded series of glycerol (30%, 50%, 75%). 

Images of stained embryos were taken with a Leica MZFLIII 

epifluorescence stereomicroscope equipped with a DFC 480 digital camera 

and IM50 Leica imaging software (Leica, Germany). 

3.6 Histological sections 

After hybridization the embryos were transitioned to PBS and dehydrated in 

a graded ethanol series (35%, 50%, 70%, 90%, 95%, and 100%), 
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transitioned to xylene and then embedded in paraffin wax (paraplast plus, 

Bio Optica). 

Wax embedding and sectioning 

After 2 washes with xylene (1 hour, RT), the embryos were incubated in 

50% xylene/50% paraffin overnight at room temperature.  

Three washes with liquid paraffin were performed (1 hour, 61 °C). 

The embryos were positioned and properly oriented in inclusion molders 

that were filled with liquid paraffin. The blocks were allowed to cool at room 

temperature overnight. 

Samples were then serially sectioned at 8 µm on a microtome (Leitz 1516). 

The sections were putted on slides (superfrost, Bio Optica) and dried at 37 

°C.  

Eosin staining and imaging 

The wax was removed by consecutive washes in xylene.  

The sections were rehydrated in a decreasing ethanol series (100%, 95%, 

90%, 70%, and 50%), washed with dH2O and stained with a water solution 

of eosin for 50 seconds. 

After washing with dH2O, the sections were dehydrated in a graded ethanol 

series and transitioned to xylene. 

The slides were mounted with Eukitt (Bio Optica). All sections were 

observed at microscope Olympus BH-2 equipped with a Leica DCF480 

digital camera and the software IM50. 

3.7 Loss-of-function analysis 

Wild type embryos, belonging to line AB, and double transgenic embryos, 

belonging to line tg(gata1:dsRed)sd2/tg(flk1:EGFP)S843, were injected with 
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antisense morpholino oligonucleotides. We designed an antisense 

translation blocking morpholino oligonucleotide (tm9sf4-MO), targeted to 

the start codon AUG, and a splicing morpholino oligonucleotide (tm9I3E4-

MO), targeted to the junction between intron 3 and exon 4. Tm9sf4-MO was 

co-injected with an oligonucleotide targeted to p53 (p53-MO), to suppress 

eventual off-target effects [48]. As a negative control, we injected a 

standard control morfolino (std-MO), targeted to human -globin gene and 

having no targets in zebrafish. Morpholino oligonucleotides were 

synthesized by Gene Tools LLC (Oregon, USA). Morpholino sequences are 

reported in Table 2. 

Morpholinos were dissolved in nuclease-free water at 1 mM concentration 

and stored at –80°C. Before injection they were dissolved in Danieau’s 

solution (58 mM NaCl; 0.7 mM KCl; 0.4 mM MgSO4*H2O; 0.6 mM 

Ca(NO3)2; 5 mM Hepes pH 7.2) at the desired concentration. Rodamin 

dextran (Molecular Probes) was usually co-injected as a tracer. Therefore, 

the needle was filled with 5 l of the following solution: 

- Morpholino (at the desired concentration) 

- Rodamin dextran (0.5 l) 

- Danieau’s solution  

Morpholino Sequence 

tm9sf4-MO 5’-TCACAGGAAGGATGTCAATGCGTCA-3’ 

tm9I3E4-MO 5’-CTCACCTGGAAACATATCAGCACCA-3’ 

std ctrl-MO 5’-CCTCTTACCTCAGTTACAATTTATA-3’ 

p53-MO 5’-GCGCCATTGCTTTGCAAGAATTG-3’ 

Table 2 Morpholino oligonucleotide sequences 
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Successively, 5 nl per embryo of this solution were microinjected at the 1–4 

cells stage. 

Fertilized eggs were collected in Petri dishes containing fish water and 

aligned on the edge of a slide placed in a dish (about 50 embryos/slide). 

The microinjections were performed using the “Micromanipulator 5171” 

(Eppendorf) and the microinjector “Cell Tram Oil” (Eppendorf) (Figure 15).  

 

Figure 15 Microinjection system 

After injection, embryos were raised in fish water at 28 ºC and observed up 

to the stage of interest. Before the phenotypic analysis, rodamin dextran 

positive embryos were selected and the chorion was mechanically 

removed. Injected embryos after 24 hpf were treated with PTU 1X (1-

Phenil-2-thiourea, SIGMA; stock PTU 10X: 0.015 g of PTU powder in 50 ml 

of fish water) to inhibit pigment formation. The injected embryos were 

anaesthetized using tricaine 1X (Ethyl 3-aminobenzoate methanesulfonate 

salt, SIGMA; stock tricaine 25X: 0.08 g in 20 ml of distilled H2O) in fish 

water and PTU 1X, to allow a better visualization and imaging. Images 
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were acquired by using a Leica MZ FLIII equipped with a Leica DCF480 

digital camera and the software IM50. 

3.8 Real time PCR analysis 

RNA extraction and DNase treatment 

Total RNAs were prepared from morphants at the desired developmental 

stage, using the RNAgents Total RNA Isolation System (Promega, 

Madison, WI). RNA was analyzed with Nanodrop, to measure the 

concentration. 

1g of total RNA for each sample was treated with 1 Unit of DNaseI 

enzyme (cat. 18068-015, Invitrogen) at 25 °C for 15 minutes in a total 

volume of 10l. The enzyme was then inactivated adding 1 l of ETDA (25 

M) and heating the reaction at 65 °C for 10 minutes. 

Retrotranscription 

cDNA was produced using 9l of the DNase with High-Capacity cDNA 

Reverse Transcription Kit (cat.4368814, Life Technologies) in a total 

volume of 20 l, following manufacturers’ instruction. The samples were 

incubated at 25 °C for 10 minutes (annealing), 37 °C for 120 minutes 

(reverse transcription) and, finally, at 85 °C for 5 minutes (inactivation). 

Real Time PCR 

qRT-PCR was performed with 7500 Real-Time PCR System (Life 

Technologies) using primers listed in Table 3 at the final concentration of 

300 nM each, with SYBR Select Master Mix (cat. 4472920, Life 

Technologies), following manufacturers’ instructions. Each single reaction 

was performed with a cDNA amount corresponding to 5 ng of original total 

RNA. All the analysis were performed by calculating relative quantification 
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with the ∆∆Ct approach, using Rpl8 as endogenous control and calculating 

the standard error among triplicate reactions. 

Primer Type Sequence 

ZF_Fgf8_F Forward 5’-GAGTTATCTATTCCTTCACCTCTTTGC-3’ 

ZF_Fgf8_R Reverse 5’-TCACTCACATGCTGTGTAAAATTAGG-3’ 

ZF_SHHa_F Forward 5’-CCAAAGCCCACATTCATTGC-3’ 

ZF_SHHa_R Reverse 5’-AAACAGCCCCCAGATTTCG-3’ 

ZF_Rpl8_F Forward 5’-CCGTTGTTGGTGTTGTTGCT-3’ 

ZF_Rpl8_R Reverse 5’-TTGGCCTTGTATTTGTGGTAAGC-3’ 

ZF_Wnt1_F Forward 5’-CCCACAGCCCCAATGTCTT-3’ 

ZF_Wnt1_R Reverse 5’-CACCAGCACTTGTAATGGCAAA-3’ 

ZF_Egr2a_F Forward 5’-AAGGAGGCACACAAAAATCCA-3’ 

ZF_Egr2a_R Reverse 5’-TGTGAGGGCCCACAGAAAG-3’ 

ZF_OTX2_F Forward 5’-ACCCAGCGACTCCTCGAAA-3’ 

ZF_OTX2_R Reverse 5’-GCACATCTAGTTGCGCTCTAGTAAA-3’ 

ZF_OTX1a_F Forward 5’-TATCCCACGAATCCTCGTAAACA-3’ 

ZF_OTX1a_R Reverse 5’-CTCTCCAAGATGTCCAGCTGAGT-3’ 

ZF_CDH1_F Forward 5´-TGTAGCGAGTCAAATGGCTTGT-3´ 

ZF_CDH1_R Reverse 5´-CCACTCGAAAAGACCTGAAAAAGA-3´ 

TWIST2_F Forward 5’-AGGGCGCGTGGTCGAT-3’ 

TWIST2_R Reverse 5’- AGTAAACAGTCCGTTCGGCATT-3’ 
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Primer Type Sequence 

TWIST1a_F Forward 5’-CCATGTCAACATCCCACTAACG-3’ 

TWIST1a_R reverse 5’-CCATGTCAACATCCCACTAACG-3’ 

TWIST1b_F Forward 5’-GGGCGCTTGGTCCATGT-3’ 

TWIST1b_R Reverse 5’-GCTCACGGTTTGACCATTTAAAA-3’ 

ZEB2a_F Forward 5’-CAGCCACCTTTGCTGAGAT-3’ 

ZEB2a_R Reverse 5’-ATCCCCCTGGAAGCCTTGT-3’ 

ZEB2b_F Forward 5’-GGTACAGATGAACTGAAGGCTGATT-3’ 

ZEB2b_R Reverse 5’-ACTTTCAGTGTCCACCAGTTTACG-3’ 

Table 3 List of primers used for qRT-PCR 
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4. RESULTS 

4.1 Tm9sf4 expression analysis 

4.1.1 Tm9sf4 expression during embryonic development 

Zebrafish tm9sf4 full-length transcript was amplified by RT-PCR, using 

cDNA from 5 dpf embryos and, after cloning, the absence of mutations or 

rearrangements was evaluated by sequencing (NM_200510). 

To determine the expression of tm9sf4 gene throughout the zebrafish 

embryonic development, we performed RT-PCR analyses using total RNAs 

prepared from oocytes and embryos at different developmental stages. The 

tm9sf4 transcript was detected in all of the analyzed stages, from oocytes 

to 5 dpf (Figure 16), suggesting that the expression is both maternal and 

zygotic. These results are consistent with the previous findings [26]. 

 

Figure 16 RT-PCR expression pattern of the zebrafish tm9sf4 gene during 

embryonic development. (1) oocytes; (2) 64-cells; (3) 30% epiboly; (4) 50% 

epiboly; (5) tail bud; (6) 5-8 somites; (7) 15-20 somites; (8) 26 hpf; (9) 2 dpf; (10) 5 

dpf; (11) negative control. 

4.1.2 Tm9sf4 expression in embryonic tissues 

In order to investigate tm9sf4 specific expression in embryonic tissues by 

whole mount in situ hybridization (WISH), first we determined the 

hybridization conditions and tested prepared probes, carrying out trials with 

embryos at 24 hours post fertilization (hpf).  
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Successively, the analysis was performed, using selected conditions, on 

embryos at different developmental stages: 10 somites, 15 somites (not 

shown), 24 hpf (Figure 17, A-C), 48 hpf (Figure 17, D-F) and 72 hpf (Figure 

17, G-I).  

 

Figure 17 Expression panel of embryos at different developmental stages, 

obtained by whole mount in situ hybridization, using an antisense probe, targeting 

the tm9sf4 transcript. Negative controls were performed by hybridization with the 

sense probe. (A) tm9sf4 expression at 24 hpf (magnification 8X), (B) head detail 

(magnification 10X) and (C) negative control (magnification 8X). (D) tm9sf4 

expression in 48 hpf embryos (magnification 6.3X), (E) head detail (magnification 

10X) and (F) negative control (magnification 6.3X). (G) tm9sf4 expression in 72 hpf 

embryos (magnification 6.3X), (H) head detail (magnification 10X) and (I) negative 

control (magnification 6.3X). 

The results suggested that the gene is mainly expressed in the central 

nervous system (CNS) in all the analyzed stages: in particular, the 

expression was detected in the telencephalon, mesencephalon and 

cerebellum, and a marked expression was detected at the eye level, both in 
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the retina and crystalline lens. Moreover, in 24 hpf embryos a superficial 

signal in the tail was present (Figure 17, A), while 72 hpf embryos showed 

a signal in notochord (Figure 17, G). 

To better understand the specific localization of the embryonic signals, the 

stained embryos were wax embedded and histological sections were 

obtained as described in materials and methods.  

At 24 hpf the sections of the head showed a scattered signal in the brain 

and eye and a stronger signal in the crystalline lens and in the 

periventricular wall of the diencephalon and mesencephalon, both at the 

tegmentum and tectum level (Figure 18, B). Moreover, tm9sf4 gene 

expression was detected in the periventricular wall of the hindbrain and in 

the otic vesicles (Figure 18, C). At the tail level, we detected a punctuated 

superficial signal in somites that may be either muscular or epithelial 

(Figure 18, D). 

 

Figure 18 (A) tm9sf4 expression in 24 hpf embryos, obtained by whole mount in 

situ hybridization (magnification 8X). (B-D) Histological sections (8 m) of the 
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stained embryo in the regions indicated in A by the lines 1, 2 and 3 respectively (B-

C, magnification 40X and D, magnification 20X). 

At 48 hpf, embryos showed a strong expression signal in the stomodeum 

wall (Figure 19, B), in the periventricular wall of the diencephalon (Figure 

19, C), in the internal wall of otic vesicles and in the myelencephalon 

(Figure19, D). We also detected a signal in the endodermic tissue of the 

gastrointestinal tract (Figure19, E) and in the pectoral fin buds (Figure19, 

F), while no expression was found in the tail (Figure 19, G). 

 

Figure 19 (A) tm9sf4 expression in 48hpf embryos, obtained by whole mount in 

situ hybridization (magnification 6.3X). (B-G) Histological sections (8m) of the 

stained embryo at the levels indicated by lines 1-6 respectively (B, C, D, E, G, 

magnification 40X; F, magnification 20X). 

Embryos at 72 hpf showed a stronger expression in the diencephalon, optic 

tectum (Figure 20, B), otic vesicles and pharynx (Figure 20, C). Finally, a 

marked signal was detected in the notochord (Figure 20, D).  
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Figure 20 (A) tm9sf4 expression in 72 hpf embryos, obtained by whole mount in 

situ hybridization (magnification 6.3X). (B-D) histological sections (8m) of the 

stained embryo at the levels indicated by lines 1, 2, 3 (magnification 20X). 

4.2 Loss-of-function analysis 

4.2.1 Injection of translation blocking morpholino oligos in AB line 

In order to investigate the function of Tm9sf4 protein in vivo during 

embryonic development, we performed loss of function experiments by 

injection of antisense morpholino oligonucleotides (MOs) in 1-4 cell stage 

embryos. We started this study using an AUG-targeted oligonucleotide 

(tm9sf4-MO), which acts as a translation-blocking morpholino. As a 

negative control we injected a standard control morpholino (std-MO), which 

targets the human -globin gene and has no targets in zebrafish. 

At first, we tested two different doses of tm9sf4-MO: 0.5 and 1 

pmol/embryo. At 48 hpf the morphants showed a low survival rate (39% 
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and 22% of the total number of tm9sf4 morphants, respectively). The 

surviving embryos displayed a marked necrosis in the central nervous 

system and severe morphological defects. Therefore, we decided to co-

inject the tm9sf4-MO with an oligo targeting p53 (p53-MO), in order to 

suppress possible off-target effects [48]. 

Then we performed the dose/survival curve by co-injecting different doses 

of the tm9sf4-MO and p53-MO at the molar ratio of 1:1.5. The embryos 

were visually followed for at least three days after injection. We took into 

account the survival rate at 48 hpf, because within this period the majority 

of the morphants died.  

In concordance with the study of Nasevicius and Ekker [49], we obtained a 

highly specific series of phenotypes dependent on dose. The results are 

summarized in table 4 and the plots reported in figure 21; the 

corresponding phenotypes are shown in figure 22. 

As expected, the higher the dose of injection, the lower was the survival 

rate. Moreover, for all the doses tested, the survival rate was higher in 

tm9sf4/p53 morphants than in tm9sf4 morphants and lower in morphants 

than in control embryos. These results suggest that the severe phenotypes, 

observed following the injection with the tm9sf4 morpholino alone, were 

partially due to off-target effects mediated by p53 activation. This effect 

leads to the activation of the p53-dependent cell death pathway, in which a 

N-terminal truncated p53 isoform is transcribed from a recently recognized 

internal promoter [48].  

Additionally, based on these data, we established that the optimal dose of 

the tm9sf4-MO was 0.6 pmol/embryo, which allowed a survival rate of 79% 

in double morphants and induced detectable defects in surviving embryos.  

  



Results 
 

44 
 

 

 Survival rate (%) 

Dose of tm9sf4-

MO (pmol/embryo) 
tm9sf4-MO 

tm9sf4-MO/ 

p53-MO 
std-MO 

0.5 65 (n=31) 81 (n=34) 84 (n=25) 

0.6 56 (n=36) 79 (n=29) 93 (n=41) 

0.8 10 (n=40) 14 (n=42) 77 (n=39) 

1 7 (n=37) 12 (n=33) 81 (n=42) 

Table 4 Dependence of the embryonic survival rate on the dose of tm9sf4-MO 

injected in 1-4 cells embryos. 

 

Figure 21 Tm9sf4-MO and tm9sf4-MO/p53-MO dose/survival assay. 

0

10

20

30

40

50

60

70

80

90

100

0.5 0.6 0.8 1

S
u

rv
iv

a
l 

ra
te

 (
%

) 

Dose (pmol/embryo) 

Tm9sf4-MO

Tm9sf4-MO/p53-MO

Std-MO



Results 
 

45 
 

 

Figure 22 Effects of Tm9sf4 protein loss-of-function on embryos at 48 hpf, 

following injection with different doses of the tm9sf4-MO (C, F and I), Tm9sf4/p53-

MO at the ratio 1:1.5 (B, E and H) and std-MO (A, D, G). Panels in lines 1, 2 and 3 

correspond to 0.5 pmol, 0.6 pmol and 0.8 pmol of morpholino, respectively (C: 

magnification 1.25X; B and F: magnification 1.6X; A, G, E and D: magnification 1X; 

I: magnification 2.5X; H: magnification 2X). 

At the selected dose we obtained three phenotypic classes, one having a 

phenotype similar to wild type embryos (43% of total number of morphants; 

Figure 23, A), one having mild phenotype (35%; Figure 23, B) and one 

having severe phenotype (22%; Figure 23, C).  

At 24 hpf, tm9sf4/p53 morphants displayed necrosis in the head, even if it 

was markedly reduced with respect to tm9sf4 morphants, and they showed 

a consistent tail bending. Furthermore, like in tm9sf4 morphants, the brain 

compartmentation was not as well defined as in control embryos (Figure 

24, A-C). 
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Figure 23 Phenotypic classes obtained by injection of 0.6 pmol/embryo of tm9sf4-

MO (24 hpf embryos, n=53): (A) WT-like; (B) Mild; (C) Severe. 

 

Figure 24 Effects of Tm9sf4 protein loss-of-function on embryos at 48 hpf, 

following injection with different doses of tm9sf4-MO (C, F, I), Tm9sf4/p53-MO at 
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the ratio 1:1.5 (B, E, H) and std-MO (A, D, G). The first line corresponds to 0.5 

pmol, the second to 0.6 pmol and the third to 0.8 pmol of morpholino (C: 

magnification 1.25X; B and F: magnification 1.6X; A, G, E, D: magnification 1X; I: 

magnification 2.5X; H: magnification 2X). 

At 48 hpf (Figure 24, D-F) this defect was partially restored and the 

necrosis was reduced. The embryos displayed also cardiac edema and 

some problems in blood flow; the circulation was either not complete or 

totally absent in the tail. The same defects persisted at 72 hpf (Figure 24, 

G-I). 

4.2.2 Injection of splicing morpholino in AB line 

We designed a splicing morpholino (Tm9i3e4-MO) targeting the junction 

between intron 3 and exon 4, which was expected to induce the skipping of 

exon 4 (164 bp), during mRNA splicing.  

Morpholino activity was validated by RT-PCR on cDNA prepared from 24 

hpf embryos, following injection with tm9I3E4-MO, using specific primers, 

listed in materials and methods (Table 1). The results confirmed that 

tm9I3E4-MO was able to induce exon skipping (Figure. 25). 

 

Figure 25 Splicing morfolino validation, carried out by RT-PCR on 24 hpf embryos 

injected with tm9I3E4-MO (1) and std-MO (2); -actin PCR on 24 hpf embryos 

injected with tm9I3E4-MO (3) and std-MO (4); negative control (5).  

A dose/survival curve was performed, by injecting different doses of 

tm9I3E4-MO. Also in this case the survival rate was inversely proportional 

to the morpholino dose (Table 5, Figure 26) and dose-dependent 

phenotypes were observed (Figure 27). 
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 Survival rate (%) 

Dose  

(pmol/embryo) 
tm9I3E4-MO std-MO 

0.5 92 (n=52) 95 (n=41) 

0.7 81 (n=36) 96 (n=25) 

0.8 79 (n=29) 84 (n=25) 

1 50 (n=58) 91 (n=45) 

Table 5 Dependence of the embryonic survival rate on the dose of Tm9I3E4-MO 

injected.  

 

Figure 26 Tm9I3E4-MO dose/survival assay. 
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Figure 27 Effects of Tm9sf4 protein loss-of-function on embryos at 48 hpf, 

following injection with different doses of std-MO (A, C, E, G, magnification 0.8X) 

and Tm9I3E4-MO (B, D, H, magnification 1X;F, magnification 1.25X).  
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Based on these results, we established that the optimal dose of Tm9I3E4-

MO was 0.8 pmol/embryo that allowed a survival rate of 79% in morphants. 

At this dose, three phenotypic classes were identified, based on tail 

bending, which was the most evident defect.  

At 24 hpf, 4% of Tm9I3E4 morphants were morphological similar to std-MO 

injected embryos (Figure 28, A), the tm9I3E4 morphants displaying mild tail 

bending amounted to 69% (Figure 28, B), and the class showing a marked 

tail bending corresponded to 27% of the total number of morphants (Figure 

28, C). In particular, we observed defects in the region of the intermediate 

cell mass (ICM), the site where primitive hematopoiesis and vessels 

development occur. In addition, we could detect a slight necrosis in the 

head. These phenotypes were consistent with previous results (Figures 23 

and 24), even if the CNS was more strongly affected by tm9sf4-MO/p53-

MO injection with respect to tm9I3E4-MO injection.  

At 48 hpf, the three phenotypic classes corresponded to 13%, 26% and 

61% of the total number of the surviving tm9I3E4 morphants, respectively 

(Figure 28, D-F). The necrosis in the head was significantly reduced, while 

the defects in the tail persisted. In addition, in the vast majority of our 

morphants the circulation was either not complete or totally absent and 

some of them displayed cardiac edema or blood stasis in the tail, as in the 

case of tm9sf4-MO/p53-MO injection. 
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Figure 28 Phenotypic classes obtained by injection of 0.8 pmol/embryo of 

tm9I3E4-MO. (A-C) 24 hpf embryos (n=26); (D-F) 48 hpf embryos (n=23). A, B, C 

and F, magnification 6.3X; D and E, magnification 4 X. 

4.3 The role of Tm9sf4 protein in the central nervous system 

Since both the tm9sf4/p53 and tm9I3E4 morphants displayed defects in the 

central nervous system, we planned to study the expression of specific 

markers in the tm9sf4 morphants compared to controls, to individuate the 

brain sub-structures that are affected by Tm9sf4 protein downregulation. 

We selected a set of genes that are representative markers of specific 

structures in the central nervous system (fgf8, shha, wnt1, otx2, otx3 -

otx1a-, krox20 -egr2a-). The expression of fgf8 (fibroblast growth factor 8), 

shha (sonic hadgehog a), otx2 (orthodenticlehomeobox 2) and wnt1 

(Wingless-type MMTV integration site family member 1) was assayed by 

WISH on 24 hpf embryos (AB line), previously injected with tm9sf4-

MO/p53-MO.  

In situ hybridization for fgf8 showed that in the tm9sf4 morphants the 

signals were diffused and that the brain regions seemed to be less 

organized with respect to control embryos. The midbrain-hindbrain 
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boundary (MHB) appeared thicker than in controls and in general the 

marker was at least apparently upregulated in tm9sf4 morphants (Figure 

29, A-D).  

Then we analyzed the expression of shha that marks the floor plate and 

notochord. In tm9sf4 morphants the expression in the floor plate was 

similar to controls, whereas the notochord had an altered morphology 

respect to std-MO injected embryos (Figure 29, E-H). 

Also otx2 signal was more diffused in tm9sf4/p53 morphants if compared to 

control embryos and the brain regions were not well defined (Figure 29, I-

L). 

Wnt1 expression confirmed that the MHB was thicker in tm9sf4 morphants 

than in controls and also in this case the marker appeared upregulated in 

our morphants (Figure 29, M-P).  

Furthermore, the expression level of all these markers was assessed by 

qRT-PCR on RNAs extracted from 24 hpf tm9sf4/p53 morphants and 

compared to control embryos (Figure 30). According to WISH analyses, the 

results showed that fgf8, shha, wnt1 and otx3 (otx1a) were upregulated in 

morphants, following tm9sf4 downregulation. In particular, fgf8 was the 

most differentially expressed; according to in situ hybridization results. In 

contrast, the expression level of otx2 and krox20 (egr2a) was lower in 

tm9sf4/p53-MO injected embryos than in controls.  

These results are consistent with the literature about the pathways involved 

in zebrafish brain development [50], [51], [52].  

They were also confirmed by qRT-PCR on RNAs from 24 hpf tm9I3E4 

morphants, with the exception of krox20, which was significantly up-

regulated in tm9I3E4 morphants, while it was downregulated in tm9sf4/p53 

morphants, and otx3, which underwent a stronger upregulation in 

tm9sf4/p53 morphants with respect to tm9I3E4 morphants (Figure 31). 
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Figure 29 CNS marker expression in tm9sf4/p53 morphants and in std-MO 

inhected embryos. 
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Figure 30 Expression level of specific CNS markers at 24 hpf following Tm9sf4 

protein downregulation by injection of tm9sf4-MO/p53-MO. Vertical bars represent 

standard errors calculated among triplicate reactions. 
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Figure 31 Expression level of specific CNS markers at 24 hpf following tm9sf4 

downregulation by injection of tm9I3E4-MO. Vertical bars represent standard errors 

calculated among triplicate reactions. 

4.4 The role of Tm9sf4 protein in zebrafish blood system 

Since Tm9sf4 protein downregulation caused circulation defects in the 

majority of embryos and, in some cases, cardiac edema and blood stasis in 

the tail, we wanted to further investigate this issue by performing loss-of-

function studies, using a double transgenic line 

tg(gata1:dsRed)sd2/tg(flk1:EGFP)S843, in which blood vessel endothelium is 

labelled in green and circulating elements are labelled in red.  
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The embryos, previously injected with tm9I3E4-MO or std-MO (0.8 

pmol/embryo), were observed at 48 hpf. The survival rate was 71% for 

tm9I3E4 morphants and 89% for controls.  

The morphants could be divided in three phenotypic classes, based on the 

tail bending. The first class, having a straight tail, corresponded to 23% of 

the total number of survived embryos (n=65). The majority of them (80%) 

displayed a complete or partial blood circulation at the tail level. The 

second class, showing a slight tail bending, amounted to 43% of the total 

number of morphants. In all the embryos belonging to this class the 

circulation was totally absent in the tail. Finally, the third class, composed 

by embryos with severe defects, corresponded to 34% of the total number 

of morphants and it included non-circulating embryos. 

 

Figure 32 Loss-of-function analysis on double transgenic line 

tg(gata1:dsRed)
sd2

/tg(flk1:EGFP)
S843

, carried out by injecting 0.8 pmol/embryo of 

std-MO (A-C) or tm9I3E4-MO (D-I). (D-F) wild type-like phenotype; (G-I) mild 
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phenotype. The magnification is 32X for the whole embryos and 80X for the tail 

details. 

For which concerns the first class of morphants, the main axial vessels 

(Dorsal Aorta and Posterior Cardinal Vein) and intersomitic vessels did not 

display detectable defects (Figure 32, D-F). Taking into account the second 

class, in which the circulation was absent, despite the tail did not have 

significant morphological defects, we observed that the embryos reported 

defects at the intersomitic vessels, which are formed by angiogenesis 

(Figure 32, G-I).  

4.5 Expression analysis of EMT-associated markers 

Our preliminary results suggested that tm9sf4 is involved in the process of 

epithelial to mesenchymal transition (EMT) in LA7 cells, used as a model of 

mammary gland cancer stem cell (CSC). In fact, we demonstrated that the 

expression level of tm9sf4 was higher in LA7 CSCs if compared to LA7 

progeny (Figure 7). Moreover, tm9sf4 downregulation induced changes in 

LA7 CSCs morphology, leading them to trans-differentiate to 

mesenchymal-like cells (Figure 8). In support of this, the expression level of 

EMT-associated markers (twist1, zeb1, zeb2) increased following tm9sf4 

downregulation (Figure 9). Since mechanisms and pathways involved in 

EMT are conserved in all vertebrates, we wanted to investigate tm9sf4 role 

in this process, using zebrafish as a model system. First, we verified that 

these genes are conserved in D. rerio and that they have functions similar 

to mammals. In particular, in zebrafish we found two orthologues for 

mammals twist1 (twist1a and twist1b), two for zeb2 (zeb2a and zeb2b) and 

one for twist2. Then, we evaluated their expression level by qRT-PCR, 

performed on RNAs from embryos previously injected with tm9sf4-MO/p53-

MO. In agreement with our previous results obtained with LA7 cells, twist2 
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and zeb2 resulted upregulated in tm9sf4/p53 morphants with respect to 

control embryos, at 24 hpf, a stage of zebrafish development associated 

with neurulation, while twist1 expression was substantially not affected 

(Figure 33).  

 

Figure 33 Expression levels of EMT markers in tm9sf4/p53 morphants compared 

to control embryos (std-MO) at 24 hpf. Vertical bars represent standard errors 

calculated among triplicate reactions. 

Successively, since gastrulation is the earliest stage in which the EMT 

occurs, we evaluated the expression level of the same markers in 

tm9sf4/p53 morphants at 80% epiboly. Tm9sf4 downregulation did not 

significantly affect the expression level of all EMT markers tested (not 

shown), with the exception of zeb2a and zeb2b, which are markedly 

reduced in morphants (Figure 34). This result is in contrast to that observed 

with tm9sf4 downregulation at 24 hpf. Therefore, since tm9sf4 

downregulation did not result in the change of the EMT markers tested 

except for zeb2, it may not act on these markers in regulating EMT during 

gastrulation.  
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However, Tm9sf4 protein downregulation induced a decrease of the E-

cadherin (cdh1) expression (Figure 34). 

 

Figure 34 Expression levels of EMT markers in tm9sf4/p53 morphants compared 

to control embryos (std-MO) in gastrulation (80% epiboly). Vertical bars represent 

standard errors calculated among triplicate reactions. 
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5. DISCUSSION 

In agreement with the previous studies [26], we observed that during 

zebrafish development tm9sf4 was expressed starting from fertilization to 5 

dpf, suggesting that the expression is both maternal and zygotic (Figure 

16). Furthermore, these studies suggested that the gene is ubiquitously 

expressed in zebrafish adult tissues and has a role in innate immunity 

signaling [26]. We demonstrated by WISH that tm9sf4 was mainly 

expressed in the central nervous system (CNS) during all the analyzed 

stages (24 hpf, 48 hpf, 72 hpf) and, in particular, in the telencephalon, 

mesencephalon and cerebellum. Additionally, a marked expression of 

tm9sf4 was detected at the eye level, both in retina and crystalline lens 

(Figure 17). Interestingly, histological sections of the stained embryos 

showed that the gene was mostly expressed in the periventricular regions 

of the diencephalon and mesencephalon (Figures 18-20). 

To investigate Tm9sf4 protein function during embryonic development, 

loss-of-function experiments were performed by the injection of two 

different antisense morpholino oligonucleotides (MOs): a translation-

blocking and a splicing morpholino. The translation blocking oligonucleotide 

(tm9sf4-MO) was designed to target the transcript in the region of the 

starting codon AUG. Injection of tm9sf4-MO caused severe defects in the 

central nervous system and a very low survival of the morphants. Co-

injecting tm9sf4-MO and an oligo targeting p53 (p53-MO), the CNS defects 

were reduced and the survival increased, suggesting that the defects 

produced by the injection of tm9sf4-MO alone were due to off-target effects. 

In fact, some morpholinos showed activation of a p53-dependent cell death 

pathway in a sequence-dependent manner, inducing the transcription of a 

N-terminal truncated p53 isoform, that uses a recently recognized internal 
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promoter [48]. Hence, in all the successive experiments we co-injected 

tm9sf4-MO with p53-MO. 

The splicing morpholino (tm9I3E4-MO) was targeted to the junction 

between intron 3 and exon 4, in order to produce an alternative splicing, 

resulting in the skipping of exon 4 and in the deletion of a transmembrane 

domain with consequent overturning of the protein membrane topology. In 

these conditions, the resulting protein is expected to have an altered 

functionality. 

Following tm9sf4-MO/p53-MO injection, 24 hpf embryos displayed necrosis 

in the head and a consistent tail bending (Figure 24). Additionally, the brain 

compartmentalization was not as well defined as in control embryos. At 48 

hpf the morphants displayed also cardiac edema and some problems in 

blood flow; defects persisting up to 72 hpf. 

These results were substantially confirmed by tm9I3E4-MO injection 

(Figure 28). At 24 hpf, the most evident defect of the tm9I3E4-MO injected 

embryos was a marked tail bending. In particular, we observed defects in 

the region of the intermediate cell mass (ICM), the site where primitive 

hematopoiesis and vessels development occur. We could detect a slight 

necrosis in the head, although the CNS was most strongly affected by 

tm9sf4-MO/p53-MO injection. At 48 hpf, the necrosis in the head was 

significantly reduced, while the defects in the tail persisted. Furthermore, in 

the majority of the morphants the circulation was either not complete or 

totally absent and some of them displayed cardiac edema or blood stasis in 

the tail, as in the case of tm9sf4-MO/p53-MO injection. 

Since the tm9sf4 gene was expressed in the central nervous system and 

protein downregulation caused both necrosis in the head and a reduced 

brain structure definition, we hypothesized that Tm9sf4 protein has a role in 

CNS development. Therefore, we analyzed the expression of specific brain 
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markers in the morphants, to individuate the brain sub-structures that are 

affected by Tm9sf4 protein downregulation. We selected a set of genes that 

are representative markers of specific structures of the central nervous 

system (fgf8, shha, wnt1, otx2, otx3, and krox20). All the analyzed markers 

were detected in tm9sf4 morphants, but had diffuse signals and the brain 

regions were less defined in our morphants compared to control embryos. 

Moreover, the midbrain-hindbrain boundary (MHB) was thicker and both 

fgf8 and wnt1 appeared upregulated in tm9sf4 morphants than in control 

embryos (Figure 29). This result was confirmed by qRT-PCR on mRNA 

from 24 hpf morphants, which showed that fgf8, shha, wnt1 and otx3 

(otx1a) were upregulated in tm9sf4 morphants compared to control 

embryos, whereas the expression levels of otx2 and krox20 (egr1a) were 

lower in tm9sf4-MO than in std-MO injected embryos (Figure 30).  

This result is consistent with the literature about the pathways involved in 

zebrafish brain development [50], [51], [52]. For example, fgf8 expression is 

closely associated with tissues expressing shh and bmp4 and they function 

together in the patterning of regions of the embryonic head. In particular, 

fgf8 regulates regionalization of the prosencephalon through inhibition of 

otx2 and emx2 [53]. Furthermore, the genetic hierarchy of gene expression 

at the MHB involves multiple positive and negative regulatory loops that 

result in the establishment of non-overlapping domains of wnt1 and fgf8 on 

either side of the boundary and the consequent specification of the 

cerebellum. Both wnt1 and fgf8 are necessary for the development of the 

posterior midbrain and cerebellum [54], [55]. Wnt1 regulates the genetic 

network, including otx2, required for the control of the identity and fate of 

midbrain dopaminergic progenitors [50]. Moreover, wnt1 is expressed in a 

distinct population of boundary cells that forms at the interface of the 

segments in the zebrafish hindbrain. Wnt1 knockdown leads to ectopic 
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expression of boundary cell markers in non-boundary regions of the 

hindbrain [56]. 

These results were confirmed by injection of tm9I3E4-MO (Figure 31), with 

the exception of krox20, which was significantly up-regulated in tm9I3E4 

morphants, while it was downregulated in tm9sf4 morphants, and otx3, 

which underwent a stronger upregulation in tm9sf4/p53 morphants with 

respect to tm9I3E4 morphants (Figures 30 and 31). 

In addition to the defects observed in the CNS, loss-of-function experiments 

showed that protein downregulation caused defects in the ICM region and, 

at 48 hpf, in the majority of the morphants the circulation was significantly 

impaired, with some of them displaying cardiac edema or blood stasis in 

the tail. 

This finding was confirmed by loss-of-function experiments on the double 

transgenic line tg(gata1:dsRed)sd2/tg(flk1:EGFP)S843, which allows the 

visualization through fluorescence microscopy of both vessel endothelium 

and circulating erythrocytes. In the majority of the morphants the tail was 

bent and the circulation was absent, although the tail did not have 

significant morphological defects. This class of morphants reported defects 

at the intersomitic vessels (Figure 34), which are formed by angiogenesis.  

Interestingly, it was suggested that angiogenesis is a paradigm for many 

processes including tissue branching, sprouting and cell migration [25]. 

Thereby, investigating a possible role of tm9sf4 in angiogenesis may allow 

us to clarify the protein function in cell migration and branching. It will be 

necessary to establish whether the circulation problems are caused by 

defects in the heart development or rather the cardiac edema is due to the 

defective intersomitic vessels. 

Additionally, we found that tm9sf4 gene was differentially expressed in LA7 

cancer stem cells (CSC) with respect to LA7 elongated cells. We 
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demonstrated that tm9sf4 downregulation by RNA interference resulted in 

important changes in LA7 CSC morphology, inducing a trans-differentiation 

of the CSCs themselves or descendent lineage cells into mesenchymal-like 

cells, as suggested by the up-regulation of EMT-associated markers by 

siRNA treatment. Therefore, we hypothesized that the gene is involved in 

EMT process.  

Since it has been shown that many signaling pathways induce EMT in both 

embryonic development and in normal and transformed cells [27], [44], we 

wanted to investigate the involvement of tm9sf4 gene in EMT during 

zebrafish embryonic development.  

Interestingly, according to our previous hypothesis, in zebrafish embryos, 

the gene was found to be most strongly expressed in periventricular 

regions of the diencephalon and mesencephalon, where there are 

proliferating cells that are going to migrate and could undergo epithelial to 

mesenchymal transition.  

Moreover, we observed that the EMT markers found to be upregulated in 

LA7 cells had conserved sequences and functions in zebrafish. We 

identified two orthologues for mammal twist1 (twist1a and twist1b), two for 

zeb2 (zeb2a and zeb2b) and one for twist2.  

At 24 hpf, tm9sf4 downregulation by morpholino injection leaded to an 

increase of the expression level of twist2 and zeb2, whereas twist1 

expression was not sensibly affected (Figure 32), similarly as observed in 

LA7 cells, supporting that the gene could have a role in inhibiting EMT 

processes occurring during embryonic development. This is in contrast with 

that observed after tm9sf4 downregulation during zebrafish gastrulation 

(80% epiboly), in which all EMT markers, except for zeb2, did not show a 

change in expression (Figure 33). However, previous studies suggested 

that twist is not crucial for EMT events associated to gastrulation and that 

snail may be the principal effector [27]. 
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Therefore, since tm9sf4 downregulation did not result in the change of the 

EMT markers tested except for zeb2, it may not act on these markers to 

regulate EMT during gastrulation.  

Studying the pathways involved in development is difficult due to the 

complex hierarchy of the components involved in these systems; in 

particular, many feedback and feedforward loops are involved in embryonic 

EMT-associated processes. Analysis is also complicated by the fact that 

the gene expression studies are mostly carried out by in situ hybridization, 

which does not reveal the onset of gene expression, since it requires a 

sufficient amount of RNA for detection, and when the gene product reaches 

a concentration sufficient to produce physiological effects. Moreover, 

generally the expression levels of hundreds of genes change in response to 

experimental and genetic perturbations [57]. Hence, determining in which 

order the genes are expressed or repressed becomes a very challenging 

issue.  

Notably, at cellular level, pathological EMTs are very similar to 

physiological EMTs: they are regulated by the same signaling pathways, 

regulators and effector molecules [27]. Some of the most known 

components of signaling pathways involved in embryogenesis are reported 

in table 6.  

All the pathways, regarding both development and tumor progression, 

converge on E-cadherin regulation. Functional loss of E-cadherin in an 

epithelial cell has been considered a hallmark of EMT. Some zinc-finger 

transcription factors were found to directly bind the E-box elements of the 

E-cadherin promoter and repress its transcription, thereby causing the loss 

of cell-cell adhesion. These factors include, among others, Snail [39] and 

ZEB family transcription factors ZEB1 (EF1) [40], [58] and ZEB2 (SIP1) 

[41]. These factors are capable of suppressing critical components that 

contribute to set up of the epithelial phenotype. For instance, recently, 
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ZEB1, Snail and Slug were reported to repress the transcription of polarity 

factors, including Crumbs3 and Lgl2 [58]. These transcription factors are 

involved in various EMT processes during embryogenesis (Table 6). 

Table 6 EMT-associated signaling pathways components involved in embryonic 

development. 

We found zeb2 to be upregulated following tm9sf4 knock down both in LA7 

cell line, used as a model of mammary gland cancer stem cells, and during 

zebrafish embryonic development, suggesting that tm9sf4 downregulation 

cause an increase of zeb2 expression level and consequent E-cadherin 

transcription repression mediated by zeb2, leading to the loss of cell-cell 

adhesion and promoting EMT. Therefore, tm9sf4 could negatively regulate 

EMT during zebrafish neurulation, by promoting cell-cell adhesion.  

In zebrafish, the anterior neurocranium is derived from the anterior cranial 

neural crest cells, which migrate from the dorsal neural tube and reach the 

head, following a path along the optic stalks, medial to the eyes. Migration 

begins at 12 hpf and by 15 hpf the cells moves into pharyngeal arches. 

Successively, neural crest cells migrate around the eye, where they cannot 

be detected until 24 hpf.  

Therefore, the changes in expression of EMT markers suggest that tm9sf4 

expression inhibits EMT during neurulation. 

Developmental 

process 

TGF- 

pathway 

Wnt 

pathway 

Notch 

pathway 

TK 

receptors 

Transcription 

factors 

Mesoderm 

formation 
Nodal Canonical Wnt 

Not 

determined 
FGFR Snail 

Neural crest 

migration 

TGF-1,2,3

BMP 

Canonical Wnt 

Non canonical 

Regulate BMP 

signaling 

FGFR 

PDGFR 
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Twist1, ZEB2 

Cardiac valve 

formation 
TGF-3 

Not 
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Jagged 1 

Notch 1 
ErbB3 

Not 
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In our study, twist1 expression level was not affected by Tm9sf4 protein 

downregulation at both 24 hpf and 80% epiboly. 

Twist1 [43], [59] and Goosecoid, known as the Spemann organizer gene 

[60], induce EMT in certain epithelial cells through E-cadherin repression, 

although they are not able to directly bind to E-cadherin promoter. Twist1 

have been found to be capable of inducing EMT in human mammary 

epithelial cells [42]. In vertebrates, it is mainly expressed in neural crest 

cells [43] and it is required for migration and differentiation of neural crest 

and head mesenchymal cells in mice [59].  

We demonstrated that in 80% epiboly embryos, following tm9sf4 

downregulation, zeb2 was downregulated, while other markers were 

unaffected. This result is in contrast with our previous findings on LA7 cells, 

suggesting that tm9sf4 may not function through these markers or that 

tm9sf4, rather than inhibiting, promotes EMT during zebrafish gastrulation.  

However, according to our previous hypothesis, we demonstrated that 

Tm9sf4 protein downregulation induces a decrease of the E-cadherin 

expression level during gastrulation (Figure 34), suggesting that it promotes 

the loss of cell-cell adhesion. Further investigations will allow us to better 

clarify this issue. For instance, protein staining of zeb2 and other EMT 

associated proteins will allow us to detect which cells in which 

substructures of tissue display changes in expression with tm9sf4 down 

regulation. 

All the aforementioned factors are able to repress E-cadherin directly or 

indirectly. However, it is not clear how they are involved in EMT-associated 

cell behaviors, including mesenchymal trans-differentiation, cell motility and 

invasion. In fact, E-cadherin repressors function as complete and self-

sufficient EMT inducers, regulating the expression of genes that repress the 

epithelial character and promote the mesenchymal state. In addition, they 

induce the loss of epithelial cell polarity and cell division, whereas promote 
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cell survival. The EMT inducers that indirectly repress E-cadherin 

transcription frequently activate some of the direct repressors and they also 

act on multiple targets.  

For example, it has been demonstrated that snail1 [61], zeb1 [58] and TGF-

 alter epithelial cell polarity by repressing the transcription of components 

belonging to the complexes involved in the maintaining of apicobasal 

polarity (Par, Crumbs, Scribble). Moreover, Snail and ZEB factors induce 

the expression of metalloproteases that degrade the basement membrane, 

some of which are sufficient to induce EMT, by triggering a positive 

regulatory feedback loop [62]. However, both in development and in 

carcinoma progression, snail1 is expressed at the onset of the transition, 

whereas snail2, ZEB genes and twist are successively induced to maintain 

the migratory mesenchymal state [63]. 

An additional attractive pathway is the -catenin-mediated transcription 

program. The loss of E-cadherin from adherent junctions causes the 

release into the cytoplasm of catenin, which enters the nucleus and 

activate transcription of factors including slug [64] and twist1 [65], thereby 

contributing to the EMT program. 

In addition to E-cadherin, N-cadherin-mediated adhesion plays an 

important role in neural crest associated EMT, where N-cadherin and 

cadherin 6 downregulation occurs as well as expression of the less 

adhesive type II cadherins, including cadherin 7 and 11 [66].  

The role of tm9sf4 has not been explored in this context. Investigating 

whether tm9sf4 influences other components of the EMT signaling 

pathways acting during zebrafish development will allow us in the future to 

clarify its role in this process.  

It is interesting to consider that several studies reported that tm9sf4 could 

be involved in cell adhesion both in Dictyostelium [1] and Drosophila 

plasmatocytes [3], [4]. In addition, it has been recently proposed that 
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tm9sf4 hypoxia-mediated downregulation induces a decrease of cell 

adhesion in leukemic cells to fibronectin [67]. All of these studies support 

our hypothesis that tm9sf4 has a role in cell-cell contact. 
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6. CONCLUSIONS 

According to previous findings [26], we found that during zebrafish 

embryonic development tm9sf4 was expressed in all of the stages from 

oocytes to 5 dpf, suggesting that the expression is both maternal and 

zygotic. 

Furthermore, the gene was found to be mainly expressed in the brain and 

loss-of-function analyses by antisense morpholino oligonucleotide injection 

showed that tm9sf4 downregulation induced defects in the CNS, which 

displayed an impaired regionalization.  

WISH analysis of specific brain markers (fgf8, otx2, shha, wnt1) confirmed 

that the brain regions targeted by these probes were all formed in tm9sf4 

morphants, but they were less defined with respect to those observed in 

control embryos; additionally, the midbrain-hindbrain boundary (MHB) 

appeared thicker in our morphants than in control embryos.  

Real Time PCR showed that, as expected, tm9sf4 downregulation induced 

an increase of the expression level of fgf8, shha, wnt1 and a reduction of 

otx2 level. The results regarding the effect of tm9sf4 downregulation on 

krox20 (egr1a) and otx3 (otx1a) were controversial.  

In situ hybridization for krox20 and otx3 will be performed to further 

investigate this issue. Expression analysis of other markers is now in 

progress, to better understand the specific regions affected by protein 

downregulation and, possibly, the pathways in which they are involved. 

However, these findings suggest a role for tm9sf4 in zebrafish brain 

development. 

Additionally, tm9sf4 downregulation caused 24 hpf embryos to have a bent 

tail, with defects in the ICM region, the site where the primitive 

hematopoiesis and blood vessels development occur. At 48 hpf the blood 
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circulation was significantly affected by protein downregulation and 

embryos reported cardiac edema and blood stasis in the tail, in addition to 

morphological defects in the intersomitic vessels, which are formed by 

angiogenesis. Interestingly, it was suggested that angiogenesis represents 

a paradigm for many core biological processes such as tissue 

morphogenesis through branching, cell migration and lumen formation, all 

of which are involved in the morphogenesis of many other organs [25]. 

It will be necessary to establish whether the circulation problems are 

caused by defects in the heart development or rather the cardiac edema is 

due to the defective intersomitic vessels. At this purpose, both expression 

analysis of cardiac markers, following protein downregulation, and loss-of-

function experiments, using specific transgenic lines, will be carried out. 

Our previous studies showed that tm9sf4 gene was more strongly 

expressed in LA7 cancer stem cells with respect to LA7 elongated cells. 

Tm9sf4 downregulation by RNA interference resulted in important changes 

in LA7 CSC morphology, inducing them to trans-differentiate to 

mesenchymal-like cells. According to these results, we demonstrated that 

the expression of EMT-associated markers by LA7 cells increased following 

tm9sf4 downregulation.  

Based on the foundation that cellular processes and signaling pathways 

governing EMT are conserved in embryogenesis and tumor progression, 

we proposed that tm9sf4 is involved in EMT processes occurring during 

zebrafish embryonic development.  

We demonstrated that tm9sf4 downregulation induced an increase of zeb2 

and twist2 expression level by 24 hpf embryos, suggesting that tm9sf4 

induces negative regulation of these factors, inhibiting E-cadherin 

transcriptional repression and thereby promoting cell-cell adhesion. This 

hypothesis is consistent with previous studies, which proposed a role of 



Conclusions 
 

72 
 

tm9sf4 in cell adhesion [1], [3], [4], [67]. Therefore, tm9sf4 could be 

involved in repressing EMT during zebrafish neurulation.  

In accordance to this hypothesis, we demonstrated that Tm9sf4 protein 

downregulation induced a decrease of E-cadherin expression level during 

gastrulation, which could promote the loss of cell-cell adhesion. 

Interestingly, the gene was found to be mainly expressed in periventricular 

regions of the diencephalon and mesencephalon, where there are 

proliferating cells that are going to migrate and could undergo epithelial to 

mesenchymal transition.  

In the near future we are going to further investigate this issue by 

determining in which specific CNS cells the gene is expressed and by 

studying tm9sf4 effect on the expression of other components of the EMT 

signaling pathways, including Wnt signaling, TGF- (BMP, Nodal), Snail 

and E-cadherin, both in zebrafish gastrulation and neurulation.  
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