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Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass
Spectrometry-Based Method for Discrimination between Molecular
Types of Cryptococcus neoformans and Cryptococcus gattii

Brunella Posteraro,a Antonietta Vella,b Massimo Cogliati,c Elena De Carolis,b Ada Rita Florio,b Patrizia Posteraro,d

Maurizio Sanguinetti,b and Anna Maria Tortoranoc

Institute of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italya; Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italyb; Department of Public
Health-Microbiology-Virology, Università degli Studi di Milano, Milan, Italyc; and Clinical Laboratory, Ospedale San Carlo, Rome, Italyd

We evaluated the usefulness of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)
for Cryptococcus identification at the species and subspecies levels by using an in-house database of 25 reference cryptococcal
spectra. Eighty-one out of the 82 Cryptococcus isolates (72 Cryptococcus neoformans and 10 Cryptococcus gattii) tested were cor-
rectly identified with respect to their molecular type designations. We showed that MALDI-TOF MS is a practicable alternative
to conventional mycology or DNA-based methods.

Two pathogenic basidiomycetous yeasts, Cryptococcus neofor-
mans and Cryptococcus gattii, are known to cause meningoen-

cephalitis in immunocompromised and apparently immunocom-
petent human hosts, respectively. Cryptococcus neoformans and C.
gattii are considered two separate species (20), with the former
including two varieties, C. neoformans var. grubii and C. neofor-
mans var. neoformans (15), as well as the intravarietal serotype AD
hybrids (4). By grouping �2,000 cryptococcal isolates collected
globally, eight major molecular types of C. neoformans (VNI to
VNIV) and (VGI to VGIV) have been identified by means of two
main typing systems, namely, PCR fingerprinting (9, 28) and am-
plified fragment length polymorphism (AFLP) analysis (3). The
molecular types VNI and VNII correspond to C. neoformans var.
grubii, type VNIII corresponds to AD hybrids, and type VNIV
corresponds to C. neoformans var. neoformans, whereas types VGI,
VGII, VGIII, and VGIV correspond to C. gattii (3, 28). Also, mul-
tilocus sequence typing (MLST), which is becoming the method
of choice for Cryptococcus strain genotyping (27), allowed the
identification of another cluster, VNB, among a set of C. neofor-
mans var. grubii isolates from Botswana (21). However, these
techniques are generally laborious, time-consuming, and expen-
sive.

Matrix-assisted laser desorption ionization–time of flight mass
spectrometry (MALDI-TOF MS), through the generation of char-
acteristic fingerprints of intact microbial cells, has been success-
fully applied for the rapid characterization and identification of
bacteria and filamentous fungi (2, 16). With regard to pathogenic
yeasts, a simple and fast protein extraction step is still required to
obtain reliable results (35, 36). Lower identification scores were
obtained with C. neoformans isolates (25, 30) than with Candida
species isolates, leading to the claim that reduction of the scores
required for species level identification may improve the diagnos-
tic usefulness of MALDI-TOF MS.

In the present study, an in-house database of MALDI-TOF MS
reference Cryptococcus spectra was established and evaluated for
the capability to provide species or subspecies level identification
of a number of C. neoformans and C. gattii challenge isolates. Re-
sults were compared with those obtained using DNA-based typing
methods.

A total of 107 Cryptococcus isolates, including 89 of C. neofor-
mans and 18 of C. gattii, were studied. Among the clinical isolates,
56 were collected in the mycology laboratory of the Università
degli Studi di Milano (Milan, Italy) from 1991 to 2001 and 34 were
collected in the mycology laboratory of the Università Cattolica
del Sacro Cuore (Rome, Italy) from 1990 to 2009. Additional iso-
lates were obtained from the National Institutes of Health (Be-
thesda, MD) (three isolates), the National Institute of Mental
Health and Neurosciences (Bangalore, Karnataka, India) (two
isolates), the Westmead Millennium Institute (Sydney, Australia)
(four isolates), and the Institute Pasteur (IP, Paris, France) (one
isolate). Seven type or reference strains were purchased from the
American Type Culture Collection (Manassas, VA). For all C. neo-
formans isolates, the mating-type allelic pattern was determined
by multiplex PCR (14), whereas molecular types were identified
using PCR fingerprinting with the minisatellite (GACA)4-specific
primer (9). All of the C. gattii isolates and most of the C. neofor-
mans isolates have been previously characterized at the molecular
level by DNA-based typing methods (9, 10, 38).

For MALDI-TOF MS analysis, protein extracts were prepared
from cryptococcal isolates grown on Sabouraud dextrose agar
(Kima, Padua, Italy) for 48 h at 30°C and suspended in 10% for-
mic acid (Sigma-Aldrich, Milan, Italy). One microliter of the mix-
ture was spotted onto a polished steel target plate (Bruker Dalton-
ics, Bremen, Germany), air dried, and overlaid with 1 �l of
absolute ethanol (Sigma-Aldrich). After air dehydration, 1 �l of a
saturated solution of �-cyano-4-hydroxycinnamic acid in 50%
acetonitrile–2.5% trifluoroacetic acid (Bruker Daltonics) was
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TABLE 1 Comparison of identification results obtained by MALDI-TOF MS analysis and DNA-based methods for 82 challenge and 25 reference
isolates of C. neoformans and C. gattii

Isolate

Molecular characterization MALDI-TOF MS

Species
Mating-type
allele

Molecular
type Species

Molecular
type

Log(score)a

First match Second match

IUMb 97-4877 C. neoformans �A VNI C. neoformans VNI 2.559 2.401
IUM 98-3592 C. neoformans �A VNI C. neoformans VNI 2.355 2.137
IUM 97-4515 C. neoformans �A VNI C. neoformans VNI 2.308 2.088
IUM 98-0977 C. neoformans �A VNI C. neoformans VNI 2.437 2.345
IUM 98-2450 C. neoformans �A VNI C. neoformans VNI 2.489 2.116
IUM 98-4519 C. neoformans �A VNI C. neoformans VNI 2.237 2.175
IUM 98-4640 C. neoformans �A VNI C. neoformans VNI 2.350 2.314
IUM 99-1838 C. neoformans �A VNI C. neoformans VNI 2.271 2.260
IUM 99-5678 C. neoformans �A VNI C. neoformans VNI 2.468 2.172
IUM 98-5021 C. neoformans �A VNI C. neoformans VNI 2.255 2.209
IUM 99-5690 C. neoformans �A VNI C. neoformans VNI 2.198 2.178
IUM 99-5719 C. neoformans �A VNI C. neoformans VNI 2.237 2.204
IUM 01-4726 C. neoformans �A VNII C. neoformans VNII 2.217 2.205
IUM 98-4520 C. neoformans �A VNI C. neoformans VNI 2.146 2.020
IUM 94-5982 C. neoformans �A VNI C. neoformans VNI 2.297 2.262
IUM 94-4725 C. neoformans �A VNI C. neoformans VNI 2.232 2.214
IUM 94-3443 C. neoformans �A VNI C. neoformans VNI 2.381 2.330
CRc 15-422 C. neoformans �A VNI C. neoformans VNI 2.647 2.505
CR 16-423 C. neoformans �A VNI C. neoformans VNI 2.443 2.291
CR 28 C. neoformans �A VNI C. neoformans VNI 2.361 2.252
CR 37 C. neoformans �A VNI C. neoformans VNI 2.130 2.115
CR 38 C. neoformans �A VNI C. neoformans VNI 2.664 2.471
CR 40 C. neoformans �A VNI C. neoformans VNI 2.498 2.490
CR 42 C. neoformans �A VNI C. neoformans VNI 2.509 2.208
IUM 93-3233 C. neoformans �D VNIV C. neoformans VNIV 2.520 2.355
IUM 94-2361 C. neoformans �D VNIV C. neoformans VNIV 2.613 2.475
IUM 93-3922 C. neoformans �D VNIV C. neoformans VNIV 2.444 2.278
IUM 93-1656 C. neoformans �D VNIV C. neoformans VNIV 2.332 2.208
IUM 93-2095 C. neoformans �D VNIV C. neoformans VNIV 2.430 2.423
IUM 93-0631/2 C. neoformans �D VNIV C. neoformans VNIV 2.063 2.033
IUM 93-0333 C. neoformans �D VNIV C. neoformans VNIV 2.264 2.005
IUM 93-0323 C. neoformans �D VNIV C. neoformans VNIV 2.121 2.070
IUM 92-4211 C. neoformans �D VNIV C. neoformans VNIV 2.234 2.202
IUM 92-0891 C. neoformans �D VNIV C. neoformans VNIV 2.273 2.221
IUM 92-0160 C. neoformans �D VNIV C. neoformans VNIV 2.114 2.100
IUM 92-6093 C. neoformans �D VNIV C. neoformans VNIV 2.059 1.992
IUM 96-4739 C. neoformans �D VNIV C. neoformans VNIV 2.046 1.996
IUM 93-4941 C. neoformans �D VNIV C. neoformans VNIV 2.173 2.125
CR 2-415 C. neoformans �D VNIV C. neoformans VNIV 2.358 2.314
CR 3-416 C. neoformans �D VNIV C. neoformans VNIV 2.381 2.293
CR 10-417 C. neoformans �D VNIV C. neoformans VNIV 2.488 2.391
CR 11-418 C. neoformans �D VNIV C. neoformans VNIV 2.577 2.448
CR 12-419 C. neoformans �D VNIV C. neoformans VNIV 2.552 2.371
CR 26 C. neoformans �D VNIV C. neoformans VNIV 2.329 2.327
CR 27 C. neoformans �D VNIV C. neoformans VNIV 2.274 2.274
CR 29 C. neoformans �D VNIV C. neoformans VNIV 2.331 2.322
CR 31 C. neoformans �D VNIV C. neoformans VNIV 2.503 2.494
CR 32 C. neoformans �D VNIV C. neoformans VNIV 2.534 2.422
CR 33 C. neoformans �D VNIV C. neoformans VNIV 2.382 2.341
CR 35 C. neoformans �D VNIV C. neoformans VNIV 2.568 2.486
IUM 93-4941 C. neoformans �D VNIV C. neoformans VNIV 2.173 2.157
IUM 91-1871 C. neoformans �AaD VNIII C. neoformans VNIII 2.155 2.117
IUM 99-3615 C. neoformans �AaD VNIII C. neoformans VNIII 2.421 2.405
IUM 94-5754 C. neoformans �AaD VNIII C. neoformans VNIII 2.231 2.196
IUM 93-1666 C. neoformans �AaD VNIII C. neoformans VNIII 2.368 2.349
IUM 92-2562 C. neoformans �AaD VNIII C. neoformans VNIII 2.271 2.033
IUM 92-4734 C. neoformans �AaD VNIII C. neoformans VNIII 2.224 2.117
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added and the mixture was allowed to cocrystallize at room tem-
perature. Measurements were performed with a microflex LT
mass spectrometer (Bruker Daltonics), and spectra were recorded
in the positive linear mode (laser frequency, 20 Hz; ion source 1
voltage, 20 kV; ion source 2 voltage, 16.7 kV; lens voltage, 8.5 kV)
(11). Seventeen C. neoformans and eight C. gattii isolates represen-
tative of the eight known molecular types (see Table S1 in the
supplemental material) were selected to generate MALDI-TOF
MS reference spectra at m/z ratios of 2,000 to 20,000. These spec-
tral data were added to the Bruker Daltonics BioTyper 3.0 library
database (containing spectra of 3,740 microorganisms), which al-
ready included the spectra of four C. neoformans and two C. gattii
isolates. Each database entry was generated as a composite of 10 to
12 spectra, resulting in a main spectrum (MSP) that contains the
average mass, the average intensity, and the frequencies of the
most significant peaks (11).

Raw spectra from a set of challenge isolates (72 of C. neofor-
mans and 10 of C. gattii) were used for pattern matching (with
default parameter settings) against the extended BioTyper 3.0 da-
tabase using the BioTyper 3.0 software (Bruker Daltonics). Results
of this process were expressed with log(score) values as proposed
by the manufacturer; i.e., values of �2.0 are rated as identification
at the species level, values of �1.7 and �2.0 are rated as identifi-

cation at least at the genus level, and values of �1.7 are rated as
unsuitable for identification. Samples from two biological repli-
cates, i.e., separate cultivations of the same strain (11), or eight
technical replicates of a given sample analyzed at different times
(1) yielded results that were reproducible (data not shown). Also,
hierarchical cluster analysis was conducted with the integrated
statistical tool Matlab 7.1 of the BioTyper 3.0 software package
using default settings. Briefly, a dendrogram was generated by
similarity scoring of a set of MSPs to obtain graphical distance
values between the cryptococcal isolates, which were calculated by
a correlation function, through the use of an average statistical
algorithm as implemented in the BioTyper 3.0 software. Species
and subspecies with distance levels of �500 are reliably classified.

All 82 Cryptococcus isolates were correctly identified at the spe-
cies level, as both C. neoformans and C. gattii isolates displayed
log(score) values of spectra of �2.0 (Table 1), whereas noniden-
tification or misidentification with the 3,734 spectra from the
other microorganisms contained in the database did not occur. In
agreement with the DNA-based typing results, 81 (98.8%) of the
82 isolates were unambiguously assigned to a molecular type on
the basis of the MALDI spectrum matching the expected one in
the reference database (Table 1). The C. gattii isolate (IUM 93-
6682) showing discordant results was identified as VGI instead as

TABLE 1 (Continued)

Isolate

Molecular characterization MALDI-TOF MS

Species
Mating-type
allele

Molecular
type Species

Molecular
type

Log(score)a

First match Second match

CR 14-421 C. neoformans �AaD VNIII C. neoformans VNIII 2.551 2.446
CR 17-424 C. neoformans �AaD VNIII C. neoformans VNIII 2.448 2.328
CR 18-425 C. neoformans �AaD VNIII C. neoformans VNIII 2.359 2.292
CR 19-426 C. neoformans �AaD VNIII C. neoformans VNIII 2.437 2.430
CR 20-427 C. neoformans �AaD VNIII C. neoformans VNIII 2.458 2.419
CR 36 C. neoformans �AaD VNIII C. neoformans VNIII 2.549 2.487
CR 39 C. neoformans �AaD VNIII C. neoformans VNIII 2.281 2.220
CR 25 C. neoformans �AaD VNIII C. neoformans VNIII 2.457 2.286
CR 41 C. neoformans �AaD VNIII C. neoformans VNIII 2.503 2.483
CR 43 C. neoformans �AaD VNIII C. neoformans VNIII 2.600 2.430
IUM 92-6198 C. neoformans aA�D VNIII C. neoformans VNIII 2.432 2.360
IUM 92-4686 C. neoformans aA�D VNIII C. neoformans VNIII 2.133 2.125
CR 22 C. neoformans aA�D VNIII C. neoformans VNIII 2.453 2.322
CR 23 C. neoformans aA�D VNIII C. neoformans VNIII 2.474 2.404
CR 24 C. neoformans aAaD VNIII C. neoformans VNIII 2.482 2.423
IUM 92-6682d C. gattii �B VGII C. gattii VGI 2.120 2.078 (VGIII)
IUM 91-6492 C. gattii �B VGI C. gattii VGI 2.298 2.067
WMe 163 C. gattii �B VGI C. gattii VGI 2.009 1.712 (VGIV)
IUM 92-6957 C. gattii �B VGI C. gattii VGI 2.159 1.821 (VGIII)
IUM 94-6315 C. gattii �B VGI C. gattii VGI 2.040 1.943 (VGIV)
IPf 189 C. gattii �B VGIII C. gattii VGIII 2.199 2.199
WM 137 C. gattii �C VGIII C. gattii VGIII 2.438 2.058
NIMHg 155 C. gattii �C VGIV C. gattii VGIV 2.240 2.188
WM 779 C. gattii �C VGIV C. gattii VGIV 2.495 2.294
NIMH 103 C. gattii �C VGIV C. gattii VGIV 2.145 2.064
a Log(score) values resulting from the second match gave correct identification, with the exception of four C. gattii isolates, for which the corresponding molecular types are
indicated in parentheses.
b IUM, Università degli Studi di Milano, Milan, Italy.
c CR, Università Cattolica del Sacro Cuore, Rome, Italy.
d The only isolate with discordant results.
e WM, Westmead Millennium Institute, Sydney, Australia.
f IP, Institute Pasteur, Paris, France.
g NIMH, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
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VGII (Table 1), suggesting that more C. gattii strains need to be
analyzed to firmly establish the discriminatory power of the
MALDI-TOF method. A cluster analysis with reference and chal-
lenge isolates based on a pairwise correlation matrix was per-
formed for both the C. neoformans and C. gattii species, in order to
assess the ability of the method to display the phylogenetic rela-
tionships of the strains. As depicted in Fig. 1, the resulting den-
drogram for all cryptococcal isolates showed separate clusters cor-
responding to the eight molecular types of the two Cryptococcus
species. However, the C. neoformans var. neoformans VNIV strains
did not form a single cluster but did partially group (one isolate)
within the C. neoformans var. grubii VNI cluster, showing that the
cluster analysis mostly, but not fully, resolved C. neoformans var.
neoformans. On the other hand, the C. gattii VGIII strains did
cluster together with the other C. gattii strains of molecular types
VGI and VGII, but they were completely separate according to
their designated serotypes, perhaps implying a lack of discrimina-
tory power of the molecular method.

Our results confirm the role of MALDI-TOF for species level
differentiation of clinical fungi (11, 17, 24, 36; for a review, see
reference 31). In addition, the current data mirror what has al-
ready been demonstrated in certain bacteria (13, 32, 34, 37) and
Cryptococcus (25) and show that MALDI-TOF MS has the poten-
tial to differentiate not only between two closely related (sibling)
species, C. neoformans and C. gattii, but also to discriminate C.
neoformans at the subspecies level (i.e., to discriminate C. neofor-
mans var. neoformans from C. neoformans var. grubii or, in this
study, also from the AD hybrid). Furthermore, here we show for
the first time and with a good level of reliability that MALDI-TOF
can be applied for the rapid recognition of cryptococcal genotypes
and, by extension, for fungal strain typing (unpublished data).

Misidentification of molecular genotypes within the C. neofor-
mans-C. gattii complex has epidemiological and, more impor-
tantly, clinical repercussions (33). For example, C. gattii VGII was

considered to be rare until it had been linked with the Vancouver
Island outbreak of cryptococcosis (19), whose range has dramat-
ically expanded into the Pacific Northwest of the United States (5).
Differences exist among the molecular types of C. neoformans and
C. gattii with regard to the in vitro susceptibility to antifungal
agents, especially azoles (8, 18). Also, the emergence of highly
virulent C. gattii strains (6, 7, 23) has positioned causative species,
genotype, and geographic origin as important considerations
when deciding on treatment options for cryptococcosis.

Whereas MLST or AFLP is usually employed for the molecular
subtyping of Cryptococcus species (27), the use of a single target
(i.e., the intergenic spacer) or “serotype-associated” allele (i.e.,
CAP59) through DNA sequencing or PCR amplification effec-
tively distinguishes the C. neoformans varieties and C. gattii (12,
22). Although some inconsistency occurs with these genomic
techniques, this limitation is minimal compared to those of con-
ventional serotyping or biochemical methods. Thus, McTaggart et
al. (26) developed a rapid identification algorithm that incorpo-
rates commercial biochemical tests, differential media, and DNA
sequence analysis to distinguish clinically relevant Cryptococcus
species. In contrast, the large spectrum of proteins detected by
MALDI-TOF MS should enable it to discriminate between closely
related species and to classify organisms at the subspecies level
(29). Our study demonstrates the applicability of this approach to
Cryptococcus by virtue of complexity at the species, variety, hybrid,
serotype, and genotype levels.

In conclusion, MALDI-TOF MS has the potential to become a
useful tool for the routine identification and typing of pathogenic
fungi, providing the clinician with timely and reliable results.
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FIG 1 Cluster analysis of MALDI-TOF MS spectra of selected reference or challenge isolates of C. neoformans and C. gattii. Distance is displayed in relative units.
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