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1 Multiannual infestation patterns of grapevine plant
2 inhabiting Scaphoideus titanus (Hemiptera:
3 Cicadellidae) leafhoppers
4

5 Ivo E. Rigamonti,1 Valeria Trivellone, Mauro Jermini, Daniele Fuog,
6 Johann Baumgärtner
7

8 Abstract—The Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae) was
9 accidentally introduced in Europe, where it became the vector of the ‘Candidatus Phytoplasma vitis’

10 phytoplasma causing the ‘Flavescence dorée’ disease of grapevine plants. A time-varying dis-
11 tributed delay model, simulating the successive occurrences of egg hatching, nymph presence, and
12 adult emergence, is extended here to represent multi-generation infestation patterns of grapevine
13 plants inhabited by eggs, nymphs, and adults. The model extension includes intrinsic mortality,
14 mortality caused by plant dormancy, and low temperatures, development of diapausing and post-
15 diapausing eggs, fecundity rates, and adult longevity. Field observations and published data were
16 used to estimate parameters. The model was validated with five years canopy infestation data from
17 five vineyards not subjected to insecticide treatments and found to have satisfactory explicative and
18 predictive qualities. The model output is most sensitive to a 10% variation in the upper threshold
19 and in the shape parameters of the survivorship function and least sensitive to a 10% variation in the
20 shape parameters of the development function and the survivorship level. Recommendations are
21 made to take into account other factors than temperature and plant phenology and include a wider
22 geographical area in further model development.

23

24 Résumé—La cicadelle néarctique Scaphoideus titanus Ball (Hemiptera: Cicadellidae) a été intro-
25 duite accidentellement en Europe dans les années ‘50, où elle est devenue le vecteur du ) Candidatus
26 Phytoplasma vitis * responsable de la maladie de Flavescence dorée de la vigne. Un modèle de
27 délai distribué dans le temps (time-varying distributed delay model), simulant les évènements
28 successifs des éclosions, de la présence des stades juvéniles et de l’émergence des adultes, a été
29 étendu pour représenter les niveaux d’infestation multi-générationnels de la vigne colonisée par des
30 œufs, des nymphes et des adultes. L’extension du modèle inclut la mortalité intrinsèque, la mortalité
31 causée par la dormance de la plante et les basses températures, le développement des œufs
32 diapausants et post-diapausants, les taux de fécondité et la longévité des adultes. Les observations
33 au champ et les données publiées ont servi de base pour l’estimation des paramètres du modèle.
34 Le modèle a été validé avec les données de cinq années d’infestation de la haie foliaire de cinq
35 vignobles sans traitements insecticides et il a montré des qualités explicatives et prédictives
36 satisfaisantes. Le résultat du modèle est plus sensible à une variation de 10% dans le seuil supérieur
37 et dans les paramètres de forme de la fonction de survie et moins sensible à une variation de
38 10% dans les paramètres de forme de la fonction de développement et du niveau de survie.
39 Des recommandations sont faites pour prendre en compte d’autres facteurs que la température
40 et la phénologie de la plante et inclure un plus large éventail de zones géographiques pour un
41 développement ultérieur du modèle.
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J. Baumgärtner, Center for the Analysis of Sustainable Agricultural Systems (CASAS), Kensington (CA)
94707 United States of America

1Corresponding author (e-mail: ivo.rigamonti@unimi.it).
doi:10.4039/tce.2013.51

Received 6 December 2012. Accepted 25 March 2013.

Can. Entomol. 00: 1–13 (2013) � 2013 Entomological Society of Canada

1

A
Nota
All the highlighted surnames are correct



42 Introduction

43 The Nearctic leafhopper Scaphoideus titanus

44 Ball (Hemiptera: Cicadellidae) was accidentally

45 introduced in Europe in the 1950s (Bonfils and

46 Schvester 1960; Schvester et al. 1961). South-

47 western and southern European grapevine growing

48 areas were invaded before southeastern European

49 regions that were colonised in the past decade only

50 (Magud and Toševski 2004; Budinščak et al. 2005;

51 Zeisner 2005; Der et al. 2007; Avremov et al.

52 2011; Chireceanu et al. 2011). Currently, S. titanus

53 occurs through most of southern Europe, from

54 Portugal to Romania and Bulgaria, but the area of

55 distribution is still expanding.

56 Scaphoideus titanus is the vector of the

57 ‘Candidatus Phytoplasma vitis’, a Phytoplasma of

58 the Elm Yellows or 16Sr-V group, an A2 quar-

59 antine pest for EPPO causing the Flavescence dorée

60 (FD), an economically very important grapevine

61 plant disease displaying a crisis-recovery-relapse

62 cycle (European and Mediterranean Plant Protec-

63 tion Organization/Commonwealth Agricultural

64 Bureau International 1996). In an area newly

65 invaded by S. titanus, FD infestations follow with a

66 time delay of several years if vector control mea-

67 sures are undertaken and less if not (Steffek et al.

68 2007). Once present, the number of FD infected

69 vine plants may increase tenfold every year and

70 reach 80–100% within a few years, if no insect

71 control is undertaken (European and Mediterranean

72 Plant Protection Organization/Commonwealth

73 Agricultural Bureau International 1996).

74 For these reasons, S. titanus control in FD

75 uninfected vineyards and both S. titanus and FD

76 control in FD-infected vineyards have become

77 important components of vineyard pest manage-

78 ment systems since the 1960s (Carle and Schvester

79 1964). In FD-infected areas, both the disease and

80 the vector are usually subjected to compulsory

81 control measures, including mandatory insecticide

82 sprayings and mandatory uprooting of sympto-

83 matic vines and abandoned vineyards. Despite

84 these measures, the FD is still spreading through

85 southern Europe. In the last 10 years, new FD

86 outbreaks have been reported from Serbia (Duduk

87 et al. 2004), Switzerland (Gugerli et al. 2006),

88 Slovenia (Seljak and Orešek 2007), Portugal

89 (De Sousa et al. 2010), Romania (Irimia et al.

90 2010), Croatia (Šeruga Musić et al. 2011), and

91 Austria (Reisenzein and Steffek 2011).

92Efficient management strategies and tactics

93target S. titanus densities and disease transmitting

94capacities by delaying the spread of FD infections,

95halting an ongoing FD epidemics and retarding an

96FD relapse. To increase the efficiency of S. titanus

97control, Rigamonti et al. (2011) took into account

98the univoltine development and designed a

99phenology model simulating the successive

100occurrences of egg hatching, of nymphal instar

101presence and adult emergence. From the stand-

102point of supervised pest control, the model

103became a useful tool for the adaptive manage-

104ment of populations inhabiting vineyards in

105southern Switzerland (Jermini et al. 2013;

106Prevostini et al. 2013). The focus on the period

107from egg hatching to adult emergence takes into

108account an important part of the dynamics of

109S. titanus but has limitations when seeking better

110insight into within- and between-generation pro-

111cesses to design integrated pest management

112systems on solid ecological ground. Specifically,

113the model by Rigamonti et al. (2011) excludes

114diapause development of overwintering eggs as

115well as adult survival and reproduction.

116The scope of this paper is to design, parametrise,

117and validate an age-structured multigeneration

118model representing multiannual infestation pat-

119terns of S. titanus populations. The model is based

120on theories on poikilothermic development and

121age-structured population dynamics that determine

122the explicative properties of the model. Field

123observations and published data provide the basis

124for model parameter estimation. Since the purpose

125of the model is to represent multiannual infestation

126patterns, model validation procedures test the

127model’s predictive capabilities by comparing

128simulated patterns with long-term grapevine plant

129infestation data. In addition, the sensitivity of the

130final output to model parameter changes is tested

131for guiding future research work.

132Methods

133Scaphoideus titanus is a univoltine species

134whose individuals pass through different life stages

135according to the insect poikilothermic development

136mode in temperate countries: the eggs hatch in

137spring and the egg stage is followed by five nym-

138phal instars that, in summer, develop into adults.

139Eggs overwinter in diapause, which is a state of low

140activity associated with reduced morphogenesis,

2 Can. Entomol. Vol. 00, 2013
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141 increased resistance to environmental extremes, and

142 altered or reduced behavioural activity, mediated

143 by hormones (Nechols et al. 1999). Diapause is

144 mainly but not exclusively controlled by a

145 combination of temperature and photoperiod

146 (Tauber and Tauber 1976; Tauber et al. 1986;

147 Leather et al. 1993; Nechols et al. 1999).

148 Nevertheless, we focus on temperature as driving

149 variable for diapause development.

150 In the present model, the development of

151 S. titanus has been divided into four morphologi-

152 cally and physiologically different life stages

153 (nymphs, adults, diapausing eggs, post-diapausing

154 eggs). To facilitate model description and provide

155 easy access to the supportive literature, the

156 following methodological sections briefly refer to

157 (1) stochastic cohort development, (2) poikilo-

158 thermic cohort development with model parameter

159 estimation, (3) simulation model development,

160 (4) validation, and (5) sensitivity probe.

161 Stochastic cohort development
162 If the variability in developmental time is high

163 relative the mean developmental time, a stochastic

164 model may be appropriate to model cohort devel-

165 opment (Di Cola et al. 1999). The time-varying

166 distributed delay of Vansickle (1977) is applied to

167 model the development of S. titanus nymphs

168 (j 5 1), adults (j 5 2), diapausing eggs (j 5 3), and

169 post-diapausing eggs (j 5 4). Manetsch (1976),

170 Plant and Wilson (1986), Di Cola et al. (1999), and

171 Severini (2009) contributed to the development

172 of the distributed delay theory in an ecological

173 context. In Manetsch’s (1976) and Vansickle’s

174 (1977) notation, the model applied to the j-th life

175 stage is represented by:

drjiðtÞ

dt
¼

kj

DELjðtÞ

�
rji�1ðtÞ

� rjiðtÞ 1 þ ARjðtÞ
DELjðtÞ

kj

þ
d DELjðtÞ

kjdt

� ��
ð1Þ

176177 j ¼ 1;2;3;4

178179 i ¼ 1;2; . . . ; kj

180181 where t is time (days), rji(t) is the transition rate of

182 the i-th substage in the j-th life stage, kj is the

183 number of delay substages in the j-th life stage,

184 DELj(t) is the time dependent developmental time

185 (days) in absence of losses in the j-th life stage, and

186ARj(t) is the time dependent proportional changes

187or attrition in the j-th life stage. In the case under

188study, the entry rate r11(t) into the nymphal stage

189is represented by an initialisation function in the

190first year and by the exit rate of the post-dia-

191pausing eggs in the succeeding years. The exit

192rate of the nymphal stage becomes the entry rate

193r21(t) into the adult stage; the oviposition is the

194entry rate r31(t) into the diapausing eggs stage,

195whose exit rate is the entry rate r41(t) into post-

196diapausing egg development.

197According to Manetsch (1976) and Vansickle

198(1977), the occurrence Qj(t) of each life stage

199can be obtained from

QjðtÞ ¼
Xkj

i¼ 1

DEL jðtÞ

kj

rjiðtÞ ð2Þ

200201

202For constant conditions, Vansickle (1977)

203defines the relationships between kj, DELj and

204ARj as follows:

kj ¼
m2

j

s2
j

ð3aÞ

205206

DELj ¼ mj ej

� 1
kj

� �
ð3bÞ

207208

ARj ¼ kj

1

mj

�
1

DELj

" #
ð3cÞ

209210where mj is the observed developmental time, sj
2 is

211the variance, and ej is the stage-specific survival.

212Poikilothermic cohort development
213Developmental rates and variance. Between the

214stage-specific lower jTl and the upper jTu thresholds,

215the developmental rate zj(T) of nymphs and dia-

216pausing eggs, and the senescence rate of adults is

217represented by the curvilinear model of Brière et al.

218(1999). However, a linear model is used to describe

219the developmental rate of post-diapausing eggs

220above the lower and below the upper thresholds; if

221
4Tl . T . 4Tu, the rate z4(T) is equal to 0.001:

0:01� zjðT Þ ¼ aj T ðT � jT lÞ
jTu�T
� 	bj

for j ¼ 1; 2; 3 ð4aÞ
222223

0:001� zjðT Þ ¼ ajðT �
jT lÞ for j ¼ 4 ð4bÞ

224225where aj and bj are parameters. For nymphs and

226post-diapausing eggs, the estimation procedures

227and the values for aj, b1,
jTl,

jTu are given in

Rigamonti et al. 3
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228 Rigamonti et al. (2011). For adults, Bressan et al.

229 (2005) provide data on the senescence rate and

230 associated variance at 26 8C; at temperatures dif-

231 ferent from 26 8C, the senescence rate is assumed

232 to be proportional to the developmental rate of

233 nymphs (Table 1). Post-diapause development

234 time of eggs was estimated to be 196.6-day

235 degrees above the lower and below the upper

236 thresholds (Rigamonti et al. 2011). The inverse of

237 196.6 is equal to a4 reported in Table 1. For

238 diapausing eggs, the development rate parameters

239 a3, b3
3Tl, and 3Tu were calculated as follows.

240 To initialise the model, a cumulative Weibull

241 frequency distribution was fitted to the normal-

242 ised egg hatching data observed in cages set up in

243 2008 in a vineyard located at Contone, southern

244 Switzerland (Rigamonti et al. 2011). The post-

245 diapause development time of 196.6 day-degrees

246 and the Weibull frequency distribution given in

247 Rigamonti et al. (2011) allow the calculation of

248 the calendar days on which 0.1%, 25%, 50%,

249 75%, and 99.9% of egg groups terminated dia-

250 pause in 2008. The below described simulation

251 model was used to calculate the cumulative

252 oviposition patterns and obtain the calendar days

253 on which 0.1%, 25%, 50%, 75%, and 99.9% of

254 egg groups entered diapause in the preceding year

255 (2007). For each of the five groups, the duration

256 (days) from diapause entry to diapause termina-

257 tion can be computed. Importantly, for each

258 group the respective rate sum detailed by Curry

259 and Feldman (1987) can be calculated. Accord-

260 ingly, the fraction dt of the mean development

261 that has occurred after D days is:

dt ¼
1

n

XnD

s¼ 1

zðT sÞ ð5Þ

262263 where n 5 24 time increments per day, Ts is the

264 discrete environmental temperature measure-

265 ments for the s-th time increment obtained at the

266 nearby Magadino weather station, nD is the

267 number of increments in D days. Once dt is equal

268 to 1 the development of a life stage is completed.

269 Using initially a1 for a3, different combinations

270 of b3, 3Tl and 3Tu produced different group means

271 and variances. The smallest coefficient of vari-

272 ability among the group means yielded the

273 estimates for b3, 3Tl and 3Tu, while a3 was finally

274 obtained by equating the sum of equation [4a]

275 equal to 1. The parameter values for the stage-

276 specific developmental rates for all life stages are T
a

b
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277 given in Table 1, while the response to temperature

278 is depicted in Figure 1.

279 The estimates for kj haven been obtained from

280 the literature or expert opinions. Specifically, the

281 experiments of Rigamonti et al. (2011) and the

282 data reported by Bressan et al. (2005) provide a

283 series of means and variances in development

284 times for nymphs as well as senescence of

285 adult females, respectively. The mean ratio of the

286 squared means to the variance given in equation

287 [3a] is used to estimate for kj. For diapausing and

288 post-diapausing eggs, however, expert opinion was

289 considered for setting the values to 25 (Table 1).

290 Survivorship. All life stages except diapausing

291 eggs are affected by intrinsic mortality and low

292 temperatures. Nymphs and adults survival is also

293 affected by a lack of food during grapevine plant

294 dormancy. The stage specific intrinsic survival ej in

295 equation [3b] is tentatively set to 1 for diapausing

296 eggs and represented by a Beta distribution for

297 the other life stages:

0:001� ej Tð Þ ¼ lj T � jT l

� 	xj jT u� T
� 	Bj

for j ¼ 1; 2; 4 ð6aÞ

298299
ejðT Þ ¼ 1:0 for j ¼ 3 ð6bÞ

300301where lj, jj and zj are parameters that were

302estimated on the basis of expert opinions

303regarding the shape and the level of survivorship

304between the lower and upper thresholds, assumed

305to correspond to the respective development

306thresholds (Table 1).

307For the cultivar Pinot noir, Wermelinger et al.

308(1992) reported bud break once 35.8 day-degrees

309have been accumulated after 1 January above

310the 10 8C threshold for plant development.

311In southern Switzerland, the beginning of leaf

312discolouration is generally observed around

313Julian day 290. Between this day and bud break

314in the succeeding year, the plant is assumed to be

315dormant causing a proportional daily loss rate of

316mp 5 0.5 among nymphs and adults.

317Temperatures below the lower developmental

318threshold jTl are responsible for a proportional

319loss rate of 0.75 , mT 5 0.75 (1.0–0.1149T) for

320all life stages except diapausing eggs. Expert

321opinion was considered in the estimation of mp

322and mT. The loss rates mp and mT are added to the

323attrition term ARj(t) of equation [1].

324Oviposition. According to Curry and Feldman

325(1987), the reproduction rate for the i-th instar is

326the product of the reproductive profile fi, i.e. the

Fig. 1. Illustration of temperature-dependent developmental rates for diapausing eggs, post-diapausing eggs,

nymphs, and senescence rates of adults of the grape leafhopper Scaphoideus titanus. In the temperature range

delimited by the lower and upper thresholds a linear model was applied to post-diapausing eggs, while the

curvilinear model of Brière et al. (1999) was used for all other life stages (the parameter estimates are given in

Table 1, the developmental rates below and above the thresholds are given in the text).
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327 relative age-specific fecundity rate in the i-th

328 substage, and the temperature-dependent repro-

329 ductive potential F(T), i.e. the total number of

330 eggs laid by a female conditioned on her living

331 throughout the oviposition period. To represent

332 fi, we make use of the information provided by

333 Schvester et al. (1962), Vidano (1964), and

334 Bressan et al. (2005) indicating that females

335 pass through a 10 days pre-reproductive period

336 (corresponding to i 5 1, 2), a 10 days reproduc-

337 tive period (corresponding to i 5 3, 4), to that we

338 tentatively add a 60 days post-reproductive

339 phase (corresponding to 4 , ir 8). For each

340 substage in the reproductive period (i 5 3, 4), the

341 relative age-specific fecundity rate per day is 0.5

342 and 0 otherwise. To obtain F(T) we first calculate

343 the relative reproductive potential m(T) as:

mðT Þ ¼ f T � 2Tl

� 	j 2Tu�T
� 	t

for 2T l oT o 2Tu; ð7Þ
344345

346 with m(T) 5 0 for Tr 2Tl or TZ
2Tu. The

347 estimates for the parameters f, j and t are based

348 on expert opinion on temperature effects on

349 fecundity. To obtain F(T), m(T) is multiplied

350 by the total number of 14.58 eggs per female

351 laid at 26 8C (Bressan et al. 2005). Subsequently,

352 the sum of the products fi F(T) over the 3rd and

353 4th substage is related to the daily aging process

354 and multiplied by the occurrence of females,

355 that is Q2(t) of equation [2] times the sex ratio of

356 0.5 (Curry and Feldman, 1987). The estimates

357 for the parameters of equation [7] are given in

358 Table 1.

359 Simulation model development
360 Manetsch (1976) and Abkin and Wolf

361 (1976) describe the methodology for discretising

362 equation [1] to simulate a delay process where

363 losses, accretions, and delay length varies over

364 time. To assure stability and nonnegative flow

365 rate, a time increment Dt of 1 hour was adequate.

366 In each time increment, the mean temperature is

367 calculated by forcing a cosine function through

368 daily temperature minima and maxima measured

369 at locations and during years of interest (Bianchi

370 et al. 1990). Curry and Feldman (1987) explain in

371 detail how to incorporate discrete environmental

372 temperature measurements Ti into survival and

373 development functions. The model is initialised

374 with a cumulative input equal to 100 obtained from

375the Weibull function. For each time increment,

376instantaneous values for mj, ej and DELj of

377equation 3a, 3b, 3c are calculated. Likewise,

378instantaneous mortality and oviposition rates are

379computed. The model written in the Pascal

380programming language calculates the daily

381occurrences of diapausing eggs, post-diapausing

382eggs, nymphs, and adults that appear as outputs

383in Figures 2 and 3.

384To illustrate the application of time distributed

385delay simulation models in ecology, the reader is

386referred to Welch et al. (1978); Fouque and

387Baumgärtner (1996), Gutierrez (1996), Di Cola

388et al. (1999), Wearing et al. (2004), Samietz et al.

389(2007), Arthur et al. (2011), and Gutierrez et al.

390(2012), for example.

391Model validation
392In agreement with the purpose of the model

393(Rykiel 1996), predicted infestation patterns

394were visually compared with long-term data on

395infestation patterns in several vineyards. The

396model produces, distributed over the simulation

397time period, infestation relative to the initial input.

398The dynamics of these infestations represent here

399the calculated infestation patterns.

400Over a period of five years, from 2006

401to 2010, nymph and adult occurrences were

402occasionally monitored in five vineyards located

403in western Switzerland (Yvorne, Lutry) and

404southern Switzerland (Contone, Biasca, Sessa).

405The vineyards are located in FD-free zones. Data

406on nymphs were obtained through the beating

407tray method, while yellow sticky traps yielded

408information on adult presence. The details on the

409sampling technique have been reported in a

410previous paper (Rigamonti et al. 2011). These

411counts taken through time represent here the

412observed infestation pattern.

413The daily maximum and minimum tempera-

414tures for the vineyards during the period under

415study were approximated by using the recordings

416of the Swiss Federal Office of Meteorology and

417Climatology (MeteoSwiss) made at the Aigle,

418Pully, Magadino, Comprovasco, and Lugano

419stations, respectively.

420Sensitivity probe
421The variation in the output of the model,

422restricted to the occurrence of diapausing eggs

423on the last day of the five years simulation period,
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Fig. 2. The simulated (lines) and observed (bars) occurrences of Scaphoideus titanus life stages on grapevine

plants in vineyards located in southern and western Switzerland (A: Contone vineyard, B: Biasca vineyard,

C: Sessa vineyard, D: Lutry vineyard, E: Yvorne vineyard). Occasional data were obtained in a monitoring

program carried out in FD free zones. The nymphs were obtained through the beating tray method, while yellow

sticky traps yielded information on adult presence. The simulated egg occurrences correspond to literature

information mentioned in the text. Note that in Figure 2B the observed nymph occurrences are multiplied by ten.

Note also that in the Sessa vineyard in 2008 and 2009 adult monitoring was discontinued in the early summer.Q2
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424 is apportioned to a 10% change in the estimates of

425 the parameters listed in Table 1, with the excep-

426 tion of the fecundity that is tested through the

427 parameter f. Since the development of all non-

428 diapausing life stages is constraint by the same

429 upper and lower thresholds, the 10% change is

430 simultaneously applied to post-diapausing eggs,

431 nymphs, and adults. The test consists in changing

432 one-factor-at-a-time. The results are expressed as

433 relative occurrences (RO), i.e. as occurrences

434 relative to the occurrences obtained in the stan-

435 dard model with the parameter estimates given

436 in Table 1.

437 Results and discussion

438 The temperature dependencies of stage-specific

439 developmental and senescence rates between the

440 lower and upper thresholds are illustrated in

441 Figure 1. For nondiapausing life stages, the lower

442 threshold of 8.7 8C reported in Table 1 is slightly

443 lower than the threshold of 10 8C for plant

444 development (Wermelinger et al. 1991, 1992).

445 Remarkably, the developmental rates of dia-

446 pausing eggs are lower, and the curve is shifted to

447 a lower temperature range than observed for post-

448 diapausing eggs, nymphs, and adults (Table 1).

449 The shifting of the developmental and the

450 concomitant reduction of the lower and upper

451 temperature thresholds have been hypothesised

452 for and observed in many diapausing insects,

453 including the corn earworm Helicoverpa zea

454 (Boddie) (Lepidoptera: Noctuidae) (Logan et al.

455 1979) and the European grape moth Lobesia

456 botrana (Denis and Schiffermüller) (Lepidoptera:

457 Tortricidae) (Baumgärtner et al. 2012). Note-

458 worthy, the developmental rate of diapausing

459 eggs at 20 8C is much higher than at 5 8C, as

460 reported by Chuche and Thiery (2012).

461The model is built on the basis of poiki-

462lothermic cohort development, with temperature-

463dependent developmental rate, survival, and

464fecundity functions, treated by Curry and Feldman

465(1987); the diapause theory conceptualised by

466Nechols et al. (1999); and stochastic development

467of age-structured populations according to Plant

468and Wilson (1986), Gutierrez (1996), and Di Cola

469et al. (1999). A model built on these basic

470elements has, in our view, satisfactory explicative

471qualities.

472According to Rykiel (1996) the purpose of the

473model is decisive for validation procedure

474selection. A monitoring program for supervised

475management of S. titanus made available occa-

476sional data from several vineyards. In this

477program, the monitoring of nymphs was dis-

478continued once adults appeared in sticky traps.

479No attempt was made to record egg hatching

480in winter and no data were collected in the

481presence of diapausing eggs. Moreover, sticky

482trap catches of adults are affected by weather

483conditions. These limitations affect the model

484predictions and field observation comparisons.

485However, for the purpose of the work, which is

486the representation of multiannual infestation

487patterns, the available monitoring information

488appears to be sufficient for model validation

489(see subsequent section). A model designed for

490representing population densities, however,

491would require more reliable data for validation,

492changes in model input and a possible revision

493of mortality functions. Moreover, such a model

494should include dispersal including the passage

495of young nymphs through the vineyard floor

496vegetation (Trivellone et al. 2011).

497According to Figures 2A–2E, the model

498generally represents the observed five years

499infestation pattern at the five locations in a

Fig. 3. The simulated occurrences of Scaphoideus titanus diapausing (thin line) and post-diapausing (thick line)

eggs on grapevine plants in the Contone vineyard (southern Switzerland).

8 Can. Entomol. Vol. 00, 2013
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500 satisfactory manner. Specifically, the corre-

501 spondence between field observations and the

502 predicted occurrences of nymphs, the presence

503 of adults, and the appearance of the combined

504 diapausing and post-diapausing eggs is adequate.

505 The simulated egg deposition period coincides

506 with the occurrence of gravid females observed

507 by Cravedi et al. (1993) in northern Italian

508 vineyards. The duration of adult presence is also

509 satisfactorily represented by the model, while the

510 predicted nymph occurrence lasts for a longer

511 time period then observed in the field.

512 The model predicts the beginning of diapause

513 termination as early as in October and the con-

514 tinuing termination of diapause for a small

515 number of eggs throughout the winter. However,

516 the survival of post-diapausing eggs is nega-

517 tively affected by low winter temperatures.

518 Nymphs not only suffer from the effect of low

519 temperatures but also from a lack of food prior to

520 bud break. In mild winters and at locations with

521 frequent temperatures between 5 8C and 10 8C

522 the plant dormancy effect is particularly high.

523 Under these conditions, the disruption of the

524 phenological synchrony between S. titanus and

525 the plant could have a significant effect on

526 infestation patterns. Importantly, the model

527 predicts an overlapping in the occurrence of

528 newly laid eggs and diapausing eggs from the

529 previous year. As a result, diapausing eggs are

530 always present in the vineyards (Fig. 3).

531 Since here the developed model adequately

532 represents the data in FD uninfested vineyards, it is

533qualified with satisfactory predictive qualities and

534assumed to hold the promise for further improve

535adaptive management of S. titanus populations

536(Jermini et al. 2013; Prevostini et al. 2013).

537Table 2 shows the RO of diapausing eggs on

538the last day of the five years simulation period in

539response to a 10% changes in parameter values.

540Accordingly, the model output is most sensitive

541to changes in the upper threshold (JTu) and in

542the shape parameters (jJ and zJ) of the beta

543distribution for the temperature-dependent sur-

544vivorship. On the other hand, the model is least

545sensitive to the 10% variation in the shape

546parameter of the development function (kJ) and

547the level of survivorship lJ. The small variation

548of RO in response to the shape parameter (kJ)

549of the development function and the level of

550survival (lj) was not expected, considering the

551importance given to those parameters in tradi-

552tional life table studies. Apparently, the model is

553sensitive to 10% changes in parameters whose

554estimates are based on expert opinions rather

555than experimentation (Table 1). Sensitivity ana-

556lysis is the study of how the uncertainty in the

557output of a mathematical model or system can be

558apportioned to different sources of uncertainty in

559its inputs (Saltelli et al. 2008). Since in our case

560experts did not provide any information on

561uncertainties, the sensitivity study deals with

562parameter estimates with both known and

563unknown reliability. Therefore, we refrained

564from conducting a comprehensive sensitivity

565analysis, including the changing of more than

Table 2. Results of the sensitivity probe, which yields the RO of diapausing eggs on the last day of the five

years simulation period in response to 10% changes in model parameters (RO refers to the occurrence of

diapausing eggs in relation to the standard model with parameter estimates given in Table 1; since the same

upper (jTu) and lower (jTl) developmental thresholds have been used for all non-diapausing life stages, the

respective sensitivity test is carried out simultaneously for eggs, nymphs, and adults)

Parameter Life stage k a b Tl Tu l j z f j t

1. Nymphs 110% 1.02 0.61 0.49 6.38 ,0.01 .0.99 0.02 0.01

210% 0.98 1.27 1.33 0.11 145.61 ,1.01 28.93 43.76

2. Adults (females) 110% 0.73 1.15 0.67 6.38 ,0.01 .0.99 0.02 0.01 0.59 0.14 0.12

210% 1.25 0.85 1.20 0.11 145.61 ,1.01 28.93 43.76 1.61 7.11 8.25

3. Diapausing eggs 110% 0.91 1.02 0.25 0.59 0.07

210% 1.13 0.55 0.01 1.10 0.03

4. Post-diapausing eggs 110% ,1.01 0.96 6.38 ,0.01 .0.99 0.02 0.01

210% .0.99 1.02 0.11 145.61 ,1.01 28.93 43.76

RO, relative occurrence.
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566 one-factor-at-a-time, and limit the work to a

567 sensitivity probe providing guidance for future

568 research to increase the robustness of the model.

569 For example, experimental work on high tem-

570 perature effects on development and survival may

571 yield parameters estimates with uncertainties.

572 The model estimates and the field observa-

573 tions indicate similar infestation patterns at

574 all locations (Figs. 2A–2D) with the exception

575 of Yvorne (Fig. 2E). The predicted decreasing

576 infestation levels in the Yvorne vineyard (Fig. 2E)

577 is in contrast to the respective field observations.

578 Presumably, the discrepancy between predictions

579 and observations is due to the use of unrepre-

580 sentative weather data from the distant and

581 topographically differently positioned Aigle

582 station. From the response of the predicted

583 infestation patterns to relatively cooler climates,

584 as apparently in the case of the Aigle data, we

585 conjecture that S. titanus is approaching the

586 northern limit for distributions (Rigamonti et al.

587 2013). Since the species extends through the United

588 States of America into Canada (Commonwealth

589 Agricultural Bureau International 1992), a critical

590 evaluation of this result is a prerequisite for

591 sketching out the possible area of distribution in

592 Europe. Such a project may benefit from the

593 weather data bank of Yang et al. (2010) and the

594 methodology used by Gutierrez et al. (2012) to

595 assess the invasive potential of L. botrana in

596 North America.

597 The Weibull input function as well as the

598 developmental rate function of diapausing eggs

599 have been parametrised, and the model has

600 been validated in a narrow range of ecological

601 conditions relative to the inhabited zones in

602 North America and Europe (Commonwealth

603 Agricultural Bureau International 1992). To extend

604 the applicability of the model, it may be necessary

605 to account for other environmental factors than

606 temperature such as humidity and photoperiod.

607 In particular, the diapause theory predicts that

608 diapause is mainly but not exclusively controlled

609 by a combination of temperature and photoperiod

610 (Tauber and Tauber 1976; Tauber et al. 1986;

611 Leather et al. 1993; Nechols et al. 1999).
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