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Abstract

Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the
solution of discrete equations which are based on physical principles (e.g. conserva-
tion of mass, linear momentum and energy) and phenomenological constitutive laws
(e.g. Glen’s and Fourier’s laws). These equations must be accompanied by information5

on the forcing term and by initial and boundary conditions (IBCs) on ice velocity, stress
and temperature; on the other hand the constitutive laws involve many physical param-
eters, some of which depend on the ice thermodynamical state. The proper forecast
of the dynamics of ice sheets and glaciers requires a precise knowledge of several
quantities which appear in the IBCs, in the forcing terms and in the phenomenological10

laws. As these quantities cannot be easily measured at the study scale in the field,
they are often obtained through model calibration by solving an inverse problem (IP).
The objective of this paper is to provide a thorough and rigorous conceptual framework
for IPs in cryospheric studies and in particular: to clarify the role of experimental and
monitoring data to determine the calibration targets and the values of the parameters15

that can be considered to be fixed; to define and characterise identifiability, a property
related to the solution to the forward problem; to study well-posedness in a correct way,
without confusing instability with ill-conditioning or with the properties of the method
applied to compute a solution; to cast sensitivity analysis in a general framework and
to differentiate between the computation of local sensitivity indicators with a one-at-20

a-time approach and first-order sensitivity indicators that consider the whole possible
variability of the model parameters. The conceptual framework and the relevant prop-
erties are illustrated by means of a simple numerical example of isothermal ice flow,
based on the shallow-ice approximation.
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1 Introduction

The physics of the dynamic evolution of ice sheets and glaciers is based on physical
principles (e.g. conservation of mass, linear momentum and energy) and phenomeno-
logical constitutive laws (e.g. Glen’s and Fourier’s laws) which are used to derive partial
differential equations. These equations must be accompanied by information on the5

forcing terms and by initial and boundary conditions (IBCs) on ice velocity, stress and
temperature. On the other hand, the constitutive laws involve many physical parame-
ters, some of which depend on the ice thermodynamical state. The basic equations
of ice sheet models can be found, e.g. in Hutter (1983), van der Veen (1999), Hooke
(2005), Greve and Blatter (2009) and Cuffey and Paterson (2010).10

Difficulties associated with heterogeneity and anisotropy of the physical parameters
and of the climatic forcing, non-linearity of the physical processes, complex geome-
tries, etc. do not permit to compute analytical solutions, which can be obtained only if
strong approximations are introduced. Therefore, numerical methods of solution of par-
tial differential equations (e.g. finite differences, finite elements, etc.) are used and dis-15

crete numerical models are developed and applied, such as, e.g. SICOPOLIS (Greve,
1995), GLIMMER (Rutt et al., 2009), PISM (the PISM authors, 2014; Winkelmann et al.,
2011), and many others, some of which were also tested in intercomparison experi-
ments (Huybrechts et al., 1996; Payne et al., 2000; Pattyn et al., 2008).

The proper forecast of the dynamics of ice sheets and glaciers (forward problem,20

FP) does not depend only on the goodness of the approximations introduced by the
discretization of the domain and of the equations. It requires also a precise knowl-
edge of several quantities which appear in the IBCs, in the forcing terms and in the
phenomenological laws. Unfortunately, field measurements are often affected by large
uncertainties and poor space and time sampling, whereas laboratory measurements25

are relevant to scales which are very different from those involved in the FP. Therefore,
one must rely on model calibration to infer the input model parameters, i.e. the solution
of inverse problems (IPs) is necessary.
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Roughly speaking, an IP aims at finding the optimal values of the model parame-
ters that yield the best agreement of the model output with the field observations and
data. Several applications of inverse modelling were proposed in glaciology (MacAyeal,
1992, 1993; Arthern and Hindmarsh, 2003; Joughin et al., 2004; Truffer, 2004;
Gudmundsson and Raymond, 2008; Raymond and Gudmundsson, 2009; Avdonin5

et al., 2009; Morlighem et al., 2010; Arthern and Gudmundsson, 2010; Gillet-Chaulet
et al., 2012; Habermann et al., 2012; Petra et al., 2012; Pollard and DeConto, 2012;
Bonan et al., 2014, and others). However, IP theory, which is well developed in sev-
eral areas of science and geophysics (see, e.g. Parker, 1994; Tarantola, 2004; Menke,
2012), has not yet become popular in glaciological sciences (see Gudmundsson, 2014,10

for a review). In fact, very excellent methods of IP solution have been tested in several
examples (see the papers cited above, among many others), but some basic mathe-
matical properties are not fully considered in the applications and therefore a somehow
formal and abstract review can be useful.

IPs are often claimed to be ill-posed. However, this is rigorously true only for contin-15

uous domain models. For discrete numerical models, the properties of the IP must be
analysed with more care and when this is done, it appears that difficulties sometimes
arise from ill-conditioning or non-uniqueness (Giudici, 2002). Moreover, it is necessary
to clarify the role of experimental and monitoring data to determine the calibration tar-
gets and the values of the parameters that can be considered to be fixed, whereas only20

the model output should depend on the subset of the parameters that can be identified
with the calibration procedure and the solution to the IP. It is actually difficult to guaran-
tee the existence and uniqueness of a solution to the IP for complex non-linear models.
Also identifiability (Giudici, 1989, 1991), a property related to the solution to the FP, and
resolution should be carefully considered. Moreover, instability of the IP should not be25

confused with ill-conditioning and with the properties of the method applied to compute
a solution. Finally, sensitivity analysis is of paramount importance to assess the reli-
ability of the estimated parameters and of the model output. It is often based on the
one-at-a-time approach, through the application of the adjoint-state method (see, e.g.
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Heimbach and Bugnion, 2009; Petra et al., 2012; Heimbach and Losch, 2012), to com-
pute local sensitivity, i.e. the uncertainty on the model output due to small variations of
the input parameters. However, first-order approaches that consider the whole possible
variability of the model parameters should be considered (see, e.g. Hill and Tiedeman,
2006; Saltelli et al., 2008; Baratelli et al., 2012).5

Therefore, the objective of this paper is to provide a further step towards a thorough
and rigorous theoretical conceptual framework for IPs in cryospheric studies, in order
to improve the definition and the comprehension of the properties of IPs with a formal
approach which might help to close the gap between mathematical abstraction and
applied simulation modelling. The conceptual framework and the relevant properties of10

IPs are illustrated by means of a simple numerical model of isothermal ice flow, based
on the shallow-ice approximation (SIA, see, e.g. Hutter, 1983; Baratelli et al., 2011).

2 The paradigmatic example and definition of the forward problem

The conceptual framework is introduced with a paradigmatic example based on the
application of the model developed by Bueler (2014) at the University of Alaska (Fair-15

banks AK, USA) and implemented in the Matlab code siageneral.m . The model is
based on a finite-difference discretization of the ice-sheet equation under the SIA and
the hypothesis of constant and uniform temperature, that is (Bueler et al., 2005):

∂tH =M +∇ · (D∇h), (1)
20

where H is the ice thickness, t is time, h is the ice surface elevation, M is the surface
mass balance and D is the diffusivity. The model does not consider ice-shelves, so that
h = b+H , where b is the bed elevation. D is given by

D = 2EA(ρg)n
Hn+2

n+2
|∇h|n−1, (2)

25

5515

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where A and n are the flow parameters and E the enhancement factor in Glen’s law,
which is the constitutive relation assumed between strain rate ε̇ and deviatoric stress
τ:

ε̇i j = EAτn−1
e τi j , (3)

5

where τe is the effective deviatoric stress.
The model is applied to the Antarctic ice-sheet: the bed elevation and the initial ice

thickness are taken from the dataset ALBMAP v1 (Le Brocq et al., 2010) and it is as-
sumed that n = 3 and A = 10−16 Pa−3 a−1. The latter value corresponds to the reference
value used for some experiments of model intercomparison: EISMINT I (Huybrechts10

et al., 1996) and ISMIP-HOM (Pattyn et al., 2008). In the paradigmatic example, it is
assumed that M is constant in space and time. Of course these are very strong approx-
imations, but they are useful to have a test to introduce some concepts and to show
some results in a very simple way. A reference solution h(ref) is generated by running
the model from the present-day geometry for a time period of 20 ka with the reference15

parameters M (ref) = 0.3 m a−1 and E (ref) = 3.
In real-world applications, acquired data should include information about the ge-

ometry of the domain, the positions of the measurement points, the measured values
of physical quantities (e.g. ice-sheet-surface height, temperature at the surface and in
few boreholes, ice-sheet velocity at the surface, ice accumulation rate at some moni-20

toring stations on the surface, etc.). All these data are collected in an array d . For the
paradigmatic example, d contains the synthetic data corresponding to the nodal values
of h(ref).

The input model parameters, included those that describe the geometry of the dis-
cretization grid (e.g. the spacing of the grid), are contained in the array p. Some of25

these parameters are fixed before the application of the model and can be grouped
in a “sub-array” p(fix), which depends on the data, i.e. p(fix)(d ). Instead, the model pa-
rameters whose values are obtained from calibration, via the solution of an IP, are col-

lected in the array p(cal). Therefore, p = (p(fix)t,p(cal)t)t. For the paradigmatic example
5516
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p
(cal) = (e,M), whereas p(fix) includes, among the others, the length of the simulated

time period (20 ka) and the prescribed initial condition.
The state of the system is the ice-sheet surface under stationary conditions at the

end of the simulation: the values computed at all the nodes of the discretization grid
are collected in an array s. With this notation, the model can be written as5

A(p,s)s = b(p,s), (4)

where the matrix A is used to discretize not only convective and diffusive flow terms, but
also capacity terms related to time-variations, whereas the array b is related to accumu-
lation, energy production and to boundary conditions. Therefore, Eq. (4) is a prototype10

for the linear system of equations arising from the discretization of the partial differen-
tial equations which translate mass, momentum and energy conservation principles in
mathematical form, even for transient conditions, for which the array s is usually split
in the sub-arrays corresponding to different time steps. Also, Eq. (4) is a prototype of
different methods of solution of the partial differential equations: for instance, for finite15

elements or spectral methods, the array s could include the coefficients of the basis
functions. Both A and b depend on the system state because the relevant equation
are usually non linear. A is usually a sparse matrix and for approaches based on the
discretization of integral balance equations, it is also symmetric and definite positive.

Roughly speaking, the FP aims at solving Eq. (4) with respect to s, given the model20

parameters p, whereas the IP aims at identifying the values of some of the model
parameters, p(cal), given data (d ) that can be used to estimate p(fix) and to predict the
state s of the system. The solution of the FP can be expressed in explicit form as

s = g(p), (5)
25

which is the forward mapping p→ s.
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3 Definition of the inverse problem

The model outcome, i.e. the state of the system, can be used to forecast other quan-
tities that depend also on the model parameters and possibly on some of the data.
Therefore, the model forecast are expressed as an array y, which is function of s, p
and d : y(d ,s,p).5

For instance, with reference to the paradigmatic example, the basic option is that
the model forecast coincides with the ice cap surface, i.e. y ⊂ s. An alternative option
is that the model forecast used for calibration is the ice cap volume. In this case, it
is required to include other parameters in p(fix) to compute the model forecast, e.g.
parameters related to the geometry of the system, namely the bedrock topography.10

Roughly speaking, the IP consists in the determination of the optimal values of p(cal),
i.e. those values that reduce the misfit between the model forecasts and some target
values t. In the simplest case of the basic option, when measurements of the system
state are available, some elements of s can be directly compared with the correspond-
ing elements of d , i.e. t ⊂ d . Instead, for the aforementioned alternative option, the15

calibration target is obtained from the processing of field data, in order to obtain an
estimate of the total ice cap volume and therefore it requires additional data and some
processing parameters. Then it is necessary to express the calibration targets as an
array depending on d and p(fix): t = t(d ,p(fix)).

The IP is therefore related to the determination of p(cal) through the inverse mapping20

{d ,p(fix)} → p
(cal).

The most common approach to IP is the search for the minimum of an objective
function O, given by

O(p(cal)) = ‖y(d ,s,p)− t(d ,p(fix))‖. (6)
25

The classical choice is the least-squares approach, when the norm appearing in the
right hand side of Eq. (6) is the sum of squared differences between t and y com-
ponents (l2 norm). This is the objective function applied in the paradigmatic example
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of this paper. Of course, many other choices are possible, among which the sum of
absolute differences (l1 norm) and the maximum absolute difference (l∞ norm).

The above described formalism includes also more complex objective functions,
such as that based on the the logarithm of the misfit between modelled and ob-
served glacier-surface velocity proposed by Morlighem et al. (2010) or that developed5

by Arthern and Gudmundsson (2010) who introduced the Dirichlet-to-Neumann map
approach (Calderòn, 2006; Kohn and Vogelius, 1984) in glaciological modelling. These
objective functions were tested to model the Greenland ice sheet dynamics by Gillet-
Chaulet et al. (2012).

The misfit between y and t depends on several factors: measurement errors; rele-10

vance of the measurement support volumes with respect to the spatial and temporal
scales of the model; model approximations; data processing; etc. This motivated sev-
eral researchers (Berliner et al., 2008; Raymond and Gudmundsson, 2009, among the
others) to consider the data and the model parameters, and therefore also the model
forecasts and the calibration targets as stochastic processes. Then the Bayes’ theorem15

can be invoked; with the formalism that has been previously introduced, it can be cast
as:

(p(cal)|y − t) =
f (y − t|p(cal)) · f (p(cal))

f (y − t)
, (7)

where f functions are (possibly conditioned) probability density functions (pdfs) of the20

respective arguments. In particular, f (p(cal)) is the prior pdf of the model parameters
to be calibrated, i.e. independent from the measurements of state variables or other
independent quantities; instead, f (p(cal)|y − t) represents the posterior pdf, which is
conditioned on the measured data.

Notice that Eq. (7) is slightly different from the standard formulation proposed by25

other authors (see, e.g. the textbook by Menke, 2012), because the framework intro-
duced in this paper is more general, as it accounts for different types of model outputs
and calibration targets.
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Most of the applications of the Bayesian approach compute the optimal parame-
ters by means of the maximum likelihood method (Edwards, 1972), which searches
for the array p(cal) which maximizes the posterior probability given by Eq. (7). Among
the most commonly introduced approximations it is worth recalling the assumption that
both f (y − t|p(cal)) and f (p(cal)) can be expressed as multigaussian distributions. More-5

over, it is often implicitly assumed that f (y − t) is independent from p
(cal). Under these

hypotheses, the maximum-likelihood method reduces to the least-squares approach
(Menke, 2012).

At the authors’ knowledge, no test has been conducted in glaciological sciences with
different hypotheses of pdfs. However, an exponential pdf, above all for f (y − t|p(cal)),10

might be a better guess in presence of outliers, i.e. of model predictions which are very
far from the expected target values. In practice, exponential pdfs yield the minimization
of l1-like norms, which are expected to provide robust estimates, i.e. to be able to yield
reasonable results even in presence of high errors.

4 Properties of the IP15

The material is now ready to introduce and discuss some properties of the IP.

4.1 Ill-posedness and ill-conditioning

The first question is whether model parameters are identifiable, i.e. if different values of
the parameters always yield different predictions of the state of the system with the FP.
In other words, the model parameters are said to be identifiable, if for every couple of20

arrays p and p′, p 6= p′, the corresponding solutions to Eq. (4), s = g(p) and s′ = g(p′)
are such that s 6= s′.

Any mathematical problem that is applied to model physical processes is required
to be well-posed, i.e. it is required that a solution exists, is unique and is stable with
respect to the data. For IPs, in principle, it is very easy to state that the uniqueness of25
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the solution corresponds to the property that a unique array p(cal) yields an absolute
minimum of Eq. (6). In principle, it is also very simple to state that an IP admits a unique
solution if O is a convex function of its arguments; unfortunately, it is not easy to prove
this for complex models, with a great number of parameters.

The paradigmatic example is so simple that it is possible to draw the graph of O,5

which is expressed for this example as the root-mean-square error (RMSe) between
the modelled ice-sheet surface and h(ref): it is shown in Fig. 1 for the basic option of y
and t. This plot shows that the IP has a unique solution, obviously corresponding to the
reference values used to generate the synthetic data h(ref). This is confirmed by Fig. 2:
the objective function is convex in a neighbourhood of the reference parameters and10

no local minima are present.
Notice that if one of the model parameters were not identifiable, it would be possible

to find another couple of values that yield the same solution to the FP. Since in this
example y does not explicitly depend on p, as it is often the case, then the solution to
the IP would not be unique. This remark is fundamental to show the strict link between15

identifiability, which is a property of the FP, and uniqueness of the IP.
IPs are usually claimed to be unstable and this is true for the continuous case, when

a continuous domain is considered and the model is built with partial differential equa-
tions (Giudici and Vassena, 2008). Instead, for discrete models, algebraic equations
have to be considered and this means that the issue of stability could be of minor rele-20

vance. Moreover, the definition of stability presumes that the error on the data can be
reduced at will, so that the results of the IP can be as close as possible to the reference
value or to the solution for ideal, error-free data. However, this is not the case with real-
world applications, when measurement, modelling and approximation errors cannot be
reduced below a practical limit.25

Figure 3 shows the graph of O when an uncorrelated error with a gaussian distribu-
tion with zero average and SD of 1 m is added to the data, i.e. to the reference elevation
h(ref). It is difficult to appreciate differences with the graph of Fig. 1. The differences are
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even smaller for smaller values of the SD. In other words, this is a graphical proof that
the considered IP is stable.

However, it has been stressed that the concept of stability assumes that the error on
the data can be reduced at will, but this will never be the case in practical applications,
due to the great number of causes of errors that have been recalled before. In several5

applications some typical characteristics that denote numerical instability (oscillatory
behaviour, alternating high and low values) can be observed: however, they might be
effects of ill-conditioning or non-identifiability or non-uniqueness, rather than due to
instability of the IP.

Of course conditioning is a qualitative concept, which is related to the Lipschitz con-10

dition, defined as follows. If p† and p‡ are the solutions to the IP corresponding, re-
spectively, to data d † and d ‡, then a Lipschitz condition holds if

‖p† −p‡‖ ≤ C‖d † −d ‡‖, (8)

where C > 0 is called a Lipschitz constant. If C is big, then the IP is ill-conditioned,15

because a very small (and often practically unrealistic) error on the input data is neces-
sary to guarantee a small, physically acceptable error on the calibrated parameters. In
other words, ill-conditioning means that a small error on the data could be sufficient to
yield big differences in the estimated parameters; on the other hand well-conditioned
IPs are such that even if the errors on the input data are quite big, the solution to the20

IP does not change dramatically.
It is also very important to stress that a clear distinction must be done among prob-

lems with the intrinsic properties of the IP and the effects of the solution method. Fig-
ure 3 shows a very simple example. On top of the graph of O the minimization paths
followed by the application of the Matlab function fminunc , based on the quasi-Newton25

algorithm, with two different initializations are shown. Information listed in Table 1 show
that starting from different couples of parameters values might yield different “solu-
tions”. In fact, Fig. 2 shows that the reference values lie in a “valley” characterised
by a weak slope, which makes difficult the identification of the absolute minimum with
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a gradient-based approach. However, notice that the difference between the values of
the O functions at those points are very small and even about one third of the SD of
the error added to the data.

Problems with non-uniqueness, instability or ill-conditioning might appear as alternat-
ing (high and low) values of the elements of p(cal). They can be handled by introducing5

regularization terms in the objective function (see, e.g. Habermann et al., 2012; Petra
et al., 2012), which is often obtained by including a term like ‖p(cal)‖ in O. This regulariz-
ing term has the effect of cutting the high values and therefore the minima of O, which
are characterised by the most accentuated oscillatory behaviour. With the formalism
proposed in this paper, this is equivalent to directly insert the values of p(cal) into the10

model outputs y and by assuming that the corresponding target elements are set to
zero. For the Bayesian approach, the regularizing effect is introduced through the prior
pdf.

4.2 Sensitivity analysis

4.2.1 Some definitions15

Several authors addressed the problem of sensitivity of model outcomes with respect
to input parameters (Ritz et al., 2001; Heimbach and Bugnion, 2009; Baratelli et al.,
2012; Giudici et al., 2012; Larour et al., 2012; Thoma et al., 2012; Heimbach and
Losch, 2012; Schäfer et al., 2012). This is fundamental in order to estimate the errors
on model predictions due to the uncertainties on the values of p, but also to assess the20

physical relevance of some parameters and of some physical processes to determine,
for instance, glacier thickness, ice velocity, ice temperature, etc.

A simple approach is the computation of quantities related to the ratio between varia-
tions of s or y as a response to variations of p around a reference value. From the math-
ematical point of view, this is nothing but a derivative. In particular, the state sensitivity,25
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S(s)
mn, of a state variable sm with respect to a single parameter pn, under a linear ap-

proximation, i.e. for small local variations of the parameter, is given by:

S(s)
mn =

∂sm
∂pn

=
∂gm
∂pn

(p). (9)

Analogously, the prediction sensitivity, S(y)
mn, of a model prediction ym with respect to pn5

is given by:

S(y)
mn =

dym

dpn
=

NS∑
k=1

∂ym
∂sk

·
∂sk
∂pn

+
∂ym
∂pn

=
NS∑
k=1

∂ym
∂sk

·S(s)
kn +

∂ym
∂pn

, (10)

where NS is the dimension of the array s and the “total” dependence of y on p is
considered explicitly, i.e. both through the direct functional dependence and the indirect10

dependence through the solution of the FP.
However, these definitions have two weaknesses. First, since parameters and sys-

tem states are represented by physical quantities, with given measurement units, it is
impossible to identify the most sensitive parameters from a straightforward comparison
among the elements of S(s) and S(y). Therefore, it is necessary to scale or normalize15

these quantities. Second, both S(s) and S(y) are based on a linearized, one-at-a-time
approach, so that they take into account only the linear approximation of the model and
neglect both non-linear effects and joint effects of the parameters.

The first problem can be overcome by means of the dimensionless normalized sen-
sitivity, which corresponds to the scaling given by the SD of the relevant quantities,20

or the prediction scaled sensitivity, which is scaled by means of the reference values
around which the sensitivity indices are computed (Giudici et al., 2012).
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The second issue is overcome by means of the first-order sensitivity (Saltelli et al.,
2008), which can be defined as

Sn =
varpn

[Ep\n[Y |pn]]

σ2
Y

, (11)

where Y represents a state variable sm or a model prediction ym, Ep\n[Y |pn] is the5

expected value of Y conditioned on the parameter pn and varpn
is the variance with

respect to pn.

4.2.2 Adjoint method for the computation of sensitivity

The computation of S(s) is often a crucial computational aspect for the application of
IPs, because it is required both to compute S(y) and the gradient of O for methods of10

solution which are based on steepest-descent or conjugate-gradient approaches.
The simplest approach is the computation of S(s)

mn with a finite-difference approach:
the FP is solved for two different arrays p+ and p−, which differ from each other only for
the value of pn by an amount ∆p: if the corresponding solutions to the IP are denoted

by, respectively, s+ and s−, then S(s)
mn ' (s+m −s−m)/∆p.15

An alternative is the use of the adjoint-state equation method (Plessix, 2006), which
is introduced in the continuous case by making use of variational calculus and by intro-
ducing the Frechet’s derivative. Here it is shortly revised for its application to discrete
models in glaciological sciences (Heimbach and Bugnion, 2009; Heimbach and Losch,
2012; Goldberg and Heimbach, 2013; Martin and Monnier, 2014).20

A linearization of Eq. (4) is obtained by imposing that A ' A(p, s̃) and b = b(p, s̃),
where s̃ is fixed as the solution to Eq. (4) corresponding to the parameters p around
which the sensitivity is estimated; in other words Eq. (4) is linearized around the values
of the reference parameters and system states. If Eq. (4) is multiplied by an arbitrary
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array ψ (m), and the derivative of the resulting equation with respect to pn is taken, one
obtains

∂A
∂pn

s ·ψ (m) +A
∂s
∂pn

·ψ (m) − ∂b
∂pn

·ψ (m) = 0. (12)

If ψ (m) is the solution of the so-called “adjoint-state equation”5

Atψ (m) = δm, (13)

where δm is the unit impulse concentrated on the mth element, then

∂sm
∂pn

=
∂sm
∂pn

− ∂A
∂pn

s ·ψ (m) −A
∂s
∂pn

·ψ (m) +
∂b
∂pn

·ψ (m) (14)

=− ∂A
∂pn

s ·ψ (m) +
∂b
∂pn

·ψ (m).10

Recall that in most cases At = A.
In other words, computing S(s) with the adjoint-state approach requires the solution

of Eq. (13) for each m and then the application of Eq. (14). This procedure could appear
cumbersome, but it is to be recalled that for the application of the model, it is necessary15

to have an efficient code, function or routine for the solution of the FP: for a single value
of m, only one run of the same tool can be used to compute ψ (m) as the solution to
Eq. (13), and then S(s)

mn, for n = 1, . . . ,Np by means of Eq. (14), where Np is the number
of calibrated parameters.

Also the simplest “finite-differences” approach requires the solution of FPs, but it is20

always approximate. The adjoint-state approach, based on Eqs. (13) and (14), provides
a result, which is theoretically perfect and affected only by rounding errors.
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5 Conclusions

Inverse modelling is of paramount importance in glaciological sciences to estimate pa-
rameters which can hardly be measured (for instance, the parameters of the Glen’s
law, basal temperature and melt rate, etc.) by taking advantage of the collection of data
on more easily accessible physical quantities (for instance, the ice-sheet surface, ice5

velocity, surface temperature, etc.). Different definitions are given by different authors
and there is also a great variety of approaches to the discretization of the equations
that translate in mathematical form the basic conservation principles (mass, linear mo-
mentum, energy). The conceptual framework proposed in this paper permits to unify
the different notations and to facilitate the formal definitions of the IP and its properties.10

First, the weight of experimental and monitoring data on IP has been clarified to-
gether with the role of the parameters that are kept fixed and are not subjected to
the fitting procedure. Model predictions and calibration targets seldom correspond in
a straightforward way with, respectively, the results of the balance equations, which can
be cast in the form shown by Eq. (4), and the directly measured quantities. Some pro-15

cessing is often required and its role for the mathematical properties of the IP should
be considered.

The simple prototype example of inferring the leading coefficient of Glen’s law and
of accumulation rate for a SIA-based, uncoupled model is a proof that the classical
statement that IPs are ill-posed is not always true. In fact, such an example shows20

an IP which has a unique and stable solution. However, this remark should not be
misunderstood as a statement that IP can be easily and efficiently solved. Even in the
best cases, when IPs are well-posed, the great number of processes, which introduce
discrepancies between model outcomes and calibration targets (measurement errors,
modelling errors, wrong estimates of fixed parameters, etc.), do not permit to reduce25

such discrepancies at will. Moreover, in many cases IPs could be ill-conditioned, so
that even a small error on the input data could cause high and physically unacceptable
errors on the calibrated parameters.
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The paradigmatic example, despite being quite simple, also shows that the methods
of solution to the IP can introduce some issues. In particular, they could suffer from
some troubles when the objective function has multiple local minima or is very flat
around the minimum. Unfortunately, in some cases the methods of solution could also
reduce or mask the intrinsic difficulties of the IP because they do not span the whole5

space of the admissible values of model parameters.
Finally, one of the most important messages of this paper is that before drawing any

conclusion on the results of the model calibration, the IP under study should be clearly
defined and its properties should be properly and thoroughly analysed.
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Table 1. Initial points for the search of the minimum of O; final points of the procedure of
minimization and the corresponding values of O.

Initial points Final points O at the final point

(0.38,2) (0.3002,3.002) 0.992 m
(0.2,2) (0.2915,2.914) 0.992 m

5534



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. Objective function for the test example: the red symbol corresponds to the reference
values.
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Figure 2. Zoom of the objective function for the test example around the reference values.
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Figure 3. Objective function for the test example when an uncorrelated gaussian error with zero
mean and SD of 1 m is added to the input data. The two panels show the minimisation paths
obtained with the fminunc function starting from two different sets of parameters: (a) M =
0.2 ma−1, E = 2; (b) M = 0.38 ma−1, E = 2. The red symbol corresponds to the reference
values (M (ref),E (ref)).

5537


