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Abstract

The question we posed at the beginning of this thesis was whether, in the

presence of a clinical superiority of one of two possible treatments, it was

possible to find an appropriate statistical methodology that would allow us

to reach this goal. We were thus led to explore many possibilities to carry out

this analysis and randomly assign patients to the two treatments, as required

by the particular nature of these experiments. Specifically, we made a close

examination of the methods of randomization, especially appreciating the

flexibility of the adaptive responses, and could see the strengths of urn mod-

els. We started with the study of the urn for excellence, Polya’s urn. Next,

we analyzed some extensions and generalizations, focusing especially on two

kinds of urns with random reinforcement. We exposed the results obtained

throughout simulations concerning the convergence of the proportion of the

best treatment, which came from the comparison of the models studied. In

the end, we showed how the urn model works in a real case, comparing two

treatments with continuous response in one ICU trial on Melatonin. We’ll

see how the properties demonstrated in theory are confirmed in practice.

The project ends by giving a hint of a new adaptive model that we have

started to idealize in collaboration with the team of Prof. Parmigiani and

Prof. Trippa of the ”Biostatistics and Computational Biology” Department,

Harvard T.H. Chan School of Public Health.
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Introduction

In the mankind history, human people has been a✏icted by disease and

has attempted to plan treatments to cure or improve the su↵ering of the

a✏icted. So, it is desirable knowing which treatments work, which do not,

and whether one treatment is better than another.

When a clinical researcher wants to evaluate the treatment e�cacy or

the safety of one therapy that is under investigation, he runs a clinical trial.

There are many kinds of experiments, but in these years randomized con-

trolled clinical trials (RCT) have become established as the method which

investigators must use to assess new treatments. They are characterized by

two key features:

1. At the same time, the new treatment is given to a group of patients (the

the treated group) and the another treatment, often the one most widely

used, is given to another group of patients (the the control group).

2. Patients are allocated to one group or another by randomization. This
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mechanism can be thought of as deciding on the treatment to be given

by tossing a coin.

Usually, the standard tool for patients allocation is the equal randomiza-

tion that assures the balanced assignment. In this case the sample size is

fixed in advanced and chosen on the basis of statistical power.

However, a condition of initial balance is not always the optimal solution.

Indeed, there is an ethical concern to treat as many subjects as possible with

the best treatment. Indeed, when the treatment is clearly lower / higher than

the other one, it is not acceptable to allocate randomly to that treatment

in less than 50 percent of cases. Moreover, the responses to treatments can

di↵er greatly, in the sense that not all the patients will react in the same way

to the treatment.

The study of these issues has stimulated the birth in the 70’s of a new

allocation policy to the treatments: the Response Adaptive Randomization

(RAR). We dedicated the first chapter to them. First, we will focus on some

considerations about the randomization process and then we will explain

briefly the two main areas of study: the optimal and the sequential designs.

The second chapter is devoted to the presentation of a particular kind

of adaptive design, the urn models. This method was introducted by Polya

in 1923 to describe the spread of some diseases and very soon it became
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the prototype for many statistical models in the clinical setting. Thanks

to the luck of its application, the Polya urn has been subjected to many

generalizations. In the models that we will examine, we will see that the

drawing rule could be di↵erent. These rules will have the possibility to add

the balls to the urn in the various stages of the experiment and will also

define a specific law for certain balls to change the color. In addition, once

one ball is randomly drawn, it can be assumed that any other ball is equally

likely to draw. After giving a brief idea of reinforcement, we will present one

of the models most used in clinical urn until now, the Randomized Play the

Winner Rule.

In the third chapter, we focus on a specific urn model that included for the

first time a distribution on the reinforcement. This model, the Reinforced

Urn Model, was presented by Muliere et al. in 2006 and was born as an

evolution of the Randomized Play the Winner Rule. The new idea based on

this method is to vary the number of balls in the urn inserted according to the

responses of the patient, creating change proportion much faster than using

the constant reinforcement. We will presente the model, explaining in detail

the variables that comes into play. Then we will focus on the asymptotic

results and inference problems.

The fourth chapter is dedicated to a generalization of the RRU model

introduced by Ghiglietti and Paganoni in 2013. We analyzed the theory and



LIST OF FIGURES 6

the application of this evolution pattern, including some thresholds within

the proportion of one type of treatment varies. At the end of the chapter,

we will performe several simulations to compare di↵erent properties of the

two models with the random reinforcement. In particular, we focus on the

convergence of the proportion of the balls that represents the best treatment.

In the last chapther, we show some practical applications. We present

the application on the dataset of one study about the use of melatonin in

ICU patients. The dataset is from the study on the use of melatonin on ICU

patients conducted in the ”San Paolo Hospital - University Campus”, Milan,

by the Doctors Iapichino and Mistraletti. We have re-designed the study

and resorted a way of allocation using the RRU models. We performed some

simulations to see if the new model is able to achieve the two main objectives:

determine the best treatment and minimize (maximize) the patient’s number

with the worst (best) treatment.

Finally, we conclude giving a hint of a new adaptive model that we have

started to idealize in collaboration with the team of Prof. Parmigiani and

Prof. Trippa of the ”Biostatistics and Computational Biology” Department,

Harvard T.H. Chan School of Public Health.

In the appendix we have been inserted the R code for the di↵erent simu-

lations.



Chapter 1

Adaptive Clinical Trials

In the clinical trials the patients enter sequentially and then they are

randomly allocate to one or more treatments. Typically, this study is divided

in three parts: design, run, analysis. Now, we focus on the first aspect and

we attempt to change the randomization rule during the allocation process.

1.1 Randomization Process

The randomization has many properties and its huge use in the clinical

context is justified by the fact that it promotes the comparability among the

study groups and it provides a probabilistic basis for the inference.

On the other hand, the use of randomization in medicine has raised up

many ethical discussions. Many scientists agree upon the fact that it is

7



CHAPTER 1. ADAPTIVE CLINICAL TRIALS 8

ethical to use the randomization in a state of pure equilibrium, where the

patient has supply to their consent to be investigated and is fully informed

about the potential risks and benefits of treatments.

Moreover we need to consider the delicate balance between individual

and collective ethics. The first one regards as optimal the individual health,

the second one has as main goal the public health. Some researchers argue

that this balance occurs only in stage I and stage II studies. In general the

question is controversial, but nowadays the randomization was accepted as a

good standard.

The second importat issue when one researcher runs the clinical trial is

about the sample size. Large sample size gives more information and ensures

a good level of statistical power, but it requires also higher costs. So, in this

case, we have to respond to statistical and economic needs at the same time.

Let us consider a clinical trial with n patients and k possible treatments.

Definition 1.1. A random sequence is a matrix (Kxn)

T = (T1...Tn

)0

where T
i

= e
j

j = 1, ..., K and i = 1, ..., n with e
j

the identity vector.

In general, we are interested in the properties of the random sequence

and, in particular, in the asympotic properties of the allocation proportion.
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Definition 1.2. Let be n patients and k treatments. The allocation propor-

tion will be

N(n)

n

where the matrix N(n) = (N1(n), ..., Nk

(n)) e N
j

(n) = ⌃n

i=1Tij

And necessary it has to be

||N(n)|| =
KX

j=1

N
j

(n) = n

where ||N(n)|| is the norm of N.

Now, let us consider a response variables matrix

X = (X1, ...,Xn

)

with

X
i

= (X
i1, ..., XiK

)

where X
i

is the observed responses sequence when the i-th patient is inde-

pendent assigned to the treatment. We will consider only the models for X
i

conditionally to T
i

.

Let us indicate

=
n

= �{T1, ...,Tn

}

the sigma - algebra generated by the first n treatment assigned;

X
n

= �{X1, ...,Xn

}



CHAPTER 1. ADAPTIVE CLINICAL TRIALS 10

the sigma - algebra generated by the first n responses;

Z
n

= �{Z1, ...,Zn

}

the sigma - algebra generated by the first n covariates.

Definition 1.3. Let

F
n

= =
n

⌦ X
n

⌦ Z
n+1

be one random procedure defined by

�
n

= E(T
n

|F
n�1)

where �
n

is F
n

measurable.

We indicate �
n

the conditional probability of the treatments (1, 2, ..., K)

for the n-th patient conditionally to the first (n� 1) responses to the treat-

ments and covariates.

Following this idea, we detect five di↵erent kinds of randomization

Complete Randomization when

�
n

= E(T
n

|F
n�1) = E(T

n

)

Restricted Randomization when

�
n

= E(T
n

|F
n�1) = E(T

n

|=
n�1)

Response Adaptive Randomization when

�
n

= E(T
n

|F
n�1) = E(T

n

|=
n�1,Xn�1)
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Covariate Adaptive Randomization when

�
n

= E(T
n

|F
n�1) = E(T

n

|=
n�1, Zn

)

Adjusted-Covariate Response Adaptive Randomization when

�
n

= E(T
n

|F
n�1) = E(T

n

|=
n�1,Xn�1, Zn

).

1.2 Response Adaptive Randomization

In this work we focus on one of the randomization processes above pre-

sented, the Response Adaptive Randomization - RAR. This method uses the

information gathered during the trial to sequentially change the allocation

probability to one treatment.

The main reason for our choice is the ethical concern. Indeed, using this

method we try to simultaneously meet both an individual ethical component,

providing for the individual patient the best care possible, and a collective

ethical one, providing for the population su↵ering from a disease su�cient

proof of a drug.

The RAR strength is the fact of being more flexible to the changes that

the researcher might meet during an experiment and to be able to absorb the

information even modifying the initial design for scientific needs. The reasons

that led us to study this strategy are di↵erent. First, the adaptive models
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exploit the information available at present and to the past, permitting the

reconstruction of a trend at each instant and, therefore, understanding the

evolution of the entire process. So, we will have a combination of past and

present data. We can work with continous and binary data. Our main

objectives are two: determine the best treatment and maximize the number

of patients in the experiment that receives the best treatment.

1.2.1 The Optimal Designs

The RAR is part of a particular kind of methodology: the Optimal De-

sign. The main purpose of these designs is to allocate the patients in a

optimal manner, in the sense that they meet certain properties. The princi-

pal idea is finding the experiment that minimize the loss of information. The

Optimal Designs contain a wide range of models. In the clinical context the

most commonly used are the D - Optimal ones, where D means the determi-

nant, as this method minimizes the determinant of the variance/covariance

matrix of the estimates of parameters. These strategies aim to maximize the

information matrix D = |X 0X|. The principal objectives of these designs

are obtaining precise estimates and assigning as many patients as possible to

the treatment that it is proving to do the best. The idea is to identify the

best treatment and increase the probability that this is could be chosen. The
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main components of the adaptive processes are: the identification of vari-

ables assessed at regular intervals during the treatment, the development of

alternative treatment options and modifications, the specification of the algo-

rithms that link the changes on the variables to the treatment modification,

the inclusion of the patients preferences.

The most important problem in this context is to achieve the optimal

allocation, as mentioned before. We start from a homogeneous population in

which the responses of patients assigned to the same treatment have the same

probability distribution. We suppose to have K treatments and the sample

size equal to n = (n1, ..., nK

) such that n10 = n and the probability distri-

butions of the responses depend on the parameter ✓ 2 ⇥. Then, we have

a constrained optimization problem which include the sample size !(✓)n0,

where !(✓) = (!1(✓), ...,!K

(✓)) are the possible positive weights probability

and ⌘(⌘, ✓) is the sample variance. So, our optimization problem is given by

min
n1,...,nK

!(✓)n0

sub ⌘(⌘, ✓) = C

where C is a constant value. Now, let us consider two competitive treatments,

called R and G, with binary responses. In particular, we know that p
R

is the

success probability to the treatment R and p
G

is the success probability to
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the treatment G, with q
R

= 1�p
R

and q
G

= 1�p
G

. We suppose to have one

fixed allocation n
R

for R and n
G

for G, with n
R

+ n
G

= n and suppose that

we want to measure the di↵erence between the two treatments observing the

probability allocation of each of them. We run, then, a bilateral hypothesis

test where we compare the null hypothesis that the di↵erence between the

two treatments is statistically insignificant. That is

H0 : pR � p
G

= 0

versus

H1 : pR � p
G

6= 0

The Wald test gives us

Z =
p̂
R

� p̂
Gq

p̂Rq̂R

nR
+ p̂Gq̂G

nG

where p̂
R

, p̂
G

, q̂
R

, q̂
G

are the estimators. Our problem is about the sample

size needed to observe a significant di↵erence between the two treatments.

One solution can be fixing the test variance of the alternative hypothesis

and looking at the allocation n = (n
R

, n
G

) which minimizes the total sample

size. To simplify, we can set !1(✓) = !2(✓) = 1 and the unknown parameter

✓ = (p
R

, p
G

). The test for the variance becomes

⌘(⌘, ✓) =
p
R

q
R

n
R

+
p
G

q
G

n
G



CHAPTER 1. ADAPTIVE CLINICAL TRIALS 15

Knowing that ⌘(⌘, ✓) = C and substituting ⇢(✓) = nR
n

, we have

p
R

q
R

⇢n
+

p
G

q
G

(1� ⇢)n
= C

and solving for n

n =
p
R

q
R

⇢C
+

p
G

q
G

(1� ⇢)C
.

Now, minimizing respect to ⇢, we obtain

�p
R

q
R

⇢2
+

p
G

q
G

(1� ⇢)2
= 0

and then

⇢ =

p
p
R

q
Rp

p
R

q
R

+
p
p
G

q
G

This is the Neyman allocation, as in the balanced design trial. In this case,

we can take advantage from the balanced trial in which the power of the test

is maximized. According to Rosenberger and Lachin (2005), the power of the

test is maximized when the equal allocation produces the response variables

to the treatment with same variance. When the variance of the response

variables is di↵erent, the power of the test should be maximized with the

allocation of patients to the treatment with higher variance. The weak point

of this procedure is when p
R

+p
G

> 1 the Neyman allocation directs a greater

number of patients to lower treatment. If we set !1(✓) = q
R

, !2(✓) = q
G

we
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have the RSIHR allocation (Rosenberger 2010)

⇢ =

p
p
Rp

p
R

+
p
p
G

As we can see, the optimal allocation ⇢
✓

depends on unknown parameters.

We can overcome the problem by replacing the data parameters, using the

methodology of the sequential design.

In general, when we run the response adaptive designs we have to con-

sider the correlation between the assigned treatments that can increase the

variability and adversely a↵ect the power of the test. Shortly, we have to

face the main problem of minimizing worst treatments and avoiding wasting

power. For Rosenberger and Hu (2003), this can happen imposing the nor-

mality assumption on the allocation proportions to the treatments. Infact,

in this case tha best allocation is the Neyman allocation.

1.2.2 The Sequential Designs

As we exposed before, the RAR procedures include a dynamic process

that assigns one patient to a given treatment following the probability that

is function of the respenses to the treatment and, consequently, will change

during the trial. The alternative way to the Optimal Designs to randomize

sequentially patients considering their responses, and then implement the

randomization of adaptive responses, it is a family of procedures based on
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sequential estimation.

The first procedure was introducted by Eisele (1994) and it is called the

doubly adaptive coin design. This design has inspired the research of many

authors and, thanks to the changes proposed by Hu and Zhang (2004), it gave

birth to one great part of the family of the procedures of adaptive responses.

This family includes all the procedures that have goals of allocations based on

unknown parameters of the model answers and that since the data increase,

sequentially updated estimates of these parameters.

Let us consider a generic clinical study with K possible treatments and

let us suppose that the patients are sequentially randomized and we can im-

mediately observe the responses to these treatments. When we randomized

the i-th patient and observed his response, the i + 1-th patient is allocated

to the k treatment with probability {�
i+1,k}, with k = 1, ..., K.

Let T
i

= (T
i1, ..., TiK

) be the vector that represents the outcome of the i-th

assignment, X
i

the response of the i-th patient and N
i

the allocation after

the i-th patient. Now, let us imagine that the proportion allocation of the

patients required, assigned to each treatment, is a function of some unknown

parameter of the answer X. A major purpose of this allocation scheme is

to get that the proportion allocation of the patients tents asymptotically to

a predetermined target allocation, considered optimal, the value of which is

a function of unknown parameters of the distribution of responses. Mathe-
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matically, we want to have

N
n

n
�! � = ⇢(⇥)

for n ! 1 where ⇢(z) = (⇢1(z), ..., ⇢k(z)) : Rd⇥K ! (0, 1)K is a vector of

a function such that ⇢(z)0 = 1, where ⇥ = (✓1, ..., ✓K) is a vector Rd⇥K and

✓
k

= (✓
k1, ..., ✓kd) is a vector of unknown parameters of the distribution X1,k

with k = 1, ..., K. Imposing ⇥0 as the first estimate of the sample size ⇥.

When m patients are assigned and their responses are observed, we use the

sample mean to estimate ✓
k

, k = 1, ..., K

✓̂
ik

=
⌃i

j=1Tj,k

X
j,k

+ ✓0,k

N
i,k

+ 1

and, consequently, ⇥̂
i,k

= (✓̂
i,1, ..., ✓̂i,K). The estimation of ⇥0 could be a

hypothesized value of ⇥ or an estimation of ⇥ obtained from the previous

trials.



Chapter 2

The Classical Urn Models

2.1 The idea of reinforcement

The urn models play an important role in studies adaptive response,

primarily because they ensure the randomization of the allocations. The first

use of the urn process in the clinical field is with the Polya Urn, exploited

in the past to study the contagious disease. Over the years, generalizations

and modifications of this particular method have a↵ected di↵erent aspects of

medical research, particularly for the clinical trials. The model introduced

by Polya consists of an urn with two colors.

Let us consider an urn initially containing r0 � 0 red balls and g0 � 0

green balls. At stage n = 1, 2, ... one ball is drawn from the urn and we

assign to the patient the treatment represented by that ball. In this way, we

19
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modify the urn composition following a particular rule.

The main assumption on the replacing process is that number of the balls

m > 0 added to each stage is constant. And this is the first idea of the

reinforcement. Following the definition

Definition 2.1. Muliere and Walker (2000).

Let (X1, X2, ...) be one sequence of random variables distributed as Bernoulli.

The observations are reinforced if

P (X2 = 1|X1 = 1) � P (X1 = 1)

and

P (X2 = 0|X1 = 0) � P (X1 = 0)

and, for every n � 1 and x1, ..., xn

2 {0, 1}

P (X
n+2 = 1|X1 = x1, ...., Xn

= x
n

, X
n+1 = 1) � P (X

n+1 = 1|X1 = x1, ...., Xn

= x
n

)

This implies that

P (X
n+2 = 0|X1 = x1, ...., Xn

= x
n

, X
n+1 = 0) � P (X

n+1 = 0|X1 = x1, ...., Xn

= x
n

)

and, for every n � 1 and x1, ..., xn

2 {0, 1}.

Then we have a random variables sequence {X
n

} each of which will be

0 or 1 depending on red or white ball drawn at the stage n. Moreover, for

every n � 1, we indicate R
n

and G
n

as the number of red and green balls,
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respectively, in the urn at stage n + 1. We are interested in the law of the

process of {X
n

} and in the limit behavior of the quantities that are functions

of R
n

and G
n

, as, for example, the red balls proportion in the urn before the

n+ 1 stage defined as

Z
n

=
R

n

R
n

+G
n

(2.1)

At the stage n � 1, a ball is randomly chosen from the urn and replaced

together with other m � 1 balls of the same color.

Now, let us examine the dynamics of the processes {X
n

}, {R
n

} and {G
n

}.

{X1} is distributed as

Bernoulli

✓
r0

r0 + g0

◆
(2.2)

For every n � 1, conditionally to X1, ...., Xn

,

X
n+1 =

8
>><

>>:

0 with prob Gn
Rn+Gn

1 with prob Rn
Rn+Gn

(2.3)

where

(R
n+1, Gn+1) =

8
>><

>>:

(R
n

, G
n

+m) with prob Gn
Rn+Gn

(R
n

+m,G
n

) with prob Rn
Rn+Gn

(2.4)

One of the most important on the proportion of Z is expressed by the fol-

lowing
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Theorem 2.1.1. In a Polya Urn, when n goes to infinity, the red balls

proportion

Z
n

=
R

n

R
n

+G
n

converges almost surely to a random limit.

Moreover, the limit distribution is a Beta( r0
m

, g0
m

).

2.2 Randomized Play-the-Winner Rule

The first application of a urn model in a clinical trial is due to Zelen

(1969), who exposed his theory in a paper on a rule winning (Play-the-

Winner-Rule) for controlled clinical trials. We want to run a clinical trial

in which two treatments, labeled as 0 and 1, are compared and patients are

accrued sequentially. The success or failure of the test result depends only

on the assigned treatment. In this way, the success of a treatment generates

another study on the same treatment with a new patient, while the failure

generates a study on the competitive treatment. Although the Zelen rule

is deterministic and, consequently, includes the typical biases of models not

randomized, it is noteworthy because it represents the first known case of

urn models used as sequential designs in clinical trials. His idea also inspired

later Wei and Durham (1978), which altering the original rule, have created
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a random strategy (Randomized Play-the-Winner Rule - RPW ).

In the original expression, we have Y0 balls of type A and B. Each time

that a patient is ready to be randomized, a ball is drawn and put back into

the urn. If we observe one A ball, it is assigned the corresponding treatment.

If the patient response is a success, then other balls of the same type are

added into the urn, while if it is register an unsuccessful, balls corresponding

to the opposite treatment are added into the urn.

Let N
A,n

be the number of patients to the treatment A, after n patients

are observed, and N
B,n

= n � N
A,n

. If p
A

= P {Success|TreatmentA},

p
B

= P {Success|TreatmentB}, q
A

= 1 � p
A

and q
B

= 1 � p
B

, then the

limit allocation N
A,n

/N
B,n

is q
B

/q
A

and it is a meausure of the relative risk

for n ! 1.

It can be noted how this rule was not built on the basis of some optimal

criterion and the allocation limit is not particularly attractive, as it tends

to be allocated according to the relative risk. Being the RPW a completely

randomized design, it benefits from the same characteristics of any random-

ized procedure. In particular, we do not expect a selection bias, but an

accumulation one (Rosenberger, 1996), given by those subjects who become

available to be recruited in the later stages of the study to benefit the impact

of previous results, as the first subjects have a higher likelihood of being

sent to treatment lower. For this reason it prefers a blind study, in which
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subjects do not know their succession in the study. However, in the studies

about emergency therapies, such as emergency surgery techniques, this type

of distortion is irrelevant.

Actually, it does resort to the use of RPW very rarely, as in the past has

raised strong criticism of the fact that in a clinical trial on ECMO therapy

(Bartlett et al., 1985) had been assigned to the control group only one subject.

Yao and Wei have tried to overcome this problem thinking to update the

structure of the urn only after a certain period. Furthermore, RPW has

been replaced by other adaptive strategies also in several survival studies

(Hallstrom et al. 1996, Rosenberger et al. 1997, Sverlov et al. 2014). So,

although in theory it would seem an ideal tool for clinical trials, in practice

it is good to think of other instruments.



Chapter 3

Reinforced Urn Model

As mentioned in the previous chapter, the RPW procedure has aroused a

lot of skepticism in practice. Among the many adaptive strategies in growth

in the last decade, we have focused on urn models that include a random

reinforcement. The idea is to vary the number of balls in the urn inserted

according to the responses of the patient, thus creating a proportion Z is

changed much faster than using the constant reinforcement. We are talking

about the so-called Randomly Reinforced Urn - (RRU). The RRUs were born

as an evolution of the Randomized Play the Winner Rule - (RPTW) and

have been introduced by Durham and Yu in 1990. Initially, it interested in

experiments with binary outcomes (success / failure) and were used mainly to

find the optimal dosage of a therapy. Subsequently, Muliere et al. (2006) and

Beggs (2005), have extended the application of the RRU also experimented

25
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with continuous responses.

3.1 The Model

Let us consider two treatments to be assessed, R and G. The subjects

come sequentially in the study and allocated to two treatments randomly,

according to a RRU design. The variables of interest are

• Allocations (X
i

). The strategy used to assign subjects to one of two

treatments is through a process urn, which is supposed to be indepen-

dent of the answers.

• Treatments Responses (Y
i

). Random vectors i.i.d. with discrete or

continuous marginal distributions on <. It will be observed only one

answer for every patient.

• Reinforcement (U(Y
i

)). For each draw, after observing the response,

a variable number of balls is replaced into the urn following a proba-

bility distribution, called transformation function.

• Proportion (Z). The proportion of red balls is the parameter of the

Bernoulli r. v. of the color of the ball (allocation).

Now, we look at the description of the process. Let us consider an urn

containing a non-negative number of red (r0) and green (g0) balls, so that
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a red ball represents the treatment R and a green one the treatment G. We

impose the first condition

R0 = r0 and G0 = g0 (3.1)

from which we derive

D0 = R0 +G0 and Z0 = R0/D0
(3.2)

where D0 is the urn composition at time n = 0 and Z0 is the proportion of

red balls at same time.

Let us imagine that at time n = 1 one ball is drawn from urn and it

is observed the color. The color of the ball will be an independent random

variable of the answers equal to 1 if a red ball is drawn, equal to 0 if it is

a green ball, then it is a Bernoulli random variable with parameter equal

to the proportion of red balls, that is Bernoulli(Z0) distribution denoted by

X1.

Regarding the reinforcement distribution, we have to focus on the re-

sponses: if it is drawn a red ball, then it will be replaced with a random

number of the balls of the same color, depending on the previous responses.

Let M1 2 µ and N1 2 ⌫ be two independent r. v. representing the function

of the response variable on the ball drawn, and let suppose that M1, N1 and

X1 are independent. Subsequently, the ball drawn will be replaced into the
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urn with

X1M1 + (1�X1)N1

balls of the same color. M1 and N1 are the functions of the responses corre-

sponding respectively to the red and green balls, also called transformation

functions, because they capture the e↵ect of responses and turn it into ran-

dom reinforcement. The reinforcement, for example, could be linked to the

survival functions: the greater the survival, the greater the reinforcement,

and then the number of balls added in the urn. This implies that, if we

drawn a red ball, the urn will be reinforced by the r. v. M1, belonging to µ,

instead, if it is extracted a green ball, the urn will be reinforced by the r. v.

N1, belonging to ⌫. Generally, M1 and N1 are represented as

U(Y
i

(n+ 1))

where U is a monotonic function, which could be equal to an identity function

when the distributions of the responses have non-negative limited support.

The new composition of the urn will be equal to

R1 = R0 +X1M1

G1 = G0 + (1�X1)N1

D1 = R1 +G1

Z1 = R1/D1
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The process is iterated following the same rule. Each draw will be assigned

the patient to the treatment following the allocation strategy given by

X
n+1U(Y

R

(n+ 1)) + (1�X
n+1)U(Y

G

(n+ 1)) (3.3)

where X
n+1 is a Bernoulli r. v. with parameter

Z
n

=
R

n

R
n

+G
n

and U(Y
R

(n+ 1) = M
n+1 and U(Y

G

(n+ 1) = N
n+1. The responses will be

Y (n) = X
n

Y
R

(n) + (1�X
n+1)YG

(n)

At the stage n + 1 we will have a sigma-algebra = generated by X1, ..., Xn

,

M1, ...,Mn

and N1, ..., Nn

. The process will generate the following variables

R
n+1 = R

n

+X
n+1Mn+1

G
n+1 = G

n

+ (1�X
n+1)Nn+1

D
n+1 = R

n+1 +G
n+1

Z
n+1 = R

n+1/Dn+1

So, we have one finite sequence X = (X
n

: n > 1) of Bernoulli r. v.,

where X
n

is the color drawn at n-th time or, equally, the n-th allocation and

the process (Z,D) = ((Z
n

, D
n

), n = 0, 1, 2, ...), where D
n

is the total number

of the balls in the urn at time n and Z = (Z
n

: n > 0) the sequence of r. v.
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in [0, 1] representing the proportion of red balls present in the urn at each

step. The total number of the subjects will be

N
R

(n) =
nX

i=1

X
i

and

N
G

(n) =
nX

i=1

(1�X
i

)

with N
R

(n)+N
G

(n) = n. R
n

and G
n

are the cumulative responses observed

and transformed by the utility function U , that is
8
>><

>>:

R
n

= r0 +
P

n

i=1 Xi

U(Y
R

(i))

G
n

= g0 +
P

n

i=1(1�X
i

)U(Y
G

(i))

(3.4)

3.2 Asymptotic Results

At this point we show the reasons why the use of this strategy is optimal

for clinical studies. Recall that the main objective is to assign the highest

number of patients to the treatment superiors, that is to say that the prob-

ability of being assigned to the best treatment converges to one, so that the

proportion of the best treatment is asymptotically converged to one.

We distinguish now the average of the transformed response from non-

transformed, i. e. with no reinforcement e↵ect. We indicate the average

reinforcements of the urn as

m
R

=

Z
U(y)Y

R

dy
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m
G

=

Z
U(y)Y

G

dy

Li et al. (1996) proved the following very important result for the binary

responses. If m
R

> m
G

then

lim
n!1

Z
n

= 1

almost surely.

This result was then extended to the general case by Beggs (2005), Muliere et

al. (2006a) and Aletti et al. (2009a). Consequently, the contrary is also true:

the probability of assigning one patient to G treatment tends asymptotically

to 0. Based on this property, we try to apply this case in a trial in which

you want to demonstrate the e↵ectiveness of R respect to G when the first

treatment mean is bigger then the second one. Let us consider, then, the

finite mean responses from non-transformed random reinforcement, i. e.

µ
R

=

Z
yY

R

dy

µ
G

=

Z
yY

G

dy

It has to choose an appropriate transformation function, in the sense that

the following conditions must be simultaneously hold on

µ
R

> µ
G

if and only if m
R

> m
G

µ
R

= µ
G

if and only if m
R

= m
G
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ensuring in this way the convergence to the best treatment with probability

one when n ! 1.

To decide which transformation function is the most appropriate is a del-

icate point, because it influences the rate of convergence and the distribution

of the allocations. Certainly, the best option should be one that takes into

account a good tradeo↵ between ethics and accuracy of the analysis. We

emphasize that, both in the case in which there is a superior treatment, and

both in the case where they are equal, the proportion of subjects designed

for the two treatments has the same limit of the composition of the urn

lim
n!1

N
R

(n)

n
= Z1 a. s.

and

lim
n!1

N
G

(n)

n
= 1� Z1 a. s.

Consequently, the proportion of subjects placed at the best treatment con-

verges to one. Let us now concentrate on the more delicate case: when the

means responses are the same how it will be the behavior of the proportion

Z? Recalling the achievements Muliere et al. (2006a), we know that the

process is a limited super or sub martigale. When the treatments give the

same results, the sequence of the proportion

Z
n

: n � 0 converges a. s. to the random limit Z1 in [0, 1].
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The delicate point of this condition is that, until now, the distribution of Z1

is unknown. According to the results obtained by Aletti et al. (2007, 2009a),

we are only sure about that, under certain conditions, its distribution will

continue. In general, the problem of equality of the responses is particularly

important when you have to test e↵ectiveness of treatments under the null

hypothesis that these are equal. In fact, there are special cases studied in

the literature in which the distribution of Z1 is known.

Now, we can sum up all the considerations.

1. The responses distributions are the same. When Y
R

= Y
G

then

even distributions of reinforcement will be the same, U(Y
R

) = U(Y
G

) =

�. If responses to treatment are random variables constant, that is, � is

a grounding point, the RRU degenerates to the classic design of Polya

(Eggenberger, Polya, 1923): an urn initially contains r red balls and g

green balls and the reinforcement It is a constant m. In this case the

distribution of Z1 we know that is a Beta(r/m, g/m).

2. Random reinforcement di↵erent for success and failure. If in

a RRU design, we define the random reinforcement as a non-negative

number m for the success and zero for the failure, the distribution of

Z1 is still a Beta. It is about a result which follows from Aletti et al.

(2007) in which it is shown that the distribution of Z1 doesn’t change
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when U(Y
R

) 6= U(Y
G

).

It should be noted that when the treatments are equal, the moments higher

than the first of the reinforcements are di↵erent

Z
U(y)hY

R

dy 6=
Z

U(y)hY
G

dy for h > 1

In this case, although the treatments are equal, the distributions of the re-

inforcements are di↵erent.

3.3 Inference

Let us consider the case where we want to estimate mean {µ
R

, µ
G

} and

variance {�2
R

, �2
G

}of the distributions of the responses. Following the method

of May and Flournoy (2009), we define the estimators based on the observed

responses of the n subjects with a random sample size N
R

(n) and N
G

(n)

Ŷ
R

(n) =
⌃n

i=1Xi

Y
R

(i)

N
R

(n)

Ŷ
G

(n) =
⌃n

i=1(1�X
i

)Y
G

(i)

N
G

(n)

�̂2
R

(n) =
⌃n

i=1Xi

(Y
R

(i)� Ŷ
R

(n))2

N
R

(n)
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�̂2
G

(n) =
⌃n

i=1(1�X
i

)(Y
G

(i)� Ŷ
G

(n))2

N
G

(n)
.

In May et al. (2012) it proves the strict consistency of Ŷ
R

(n), Ŷ
G

(n),

�̂2
R

(n) and �̂2
G

(n) for µ
R

, µ
G

, �2
R

and �2
G

respectively. Furthermore, the two

estimators are asymptotically jointly distributed as Normal, despite of the

randomness of N
R

(n) and N
G

(n), its dependence and the no convergence of

NR(n)
n

and NG(n)
n

to a constant in (0, 1). Now suppose you want to build a

hypothesis tests on the means.

H0 : µR

= µ
G

versus H1 : µR

> µ
G

.

In the literature there are cases in which the asymptotic normality occurs

only when the proportion of allocations converges to a fixed ⇢ 2 (0, 1) and

cases applicable to the RRU in general, that is, when both the averages are

the same and when both are di↵erent.

A work worthy of attention is the paper of Paganoni and Secchi (2007),

in which it is presented a new guideline to compare an adaptive design with

one no adaptive, i. e. one balanced study. At the end of the paper, you can

find the regions useful for discriminating the use of either strategy. These

considerations have been e↵ectively used for the comparison of two studies

adaptive (Bandyopadhyay and Biswas, 2001; Biswas and Basu, 2001).



Chapter 4

Modified Reinforced Urn

Model

In recent years, the RRU models have become under study, in particular,

has aroused our curiosity a change made in 2013 by Ghiglietti, Aletti and

Paganoni. Significant steps have been made with regard to the convergence

of the proportion of balls. One of the first results will be presented, in fact,

the convergence theorem. The most important change is the introduction

of two thresholds in which falls the allocation proportion. Practically, the

previously values 0 and 1 are replaced with the thresholds. The main reason is

that we want to avoid a concentration of one color of balls and, in particular,

the extreme case where the composition of the urn asymptotically collapses

towards a type of ball which, as we have seen before in the case of RPW,

36
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turns out to be not attractive in practice of clinical studies.

4.1 The Model

Let us imagine that we are in a clinical trial in which you want to compare

two treatments R and G. The subjects in the study sequentially enter and are

allocated to the two treatments randomly, according to a Reinforced Modified

Random Urn - (MRRU) design. The variables of interest are the same of the

RRU model, but with a modification in the reinforcement process.

Let us consider an urn containing a non-negative number of red (r0) and

green (g0) balls, so that a red ball represents the treatment R and a green

one the treatment G. At time 0 the process will be

R0 = r0, G0 = g0, D0 = R0 +G0, Z0 = R0/D0. (4.1)

At time n = 1, one ball is drawn from the urn and its color is a Bernoulli(Z0)

X1 = 1[0,Z0](U1)

Let M1 and N1 be two independent random variables having distributions

µ
R

and µ
G

with the support on [↵, �], where 0 6 ↵ 6 � < 1. These

variables represent the responses to the treatments R and G, where (U1) is a

sequence of independent Uniform r. v. in (0, 1). Moreover, we assume that

X1, M1 and N1 are independent. Now, we have in this situation a di↵erent
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type of reinforcement, including two limit thresholds to avoid an excessive

concentration of red balls. We could have 4 di↵erent scenarios. If we drawn

one red ball, then it will be replaced into the urn with a random number

X1M1 of the same balls if Z0 < ⌘, with ⌘ 2 (0, 1) a parameter decided a

priori. Otherwise, the urn composition doesn’t update. Instead, when we

drawn one green ball, it will be replaced into the urn with a random number

(1�X1)N1 balls of the same color only if Z0 > �, with � < ⌘ 2 (0, 1); on the

contrary nothing changes. The updating process then becomes

R1 = R0 +X1M11[Z0<⌘],

G1 = G0 + (1�X1)N11[Z0>�],

D1 = R1 +G1,

Z1 = R1/D1.

As we can see, while in the previous case there was always an update of the

urn, now sometimes we could find in deadlock situations in which there shall

be no adjustment to the process. This happens when � < Z0 < ⌘. Now, we

can iterate infinite the strategy and at time n + 1, given the sigma-algebra

F
n

generated by X1, ..., Xn

, M1, ...,Mn

and N1, ..., Nn

, the new process will

be

R
n+1 = R

n

+X
n+1Mn+11[Zn<⌘],
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G
n+1 = G

n

+ (1�X
n+1)Nn+11[Zn>�],

D
n+1 = R

n+1 +G
n+1,

Z
n+1 = R

n+1/Dn+1.

We have, thus, generated an infinite succession of X = (X
n

, n = 1, 2, ...)

Bernoulli r. v., with X
n

equal to the color of the drawn ball at time n, and

one process (Z,D) = ((Z
n

, D
n

), n = 0, 1, 2, ...) with values in [0, 1]⇥ (0,1),

whereD
n

represents the total number before the n�th ball was drawn and Z
n

is always the proportion of red balls. X will be the color process generated

by the urn, and (Z,D) the process of its composition. We highlight that

(Z,D) a Markov sequence respect to the filtration F
n

.

As mentioned above, also for the convergence it has been achieved an

important result. Infact, we have the following

Theorem 4.1.1 (Aletti et al.). The sequence of the proportions Z = (Z
n

, n =

1, 2, ...) of the MRRU process converges almost surely to the following limit

lim
n!1

Z
n

=

8
>><

>>:

⌘ if
R
�

↵

xµ
R

dx >
R
�

↵

xµ
G

dx

� if
R
�

↵

xµ
R

dx <
R
�

↵

xµ
G

dx

For the proof we refer to Aletti, Ghiglietti, Paganoni (2013).

The strength of this result is not only the proof of the convergence of pro-

portion, but the fact that when this convergence exists we know what that
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is, and its value is exactly equal to the two thresholds introduced in the

construction of the urn process with random reinforcement.

The two thresholds, defined in advance at the beginning of the study and

decided based on the experience of the researcher, are nothing more than

a fixed target of allocation, introduced to avoid extreme cases where the

proportion collapses to 1 or 0. Note that we are evaluating probability dis-

tributions with di↵erent means, then treatments with well-defined outcomes.

A further advantage of the introduction of two thresholds is that the prob-

ability of allocation of patients to di↵erent treatments can be chosen by the

researcher in order to ensure full control of the evolution of the urn. However,

at this juncture nothing it is said on the speed of convergence, aspect that

will be treated in the simulation, in which will be taken a higher number of

urns to increase the convergence’s speed.

As regards the case in which means are equal, that is the two treatments

are perceived as similar, a result was achieved by the following

Lemma 4.1.2. We assume that m
R

= m
G

= m. If D0 > 2�, then

E

✓
sup
n

|A
n

◆
6 �

D0

E (hMi1 � hMi
n

|F
n

) 6 �

D0
, 8n � 0.

Consequently, we have
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Lemma 4.1.3. We assume that m
R

= m
G

= m. D0 > 2�, then

P

✓
sup
n

|Z
n

� Z0| � h

◆
 �

D0

✓
4

h2
+

2

h

◆
8h > 0.

In general, when the means are equal, that is when the treatments have

the same e↵ects, we don’t have the explicit form of the asymptotic distribu-

tion of proportion Z
n

. The only important information that we know is that

the proportion converges to a continuous distribution.

In some special cases, however, we can know what is the distribution of

responses (Flournoy, May, Secchi, 2012). Saying that the distribution of the

responses are equal is the same to say that the distribution of the reinforce-

ment is equal. When the distribution of responses and reinforcements are

equal to a discrete distribution, the responses to the treatment have a con-

stant reinforcement, then the RRU degenerates to classical Polya Urn. In

this case we already shown that Z1 follows a Beta(r/m, g/m). We have the

same result also for the RRU in the case of binary responses, where m is the

random number of balls added when success happens and 0 when we have a

failure (Aletti, 2007).

It should be noted that when the treatments are perceived equally, in the

sense of having the same mean responses, the moments higher than the first

of the reinforcements are di↵erent. This consideration may be of interest

when the treatments are identical, but the distributions of the reinforcement
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not. The conclusion we reach is that the total number of balls increases

exponentially: this result depends on the reinforcements, then the balls that

are adding to the urn, which are random in the sense that change based on

the responses from patients. We have to underline the fact that the number

of balls will never decrease because the ball drawn, in any color, it will always

be reinserted into the urn, with or without reinforcement by using the upper

and lower thresholds. The goodness of a treatment is identified with its

expected value, or mean. The greater the mean of the responses, the better

the treatment and the greater the reinforcement in terms of balls added to

the urn, so as to reach at the end the convergence at the upper end.

4.2 Convergence Theorem: some simulations

Now let us see how to use in practice the convergence theorem presented

before, based on the idea proposed by Aletti et al. (2011). An interesting

way is to use it for finding the mean of the responses of one treatment in a

two arms clinical trial. We imagine that you want to design a clinical trial

in which we know only one treatment R and we want to figure out the mean

e↵ect on patients of the introduction of a new treatment G. In statistical

terms, we want to know the mean of the distribution of the responses of

patients to the new treatment. Knowing well the competitive treatment
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allows us to make adjustments during the trial and change the mean of

treatment R properly.

Let us considerK urns with the same unknown initial composition (r0, g0).

We use a greater number of urns because we want to see faster the empirical

convergence. As before, the red ball is associated to the known treatment

R, the new treatment to the green G. We indicate with Zj = (Zj

n

)
n2N the

process of the proportion in the j-th urn, with j 2 {1, 2, ..., K}. For every

urn, the convergence theorem says us

lim
n!1

Z
n

=

8
>><

>>:

⌘ if m
R

> m
G

� if m
R

< m
G

Now, we see that we can use the result of convergence for the MRRU

model to estimate the mean m
G

when this is unknown and it is instead

known m
R

. For this purpose, it will be su�cient to repeat several times

the simulation with di↵erent values of m
R

, at each step the simulation is

calculated by the empirical cumulative function F̂ and evaluated as the

Wasserstein distance between it and the three sample functions F
�

(x) = 1
x>�

,

F
⌘

(x) = 1
x>⌘

and the cumulative function F
e

of the asymptotic distribution

that is obtained in the case of reinforcements with the same mean m
R

. Given

that we unknow the latter is not known except for some case particularly

(when, for example , the reinforcements are constant we know that Z1 is a

Beta(r0/m, g0/m) we have empirically determined this function run an other
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simulation. When the Wasserstein distance between the function and one of

the empirical cumulative functions sample becomes less of a tolerance ↵ fixed

a priori, the simulation ends. In such case there will be one of the following

situations:

• the sample function with the Wasserstein distance minimum is F
�

, then

m
R

< m
G

. It will proceed with the experiment, and then will be

performed another simulation in which the reinforcements of red balls

will have the mean m
R

greater than that used for this iteration;

• the sample function with the minimum Wasserstein distance is F
⌘

, then

m
R

> m
G

. It will be performed another simulation in which the re-

inforcements of red balls will have mean m
R

lower than that used for

this iteration;

• the sample function with the minimum Wasserstein distance is F
e

, this

happens when m
R

v m
G

. Only in this case we can terminate the

experiment, since we have found an estimate of m
G

.

We performed two types of experiments using the first as a normal distribu-

tion reinforcements variance always equals equals 1, and the second constant

reinforcement (classical Polya Urn). The next figures show the results pro-

duced in the two cases. In both situations they are taken m
G

= 17 and

m
R

= 30, 20, 15, 17.5.
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Figure 4.1: Normal Reinforcement, m
R

= 30, m
G

= 17, � = 0.3, ⌘ = 0.7, r0 =

w0 = 200

In both experiments, it is observed that for m
R

= 30, 20 the function that

realizes the minimum Wasserstein distance is F
⌘

, in the case m
R

= 15, the

minimum is realized by F
�

, in the case m
R

= 17.5 the minimum distance is

obtained by F
e

.

In conclusion we have seen that thanks to the convergence theorem we

can calculate the unknown mean, regardless of the assumptions imposed on

the reinforcements. The fact remains that, as anticipated above, in the case
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Figure 4.2: Normal Reinforcement, m
R

= 20, m
G

= 17, � = 0.3, ⌘ = 0.7, r0 =

w0 = 200

of reinforcements constants, and therefore the case of the Classical Polya

Urn, the distribution of the proportion of the balls is known to be a Beta

distribution, but this is not proved for MRRU model.
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Figure 4.3: Normal Reinforcement, m
R

= 15, m
G

= 17, � = 0.3, ⌘ = 0.7, r0 =

w0 = 200

4.3 Hypothesis Tests

A very important aspect concerns the power of hypothesis testing and

the determination of the sample size. Suppose that we run a clinical trial

in which patients were assigned n0 to two treatments R and G, with p0 the

proportion of patients assigned to R. We want to test the hypothesis

H0 : mR

= m
G
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Figure 4.4: Normal Reinforcement, m
R

= 17.5, m
G

= 17, � = 0.3, ⌘ =

0.7, r0 = w0 = 200

versus

H1 : mR

6= m
G

with significance level equal to ↵. From the theoretical results we know that

the statistic

⇣0 =
X̄

R

� X̄
G

� (m
R

�m
G

)q
�

2
R

NR
+

�

2
G

NG

,

where N
R

and N
G

are the patients assigned to treatment R and G, respec-
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Figure 4.5: Constant Reinforcement, m
R

= 30, m
G

= 17, � = 0.3, ⌘ =

0.7, r0 = w0 = 200

tively, and

X
R

=
⌃n

i=0Xi

M
i

N
R

,

X
G

=
⌃n

i=0(1�X
i

)N
i

N
G

,

are distributed ad a standard Normal. Then, the critical region of level ↵ is
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Figure 4.6: Constant Reinforcement, m
R

= 20, m
G

= 17, � = 0.3, ⌘ =

0.7, r0 = w0 = 200

represented by

R
↵

=

8
<

:|X
R

�X
G

| >

s
�2
R

N
R

+
�2
G

N
G

· z
↵/2

9
=

; .

In general, one di↵erence �0 between two treatments is clinically relevant if

it is greater than a fixed quantity. We denoted by 1��0 the minimum power

of the test we want to achieve at �0. We we have fixed ↵, �0, knowing p0

and n0, we can compute the unique value of �0.
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Figure 4.7: Constant Reinforcement, m
R

= 15, m
G

= 17, � = 0.3, ⌘ =

0.7, r0 = w0 = 200

For example, we impose ↵ = 0.05, �0 = 0.2, p0 = 0.5, n0 = 198, then we

have 1� �0 = 0.8.

Now, we want to undestand how finding a new test (n, p) so that it is

uniformly most powerful test (p0, n0) and that it assigns less patients to the

worse treatment. One can verify that this happens when the pair (p, n) is

located in one of these following three regions.

A REGION In this region the tests are uniformly most powerful test (p0, n0)
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Figure 4.8: Constant Reinforcement, m
R

= 17.5, m
G

= 17, � = 0.3, ⌘ =

0.7, r0 = w0 = 200

and fewer patients assigned to treatment R

A =

⇢
(p, n) 2 (0, 1)⇥ (0,+1) : n

�

(p) < n <
p0n0

p

�
,

where n
�

(p) is defined as the following reasoning. Called p
opt

= �R
�R+�G

,

n
�

(p) =

✓
p2
opt

p
+

(1� p
opt

)2

(1� p)

◆
·
✓
p2
opt

n0p
+

(1� p
opt

)2

n0(1� p)

◆�1

.

B REGION The tests in this region are uniformly most powerful of the



CHAPTER 4. MODIFIED REINFORCED URN MODEL 53

Figure 4.9: Power of the test of the mean di↵erence when ↵ = 0.05, �0 = 0.2,

p0 = 0.5, n0 = 198

test (p0, n0) and they assign fewer patients to either treatment

B =

⇢
(p, n) 2 (0, 1)⇥ (0,+1) : n > max

⇢
p0
p
,
1� p0
1� p

�
· n0

�
(4.2)

C REGION The tests in this region are uniformly most powerful of the

test and assign less patients to treatment G

C =

⇢
(p, n) 2 (0, 1)⇥ (0,+1) : n

�

(p) < n <
(1� p0) · n0

1� p

�
,

It is clear that the allocation of patients to the two treatments should be
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made so that, if m
R

< m
G

, (p, n) 2 A, if instead m
R

< m
G

, then (p, n) 2 C.

In this way it can use an allocation method based on an MRRU urn, with �

and ⌘ appropriately chosen.

Figure 4.10: A, B, C regions when n0 = 198, p0 = 0.5, �
R

= �
G

= 0.5

Doing the test we find that when n = 300, n0 = 198, p0 = 0.5, then it has to

be

� 2 [0.2084512, 0.33] ⌘ 2 [0.67, 0.7915488]

To verify empirically the properties of this test, we run K = 200 urn pro-

cesses with intervals [�1, ⌘1] = [0.33, 0.67] and [�2, ⌘2] = [0.2084512, 0.7915488].
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To do this we have run K urn processes and, using the properties exposed

before, compute the mean power (the mean of all the powers obtained by

all the K test when � = |m
R

�m
G

|), the empirical power (the mean of the

results of the K test computed assuming of assigning 0 when the hypothesis

H0 is accepted, 1 when the hypothesis H1) and the times in which the power

of each test was higher than the power of the test classic.

We run the simulation, assuming K = 200, m
R

= 1.25, m
G

= 1, and

we see that for both intervals the ”improved” power (number of times in

which the power of the new test was superior to that of the reference test) is

1. Moreover, we register the following the results registered in the table 4.1.

Interval Calculated Power Empirical Power Mean N
R

Mean N
G

[�1, ⌘1] 0.9760361 0.9 127 122

[�2, ⌘2] 0.9905799 0.91 157 143

Table 4.1: Di↵erent values of � and ⌘

4.4 RRU versus MRRU

At this point we are able to make some comparisons between the two

methods proposed. First of all, we have carried out simulations to see the
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Figure 4.11: Patients assigned to the treatments R and G when [�1, ⌘1]

Figure 4.12: Patients assigned to the treatments R and G when [�2, ⌘2]

di↵erent trend of the proportion of red balls depending on whether you are

in the case where the thresholds are present or not. Initially we performed
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simulations using three di↵erent distributions for the reinforcement: normal,

exponential and constant reinforcements. With this choice, it was verified

empirically that the convergence results seen previously for the two urn pro-

cesses does not depend on the particular distribution of the reinforcements,

but only by their mean. In all cases, it is taken as an initial composition of

the urn r0 = 200, g0 = 200.

The figures 4.13, 4.14 and 4.15 report the graphs in the case without

thresholds, that is with � = 0 and ⌘ = 1, the numerical simulations for 10000

extractions with reinforcements following normal distribution.

In the figures 4.16, 4.17 and 4.18, we present the results obtained with

inserting the thresholds, in particulare we impose � = 0.3 and ⌘ = 0.7.

As we can see in the figures above, consistent with the theoretical results,

when we run the RRU model the sequence Z
n

converges to 0 if m
R

< m
G

,

to 1 if m
R

< m
G

, instead when we run the MRRU model the sequence

Z
n

converges to � if m
R

< m
G

, to ⌘ if m
R

< m
G

. When, instead of the

means of reinforcements are equal, the result is ambiguous. To better assess

what happens when the averages are equal, we have modified the functions

used in the simulations presented before for K independent urns. In this case

listed the histograms for the di↵erent distributions of the reinforcements. We

show only the results for the RRU model, first with constant reinforcements

(figures 4.19, 4.20 and 4.21), and after with normal reinforcement (figures
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Figure 4.13: Normal Reinforcement with m
R

= 4 and m
G

= 2 for 10000

drawings

4.22, 4.23 and 4.24).
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Figure 4.14: Normal Reinforcement with m
R

= 2 and m
G

= 4 for 10000

drawings
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Figure 4.15: Normal Reinforcement with m
R

= m
G

= 3 for 10000 drawings
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Figure 4.16: Normal Reinforcement with m
R

= 4 and m
G

= 2 for 10000

drawings, � = 0.3 and ⌘ = 0.7
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Figure 4.17: Normal Reinforcement with m
R

= 2 and m
G

= 4 for 10000

drawings, � = 0.3 and ⌘ = 0.7
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Figure 4.18: Normal Reinforcement with m
R

= m
G

= 3 for 10000 drawings,

� = 0.3 and ⌘ = 0.7
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Figure 4.19: Constant Reinforcements, m
R

= 2, m
G

= 4, r0 = g0 = 200, 500

urns.
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Figure 4.20: Constant Reinforcements, m
R

= 4, m
G

= 2, r0 = g0 = 200, 500

urns.
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Figure 4.21: Constant Reinforcements, m
R

= 3, m
G

= 3, r0 = g0 = 200, 500

urns.
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Figure 4.22: Normal Reinforcements, m
R

= 2, m
G

= 4, r0 = g0 = 200, 500

urns.
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Figure 4.23: Normal Reinforcements, m
R

= 4, m
G

= 2, r0 = g0 = 200, 500

urns.
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Figure 4.24: Normal Reinforcements, m
R

= 3, m
G

= 3, r0 = g0 = 200, 500

urns.



Chapter 5

Real Case: The Melatonin

Study

In this chapter we are going to evaluate the models exposed before in the

real context. As we proved in first chapters, the urn models work well in

the simulation, now we want to see their behavior in the practical context.

In the next sections, we present the results obtained after applied the urn

designs to one real experiment.

In this chapter we use the dataset from the study ”Melatonin reduces the

need for sedatives in high-risk critically ill patients” conducted in the ”San

Paolo Hospital - University Campus”, Milan, by the Doctors Iapichino G.

and Mistraletti G., from Institute of Anesthesiology and Intensive Care. A

single-center, double-blind randomized placebo-controlled trial was carried

70
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out from July 2007 to May 2010. We use the information gathered from

this study to re-design a new imaginary trial in which we use the Response

Adaptive Design.

5.1 The original study

The original study is aimed to estimate if the administration of oral mela-

tonin in ICU patients is able to regularize the sleep-waking rhythm, improv-

ing sleep quality and reducing episodes of agitation/mental confusion.

The main objectives are: assessment of sleep quality, prevalence of mental

confusion/agitation, amount of daily sedative drugs administered and mod-

ification of redox status. The primary outcome measures is the overall

sedatives daily doses. The secondary outcome measures are: prevalence

of delirium assessed with CAM-ICU, prevalence of mental disorders, ICU

length of stay, ICU mortality, hospital mortality, sleep quantity assessed by

wrist actigraphy.

At the admission in ICU, obtained the informed consent, the patients,

who were high-risk critically ill, will be randomly assigned to the ”Treatment”

group receiving melatonin 3mg BID by oral route (or nasogastric tube) or

to the “Control” group receiving placebo. The sedation will be performed

according to clinical standard.
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The study was a randomized, controlled, double-blind. Of the 1158 pa-

tients admitted to ICU and treated with conscious enteral sedation, 82 crit-

ically ill with mechanical ventilation ¿ 48h and Simplified Acute Physiology

Score II ¿ 32 points were randomized 1:1 to receive, at eight p.m. and mid-

night, melatonin (3+3mg) or placebo, from the third ICU day until ICU

discharge.

The results of the analysis have shown that melatonin treated patients

received lower amount of enteral hydroxyzine. Other neurological indicators

(amount of some neuroactive drugs, pain, agitation, anxiety, sleep observed

by nurses, need for restraints, need for extra sedation, nurse evaluation of se-

dation adequacy) seemed improved, with reduced cost for neuroactive drugs.

Post - traumatic stress disorder prevalence did not di↵er between groups, nor

did ICU or hospital mortality. There are some study limitations, including

the di↵erences between groups before intervention, the small sample size, and

the single-center observation.

They concluded that long term enteral melatonin supplementation may

result in a decreased need for sedation, with improved neurological indicators

and cost reduction. Further multicenter evaluations are required to confirm

these results with di↵erent sedation protocols.
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5.2 The ICU trial on Melatonin reinterpreted

according to RRU Model

We have re-designed the study and resorted a way of allocation using the

urn with random reinforcement studied previously. The two objectives that

we set were:

1. determine the best treatment,

2. minimize (maximize) the patient’s number with the worst (best) treat-

ment.

We know that, in this case, patients come sequentially in the experiment

and each time a new subject arrives, a ball is drawn and the patient is as-

signed to one of two treatments, based on the color of the ball that represents

the treatment. In our case, we indicate red balls for the melatonin (R treat-

ment) and green balls for the placebo (G treatment). Later, we will see the

response to the assigned treatment and we will replace in the urn other balls

of the same color of the drawn one, whose quantities will be a function of the

observed response. We repeat the procedure until of the next patient. In this

way, the composition of urn changes every time a new response is observed,

and then with it the probability of allocating of patients to treatments.

To achieve the first goal we use the bootstrap method and run 200 sim-
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ulations of the responses from the empirical distribution obtained by the

responses of the original study. As you can see from Figure 5.1, the urn

process is able to identify the best treatment. Particularly, among the sim-

ulations we ran, 169 times the urn assigned the largest number of patients

to melatonin (the best treatment), and only 31 times to placebo treatment.

Moreover, the proportion of the R balls representing the melatonin treatment

tends to 1, in particular to 0.98. Then, also the convergence is assured.

Figure 5.1: Number of patients assigned to placebo treatment (G) and mela-

tonin treatment (R) with RRU method.
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The second goal is to compare the performance statistics of the original

clinical trial, that was randomized controlled, with those of a test based on

RRU design. Now, we want to show that a response adaptive clinical trial

is able to lead to a statistical test as the most powerful and to assign less

patients to the less e↵ective treatment, in our case the placebo group.

We considere three cases, based on a di↵erent sample sizes: sample =

82, sample = 102, sample = 122. For each of these cases, we run 10000

simulations of the experiment. In each simulation, we have a virtual urn

whose drawings set the assignments of patients to treatments, and in general,

the two sample sizes at the end of the experiment will be di↵erent every

time. The patients responses to treatments, that are used to update the

urn’s composition, are randomly drawn from the data collected for testing

with the randomization controlled. The RRU design generates two samples

with di↵erent numerosity in the di↵erent experiments.

In Figure 5.2 we reported the boxplots for the number of patients as-

signed to the lower treatment (placebo - G) in the three cases with di↵erent

sample sizes. As we can notice, in all the three cases, more than 50 per-

cent of the times the adaptive model assigns fewer patients to treatment G.

Moreover, this happens even when the number of total patients used in the

experiment is greater than the original one. For each simulation performed,

we have realized a t - test at the significance level of 5 percent to test whether
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the mean di↵erence was significantly di↵erent in the two samples (Placebo

vs Melatonin).

For each scenario, we reported the power of the test obtained as the pro-

portion of the number of times that the test has encountered such di↵erence

between the means. In Figure 5.2, each power is been shown under the

corresponding boxplot and next to each boxplot we have shown the patient’s

number for each group in the balanced trial. We have calculated the power

of the original test obtained by the method of the randomization controlled,

equal to 0.8. This value is calculated evaluating the theoretical power func-

tion of the t- tests at the values of the observed sample means. We can

therefore see that in second and third case, the response adaptive model is

able to build a statistical test with a power equal to or greater than the

original test.

After all these considerations, we can conclude that the RRU method

confirms the theoretical results also in practice.
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Figure 5.2: Boxplots of the number of patients assigned to lower treatment

(placebo) in the three cases: sample size = 82, sample size = 102, sample size

= 122. Next to each boxplot it is indicate the number of patients assigned

in the classical controlled trial. Below is shown the power of the test to the

adaptive response obtained in the simulation.
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Conclusions

In this thesis we interested in the use of adaptive models in clinical trials,

especially on the strategies based on the urn models. These techniques used

not only for binary responses, but also for the continue ones. We have seen

that the use of these methods allows to maintain a certain degree of ran-

domization, useful for the purposes of statistical analysis. Starting with the

Polya’s Urn, we analyzed the main changes, focusing on designs with random

reinforcement. In this case the urn has the ability to change its composition

depending of the reinforcements, that is, the e↵ects of the treatments on the

patients. This means that all patients will be allocated to the asymptoti-

cally best treatment, thereby o↵ering subjects in the sample the best care

among those in the study. Our analysis focused on those models that have

an asymptotic target set for the proportion urn. This value represents the

78
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limit to which the proportion of patients assigned to di↵erent treatments in

the study, will converge asymptotically.

Although these models exhibit many advantages, one of the weaknesses

is the delay of the answers that could lead to an increase in time analy-

sis. Di↵erent solutions may be used: resorting to a multi-center trial, using

a Bayesian approach considering the distribution of answers as a priori or

considering the covariates.

A number of scientific questions arise with the use of Bayesian Adaptive

Randomization (BAR). Because the variability of an estimator of a compar-

ative e↵ect between the two treatments is lower when there is balance in

allocations, especially in the case of BAR, the ethical goal is in contrast with

that of optimizing the statistical accuracy.

Another weakness is the fact that the characteristics of the patients in the

study could change systematically over time, a phenomenon known as ”drift”,

and this could cause a impractical procedure. While the use of a model for

covariates reduces the probability of this problem, the drift caused by the

e↵ects of latent variables is a very delicate aspect. In regards to this several

methods were created to manage ”drift” (Karrison et al. 2003). In general,

a very controversial and typical issue in the design of a Bayesian clinical trial

is the choice of the prior distribution.

It is this approach that we decided to follow to continue our research.
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In fact, an evolution of these adaptive models in Bayesian key are being

studied, mainly thanks to the recent period at Department of ”Biostatistics

and Computational Biology” of the Harvard T.H. Chan School of Public

Health, working with the group of Professor Parmigiani and Professor Trippa.

We started working on a new adaptive model that combines cross-over design

, thus taking into account the possibility for a person to change treatment,

and Bayesian Adaptive Randomization. The aim is to define the method to

be able to compare with the design of the urn models and to generalize these

methods to a multiarm clinical trial with continous responses.

So, this is only the springboard to new insights. It is not one ending, but the

new starting.
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R Code

.1 RRU versus MRRU

In this appendix we report the R code used for all the simulation in this

thesis.

The following one_step make a step from the process urn, when we know

the current composition of the urn and a set of parameters that define the

type of reinforcement to be applied.

one_step = function(r, g, mr, mg, tipo_rinforzo, delta, eta) {

z = r / (r + g);

x = rbinom(1, 1, z);

if(tipo_rinforzo == ’n’) {

m = rnorm(1, mr);

n = rnorm(1, mg);

} else if (tipo_rinforzo == ’c’) {

98
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m = mr;

n = mg;

} else if (tipo_rinforzo == ’e’) {

m = rexp(1, mr);

n = rexp(1, mg);

}

if(z < eta)

r = r + x*m;

if(z > delta)

g = g + (1-x)*n;

z = r / (r + g);

cat("Palline rosse: ", r, "\n");

cat("Palline bianche: ", g, "\n");

cat("Proporzione: ", z, "\n");

return(c(r, w, z));

}

The function simulation simulates an entire urn process calling up the

function one_step

simulation = function(r0, g0, mr, mg, n_iterazioni, +

+ tipo_rinforzo, delta = 0, eta = 1) {
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r = r0;

g = g0;

proporzione = rep(0, n_iterazioni);

for(i in c(1 : n_iterazioni)) {

output = one_step(r, g, mr, mg, tipo_rinforzo, delta, eta);

r = output[1];

w = output[2];

proporzione[i] = output[3];

}

windows();

plot(proporzione, type=’l’, ylim = c(0, 1), +

+ main=paste(’Simulazione di ’, n_iterazioni, ’ estrazioni’), +

+ xlab = "", ylab = "Zn");

abline(h=delta,col=’blue’)

abline(h=(eta+delta)/2,col=’red’)

abline(h=eta,col=’blue’)

}

We note that the two functions lend themselves to run simulations using

three di↵erent distributions for the reinforcements: normal reinforcements,

exponential reinforcements and constant reinforcements, depending on the
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value assumed by the parameter tipo_rinforzo. With this choice, we want

verify empirically that the convergence results, seen previously for the two

processes urn, do not depend on the particular distribution of the reinforce-

ments, but only by their means.

.1.1 Di↵erent independent urns

The following are the modified functions for k independent urns.

one_step_vectors = function(r, g, mr, mg, tipo_rinforzo, delta, eta) {

z = r / (r + g);

k = length(r);

if(tipo_rinforzo == ’n’) {

m = rnorm(k, mr);

n = rnorm(k, mg);

} else if (tipo_rinforzo == ’c’) {

m = rep(mr, k);

n = rep(mg, k);

} else if (tipo_rinforzo == ’e’) {

m = rexp(k, mr);

n = rexp(k, mg);

}



R CODE 102

x = rep(0, k);

for(i in c(1:k)) {

x[i] = rbinom(1, 1, z[i]);

if(z[i] < eta)

r[i] = r[i] + x[i]*m[i];

if(z[i] > delta)

g[i] = g[i] + (1-x[i])*n[i];

}

cat("Palline estratte: ", x, "\n");

cat("Palline rosse: ", r, "\n");

cat("Palline bianche: ", w, "\n");

z = r / (r + w);

cat("Nuova composizione delle urne: ", z, "\n");

return(list(r, g, z));

}

and

simulation_vectors = function(r0, g0, mr, mg, n_iterazioni, tipo_rinforzo, +

+ k, delta = 0, eta = 1) {

r = rep(r0, k);

g = rep(g0, k);
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proporzione = matrix(nrow = k, ncol = n_iterazioni);

for(i in c(1 : n_iterazioni)) {

output = one_step_vectors(r, g, mr, mg, tipo_rinforzo, delta, eta);

r = output[[1]];

w = output[[2]];

proporzione[, i] = output[[3]];

}

hist(proporzione[,n_iterazioni], col = "blue", +

+ main=paste(’Simulazione di ’, n_iterazioni, ’ estrazioni per ’, k, " urne"), +

+ xlab="", ylab="", xlim=c(0,1))

}

.1.2 Application of Convergence Theorem

We shown below the code for the application of the Convergence Theorem.

simulation_test = function(r0, g0, mr, mg, tipo_rinforzo, alpha = 0.001,

+ passo = 0.01, n_iterazioni = 10000, k = 500, delta = 0, eta = 1) {

r = rep(r0, k);

g = rep(g0, k);

ascisse = seq(from=0, to=1, by=passo);

F_delta = ifelse(ascisse >= delta, 1, 0);
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F_eta = ifelse(ascisse >= eta, 1, 0);

F_e = fe(r0, g0, mr, tipo_rinforzo, passo, delta, eta);

F = rep(0, length(ascisse));

errore = 1;

j = 0;

while(errore > alpha && j < n_iterazioni) {

j = j + 1;

output = one_step_vectors(r, w, mr, mw, tipo_rinforzo, delta, eta);

r = output[[1]];

w = output[[2]];

z = output[[3]];

for(i in c(1:length(ascisse))) {

F[i] = (sum(z < ascisse[i])) / k;

}

int1 = passo*sum(abs(F - F_delta));

int2 = passo*sum(abs(F - F_e));

int3 = passo*sum(abs(F - F_eta));

errore = min(int1, int2, int3);

}

par(mfrow=c(1,3));
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plot(ascisse,F_delta,type = ’n’, ylab = ’’, xlab = ’’)

lines(ascisse, F_delta)

lines(ascisse, F)

polygon(c(ascisse, rev(ascisse)),

+ c(F_delta, rev(F)), col = "blue", border = NA)

plot(ascisse,F_e,type = ’n’, ylab = ’’, xlab = ’’)

lines(ascisse, F_e)

lines(ascisse, F)

polygon(c(ascisse, rev(ascisse)),

+ c(F_e, rev(F)), col = "blue", border = NA)

plot(ascisse,F,type = ’n’, ylab = ’’, xlab = ’’)

lines(ascisse, F)

lines(ascisse, F_eta)

polygon(c(ascisse, rev(ascisse)),

+ c(F, rev(F_eta)), col = "blue", border = NA)

}
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We can observe that into the function simulation_test it is called one

function fe, that makes an other simulation for determining empirically F
e

,

or it gives a Beta with appropriate parameters when we have constant rein-

forcements.

fe = function(r0, g0, m, tipo_rinforzo, passo, delta, eta) {

n_iterazioni = 10000;

k = 100;

r = rep(r0, k);

g = rep(g0, k);

ascisse = seq(from=0, to=1, by=passo);

ordinate = rep(0, length(ascisse));

if(tipo_rinforzo != ’c’) {

for(i in c(1:n_iterazioni)) {

output = one_step_vectors(r, g, m, m, tipo_rinforzo,

+ delta, eta);

r = output[[1]];

g = output[[2]];

}

z = output[[3]];

for(i in c(1: length(ascisse))) {
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ordinate[i] = (sum(z < ascisse[i])) / k;

}

} else {

for(i in c(1:length(ascisse))) {

if(ascisse[i] < delta)

ordinate[i] = 0;

if(ascisse[i] > eta)

ordinate[i] = 1;

if(ascisse[i] >= delta && ascisse[i] <= eta)

ordinate[i] = pbeta((ascisse[i] - delta)/(eta-delta),

+ r0/m, g0/m);

}

}

return(ordinate)

}

.2 Power

In this section we display the function built to find the minimun power.

potenza = function(alpha, delta0, n0, p0 = 0.5, +

+ sigmaR = 0.5, sigmaG = 0.5) {
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z = qnorm(1 - alpha/2);

ascisse = seq(from=0, to=2, length=100);

err = pnorm(-z-ascisse/(sqrt(sigmaR*sigmaR/(n0*p0) +

+ sigmaG*sigmaG/(n0*(1-p0))))) +

+ pnorm(z-ascisse/(sqrt(sigmaR*sigmaR/(n0*p0) +

+ sigmaG*sigmaG/(n0*(1-p0)))))

potenza = 1 - err

plot(ascisse, potenza, type="l", col = "Grey", +

+ xlab = "Delta", ylab = "Potenza", xlim = c(0, 1))

abline(v = delta0, col = "Red")

abline(h = 0, col = "Grey")

abline(h = 1, col = "Grey")

potenza_minima = 1 - pnorm(-z-delta0/(sqrt(sigmaR*sigmaR/(n0*p0) +

+ sigmaG*sigmaG/(n0*(1-p0))))) +

- pnorm(z-delta0/(sqrt(sigmaR*sigmaR/(n0*p0) +

+ sigmaG*sigmaG/(n0*(1-p0)))))

abline(h = potenza_minima, col = "Red")

return(potenza_minima);

}

Now we show the function regions that produces the graph of regions
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A, B, C.

regions = function(n0, p0 = 0.5, sigmaR = 0.5, sigmaG = 0.5) {

p_opt = sigmaR / (sigmaR + sigmaG);

ascisse = seq(from=0, to=1, length=100);

n = (p_opt*p_opt/ascisse + (1-p_opt)*(1-p_opt)/(1-ascisse)) +

+ / (p_opt*p_opt/(n0*p0) + (1-p_opt)*(1-p_opt)/(n0*(1-p0)));

A_limit = p0 * n0 / ascisse

C_limit = (1 - p0) * n0 / (1 - ascisse)

plot(ascisse, n, type = "l", col = "Blue", +

+ ylim = c(0, 1000), xlab = "p", ylab = "n")

par(new="T")

plot(ascisse, A_limit, type = "l", col = "Red", +

+ ylim = c(0, 1000), xlab = "", ylab = "")

par(new="T")

plot(ascisse, C_limit, type = "l", col = "Red", +

+ ylim = c(0, 1000), xlab = "", ylab = "")

}

The function delta_eta computes for a fixed n the intervals in which �

and ⌘ have to vary in order that the tests belong to the proper region.

delta_eta = function(n, n0, p0 = 0.5, +
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+ sigmaR = 0.5, sigmaG = 0.5) {

nn = function(x) {

p_opt = sigmaR / (sigmaR + sigmaG);

return((p_opt*p_opt/x + (1-p_opt)*(1-p_opt)/(1-x)) +

+ / (p_opt*p_opt/(n0*p0) + (1-p_opt)*(1-p_opt) +

+ /(n0*(1-p0)))-n);

}

delta_inf = uniroot(nn, c(0.1, p0));

delta_sup = n0 * p0 / n;

eta_inf = 1 - n0 * (1 - p0) / n;

eta_sup = uniroot(nn, c(p0, 0.9));

return(c(delta_inf, delta_sup, eta_inf, eta_sup))

}

simulation_power = function(alpha, n0, p0, n, delta, eta, +

+ K, mr, mg, sigmaR = 0.5, sigmaG = 0.5, r0 = 200, g0 = 200) {

z = qnorm(1 - alpha/2);

potenza = function(n, p) {

differenza = abs(mr - mg);

return(1 - pnorm(-z-differenza/(sqrt(sigmaR*sigmaR/(n*p) +

+ sigmaG*sigmaG/(n*(1-p))))) +
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- pnorm(z-differenza/(sqrt(sigmaR*sigmaR/(n*p) +

+ sigmaG*sigmaG/(n*(1-p))))))

}

Ra = function(p) {

return(sqrt(sigmaR*sigmaR/(n*p) +

+ sigmaG*sigmaG/(n*(1-p)))*z)

}

Nr = rep(0, K);

Ng = rep(0, K);

P = rep(0, K);

Xr = rep(0, K);

Xg = rep(0, K);

Potenza = rep(0, K);

Test = rep(0, K);

for(j in c(1: K)) {

r = r0;

g = g0;

xr = 0;

xg = 0;

nr = 0;

ng = 0;
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for(i in c(1 : n)) {

output = one_step_test(r, w, mr, mg, ’n’,

+ delta, eta, xr, xg, nr, ng);

r = output[1];

g = output[2];

xr = output[3];

xg = output[4];

nr = output[5];

ng = output[6];

}

Nr[j] = nr;

Ng[j] = ng;

P[j] = nr / n;

Xr[j] = xr / nr;

Xg[j] = xg / ng;

Potenza[j] = potenza(n, P[j]);

Test[j] = ifelse(abs(Xr[j] - Xw[j]) > Ra(P[j]), 1, 0);

}

cat("Potenza calcolata: ", mean(Potenza), "\n");

cat("Potenza empirica: ", mean(Test), "\n");

cat("Potenza migliorata: ", +
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+ sum(Potenza>potenza(n0, p0))/K, "\n");

cat("Media del numero di pazienti assegnati +

+ al primo trattamento: ", mean(Nr), "\n");

cat("Media del numero di pazienti assegnati +

+ al secondo trattamento: ", mean(Ng), "\n");

}

The function simulation_power uses the function one_step_test. This

is the R code.

one_step_test = function(r, g, mr, mg, tipo_rinforzo, +

+ delta, eta, xr, xg, nr, ng) {

z = r / (r + g);

x = rbinom(1, 1, z);

if(tipo_rinforzo == ’n’) {

m = rnorm(1, mr);

n = rnorm(1, mg);

} else if (tipo_rinforzo == ’c’) {

m = mr;

n = mg;

} else if (tipo_rinforzo == ’e’) {

m = rexp(1, mr);
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n = rexp(1, mg);

}

if(z < eta)

r = r + x*m;

if(z > delta)

w = w + (1-x)*n;

if(x == 0){

xg = xg + n;

ng = ng + 1;

}

else{

xr = xr + m;

nr = nr + 1;

}

return(c(r, w, xr, xg, nr, ng));

}

.3 Melased

Upload of the dataset.

dataset = read.csv("mela.csv", header=TRUE, sep=";", dec=".")
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Outcome construction: cumulative amount of sedative

poat_paz = sapply(split(dataset$poat, dataset$id), sum)

pobz_paz = sapply(split(dataset$pobz, dataset$id), sum)

poal_paz = sapply(split(dataset$poal, dataset$id), sum)

evpr_paz = sapply(split(dataset$evpr, dataset$id), sum)

evbz_paz = sapply(split(dataset$evbz, dataset$id), sum)

evop_paz = sapply(split(dataset$evop, dataset$id), sum)

somma_sed_paz = poat_paz + pobz_paz + poal_paz + evpr_paz + evbz_paz + evop_paz

MAX = floor(max(somma_sed_paz))

id_paz = unique(dataset$id)

index_paz = match(id_paz, dataset$id)

gruppi_paz = dataset$gruppo[index_paz]

somma_sed_inv = MAX - somma_sed_paz

Final dataset with new id (repeated mesaures)

dataset_rev = data.frame(id_paz, gruppi_paz, somma_sed_paz, somma_sed_inv)

somma_sed_0 <- dataset_rev$somma_sed_inv[(dataset_rev$gruppi_paz==0)&(is.na(dataset_rev$somma_sed_inv)==F)]

somma_sed_1 <- dataset_rev$somma_sed_inv[(dataset_rev$gruppi_paz==1)&(is.na(dataset_rev$somma_sed_inv)==F)]

n_1 <- length(somma_sed_1)
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n_0 <- length(somma_sed_0)

We made some graphical checks on the distribution of the responses.

plot(density(dataset_rev$somma_sed_paz[dataset_rev$gruppi_paz=="0"], main="Density on Placebo subjects",xlim=c(0,18)))

plot(density(dataset_rev$somma_sed_paz[dataset_rev$gruppi_paz=="1"], main="Density on Melatonin subjects",xlim=c(0,18)))

plot(dataset_rev$somma_sed_paz[dataset_rev$gruppi_paz=="0"], main="Density on Placebo subjects",xlim=c(0,18))

plot(dataset_rev$somma_sed_paz[dataset_rev$gruppi_paz=="1"], main="Density on Melatonin subjects",xlim=c(0,18))

windows()

hist(somma_sed_1)

windows()

hist(somma_sed_0)

t.test(somma_sed_1,somma_sed_0)

hist(somma_sed_0, main = ’Cumulative Sedative for Placebo’)

hist(somma_sed_1, main = ’Cumulative Sedative for Melatonin’)

Descriptive analysis.

summary(dataset_rev)
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sd(dataset_rev$gruppi_paz)

To compare the results between the RRU test and the classical one, we

need to compute the test on the controlled randomized trial.

simulazione_Ttest = function(dataset, nr, ng, Npazienti, Nsimulazioni, alpha, cutoff) {

output = inizializza(dataset, cutoff);

listaPazienti0 = output$pazienti0

listaPazienti1 = output$pazienti1

pazienti1 = c()

potenza1 = 0

for(i in 1:Nsimulazioni) {

output = simulazione_bootstrap(dataset, nr, ng, Npazienti[1], listaPazienti0, listaPazienti1, alpha, cutoff)

pazienti1[i] = output$pazienti0

potenza1 = potenza1 + output$test

}

potenza1 = potenza1 / Nsimulazioni

pazienti2 = c()

potenza2 = 0

for(i in 1:Nsimulazioni) {

output = simulazione_bootstrap(dataset, nr, ng, Npazienti[2], listaPazienti0, listaPazienti1, alpha, cutoff)

pazienti2[i] = output$pazienti0
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potenza2 = potenza2 + output$test

}

potenza2 = potenza2 / Nsimulazioni

pazienti3 = c()

potenza3 = 0

for(i in 1:Nsimulazioni) {

output = simulazione_bootstrap(dataset, nr, ng, Npazienti[3], listaPazienti0,

listaPazienti1, alpha, cutoff)

pazienti3[i] = output$pazienti0

potenza3 = potenza3 + output$test

}

potenza3 = potenza3 / Nsimulazioni

boxplot(pazienti1, pazienti2, pazienti3, names=c(paste(Npazienti[1],

"pazienti\nPotenza", 1-potenza1), paste(Npazienti[2], "pazienti\nPotenza", 1-potenza2), paste(Npazienti[3],

"pazienti\nPotenza", 1-potenza3)), col=c("cornflowerblue", "cornflowerblue", "cornflowerblue"))

abline(h=41,col=’red’)

}

Classical test with the bootstrap method.

test_rct <- rep(0,ripetizioni)
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for (j in 1:ripetizioni) {

M <- u_inv(F_1(n_1))

N <- u_inv(F_0(n_0))

m_R <- mean(M)

m_G <- mean(N)

s_R <- sqrt( sum( (M-m_R)^2 ) / (n_1-1) )

s_G <- sqrt( sum( (N-m_G)^2 ) / (n_0-1) )

nu <- ( (s_R^2/n_1) +

(s_G^2/n_0) )^2 / ( (s_R^2/n_1)^2/(n_1-1) + (s_G^2/n_0)^2/(n_0-1) )

RC[j] <- sqrt( (s_R^2/n_1) + (s_G^2/n_0) ) * qt(alpha/2,nu,0,FALSE)

test_rct[j] <- abs(mean(M) - mean(N)) > RC[j]

}

R code for the boxplots.

pow <- sum(pow_t)/10000

par(mfrow=c(1,3))

boxplot(n_G, col=’blue’, main=’SAMPLE = 82’, ylab=’Patients assigned

to Placebo’, xlab=’power = 0.80’, ylim=c(0,150))

boxplot(n_G, col=’forestgreen’, main=’SAMPLE = 102’,ylab=’Patients assigned
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to Placebo’, xlab=’power = 0.85’, ylim=c(0,150))

boxplot(n_G, col=’forestgreen’, main=’SAMPLE = 122’,ylab=’Patients assigned

to Placebo’, xlab=’power = 0.89’, ylim=c(0,150))


