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1 Introduction and aim of the work 
 

A better understanding of the barrier function of the skin is relevant to a 

wide range of applications including, in particular, transdermal delivery of 

drugs and risk assessment of hazardous exposure to chemicals. The 

regulation of transdermal permeation is generally ascribed to the stratum 

corneum (SC), the outer layer of the skin [1]. 

   

The macroscopic structure of the stratum corneum was initially described 

according to the bricks and mortar model proposed by Michaels [2], where 

corneocytes are arranged like bricks in a lipid phase (the mortar phase), 

arranged in multilayers [3]. The lipids are predominantly in a continuous gel 

phase with fluid regions [4], organized in an orthorhombic conformation at 

low temperature, and undergoing a phase transition to hexagonal 

conformation at about 60 °C [5]. At the molecular level, the major 

components of the SC lipid matrix are ceramides (CER), free fatty acids 

(FFA) - ceramide 2 and FFA 24:0 being the most abundant - and cholesterol 

(CHOL) in a 1:1:1 molar ratio [6]. Selective inhibition of any one of these 

components is sufficient to compromise the barrier function of the skin [7].  

 

Potts & Guy logKp(cm/s) = 0.71 log Ko/w – 0.0061 MW – 6.3 r
2 = 0.676 

Mitragotri Kp(cm/s) = 5.6 10
-6 

Ko/w · exp(-0.46 MR
2
) r

2 = 0.698 

 

Table 1-1. Predictive equations for skin permeability. Kp = permeability coefficient 
expressed in cm/s; Ko/w = octanol/water partition coefficient; MW = molecular weight; MR = 
molecular radius; r2 = square of the correlation coefficient calculated on Flynn's set. 
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A large number of permeability studies have appeared in the last 60 

years, addressing the prediction of skin permeability with mathematical 

models, in particular semi-empirical or mechanistic models, the most cited of 

which being the equations by Potts and Guy [8] and Mitragotri [9], 

respectively (Table 1-1). The correlation were focused on “Flynn’s set”, a set 

of 97 molecules of known Kp [10]. 

  

Although the discovery of the link between physicochemical properties 

of a given permeant and its ability to permeate the skin can be traced back to 

the works of Stephen Rothman in the 1930s and 1940s [11], the first modern 

mathematical models of percutaneous absorption were derived by Higuchi, in 

the 1960s. In his works, the Author describes the rate of release of 

transdermal drugs in terms of drug concentrations and diffusion coefficients 

according to Fick’s first law [12][13], laying the foundation of steady-state 

(time independent) models of skin permeability. 

 

Assuming that the skin barrier is a homogenous membrane, and defining 

the permeability coefficient Kp as the steady state flux across the skin (Jss) 

divided by the concentration gradient across the skin (∆C), Fick's first law 

may be expressed as [14]: 

   

h

KD

C

J
Kp ss =

∆
=    Equation 1-1 

 

where D is the solute's diffusion coefficient, K its partition coefficient 

between the vehicle and the skin, and h the skin thickness. 
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Equation 1-1 is expressed for the entire skin, but different degrees of 

simplification are possible. In principle, a mathematical model of skin 

permeability should consider the contribution of the various physiological 

regions: the stratum corneum, the viable epidermis, the dermis and 

appendages, such as hair follicles and glands. Appendages are a possible 

pathway for hydrophilic solutes, but it is unlikely that they may explain their 

transdermal transport [15], and are often ignored. The overall Kp could then 

be seen as deriving from the three different contribution in series, as proposed 

by Scheuplein and Blank [16][17]: 

 

derpvepscpskinp KKKK ....

1111
++=  

 

where Kp.skin, Kp.sc, Kp.ve, Kp.der are the permeability coefficients of the 

skin, stratum corneum, viable epidermis and dermis respectively.  

 

In most works, the SC is considered the rate limiting barrier [15], even 

though focusing on the SC barrier only leads to unrealistic values of Kp for 

extremely lipophilic compounds, the percutaneous absorption of which is 

controlled by the hydrophilic viable epidermis [2].  

  

Equation 1-1 may be seen as the basis for the development of the semi-

empirical model proposed by Potts and Guy. Express the skin/vehicle 

partition coefficient K as a function of the octanol/water partition coefficient 

P [18]:  

 

bPK =  
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where b varies from about 0.4 to 0.9. Express the diffusion coefficient D 

as a function of molecular volume MV [8]:  

 

MV
eDD

⋅−= β
0  

 

where 0D  and β are constants. Then, approximating the molecular 

volume MV of the permeant by its molecular weight MW, Equation 1-1, 

expressed as a logarithm, takes the form [10]: 

 

0.0061MW0.71logP6.3logK p −+−=  

 

where Kp is expressed in cm/s and the coefficients are obtained through 

linear regression of Flynn's data set excluding three compounds [10]. Since 

hydrophilic solutes are under-represented in Flynn's set, this model fail to 

provide satisfactory predictions for the Kp of hydrophilic solutes [19]. A 

thorough evaluation of semi-empirical methods is found in the review by 

Lian [1].  

  

An example of (steady-state) mechanistic model is the equation proposed 

by Mitragotri [9], based on Scaled Particle Theory, in which the partition and 

diffusion coefficients in the SC are calculated from the work required to form 

cavities in the SC, with the assumption that the solute moves in a stationary 

frame of lipids [9].  

 

Diffusion across a non-homogeneous, anisotropic medium like the SC is 

a function of its position inside the membrane, at least in the transversal 

direction (depth z), lateral (perpendicular to z direction) and transverse 
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components of the diffusion coefficient are also expected to be different, as 

an effect of anisotropy. Accounting for the anisotropy of the SC and for the 

average direction of diffusion, Scaled Particle Theory yields an average 

diffusion coefficient D [9]: 

 
2

0
rA

eDD
⋅−=  

 

where r is solute molecular radius and A is a constant calculated to be ~ 

0.4 for a dipalmitoylphosphatidylcholine (DPPC) bilayer [9]. The Mitragotri 

equation then takes the form [9]: 

 
246.07.06106.5 r

p ePK
−−×=  

 

with the same notation as above. If MW1/3 is used as an estimation for r, 

once the Mitragotri equation is put in logarithm form it may seem similar to 

the Potts and Guy equation. However, the numerical values are derived from 

the theory employed and not from linear regression.  

 

A deeper insight on mathematical models as well as an account of other 

model based methods for the estimation of SC diffusion coefficients are 

provided in recent reviews [15][20][21]. In particular, the work by Mitragotri 

and colleagues [15] contains a thorough discussion on the theoretical 

estimation of partition and diffusion coefficients. The estimation of partition 

and diffusion coefficients may also be achieved through Molecular Dynamics 

(MD) simulations. 
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Both empirical and mechanistic models require a method of estimating 

essential parameters, such as diffusion and partition coefficients, which can 

be determined experimentally, theoretically or through computer simulations, 

in particular Molecular Dynamics simulations which are gaining increasing 

attention as a tool in skin permeability studies. Since even the longest MD 

simulations are still orders of magnitude shorter than the time scales of 

complex biological events, such as permeation [22], the data gathered from 

them as to be interpreted on the basis theoretical skin permeability models. 

 

Molecular Dynamics can be a useful tool to perform permeability 

studies, with the added benefit of a greater understanding of the permeation 

process at a molecular level, and of the role of different part of the SC in 

determining permeability. Since the time scales of MD simulations are still 

orders of magnitude lower than the time scales of the most complex 

biological events, the atomistic details obtained with simulations have to be 

included in the framework of macroscopic mathematical models [22].  

 

The use of MD simulations to study solute diffusion through lipid bilayer 

membranes was developed in the 1990s for phospholipid bilayers, starting 

with early studies on passive diffusion [23][24][25] to systematic studies of 

permeation by Marrink and Berendsen, which took into account diffusion and 

solubility of penetrants into the membrane [26][27], and extended to the 

study of SC permeation by Das and colleagues [7][28]. The approach used 

here, though, differs from that of the previous works. To allow for the 

screening of more than 80 molecules, a more indirect method has been 

attempted, not contemplating free energy calculations. Instead, only the 

diffusion coefficient and the conformational space explored by the solute in 
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the different microenvironments inside the SC have been directly derived 

from the MD simulations. All the other relevant parameters were estimated 

from those data. 

  

This work focuses on the role of Molecular Dynamics, as a tool in skin 

permeability studies. In Chapter 2, an outline of Molecular Dynamics is 

given. In Chapter 3, we look at structural MD studies on lipid matrices, and 

we analyze how the methods based on MD simulations, developed for 

phospholipid bilayers, have been applied to estimate the permeability, 

diffusion and partition coefficients in the Stratum Corneum.  Chapter 4 is 

about the computational details. The set-up of the lipid matrix model and the 

set of permeants is described, along with the simulation parameters and a 

description of production runs. Chapter 5 contains the theoretical background 

to the molecular properties and physical quantities discussed in Chapter 6. In 

Chapter 6, the results from Steered Molecular Dynamics (SMD) simulations 

are given. The goal was to investigate the dynamic behaviour of a permeant 

when crossing an ideal SC lipid matrix composed by a heterogeneous mixture 

of long-chain ceramides (CERs), free fatty acids (FFAs), and cholesterol 

(CHOL) in a 1:1:1 molar ratio. The data derived from the simulations are 

correlated to the experimental permeation coefficients contained in the 

reduced set (the intersection of Flynn's and the Fully Validated set by 

Vecchia and Bunge [81]), yielding encouraging predictive models which 

confirm the fruitfulness of MD simulations to analyze complex systems such 

as the SC at a molecular level.  
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2 Molecular Dynamics 
 

Molecules possess several degrees of freedom (vibrational, rotational, 

etc.) which allow their existence in different conformational states. 

Conformational states dynamically evolve in time, forming the so-called 

conformational space of the molecule. The molecule exploring a 

conformational space is not limited only to the lowest energy conformations, 

but it can move among different equilibrium states, which are related to the 

kinetic energy of the atoms and so to the temperature of the system. The path 

followed in conformational space depend on inter-and intra-molecular 

interactions, which depend largely on the dynamic behaviour of atoms and on 

experimental conditions.  

 

Molecular Dynamics  is a computational technique that allows to follow 

the evolution of a chemical system (a group of atoms or a group of 

molecules) using theoretic physics methods of different sophistication, from 

ab-initio or semi-empirical quantum chemistry methods to Molecular 

Mechanics (also called force-field methods) [29]. This chapter explores the 

theory behind MD, in particular classical MD which is the most relevant for 

our study. 

 

Molecular Dynamics is based on Newton's equation of motion, applied to 

the movement of particles. In the Molecular Mechanics (MM) approximation, 

MD simulations are described by deterministic classical physics, since the 

evolution of the system is determined by a set of initial conditions 

(coordinates of the particles, and the forces acting upon them). Modern MD, 

though, can take a stochastic approach, by the insertion of random forces 

along the ones described by Newton's equation.  
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2.1 Molecular Mechanics 

 

In the MM approximation, it is understated that cumulative forces can be 

used to describe molecular geometries and energies [30]. A molecule is 

considered as a set of balls (atoms) and springs (bond) the conformation of 

which is determined by the force acting on any atom, calculated as the 

cumulative effect of bonded and non-bonded interactions. 

 
 
In MM a potential energy hypersurface is constructed from a set of 

experimental data (e.g. crystal structure geometries, IR and Raman 

spectroscopy, heats of formation) and more recently even from quantum 

mechanical calculations. The functional form and the sets of parameters 

derived from experimental data used to calculate the potential energy U(r1, r2, 

...rn) as a function of atomic spatial coordinates form the so-called force-field.  

 

In the case of an isolated system composed of n particles, the force 

acting on the i
th particle is related to the system's potential energy by the 

following equation: 

 

( )[ ]n212

i

2

ii ,...rr,rU
dt

rd
mF −∇==  Equation 2-1 

 

 where mi and ri are the mass and position of the i
th

 particle, 

respectively and U is the potential energy and ∇ is the gradient mathematical 

operator. From this equation, the position of any atom can be determined and, 

and so its speed and acceleration. Knowledge of the potential energy function 

U, determined from the position of each particle, allows to calculate the force 

acting on each particle at any given time step (time is discretized). In turn, the 
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force so calculated is used to determine the particle's position at the 

subsequent time step, and so on to the end of the simulated time period.  

 

A fundamental assumption of MM is that the potential energy of a 

system can be expressed as the sum of the potential energy terms deriving 

from simple interactions, usually divided in bonded and non-bonded 

interactions. 

 

2.1.1 Bonded interactions 
 

Potential energy terms derived from bonded interactions include: bond 

length potential, bond angle potential and torsional potential (note that the 

term 'potential' is improperly used here to designate a potential energy 

function). 

 

The bond length potential rU  can be described by the harmonic 

potential, which is adequate for small deviation from reference values: 

 

2)()( rrSrU hharmonic −=  

 

where r  is the bond length, r is the reference value, Sh is a constant 

related to the spring constant; or by the Morse potential, valid for greater 

bond deformations: 

 

2)]}(exp[1{)( rrSDrU MMorse −−=  
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where SM and D represent the potential energy well width and depth (i.e. 

the dissociation energy), respectively. Opposite to the harmonic potential, the 

Morse potential has correct asymptotic behaviour:  DrU Morse →)( as ∞→r  

and ∞→)(rUMorse  as 0→r .  

 

Other potential forms exist, which take into consideration cubic and 

quartic terms. Bond length reference values are derived from X-ray crystal 

structures (which yield average values) or ab-initio quantum chemical 

methods (which yield equilibrium values), such as Hartree-Fock/Self 

Consistent Field.  

 

The bond angle potential θU is usually described by a harmonic 

potential: 

 

2)()( θθθ −= hharmonic KU  

 

or by a trigonometric potential 

 

2)cos(cos)( θθθ −= trictrigonomet KU  

 

where θ is the bond angle, θ  is the reference value for the bond angle, 

Kh and Kt are constants. The trigonometric potential has the advantage of 

being bounded and easier to implement (e.g. easier to differentiate) [30]. 

 

The torsional potential ϕU is modelled by a simple periodic function: 
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)]cos(1[)( ϕϕ nVU torsional −=  

 

where φ is the torsion angle, n is an integer denoting the periodicity of 

the torsional barrier and V is a constant dependent on the barrier height. 

 

The potential energy for bonded interactions can then be expressed as: 

 

∑∑∑ ++=
torsionsanglesbonds

rbonded UUUU ϕθ  

 

2.1.2 Non-bonded interactions 
 

Potential energy terms derived from bonded interactions include the 

Lennard-Jones potential and the Coulomb potential. 

 

In MD, 6-12 Lennard Jones potential is generally used to model 

cohesive van der Waals interactions, whit the addition of a short range 

repulsive term. For a pair of atoms at distance r, it takes the form: 

 




















−








=

612

)(
rr

rULJ

σσ
αε  

 

where α is an adimensional constant, ε is the depth of the potential well, 

σ is the distance at which the inter-particle potential is zero. The negative 

term in the expression above, corresponds to the attractive van der Waals 

interaction, which arises from the interaction between spontaneously 

oscillating electric dipole, and it can only be explained with Quantum 
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Mechanics  [31]. The positive (repulsive) term acts at very short distances, 

originating from Pauli's exclusion principle.  

 

The Coulomb potential is used to describe ionic interactions between 

fully or partially charged particles. For an atom pair {i,j} at distance r, it takes 

the form: 

 

r

qq
KU

ji

CoulombCoulomb
⋅

=
ε

 

 

where qi is the electric charge on atom i, ε is the dielectric constant and 

04/1 πε=CoulombK  (ε0 being the permittivity of a vacuum). 

 

The potential energy for non-bonded interactions can then be expressed 

as: 

 

∑∑ +=−
pairsatom

Coulomb

pairsatom

LJbondednon UUU
__

 

 

2.2 Integration of the equations of motion: the Verlet 
algorithm 

 

The commonly used methods for integrating Equation 2-1 with respect to 

time belong to the Stőrmer/Verlet/leapfrog class of algorithms. These 

methods, with respect to other integration methods, such as Runge-Kutta 

have the advantage of stability and they are symplectic integrators. 

Symplectic integrators have the property of "almost" preserving the value of 

the Hamiltonian, i.e.  energy (the total energy is not preserved exactly). This 
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naturally lends to the study of the microcanonical or (NVE) ensemble, in 

which the total number of particles, N, the volume V and the total energy, E 

are held constant. If instead the canonical or (NVT) ensemble, where 

Temperature T, and not energy is constant, is to be studied, either the Verlet 

algorithm must be modified to include a thermostat, such as Nosė-Hoover 

thermostat, or Langevin's equation, instead of Newton's, must be used. 

 

The integration is achieved with a discretization of time in timesteps ∆t. 

Then, the continuous variables x(t) and v(t), position and velocity at time t 

respectively, are approximated by values at time intervals n∆t, where n is a 

positive integer. We only describe here a common variation of the Verlet 

algorithm, known as the leapfrog algorithm, so called because the velocity is 

defined a half steps 







+

2

∆t
tv  while the position is defined at whole steps 

( )∆ttx + . For a particle of mass m, on which a cumulative force F is acting, 

the velocity update is 

 

∆t
m

F

2

∆t
tv

2

∆t
tv +








−=








+  

 

and the position update is: 

 

( ) ∆t
m

F

2

∆t
tvx(t)∆ttx +








−+=+  

 

In this equation, it is assumed that the acceleration F/m is constant during 

the timestep ∆t, which must then assume very small values, which translated 

to timestep of 1 fs (femtosecond) for most systems. Indeed, the time step is 
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set around a value between 1/100 and 1/20 of the fastest period of oscillation 

of the system simulated. The optimal value is in the range of 0.2 fs 

(femtosecond), although the use of special algorithms (e.g. SHAKE) slow 

down the transitions, allowing longer time steps (1-2 fs). Since Equation 2-2 

is applied recursively,  the use of too large time steps (> 10 fs) can introduce 

recursive errors in the evaluation of the energy of the system and prevents a 

correct evaluation of the forces and accelerations. In this way, all non-linear 

energy terms are not properly estimated and consequently the system 

gradually acquires energy until its explosion. 

 

2.2.1 Constraints dynamics 
 

In the MD simulations, it is sometimes necessary to apply constraints 

that restrict the degrees of freedom of the system. Usually some torsion 

angles or atom position are restricted, for example to exploit data coming 

from NMR or X-ray studies. One of the methods employed is named SHAKE 

that tethers the distance between pairs of atoms: 

 

0dr 2

ij

2

ij =−  

 

 where the term rij represents the instantaneous separation between two 

atoms (i and j) and dij is the reference value of the constraint. In SHAKE 

dynamics, the energy function includes a loop-free constraint, and then a 

displacement vector is added to satisfy the constraints imposed to the system. 

The position of the i-th atom at time t + dt is:  

 

( ) ( ) ( )t∆r∆ttr∆ttr i

'

ii ++=+  
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 where r’i (t + dt) is the position vector of the ith atom after an iteration 

without constraints, while ∆ri(t) is the displacement that satisfies the 

constraint calculates as: 

 

( ) ( )∑=
j

ijij

i

2

i trλ
m

∆t2
(t)∆r  

 

 where the λij are Lagrange multipliers. 

 

Another type of constraint commonly used in MD simulations of 

biomacromolecules (nucleic acids and proteins), which allows the study of 

experimentally resolved structures, is the atom fixing. It consists in blocking 

the coordinates of a subset of atoms to avoid excessive changes in the 

experimentally validated structure. This approach, however, induces strong 

energy gradients around the fixed atoms so, other kind of atomic constraints 

are usually preferred, such as harmonic constraints, where atoms are not 

fixed, but harmonically constrained to fixed points. A recent development is 

this technique is Steered Molecular Dynamics (SMD), in which the center of 

mass of a group of atoms is harmonically constrained to a moving point. 
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2.3 Choice and importance of simulation parameters 

 

The choice of simulation parameters is a fundamental step to obtain 

reliable results. It is generally impossible to determine a priori which 

conditions are the best ones to simulate the behaviour of a given system 

properly, so different combinations of parameters should be tried in order to 

select the best conditions, evaluating all the possible situations, taking into 

consideration the available computational power.  

 

It is important to analyze the main parameters required by each program 

for molecular dynamics and their influence on the evolving simulation 

besides the required computational time. We briefly discuss temperature. 

 

2.3.1 Temperature 
 

Usually, MD simulations are performed at an absolute temperature 

between 300 and 310 K, as these are the temperatures of experimental assays 

on biological matrices. More problematic is the choice of the conditions with 

which the system is brought to the desired temperature: at the beginning, the 

atoms are stationary, then normally distributed pseudo-random velocities are 

assigned to them.  The average value Ek of the kinetic energy is related to the 

temperature of the system T as: 

 

22
1 3

1

2 TkN
vmE bF

N

i

iik == ∑
=
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where NF are the degrees of freedom of the system (3N or 3N-3) and kb is 

Boltzmann's constant. 

 

So if we assign to a "cold" system at the beginning of the simulation a 

temperature of 300 K this can lead to excessively high velocities that can 

make the integration algorithm unstable. For a correct simulation at constant 

temperature heating, from 0 K to the target temperature is so required. This 

period simulates the transfer of energy from the environment to the system, 

allowing atoms to accelerate, and, only from a certain step onwards, the 

temperature is kept constant. Once the system has been heated to the desired 

temperature, it undergoes an equilibration phase, to allow for the 

redistribution of the energy in order to stabilize the global structure. To 

simulate the system under thermostatic conditions, the energy is exchanged 

with the external environment, such as an external heat bath at constant 

temperature, for the duration of the calculation.  

 

2.4 Stochastic Dynamics: fluctuation-dissipation 
relations and Langevin dynamics 

 

In a deterministic system, described by Newton's equation of motion: 

 

( )[ ]n212

i

2

ii ,...rr,rU
dt

rd
mF −∇==  

 

a time reversal of all the variables, at the end of a time period leads to the 

observation of the reverse trajectory in the same time period. The fact that 

Newton's equation of motion is time reversal symmetric is in contrast with 

the common experience that all but the simplest processes are irreversible. 
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This irreversibility is linked to a quantity that always grows in the universe, 

entropy, which has been given different explanations in the past, for example 

by Boltzmann and Gibbs. A more modern view is that Newton's equation of 

motion is capable of explaining irreversibility, if it's complemented by the 

acceptance of uncertainty in the way systems behave, due to interactions with 

the environment. So modified, Newton's equation leads to a quantity that 

always grows with time, like Entropy, and that's uncertainty itself. When this 

uncertainty is added to Newton's equation of motion, symmetry is broken, 

and the deterministic laws of evolution of the system must be replaced by 

rules for the evolution of the probability that the system takes a certain 

configuration [32].  Such rules define a stochastic process. A general 

equation describing the evolution of probability density functions P which 

are continuous in space and in time, is the Fokker-Plank equation (FPE): 

 

2
2

2
1 )),(),((

2
1),(),((),(

x

txPtxM

x

txPtxM

t

txP

∂

∂
+

∂

∂
−=

∂

∂
 

 

where M1 and M2 are the first and second Kramers-Moyal coefficients 

(we omit their definition).  

 

If Newton's equation is supplemented with environmental forces, of 

which some are random, we obtain an equation describing a stochastic 

process, such as Langevin equation, which describes the evolution of the 

velocity v of a particle. The Langevin equation can be put in the form: 

 

)(tbvv ξγ +−=&  Equation 2-2 
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where γ is the damping coefficient, b is a constant, ξ(t) has the property 

0)( =tξ  and it has no autocorrelation in time. It can be shown [32] that 

Equation 2-2 is equivalent to the FPE is we take vM γ−=1  and 2
2 bM = . 

The FPE equivalent of Langevin equation is: 
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Since the stationary solution of this equation must be the Maxwell-

Boltzmann distribution )2/exp()( 2
TkmvvP b−∝ , comparing it with the 

analytical solution, we get mTkb b /22 γ= [32]. Since this relates a quantity, 

b, characterizing the fluctuations and quantity, γ, characterizing the 

dissipation, it is called a fluctuation-dissipation relation.  

 

2.4.1 Langevin dynamics 
 

Equation 2-2 forms the basis for Langevin dynamics. Langevin dynamics 

is an approximate method that allows us to eliminate unimportant degrees of 

freedom that are substituted by the medium effects (friction) and stochastic 

forces (random forces). Langevin equation for the ith particle, in the presence 

of an external force Fi (t) can be written as: 

 

( ) ( ) ( )tRtγvmtF
dt

(t)rd
m iiii2

i

2

i +−=  

 

 where mi is the mass, γ is the damping constant or collision frequncy, 

Ri(t) is the random force, which oscillate around zero: 
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( ) 0tRi =  

 

 The effects of random forces and frictional dispersion maintain the 

thermal balance, allowing the energy of the system to oscillate without 

varying excessively. 

 

The covariance of the diagonal matrix R of the random forces Ri is 

dependent on γ: 

 

( )'

B

T
ttTMδ2γγ)R(t)R(t' −=  

 

 where kB is the Boltzmann constant, T is temperature in Kelvin, δ(t-t') 

is Dirac delta function, and M is the diagonal matrix of dimension 3N of the 

masses mi (each repeated three times). So, the damping constant γ controls 

not only the magnitude of the friction coefficients βi=mi γ, but also the 

variance of the random forces. For large values of γ, the kinetic energy is 

quickly damped by the collisions of the solvent and the system follows 

diffusive Brownian dynamics.  

 

2.5 Common Force Fields in lipids simulations 

  

The interaction potential can be computed by several approaches of 

different complexity also including high-level ab-initio methods. However, 

for large systems, such as a lipid bilayer, the interaction between particles 

(i.e. atoms or group of atoms) is described by the molecular mechanics 

approximation, where the possibility of covalent bond formation and 
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breaking is excluded. In the molecular mechanics “ball and spring” 

approximation, atoms are considered as spheres linked together by springs. 

The force acting on every particle, and so the trajectory, is calculated from a 

potential energy function expressed a set of parameters. These parameters 

define the so-called force field, and are derived from different sources, such 

as spectroscopy or quantum mechanical calculations. The potential energy 

function comprises bonded (stretching, bending and dihedral torsions) and 

pair wise non-bonded interactions (e.g. van der Waals interactions and 

electrostatic interaction between charged atoms) [33]. 

 

Force fields can be classified as atomistic (all atoms, united atoms) or 

coarse grained, where groups of atoms are grouped into pseudo-particles. In 

the simulation of lipid bilayers, both approaches have been used. In 

particular, as an all atoms force field, the most widely used is CHARMM 

[34], and as a united atoms force field, GROMOS [35][36].  

 

In CHARMM force field, all atoms are described explicitly. CHARMM 

parameters for lipids, optimized on the condensed phase properties of alkanes 

[37], were introduced in CHARMM22 [38], and are periodically updated 

[39]. 

 

GROMOS employs a united atoms approach, and is optimized on the 

properties of pentadecane [79]. It represents each of non-polar CH, CH2 and 

CH3 as a single particle, i.e. it represents aliphatic hydrogens implicitly. Two 

main versions of GROMOS exist, the so called original GROMOS, and the 

most widely used Berger modification [40], which employs the Ryckaert-

Bellemans potential for the description of torsions of the hydrocarbon chains.  
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When a much larger time scale than possible with atomistic simulations 

is required, a simplified coarse-grained (CG) model can be used. CG models 

surfaced in the 1990s, through the work of Smit and coworkers [41], allowing 

a speed-up of 3–4 orders of magnitude compared to atomistic simulations 

[42].  A typical application of coarse-graining is in the study of the self-

assembly of lipids [43]. In CG models, groups of atoms are represented by a 

single bead. This allows a drastic reduction of the degrees of freedom in the 

simulation. The set of data against which CG force fields are optimized can 

be experimental, as in the case of the Martini force field, developed by 

Marrink and co-workers for the coarse grained simulations of lipid bilayers 

[44], or atomistic simulation data [45]. The use of the Martini model allows 

MD simulations of several microseconds, opening the door to the study of 

long time scale events such as gel phase formation [46] and hexagonal phase 

formation [41] in lipid bilayers. 

 

When force fields are extended to lipids, the main focus in 

parameterization is the reproduction of experimentally accessible properties 

like electron density profile, area per lipid, order parameters, and membrane 

thickness. This can be often achieved, but there are exceptions. As an 

example, MD simulations of the spontaneous insertion of aliphatic alcohols 

into phosphatidylcholine bilayers with the Berger force field for the lipids 

(and the GROMOS force field for the alcohols) brought partition coefficients 

for the long-chain alcohols in good agreement with experimental data, but an 

overestimated partition coefficient for ethanol [79]. Similar results were 

obtained with CHARMM27 [47]. 

 

A thorough evaluation of different force fields for lipid bilayers 

simulations can be found in [79][48][49]. Several reviews and discussions 
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have dealt with coarse grained models of bilayers [50][42]. A review of 

coarse-grain modeling of lipid bilayers appeared in [51]. 
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3 Molecular Dynamics as a tool for theoretical 
skin permeability studies. An overview. 

 

In this chapter, we review the evolution of Molecular Dynamics 

simulations of the Stratum Corneum, addressing both structural and 

permeability studies. Both fields have evolved from simulations studies on 

generic lipid and phospholipid bilayers [7][48]. So this will be our starting 

point. 

  

Kox and coworkers pioneered the field of structural studies, using MD 

simulations to study the first realistic monolayer of amphipathic molecules 

with atomistic resolution: the system consisted of 90 molecules composed of 

7 repeating CH2 units, with the first unit (the "head group") constrained in a 

plane to simulate the interaction between polar head groups [52]. Two years 

later, van den Ploeg and coworkers studied a bilayer of 2 × 16 decanoate 

molecules, applying periodic boundary conditions in two dimensions [53]. In 

the late 1980s, the work of Egberts and Berendsen on a system of sodium 

decanoate/decanol/water [54] led the way to the study of lipid mixtures. From 

that point on, the number of MD studies on bilayers began to grow 

exponentially.  

 

 The state of the art in bilayers simulations up to 1997, from the 

pioneering studies on dipalmitoylphosphatidylcholine (DPPC) and 

dimyristoylphosphatidylcholine (DMPC) in the liquid crystalline state to the 

studies on phospholipid bilayers which express a gel phase under 60°C 

(characteristic of the SC) is described in an extensive review by Tieleman, 
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Marrink and Berendsen [55]. More recent studies on phospholipid bilayers 

are covered in later reviews [50][42][48][49].  

 

3.1 Structural studies on the stratum corneum lipid 
matrix  

 

Compared to the number of MD simulations performed on phospholipid 

bilayers, there are few simulation studies on ceramide bilayers. This may be 

in part due to the fact that neither CHARMM nor GROMOS are optimized 

specifically for ceramides [56].  

  

The first molecular dynamics simulation intended to mimic stratum 

corneum lipids was performed by Höltje and co-workers [57], to explore the 

effects of cholesterol. The results yielded by two systems, a FFA bilayer 

(stearic acid/palmitic acid) and a FFA/CHOL mixture at a 1:1 molar ratio are 

compared. The pure FFA bilayer is constituted by highly ordered lipid chains 

tilted relative to the bilayer normal, yielding a gel phase at 303 K. The 

presence of cholesterol increases the available free volume by decreasing the 

conformational order of the hydrocarbon chains. This effect is also confirmed 

for ternary mixtures of CER:CHOL:FFA [28]. The GROMOS87 force field is 

used for lipids, with Ryckaert-Bellemans potentials for the CH2 and CH3 

groups, and the SPC model [58] for water.  

  

The use of simplified models, possibly coupled with Coarse-Grained 

force fields, has been used to simulate phenomena requiring longer time 

scales to be observed, such as the self-assembly of a lipid bilayer [43].  
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Structural MD studies of realistic ceramide bilayers have begun to 

appear in the last ten years, and most are reviewed in [33]. It is important 

however to highlight that these include the first MD study of a ceramide 

bilayer by Pandit and Scott [59], the first study of a bilayer of asymmetric 

ceramides by Notman and co-workers [60] and the first systematic MD study 

on bilayers composed of ceramides, FFA and cholesterol at different molar 

ratios [7] by Das, Noro and Olmsted, along with other studies on mixtures by 

the same group [61][62]. Other works of note are a study on the effect of 

ceramide fatty acid chain length on the structure of bilayers [63], and a study 

on the structure and phase behavior of  CER NS and CER NP bilayers [56]; a 

study on stacked bilayers of synthetic CER EOS (methyl-branched), CER 

AP, C22:0 FFA and CHOL in a 23:10:33:33 molar ratio in water [64]; a 

study on a mixture of CER NS (24:0), lignoceric acid and CHOL in 1:1:1 

molar ratio, undergoing the addition of small quantities of oleic acid [65]. 

 

Besides the few structural simulation studies on the stratum corneum 

lipid matrix, a number of papers on MD simulations of ceramide molecules in 

different contexts [66][67] as well as simulations of sphingomyelin bilayers 

[68] have been published in recent years, but are outside the scope of this 

thesis.  

 

3.1.1 Permeation simulation studies on the stratum 
corneum  

  

The first thorough application of the inhomogeneous solubility-diffusion 

theory to solute permeation of the stratum corneum has been carried out by 

Das and colleagues [Errore. Il segnalibro non è definito.], although free 

energy calculations in ceramide bilayers had been performed before by 
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Notman and colleagues [69] relative to the study of the permeability 

enhancing mechanism of DMSO.  

 

In the work by Das and colleagues, Molecular Dynamics and the 

inhomogeneous solubility-diffusion theory are applied to water permeation. 

The water molecule is constrained at a fixed distance (z) from the bilayer 

mid-plane. The simulations are performed in the extended ensemble at 

constant temperature (350K) and constant pressure with the GROMACS MD 

package [70][71]. As  force field, a modified version of united atom OPLS 

[72] is used for the lipids and SPC [58] for water. The bilayer consists of 128 

Ceramide molecules and 5250 water molecules. Data from different 

simulations are used to calculate ∆G(z), and the diffusion coefficient in the xy 

plane and in the direction of the bilayer normal (D┴(z) and D║(z), 

respectively). Then permeability is calculated from ∆G(z) and D║(z) as 

outlined above. The simulations are then repeated with bilayers consisting of 

ternary mixtures of Ceramide:Cholesterol:Free Fatty Acid in different 

proportions at 300K and 350K. It is found that D┴(z) falls by a factor of 1000 

in the ordered tail region (while D║(z) falls by a factor of 10). This suggests 

that the ordered hydrocarbon tails define "channels" perpendicular to the 

bilayer surface. Moreover, there is a larger local density at the mid plane, 

where the interdigitation of the asymmetrical tails occurs, compared with a 

DPPC bilayer, where the diffusivity at the mid plane is the same as in bulk 

water. The permeability calculated for the 2:2:1 CER:CHOL:FFA bilayer at 

300K is about 30 times lower than the experimental value. Moreover, the 

calculation of the diffusion path according to Fick's diffusion model, from the 

calculated D║(z) and lag-time, yield an apparent path length that is 250 times 

larger than the bilayer thickness [28]. 
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4 Computational details. 
 

In this chapter the details about the purely computation aspects of the 

work are given.  From the structure of the lipid matrix model and its set-up, 

and the set-up of the 80 permeants, to the protocol followed during the 

Steered Molecular Dynamics production runs, and the choice of simulation 

parameters, the force field used, and the software packages employed for all 

those tasks. 

 

4.1 Set-up of the lipid matrix model  

 

An ideal SC lipid matrix model has been generated according to the 

model proposed by Iwai et al. [3]. It is composed by a heterogeneous mixture 

of long-chain ceramides (CERs), free fatty acids (FFAs), and cholesterol 

(CHOL) in a 1:1:1 molar ratio [6], which proved to be the most stable upon 

equilibration. Starting with a basic unit composed of one molecule each of 

CER 2 in extended conformation (Figure 4-1a), 24:0 FFA (Figure 4-1b) and 

CHOL (Figure 4-1c), a minimization by NAMD 2 and subsequent 

optimization by MOPAC 2012 [73] are performed followed by a 1 ns 

molecular dynamics at 300 K. 4 basic units (4 CER 2, 4 FFA, 4 CHOL) are 

assembled to form a monolayer unit. In each monolayer unit, one CER 2 was 

replaced by one CER 1 (thus giving a 25% of CER 1 in the ceramide 

component of the membrane), and the system undergoes a 1 ns MD 

simulation after that an energy minimization was performed. From this 

monolayer unit, membrane models of increasing sizes is built, up to a bilayer 

consisting of 868 lipid molecules (Figure 4-2). At this point, water molecules 
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are added to the model to account for solvation effects in the donor and 

acceptor phases, and a 10 ns MD simulation is performed (Figure 4-22) to 

allow to equilibrate the bilayer as confirmed by the corresponding MSD 

profile (Figure 4-3). 

 

 

 

Figura 4-1. a) Ceramide 2 (NS) in extended conformation. b) 24:0 FFA (lignoceric acid).  
c) Cholesterol. 
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Figure 4-2. The final 868 molecules bilayer before (a) and after (b) a 10 ns equilibration 
molecular dynamics in presence of explicit solvent (water). Apolar hydrogen have been 
removed from picture. Images obtained with VEGA ZZ [78]. 
 

 

Figure 4-3. Change in Root mean square deviation (RMSD) during the 10ns equilibration 
MD simulation. 
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4.2 Set-up of the permeants  

  

The below described SMD simulations were performed on the reduced 

of 80 permeants set as defined in Appendix A. This allowed us to avoid data 

in Flynn's set that do not meet the Fully validated set validation criteria 

(Appendix A), still being able to compare our results with existing models. In 

detail, the 80 molecules were simulated in their neutral form since it is 

involved in permeation processes. The conformational profile was explored 

by a quenched Monte Carlo procedure which produced 1000 conformers by 

randomly rotating the flexible torsions. For each considered permeant, the so 

obtained lowest energy conformer was further optimized by PM7 semi-

empirical calculations (also to derive more precise atomic charges) and 

underwent SMD simulation.     

 

4.3  Steered MD (SMD) simulations  

 

As a preamble it should be emphasized that the limited time period under 

investigation does not allow the spontaneous transport of molecules across 

the membrane to be simulated. Instead, steered molecular dynamics (SMD) 

simulations are used (paragraph 5.2), where solute molecules are dragged 

from water into and through the bilayer at a constant velocity in the direction 

perpendicular to the bilayer surface. SMD runs were performed on the 80 

permeants with the following characteristics: (a) periodic boundary 

conditions (108 Å x 108 Å x 162 Å) were applied to stabilize the simulation 

space; (b) Newton's equation was integrated using the r-RESPA method 

(every 4 fs for long-range electrostatic forces, 2 fs for short-range non bonded 
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forces, and 1 fs for bonded forces); (c) the long-range electrostatic potential 

was computed by the Particle Mesh Ewald summation method (108 × 108 × 

160 grid points) (d) the temperature was maintained at 300 ± 10 K by 

Langevin’s algorithm; (e) Lennard-Jones (L-J) interactions were calculated 

with a cut-off of 10 Å and the pair list was updated every 20 iterations; (e) a 

frame was memorized every 10 ps, thus generating 1000 frames; and (f) no 

constraints were imposed to the systems. The simulations were carried out in 

two phases: an initial period of heating from 0 K to 300 K over 300000 

iterations (300 ps, i.e. 1 K/ps) and the monitored phase of 2.5 ns. During this 

time, the solute molecule was forced to cover a distance of 50 Å at a speed of 

0.02 Å/ps by applying a harmonic constraint force equal to 5 Kcal/mol/Å2.  

 

Though the trajectory imposed on the solute in the SMD simulation 

doesn't necessarily follow the same tortuous path as in the physical system 

[9], the solute experiences all the microenvironments that can be encountered 

in a real permeation process. In detail, the trajectory imposed on the solute in 

the SMD simulation doesn't follow the route through the least dense region. 

Instead, the solute is made to follow the transversal route through the polar 

headgroups. This allows for an investigation of the behaviour of the 

permeants along the whole double layer, through all the possible 

microenviroments, without prejudice about which one is the path of least 

resistance, thus exploring the entire conformational and physicochemical 

property space [74] as the molecule moves through the bilayer. 

 

As physicochemical properties, polar surface area (PSA), surface, and 

lipophilicity (Virtual logP) [75] are considered, averaged in the different 

zones of the bilayer. The automatic linear regression script in VEGA ZZ is 
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used to find a correlation between the physicochemical properties and the 

permeation coefficient for the set of solutes. Other descriptors that can be 

derived directly from the SMD simulations, such as the force acting on the 

solute molecule, have proved of little value. Improvements for the estimation 

of the molecule behaviour, such as Free Energy calculations [26] couldn't be 

applied so far. As a matter of fact, a Free Energy calculation from a SMD 

using Jarzynski equality [76] would require multiple trajectories for every 

solute, and that is unfeasible for a screening of 80 molecules. 

 

4.4 Simulation parameters 

 

Molecular dynamics simulations are performed using NAMD 2 [77] and 

VEGA ZZ [78] software packages, on consumer grade desktop computers. 

The force fields used are CHARMM 36 [39] for the lipids, and the SPC 

potential [58] for water. In CHARMM force field, all atoms are described 

explicitly. CHARMM parameters for lipids, optimized on the condensed 

phase properties of alkanes [79], were introduced in CHARMM22 [80], and 

are periodically updated [Errore. Il segnalibro non è definito.]. 

 

All lipid molecules were in non-ionized form, as well as all solute 

molecules. A correction has been applied to the experimental Kp of 

molecules that are partially ionized at experimental conditions, based on the 

estimate of the non-ionized fraction [81]. 
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5 Theoretical background 
  

In this chapter, the theoretical background to our work is presented in 

detail. First, an account of the inhomogeneous solubility-diffusion model, 

developed by Marrink and Berendsen for studying membrane permeation is 

given. Then an explanation is given of the molecular properties and quantities 

used in Chapter 6. 

 

The inhomogeneous solubility-diffusion model represents an important 

approach to the problem, but it is based either on equilibrium MD simulations 

or on multiple non equilibrium MD simulations. Neither of these two cases 

applies to our work, since it was our goal to explore the different regions of 

the lipid matrix and to screen a large number of permeants. Either of this two 

goals requires multiple simulations: multiple equilibrium simulations in 

different regions or multiple SMD (non-equilibrium) simulations needed for 

calculating Free Energy differences from Jarzinsky equality (Paragraph 

5.2.1). 

 

An alternative method, which was explored in our work, was to use 

SMD simulations to explore the conformational space and property space of 

the permeants [82]. SMD simulations lead to the exploration of a reduced 

space, with respect to a conformational search, since MD takes naturally into 

account the environment. So only the conformational and property subspaces 

explored by the molecules in the lipid matrix are considered. 
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5.1 Molecular Dynamics simulations of solute 
permeation: the inhomogeneous solubility-
diffusion model 

  

The use of MD simulations to study solute diffusion through lipid bilayer 

membranes was developed in the 1990s for phospholipid bilayers, starting 

with early studies on passive diffusion [23][24][25] to systematic studies of 

permeation by Marrink and Berendsen, which took into account diffusion and 

solubility of penetrants into the membrane [26][27], and the statistical 

mechanics studies of MD trajectories by Xiang [83]. A thorough review of 

the first works on solute permeation of biomembranes can be found in [55]. 

More recent works has been reviewed in [84] and [14]. 

 

The inhomogeneous solubility-diffusion model, developed by Marrink 

and Berendsen, accounts for the non-homogeneity of biomembranes. Though 

the model is rigorously derived in [26], a simplified derivation is proposed 

here, with the same a priori assumptions, to highlight its physical meaning 

and applicability. If the membrane is homogeneous, the total resistance R (for 

our purpose, defined as the inverse of the permeability coefficient Kp) 

opposed by the bilayer to solute permeation is (Equation 1): 

 

KD

h

K
R

p

==
1

 

 

In a non-homogeneous membrane, as K, D, and therefore R are a 

function of depth z, the total resistance R can be expressed as the sum of the 

infinitesimal resistances dR : 
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)()( zKzD

dz
dR =  

 

over the bilayer thickness h, yielding [84][33]: 

 

∫=
h

zKzD

dz
R

0 )()(
  Equation 5-1 

 

where K(z) is the partition coefficient from water into the membrane at 

depth z, D(z) is the diffusion coefficient at depth z. 

  

The integral in Equation 5-1 assumes that the permeant moves, 

predominantly, along the direction of the bilayer normal, z, thus going 

through all the barriers of resistance dR 'in series'. It is rigorously valid for 

plasma membranes, where a solute undergoing passive permeation has to 

reach the inside of the cell from the outside. On the other hand, the different 

topology of the SC allows the permeant to follow a tortuous path [15][28], 

which will be a combination of motion along the bilayer normal and 

perpendicular to it. One of the models proposed for lipids arrangement 

assumes that trans-bilayer steps are not required during the permeation 

process, and a continuous path without interruptions along the whole SC 

depth is allowed [15]. In this case, the permeant could avoid the zones of 

higher resistance along the bilayer normal, which will thus make a negligible 

contribution to the integral in Equation 5-1. As a consequence, the total 

resistance R will be lower, and the permeation coefficient will be higher than 

calculated through Equation 5-1, as observed by Das and colleagues for a 

water molecule [28]. 
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In general, the calculation of the total resistance R in the case of the SC 

will require a generalization of Equation 5-1, accounting for the importance 

of lateral diffusion [9], and for the effective path followed by the solute. An 

expression for R, for example, could take the form of a line integral over the 

solute's effective path L' in the SC lipid matrix: 

 

∫=
' )()(

L
LKLD

dL
R    Equation 5-2 

 

where D(L) and K(L) are the path-dependent partition and diffusion 

coefficients at point L along the solute's path, respectively. Note that the 

relevant quantities in Equation 5-2, D(L) in particular, lacks a clear definition 

in this formulation. Further refinements of the equation, though, are outside 

the scope of this work. A review of relevant papers about the effects of SC 

topology on effective path length calculation is contained in [15]. 

 

5.1.1 Estimation of diffusion and partition coefficients with 
Molecular Dynamics 

 

Molecular Dynamics performed on bilayers naturally accounts for the 

anisotropic and non-homogeneous structure of biomembranes, where the 

partition coefficient K(z) and the diffusion coefficient D(z) are a function of 

depth z inside the bilayer. The diffusion coefficient will have different values 

in the direction or parallel (z) or perpendicular (xy) to the bilayer normal. 

 

The local diffusion coefficient D(z) can be calculated in different ways 

from Molecular Dynamics trajectories, the simplest method being from the 
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mean square displacement (MSD). For diffusion in the z direction (but the 

reasoning can be extended to calculation in the xy plane) [86]:  

 

( )

t

ztz
zD

t 2

)0()(
lim)(

2
−

=
∞→

 Equation 5-3 

 

where the average  is, theoretically, over different system replicas, 

but it is replaced, for our purposes, with the time average, a procedure that 

would be rigorous only if the ergodic hypothesis could be verified (which is 

seldom the case).  The limit of this approach is that, as the solute diffuse it 

goes through regions with different diffusion coefficient, so that Equation 5-3 

is applicable only to short time diffusion periods [86]. 

 

In this work, both Dz and Dxy were calculated from the MSD (in the z 

direction and in the xy plane, respectively) obtained from the simulations, 

using the algorithm proposed by Cameron Abrams [85]. 

 

A more general approach relates D(z) to the force fluctuations. In the 

case of a solute constrained at depth z by a force ),( tzF , the diffusion 

coefficient can then be expressed in terms of the time integration of the 

autocorrelation function of the random forces ),( tzF∆  [86]: 

 

∫
∞
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where the random forces ),( tzF∆  are calculated as the deviation of the 

instantaneous force ),( tzF  acting on the constrained molecules from the 

average force ),( tzF :  

 

),(),(),( tzFtzFtzF −=∆ . 

  

The partition coefficient K(z) can be calculated from the free energies of 

solute partitioning from water to depth z of the bilayer [14]:  

 

( )RTzGzK )(exp)( ∆−=  

where 

∫=∆
z

outside

t
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where 
t

zF )'(  is the constraint force at position z' averaged both over 

time and over different system replicas, and so a large number of different 

simulations are required for free energy calculations. 

 

Once the partition and diffusion coefficients are estimated using the 

above methods, the permeability coefficient Kp can be calculated from 

Equation 2 [83][84][86]. The model, initially applied to the study of 

membrane permeation by water [26], was later applied by the same Authors 

to ammonia, and oxygen molecules [27][87]. It has become widely used as a 

model for biomembrane permeation studies, as in the case of small molecules 

[88], β-blocker drugs [89] and valproic acid [90]. 
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5.2 Force, Work and Free Energy differences 

 

In a constant velocity Steered Molecular Dynamics simulation, the center 

of mass of the tagged atoms (in our case the center of mass of the permeant) 

is harmonically constrained (with force constant k) to move at constant 

velocity v in the direction n
r

. The situation is equivalent to having a "dummy 

carrier" moving at velocity v in the direction n
r

, bound to the center of mass 

of the tagged atom with a spring of force constant k. So the potential applied 

to the moving atoms is: 

 

[ ]221 ))0()((
2
1

),...,,( nRtRvtktrrU
rrrrr

⋅−−=  

 

where )(tR
r

 is the position of the center of mass at time t, and )0(R
r

is the 

position of the center of mass (at the start of the simulation) as defined by the 

input PDB file. The force applied to the center of mass of the tagged atoms is 

then: 

 

UF ∇−=
rr

 

 

and it is calculated through Hooke's law, from the force constant k and 

the elongation of the spring: nRtRvt
rrr

⋅−− ))0()(( . 

 

In the course of our simulations, value of the force was stored every 3 ps, 

for a total of 833 force values during a 2.5 ns simulation. The work 

performed by this force could be calculated as well. Unfortunately, the 

system not being in equilibrium, the calculated work has little significance, 
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since it cannot be related to Free Energy changes. The calculation of Free 

Energy requires performing multiple (usually 10) simulations for each system 

and the applying Jarzinsky equality. Since our work consisted in the 

screening of more than 90 molecules (initially) the use of multiple 

simulations was unfeasible. 

 

Force values though can bring qualitative insight on the behavior of the 

permeant in the different molecular environments. A typical progress of 

Force vs Position is shown in Figure 5-1. 

 

 

 
Figure 5-1. Force vs Position for Sucrose (blue) and Estradiol (magenta). 
 

 

In Figure 5-1, it is clear that the hydrophilic molecule encounters more 

resistance in the ceramide phases (more exactly ceramide + cholesterol and 

ceramide + free fatty acids phases), while the hydrophobic molecule 

encounters a resistance peak in the polar heads region. Since the path 

imposed on the permeant during the in silico simulation, though, is not 
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necessarily the path followed by the molecule in vitro, these "obvious" 

energy barriers are not real, and could not be correlated to permeability 

coefficients. 

 

5.2.1 Free energy calculations from multiple trajectories 
  

For three molecules, namely pentanoic acid, progesterone and styrene, 

multiple trajectories were obtained. The goal was to study the effect of a 

(admittedly large) perturbation in initial conditions. The perturbation only 

affected the initial x-y position of the permeant's center of mass (COM). In 

the Trajectory 1 the permeant's COM is placed at x = 0, y = 0 at the 

beginning of the simulation. Trajectory 2 replicates the same initial position 

as Trajectory 1. In the other trajectories, it is displaced by 1 Å at a time along 

x and along y. The starting points for trajectories 2 to 5 are so (in Å): 

 

• trajectory 3: x = 0, y = 1  

• trajectory 4: x = 1, y = 0 

• trajectory 5: x = 1, y = 1 

 

Even though the perturbation seems large, it should be noted that the 

permeants undergoes an erratic movement in water at the beginning of the 

simulation, for 10-15 Å. So the point of insertion into the SC is quite 

unpredictable. This is particularly true for small molecules, whose low linear 

moment makes the movement in water highly erratic. Though the trajectory 

starting at (0, 0) is taken as a reference, it has no special meaning, as it can 

lead to unusable pathways at the edges of the simulation box, as in the case of 

4-bromophenol (Figure 5-2), for which the trajectory starting (0, 0) clearly 
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ends in a region outside the model membrane (which goes approximately 

from -34 Å to +32 Å in the x direction, and from -35 Å to +35 Å in the y 

direction). 
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Figure 5-2. x (Å) vs. y (Å) plot for the trajectory starting at (0,0) for 4-nitrophenol. 
 

In Figures 5-3, 5-4, 5-5, the x-y plots of the trajectories for pentanoic 

acid, progesterone and styrene, respectively are depicted. In the case of 

progesterone and styrene, trajectories 3 and 5 (yellow and purple lines) are 

clearly outside the model membrane, and have to be omitted from further 

analysis. 
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The availability of multiple trajectories, allows us to use Jarzinsky 

equality for the calculation of Free Energy differences (in our case Helmholtz 

Free Energy), from the work done by the SMD force in the different 

simulations. Jarzinsky equality states that: 

 

kTWkTF ee // −∆− =  

 

where ∆F is the Free Energy difference associated with the trajectory, W 

is the work done by the SMD force for the same process, k is Boltzmann's 

constant, T the absolute temperature. The average is taken over an ensemble, 

in our case over the different trajectories. 

  

In Figures 5-6, 5-7 and 5-8, the work W is depicted for the different 

trajectories for the 3 molecules under study, as well as the Free Energy 

difference ∆F. From the plots, it is clear that in most cases the work 

calculated from SMD simulations is higher than the Free Energy difference, 

confirming that the simulations are away from equilibrium. Work calculated 

in our simulations cannot be used as such to estimate Free Energy. 
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Figure 5-3. x (Å) vs. y (Å) plot for the 5 trajectories for pentanoic acid. 
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Figure 5-4. x (Å) vs. y (Å) plot for the 5 trajectories for progesterone. 
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Figure 5-5. x (Å) vs. y (Å) plot for the 5 trajectories for styrene. 
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Figure 5-6. Work and Free Energy difference plot for pentanoic acid. 
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Figure 5-7. Work and Free Energy difference plot for progesterone. 
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Figure 5-8. Work and Free Energy difference plot for styrene. 
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5.3 Molecular Dynamics simulations of solute 
permeation: exploration of conformational and 
property space 

 

The concept of a property space, as the space of conformer-dependent 

properties experienced by a molecule when exploring its conformational 

space, was introduced by Bernard Testa and colleagues in [91], and later 

applied to the exploration of lipophilicity space in [82]. Fundamental in the 

development of the concept of property space were the assumptions that for a 

conformation-dependent physicochemical property: 

 

1. a flexible molecule will assume different values dependent on the 

conformation; 

2. the average value of a property, particularly a weighted average (and 

also its range), is more indicative than any conformer-specific value. 

 

MD simulations represent a viable technique for the exploration of the 

conformational space of a molecule in a specific, and explicitly described, 

environment. In our particular case, and SMD simulation spanning the length 

of a SC monolayer, allowed the exploration of the conformational spaces of 

the 80 permeants in the reduced set (Appendix A). If conformation-dependent 

physicochemical properties are calculated at regular intervals, this results in a 

concurrent exploration of property space in the same environment. 

 

 Different molecular properties can be calculated during a SMD 

simulation. The "static" properties are calculated for example on optimized 

geometries in vacuum with ab-initio or semi-empirical quantum mechanics 

calculations. Molecular Dynamics allows for the determination of 
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"dynamical" properties, i.e. the relevant properties are calculated for the set 

of molecular geometries encountered in the actual molecular environment. 

 

5.3.1 Physicochemical properties 
 

The physicochemical properties considered were conformation-

dependent properties, in particular virtual log P (calculated by a MLP 

approach) [75], polar superficial area (PSA), lipole, surface (calculated with a 

probe of diameter 1.40 Å), ovality and frontal area. Even properties which 

have little dependence on conformation, like molecular volume (MV) or no 

dependence, like molecular weight (MW) were considered. As the partition 

coefficient of a molecule plays a key role among physicochemical properties, 

a detailed account is given on the method used to estimate its value. 

 

5.3.2 MLP and virtual log P 
 

"The MLP defines the influence of all lipophilic fragmental contributions 

of a molecule on its environment. The MLP value at a point in space is 

generated as the result of the intermolecular interactions between all 

fragments in the molecule and the solvent system, at that given point" [75]. 

 

In practice, MLP in a given point in space k is expressed (and calculated) 

as the product of the lipophilic constant of a fragment i and a distance 

function fct(dik), where dik is the distance between fragment i and point space 

k, integrated over all the fragments in the molecule: 
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where N is the total number of fragments in the molecule. In particular, 

the MLP used is based on the atomic lipophilic system of Broto and Moreau 

and on an exponentially decaying distance function: 
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To obtain a quantity that can be correlated with experimental log P, the 

MLPk values so obtained are integrated, either by summation over all MLP 

values on the surface (∑MLP ) or by summation of the positive MLP values 

(
+

∑MLP , representing the "lipophilic" part of the molecule) and the 

negative MLP values (
−

∑MLP , representing the "hydrophilic" part of the 

molecule ) separately. These three parameters,  ∑MLP , 
+

∑MLP  and 

−

∑MLP  are dependent on the tridimensional structure of the molecules, and 

the log P generated by the MLP through linear correlation with experimental 

log P values, called the "virtual log P" is dependent on molecular 

conformation [75]. 

 

5.3.3 Frontal area 
 

One the quantities that showed some correlation to the permeation 

coefficient, was the Frontal area, i.e. the projection of the molecule in the xy 

plane, calculated as Volume/z-dimension. A frontal area so calculated gives a 
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good approximation in the case of cylindrically molecule, but it gives an 

underestimated measure in the case of a spherically shaped molecule. In the 

latter case, the z-dimension is the sphere diameter, so: 

 
23 πR

3

2
2RπR

3

4
(sphere)areafrontalEstimated ==  

 

which is 2/3 of the true frontal area. A better estimation of the frontal 

area is obtained by multiplying the value of Volume/z-dimension by the 

quantity 3/(2*ovality), which has value 3/2 for a sphere and approximately 1 

for a cylinder. 

 

5.3.4 Scoring functions 
  

A different approach consisted in the evaluation of the SC-permeant 

interaction energy through a scoring function. Five different scoring 

functions  were tested,  of which four are variations of the MLP Interaction 

Score [92]: MLPInS, MLPInS2, MLPInS3, MLPInSF and CHARMM.  

 

"The MLP Interaction Score (MLPInS) is computed using the atomic 

fragmental system proposed by Broto and Moreau and a distance function 

that defines how the score decrease with increasing distance between 

interacting atoms.  The equation to compute the interaction score is: 
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( )∑∑
−
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InS

rf

ff
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where fa and fb are the lipophilicity increments for a pair of atoms and 

rab is the distance between them. The first sum is over all the ligand’s atoms, 

the second sum is over all receptor’s atoms.  

 

The basic assumption in the calculation of the MLPInS, which encodes 

the contributions of the various intermolecular forces measured 

experimentally in partition coefficients, is that the score is favourable (i.e. 

negative) when both increments have the same sign (as denoted by the 

negative sign in the equation), or unfavourable (repulsive forces) when the 

score has a positive sign. When the atomic parameters are both positive, 

MLPInS encodes hydrophobic interactions and dispersion forces, the 

importance of which is well recognized in docking simulations, and it 

accounts for polar interactions, in particular H-bonds and electrostatic forces 

when the atom parameters are both negative" [92]. 

 

The tested MLP Interaction Scoring functions differ in the calculation of 

hydrophobic interaction: 

 

• in MLPInS, hydrophobic interaction is calculated as product of the 

Broto's and Moreau's atomic constants divided by the distance 

between the interacting atom pair; 

• in MLPInS2, as above, but the distance between interacting atom pairs 

is considered as a square value; 

• MLPInS3, as above, but the distance between interacting atom pairs is 

considered as a cube value; 

• MLPInSF, as above, but the distance is evaluated by Fermi's equation. 
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In the CHARMM scoring function, Van der Waals interactions are 

estimated by CHARMM 22 force field. 

 

5.4 On the confidence interval of the correlation 
coefficient r 

 

Given the uncertainty in the experimental data contained in Flynn's data 

set and even in the Fully validated data set (Paragraph 5.4.1), it is important 

to estimate a confidence interval for r or r
2 and to know if there is a 

theoretical maximum correlation coefficient for a set of data with given 

uncertainties. 

 

In determining the confidence interval of r, where r is seen as an 

estimate of a true value ρ, a first analytical method applied the approach 

devised by R.A. Fisher [93], using the Fisher r → Z transform [94][95], 

which is defined as: 

 

r)]ln(1r)[ln(1
2

1
Z −−+=      Equation 5-4 

 

The transformed variable Z has a different behaviour than r. It tends to a 

normal distribution as the number of data (n) becomes larger, and its variance 

sZ

2
 is independent on the value of r: 

 

3
12

−
=

n
sZ

     Equation 5-5 
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To get a confidence interval for r, the value of r is transformed into Z, a 

confidence interval is calculated for Z and it is transformed in the confidence 

interval of r, using the reverse transform: 

 

1
1

2

2

+

−
=

Z

Z

e

e
r   Equation 5-6 

 

Results obtained through Fisher r → Z transform are independent of the 

uncertainty of experimental data and require the r value is known a priori. 

Even though the r
2 mean of a correlative analysis based on a dataset 

characterized by a known standard deviation of the errors, ε, is roughly equal 

to 1 - ε, a numerical simulation was performed to better investigate the 

correlation between the confidence interval of r and the uncertainty of 

experimental data. As described below, such a simulation involved the 

introduction of increasing random errors into the experimental pKp data to 

analyse their influence on the correlation coefficient. Moreover, by repeating 

many times the numerical simulation, it is possible to derive both the mean r
2 

and the corresponding a confidence interval as defined by the corresponding 

minimum and maximum of r2 values. Interestingly, these numerically derived 

results will be compared to those calculated by using the Fisher transform. 

Both methods are applied to the 80 compounds in the reduced set and 

compared in Table 5-1 (r2
 values are given). 

 
In the simulation, yi are the experimental pKp (= -logKp) for the 80 

compounds in the data set: 

 

yi  = -logKpi  i = 1,2 ... n 
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We suppose to have a perfect estimator φ for yi, so that given a set of 

variables {xij}, where xij represents the j
th molecular property of the i

th 

molecule, the equation: 

 

yi  = φ(xij)  i = 1,2 ... n, j = 1, 2 ... n    

Equation 5-7 

 

brings a correlation coefficient r = 1. 

 

For every yi, we now introduce an error, ε·ci·yi, where the ci values are 

normally distributed pseudo-random numbers with zero average and unitary 

standard deviation, and ε corresponds to the standard deviation of the errors, 

normalized by yi. Equation 5-7 becomes: 

 

yi (1 ≤ ε ci) = φ(xij)  i = 1, 2 ... n, j = 1, 2 ... n 

Equation 5-8 
 

which has a correlation coefficient r < 1. For increasing values of ε (from 

0.1 to 0.5), we repeated the simulation 99 times by applying Equation 4-6 to 

the same set {yi, xij}, each time changing the set {ci}. Since the so calculated 

correlation coefficients (rk) are not normally distributed, we apply Fisher r → 

Z transform to obtain 99 Zk values, for which the standard deviation is 

calculated: 

 

∑
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Once the confidence interval for Z, has been calculated as )SZ,SZ( zz +− , 

the reverse transform is used to get a confidence interval for r (Figure 5-9). 

Results of the simulation, performed on the 80 compounds in the reduced 

data set are listed in Table 5-1.  

 
The normally distributed pseudo-random numbers are obtained starting from 

random numbers and applying the Box-Muller transform. Given a set of pairs 

of random numbers {ui, uj} in the interval (0, 1), the set {ci, cj}, where ci, cj 

are defined by: 

 

)sin(2πi2lnuc

)cos(2πo2lnuc

jij

jii

−=

−=
 

 
The Box-Muller transform allow to obtain a set of normally distributed 

pseudo-random numbers, with zero average and unitary standard deviation.  

 
 
ε 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

r
2 mean simulated 0.95 0.88 0.81 0.74 0.66 0.59 0.53 0.47 0.42 

r
2 lower simulated 0.93 0.86 0.77 0.68 0.58 0.50 0.43 0.36 0.31 

r
2 higher simulated 0.96 0.91 0.85 0.79 0.73 0.68 0.62 0.57 0.53 

r
2 lower calculated 0.93 0.86 0.77 0.69 0.60 0.52 0.45 0.39 0.34 

r
2 higher calculated 0.96 0.91 0.85 0.79 0.72 0.66 0.60 0.55 0.51 

 
Table 5-1. Mean and confidence interval for r

2 obtained from numerical simulation 
(simulated), corresponding to different values of standard deviation of pKp (ε = Std. dev. of 
pKp / average pKp). Mean and Confidence interval for r

2 (calculated) obtained from 
Equations 5 and 6 corresponding to the simulated r2 mean value 
 
 
Results in Table 5-1 show how the correlation worsens when the 

uncertainties on experimental data increase even considering an ideally 

perfect estimator of for yi. Mean r2 values decrease as an S-shaped function 
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as ε increases (Figure 5-9). As expected and to a first approximation mean r2 

mean values can be estimated as 

 

r
2
 = 1- ε 

 

which implies that even a perfect estimator for pKp cannot explain all the 

variability associated in the experimental data, given their uncertainties. 
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Figure 5-9. Mean r2 values vs. different values of standard deviation of pKp (epsilon = Std. 
dev. of pKp / average pKp). 
 
 

5.4.1 Uncertainty in experimental data and repercussions of 
the correlation coefficient 

 

To get an idea of the typical uncertainties of the pKp values in the existing 

datasets, we consider compounds for which multiple (more than 2) 

measurements are included in the FV data set (Figure 5-2), and calculate the 

standard deviation of pKp normalized by the pKp average. This term can then 

be compared to ε from Equation 5-8. As it can be seen from Table 5-2, values 
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of ε of 0.25 or greater are possible. Results from the simulation are shown in 

Table 5-3. 

 

Corticosterone (n=4)        pKp     t (∞C)   Phenol (n=3)        pKp     t (∞C) 
Average 3.67 29.25   Average 2.53 28.00 

St. Dev. 0.94 6.55   St. Dev. 1.12 7.94 

St. Dev./Average 0.26 0.22   St. Dev./Average 0.44 0.28 

              

Estradiol (n=5)        pKp     t (∞C)   Ethanol (n=3)        pKp     t (∞C) 
Average 2.52 31.00   Average 3.37 25.67 

St. Dev. 0.58 4.00   St. Dev. 0.24 4.04 

St. Dev./Average 0.23 0.13   St. Dev./Average 0.07 0.16 

              

Mannitol (n=4)        pKp     t (∞C)   Water (n=8)        pKp     t (∞C) 
Average 4.09 31.50   Average 2.96 29.88 

St. Dev. 0.12 5.20   St. Dev. 0.20 2.10 

St. Dev./Average 0.03 0.16   St. Dev./Average 0.07 0.07 

              

Salicylic acid (n=3)        pKp     t (∞C)   Octanol (n=3)        pKp     t (∞C) 
Average 1.72 34.67   Average 1.26 25.67 

St. Dev. 0.43 4.04   St. Dev. 0.04 4.04 

St. Dev./Average 0.25 0.12   St. Dev./Average 0.03 0.16 

 
Table 5-2. Average and standard deviation for pKp and temperature (t, ±C) based on data 
included in the Fully Validated data set and published in [81]. 
  

 

 ε 0.05 0.1 0.15 0.2 0.25 0.3 0.4 

r mean 0.993 0.973 0.94 0.90 0.86 0.82 0.73 

r low 0.992 0.968 0.93 0.88 0.83 0.77 0.66 

r high 0.995 0.979 0.96 0.93 0.89 0.86 0.79 

r
2 mean 0.986 0.948 0.89 0.82 0.74 0.67 0.53 

r
2 low 0.984 0.936 0.87 0.78 0.69 0.60 0.44 

r
2 high 0.989 0.959 0.91 0.86 0.80 0.74 0.63 

 
Table 5-3. Mean and Confidence interval for r and r2 obtained through numerical simulation, 
corresponding to different values of standard deviation of pKp. ε = (Std. dev. of pKp) / 
(average pKp). 
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There is a correlation (r2 = 0,64) between the normalized standard 

deviation of pKp and the normalized standard deviation of experimental 

temperatures, suggesting that the effect of temperature should be taken into 

consideration for a better correlation of pKp to the molecular properties, 

either in the form of a correction factor or performing the MD simulations at 

the same temperature as the experiment. 

 
 

5.5 On the linear filtering of differential and exponential 
quantities. 

  

When dealing with quantities with a rich higher harmonics content, such 

as position and force data derived from Molecular Dynamics simulations, a 

certain degree of filtering seems necessary. A word of caution, though, is due 

if linear filtering is to be applied to quantities, such as position, which are

 

 
Figure 5-10. Position coordinate of the center of mass of a molecule in a SMD simulation 
(magenta) and a 37 period MA (blue). 
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later manipulated to obtain differential quantities, such as velocities (and so 

even the Mean Square Deviation, MSD, used to derive the Diffusion 

coefficient) or exponential quantities such as kinetic energy. 

 

The hypothesis when applying filters for the purpose of reducing the 

casual error in calculation/measurement, is that the error is indeed casual, 

with zero average. A typical signal from an SMD simulation, for example a 

position coordinate (but it could be a linear momentum or a force), with 37 

period Moving Average (MA) applied to it as a filter is shown in Figure 5-10. 

 

The MA is defined as: 

 

 

 

The value ix  can be thought of as a true value TRUEix ,  plus a casual error 

iε , which can be positive or negative: 

 

iTRUEi,i εxx +=  

  

Since iε , 0
1

→∑
N

iε  as ∞→N  then, if N is sufficiently large: 
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and so, from the definition of MA: 

∑
−+

−−=

=
2/)1(

2/)1(

1
)(

pi

pij

jip x
p

xMA



 72 

 

)MA(x)MA(ε)MA(x)MA(x TRUEi,iTRUEi,i ≈+=  

 

which allows as to take the MA of ix  as an estimate of the true value 

TRUEix , . Then, the casual error iε  can be calculated as: 

TRUEiii xx ,−=ε  

as depicted in Figure 5-11. 

 

The average error ∑
N

i
N 1

1
ε clearly goes to zero as the number of 

timeframes increases (Figure 5-12). 

 

 

 

Figure 5-11. Estimation of the casual error iε  in the determination of  the position 

coordinate ix of the center of mass of a molecule in a SMD simulation. 

 

 

If we take the square of the coordinate from the SMD simulation 2
ix , as 

in the case of calculating kinetic energy from the linear momentum, and the 
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square of the MA of ix  as an estimate of its true value 2
,TRUEix , clearly the 

error [ ]22* )( iii xMAx −=ε  shown in Figure 5-13, is not casual and it does not 

have in general zero average as the number of timeframe increases (Figure 

5-14). 

 

 

Figure 5-12. Average of the casual error iε  in the determination of  the position coordinate 

ix of the center of mass of a molecule in a SMD simulation. 

 

 

Figure 5-13. Error [ ]22* )( iii xMAx −=ε  in the determination of  the square of coordinate 

ix  in a SMD simulation. 
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Indeed, as iTRUEi,i εxx += then: 

 

2
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2

TRUEi,

2

i εx2εxx ++=  

 

where iε  is the casual error. If we take [ ]2)( ixMA  as an estimate of 

2
,TRUEix , then: 
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clearly does not tend to zero as N increases (Figure 5-14). 

 

 

 

Figure 5-14. Average of error [ ]22* )( iii xMAx −=ε  in the determination of  the square of 

coordinate ix  in a SMD simulation. 
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In the case of a differential quantity iii xxx −=∆ +1 , such as velocity if 

ix is a position coordinate (Figure 5-15), if we filter the original coordinates 

ix  and 1+ix  with a MA of period p, then we get: 

 

2/)1(2/)1(1 )()( −−+++ −=−=∆ pipiipipi xxxMAxMAx  

Equation 5-9 
 

So we are simply replacing a difference between adjacent x values, with a 

difference between x values at the extremes of the MA period. This only 

means a loss of information instead of filtering. Since MA is a linear operator, 

applying the MA to ix∆  instead of applying it to ix  and 1+ix  brings the same 

result. 

 

If we apply a multiple pass moving average, i.e. we apply a MA of 

period p to ix∆  as calculated in Equation 5-9, we get: 
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So we are replacing a difference between adjacent x values, with a 

difference between moving averages centered at the extremes of the first MA 

period. 
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Figure 5-15. Differential quantity iii xxx −=∆ +1  derived from coordinate ix . 

 

Other linear filters, such as Savitsky-Golay filters, bring different results, 

but there is always a loss (albeit smaller) of information around the values to 

be subtracted, and their replacement with a linear combination of neighboring 

values. A Savitzky-Golay filter has the general form: 

 

∑
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j

jji xc
N

xSG
1

1
)(  

 

where integer coefficients jc  have different values based on the width 

and polynomial degree of the filter. For example, in a quadratic filter of width 

5, the coefficients are: -3, 12, 17, 12, -3.  

 

 

Figure 5-16. Coefficients jc of a Multiple (Double) Pass Moving Average of period p 

applied to the differential quantity iii xxx −=∆ +1 . 
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In the case of the moving average, the coefficients of the linear 

combination are uniformly distributed (Figure 5-16), while in the case of 

Savitsky-Golay filters values far from the original coordinates to be 

subtracted have the lowest weight (Figure 5-17). 

 

 

Figure 5-17. Qualitative trend of the coefficients jc of a Savitzky-Golay filter applied to the 

differential quantity iii xxx −=∆ +1 . 

 

 

An advantage of Savitzky-Golay filters over MAs in the case of 

differentials though, is that the filter can be applied to the signal to calculate 

directly the 1st derivative, thus avoiding the loss of information. 

 

The loss of information could be resolved in different ways, for example 

using non-linear filters, or applying the 1st derivative Savizky-Golay filter. 

We chose the simplest method of taking the median of a value (be it position, 

or a molecular property) inside the relevant Stratum Corneum region. 
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6 Predictive analyses 
 

In this chapter, the results obtained in the search of a predictive equation 

of skin permeability to chemicals are shown. The chapter starts with the 

preliminary explorations of semi-empirical equations,  based on the Potts and 

Guy equation, without the use of Molecular Dynamics, which can be refined 

to give results at the limit of what is possible given the uncertainty in 

experimental data (Paragraph 5.4) at the risk of overfitting the available data 

(n = 80). Then, results obtained from MD simulations are given. Two 

different path have been attempted:  

 

1. the use of position and force data from SMD simulations. The use of 

force data to calculate work and then Free Energy differences had to 

be discarded, because our simulations are to far from equilibrium 

(Paragraph 5.2.1) to yield correct Free Energy values. Moreover, 

since our work consist of a screening of a large number of molecules 

performing multiple simulations (from 5 to 10 at least) proved 

unfeasible. Position data, on the other hand were used to calculate 

Diffusion Coefficients. 

2. the use of MD simulations as a mean to explore the conformational 

space and property space of the permeants, in a real-world scenario, 

i.e. on a reduced conformational and property subspaces, that the 

molecules are likely to explore during the process of Stratum 

Corneum permeation. 

 

In practice, in the best predictive equations, we mixed molecular 

properties from step 2 with diffusion coefficients from step 1. 



 80 

 

All correlations in the present chapter (except for the Potts and Guy 

equation) are performed on the reduced data set defined in Appendix A. 

 

6.1 Predictive models based on Potts & Guy equation 

  

The most cited semi-empirical model of permeability is the one by Potts 

and Guy [8], whose equation (correlated on Flynn's set of 94 permeants) is:  

 

logKp (cm/s) = – 6.3 + 0.71 log Ko/w – 0.0061 MW  r
2 =0.68 

 

where Kp is the permeability coefficient expressed in cm/s, Ko/w the 

octanol/water partition coefficient, MW the molecular weight and r the square 

of the correlation coefficient calculated on Flynn's set. 

 

As pointed out in the previous chapter, a temperature correction factor 

may be added to a predictive equation, to account for the variability in 

experimental conditions both in Flynn's [10] and in the Fully Validated [81] 

sets. Introducing  the effect of temperature on reducing the activation energy 

for transport of penetrants through the SC, Vecchia and Bunge [81] proposed 

the modified equation: 

 

logKp = a + b · log Ko/w + c · MW/T  Equation 6-1 
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where T is the absolute temperature, and a, b, c the coefficient to be 

determined empirically. It is notable that Equation 6-1 has the same degrees 

of freedom as the Potts & Guy equation. Applying Equation 6-1 to the 

reduced set (since not all experimental temperatures are known for Flynn's 

set), we get the following result, not significantly better than Potts & Guy's: 

   

logKp (cm/s) = -6.22 + 0.62 log Ko/w - 1.72 MW/T   

r
2 = 0.69, q2 = 0.66, n = 80 

 

where q2 is the square of correlation coefficient obtained with the Leave 

One Out (LOO) algorithm, and it is a measure of the predictive power of the 

equation. 

 

Surprisingly, replacing the absolute temperature T with temperature t in 

±C, r2  and q2 improve: 

 

logKp (cm/s) = -5.97 + 0.64 log Ko/w - 0.21 MW/t Equation 6-2 
 r

2 = 0.75, q2 = 0.70, n = 80 

 

Since this result relies only on a change in unit of measure, it seems 

suspect of overfitting of data, and it should be tested on larger data sets, such 

as the full Fully Validated data set. However, since the dependence of logKp 

on t is non-linear, and given that this is a peculiar change in unit of measure: 

T  (K) = t (±C) + 300 , this is not impossible from a strictly mathematical 

point of view. Predicted logKp values from Equation 6-2 vs experimental 
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logKp values are graphically represented in Figure 6-1. Leaving out the value 

for Oubain (experimental logKp = -9.67), we get r2 = 0.77, q2 = 0.75. 
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Figure 6-1. Predicted logKp values from Eq. 7-2 vs experimental logKp values from the 
common set between Flynn's and the Fully Validated sets. 
 

Results improve to r2 = 0.80, q2 = 0.74 if pH corrected values from the 

Fully validated set are used. If Molecular Volume (MV), as calculated at the 

water/bilayer interface during MD simulations, replaces Molecular Weight 

(MW), we get another improvement: 

 

logKp (cm/s) = -5.88 + 0.71 log Ko/w - 0.245 MV/t Equation 6-3 
 r

2 = 0.81, q2 = 0.76, n = 80 

 

Predicted logKp values from Equation 6-3 vs experimental logKp values 

are graphically represented in Figure 6-2.  
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Validation of Eq. 6-3 brings to the results listed in Table 6-1. Equation 3 

gives better results than all the equations considered in the previous chapter. 
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Figure 6-2.  Predicted logKp values from Eq. 7-3 vs experimental logKp values from the 
common set between Flynn's and the Fully Validated sets. 
 

 

 
r

2
  

training set 
Adjusted r2 
training set 

r
2
 

test set 
Std. Dev. of Errors 

training set 

Eq. 6-3 
(n = 80) 

0,82≤0,03 0,80≤0,04 0,82≤0,05 0,51≤0,06 

 

Table 6-1. Model validation for Eq. 7-3. Dimension of the test set = 27. Dimension of the 
training set = 53. Validation performed on 20 tests. 
 

From the considerations on the confidence interval of the correlation 

coefficient r made in Appendix A, we are clearly reaching the limits of a 

significant r
2 value for n = 80, even with a very limited use of Molecular 

Dynamics (calculation of the Molecular Volume at the water/bilayer 
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interface). Applying Eq. 6-2 and Eq. 6-3, as well as a Potts & Guy type 

equation to a larger set would be essential to reduce the probability of 

overfitting and to reduce the confidence interval of correlation coefficient r, 

thus improving the significance of the calculated r
2 value. The role of 

Molecular Dynamics simulations clearly seems more oriented to understand 

the mechanics of skin permeation, more than to develop improved predictive 

equations. Though, the capability of MD to directly calculate quantities of 

physical significance, forms a protection from theoretical artifacts and from 

data overfitting. 

 

 
Figure 6-3. Regions 1, 3 and 5 as defined in Table 5-3 (semi-transparent plane). Yellow line 
represents depht z = 0. 

 

6.2 Results from MD simulations 

 

Even though results obtained with semiempirical equations are 

promising, they do not offer better insight into the mechanics of permeation 

the original Potts and Guy equation. Molecular Dynamics, on the other hand 

can help gain a better understanding of the process under study.  
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One way in which we exploited this characteristic of MD was to divide 

the lipid matrix model in 18 partially overlapping regions, to study the 

importance of any region in the explanation of experimental data variability. 

  

The model membrane was ideally subdivided into 18 regions along the z 

direction, i.e. the bilayer normal (Figures 6-3, 6-4). The thickness of every 

region had to be chosen as a compromise: a region should not be so large that 

calculated quantities (permeability and diffusion coefficients) vary 

significantly, but it should be large enough to allow for a significant diffusion 

coefficient to be calculated from the RMSD. A thickness of 4 Å was chosen 

somehow arbitrarily, based on those considerations. Since the simulations 

span, at least from z = 60 Å (measured from the membrane midplane) to z = 

20 Å, the correlations were performed on 4 Å frames starting from z = 58 Å, 

and sliding the frames by 2 Å at a time to z = 21 Å. 

 

 
 
Figure 6-4. Tridimensional view of the model membrane intersected by the plane defining 
regions. 
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6.2.1 Diffusion coefficients 
  

Both the diffusion coefficient in the xy plane, Dxy, and along the z axis, 

Dz , were tested, although the latter was affected by a high bias introduced by 

steering in the z-direction. Results confirmed that the values obtained for Dz 

from MSD calculations have little physical significance. Even if the SMD 

force is applied only in the z direction, it will also affect the calculation of the 

diffusion coefficient in the xy plane, since it will affect the linear momentum 

of the permeant and the frequency of collisions with SC molecules. Though 

not entirely unbiased, Dxy is less affected the by the forced movement in the z-

direction, and maintains a physical significance showing a better correlation 

coefficient than Dz  when applied to the reduced data set, at least in some 

regions (Table 6-2). It must be noted that the correlation coefficient is highly 

dependent on the region where the diffusion coefficient is calculated. 

 

Quantity Region r
2
 

log Dxy 3 0.20 

log Dxy 2 0.12 

log Dxy 5 0.11 

log Dxy 4 0.10 

log Dz 14 0.09 
 

Table 6-2. Contribution of log Dxy vs log Dz to the explanation of the variability of the 
common data set.  
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6.2.2 Physicochemical properties 
 

The correlation of different physicochemical properties of the permeant, 

calculated in the different regions of the SC, with skin permeation have been 

explored. The analysis starts with virtual log P, as the partition coefficient, 

not surprisingly, plays a pivotal role in many predictive equations, starting 

from Potts and Guy's. 

 

6.2.2.1 Virtual log P 
 

The values of virtual log P have been calculated for the 80 compounds in 

the 18 regions of the stratum corneum, and then correlated to the permeability 

coefficient. The value of r2 for these correlations ranges from 0,52 to 0,53 in 

the 18 regions, and q2 is about 0,50. It is clear that the role of virtual log P is 

unaffected by the region in which it is calculated. 

 

Even if the above values confirm the importance of lipophilicity in the 

determination of skin permeability, and the suitability of the calculated 

virtual log P as a parameter to be used in predictive equations, the r2 and q2 

values obtained above are too low for expecting a predictive value of this 

quantity alone. So a predictive equation of the form of Potts and Guy's, with 

or without temperature correction has been explored. The best equations 

turned out to be: 

 

pKp = 3.26 - 0.63 virtual log P + 0.0026 MW Equation 6-4  

r
2
= 0.61 q

2
= 0.59 
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without temperature correction, and 

 

pKp = 2.97 - 0.63 virtual log P + 0.11 MW/t Equation 6-5 

r
2
= 0.68 q

2
= 0.65 

 

with temperature correction.  

 

Both equations bring inferior results to their counterpart using 

experimental log P values. As we will show in Paragraph 6.3, the predictive 

power of virtual log P will be fully exploited only when it is paired with the 

diffusion coefficient.  
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6.2.3 Other physicochemical properties 
 

Physicochemical properties different from the virtual log P bring no 

improvement to the correlation, when used in isolation. Some of them like 

molecular weight or molecular volume greatly improve the predictive power 

of equations when paired to the virtual log P, but are of little value when used 

alone. The results obtained correlating the different molecular properties in 

the 18 different regions of the lipid matrix model are presented here. Results 

are shown in Table 6-3. 

 

Property Region r
2
 

PSA any 0.43 

Estimated frontal area 2,3 0.32 

MW any 0.27 

Molecular volume any 0.26 

Lipole (Broto & Moreau) 8,9 0.26 

Ovality any 0,16 
 

Table 6-6-3. Contribution of different molecular properties to the explanation of the 
variability of the common data set.  
 

 

6.2.4 Scoring functions 
  

The approach of evaluating the SC-permeant interaction energy through 

a scoring function brought interesting results, similar, in the case of MLPIns to 

the results obtained through the use of Virtual log P, not surprisingly. Of the 

five scoring functions, only CHARMM brought clearly inferior results, with 

MLP scoring functions bringing the best correlations, in particular at the 
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water/SC interface (Region 2) in the order MLPInSF > MLPInS3 > MLPInS2 > 

MLPInS (Table 6-3). 

 

 

Scoring function SC region r
2
 

MLPInSF 2 0.59 
MLPInS3 2 0.56 
MLPInS2 2 0.53 
MLPInS 2 0.51 
MLPInS2 3 0.51 
MLPInS 3 0.50 
MLPInS3 3 0.50 
MLPInSF 3 0.46 
CHARMM            2 0.18 

 
Table 6-6-4. SC-permeant Interaction Score in different regions of the SC. 
 

 

6.3 Predictive equations based on MD 
         

 Running the correlation analysis using the data from the reduced set 

(n = 80), the best equation obtained of the form: 

 

 

 

 is: 

 

)/log(30.044.1 333 ZoneZoneZone MVDPpKp −=  Equation 6-6 

           

)βlog(PD/MVαpK p +=
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r
2 values for all the considered regions are shown in Table 6-5. Even 

considering the uncertainty on r2 from Table 6-5, the obtained results show 

that calculations performed in region 3 (the region at the water/bilayer 

interface) can explain 70% of the variance in pKp values, even using a non-

optimized equation. Calculations on region 2 (which is overlapping) give 

similar results, while r2 decreases rapidly for other regions, with minima at 9, 

14, 16 regions. These results suggest that the water/bilayer interface is the 

primary target to be taken into consideration when studying the behaviour of 

penetrants. 

 

A comparison with Potts & Guy on the same set (r2 = 0.66), shows that 

Equation 5-1, does not represent such a significant improvement to justify the 

use of MD simulations. Its importance lies mostly in highlighting that there 

are regions where the correlation is clearly superior to that of neighbouring 

(and even overlapping) regions, a remarkable result. So if regions 2 and 3 

seems to bring similar results, the correlation clearly drops in region 4, and 

subsequent regions. 

To conclude, though, that the region at the water/SC interface plays a 

major role in determining skin permeation would be erroneous. The result is 

equally likely to emerge from the limits of the method employed. The best 

results are originating from the first part of the simulation, when the 

trajectories from different simulations are better correlated to one another 

then at the end of the simulation. It must be noted, however, that the first 

Region 1 (water) does not correspond to the beginning of the simulations. At 

the beginning of the simulation, the center of mass of the permeant is 

positioned at z = 69 Å, but the first 10 Å of erratic movement of the permeant 

in water are omitted from the analysis. At the end of this 10 Å walk, the 
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trajectories from different simulation already show a degree of divergence 

(see Appendix D). 

 

 
Region Region position (Å) r

2
  Region Region position (Å) r

2
 

1 59-55 0.64  10 41-37 0.53 

2 57-53 0.69  11 39-35 0.58 

3 55-51 0.71  12 37-33 0.59 

4 53-49 0.61  13 35-31 0.56 

5 51-47 0.62  14 33-29 0.48 

6 49-45 0.58  15 31-27 0.53 

7 47-43 0.55  16 29-25 0.47 

8 45-41 0.54  17 27-23 0.54 

9 43-39 0.47  18 25-21 0.51 

 

Table 6-5. r2 values obtained running the regression analysis on 18 different regions of the in 

silico membrane. 
 

 

An improvement on Equation 6-6 can be obtained introducing a 

temperature related term, to account for the different temperatures at which 

experimental measurements of Kp were performed.  

 
  

One of the advantages of Molecular Dynamics is also the possibility of 

performing the simulations at the same temperature as the experiment. This 

procedure has been avoided so far due to the added computational cost of 

equilibrating the membrane at different temperatures, but it will be explored 

in the near future. 

 

The dependence of the diffusion coefficient D on absolute temperature T, 

for small molecules in rubbery polymers, can be expressed as [81]: 
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TMVeDD /
0

γ−=  

 

where D0 is a constant for a given molecule, MV is the molecular volume 

and γ is a constant. In logarithm form: 

 

TMVDD /loglog 0 γ−=  

 
 

So, as already pointed out by Vecchia and Bunge [81] a term 

proportional to MV/T (or MW/T where MW is molecular weight) can be 

used as a temperature correction factor. In our case, the simulations were 

performed at 300K, and the ratio between DT and D0, the diffusion coefficient 

at temperature T and 300K, respectively is: 
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So the term log(PDT) can be expressed as: 
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Equation 6-6 becomes: 
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where P, D300 and MV are calculated in region 3 (Figure 6-5). 

 

 

 
r

2
 

training set 
Adjusted r2 
training set 

r
2
 

test set 

Std Dev of 
Errors 

training set 

Potts & Guy 
(n = 80) 0,69≤0,03 0,66≤0,04 0,71≤0,06 0,66≤0,05 

Vecchia & Bunge 
(n = 80) 0,69≤0,02 0,67≤0,02 0,73≤0,06 0,65≤0,04 

Equation 6-6  
(n = 80) 0,70≤0,05 0,68≤0,05 0,72≤0,09 0,64≤0,05 

Equation 6-7 
(n = 80) 

0,79≤0,03 0,77≤0,04 0,75≤0,08 0,56≤0,04 

 
Table 6-6. Model validation for both equations. Dimension of the test set = 27. Dimension of 
the training set = 53. Validation performed on 20 tests. 
 

 

 
Figure 6-5.Predicted logKp values from Eq. 6-7 vs experimental logKp values from the 
common set between Flynn's and the Fully Validated sets. Pink dots represent pKp values 
determined at 310K. Blue dots represent pKp values determined around 300K (see Appendix 
A). 
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Results for region 3 are shown in Table 6-6, as compared with the Potts 

& Guy model and the Vecchia & Bunge equation of the form: 

  

logMW/Tc'logPb'a'logkp ++=  

 

Temperature correction to the Potts & Guy equation in the form MW/T 

brings no significant improvement when regression analysis is performed on 

the FV set. Temperature correction to Equation 6-6 brings a significant 

improvement on the training set r2, adjusted r2 and standard deviation of the 

errors, at the expense of adding one degree of freedom, but a more limited 

improvement to the r2 of the test set. 

 

To further assess the predictive power of the equation devised in this 

chapter, the cross-correlation between the different quantities has been 

considered. A cross-correlation matrix for key values used in the equations is 

shown in table 6-7. Though some of quantities obviously show a high 

correlation, quantities appearing in the same equation always have a low 

correlation, the highest value being r2 = 0.14 between log(PD)_Region 3 and 

log MV (also evaluated in Region 3) 

 

 Virtual log P Log Dxy Region 3 Log P*Dxy Region 3 MW logMV 

Virtual log P 1     

Log Dxy zone 3 < 0.001 1    

Log P*Dxy zone 3 0.80 0.21 1   

MW 0.03 0.20 0.23 1  

logMV < 0.001 0.26 0.14 0.91 1 

 
Tabella 6-7. Cross correlation matrix for quantities appearing in the equations devised in this 
chapter. Listed are r2 values for any pair. 
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Conclusions 
 

Molecular Dynamics is now an established tool providing information on 

the possible impact of chemical modifications on skin penetration by a given 

compound. The availability of such a tool, in conjunction with existing 

mathematical models of skin permeability, can help rationalize the design of 

new drugs to manage cutaneous pathologies, as well as the lead optimization 

of a molecule to be administrated by transdermal route.  

  

Although Molecular Dynamics does not yet allow the spontaneous 

permeation of a solute through a membrane to be observed, its characteristics 

seem to complement existing macroscopic models. For example, the 

parameters obtained from simulations naturally take into account the 

anisotropy and non-homogeneity of biomembranes.  

 

One of the strengths of MD is that, when the simulations are well 

planned, it may represent a "statistical mechanics laboratory", and the 

analysis of MD trajectories can employ the results from statistical mechanics 

to calculate relevant quantities. Steered Molecular Dynamics (SMD), in 

particular, truly is applied Non Equilibrium Statistical Mechanics (NESM), a 

field that gained momentum in the last decades, with the development of 

fluctuation-dissipation relations, and other important results, such as 

Jarzinsky equality. The two fields of SMD and NESM complement each 

other well and are destined to bring other exciting developments.  

 

On the other hand, one of the difficulties in obtaining meaningful results 

with numerical simulations, as opposed to a purely theoretical approach, lies 
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in the complexity of planning the in silico experiments, including the choice 

of simulation parameters. This is particularly true in the case of the screening 

of a large number of systems: weaknesses in the experimental design often 

become apparent only after doing a great amount of calculations, and force 

the in silico experimenter to make corrections to the protocol and start again. 

 

In this work, after building a stable and equilibrated model for the 

stratum corneum (SC) lipid bilayer, SMD simulations were performed to 

study the penetration of 80 permeants of known permeability coefficient 

through the SC. MD has been utilized before by other Authors for studying 

permeation of chemicals through plasma membranes, notably the work by 

Marrink and Berendsen, whose approach was later applied to the SC by Das, 

Noro and Olmsted. A screening of a large number of molecules with MD 

simulations, though has never been attempted to our knowledge. The goal 

was to assess the possibility of using MD to assist in the development of 

predictive equations of skin permeability, more than gaining new insight in 

the mechanics of SC permeation. The approach developed (for plasma 

membranes) by Marrink and Berendsen for the prediction of permeability 

couldn't be applied, though, because of the unfeasibility of Free Energy 

calculations from SMD simulations in the screening of 80 permeants, due to 

the large amount of trajectories required. 

 

Instead, SMD has been used in an indirect way as a mean to explore the 

conformational and property space of the permeants in the different 

microenvironments of the stratum corneum. SMD was also used in a direct 

way to calculate averaged diffusion coefficients in different regions of the 

stratum corneum. What proved to be the best option, was a mixed approach 

where the averaged diffusion coefficients in the plane parallel to the bilayer 
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surface were calculated in different regions of the SC, and then used together 

with the physicochemical properties in the correlation equation. 

 

This approach has allowed us to correlate the permeability coefficient to 

averaged physicochemical properties, improving on existing semi-empirical 

methods (employing the same quantities determined experimentally). The 

obtained equation compares well with the Potts and Guy equation. Further 

improvement of the correlation coefficient seems difficult, considering the 

heterogeneity of the experimental data sets and the experimental error 

involved in the measurement of the permeability coefficient. 

  

Further study of SMD data may still allow us to gain a better 

understanding of the physical process. Performing multiple SMD simulations 

for a small number of permeants, or designing a new protocol using only 

equilibrium simulations in specific regions of the lipid matrix model, will 

allow us to make free energy calculations. So, the work done here is just a 

first step in the direction of actually employing Molecular Dynamics in 

developing viable predictive equations of skin permeability.  

 

As a final point, our work has shown that, as stated above, the 

uncertainty of experimental values of the permeability coefficient is too high 

to expect significant improvements in the predictive power of equations. The 

Fully Validated set represents a great advance in reducing the bias of Flynn's 

set and making the variability of experimental conditions explicit. We feel, 

though, that this is not enough. As an effect of Regulation (EC) No 

1223/2009 on cosmetic products, testing of finished cosmetic products and 
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ingredients on animals is prohibited in the European Union, as well as the 

marketing of cosmetic products which have been tested on animals. If 

governmental Authorities feel that the development of alternative methods to 

in vivo and in vitro assays for the determination of skin permeability to 

chemical compounds is worth consideration and funding, then developing a 

research project for measuring skin permeability coefficients of a large set of 

molecules in controlled and reproducible conditions would be an important 

step in the right direction. 
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 Appendix A. The reduced data set 
  

 

The reduced data set (Table A.1) is the intersection of Flynn's set and the 

Vecchia and Bunge's Fully Validated set. It is comprised of 80 compounds, 

and it is used in this work to eliminate non validated data (according to the 

five validation criteria exposed below) from Flynn's set, while retaining the 

ability to compare results with methods optimized on Flynn's set. 

 

Fully validated set validation criteria.  

"Data in the FV database were required to meet five criteria: 

(a) the temperature must be known and be between 20 and 40 ±C, 

(b) more than 10% of the penetrating compound must be in nonionized form, 

(c) a valid log Kow (Editor's note: octanol/water partition coefficient, logP in 

this work) [...] must represent the the penetrating molecule (usually the 

nonionized compound), 

(d) the measurement must have been determined at a steady state, 

(e) the donor and receptor fluid do not compromise (more than water does) 

the barrier of the skin. Steady-state permeability coefficients require either 

constant vehicle concentration and sink conditions in the receptor or 

adjustment of the data to account for changing vehicle and/or receptor 

concentrations" [81]. 
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Name Mass pKp LogP T (K) t (∞C) 
2,3-butanediol 90.12 4.4 -0.92 303 30 

2,4,6-trichlorophenol 197.45 1.23 3.69 298 25 

2,4-dichlorophenol 163 1.22 3.08 298 25 

2-butanone 72.11 2.35 0.28 303 30 

2-chlorophenol 128.56 1.48 2.15 298 25 

2-naphtol 144.17 1.55 2.84 298 25 

3,4-xylenol 122.16 1.44 2.35 298 25 

3-nitrophenol 139.11 2.25 2 298 25 

4-bromophenol 173.01 1.44 2.59 298 25 

4-chlorophenol 128.56 1.26 2.39 298 25 

4-choro-m-cresol? 142.58 1.44 3.1 298 25 

4-ethylphenol 122.16 1.46 2.4 298 25 

4-nitrophenol 139.11 2.25 1.96 298 25 

aldosterone 360.44 5.52 1.08 299 26 

amobarbital 226.27 2.64 1.96 303 30 

atropine 289.37 4.86 1.81 303 30 

barbital 184.19 3.95 0.65 303 30 

benzyl alcohol 108.13 2.22 1.1 298 25 

buatnoic acid 88.1 3 0.79 300 27 

butobarbital 212.25 3.72 1.65 303 30 

cellosolve (2-ethoxy ethanol) 90.12 3.6 -0.54 303 30 

chloroxylenol 156.61 1.23 3.39 298 25 

chlorpheniramine 274.79 2.64 3.38 303 30 

cortexolone 346.46 4.12 2.52 299 26 

cortexone (deoxycorticosterone) 330.46 3.35 2.88 299 26 

corticosterone 346.46 4.22 1.94 298 25 

cortisone 360.44 5 1.42 299 26 

diethylcarbamazine 199.29 3.89 0.1 303 30 

ephedrine 165.23 2.2 1.03 303 30 

estradiol 272.38 3.52 2.69 299 26 

estriol 288.38 4.4 2.47 299 26 

estrone 270.37 2.44 2.76 299 26 

ethanol 46.07 3.1 -0.31 298 25 

ethylether 74.12 1.8 0.83 303 30 

fentanyl 336.47 1.94 4.37 303 30 

heptanoic acid 130.18 1.7 2.5 300 27 

hexanoic acid 116.16 1.85 1.9 300 27 

hydrocortisone 362.46 5.52 1.53 299 26 

[hydrocortisone-21-yl] hemipimelate 504.61 2.64 3.26 310 37 

[hydrocortisone-21-yl] hemisuccinate 462.53 3.09 2.11 310 37 

[hydrocortisone-21-yl] hexanoate  460.6 1.74 4.48 310 37 
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Name Mass pKp LogP T (K) t (∞C) 
[hydrocortisone-21-yl]-hydroxy-hexanoate 476.6 3.04 2.79 310 37 

[hydrocortisone-21-yl]-N,N-dimethyl-succinamate 491.64 4.17 2.03 310 37 

[hydrocortisone-21-yl]-octanoate 488.66 1.21 5.49 310 37 

[hydrocortisone-21-yl]-pimelamate 519.67 3.05 2.31 310 37 

[hydrocortisone-21-yl]-propionate 418.52 2.47 3 310 37 

[hydrocortisone-21-yl]-succinamate 463.59 4.59 1.43 310 37 

hydroxyprogesterone 332.48 3.22 3.17 299 26 

isoquinoline 129.16 1.77 2.03 303 30 

m-cresol 108.14 1.82 1.96 298 25 

methanol 32.04 3.3 -0.77 303 30 

methyl-[hydrocortisone-21-yl]-pimelate 518.64 2.27 3.7 310 37 

methyl-[hydrocortisone-21-yl]-succinate 476.56 3.68 2.58 310 37 

methyl-4-hydroxybenzoate 152.15 2.04 1.96 298 25 

naproxen 230.26 3.12 3.18 310 37 

n-butanol 74.12 2.6 0.88 298 25 

n-decanol 158.28 1.1 4 298 25 

n-heptanol 116.2 1.46 2.72 298 25 

n-hexanol 102.17 1.89 2.03 298 25 

nicotine 162.23 1.7 1.17 303 30 

n-nonanol 144.25 1.22 3.62 298 25 

n-octanol 130.23 1.28 2.97 298 25 

n-pentanol 88.15 2.22 1.56 298 25 

n-propanol 60.1 2.85 0.25 298 25 

o-cresol 108.14 1.8 1.95 298 25 

octanoic acid 144.21 1.6 3 300 27 

ouabain 584.65 6.11 -2 303 30 

p-cresol 108.14 1.75 1.95 298 25 

pentanoic acid 102.13 2.7 1.3 300 27 

phenobarbital 232.24 3.35 1.47 303 30 

phenol 94.11 2.09 1.46 298 25 

pregnenolone 316.48 2.82 3.13 299 26 

progesterone 314.46 2.82 3.77 299 26 

resorcinol 110.11 3.62 0.8 298 25 

salicylic acid 138.12 1.89 2.26 303 30 

sufentanyl 386.55 1.9 4.59 310 37 

testosterone 288.42 3.4 3.31 299 26 

thymol 150.22 1.28 3.34 298 25 

 

Table A.1. The reduced data set. logKp is the logarithm of the permeation coefficient Kp, 
where Kp is expressed in cm/h. log P is the logarithm of the octanol/water partition 
coefficient. T and t are the experimental temperatures in K and ±C, respectively [81]. 
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Appendix B. Flynn's set 

 
 
 
Name Mass logKp (cm/h) logKp (cm/s) LogP 
2,3-butanediol 90.12 -4.40 -7.96 -0.92 

2,4,6-trichlorophenol 197.45 -1.23 -4.79 3.69 

2,4-dichlorophenol 163 -1.22 -4.78 3.08 

2-butanone 72.11 -2.35 -5.91 0.28 

2-chlorophenol 128.56 -1.48 -5.04 2.15 

2-naphtol 144.17 -1.55 -5.11 2.84 

3,4-xylenol 122.16 -1.44 -5.00 2.35 

3-nitrophenol 139.11 -2.25 -5.81 2.00 

4-bromophenol 173.01 -1.44 -5.00 2.59 

4-chlorophenol 128.56 -1.44 -5.00 2.39 

4-choro-m-cresol 142.58 -1.26 -4.82 3.10 

4-ethylphenol 122.16 -1.46 -5.02 2.40 

4-nitrophenol 139.11 -2.25 -5.81 1.96 

aldosterone 360.44 -5.52 -9.08 1.08 

amobarbital 226.27 -2.64 -6.20 1.96 

atropine 289.37 -5.07 -8.63 1.81 

barbital 184.19 -3.95 -7.51 0.65 

benzyl alcohol 108.13 -2.22 -5.78 1.10 

buatnoic acid 88.1 -3.00 -6.56 0.79 

butobarbital 212.25 -3.71 -7.27 1.65 

cellosolve (2-ethoxy ethanol) 90.12 -3.60 -7.16 -0.54 

chloroxylenol 156.61 -1.28 -4.84 3.39 

chlorpheniramine 274.79 -2.66 -6.22 3.38 

codeine 299.36 -4.31 -7.87 0.89 

cortexolone 346.46 -4.13 -7.69 2.52 

cortexone (deoxycorticosterone) 330.46 -3.35 -6.91 2.88 

corticosterone 346.46 -4.22 -7.78 1.94 

cortisone 360.44 -5.00 -8.56 1.42 

diethylcarbamazine 199.29 -3.89 -7.45 0.10 

digitoxin 764.94 -4.89 -8.45 1.86 

ephedrine 165.23 -2.22 -5.78 1.03 

estradiol (1) 272.38 -3.52 -7.08 2.69 

estradiol (2) 272.38 -2.28 -5.84 2.69 

estriol 288.38 -4.40 -7.96 2.47 

estrone 270.37 -2.44 -6.00 2.76 

ethanol 46.07 -3.10 -6.66 -0.31 
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Name Mass logKp (cm/h) logKp (cm/s) LogP 
ethylbenzene 106.17 0.08 -3.48 3.15 

ethylether 74.12 -1.80 -5.36 0.83 

etorphine 411.53 -2.44 -6.00 1.86 

fentanyl (1) 336.47 -2.25 -5.81 4.37 

fentanyl (2) 336.47 -2.00 -5.56 4.37 

fluocinonide 494.52 -2.77 -6.33 3.19 

heptanoic acid 130.18 -1.70 -5.26 2.50 

hexanoic acid 116.16 -1.85 -5.41 1.90 

hydrocortisone (1) 362.46 -5.52 -9.08 1.53 

hydrocortisone (2) 362.46 -3.93 -7.49 1.53 

[hydrocortisone-21-yl]-octanoate 488.66 -1.21 -4.77 5.49 

[hydrocortisone-21-yl]-propionate 418.52 -2.47 -6.03 3.00 

[hydrocortisone-21-yl] hemipimelate 504.61 -2.75 -6.31 3.26 

[hydrocortisone-21-yl] hemisuccinate 462.53 -3.20 -6.76 2.11 

[hydrocortisone-21-yl] hexanoate  460.6 -1.75 -5.31 4.48 

[hydrocortisone-21-yl]-hydroxy-hexanoate 476.6 -3.04 -6.60 2.79 

[hydrocortisone-21-yl]-N,N-dimethyl-succinamate 491.64 -4.17 -7.73 2.03 

[hydrocortisone-21-yl]-pimelamate 519.67 -3.05 -6.61 2.31 

[hydrocortisone-21-yl]-succinamate 463.59 -4.59 -8.15 1.43 

hydromorphone 285.3 -4.82 -8.38 1.25 

hydroxypregnenolone 332.48 -3.22 -6.78 3.00 

hydroxyprogesterone 332.48 -3.22 -6.78 2.74 

isoquinoline 129.16 -1.78 -5.34 2.03 

m-cresol 108.14 -1.82 -5.38 1.96 

meperidine 247.33 -2.43 -5.99 2.72 

methanol 32.04 -3.30 -6.86 -0.77 

methyl-[hydrocortisone-21-yl]-pimelate 518.64 -2.27 -5.83 3.70 

methyl-[hydrocortisone-21-yl]-succinate 476.56 -3.68 -7.24 2.58 

methyl-4-hydroxybenzoate 152.15 -2.04 -5.60 1.96 

morphine 285.34 -5.03 -8.59 0.62 

naproxen 230.26 -3.40 -6.96 3.18 

n-butanol 74.12 -2.60 -6.16 0.88 

n-decanol 158.28 -1.10 -4.66 4.00 

n-heptanol 116.2 -1.50 -5.06 2.72 

n-hexanol 102.17 -1.89 -5.45 2.03 

nicotine 162.23 -1.71 -5.27 1.17 

nitroglycerine 227.09 -1.96 -5.52 2.00 

N-nitrosodiethanolamine 134.13 -5.22 -8.78 -1.58 

n-nonanol 144.25 -1.22 -4.78 3.62 

n-octanol 130.23 -1.28 -4.84 2.97 

n-pentanol 88.15 -2.22 -5.78 1.56 

n-propanol 60.1 -2.85 -6.41 0.25 

o-cresol 108.14 -1.80 -5.36 1.95 
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Name Mass Log-Kp (cm/h) Log-Kp (cm/s) LogP 
octanoic acid 144.21 -1.60 -5.16 3.00 

ouabain 584.65 -6.11 -9.67 -2.00 

p-cresol 108.14 -1.75 -5.31 1.95 

pentanoic acid 102.13 -2.70 -6.26 1.30 

phenobarbital 232.24 -3.34 -6.90 1.47 

phenol 94.11 -2.09 -5.65 1.46 

pregnenolone 316.48 -2.82 -6.38 3.13 

progesterone 314.46 -2.82 -6.38 3.77 

resorcinol 110.11 -3.62 -7.18 0.80 

salicylic acid 138.12 -2.20 -5.76 2.26 

scopolamine 303.35 -4.30 -7.86 1.24 

styrene 104.15 -0.19 -3.75 2.95 

sucrose 342.3 -5.28 -8.84 -2.25 

sufentanyl 386.55 -1.92 -5.48 4.59 

testosterone 288.42 -3.40 -6.96 3.31 

thymol 150.22 -1.28 -4.84 3.34 

toluene 92.14 0.00 -3.56 2.75 

water 18.01 -3.30 -6.86 -1.38 
 

Table B.1. Flynn's data set. logKp (cm/h) is the logarithm of the permeation coefficient Kp, 
where Kp is expressed in cm/h. logKp (cm/s) is the logarithm of the permeation coefficient 
Kp, where Kp is expressed in cm/s. log P is the logarithm of the octanol/water partition 
coefficient (note the different notation with respect to Flynn's original publication) 
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Appendix C. Graphs and trajectories 
  

 

 x-y trajectories of the permeant's Center of Mass (COM) are 

represented here. Sparser region correspond to movement in water and at the 

water/SC interface, while denser regions correspond to deeper layers of the 

SC. x-y trajectories allow to follow the evolution of the simulation, in 

particular it allows to spot simulations where the permeant has crossed 

simulation box boundaries. 
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2-butanone 
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Figure C.1. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

2-chlorophenol 
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Figure C.2. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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2-naphtol 
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Figure C.3. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

3-nitrophenol 
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 Figure C.4. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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4-bromophenol 
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Figure C.5. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

4-chlorocresol 
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Figure C.6. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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4-chlorophenol 
 

-35

-30

-25

-20

-15

-10

-5

0

-5 0 5 10 15 20 25

x (A)

y 
(A

)

 
 

 Figure C.7. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

4-ethylphenol 
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Figure C.8. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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4-nitrophenol 
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Figure C.9. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Aldosterone 
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Figure C.10. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Amobarbital 
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Figure C.11. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Atropine 
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Figure C.12. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Barbital 
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 Figure C.13. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Benzyl alcohol 
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 Figure C.14. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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2,3-butanediol 
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Figure C.15. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Butanoic Acid 
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Figure C.16. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Butobarbital 
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Figure C.17. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Cellosolve 
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Figure C.18. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Chloroxylenol 
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Figure C.19. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Chlorpheniramine 
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Figure C.20. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Cortexolone 
 

-10

-5

0

5

10

15

20

-15 -10 -5 0 5 10

x (A)

y 
(A

)

 
 

 Figure C.21. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.22. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Corticosterone 
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Figure C.23. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Cortisone 
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Figure C.24. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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2,4-dichlorophenol 
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Figure C.25. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Diethylcarbamazine 
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Figure C.26. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Ephedrine 
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Figure C.27. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Estradiol 
 

-5

0

5

10

15

20

-10 -8 -6 -4 -2 0 2 4 6 8

x (A)

y 
(A

)

 
 

Figure C.28. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Estriol 
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Figure C.29. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Estrone 
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 Figure C.30. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Ethanol 
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Figure C.31. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Ethylether 
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Figure C.32. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Fentanyl 
 

0

2

4

6

8

10

12

-10 -8 -6 -4 -2 0 2

x (A)

y 
(A

)

 
 

Figure C.33. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

[hydrocortisone-21-yl]-hemipimelate 
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Figure C.34. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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[hydrocortisone-21-yl]-hemisuccinate 
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Figure C.35. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

[hydrocortisone-21-yl]-hexanoate 
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Figure C.36. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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[hydrocortisone-21-yl]-hydroxy-hexanoate 
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Figure C.37. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

[hydrocortisone-21-yl]-N,N-dimethylsuccinamate 
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Figure C.38. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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[hydrocortisone-21-yl]-octanoate 
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Figure C.39. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

[hydrocortisone-21-yl]-pimelamate 
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Figure C.40. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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[hydrocortisone-21-yl]-propionate 
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Figure C.41. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

[hydrocortisone-21-yl]-succinamate 
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Figure C.42. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Heptaonic acid 
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Figure C.43. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Hexanoic acid 
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Figure C.44. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Hydrocortisone 
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Figure C.45. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Hydroxypregnenolone 
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Figure C.46. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Hydroxyprogesterone 
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Figure C.47. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.48. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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m-Cresol 
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Figure C.49. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.50. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Methyl-4-hydroxybenzoate 
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Figure C.51. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Methyl-[hydrocortisone-21-yl]-pimelate 
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Figure C.52. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Methyl-[hydrocortisone-21-yl]-succinate 
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Figure C.53. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Naproxene 
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Figure C.54. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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n-Butanol 
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Figure C.55. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.56. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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n-Heptanol 
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Figure C.57. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.58. x(Å) vs y(Å) coordinate of permeant's center of mass. 



 139 

n-Nonanol 
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Figure C.59. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.60. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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n-Pentanol 
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Figure C.61. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.62. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Nicotine 
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Figure C.63. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

N-nitrosodiethanolamine 
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Figure C.64. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Octaonic acid 
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Figure C.65. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.66. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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p-Cresol 
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Figure C.67. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Pentanoic acid 
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Figure C.68. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Phenobarbital 
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Figure C.69. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.70. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Pregnenolone 
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Figure C.71. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Progesterone 
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Figure C.72. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Resorcinol 
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Figure C.73. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

Salicylic acid 
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Figure C.74. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Sufentanyl 
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Figure C.75. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.76. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Thymol 
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Figure C.77. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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Figure C.78. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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2,4,6-trichlorophenol 
 

-10

-8

-6

-4

-2

0

2

4

-10 -5 0 5 10 15

x (A)

y 
(A

)

 
 

Figure C.79. x(Å) vs y(Å) coordinate of permeant's center of mass. 
 

3,4-xylenol 
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Figure C.80. x(Å) vs y(Å) coordinate of permeant's center of mass. 
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