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The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm
and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation
of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion,
and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being
identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin
and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and
cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal
models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features,
that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct
the congenital defect in preclinical studies.

1. The p63 Gene: Structure and Function

The TP63 gene codes a transcription factor homologous to
the p53 tumour suppressor protein and is translated into
six protein isoforms: the TransActivating (TA) isoforms
are more closely resembling p53, while the Delta-N (ΔN)
isoforms are devoid of the TransActivation (TA) domain
1 (TA1). Although the TA isoforms were initially thought
to be the only ones to possess transcriptional regulatory
functions, it has been well established that the ΔN isoforms
are also able to activate transcription of a distinct set of target
genes via a second TA domain (TA2) [1]. Initially, TA and
ΔN isoforms with three alternative carboxyl termini (α,β,
and γ), generated by alternative splicing, were identified.
However, like for p73, additional p63 isoforms (δ and ε)
have been recently described [2].

The p63 protein contains a TA domain, a DNA-Binding
Domain (DBD) and an Oligomerization Domain (OD).
Both the TA and �N alpha-isoforms also contain a Sterile
Alpha Motif (SAM) domain, which is absent in p53 [3]. SAM

domains are protein-protein interaction modules found
in developmentally relevant proteins [4]. Recent studies
have identified a Transcriptional Inhibitory (TI) domain
located between the SAM domain and the C-terminus of
p63α; this domain is believed to be responsible for the lower
transactivation ability of TAp63α compared to the -β and
the -γ isoforms [5].

p63 is highly conserved among a wide range of organ-
isms. Interestingly, in the genome of Danio rerio (zebrafish)
the mammalian type TA coding sequence is missing; there-
fore, only the ΔN isoforms are present [6]. Both mice and
zebrafishes lacking p63 expression fail to develop a normal
epidermis and show malformations of appendages and other
structures that require epithelial-mesenchymal interactions
during development [7–9].

2. Human Diseases Linked to p63

The p63 locus is consistently transcribed by basal stem cells
of stratified epithelia, by myoepithelial cells of the breast
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and salivary glands, and by the proliferative compartment of
the gastric mucosa [10, 11]. The expression of the ΔNp63
and TAp63 classes of isoforms is quite distinct and changes
dynamically during development and maturation of the
ectoderm (towards the epidermis) and derived structures
(hair follicles, limbs, glands) [11, 12]. Unlike p53, p63
does not act as a classical tumour-suppressor, although
its involvement in tumor progression is being increasingly
recognized [13, 14]. p63 plays a prominent role in the control
of epithelial stem cell functions and in the differentiation and
stratification of ectoderm-derived tissue during embryonic
development.

A wide spectrum of autosomal-dominant hereditary dis-
eases is associated to mutations of the p63 gene, in humans.
A common feature of these disorders is the appearance of
Ectodermal Dysplasia (ED), a phenotypic group that com-
prises abnormal maturation and stratification of the skin
and abnormal development of hairs, teeth, nails, esocrine
glands, and cornea. The other two consistent features of
p63-linked disorders are Cleft Lip/Palate (CL/P) and ectro-
dactyly, also known as Split Hand/Foot Malformation
(SHFM). Ectrodactyly is a limb developmental malformation
characterized by a medial cleft, missing central digits and
often fusion of the remaining ones [15].

Human autosomal dominant syndromes associated with
heterozygous p63 mutations are Ectrodactyly-Ectoder-mal
dysplasia-Cleft lip/palate syndrome (EEC, MIM 106260),
Limb-Mammary Syndrome (LMS, MIM 603543), Anky-
loblepharon Ectodermal dysplasia Clefting (AEC, MIM
106260), and nonsyndromic Split-Hand/split-Foot Malfor-
mation-type IV (SHFM-IV) (MIM 605299) [16–20]. EEC is
the most prominent congenital disorder and is characterized
by the three phenotypes: ED, ectrodactyly, and CL/P. EEC is
almost invariably caused by heterozygous mutations in the
DBD of p63 [21, 22]. Nonetheless, p63 mutations can explain
only a minority of patients with isolated or nonsyndromic
ectrodactyly (about 10%) or cleft lip/palate (about 0.1%).

In addition to SHFM-IV, associated to p63 mutations,
ectrodactyly appears as an isolated nonsyndromic disorder
linked to mutations or chromosomal anomalies in distinct
loci [20, 23, 24]. Of these, gene mutations have been iden-
tified only for SHFM-VI (MIM 225300, the only autosomal
recessive form) and for Ectodermal Dysplasia-Ectrodactyly-
Macular Dystrophy syndrome (EEM, MIM 225280). In
SHFM-VI, homozygous mutations of the WNT10B gene
have been found [25]. In EEM patients, mutations in the
P-cadherin (or cadherin-3, or CDH3) gene have been found
[26, 27]; this gene codes for an adhesion molecule of the
cadherin class, expressed by the AER cells of the embryonic
limb buds. However, the targeted deletion of P-cadherin in
mice does not cause limb defects [28]. It is not known, at the
moment, if a regulatory link exists between p63 and these
two SHFM disease genes.

SHFM-I (MIM 183600) is linked to deletions, inversions,
and rearrangements affecting chromosome 7q21 [29–31].
The smallest region of overlapping deletions encompasses
several genes: DYNC1l1, SLC25A13, DSS1, DLX5, and DLX6;
of these only DLX5 and DLX6 have been shown to be
specifically expressed in the AER of the developing limb

buds [32–34]. Importantly, the murine models of Dlx5;Dlx6
inactivation establish that their misregulation is etiological to
SHFM-I [33, 34], and Dlx5 and Dlx6 are now recognized as
transcriptional targets of p63 [35, 36].

SHFM-III (MIM 600095) is associated with com-
plex duplications/rearrangements around the DACTYLIN
(FBXW4) gene, on chromosome 10q [37]. The genomic
lesion involves the DACTYLIN, LBX1, and βTRCP genes,
but none of these genes is directly disrupted and no point
mutation has been reported. Interestingly, FGF8 and NFkB2,
two genes implicated in limb development, are located in the
proximity of the rearrangement breakpoints [38–41].

Finally, SHFM-V (MIM 606708) is associated to dele-
tions encompassing the HOXD gene cluster, near DLX1 and
DLX2 [42–44]. The X-linked SHFM-II form (MIM 313350)
has been mapped to chromosome Xq26.3 [45], but no
disease gene has yet been identified.

Diseases grouped within the same phenotypic class are
likely to be caused by genetic abnormalities or misregulation
of functionally related genes, or genes that are component
of a regulatory network [46–48]. Elucidation of functional
interactions among genes within the p63 network, their
encoded proteins, and regulatory elements controlling their
expression is bound to provide new candidate genes for
genetic disorders linked to p63.

3. Genotype-Phenotype Correlations

In the EEC spectrum syndromes, the position and type of
p63 mutation (frameshift, missense, deletion) correlate with
the observed phenotype. p63 mutations causing EEC are
usually not found in AEC, LMS, and SHFM [16–19]. The
vast majority of EEC mutations are missense mutations in
the DBD, generating aminoacid substitutions in the residues
predicted to contact DNA. In these cases, all p63 isoforms
are affected by these mutations. DBD mutants usually
act as dominant-negative effectors and render the WT
protein unable to bind DNA [21], explaining the dominant
transmission of EEC. Mutations in exons 13 and 14, affecting
only the α isoform of p63, have been found associated to all
four syndromes.

SHFM-IV results from mutations either in the DBD or
in the C-terminal domain of p63α, whereas the AEC syn-
drome is exclusively associated with heterozygous missense
mutations in the SAM domain. The α tail of p63 contains
a sumoylation site, inactivated by p63 mutations found in
SHFM-IV (E639X). Sumoylation can modulate p63 half-
life [1], and naturally occurring mutated p63 proteins often
display altered stability, suggesting that the final effect of the
mutations could be the persistence of the mutated protein
and consequent misexpression of p63 targets.

Finally, for a large set of disorders with features of ED and
resembling p63-caused syndromes (referred to as p63-linked
phenotype spectrum), the molecular lesion is unknown [49].

Attempts to unequivocally establish the role of p63 in
human ectodermal syndromes are hampered by the fact that
this protein exists in multiple isoforms with different, often
contradictory, biological activities; moreover, some of the
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mutations are isoform-specific (affecting only the α isoform)
while others affect all isoforms.

Therefore, the mode of action of p63 mutations (hap-
loinsufficiency? dominant-negative?) is still debated. For the
same reason, the possibility to use wild-type p63 for pharma-
cological purposes or for gene delivery appears unrealistic.

4. Animal Models of p63 -Linked Diseases

Much of our current knowledge on the role of disease genes
for ectoderm development and limb morphogenesis has been
gathered via the generation of animal models of the EEC,
AEC, and SHFM, and the analysis of their phenotypes at
cellular and developmental level. Mice null for p63 have
been generated by two groups independently [50, 51]; at
birth these mice show severe defects affecting their skin,
limb and craniofacial skeleton, teeth, hair, and mammary
glands. Specifically, the skin appears thin, mostly single-
layered and translucent, unable to prevent water loss. The
hindlimbs (HL) fail to form altogether, while the forelimbs
(FL) are severely truncated and lack most of their distal
skeletal elements. The altered phenotypes observed in these
mutant mice are a direct consequence of altered cellular
properties affecting the same tissues and organs as in human
EEC, thus these mice have been considered as models of
human EEC [21, 50–52].

However, there are some caveats intrinsic to the p63
null mice as model of EEC. First, in the p63 null model
named Brdm2 [50], gene inactivation was achieved by
insertional mutagenesis, which however resulted in a partial
gene duplication. Although the p63 protein is undetectable in
these mice, their skin shows patches of stratified epithelium
that appear to reexpress p63, and it is currently unclear
whether these are due to aberrant transcription of the
mutated p63 gene or represent spontaneous phenotypic
reversal [53]. Second, and this is the major concern, loss
of p63 in the germline is not synonymous of the presence
of one mutated allele, the situation commonly observed in
EEC patients. While in the null animals the p63 protein
is missing altogether (i.e., both the TA and ΔN isoforms),
in EEC, AEC, LMS, and SHFM-IV patients the mutated
p63 protein coexists with half of the normal dose of wild-
type p63. Hence, the p63 null mice might not accurately
recapitulate the molecular pathogenesis of these syndromes.

To circumvent this problem, the group of Dr. A. Mills
(CSHL, USA) has generated a new line of mice bearing the
R279H mutation in p63 (a mutation found in EEC patients)
in their germline. Homozygous embryos and newborn
animals show a global phenotype similar, but not identical,
to that of p63 null animals [35], consisting in the absence
of the HL, severely truncated FL, a thin translucent skin
and craniofacial and palatal defects. The HL defects in both
the p63 null- and the p63-R279H homozygous embryos are
evident as early as E9.5, accompanied with loss of AER
stratification [35, 50, 51]. Interestingly, heterozygous p63-
R279H mutant embryos and newborns show a poorly pene-
trant EEC phenotype characterized by mild skin hyperplasia,
cleft palate, and ectrodactyly. In particular, the skin of these
animals shows patches of hyperplasia, in which Irf6 and

IKKα expression is markedly reduced, while p63 nuclear
expression is increased. The same can be observed in skin
of AEC patients [54, 55]. Thus, the p63-R279H heterozygous
mice display a global phenotype that resembles human EEC
more closely than the phenotype of p63 null mice.

Mice have been generated in which ΔNp63 is down-
regulated in the developing epidermis, as a model for AEC
[56]. In fact, the AEC-mutated variants of ΔNp63 have been
shown to exert a dominant-negative action on the wild-type
protein. Reduced ΔNp63 expression in the mouse epidermis
causes severe skin erosion consequent to suprabasal cell
proliferation, retarded terminal differentiation and basement
membrane abnormalities [56], a condition that closely
resembles the AEC phenotype.

Mouse models for SHFM-I have been generated by the
combined deletion of Dlx5 and Dlx6 [33, 34]; in these
animals ectrodactyly is observed at the HL, the AER is
induced normally, however, by E10.5 the expression of FGF8
and other markers declines in the central sector of the limb
bud, accompanied with a loss of stratification in the same
region [31, 32] (G.M. and LoIacono, unpublished).

The Dactylaplasia (Dac) mutant mouse strain has been
proposed as a model of SHFM-III [57, 58]. The AER of Dac
heterozygous embryos shows reduced FGF8 expression and
defective cell layering [59]. However, the role of Dactylin
as the disease gene in SHFM-III is currently doubted, since
the rearrangements/duplications around the Dactylin locus
do not disrupt or interrupt the gene, and since Dactylin is
ubiquitously expressed in mouse tissues.

Finally, zebrafish p63 morphants have been reported [6,
60]. Interestingly, they share some phenotypic features with
human EEC patients and might be used for developmental
studies. In this model, ΔNp63 expression is tightly regulated
by Smad4/5-mediated Bone Morphogenetic Proteins (BMP)
signaling, and it acts as a transcriptional repressor that
blocks anterior neural specification and conversely promotes
early steps of epidermal specification. Forced expression of
ΔNp63γ blocks neural development even in the absence of
BMP signal [6]. We should point out, however, that the skin
and fins of fishes are not fully comparable to the mammalian
limbs [61], and therefore the information gained from the
fish model might not fully translate to the mammalian
system.

5. The Role of p63 for Keratinocyte
Proliferation and Differentiation

The best experimentally characterized function of p63 is to
maintain the proliferative potential of epidermal progenitor
cells [62, 63]. In addition to this, p63 also impacts on
epidermal stratification and keratinocyte differentiation.
Specifically, ΔNp63 is required for the initial commitment
of keratinocyte progenitors towards differentiation [10, 62],
although for differentiation to proceed ΔNp63 needs to be
subsequently eliminated [64, 65]. The depletion of ΔNp63
occurs mainly via proteasome-mediated degradation [66–
68], which in turn is controlled by several proteins some
of which are transcriptional targets of ΔNp63 [55, 69, 70].
In addition, the expression of a p63-specific microRNA
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(miR203) is also important to induce p63 downregulation
during terminal differentiation [71].

p63 regulates transcription via binding to p63-Response
Elements (RE), which in some cases also function as p53
RE. Indeed, many of the p53 RE involved in DNA damage-
induced cell cycle arrest or apoptosis are constitutively
occupied by ΔNp63 in proliferating keratinocytes [72–74]
(A.C., unpublished results). Regulation of binding to these
elements and changes in the transcriptional capabilities of
ΔNp63 are thought to play a role in promoting the exit
from the cell cycle of keratinocytes at the onset of their
differentiation.

ΔNp63 can control distinct transcriptional networks
depending on the state of maturation of keratinocyte precur-
sors, which in turn is dependent on a variety of extracellular
stimuli. In proliferating keratinocytes of the basal layers,
ΔNp63 can control the expression of basal layer keratins (K5,
K14), of molecules required for the formation of the epider-
mal barrier, such as Alox12 [75], and inhibit proliferation-
induced activation of cell cycle arrest genes by competing
with p53 for the same responsive elements. Following a dif-
ferentiation stimulus, ΔNp63 can change its transcriptional
activity, detach from the promoter of cell cycle arrest genes
(e.g., 14-3-3 sigma and p21waf1), activate genes required
for cell cycle exit (IKKa and IRF6), and reorganize the
transcription of adhesion molecules to allow keratinocytes to
leave the basal layer and stratify (see Figure 1). Differences in
the temporal expression, isoform combination, biochemical
properties, and transcription activity of p63 protein(s) can
have profound impact on the set of genes being transcribed,
at a given time in a given cell. This notion implies that during
development, p63 protein(s) exert distinct roles, in a time
and region-specific manner, an issue that will be resolved
only with the generation of isoform-specific knockout or
knockdown animals and the analysis of their phenotypes.

Initial approaches to identify p63 targets used vectors to
overexpress TA- or ΔN-p63 isoforms in cultured cell lines.
Ectopic expression of TAp63 in Ptk2, HR9, F9 cell lines, or in
lung epithelial cells induced K14 expression [76, 77]. In con-
trast ΔN isoforms appear to have an inhibitory role in ker-
atinocyte differentiation, while also inducing K14 expression
[64, 78]. These studies have clear limits: they cannot monitor
cell-cell (epithelial-mesenchymal) interactions, tissue orga-
nization and stratification, but they can only reveal the
expression of marker genes. More informative approaches
have been employed to identify true TA- and ΔN-p63-
specific targets by directly examining keratinocyte progenitor
cells, with the added possibility to compare normal ker-
atinocyte progenitors with ones derived from EEC patients
or from animal models with p63 mutations. Compared to
studying the skin as a tissue (i.e., in vivo or in organ-type cul-
tures), this approach is more likely to yield results relevant for
skin development/maturation, as compared to using tumour
or immortalized cells. A combination of isoform-specific
siRNA-mediated downregulation in primary keratinocytes
and in vivo, coupled to analysis in knockout and disease-
specific knockin mice, has led to identify key target genes
required for epidermal morphogenesis that are involved in
pathogenesis of p63-linked ED [11, 54, 55, 79, 80]. The
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Figure 1: Schematic representation of known and proposed p63
pathways relevant for epidermal differentiation, ectoderm-meso-
derm signaling, and the onset of ectodermal dysplasias. p63,
IKKα, and IRF6 play a role in the developing epidermis, in a cell
autonomous way to facilitate cell cycle arrest and differentiation.
The same molecules also regulate the expression of soluble factors
such as TGFβ and members of the FGF family to regulate the
development of the underlying mesoderm, via epithelial-mesen-
chymal signaling. Disease genes are framed in boxes; regula-
tions/interactions are indicated with lines or arrows.

gene coding for the protein kinase IKKα is a transcriptional
target of ΔNp63, and indeed ΔNp63 mutant proteins found
in EEC are unable to activate IKKα expression. IKKα is a
component of the IkB kinase complex and is required for
correct epidermal development and epithelial-mesenchymal
interaction during development. Recent literature suggests a
link between p63 and NFkB [81]; however, the kinase activity
of IKKα is not required for its developmental function [40].

IKKα null mice display defects in epidermal, limb, and
craniofacial development that are fully reverted after the
reexpression of IKKα in the developing ectoderm [40]. Inter-
estingly, IKKα was recently found to be a component of the
TGFβ pathway in keratinocytes [82, 83] and to repress FGF8
expression [40]. These observations link ΔNp63 function
to the control of developmental signals (TGFβ and FGF8)
regulating epidermal, limb, and craniofacial development
(see Figure 1).

Similarly, IRF6, another ΔNp63 target gene, is involved
in both epidermal development and limb/craniofacial devel-
opment [55, 84]. The underlying mechanism relates to the
ability of IRF6 to modify the stability of the ΔNp63 protein.
IRF6 expression is required at the onset of terminal dif-
ferentiation to allow proteasome-dependent degradation of
ΔNp63. Mutations of IRF6 cause syndromes characterized by
CL/P and other developmental anomalies, and IRF6 knock-
in mice carrying the same mutation found in VWL patients
(next paragraph) display a hyperproliferative epidermis that
is unable to terminally differentiate [85].
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In summary, IKKα and IRF6 are ΔNp63 targets and
represent members of a regulated network that control
stratification and terminal differentiation of the developing
epidermis and also essential in the control of signalling
from ectodermal cells to the mesoderm for the correct
development of craniofacial structures and limbs. Finally,
members of the BMP/TGFβ and FGF families should be
regarded as important soluble mediators of this complex
regulatory network [84].

6. The Role of p63 in Palate Development

CL/P is a common feature in p63-linked syndromes that is
thought to be related to alterations of a tightly controlled
balance between proliferation and differentiation of precur-
sor cells during ectoderm development [24]. Since p63 is
a transcription factor, the basis of these defects logically
resides in the inability of mutated p63 proteins to properly
activate/repress the expression of target genes.

We [55] and others [84] have recently discovered that
IRF6 is a direct p63 target gene needed for palate develop-
ment and skin differentiation. IRF6 is a member of a fam-
ily of interferon-dependent transcription factors [86] that
control the proliferation-differentiation switch in epidermal
cells [85, 87, 88]. IRF6 is also required for palate closure:
mutations in IRF6 are linked to a set of syndromes related
to ectodermal dysplasia [89], such as the Van der Woude
syndrome (VWS, MIM 119300), an autosomal dominant
disorder characterized by CL/P and dental anomalies, and
the popliteal pterygium syndrome (MIM 119500) which,
in addition to an orofacial phenotype similar to VWS,
also displays syndactyly and ankyloblepharon [87, 90].
VWS is the most common CL/P syndrome, accounting for
approximately 2% of all cases.

Importantly, the p63 null, the p63-R279H, and the Irf6-
R84C homozygous mice all display severe CL/P [55, 84, 85].
The phenotype observed in Irf6 null mice is due to the
inability of Irf6 mutant cells to exit the cell cycle, leading
to an undifferentiated hyperplastic skin [85, 87]. How this
phenotype is linked to p63 is not totally clear; interestingly
we noted that ΔNp63 is upregulated in the epidermis of
Irf6 null mice. Based on these findings, we propose the
existence of a feedback regulatory loop between Irf6 and
p63, in which p63 controls Irf6 transcriptionally, while Irf6
controls p63 at the protein-stability level. Importantly, these
findings provide a molecular link connecting the IRF6- and
p63-linked syndromes [55].

7. p63, Ectoderm Cell Layering and
the Control of Limb Development

p63, Dlx5;Dlx6, and FGF8 are coexpressed in the Apical
Ectodermal Ridge (AER) of the mouse embryonic limb buds
[35] as well as in the fins of the zebrafish embryos [6, 60].
The AER is a transitory ectodermal structure that rims
the distal tip of the developing limbs, at the dorsal-ventral
border, and is strictly required for limb bud expansion and
morphogenesis, in particular for distal outgrowth and digit
formation [91–93]. Recent models propose that signaling

from the AER controls the generation of mesenchymal
progenitors, in an instructive way [61, 94, 95]. The best
characterized signals emanating from the AER cells are
the FGFs, primarily FGF8, which is considered the key
AER-derived instructive molecules driving proximo-distal
morphogenesis of the limbs [41, 94, 96]. A complex network
of reciprocal regulations between Wnt, FGF, and BMPs
appears to be at the basis of the coordinated growth of the
limb, resulting in time- and location-specific induction of
subpopulation of skeletogenic progenitors [61, 91, 97, 98].

The AER is perhaps the first attempt of the embry-
onic (nonneural) ectoderm to organize into a multilayered
epithelial tissue [93]. Considering that p63 has been shown
to be required for epidermal stratification [10, 11, 99], it
is not surprising that the AER of p63 null or p63 R279H
homozygous mice fails to organize as multilayer, in fact
in the absence of functional p63 AER formation is nearly
prevented. There is experimental evidence to indicate that
a failure to maintain the AER is the main pathogenic
mechanism in the onset of the ectrodactyly phenotype [93,
100]. In the p63, the Dlx5;Dlx6, and the Dac mutant mice
(to name a few), the AER fails to express FGF8 and appears
poorly stratified. Thus, loss of AER stratification and reduced
FGF8 expression, whether induced by p63 mutation or other
genetic conditions, appear to be a common theme during the
onset of this specific class of malformations. When FGFR2
gene is deleted in the AER cells, via conditional genetics, the
AER loses stratification and FGF8 expression. In this case,
the AER cells cannot respond to (AER-derived?) FGFs [94],
that are apparently needed for AER maintenance. This is a
strong indication that FGF signaling is needed by the AER
cells to maintain stratification and function, apparently in
an autocrine loop. It is important to note that loss of FGF8
expression alone is not sufficient to explain the loss of AER
stratification; however, we should consider that the reduced
FGF8 expression seen in SHFM is accompanied by altered
expression of several other genes, that may exacerbate the
suffering of the AER cells and result in reduced layering.

How is AER stratification controlled by p63? The activ-
ity of p63 is increasingly being linked to transcriptional
regulation of molecules involved in cell adhesion [101].
Indeed, p63 has been shown to (directly or indirectly)
control the expression of EGF-receptor, ICAM, β4-integrin,
and Claudin1 [3, 102–105]. Furthermore, the p53 responsive
transmembrane protein Perp has been implicated in cell-
cell adhesion and in the maintenance of epithelial integrity.
Perp, a p63 target gene, is also positively regulated by both
TA- and ΔN-p63 isoforms, and Perp null mice exhibit
blistered stratified epithelium, likely due to compromised
adhesion [106]. Recently P-cadherin (CDH3 in human) has
been shown to be a transcriptional target of p63 [37],
and P-cadherin is the disease gene for the EEM syndrome
[26, 27]. However, no limb developmental functions of P-
cadherin have been recognized in mice [28], and therefore
we currently lack a suitable animal model.

The link between altered adhesion properties and loss
of stratification is not totally clear, although the capacity
of ectodermal cells to form a multilayered epithelium
certainly requires specific adhesionfunctions, distinct from
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the single-layer naı̈ve ectoderm. A “cadherin switch” model
has been proposed to explain how cell-cell contact may
potentially facilitate cell movement and layering [107]. It
will be interesting to define how changes in p63 affect this
network in a global way.

8. Do p63 -Linked Pathways Converge on
p63 to Cause Limb Anomalies?

Expression of FGF8 is strongly reduced in the AER of the
p63 null, R279H p63 mutant, and Dlx5;Dlx6 mutant embryos
[33, 34], as well as several other mouse models of limb
defects. A number of observations suggest that the p63 and
the Dlx proteins may regulate FGF8 expression by acting
directly on the genomic region corresponding to the SHFM-
III critical region [37, 108]: indeed true p63-binding sites
are present within the region, as demonstrated by ChIP-seq
screening [36], and several predicted Dlx binding sites cluster
around the FGF8 locus, in genomic regions conserved across
mammalian species (see Supplementary Figures 1(a) and
1(b) available online at doi:10.1155/2011/864904). Assuming
that Dactylin is not the disease gene for SHFM-III, then FGF8
and components of the NFkB pathway might be the ones.
It is tempting to speculate that the complex duplication-
rearrangement modifies the position/organization of cis-
acting control elements, which in turn may affects expression
of FGF8 and components of the NFkB pathway. Thus, in
several ectrodactyly mouse models, downregulation of FGF8
appears to be a common feature.

Another regulator of FGF8 expression is the transcription
factor Sp8. Animals null for Sp8 show severe limb defects
affecting the distal portion of the limbs, associated with
a strongly reduced expression of FGF8 [109–111]. Sp8
is coexpressed with Dlx genes in the murine AER and
forebrain [112] and appears in the top 1% of a list of
conserved/coexpressed genes in microarray data (the CLOE
algorithm [113, 114]; Dlx binding sites are also predicted
in conserved regions near the Sp8 locus (Supplementary
Figure 1(c)). Therefore, Sp8 is likely to be a Dlx target and
to modulate FGF8 expression.

Another pathway that controls FGF8 expression links p63
with IKKα, a target of p63 relevant for ectoderm develop-
ment and limb morphogenesis [54, 83, 115]. Interestingly,
while mutations of p63 and loss of Dlx5;Dlx6 lead to a
reduced FGF8 expression in the AER, IKKα mutant embryos,
the AER shows an increase of FGF8 expression [40], a
condition that nevertheless results in distal limb truncations
and severe malformations.

From the above considerations, it appears that numerous
players in the p63 network contribute to regulate FGF8
expression in the AER. FGF8 is dynamically required for
the correct establishment of signaling loops within the limb
bud [61]—hence for normal limb development. Alterations
in FGF8 expression are closely linked to the onset of limb
defects and malformations in several mouse models. The
severity and extent of the malformation depends much on
the time of onset of the AER deficit and the extent of (global)
FGF reduction (including FGF4, −9, and −17), as indicated
by recently reported results using mice with progressive

and combined loss of single and multiple FGF genes [95].
Reduced FGF8 expression and signaling is also closely linked
to conditions that alter the AER morphology (reduced layer-
ing or altered adhesion). It is important to note that the AER
of the AER-specific FGF8 knock-out mice seems morpholog-
ically normal [38, 41, 116, 117]. We should also note, how-
ever, that in SHFMs the reduced FGF8 expression is always
accompanied by altered expression of several other genes.

The possibility that FGF8 is a common target of p63
network during limb development is in agreement with
the well-known functions of FGF8 to sustain epithelial-
mesenchymal signalling and assure the timely generation
of the correct population of mesenchymal progenitors [95].
Should this hypothesis be true, this knowledge could be used
in preclinical studies on mouse models, to attempt to restore
sufficient levels of FGF exogenously, and hope to rescue
normal limb development.

9. Dynamic Gene Expression of Partially
Redundant Genes Is Critical for the Activity
of p63 and the Onset of Disease Phenotypes

An emerging theme in developmental biology is the impor-
tance of gene dosage and dynamic gene expression for
correct morphogenesis [98]. Notable examples of this are
the signaling functions of FGFs expressed in the AER [95],
the gene-dosage-dependent functions of Msx1 and Msx2
for osteogenic differentiation of cranial neural crest cells
[118], the progressive limb phenotypes and altered Epha3
expression associated with the loss of posterior HoxD alleles
[119], and the craniofacial phenotypes of embryos mutant
for the Edn1-Dlx pathway [120]. Recent studies nicely
illustrate the concept of “relativity of gene function”, in
particular during limb development [91]. In fact, early or late
gene inactivation or misexpression can profoundly change
the phenotypic outcome.

Consequently, such dynamic changes in gene functions
may escape detection when genetic analysis is limited to
constitutively null allele. On the same note, the function
of individual genes is best examined upon partial and
cumulative gene losses, and within the context of expression
of related genes, as for example has been done in [95].

Several Dlx (1, 2, 3, 5, and 6) and FGF (4, 8, 9, and 17),
genes are coexpressed in the AER, and their expression is
dynamically regulated, both in respect with time (embryonic
age) and location (territory of expression). In addition,
there is evidence that Dlx and FGF genes are functionally
redundant, at least in part. For example, no limb phenotype
is observed in mice null for only one Dlx gene, while an
ectrodactyly phenotype is observed in Dlx2;Dlx5 null mice
[121]. Furthermore, the ectrodactyly seen in the Dlx5;Dlx6
mutant mice is fully rescued by the reexpression of only
Dlx5 [34]. An increased severity of craniofacial phenotypes
correlates with progressive loss of more than one Dlx gene
[120, 122]. Likewise, FGF8 and FGF4 represent the principal
supply of FGF from the AER [38, 41], and FGF4 could
functionally replace FGF8 [123]. All these are indication of
a gene-dosage effect between functionally redundant genes.
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We propose that the portion of the p63 network that
(direct or indirect) regulates FGF8 expression is exerted in a
quantitative and dynamic mode. To support this, we should
consider that although p63 null and p63EEC homozygous
mice show severe limb truncation or absence, the heterozy-
gous mice appear to be normal. When heterozygous EEC
mice are crossed with heterozygous Dlx5;Dlx6 ones (also
with apparently normal limbs), clear anomalies are observed,
although mild [35].

A gene-dosage effect combined with the coexpression
of functionally redundant genes implies the existence of a
threshold level to be maintained to assure AER stratification
and signaling functions. Following this logic, we have
determined the expression of Dlx genes along the antero-
posterior AER, by qPCR, and have noted that the expression
of Dlx2 and Dlx5 is lower in the central portion of the AER,
compared to the anterior or posterior segments. This may
explain why in the absence of Dlx5;Dlx6 only the central ray
of the limb bud is affected: the central AER might be more
sensitive to reduced Dlx expression due to intrisnic lower
expression, and the loss of two or more Dlx gene may drop
the level of pan-Dlx below the threshold.

On the same line, there is evidence that a certain amount
of AER-derived pan-FGF is required to induce and maintain
the underlying mesenchymal progenitors [61, 93, 95]. In
fact, in the Dlx5;Dlx6 DKO limbs, the reduction of FGF8
expression is restricted to the central AER, the region where
epithelial-mesenchymal signaling is primarily defective and
the region where morphogenesis fails [33, 34]. Thus, the
entire p63-Dlx-FGF is sensitive to gene dosage, timing, and
position.

On the same note, we have determined the relative
expression of Dlx genes comparing the FL and the HL at the
same embryonic age, by qPCR. The results indicate that in
the HL expression is generally lower (−15–20%) than that
in the FL (Figure 3), supporting the relevance of dynamic
expression for developmental defects. This may explain the
finding that the HLs are usually more severely affected than
the FLs. It is well known that the initiation and growth of the
HL lags behind that of the FL [93]. Similarly, when FGFR2
is conditionally deleted in the AER, the HLs are less severely
affected then the FLs. In these mice, the expression of FGF8
is first lost in the central wedge of the limb bud and this
is associated with loss of stratification [94]. Thus, different
dynamics of gene expression result in distinct phenotypic
outcomes.

10. Emerging p63 Regulatory
Pathways—A Summary

Classical strategies have been adopted to search for pheno-
type-relevant p63 targets by “candidate gene” approaches
or by genome-wide screenings. More modern approaches
include the elaboration of a Position Weight Matrix com-
bined with promoter occupancy data. It is expected that in
the near future a wealth of high-throughput data (expressed
genes and microRNA profiles, ChIP-seq, histone modifi-
cation map) will be collected and new opportunities will
emerge from meta-analyses of these complex data. In this
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Figure 2: Schematic representation of known and proposed
p63 pathways relevant for limb development and the onset of
ectrodactyly. P-cadherin is a known disease gene only in human,
while Dlx5;Dlx6 are known disease genes only in mice. Dactylin has
been proposed as the disease gene for SHFM-III but no evidence
for this is currently available. The most likely disease gene is
FGF8 (see text), regulated by both p63 and Dlx proteins by cis-
and trans-acting binding elements. The expression of FGF8 and
the stratification/maintenance/function of the AER are mutually
essential (indicated by a double arrow). Disease genes are framed in
boxes (solid for known or highly probable disease genes, dashed for
putative ones); regulations are indicated with lines or arrows (solid
for known or highly probable regulations, dashed for putative ones).

direction, recently published work [36] reports the ChIP-
seq data for p63 obtained from cultured keratinocytes.
We should soon be able to define an evidence-based p63-
network and thus raise novel hypotheses towards the iden-
tification of converging pathways and key players amenable
to interventions. Here we summarize regulatory links that
have either been demonstrated or appear highly likely and
the supporting evidence (Figure 2).

10.1. p63 Upstream of Ikkα. Ikka is a transcriptional target
of p63 [54, 83, 115]. Ikkα null mice show malformations of
the limb skeleton and abnormal epidermal differentiation.
Surprisingly, in the absence of Ikkα the expression of FGF8
is upregulated, indicating that any variation in FGF8 level is
deleterious for the ectoderm-derived cells [40].

10.2. p63 Upstream of Dlx5;Dlx6. Dlx5 and Dlx6 are coex-
pressed with p63 in the AER, and their expression is
diminished in the absence of p63 or in the presence of
the R279H homozygous mutation [35]. This regulation
occurs by (1) binding on the Dlx5 and Dlx6 promoters
and activation of their transcription [35] and (2) distant
regulation by an enhancer-like element located 250 kbp
upstream of the Dlx6 promoter [36]. Importantly, such p63-
responsive enhancer element is deleted in one SHFM patient
[36]. Also the expression of Dlx1;Dlx2 is diminished in p63
mutant embryonic limbs, and Dlx1 and Dlx2 are located
near the critical region for SHFM-V. If the deletion alters
their expression by positional effect and distal enhancers,
Dlx1;Dlx2 may turn out to be the SHFM-V disease genes.
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Figure 3: Quantitative and dynamic expression of Dlx genes during
limb development. (a) Expression of Dlx genes in the hindlimbs
(HL) and forelimbs (FL) limbs, at the same embryonic age, by
qPCR. In the HL, the expression is always lower, as compared to
the FL. This difference, most likely reflecting the developmental
lag of the HL compared to the FL, may explain the finding
that malformations affecting the HL are more severe. (b) Relative
expression of Dlx genes along the length of the AER, from anterior
(An) to medial (Me) to posterior (Po) regions (indicated with a
color code). The expression of single Dlx genes is not uniform,
and considering their partial redundancy the “global” expression is
lower in the central wedge. This region of the AER appears to be
more “sensitive” to genetic alterations and is specifically affected in
SHFM.

10.3. p63 and Dlx5;Dlx6 Upstream of FGF8. Based on Ex-
pressed Gene profiling comparing p63-silenced keratinocytes
with control ones [55] (A.C. unpublished), and based on
recently published ChIP-seq data that identify true p63
binding sites within the SHFM-III critical region [36], there
is a justified possibility that p63 regulates FGF8 expression
via cis-acting elements. Indeed, FGF8 expression is strongly
reduced in the AER of p63 null and p63 R279H mutant
embryos. FGF8 expression is also diminished in the AER
of Dlx5;Dlx6 mutant embryos [33, 34]. Using a Position
Weight Matrix approach to scan conserved regions of

the mammalian genome for predicted Dlx binding sites,
a high number of conserved Dlx-binding sites is found
around the FGF8 locus and in the SHFM-III critical region
(Supplementary Figure 1).

10.4. p63 Upstream of Dlx3. Dlx3 codes for a homeodomain
transcription factor, member of the distalless family,
expressed in keratinocytes [52] and responsible for p63
degradation during their differentiation [69, 70]. A negative
feedback regulation between p63 and Dlx3 has recently
been uncovered, that seems to be responsible for the TDO
syndrome [124].

10.5. p63 Upstream of P-Cadherin. The P-cadherin gene
(CDH3 in human) has been shown to be a transcriptional
target of p63 [27]. Interestingly, P-cadherin is mutated in
the EEM syndrome, characterized by the presence of the
SHFM phenotype [26, 27]. However, no limb developmental
functions of P-cadherin have been shown in mice [28], and
therefore the role of this molecule remains unclear.

10.6. Dlx5;Dlx6 Upstream of Wnt5a. Several observations
suggest that Wnt5a is likely to be a transcriptional target
of Dlx genes. First, Wnt5a expression is reduced in the
AER of Dlx5;Dlx6 mutant limbs (G.M. and LoIacono,
unpublished), and Dlx2 and Dlx5 directly bind to regulatory
elements in the Wnt5a locus and modulate transcription
of Wnt5a in neural progenitors [125]. Second, Wnt5a null
embryos exhibit a severe limb phenotype characterized by
truncations of proximal elements and absence of the fingers,
although the AER appears normal and expresses FGF8 [126].
Third, D-Wnt5 is a target of distalles in the Drosophila
limbs [127]. Wnt5a is a short-range signaling molecule that
could participate in a network of epithelial-mesenchymal
signaling together with FGFs to induce and maintain specific
pools of mesenchymal progenitors, as recently proposed
[97]. One interesting possibility is that the activity of the
“noncanonical” Wnt5a might antagonize the activity of
“canonical” Wnts [128], known to be required for AER
maintenance and limb morphogenesis [129–132].

11. Conclusions and Perspectives

Isoform-specific p63 transcriptional networks are being
defined that begin to reveal the molecular basis for the dual
function of this protein: (a) maintain the stem state of epider-
mal progenitors and (b) assure that cells can escape the stem
state, exit the cell cycle, stratify and terminally differentiate.
In the embryonic ectoderm, these apparently conflicting
activities are strongly biased towards the maintenance of the
stem state, while during subsequent development a finely-
tuned equilibrium needs to be established to sustain turn-
over, regeneration, and differentiation. In EEC patients, the
presence of one mutated p63 allele generates a condition
in which this equilibrium is compromised, and an altered
progenitor-maintenance function ensues and results in a dys-
plastic skin. In order to further comprehend the role of p63
at the tissue level, mice null for p63 appear not to be the ideal
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model, as both the progenitor maintenance and the cell cycle
escape functions are simultaneously compromised due to the
total absence of the protein. Better animal models are there-
fore needed, such as isoform-specific knock-outs or knock-
in of point mutated alleles. As today, the EEC and the AEC
p63 mouse models appear to better recapitulate the human
diseases and should therefore be used more extensively.

The Apical Ectodermal Ridge (AER) is a region of the
embryonic ectoderm specialized in signaling functions and
responsible for outgrowth and patterning of the limbs.
This function is exerted mostly via FGF signaling. The
AER is perhaps the earliest attempt of ectodermal cells to
organize into a multilayered tissue. Considering that p63
has been directly implicated in keratinocyte stratification,
it is not surprising that the limb defects seen in EEC and
related disorders consistently show loss of AER stratification,
associated with reduced FGF8 expression. Here we raise and
justify the hypothesis that FGF8 might be the converging
molecules on which various limb morphogenetic pathways
centered on p63 impinge, directly or indirectly. We also
present and discuss those indications suggesting that the
AER-expressed FGFs and the Dlx genes act in a dose-
dependent fashion and that their expression is dynamically
regulated. Such “quantitative” effects have an influence on
the establishment of correct signalling within the developing
limb and could explain some features of the limb anomalies.

Recently published findings and unpublished results
point to the importance of degradation of ΔNp63 during
epidermis differentiation. This critical function appears to
be exerted by at least three molecules (Dlx3, IRF6, Itch),
although additional p63 degradation pathways are likely to
emerge. In the near future, all aspects of the p63 upstream
and downstream networks will be further clarified and initial
efforts in this direction suggest the existence of an intricate
network of regulations [133, 134].

Deciphering and comprehending the complete p63
network underlying cellular-developmental defects affecting
ectoderm derivatives is the next critical task, expected to
yield relevant new knowledge on the components of this
network and on their regulation. Transcription profiling
done on homogeneous cell populations and well-designed
comparisons, have certainly been useful. However, for adult
tissues or embryonic structures this approach is problematic
and not easy to apply; furthermore, there are no cultured cell
lines that can faithfully reproduce cell layering, “quantitative”
gene expression, and dynamic signaling as they occur in the
intact skin, palatal shelf, or limb bud.

Thus, scientist will engage in scientific activities that
combine phenotype-causing targeted mutations followed
by reexpression of a candidate target in vivo to monitor
aggravation or correction of the developmental phenotype.
In the case of the p63-Dlx regulation, this approach has
been informative, and other best-candidates for being p63
and Dlx5;Dlx6 targets should likewise be tested. The in
vivo approach is preferable, although time consuming, since
p63 and most of the upstream and downstream players are
express in a tissue-specific way and/or they are involved or
depend on tissue interactions and signalling, notoriously
difficult to be recapitulated in vitro. Emerging targets are

IRF6, IKKα (for the epidermis, palate, and limbs), Wnt5a,
and FGF8 (for the limbs), and important new discoveries are
expected in this direction.

The long-term hope is to identify key enzymes or a
ligand/receptor signaling systems, to be used to test the
activity of exogenously provided ligands or active com-
pounds in preclinical experimental setting, perhaps on skin,
limb or palate organ-type cultures, and hope to revert the
dysplastic/malformation phenotypes.
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