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Abstract 

The performance and the uncertainty of receptor models (RMs) were assessed in 

intercomparison exercises employing real-world and synthetic input datasets. To that end, 

the results obtained by different practitioners using ten different RMs were compared with 

a reference. In order to explain the differences in the performances and uncertainties of 

the different approaches, the apportioned mass, the number of sources, the chemical 

profiles, the contribution-to-species and the time trends of the sources were all evaluated 

using the methodology described in Belis et al. (2015). 
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In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants 

in 47 different source apportionment model results met the 50% standard uncertainty 

quality objective established for the performance test. In addition, 68% of the SCE 

uncertainties reported in the results were coherent with the analytical uncertainties in the 

input data.  

The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite 

satisfactory performances in the estimation of SCEs while unconstrained models, that do 

not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below 

average performance. Sources with well-defined chemical profiles and seasonal time 

trends, that make appreciable contributions (>10%), were those better quantified by the 

models while those with contributions to the PM mass close to 1% represented a 

challenge.  

The results of the assessment indicate that RMs are capable of estimating the contribution 

of the major pollution source categories over a given time window with a level of accuracy 

that is in line with the needs of air quality management. 

 

Keywords: source apportionment, receptor models, intercomparison exercise, model 

performance indicators, model uncertainty, particulate matter 

 

Highlights:  
Intercomparisons were used to test the performance and uncertainty of receptor models. 
More than 85% of the reported sources met the model quality objectives. 
Two thirds of the output uncertainties were coherent with those in the input data.  
PMF v2, 3 and CMB 8.2 estimated the source contributions satisfactorily. 
The accuracy of receptor models is in line with the needs of air quality management. 
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1. INTRODUCTION  1 

Source Apportionment (SA) is the practice of deriving information about the pollution 2 

sources and the amount they contribute to measured concentrations. Receptor models 3 

(RMs) apportion the measured mass of pollutants to its emission sources by using 4 

multivariate analysis to solve a mass balance equation (Friedlander, 1973; Schauer et al., 5 

1996; Thurston and Spengler, 1985). RMs derive information from measurements 6 

including estimations of their uncertainty and have been extensively used in Europe to 7 

estimate the contribution of emission sources to atmospheric pollution at a given site or 8 

area (Belis et al., 2013; Viana et al., 2008a). In the Chemical Mass Balance (CMB) 9 

approach, both chemical concentrations of pollutants, including their uncertainties, and 10 

chemical fingerprints of the sources (source profiles) are used as input. In the multivariate 11 

factor analytical approach (MFA), only environmental concentrations and uncertainties of 12 

pollutants are used as input data and the model computes the factor profiles and the mass 13 

contributed by the factors. The CMB approach is sensitive to the selection of sources, their 14 

stability and the collinearity among them. Differences between the methods used to 15 

analyze the source and ambient samples may also impact the results. On the other hand, 16 

MFA models identify factors that have to be attributed to emission sources. For a more 17 

thorough discussion about the pros and cons of the two approaches see Hopke (2010), 18 

Watson et al. (2008) and Belis et al.(2013). 19 

Previous studies provided first estimates of the output variability by comparing the results 20 

of different RMs on the same dataset (Hopke et al., 2006; Larsen et al., 2008; Favez et al., 21 

2010; Viana et al., 2008b; Pandolfi et al., 2008). In the present work, intercomparison 22 

exercises aimed at quantitatively assessing the performance and the uncertainty of RMs 23 

by comparing the results reported from different practitioners on the same dataset using 24 

different RM techniques. 25 

 26 

2. METHODOLOGY  27 

The methodology adopted in this research to assess the model results  evaluates all the 28 

aspects of a source apportionment study, including the variability due to the influence of 29 

different practitioners using the same model on the same data (Belis et al., 2015). The 30 

procedure includes: complementary, preliminary and performance tests. 31 

The “complementary tests” aim at providing ancillary information about the performance of 32 

the solutions in terms of apportioned mass and number of source categories. The 33 

“preliminary tests” are targeted at establishing whether the entities identified in the results, 34 
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either a factor or a source (hereon, factor/source), are attributable to a given source 35 

category. In addition to the correlation coefficient (hereafter, Pearson), the standardized 36 

identity distance (SID), that prevents the distortions caused by source profiles with 37 

dominant species, is used (more details in Belis et al., 2015). The “ff tests” are the 38 

comparison among factor/sources attributed by participants to the same source category 39 

in all the solutions while “fr tests” refer to the comparison between reported factor/sources 40 

and a reference value. The objective of the “performance tests” is to evaluate whether the 41 

source contribution estimates (SCEs) are coherent with a 50% standard uncertainty target 42 

value using the z-score performance indicator complemented by the z’-score and zeta-43 

score indicators (Thomson et al., 2006; ISO 13528, 2005). In this study, SCE denotes the 44 

mass attributed to a source or factor in the results obtained with either CMB or MFA 45 

approaches.  The methodology is fully described in the companion paper by Belis et al. 46 

(2015) and was implemented using the open source software R (and R-studio). Source 47 

categories with less than five factors/sources were not evaluated and profiles attributed by 48 

participants to more than one category were tested in each of the proposed categories. 49 

Considering that source apportionment studies are mostly targeted at identifying and 50 

quantifying the typical sources in the studied area, the performance tests were conducted 51 

on the average SCE over the whole time window represented in every dataset. Moreover, 52 

the SCE time series were evaluated using the root mean square error normalised by the 53 

standard deviation/uncertainty of the reference value (RMSEu), as discussed in Belis et al., 54 

(2015). 55 

The intercomparison exercises were structured in two rounds involving 16 and 21 56 

organizations respectively. In the first round, 22 results were reported and 25 were 57 

provided in the second one. A real-world PM2.5 dataset collected in Saint Louis (USA) was 58 

used in Round 1 (Table 1). The dataset used for the intercomparison was developed by 59 

merging two datasets: one of inorganic species collected every day (Lee et al., 2006) and 60 

one of organic species collected every sixth day over the same time window (Jaeckels et 61 

al., 2007). In the final dataset, the structure of the uncertainties of the different species was 62 

heterogeneous with differences between species deriving from the data treatment in the 63 

original datasets and variability within single species due to the different analytical batches 64 

that were necessary to cover the whole monitoring campaign. In addition, the uncertainty 65 

of organic tracers was complex to quantify due to the possible influence of atmospheric 66 

chemistry and radiation on the degradation of these compounds (Galarneau et al., 2008; 67 

Hennigan et al., 2010). 68 
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The site and time window in which the real-world dataset was collected was not revealed 69 

to the intercomparison participants. The dataset containing the concentrations of 44 70 

species in 180 samples with their analytical uncertainties was distributed to participants 71 

together with the analytical parameters (uncertainty of the method and minimum detection 72 

limits) and the emission inventory of the study area. 73 

In Round 1, the following preliminary tests were performed: Pearson and SID between 74 

factor/source profiles, Pearson between log-transformed factor/source profiles, and 75 

Pearson between factor/source time trends. Only ff tests were accomplished in this round 76 

because of the absence of independent unbiased reference values.  77 

In the performance tests of Round 1, the SCE reference value for each source category 78 

was the average of the results reported by the participants. The reference values were 79 

obtained by calculating the robust average (Analytical Methods Committee, 1989) using 80 

only the SCEs of source/factors that passed the preliminary tests (Table 2). 81 

In the second round, a synthetic dataset with known reference values that were unbiased 82 

and independent from the results reported by participants was used (Supplementary 83 

Material S1). The chemical species included in the synthetic dataset (Round 2) are 84 

reported in Table 1 and the procedure followed to generate it is given in Belis et al. (2015). 85 

Since the site was not disclosed to participants, the emission inventory of the study area 86 

and a set of 23 local source profiles (more than one for every source category) were 87 

distributed to them in order to: a) provide the necessary information to create the input files 88 

for CMB models, and b) support the interpretation of the models’ output. 89 

In addition to the preliminary tests performed in the previous round, the Pearson between 90 

the factor/source contribution-to-species of the Round 2 results was also computed. All of 91 

the preliminary tests were performed by comparing factor/sources reported by participants 92 

with the reference source for the considered source category (fr tests).  93 

The model abbreviations used in this document are: CMB8.2, Chemical Mass Balance v. 94 

8.2 by U.S. EPA ; ME, Multilinear Engine; PCA, Principal Component Analysis; APCS, 95 

Absolute Principal Component Score; FA-MLRA, Factor Analysis-Multilinear Regression; 96 

COPREM, constrained physical receptor model and PMF, Positive Matrix Factorization. 97 

The code "PMF2" denotes the program PMF2 described by Paatero (1997). The codes 98 

"EPAPMF3, EPAPMF4, and EPAPMF5" denote the respective releases of the U.S. EPA 99 

program "EPA PMF”. 100 

  101 
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3. RESULTS AND DISCUSSION  102 

3.1.  Complementary tests 103 

3.1.1. Mass apportionment 104 

The sample-wise comparison between the sum of the SCEs in every solution and the 105 

gravimetric mass are summarised using normalised target diagrams (Fig. 1). More than 106 

70% of the solutions in Round 1 rank in the area of acceptance (outer circle). Most scores 107 

rank in the lower quadrants indicating a tendency to underestimate the observed mass 108 

(the distance to the horizontal axis is proportional to the PM2.5 mass that was not 109 

apportioned). On the contrary, the evident overestimation of the mass observed in two 110 

solutions is likely due to problems in the conversion of normalised data to concentration 111 

values rather than to errors in the apportionment of the mass. In Round 2, the majority of 112 

solutions (ca. 90%) rank in the area of acceptance and show little bias indicating that many 113 

solutions achieved a quite satisfactory apportionment of the gravimetric mass to its 114 

sources. In these tests, no clear relation between the type of model used and the 115 

performance is observed. 116 

 117 

3.1.2. Number of factor/sources 118 

There are different techniques to determine the number of sources (e.g. Henry et al., 119 

1984). The procedures followed by participants to determine the number of sources were 120 

based on multi-criteria, the most common of which were: a) the impact of the number of 121 

factors on the model diagnostics, b) the stability of factor profiles across different models 122 

set up, and c) the physical meaning of the factor profiles and their comparability with 123 

source profiles from the literature.  124 

 In Round 1, nine factor/sources per solution are reported on the average (Table 3). One 125 

half of the solutions identifies between six and ten factor/sources while six solutions report 126 

more than 10. An approximation of the expected number of factor/sources for this round is 127 

derived from the original solution of the inorganic dataset obtained using PMF (Lee et al., 128 

2006), which identified 10 different source categories. In this round, the estimations of 129 

PMF and CMB are relatively close. In Round 2, more than half of the solutions report the 130 

exact number of factor/sources used to design the dataset (8) and all the solutions, except 131 

one, report between six and nine factor/sources.  132 

The tests suggest that the reliability of the performance diagnostics influence the ability of 133 

the tools to establish the most suitable number of factor/sources. Often, unconstrained 134 
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MFA tools ranked far from the average. The higher number of factor/sources in COPREM 135 

is likely due to the attempt to apportion the secondary organic aerosols (not present in the 136 

synthetic dataset) and the split of ammonium sulphate into (NH4)2SO4 and (NH4)HSO4. 137 

No relevant differences in the number of factor/sources are observed between CMB8.2 138 

and the different versions of PMF. 139 

3.2. Identity and uncertainty of the factor/sources 140 

3.2.1. Factor/source identity 141 

3.2.1.1. Chemical Profiles 142 

Fig. 2 shows the distribution of the Pearson and SID values used for comparing the 143 

chemical profile of each factor/source to all of the others attributed by practitioners to the 144 

same source category (ff tests) in Round 1. More than 75 % of the Pearson values are 145 

above the limit of acceptance (broken line), indicating that the majority of the source 146 

categories present relatively comparable chemical compositions. The most heterogeneous 147 

categories (SHIP, BRA, DUST, SEC, STEEL and ZINC) show between 25% and 75% of 148 

factor/sources in the rejection area.  149 

In this step, the number of factor/sources passing the SID test is, in the majority of cases, 150 

lower than those passing the Pearson. Therefore, there are more categories with profiles 151 

in the rejection area (e.g. DIE and LEAD).  152 

Considering the two indicators, SHIP and BRA are amongst the most heterogeneous 153 

categories. The dissimilarities observed within the SHIP source category are likely due to 154 

the variety of chemical profiles allocated to it in the reported solutions. Due to similar fuel 155 

and combustion conditions, SHIP source profiles may be difficult to distinguish from 156 

stationary sources such as energy plants, oil refineries and other industrial processes 157 

(Viana et al., 2014). Only six profiles were attributed to the heterogeneous category BRA. 158 

Some of them, obtained with unconstrained factor analysis (APCS), are of difficult 159 

interpretation due to the extremely high concentration of Ca or the absence of Ba. 160 

In Round 2, Pearson and SID tests point out SALT and TRA as categories where a 161 

discrete number of chemical profiles diverge from the reference (Fig. 3; see discussion in 162 

sections 3.2.1.2 and 3.2.1.3). In addition, Pearson test highlights also factor/sources in 163 

INDU as poorly comparable to their reference source chemical profile. This source 164 

category is, by definition, quite heterogeneous considering that it includes factor/sources 165 

attributed to different types of industries, combustion processes, without excluding regional 166 

(secondary) aerosol. Because of their simple chemical composition, SO4 and NO3 are the 167 

source categories in which factor/source profiles resemble more the reference profile in 168 
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the Pearson tests. Nevertheless, these source categories are much less homogeneous 169 

when tested using SID, which gives more weight to minor components in the factor/source 170 

profiles. This may indicate there are different sources of precursors associated to these 171 

secondary compounds. 172 

The very limited changes observed in the Pearson values with log-transformed data in the 173 

two steps suggest that this kind of transformation is not solving efficiently the problem of 174 

dominant species in the profiles. For a more detailed discussion about the indicators of 175 

similarity see the companion paper by Belis et al. (2015). 176 

The correlation (Pearson) between factor/sources identified in Round 1, on the basis of 177 

their time series, is summarized in Fig. 4 (left). The time series of BioB, COPPER, LEAD, 178 

NO3 and ZINC are quite comparable among the different reported results. For the 179 

industrial sources, the time correlation is attributed to the effect of the intermittent pattern 180 

determined by the changes in wind direction and the time windows in which the emitting 181 

facility was in operation. Other sources, such as BioB and NO3, are synchronous due to 182 

common seasonal patterns determined by the trends in the emission rates and in 183 

atmospheric variables (e.g. air temperature, thermal inversion).  184 

Factor/sources in the categories BRA, DIE, INDU, SEC, SHIP, and TRA display different 185 

temporal patterns. Most of these sources show also medium to poor correlation among the 186 

different chemical profiles (Fig. 2). The poor time correlations in factor/sources of the 187 

categories TRA, DIE and GAS may, at least in part, be connected with the time resolution 188 

of the data used for Round 1. One sample every sixth day may not be optimal to capture a 189 

sufficient number of weekends to show the week day/weekend patterns.  190 

In Round 2, the time trends of the factor/sources are quite comparable with the reference 191 

for the majority of the source categories.  192 

Despite the good correlations among the reported chemical profiles, likely determined by 193 

the presence of a combination of organic carbon and characteristic trace elements (e.g. 194 

Cu, Sn and Cr), ROAD is the source category with the lowest correlation between the 195 

reported time trends and the reference. This has been interpreted as the influence, to 196 

varying extents in each solution, of elements like Si, Al, and Mg that are also typical of 197 

DUST profiles and that may blur the boundary between these two categories. Also INDU 198 

shows quite variable results in this test and the considerations made for Round 1 are valid 199 

also in this case. 200 

Source categories with inhomogeneous chemical profiles, such as INDU, often present 201 

poorly correlated time trends suggesting that an imperfect separation and identification of 202 

the sources leads to a poor fit in both the chemical composition and the temporal pattern. 203 
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Nevertheless, this general rule is not always valid. For instance, the time trends of SALT in 204 

Round 2 are quite comparable (Fig. 4) even though the chemical profiles of the 205 

factor/sources attributed to it are not homogeneous (Fig. 3). This apparent contradiction is 206 

explained by the high variance between the SALT time trends in the different reported 207 

results that is not detected by the Pearson test because the oscillations are synchronous. 208 

 209 

3.2.1.2. Contribution-to-species 210 

The contributions of sources to the mass of every single species in the dataset expressed 211 

as percentage (contribution-to-species) were reported only in Round 2 (Fig. 5). The results 212 

reported in the different solutions are quite comparable among each other and with the 213 

reference source. As already observed in the tests for chemical profiles, INDU and ROAD 214 

show a number of records in the action area. Also the factor/sources in NO3, that are 215 

comparable with the reference in terms of time trend, show a non-negligible share of 216 

scores in the action area. In this category, the lower scores observed in the contribution-to-217 

species may be attributed to the lower influence of dominating species, like ammonium 218 

nitrate, and higher influence of minor species such as Ca, As, Mo, Rb, Cl and PAHs. 219 

On the other hand, factor/sources in the SALT category, which show poor correlation with 220 

the concentrations in the reference profile, are well correlated with the reference in terms 221 

of contribution-to-species. In the SALT chemical profiles, Cl and Na represent on average 222 

81% and 49% of the source mass, respectively, and their relationship is close to the 223 

stoichiometric ratio in sodium chloride. As for the contribution-to-species, the ratio between 224 

the two elements (39% and 58% of the SALT mass, respectively) indicates that the share 225 

of Cl in SALT is lower than the one it would have been if the only source consisted of 226 

NaCl. This mismatch indicates the contribution of additional sources to this element other 227 

than sea and road salt (e.g. INDU).  228 

3.2.2. Chemical Profile Uncertainty 229 

In order to assess the uncertainty of the factor/source profiles, the weighted differences 230 

(WD, Karagulian and Belis, 2012) between the source profiles reported by participants and 231 

the corresponding reference profiles were computed.  232 

The interpretation of WD scores depends on the relevance of the reference value for the 233 

factor/sources being tested. If a factor/source has been attributed to the wrong source 234 

category, the reference is not appropriate to evaluate that factor/source. For that reason, 235 

WD are interpreted by taking into account the results of the chemical profile tests (see 236 

section 3.2.1.1).  237 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

In Round 1, the fr tests were carried out using external reference profiles available in the 238 

literature and are, therefore, used only for informative purposes (not reported). 239 

The WD test shows that, in Round 2, SALT is the category with the highest proportion of 240 

scores outside the area of acceptance (above the broken line) followed by NO3, INDU, 241 

SO4 and ROAD (Fig. 6). The analysis of the chemical profile’s uncertainty using the WD 242 

indicator shows that, in this round,  65 % of factor/sources present acceptable WD scores. 243 

In addition, the joint evaluation with the chemical profile test suggests that only 18% of the 244 

factor/source profiles, which allocation to source categories was confirmed, 245 

underestimated their uncertainty.  246 

 247 

3.3.  Performance tests 248 

In this section the results of the tests aiming at evaluating the SCEs, the most important 249 

output of a source apportionment study, are presented. The assessment of the SCE time 250 

trends is discussed in the companion paper by Belis et al. (2015). 251 

3.3.1. Reported Source Contribution Estimates 252 

The distributions of the SCEs reported by participants in Round 1 and 2 are shown in 253 

Supplementary Material S2. The coefficients of variation (CVs) of the SCE reported by 254 

participants for every source category are, on average, 0.77 and 0.45 in the first and 255 

second round, respectively. NO3 and SO4 are the source categories with the lowest CV 256 

(between 0.26 and 0.48). In Round 1, CVs higher than the unity are observed in DUST, 257 

SHIP, INDU and ZINC while GAS, DIESEL and BRA show values in the range 0.80 -1.00. 258 

In Round 2, the SCEs are higher, because of the higher PM levels, and their relative 259 

variability within source categories is lower than in Round 1. The highest CV is the one of 260 

SALT (0.70) followed by DUST and INDU (0.60 and 0.55. respectively). As in Round 1, the 261 

lowest CVs are those in SO4 and NO3 (0.28 and 0.31, respectively).  262 

3.3.2. Z-scores  263 

Fig. 7 summarises the z-scores assigned to each factor/source reported by participants in 264 

Round 1. The z-scores are in the acceptance area 85% of the time, 3% in the warning 265 

area, and 12% in the action area. The majority of solutions, 19 out of 22, present at least 266 

75% of the scores in the acceptance area. Only solution G2 presents the majority of 267 

scores in the action area. Such performance is likely due to the problems in mass 268 

quantification highlighted in the complementary tests (section 3.1.1).  269 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

DUST is the source category with the highest variability and the highest number of scores 270 

in the action area due to overestimation (6 scores) while SHIP and BRA are the ones with 271 

the highest number of scores in the action area due to underestimation (4 and 2 scores, 272 

respectively). Source categories DIE, GAS, BIOB, INDU and ZINC present three or less 273 

profiles with scores in the upper action area each. Inaccuracy in the SCE estimation of 274 

DUST, SHIP and BRA have been associated with the lack of homogeneity in the chemical 275 

profiles of the source factors attributed to them, as pointed out in the preliminary tests. 276 

Alternatively, those factors/sources with poor scores in DIE and, GAS are likely connected 277 

to results affected by the limited number of weekend days included in the dataset, as 278 

indicated by the preliminary test on time trends. The few z-scores of INDU ranking in the 279 

action area may be associated with divergences in both time trends and chemical profiles.  280 

In Round 1, about 80% of the reported factor/sources were obtained either with 281 

EPAPMF3, PMF2 or CMB8.2. In each of these models, more than 80% of the z-scores are 282 

placed in the area of acceptance. Interpretation of the results of the other models should 283 

be made with caution due to the limited number of reported solutions obtained with them.  284 

An 89% of the z-scores assigned to factor/sources reported by participants in Round 2 are 285 

in the acceptance area, while 2% and 9% are in the warning and action areas, respectively 286 

(Fig. 8). The majority of solutions, 21 out of 25, had more than 75% of the scores in the 287 

acceptance area.  288 

SALT is the only source category with more than half of the scores in the action area. The 289 

overestimation of the SALT SCEs in the majority of solutions is likely due to the small 290 

contribution of this source category, which represents only 1% of the total PM mass. 291 

These low-contributing factors are likely to be severely affected by the remaining ambiguity 292 

derived from scaling indeterminacy. Their contributions and composition could be 293 

underestimated/overestimated by a large unknown coefficient (Amato et al., 2009). The 294 

negative SCE reported in a result obtained with FA-MLRA also contributed to the poor 295 

performance in this source category and further highlights the limitations of fully 296 

unconstrained factor analytical methods. A common drawback of tools without non-297 

negativity constraints is the attribution of negative SCEs to minor sources to compensate 298 

the excess of mass attributed to others. 299 

As in Round 1, INDU shows some z-scores ranking either in the warning or in the action 300 

areas. The performance of this source category in the two rounds is likely caused by the 301 

poor match in the chemical composition and time trends between the factor/sources 302 

reported in the solutions and the reference values. A limited degree of overestimation is 303 

also observed in ROAD, as shown by one of the scores in the action area. As discussed in 304 
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section 3.2.1.2, this can be attributed to the interference of DUST, especially during windy 305 

days, that may also lead to inaccuracies in the time trends. A propensity to underestimate 306 

source categories with high SCEs such as NO3 and to a lesser extent SO4 (29% and 17% 307 

of the PM mass, respectively) is present in many solutions. Nevertheless, the bias is too 308 

small to give rise to poor scores. 309 

In Round 2, about 75% of the reported SCEs derive from solutions obtained with 310 

EPAPMF3, PMF2 and CMB8.2 and their performances are comparable to those observed 311 

in Round 1. Although a limited number of solutions are available for the other models, it is 312 

worth mentioning the good performances of COPREM, EPAPMF5 and ME-2. FA-MLRA is 313 

the only model with 50% of the scores either in the warning or action areas.  314 

The z’-score indicator was used in Round 2 to assess the difference between solutions 315 

and the reference value taking into account the reference’s uncertainty. No substantial 316 

differences were observed between z-scores and z’-scores indicating that the uncertainty 317 

of the reference had no impact on the evaluation of participant’s performance. 318 

3.3.3. The uncertainty of the source contribution estimates  319 

In source apportionment modelling, there are different sources of error: random error, 320 

modelling error (bias), and rotational ambiguity (Paatero et al., 2013). One important 321 

source of random error is the one present in the input data and is commonly approximated 322 

from their analytical uncertainty. Modelling error arises in situations in which the RM 323 

assumptions (Belis et al., 2013) are seriously infringed. It may derive from wrong number 324 

of sources or variation of sources in time and is mostly contributing to the bias kind of 325 

error. Also atmospheric composition and meteorology acting selectively on the degradation 326 

of organic tracers (Galarneau, 2008) are a component of the bias error.  327 

Many RM tools supply the output uncertainty. In EPA PMF versions, the uncertainty of the 328 

output profiles is estimated using re-sampling and more recently also with displacement 329 

methods while the CMB EPA 8.2 model performs a propagation of the input analytical 330 

uncertainty. Many practitioners using non-US EPA tools compute the output uncertainty 331 

with resampling and error propagation techniques in post-processing. The rotational 332 

ambiguity is not discussed in this section because only one of the used of tools (EPA PMF 333 

v5) was designed to estimate this kind of uncertainty. More discussion about the 334 

uncertainty test can be found in the companion paper by Belis et al. (2015). 335 

The tests described in the previous sections were mostly oriented to assess: a) the bias by 336 

comparison with a reference value and b) the reproducibility intended as the range of 337 

results that can be obtained from a single dataset (with a given degree of noise) by 338 

different practitioners using the same or different tools. In the following, the analysis will 339 
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focus on the assessment of the SCEs uncertainty estimation accomplished by RMs by 340 

comparing them with the one of the reference. Considering that unbiased reference values 341 

are available only for the synthetic dataset, in this section are discussed only the results of 342 

Round 2.  343 

The mean of the reported relative standard uncertainties for the SCE of the whole time 344 

window in Round 2 is 13%. The lowest values are those in NO3 source categories and the 345 

highest are those in INDU. As for the models, the lowest uncertainties are those reported 346 

in ME-2 and CMB8.2 solutions and the highest are those of COPREM solutions. No 347 

uncertainty was reported for the SCEs obtained with FA-MLRA. The uncertainty attributed 348 

to the reference was equivalent to the noise introduced in the synthetic dataset (20% 349 

standard deviation) that was derived from the analytical uncertainty in the input dataset 350 

(Belis et al., 2015). The zeta-score test indicates that a 68% of the declared factor/source 351 

SCE uncertainties are coherent with the one of the reference while a 19%, ranking in the 352 

action area, are likely underestimated (Fig. 9). 353 

SALT is the only source category with the majority of the zeta-scores in the action area 354 

(75%). Likely, models do not allow for the higher relative uncertainty due the very low 355 

SCEs in this source category compared to the others. Uncertainty underestimation is 356 

observed also in ROAD, which shows a 60% of the scores either in the warning or in the 357 

action areas. 358 

A considerable proportion of factor/sources obtained with EPAPMF4 and EPAPMF3 show 359 

underestimated uncertainties (29% and 24% of scores in the action area, respectively). 360 

COPREM showed uncertainties higher than the reference in a 31% of the factor/sources. 361 

The satisfactory performance of CMB8.2 (more than 90% successful scores) suggests that 362 

propagating the uncertainty of the source profiles can provide a satisfactory estimation of 363 

the SCEs uncertainty.  364 

3.3.4. The impact of the operator 365 

The variability between solutions obtained by different practitioners using the same tool 366 

and the same input data are an indicator of the maximum impact of the operator 367 

subjectivity on the reproducibility. The tools with the highest number of reported solutions: 368 

EPAPMF3, PMF2, and CMB8.2 present a high consistency among solutions obtained by 369 

different practitioners using the same tool.  The standard deviations of the SCE mean in 370 

each of these models ranges between 0.2 - 0.3 µg/m3 and 1.4 - 1.7 µg/m3, in the first and 371 

second rounds, respectively. These values are, in addition, close to the standard deviation 372 

of the overall mean (0.2 µg/m3 and 1.7 µg/m3, in the first and second rounds, respectively). 373 

These results suggest a limited impact of the practitioners’ subjectivity, on average. 374 
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However, “outliers” were often associated with less experienced practitioners in terms of 375 

both years of use of the tool and number of studies performed.  376 

 377 

4. KEY FINDINGS OF THE INTERCOMPARISON  378 

The tests on chemical profiles confirmed, in the majority of cases (83%), the attribution of 379 

factors/profiles to source categories in the reported results and the majority of the SCEs 380 

(87%) reported by participants met the 50% standard uncertainty quality objective 381 

established for the performance test. A high share of the tested solutions (70% - 80%) 382 

apportioned a considerable amount of the PM2.5 mass to its pollution sources and many 383 

solutions estimated a number of sources close to the expected value.  384 

In this study, the estimation of source contribution was most critical for SALT, DUST, SHIP 385 

and categories associated with mobile sources. The majority of the solutions 386 

overestimated the SCE of SALT, a source category with a contribution of about 1% of the 387 

PM mass. Such relative contribution may be considered a first approximation of the lower 388 

limit that the tested methodologies are able to quantify. Poor scores attributed to some 389 

DUST and ROAD SCEs were ascribed to the similarities in the chemical composition 390 

between road dust and crustal material that may have interfered with the allocation of 391 

mass between these sources. The uncorrelated time trends and, in some cases, the 392 

heterogeneous chemical profiles observed in INDU and SHIP were attributed to the lack of 393 

a common definition of these categories. Sources with appreciable contributions and 394 

chemical profiles dominated by few species, such as NO3 and SO4, were more efficiently 395 

recognised by the models even though there was a tendency to slightly underestimate 396 

their SCEs. 397 

The most commonly used models, EPAPMF3, PMF2, and CMB8.2 showed quite 398 

satisfactory performance with successful z-scores ranging between 80% and 100%. The 399 

good agreement between CMB and PMF may be partially due to the main RM 400 

assumptions being substantially respected in the used datasets: limited alteration of the 401 

species between source and receptor and relatively stable source profiles. In addition, 402 

both types of tools account for the uncertainties in the input data, have built-in 403 

performance indicators and have been available long enough to allow a wide number of 404 

practitioners be familiar with them. For those models used in a limited number of solutions, 405 

only preliminary conclusions can be drawn at this stage. In general, fully unconstrained 406 

models which do not account for the input data uncertainty (e.g. FA-MLRA and APCFA) 407 

showed performances below the average. This result is likely because in these tools, the 408 
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noise deriving from the uncertainty structure of the datasets is incorporated into the 409 

factor/sources (Paatero and Hopke, 2003).  410 

The tests used to assess the SCE uncertainty reported in the solutions confirmed that the 411 

RMs output uncertainty estimation is coherent with the analytical/random uncertainty of the 412 

input data. Other components of the uncertainty could be evaluated in specially designed 413 

intercomparisons where RMs are either compared with other types of models or synthetic 414 

datasets with known perturbing factors are used. Processes altering the factor/source 415 

chemical profiles could be detected in the preliminary tests by comparison with the 416 

reference source profiles. In addition, diagnostic ratios could be used to detect long-range 417 

transport or photochemical age of aerosols (Hien et al., 2004; DeCarlo et al., 2010). 418 

The slightly better performance observed in Round  2 compared to Round 1 is likely 419 

connected to the differences between simulated and measured data. Round 1 was more 420 

challenging for the participants due to the inconsistencies in the uncertainties they had to 421 

deal with in a blind test with limited information about a non-European study area. On the 422 

contrary, the synthetic dataset contained internally consistent data with a lower level of 423 

noise and fewer source categories. 424 

In the real-world, the variability of profiles in time and the chemical reactivity of organic 425 

species may affect the source/receptor relationships. Datasets from areas with complex 426 

atmospheric transport and chemistry are likely more challenging for models to quantify the 427 

sources (especially secondary and/or distant ones) than areas influenced mainly by local 428 

sources. In this study, there are no indications that  the variability of profiles and 429 

degradation of markers affected the comparability of results among participants working on 430 

the same dataset. On the other hand, it was observed that the time resolution of the 431 

datasets influenced the ability of RMs to capture the time patterns of mobile sources. 432 

5. CONCLUSIONS 433 

The results of this study indicate that RMs are capable of estimating the contributions of 434 

the main pollution source categories within a given time window with a level of accuracy 435 

that is in line with the needs of air quality management. 436 

Further intercomparisons evaluated with the same or comparable methodologies are 437 

needed to create a weight-of-evidence about the characteristics and capabilities of the 438 

models and tools. 439 

Future work to improve the capacity of these models should focus on: a) the development 440 

and availability of source profiles relevant for the study area, b) better definition of the 441 

source categories, c) experimental design to improve the uncertainty estimation, d) 442 
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development of speciated PM data series with appropriate time resolution and extended 443 

set of markers. 444 

Moreover, the implementation of common guidelines (Belis et al., 2014) would lead to 445 

more comparable results with recognised quality standards in line with those reported in 446 

the present work. 447 
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Table 1. Outline of the datasets used in every round of the intercomparison exercises. 

Table 2 Source categories, codes and reference values used in every round of the intercomparison. 

Table 3. Average number of reported factor/sources by model 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 Round 1 Round 2 

Type of data Real-world dataset Synthetic dataset 

Site Saint Louis (USA) Milan (Italy) 

Time window June 2001 –  May 2003 January – December 2005 

Pollutant PM2.5 PM2.5 

Number of samples 178, 24 h samples 364, 24 h samples 

Number of chemical species 44 38 

Carbonaceous species OC/EC (steps) OC/EC (total) 

Ionic species sulphate, nitrate, ammonium sulphate, nitrate, ammonium, chloride 

Elements 
Al, As, Ca, Cr, Cu, Fe, K, Mn, Ni, Pb, Rb, Si, Sr, Ti, V, Zn  

Ba, Co, Hg, P, Se, Zr Sb, Sn, Na, Mo, Cd, Mg 

Organic species 

indeno(cd)pyrene, benzo(ghi)perylene, benzo(a)pyrene, coronene, 

benzo(e)pyrene, dibenz[a,h]anthracene, levoglucosan 

benz(a)anthracene, fluoranthene, 

pyrene, benzo(b,k)fluoranthene, 

benzo(j)fluoranthene 

chrysene, benzo(b)fluoranthene, 

benzo(k)fluoranthene 
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ROUND 1 ROUND 2 

Code Source category Reference 

SCE (µg/m3) 

Code Source category Reference 

SCE (µg/m3) 

BioB Biomass burning / wood burning 1.59 BioB Biomass burning / wood burning 4.33 

BRA Road dust / brake abrasion 0.83 SO4 Ammonium sulphate 7.12 

COPPER Copper production 0.57 NO3 Ammonium nitrate 12.69 

DIE Diesel vehicles 0.42 DUST Soil dust/ crustal 4.01 

DUST Soil dust/ crustal 0.74 ROAD Road dust 2.68 

GAS Gasoline vehicles 0.59 SALT Sea salt / road salting 0.52 

INDU Industrial emissions/combustion 1.07 TRA Exhaust emission from vehicles 6.63 

LEAD Lead smelter 0.42 INDU Industrial emissions/point sources 5.11 

NO3 Ammonium nitrate 2.98    

SEC Secondary aerosol 6.36    

SHIP Ship emissions 1.63    

SO4 Ammonium sulphate 5.99    

STEEL Steel processing 1.57    

TRA Traffic exhaust 2.44    

ZINC Zinc smelter 0.58    
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model 

ROUND 

AVERAGE CMB8.2 PMF2 

EPA 

PMF3 

EPA 

PMF4 

EPA 

PMF5 ME-2 COPREM PCA APCS 

FA-

MLRA REFERENCE 

ROUND1 9 8 9 9  - -  6 13 7 11  - 10* 

ROUND2 9 8 8 7 7 8 8 13  - -  6 8 

* indicative reference. 
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Fig. 1. Target diagrams summarizing the mass apportionment in the first (left) and second (right) rounds. 

The outer circle delimits the acceptance area and the inner circle represents the boundary of scores with 

Pearson equal to 0.7. Only scores outside the inner circle are labelled with the model abbreviation and 

solution code.  RMSD’: unbiased  root mean square difference (Jolliff et al., 2009). 

Fig. 2. Similarity of factor/source chemical profiles in each source category (ff tests) in Round 1 calculated 

using Pearson (left) and SID (right). Pearson: values above the broken line rank in the area of acceptance. 

SID: accepted values are those below the broken line.  The number of tested factor/sources is reported on 

top of each bar. 

Fig. 3. Comparison of factor/source chemical profiles with the reference profile for every source category 

(fr tests) in Round 2 calculated using Pearson (left ) and SID (right ). Pearson: values above the broken line 

rank in the area of acceptance. SID: accepted values are those below the broken line. The number of tested 

factor/sources is reported on top of each bar. 

Fig. 4. Comparison of factor/source time series in Round1 (ff tests, left) and in Round 2 (fr tests, right) using 

Pearson. Values above the broken line rank in the area of acceptance. The number of tested factor/sources 

is reported on top of each bar. 

Fig. 5. Comparison of factor/source contribution-to-species with the reference profile for every source 

category (fr tests) in Round 2. Values above the broken line rank in the area of acceptance. The number of 

tested factor/sources is reported on top of each bar. 

Fig. 6. Evaluation of chemical profiles uncertainties, using the weighted difference (WD) indicator in Round 

2 (fr tests). Values below the broken line rank in the area of acceptance. The number of tested 

factor/sources is reported on top of each bar. 

Fig. 7. Z-scores attributed to the factor/profiles in Round 1 arranged by source category (left) and by model 

(right). Scores outside the zone between continuous lines rank in the action area, those in the space 

between the continuous and the broken lines rank in the warning area and those in the zone within the 

broken lines rank in the acceptance area. The number of tested factor/sources is reported on top of each 

bar. 

Fig. 8. Z-scores attributed to the factor/sources in Round 2 arranged by source category (left) and by model 

(right). Scores outside the zone between continuous lines rank in the action area, those in the space 

between the continuous and the broken lines rank in the warning area and those in the zone within the 

broken lines rank in the acceptance area. The number of tested factor/sources is reported on top of each 

bar. 

Fig. 9. Zeta-scores attributed to the factor/sources in Round 2 arranged by source category (left) and by 

model (right). Scores ranking above or below the continuous lines are in the action area, those in the space 

between the continuous and the broken lines are in the warning area and those in the zone within the 

broken lines are in the acceptance area. The number of tested factor/sources is reported on top of each 

bar. 
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1 

 

Intercomparisons were used to test the performance and uncertainty of receptor models. 1 
More than 85% of the reported sources met the model quality objectives. 2 
Two thirds of the output uncertainties were coherent with those in the input data.  3 
PMF v2, 3 and CMB 8.2 estimated the source contributions satisfactorily. 4 
The accuracy of receptor models is in line with the needs of air quality management. 5 
 6 


