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A. ABSTRACT 

 

Pseudomonas aeruginosa is one of the top three causes of opportunistic human infections in 

different categories of patients. Antibiotics are used as first line drugs for the treatment of these 

infections. However, frequently observed inefficacy of these treatments is linked to the high levels 

of intrinsic and acquired resistance of P. aeruginosa to these agents. Unfortunately during the last 

decades few novel anti-pseudomonas drugs have arrived to clinical phases. Moreover, in the past, 

several vaccine candidates against P. aeruginosa have been tested in pre-clinical trials, few have 

reached clinical phases but none of these has obtained market authorization. Thus, this scenario 

highlights the need of new therapeutic options for the prevention/eradication of P. aeruginosa. In 

the first part of this work the efficacy of a novel Protein Epitope Mimetic antibiotic named New 

Chemical Entity (NCE) was assessed in murine models of P. aeruginosa acute and chronic airways 

infection, including CFTR-deficient mice. A comparison between different administration routes 

(systemic versus pulmonary) was also considered. NCE demonstrated a remarkably efficacy in 

reducing the bacterial load and the inflammation in the lung when administered locally in all murine 

models tested. The efficacy of this novel antibiotic peptide was superior to ciprofloxacin, one of the 

current available treatments. Moreover pharmacokinetic studies confirmed that NCE reached 

favorable concentrations in the lung after pulmonary administration. These results supported the 

development of NCE as a potential novel inhaled therapy to treat P. aeruginosa airways infections.  

In the second part of this work, novel vaccine candidates against P. aeruginosa, identified by the 

combination of advanced whole genomic approaches including the “reverse vaccinology”, were 

tested in murine models of acute pneumonia. 32 vaccine candidates were tested for their ability to 

protect against a lethal dose of P. aeruginosa. 10 proteins showed an increase in the survival curves 

when compared with a negative control group. Further characterization suggested that the vaccine 

candidates were immunogenic, expressed in bacterial culture and surface exposed. When 

combinations of two proteins were tested in murine models, five of them showed a statistically 

significant increase in both the survival curves and mean survival time compared with a negative 

control group. The highest protection rate (50%) was achieved by the combination of two unknown 

proteins. Overall these results suggested that the combination of comparative genome analysis and 

innovative methods in vaccine design are valid tools for the identification of novel vaccine 

candidates against P. aeruginosa. 
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B. STATE OF THE ART 

 

B.1 Epidemiology and pathogenesis of Pseudomonas aeruginosa respiratory diseases 

 

Pseudomonas aeruginosa is an ubiquitous environmental Gram-negative bacterium. It is one of 

the top three causes of opportunistic human infections targeting a wide range of patients. The 

European Centre for Disease Prevention and Control (ECDPC) reports show that P. aeruginosa is 

responsible of 16% of healthcare associated infections causing millions of cases each year (Lyczak, 

Cannon et al. 2000; Boucher, Talbot et al. 2009). It rarely causes infections in immunocompetent 

individuals, when this occurs P. aeruginosa is normally eliminated by the host immune system. 

Alterations or disruption of defensive barriers like skin or mucosa (after surgery, serious burns, 

indwelling devices or mucosal flora alteration by broad spectrum antibiotic) or a compromised 

immune system may favor P. aeruginosa infections. P. aeruginosa can cause infections at different 

body sites including skin and soft tissues, urinary tract, brain, heart, bloodstream, cornea and 

respiratory tract. In humans, P. aeruginosa is able to cause acute and chronic airways infections. 

Acute airways infections are characterized by tissue injury, acute pneumonia, multiorgan failure and 

sepsis due to the dissemination of the environmental acquired strain throughout the body. This 

process can occur in hours or days (Fig.1A). This kind of infections mainly occur in patients with a 

compromised immune system, due to immunosuppressive therapies or underlying diseases, such as 

cancer or AIDS, or hospitalized patients. In hospitals P. aeruginosa is responsible of infections in 

intensive care units (ICUs), causing Hospital-acquired pneumonia (HAP) and, in ventilated patients, 

ventilator-associated pneumonia (VAP) and sepsis with a rate of mortality of about 38% (Stover, 

Pham et al. 2000; Chastre and Fagon 2002; Williams, Dehnbostel et al. 2010; Gellatly and Hancock 

2013). 

Chronic airways infections due to P. aeruginosa occur without injury and in the presence of 

biofilm structures that develop over days or weeks (Fig.1B). This kind of infection typically occur 

in patients suffering from chronic obstructive pulmonary diseases (COPD) or the hereditary 

diseases cystic fibrosis (CF). COPD is a destructive lung disease of which the predominant cause is 

excessive tobacco smoke but also less frequent causes associated with indirect cigarette smoke, air 

pollutants, biomass fuels, and genetic mutations. It afflicts about 14.2 million cases in the United 

States alone with an estimated 63 million people world-wide. COPD is characterized by increased 

mucus production, airways inflammation and obstructive bronchitis (Hassett, Borchers et al. 2014; 

Postma, Bush et al. 2015). CF is the most common lethal autosomal genetic disorder in Caucasian 

populations (Ratjen and Doring 2003). The disease is characterized by pathological changes in 
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secretory cells due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator 

(CFTR) gene that encodes for a chloride channel in epithelial membranes. Mutations in the gene 

encoding the CFTR protein result in a hyper absorption of sodium and water across epithelia, that 

leads to depletion of the periciliary liquid layer, dehydration of the mucus and inhibition of the 

mucociliary transport in lungs, causing progressive disability and early death. In this situation P. 

aeruginosa has been recognized as having the greatest role in morbidity and mortality leading to 

premature death in 90% of patients. 

 

 

Figure 1: Acute and chronic infections caused by P. aeruginosa. (A) Depicted here in the airways and 

pulmonary blood vessels, an acute infection caused by invasive and cytotoxic bacterial cells that can 

quickly progress to a systemic infection (septicemia) in immune-compromised patients. (B) Under 

chronic conditions, bacterial genetic variants may grow in biofilm structures in the airways of CF and 

COPD patients (Bragonzi 2010). 

 

B.2 P. aeruginosa virulence factors and adaptation during airways infection 

 

P. aeruginosa is able to adapt to many different ecological niches and infect many different 

organism, including plants, amoebas, nematodes and vertebrate animals. Probably, this colonization 

capacity reside in its large genome that consist in a circular chromosome of around 6.3-Mbp 

encoding 5,570 predicted protein sequences (Stover, Pham et al. 2000). It has been observed that 

the phenotype of P. aeruginosa from acute infections differ substantially from those isolated from 

CF chronic infections (Fig.2) (Smith, Buckley et al. 2006).  
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In early stages of acute infection virulence factors of P. aeruginosa play an important role in 

bacteria-host interaction, invasion, colonization and dissemination. Many virulence factors has been 

linked to disease severity and worst clinical outcomes in infected patients (Sadikot, Blackwell et al. 

2005). 

Flagella and pili present in P. aeruginosa surface are involved in bacterial motility allowing 

bacteria to spread along hydrated surfaces facilitating the rapid airways colonization (Gellatly and 

Hancock 2013). They are also important adhesins involved in the initiation of an inflammatory 

response. 

The lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative 

bacteria and is critical for P. aeruginosa virulence, playing an important role in bacteria-host 

interaction. LPS is composed by three domains: the lipid A, the oligosaccharide core and the O-

specific polysaccharide or O-antigen. The variability of the O-antigen chains is the basis of the 

antigenic identification of P. aeruginosa serotypes. Lipid A component activates multiple pro-

inflammatory pathways by TLR4 recognition (Gellatly and Hancock 2013). 

Another major determinant of P. aeruginosa virulence is the type III secretion system (T3SS), 

that allows the bacterium to inject toxins directly into the host cell through a pore formed in the host 

cell membrane. Four effectors have been identified in P. aeruginosa: ExoY, ExoS, ExoT and ExoU. 

These effector proteins can modulate innate immune recognition of bacteria or target effector 

mechanisms of the innate immune system (Sadikot, Blackwell et al. 2005). 

P. aeruginosa pathogenicity is also characterize by many others virulence factors. Among these 

proteases secreted into the extracellular space, such as elastase, alkaline protease or hemolysins, that 

contribute for invasion and dissemination of the bacteria by disrupting the respiratory epithelium, 

participate in cytotoxicity and are involved in specific strategies of immune escaping by degrading 

host complements proteins, antibodies and cytokines. Moreover P. aeruginosa secretes small 

molecules that have an inhibitory or toxic effect on immune system, like pyocianin, pyoverdine, 

pyochelin or rhamnolipids. Pyocyanin is a blu-green pigment that cause oxidative stress to the host 

and induces neutrophil apoptosis (Allen, Dockrell et al. 2005; Sadikot, Blackwell et al. 2005). 

Pyoverdin and pyochelin, the two major siderophores produced by P. aeruginosa, that regulate the 

secretion of other virulence factors including exotoxin A, endoproteases and itself while 

rhamnolipids are associated with neutrophil necrosis (Sadikot, Blackwell et al. 2005; Gellatly and 

Hancock 2013). 

The production of several P. aeruginosa virulence factors is coordinated by Quorum Sensing 

(QS), therefore it is a key contributor to P. aeruginosa pathogenesis. The QS is a cell density 

monitoring mechanism that allows cell-to-cell signaling through both homoserine lactones and 
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quinolones that are auto-inducers that diffuse freely across bacterial membranes (Jimenez, Koch et 

al. 2012). P. aeruginosa mainly employ two systems: Las and Rhl. Through these systems the QS is 

involved in the control and regulation of multiple virulence factors like LasA and LasB elastases, 

exotoxin A, alkaline proteases, rhamnolipids production or T3SS assembly and production 

(Jimenez, Koch et al. 2012). 

 

The transition from acute to chronic lung infection is characterized by the reduction of several 

bacterial factors, mainly involved in immunostimulation or host damage, and by the selection 

against invasive functions of P. aeruginosa. All these changes leads to more persistent phenotypes. 

The pathogen adaptation arises from several mechanisms of differential gene expression, gene 

mutation and extensive genomic rearrangements (Smith, Buckley et al. 2006; Bragonzi, Paroni et al. 

2009; Bianconi, Milani et al. 2011; Marvig, Sommer et al. 2015). 

The adaptive process is frequently associated with P. aeruginosa alteration in colony 

morphology, often characterized by conversion to morphotypes that overproduce alginate (mucoid 

morphotypes), lack of expression of some virulence factors, changes in surface antigens, increased 

antibiotic resistance and modulation of metabolic pathways (Fig.2).  

The predominance of mucoid colony morphology mainly results from the exopolysaccharide 

alginate overproduction and absence of flagellin and pilin. The genetic mechanisms underlying P. 

aeruginosa transition to the mucoid form have been identified mainly in the mutational inactivation 

of the mucA gene. Mutations in mucA, carried by P. aeruginosa during chronic infection, activate 

the transcriptions of genes involved in alginate production, while negatively regulate several 

virulence factors, including pili, flagella, T3SS and Rhl QS. The conversion to mucoid phenotype 

promotes the biofilm mode of growth, a key factor for the persistence in the host pulmonary 

environment. In the mucoid form, P. aeruginosa is more difficult to be eradicated because it is 

highly resistant to antibiotics, as well as to the action of host immune defenses, for instance to 

macrophages and neutrophils-mediated phagocytosis and antibodies opsonization (Folkesson, 

Jelsbak et al. 2012) 

Moreover, a down-regulation of the expression of several cytotoxic factors like pyocyanin, 

pyoverdin and elastase, is exerted by the pathogen with the final aim to chronically persist in the 

pulmonary milieu (Mahenthiralingam, Campbell et al. 1994). Likewise, modification of pathogen 

associated molecular patterns (PAMPs), mainly lipid A moiety of LPS, but also peptidoglycan 

muropeptides (Cigana, Curcuru et al. 2009), can hijack genes involved in innate response in order to 

evade immune surveillance and to favor P. aeruginosa persistence. The adaptive process is also 

supported by mutations in the lasR gene and the emergence of hypermutable strains characterized 
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by an increased spontaneous mutation rate, due to defect in genes involved in DNA repair systems 

(Oliver, Canton et al. 2000). Moreover, conversely to the early phase of colonization, when P. 

aeruginosa exhibited sensibility to antibiotics, adaptation processes leads to increased antibiotics 

resistance not only due to mucus protection but also to increased expression of efflux pumps (Sousa 

and Pereira 2014). Thus, the response of airway epithelia to the stimuli presented by mucoid 

adapted P. aeruginosa is less pro-inflammatory and, hence, may not be conducive to the effective 

pathogen elimination (Cobb, Mychaleckyj et al. 2004). 

All these findings suggest that immune escape strategies may confer a selective advantage for 

the establishment of P. aeruginosa chronic colonization and persistence. 

 

 

Figure 2: Representation of P. aeruginosa microevolution during infection in CF airways. At early stage of 

infection, P. aeruginosa is fully equipped with cell-associated virulence factors, including flagella, pili, T3SS 

and secreted virulence factors (e.g. proteases, pyoverdine, and rhamnolipids) and exhibit antibiotic 

sensitivity. At the chronic stage of infection, P. aeruginosa is fully adapted to CF environment and exhibits a 

variety of adaptations, including overproduction of alginate, loss of the implicated virulence factors for 

initial infection establishment, resistance to antibiotics (expression of efflux pumps), and adapted metabolis 

(Sousa and Pereira 2014). 

 

B.3 Therapies against P. aeruginosa infections  

 

B.3.1 Antibiotic therapy: state of the art 

As mentioned before, P. aeruginosa is a pathogen difficult to eradicate. Antibiotics are used as 

first line drugs for the treatment of P. aeruginosa infections. The therapy is directed towards a 
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decrease in the bacterial load, passive release of proinflammatory substances and a reduction in the 

consequent inflammatory response. Initial phases of P. aeruginosa airways infections are often easy 

to resolve with antibiotic therapy but progressive airways colonization by more resistant and 

adaptive P. aeruginosa strains could lead to the establishment of untreatable chronic infection and 

the decline of the lung function. It is estimated that about 25-45% of adult CF patients are 

chronically infected with multiresistant bacteria within their airways (Lechtzin, John et al. 2006). 

For the management of P. aeruginosa infections current treatment guidelines recommend single 

or combined antibiotic therapies (Doring, Conway et al. 2000). For this purpose a wide range of 

molecules are available, from broad-spectrum antibiotics such fluoroquinolones, aminoglycosides, 

carbapenems (e.g. imipenem, meropenem, doripenem) and third generation cephalosporins 

(e.g.ceftazidime) to more selective drugs against Gram-negative like monobactam aztreonam and 

piperacillin (a derivative of penicillin) alone or in combination with tazobactam (Doring, Conway et 

al. 2000; Giamarellou and Kanellakopoulou 2008; Rahal 2008). For the tratment of more resistant 

strains recently polymyxin B and polymyxin E (colistin) have been “re-introduced” (Page and Heim 

2009).  

Antibiotics can be classified based on their target or their mechanism of action. The 

aminoglycosides (like gentamicin, tobramycin or amikacin) inhibit the protein synthesis by binding 

the ribosomal subunit of the bacteria. Quinolones (ciprofloxacin) bind to the alpha subunit of DNA 

gyrase (topoisomerase II), which maintains the ordered structure of the chromosome inside the 

cells, thus prevent cell replication. Beta-lactams (e.g. piperacillin, ceftazidime, imipenem, 

meropenem and aztreonam) inhibit the peptidoglycan-assembling interacting with the trans-

peptidases located on the outer face of the cytoplasmic membrane. Polymyxins (colomycin, 

colistin) bind to phospholipids in the cytoplasmic membrane, altering the membrane 

permeabilization and destroying its barrier function that leads to cellular death (Table 1). 

The lack of a comparative randomized double-blinded studies showing significant differences in 

efficacy between antimicrobial agents make difficult the choice of the better therapy. The guidelines 

from the Infectious Diseases Society of America (IDSA) and the American Thoracic Society (ATS) 

on the management of community and hospital-acquired pneumonia advocate a therapeutic 

selection based on the severity of the infection, awareness of underlying risk factors and co-morbid 

diseases, recognition of the epidemiology and resistance phenotypes in individual settings, and 

knowledge of pharmacokinetic–pharmacodynamic parameters (El Solh and Alhajhusain 2009). 

The recommended choice consits in the combination of beta-lactams antibiotics toghether with 

an aminoglycoside or fluoroquinolone. However, especially during chronic infections, polymixins 

are given as last option. Colistin is present in the market from several decades ago, but it was rarely 
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used due to polymyxins known toxicity. Interaction between cationic chains of colistin and bacterial 

LPS favor an increase of membrane permeabilization leading to the cellular death (Canton, Cobos 

et al. 2005; Giamarellou and Kanellakopoulou 2008). Also the macrolid azithromycin is used 

againts chronic P. aeruginosa infections due to their capacity to decrease the number of 

exacerbations and improve the pulmonary function. It has been reported that macrolides limit the 

quorum-sensing interbacterial signals and capacity of bacteria to form biofilms (Doring, Conway et 

al. 2000; Canton, Cobos et al. 2005). 

 

Class Agent Advantages Limitations Mechanism of action 

Penicillin 

Ticarcillin 
Carbenicillin 
Piperacilin 

Tazobactam 

Synergistic with aminoglycosides 
against P. aeruginosa 

May induce beta-
lactamase in 
P. aeruginosa 

Inhibit the peptidoglycan-
assembling interacting with the 
trans-peptidases located on the 

outer face of the cytoplasmic 
membrane 

Cephalosporin 
Ceftazidime 

Cefoperazone 
Can be used as single agent against 

P. aeruginosa 

May induce beta-
lactamase in 
P. aeruginosa 

Carbapenem 
Imipenem 

Meropenem 

Very broad spectrum of activity 
against Gram-negative bacteria 

including P. aeruginosa 

May induce beta-
lactamases; 

rapid development of 
resistance 

Aminoglycoside 
Gentamicin 
Tobramycin 

Amikacin 

Synergistic with beta-lactams 
antibiotics against P. aeruginosa 

Narrow 
therapeutic/toxic ratio; 
penetrate poorly into 

cerebrospinal fluid 

Inhibit the protein synthesis by 
binding the ribosomal subunit of 

the bacteria 

Quinolone Ciprofloxacin Can be given orally 
Contraindicated in 

children under 16 years 
of age 

Bind to the alpha subunit of DNA 
gyrase, thus prevent cell 

replication 

Polymyxin Colistin 
Very active and little resistance 

development 

Possible toxicity 
concerns; used largely in 

cystic fibrosis patients 

Bind to phospholipids in the 
cytoplasmic membrane, altering 
the membrane permeabilization 

and destroying its barrier function. 

 

Table 1: Antibiotics commonly used in the treatment of P. aeruginosa infections. Modiefied from Hancock 

and Speert 2000. 

 

B 3.2 Mechanisms of antibiotic resistance  

P. aeruginosa has been described as one of most dangerous multidrug resistant (MDR) ESKAPE 

pathogens (together with Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baummannii, and Enterobacter species (Boucher, Talbot et al. 2009). P. aeruginosa 

resistance to antibiotics often lies in intrinsic bacteria factors like low permeability of the outer 

membrane, the constitutive expression of efflux pumps or antibiotic-inactivating enzymes (Hancock 

1998; Mesaros, Nordmann et al. 2007).  

If we focus our attention in the mode of action of the major classes of antibiotics used to treat P. 

aeruginosa infections mentioned before, glaringly obvious that all of these molecules have to cross 

the cell wall to reach their targets. In fact, the innate resistance of P. aeruginosa to these classes of 

antibiotics has been generally attributed to the low permeability of its outer membrane together with 
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the efficient removal of antibiotic molecules that do penetrate by the action of efflux pumps. The 

permeability of the P. aeruginosa outer membrane is 10 to 100 folds lower from other gram-

negative bacteria like Eschericchia coli (Hancock and Speert 2000). In particular outer membrane 

porins play an important role in limiting the access of hydrophilic antibiotics to the periplasmic 

space (Page and Heim 2009). Porins downregulation further decrease the possibility to enter in the 

cell for antibiotic molecules, an example of that is the lost of OprD, that is associated with 

resistance to imipenem (Lambert 2002).  

The efficient removal of antibiotic molecules that do penetrate by the action of efflux pumps is 

an intrinsic resistance factor closely correlated with the outer membrane (Hancock and Speert 

2000). In fact mutations in one of the three component of this system have been correlated with an 

increase of susceptibility to some drugs (like quinolones) while antibiotic pressure can induce 

expression of other efflux pumps (Kohler, Michea-Hamzehpour et al. 1997; Poole and Srikumar 

2001; Aeschlimann 2003). 

Often different mechanisms of resistance are express contemporary in the cell showing a cross-

resistance phenomenon. One classical example is the co-regulation of OprD porin and MexEF-

OprN pumps that are under the control of common regulators acting in opposite ways, (Kohler, 

Michea-Hamzehpour et al. 1997). P. aeruginosa harbors enzymes able to inactivate or modify 

antibiotics, as described for aminoglycosides or beta lactams (Mesaros, Nordmann et al. 2007). The 

capacity of produce beta lactamase or enzymes capable to modify aminoglycosides is intrinsic but 

probably also acquired, in fact the ESBLs (extended spectrum beta lactamases), are widespread in 

the bacterial population in recent years (Livermore 2002). Moreover aminoglycosides inactivating 

enzymes are codify at plasmid levels (Lambert 2002).  

Another well-known mechanism of resistance in P. aeruginosa consist in mutate the antibiotic 

target, as happens for the DNA gyrase (Mesaros, Nordmann et al. 2007). 

Convergence of multiple resistance mechanism in one strains, for exaple the antibiotic-

inactivating enzymes and target mutation, results in multidrug resistance (resistant to three or more 

anti-pseudomonal drug classes) or pan-resistance (resistance against all common antibiotic classes); 

both phenomena observed with increasing frequency in P. aeruginosa (Souli, Galani et al. 2008). 

All these resistance mechanisms compromise the mangement of infections by P. aeruginosa, that 

is able to develop resistance also during the course of the therapy. Hypermutable strains were 

detected in up to 37% of the CF patients with P. aeruginosa chronic infection, in which a strong 

link between hypermutation and antibiotic resistance was also observed (Oliver, Canton et al. 

2000). Hypermutable strains have an increase mutation rate due a defects in the methyl-directed 

mismatch repair (MMR), a post-replicative repair system that corrects errors on newly synthesized 
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DNA strands to ensure the fidelity of chromosome replication. Antibiotic pressure can select 

hypermutable strains increasing the likelihood that resistance emerges and stabilizes contributing to 

lung damage during long-term persistence (Livermore 2002; Alcala-Franco, Montanari et al. 2012).  

Unfortunantly chronic P. aeruginosa infections are not erradicable by antibiotic therapy. As 

mentioned before, P. aeruginosa adaptation to the lung implies, by others, mucoid phenotype, non 

motility and biofilm formation. Also if a heterogeneous population is present inside di biofilm, 

regarding antibiotic susceptibility and resistance, exopolymeric matrix materials form a barrier that 

limits antimicrobial penetration to cells residing within a biofilm.  

 

B.3.3 New antibiotic therapies  

As described above, intrinsic and acquired resistance of P. aeruginosa made the wide arsenal of 

antibacterial drugs available in the market inefficacious to treat P. aeruginosa lung infections 

resuwting in a rapid increase in resistant rates and appearance of MDR or pan resistant phenotypes. 

Although this alarming scenario only a very small number of new anti-Pseudomonas drugs are 

currently in late stage of pre-clinical or clinical development (Table 2) (Page and Heim 2009).  

Arrived to the phase II in the last years are described only two cephalosporins, CXA-101 from 

Calixa (http://www.prnewswire.com/news-releases/calixa-therapeutics-announces-positive-phase-1-

results-for-cxa-101-a-novel-intravenous-cephalosporin-antibiotic-with-excellent-anti-pseudomonal-

activity-61916077.html) and NXL104/ceftazidime by Novexel 

(http://www.novexel.com/includes/cms/_contenus/mod_press_releases/09_NXL_01_Phase_II_cIAI

_Final_EN.pdf). CXA-101 has demonstrate an excellent potency against MDR Pseudomonas while 

the NXL104/ceftazidime combination showed potent protection against many serine beta-

lactamases. 

Other drugs have reach the clinical phase I. Among these BLI-489/piperacillin is active against 

some classes of beta-lactamase and the lipopeptide CB-182,804, that showed a pre-clinical potent 

bactericidal activity against MDR bacteria. 

Many are the advantages of the use of cationic peptides: often kill microorganisms rapidly, do 

not easily trigger the emergence of resistant mutants, show synergistic effects in combination with 

conventional antibiotics and can often activate the host innate immunity without displaying 

immunogenicity (Bragonzi 2010). POL7080 and the New Chemical Entity (NCE) studied in this 

thesis, from Polyphor, are the first of a new class of antibiotics derived from the protein epitope 

mimetic (PEM) Technology. NCE was chosen as coded name due to current patent rights of the 

original name of the peptide. This family peptides mimics protegrin-I (PG-I), a naturally occurring 

antimicrobial peptide shown to have a potent activity against P. aeruginosa. They consist in cyclic 

http://www.prnewswire.com/news-releases/calixa-therapeutics-announces-positive-phase-1-results-for-cxa-101-a-novel-intravenous-cephalosporin-antibiotic-with-excellent-anti-pseudomonal-activity-61916077.html
http://www.prnewswire.com/news-releases/calixa-therapeutics-announces-positive-phase-1-results-for-cxa-101-a-novel-intravenous-cephalosporin-antibiotic-with-excellent-anti-pseudomonal-activity-61916077.html
http://www.prnewswire.com/news-releases/calixa-therapeutics-announces-positive-phase-1-results-for-cxa-101-a-novel-intravenous-cephalosporin-antibiotic-with-excellent-anti-pseudomonal-activity-61916077.html
http://www.novexel.com/includes/cms/_contenus/mod_press_releases/09_NXL_01_Phase_II_cIAI_Final_EN.pdf
http://www.novexel.com/includes/cms/_contenus/mod_press_releases/09_NXL_01_Phase_II_cIAI_Final_EN.pdf
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14-mer peptides that contain both natural and unnatural amino acids that targets the ß-barrel protein 

LptD, involved in the outer-membrane biogenesis being essential for the LPS transport to the cell 

surface, thus blocking bacterial growth. In preclinical studies both compounds were highly active 

on a broad panel of Pseudomonas bacteria (Srinivas, Jetter et al. 2010). POL7080 has successfully 

completed clinical Phase I demonstrating the clinical safety and tolerability the peptide 

(http://www.polyphor.com/products/pol7080).  

Other antimicrobial compounds like novel lactams and beta-lactams inhibitors, peptides and 

peptide-mimetics, efflux inhibitors and modulators of virulence are studied in pre-clinical phases 

(Table 2) (Page and Heim 2009).  

 

Class Agents Advantages 
Stage of 

development 
References 

Cephalosporin CXA-101 Excellent potency against MDR Pseudomonas II-Phase 
Takeda S et al. 2007 

Zamorano L et al. 2010 

Cephalosporin-
inhibitor 

NXL104/ceftazidime 
Potent protection against many serine 

beta-lactamases 
II-Phase 

Miossec et al. 2007 
Livermore DM et al. 2008 

Lipopeptide CB-182,804 
pre-clinical potent bactericidal activity against 

MDR bacteria 
I-Phase  

 
Lactams and 

beta-lactamase 
inhibitor 

 
 

BAL30072 
Activity against broad range of Gram-negative. 

Potent activity against P. aeruginosa 
Preclinical Page MG et al. 2010 

NXL105 Activity against MDR P. aeruginosa Preclinical  

BAL30376 
Activity against broad range of Gram-negative. 

Potent activity against MDR 
P. aeruginosa 

Preclinical 

Page MG et al. 2007 
Bowker KE et al. 2007 

Schmitt-Hoffmann A et al. 2007 
Page MG et al. 2011 

BLI-489/piperacillin 
Active against some classes of 

beta-lactamase 
I-Phase 

Venkatesan AM et al. 2004 
Petersen PG et al. 2009 

Arenicin-3 
Potent activity and strong bactericidal activity 

against broad range of Gram-negative, 
including P. aeruginosa 

Preclinical 
Sandvang D et al. 2008 
Cooper M et al. 2014 

Peptides and 
peptide 

mimetics 

POL7080 
Highly active on a broad panel of 

Pseudomonas bacteria. 
Clinical safety and tolerability tested. 

I-Phase Srinivas, Jetter et al. 2010  

NCE 
highly specific against P. aeruginosa including 

MDR, mucoid and hypermutable clinical 
isolated 

Preclinical This study 

RTA3 

moderate activity against a range of 
Gram-negative bacteria, including 

P. aeruginosa. Synergistic with rifampicin, 
erythromycin and polymixin 

Preclinical Hawrani A et al. 2010 

 

Table 2: Selection of most promising anti-Pseudomonal drugs in development. 

 

To bypass the problem of intravenous administration of antibiotics (and their potential toxicity 

when given over prolonged periods of time) obtaining at the same time a high drug concentration in 

the lung, aerosolization of drugs has been suggested for the treatment of pulmonary P. aeruginosa 

infections. In the last years many efforts have been made in this field and novel formulations of 

existing antibiotics including aminoglycosides, beta-lactams and fluoroquinolones alone or in 

combinations has been test in pre-clinical and clinical studies. Currently chronic airways infection 

http://www.polyphor.com/products/pol7080
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caused by P. aeruginosa can be treated with inhaled antibiotics such as inhaled tobramycin, 

aztreonam or colistin. Considering that only a small portion of the antibiotic is deposited in the 

lungs and that the size of nebulized droplets and particles carrying the antibiotics is a critical point 

for the lung deposition many efforts have been made also in the development of novel aerosol 

delivery devices. The particle size (1 to 5 µm), the lung dose delivered (a range between 3% and 

8% up to >50%) and the administrations time (10 to 20 minutes to <2 or 3 minutes) have all 

improved during recent years as treatment of lung infections with antibiotics administered by 

inhalation therapy has become standard care in CF centers (Doring, Conway et al. 2000; Geller 

2009; Kesser and Geller 2009; Hoiby 2011). 

 

B.4 Immunotherapy against P. aeruginosa infections 

 

B.4.1 Current state 

Although chemotherapies showed initial efficacy in the management of P. aeruginosa infections 

they are not able to definitively eradicate the bacterium. Alternative therapeutic options to the 

prevention and control of these infections may include immunotherapy. In the past many efforts 

have been made in this direction and several vaccine candidates against P. aeruginosa have been 

tested in pre-clinical trials, only few have reached clinical phases but none of these has obtained 

market authorization (Table 3) (Doring and Pier 2008; Sharma, Krause et al. 2011). 

Several virulence factors of P. aeruginosa have been used as targets against immunotherapy. 

Among these flagella has been widely used. Flagellin is the main component of flagella, it is 

divided into two types a (heterogeneous type) and b (serologically uniform), so a broadly successful 

vaccine has to be bivalent. An attenuation of pneumonia was observed in rats receiving human 

antiflagellar monoclonal antibodies (Landsperger, Kelly-Wintenberg et al. 1994). Mono-or bivalent 

flagella vaccines have been test in clinical phases demonstrating to be safety and to elicit protective 

long-lasting antibodies but the response remained modest raising also the question of  protections 

against no-flagellated P. aeruginosa strains (Doring and Pier 2008; Sharma, Krause et al. 2011). 

Also pili has been considered a reasonable target to develop P. aeruginosa immunotherapy 

(Sheth, Glasier et al. 1995; Hahn, Lane-Bell et al. 1997; Cachia, Kao et al. 2004). However, pilus 

antigens are serologically heterogeneous and there is no cross reactivity of antigens targeting pili 

across different P. aeruginosa strains (Hahn, Lane-Bell et al. 1997; Cachia, Kao et al. 2004). A 

chimeric vaccine incorporating both pilin and non-toxic modified toxin A successfully reduced 

bacterial adherence in pre-clinical studies (Hertle, Mrsny et al. 2001), even so there was no human 

studies with pilin vaccines. 
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The LPS has remained the most widely characterized and investigated vaccine antigen in the last 

50 years because of its surface accessibility and high immunogenicity. A LPS-based vaccine, 

(Pseudogen
®

) was tested in phase III with a high adverse reaction rate probably due to the 

pyrogenic and toxic effects of lipid A when LPS is administered in a purified state. To avoid the 

LPS toxicity approaches like inclusion of LPS in liposomes or the use of non-toxic polysaccharide 

part in vaccine preparations, like the O- polysaccharide portion, were used (Doring and Pier 2008; 

Sharma, Krause et al. 2011). However several problems have been also described with vaccines 

based on the variable O-specific polysaccharide chains. Various O-antigen based vaccines
 
 have 

been tested over decades also in phase II, like the Aerugen
® 

(an octavalent O-polysaccharide 

conjugate vaccine), with limited success, in fact immunization elicited by O-antigen based vaccines 

is lacking in protection even when multiple O-antigens from different serotypes are conjugated 

(Hatano and Pier 1998; Pier 2003; Lang, Horn et al. 2004). To circumvent this difficulty one 

strategy was the use of multiple serotype conjugates that can be further conjugated with another 

target such as exotoxin A (Lang, Horn et al. 2004). Recently an increase in the IgG2 to the O-

antigen that inhibit the antibody-mediate-killing have been described in patients (Wells, Whitters et 

al. 2014).  

Due to the mucoid alginate–producing phenotypes of P. aeruginosa commonly found in chronic 

airways infections and to the relative conservation between strains the mucoid exopolysaccharide 

(MEP or alginate) has been selected as an attractive vaccine antigen. Human and animal studies 

demonstrated the role of MEP-specific opsonizing antibodies in facilitating bacterial clearance 

(Sharma, Krause et al. 2011). Human monoclonal antibodies directed against alginate have been 

also took into account to an efficacy vaccine. They were effective in a murine model of lethal 

pneumonia and even against non-mucoid strains producing undetectable levels of alginate (Pier, 

Boyer et al. 2004). However, being the alginate alone poorly immunogenic, also in this case 

strategies of conjugation to proteins, like exotoxin A, to enhance immune responses were used 

(Doring and Pier 2008). Despite the preclinical encouraging results a successful clinical product has 

not been yet developed. 

Another interesting target to vaccine development has been the T3SS, in particular the PcrV 

protein. PcrV is a component of the T3SS, located in the bacterial surface, required for the 

translocation of the effectors proteins. In murine models of lung infection and burn mouse 

vaccination against the PcrV induced protective immunity, decrease lung inflammation and injury 

(Sharma, Krause et al. 2011). The KB001 by KaloBios Pharmaceuticals consist in a high-affinity 

antibody fragment that binds the PcrV protein inhibiting the activity of the T3SS, and so reduce 
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pathogenicity of P. aeruginosa and its toxicity to host cells (Page and Heim 2009). Since 2013 

KB001 has being tested in clinical phase II in CF patients (http://kalobios.com/pr_01102013). 

Whole-cell killed and live-attenuated vaccines present multiple bacterial antigenic components 

and can thus potentially induce diverse immunologic effectors against P. aeruginosa. Oral human 

immunization with killed pseudomonas vaccine showed to be safety and to increase pseudomonas-

specific serum antibodies, mainly IgA, that promoted opsonophagocytotic killing of the bacteria in 

healthy volunteers and to reduce significantly the bacterial load in the sputum of patients with 

bronchiectasis (Sharma, Krause et al. 2011). 

Vaccination with highly conserved outer membranes proteins (OMP) has been a good choice to 

avoid the heterogeneity related to different strains. P. aeruginosa OprF and OprI have been widely 

use to vaccination demonstrating that elicit cross-reactive, opsonizing and protective antibodies in 

animal model or humans (Sharma, Krause et al. 2011). OprF seems to play a key role in P. 

aeruginosa adaptation to host immune response (Wu, Estrada et al. 2005) while OprI adhere to 

mucosal surfaces and probably facilitate the antigen delivery to antigen presenting cells acting as a 

mucosal carrier (Loots, Revets et al. 2008). In humans OprF and OprI have been usually 

administered as recombinant vaccine (OprF/I). The CFC-101 vaccine composed of Opr extract from 

four P. aeruginosa strains, induced Opr-specific antibody titer with opsonophagocytic activity and 

increased P. aeruginosa clearance in blood in healthy volunteers and burn patients proving the  

promising capabilities of this antigens (Doring and Pier 2008; Sharma, Krause et al. 2011). 

Other interesting vaccines used in pre-clinical studies with encouraging results include DNA 

vaccines and viral vector vaccines. 

Antigens Advantages Limitations 
Stage of 

development 
References * 

LPS and O-polysaccharide 
Generation of high levels of opsonic 

antibodies 

High heterogeneity, 
Low immunogenicity,  

Pyrogenicand toxic 
I-III Phase 

 

MEP Low heterogeneity For CF use only I Phase  

Outer Membrane proteins 
 

Highly conserved and immunogenic 
Anti-OprF inhibits quorum-sensing 

through IFNγ binding to P. aeruginosa 
No significant drawback I/II Phase 

 

Flagella 
Moderate heterogeneity, 

Adjuvant effect through TLR5 
Loss of flagella in CF variants I-III Phase  

Pilin High immunogenicity 
High heterogeneity,  

Hidden receptor binding site 
Preclinical 

 

PcrV, Exotoxin A and 
proteases 

Neutralizes cytotoxic effects 
and pathology 

Less effective in bacterial 
clearance 

Preclinical 
 

Killed 
Presentation of multiple antigens to 

immune system 
Toxicity I Phase  

Live attenuated 
(P. aeruginosa ΔaroA) 

Presentation of multiple antigens 
toimmune system 

Residual virulence Preclinical  

Attenuated Salmonella 
enterica delivered O-antigen 

or OprF-OprI 

Efficient activation 
of mucosal immunity 

Residual virulence I/II Phase  

Ad vector delivered OprF 
High immunogenicity and adjuvant 

properties 
Pre-existing anti-Ad immunity Preclinical  

Novel OMP Highly conserved  in clinical isolates No significant drawback Preclinical This study 

http://kalobios.com/pr_01102013
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Table 3: Potential antigens for P. aeruginosa. Modificated from Sharma, Krause et al 20011.*References: 

21. Erridge C. et al 2002; 31. Langford DT, et al 1984; 32. Jones RJ et al 1978; 33. Jones RJ et al 1979; 34. 

Jones RJ et al 1980; 36. Cryz SJ Jr, Lang A et al. 1997; 40. Lang AB et al. 2004; 45. Pier GB et al. 1994; 

51. Kashef N et al. 2006; 52. Theilacker C et al. 2003; 137. Mansouri E et al. 2003; 139. Baumann U et al. 

2004; 142. Baumann U, et al. 2007; 143. Sorichter S et al. 2009; 146. Lee NG et al. 2000; 80. Doring G et 

al. 1995; 81. Doring G et al. 2007; 82. Saha S et al. 2007; 94. Ohama M et al. 2006; 95. Hertle R et al.2001; 

98. Horzempa J et al. 2008; 103. Kao DJ et al. 2007; 105. Sawa T et al. 1999; 106. Holder IA et al. 2001; 

108. Chen TY et al. 1999; 110. Shiau JW et al. 2000; 111. Manafi A et al. 2009; 56. Cripps AW et al 1997; 

57. Cripps AW et al. 2006; 58. Kamei A et al. 2011; 59. Priebe GP et al. 2002; 61. Priebe GP et al. 2003; 

62. Zaidi TS et al. 2006; 68. DiGiandomenico A et al. 2004; 69. DiGiandomenico A et al. 2007; 70. Bumann 

D et al. 2010; 157. Krause A et al. 2011; 158. Worgall S et al. 2007; 159. Worgall S et al. 2005. 

 

B.4.2. Novel approaches for vaccine development  

In spite of the diversity of the strategies adopted and the efforts made, the traditional approaches 

to vaccine discovery have been shown to be ineffective. Previous clinical trials have shown that CF 

patients are immunocompetent and actually do mount an immune response to multiple P. 

aeruginosa antigens (Doring and Pier 2008). However, the antigens inducing the immune response, 

and/or alterations in the bacterium itself made this response ineffective at clearing P. aeruginosa 

from the lung of these individuals. The fact that right now no vaccine is available for clinical use 

against P. aeruginosa infections is a controversial topic for the scientific community. The question 

raised was if P. aeruginosa is an antigenically variable microorganism that can escape to the 

immune recognition and/or induces immunological unresponsiveness as is seen with other bacteria 

such as Borrelia, Bordetella or Neisseria. 

The ideal protective antigens are those particularly expressed during the specific infectious 

process, present in a wide range of strains and exposed on cell surface, which makes the target 

easily accessible by the immunotherapy. As described above, P. aeruginosa adaptation to 

environmental changes comprise phenotypic variations that include variability of the cellular 

components (like proteins) among different strains and different phases of infection (Fig.2). This 

changes could represent a serious obstacle to the production of a globally effective anti-P. 

aeruginosa vaccine (Doring and Pier 2008). 

Although successful in several cases, one of the biggest limitations of the conventional vaccine 

development approach is that it requires cultivation of the pathogens and its dissection using 

biochemical, immunological and microbiological methods, that is time-consuming and failed to 

provide a solution for many human pathogens (like those difficult to growth in laboratory 

conditions). For these reasons the new Era for the vaccines design take advantage of emerging 
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genomic technologies that allow to predict new antigens in silico, independently of their abundance 

and to explore novel functions of P. aeruginosa for infections control without the need to grow the 

microorganism in vitro (Grandi 2006). The reverse vaccinology, which has been successfully 

applied in the last few years, has revolutioned the approach to vaccine research (Scarselli, Giuliani 

et al. 2005). The first example of the potential reverse vaccinology was the identification of novel 

antigens of Meningococcus B as possible candidates for a novel and effective vaccines. The same 

approach has been successfully applied to other important human pathogens demonstrating the 

feasibility to develop vaccines against any infectious disease (Mora, Veggi et al. 2003). The success 

of genomic-based strategies for vaccine development is highly dependent on the criteria used for the 

in silico selection of the potential antigens. Several approaches can be used to mine genomic 

sequences, and the appropriate combination of various algorithms and the critical evaluation of the 

information generated are essential for the proper selection of the antigens (Mora, Veggi et al. 

2003), protein‟s subcellular localization can provide valuable clues as to its function; subcellular 

localization prediction also allows researchers to identify potential diagnostic, drug and vaccine 

targets (Grandi 2006). This approach consented to identified novel P. aeruginosa antigens evaluated 

in vivo in this thesis. 

 

B.5 Murine models of P. aeruginosa lung infections 

 

Animal models are an essential step between in vitro testing and clinical studies. They are a 

valuable tool for the study of pathophysiology, pharmacology and efficacy therapy. Acute and 

chronic P. aeruginosa lung infection models have been established in several animal models, 

including mice (Cash, Woods et al. 1979; Johansen 1996). Acute pneumonia in mice are mainly 

obtain by intratracheal or intranasal administration of planktonic P. aeruginosa cells. The bacterial 

pulmonary colonization obtained by this method is transitory. The dose and the frequency of 

planktonic cells administration will drive into an acute lung infection, with a rapid clearance of the 

bacteria, or death by acute sepsis (Fig.3) (Jackson, Southern et al. 1967; Southern, Mays et al. 

1970). The lung pathology of this kind of infection is characterized by inflammatory cells infiltrated 

in the lung, in particular neutrophils that leads to tissue damage. Bacteria are localized adhered to 

the bronchial epithelial cells and in the alveoli (Fig.4). Animal models of acute pneumonia are a 

precious instrument for studies of virulence and immunity.  
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Figure 3: Pulmonary persistence of P. aeruginosa in C57BL/6NCrlBR mice. Mice were infected with 

5 × 10
6
 CFU/lung of the strain PAO1 either in planktonic suspension (acute infection) or embedded in agar 

beads (chronic infection) and sacrificed at different time points to determine the lung bacterial load 

(Bragonzi 2010). 

 

For the achievement of persistent chronic infections, bacteria must be inoculated in an 

immobilizing agents, like agar, agarose or seaweed alginate (Bragonzi 2010), or alternatively a 

stable mucoid P. aeruginosa strain could be used for the infection (Hoffmann, Rasmussen et al. 

2005). In this way, the model mimics the micro-aerobic conditions presents in lungs patients with 

CF and COPD due to the mucus accumulation. Lung pathology associated with P. aeruginosa 

chronic infection in mice is characterized by bronchopneumonia, mucus plugging, epithelial 

metaplasia, fibrosis and alveolar exudate with inflammatory cells, all signs that reflects an advanced 

chronic pulmonary disease similar to those observed in patients (Fig.4D) (Bragonzi 2010). It has 

been demonstrated that during chronic infection in C57Bl/6 mice exist a correlation between 

inflammation and body weight loss suggesting that pro-inflammatory cytokines in the lung may 

have systemic effect that affect CF patients (van Heeckeren, Tscheikuna et al. 2000). The agar 

beads mouse model of chronic infection with P. aeruginosa has been deeply characterize in our 

laboratory: during the first days post infection, there is a proliferation of the bacteria inside the agar 

beads that results in an increase in the bacterial density followed by a decrease of load to finally 

reach a stable pulmonary infection (≈10
4
 CFU) at day7 post infection. With this model the bacterial 

load is able to persist unchanged up to one month (Fig.3) (Bragonzi, Paroni et al. 2009). 
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Figure 4: Murine lung histology and localization of P. aeruginosa bacterial cells in acute or chronic 

infection. Mice were infected with 5x106 CFU/lung of P. aeruginosa strain PAO1 (A and B) and clinical 

strain isolated from a CF patient embedded in agar beads (C and D). After 1 day (acute infection; A and B) 

and after 14 days (chronic infection, C and D), the lungs were removed and stained with H&E (B and D) or 

with specific antibody against P .aeruginosa strains (red) (A and C) (Bragonzi 2010). 

 

Important to take into account for the achievement of the desired pulmonary infection, together 

with the dose of bacteria challenged, is the P. aeruginosa strain used for the infection. For example 

presence or absent of different virulence factors as well as alginate production may influence in the 

read outs. P. aeruginosa longitudinal strains isolated from CF patients at different time points of the 

infection were tested for their pathogenicity in mouse models of acute and long-term chronic 

bronchopulmonary infections. Several P. aeruginosa strains showed different read out in terms of 

mortality, severity of the lesions, clearance and percentage of chronicity in a mouse model of 

chronic infection (Bragonzi, Paroni et al. 2009). P. aeruginosa RP73 is a clinical strain isolated 

from a CF patient 16.9 years after the onset of infection. Long-term lung infection with RP73 in a 

murine model of chronic pneumonia resulted in a low mortality, high chronicity, compared with 

PAO1 reference strain (Fig.5), and severe lesions that resembles those of patients with advanced 

chronic pulmonary disease. This murine model most closely mimics the course of the human 

disease and can be used both for studies of the pathogenesis and for the evaluation of novel 

therapies (Jeukens, Boyle et al. 2013; Facchini, De Fino et al. 2014). 
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Figure 5: Time course of P. aeruginosa chronic infection with PAO1 reference strain and RP73 clinical 

strain. C57BL/6NCrl (20-22 g) male mice were infected by intratracheal injection with 1 to 5 x 10
6
 CFU of 

P. aeruginosa strain PAO1 (A) or RP73 (B) embedded in agar-beads. For each time-point, histograms 

represent the percentage mortality induced by bacteremia (red) and survival (grey) or the percentage of 

animals that cleared the infection (white) and those able to establish a chronic infection (green). Surviving 

mice were euthanized at the indicated time-points, and the lungs were harvested, homogenized, and cultured 

on TSA plates to determine the bacterial load. Statistical significance by Fisher's test is indicated: * p<0.05, 

** p<0.01, *** p<0.001(Facchini, De Fino et al. 2014). 

 

Cystic fibrosis is the first human genetic disease to benefit from the directed engineering of three 

different species of animal models (mice, pigs, and ferrets). Several CF murine models have been 

generated and characterized during the years, from those completely Knock out for the CFTR to 

those bring the main human CF mutations (ΔF508 or G551D). All these murine models present an 

altered chlorine conductance although manifesting different pathological phenotypes. The CF mice 

don‟t represent the human lung pathology of the CF patients and they not become infected 

spontaneously. One big limitation of the CF mice reside in the severe gut pathology that leads to gut 

obstruction. The CFTR-deficient mice used in my thesis are the Cftr
tm1UNC

TgN(FABPCFTR) 

(Bragonzi 2010).These knock-out mice bring an insertion in the exon 10 that prevents the formation 

of the CFTR protein already at mRNA level. This mouse model have been gut corrected by the 

insertion of the human transgene hCFTR that allow a standard survival rate and the facilitated 

maintenance of the colony (Zhou, Dey et al. 1994; Bragonzi 2010). 
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C. AIM OF THE PROJECT 

 

Pseudomonas aeruginosa is one of the top three causes of opportunistic human infections in 

different categories of patients. Antibiotics are used as first line drugs for the treatment of these 

infections. However, frequently observed inefficacy of these treatments is linked to the high levels 

of intrinsic and acquired resistance of P. aeruginosa to these agents that leads to the rapid 

emergence of MDR strains. In spite of the urgent need of new drugs to treat MDR bacterial 

infections, few novel anti-pseudomonal drugs or modifications of existing molecules have arrived 

to clinical phases recently. Moreover, in the last years, several vaccine candidates against P. 

aeruginosa have been tested in pre-clinical trials, few have reached clinical phases but none of these 

has obtained market authorization. Thus, this scenario highlights the need of new therapeutic 

options for the prevention/eradication of P. aeruginosa. 

In this context, starting from a novel antibiotic and vaccine candidates against P. aeruginosa, my 

PhD work aims to test these therapies in pre-clinical models of infection. Specific aims of this work 

were to test: 

 

 the efficacy of the a novel peptidomimetic antibiotic against P. aeruginosa in mice. To 

address this goal the pre-clinical efficacy of a New Chemical Entity (NCE) was tested in 

acute and chronic mouse respiratory infection models by systemic or local drug 

administration. Mice were challenged with the reference PAO1 strain or MDR-RP73 strain 

and treated with the NCE or ciprofloxacin, an approved antibiotic currently used in clinics, 

by subcutaneous (s.c.) or pulmonary administrations (i.t.). Body weight, bacterial count and 

lung inflammation were evaluated at different time points. 

 

 the protection of novel vaccine candidates against P. aeruginosa in mice. Novel vaccine 

candidates against P. aeruginosa were selected previously by “reverse vaccinology” and by 

a combination of advanced whole genomic approaches. In this work, recombinant proteins, 

were tested alone or in combination in murine models for their ability to protect against 

lethal doses of P. aeruginosa reference strain PAO1. Characterization of the most promising 

proteins in terms of immunogenicity, localization and conservation in a collection of P. 

aeruginosa clinical isolates was carried out. 
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D. MAIN RESULTS 

 

D.1 In vitro activity of a New Chemical Entity (NCE) against P. aeruginosa from 

CF patients  

Previous studies demonstrated a potent and selective in vitro antibacterial activity of a New 

Chemical Entity (from now NCE) against Pseudomonas spp (Srinivas, Jetter et al. 2010). In the 

laboratory where this thesis was carried out, the in vitro activity of NCE was tested against a panel 

of P. aeruginosa strains from different sources, including sequential CF clinical isolates, reference 

laboratory strain (PAO1), one of the most abundant genotype (PA14) and the highly transmissible 

Liverpool epidemic strain (LESB58). The results were obtained in collaboration with POLYPHOR 

Ltd. The minimal inhibitory concentration (MIC) of NCE against P. aeruginosa strains was 

compared to approved antibiotics (Table 4). MIC values of NCE ranged between < 0.0005 - 0.125 

µg/mL, with a median of 0.04 μg/mL, for all isolates confirming the potent in vitro activity of the 

compound against a large panel of CF isolates, and showing no difference in activity against 

mucoid, non-mucoid or hypermutable isolates. In particular, the MDR RP73 P. aeruginosa isolate, 

showed to be resistant to MER, IMP, COL, CAZ, and GEN while was sensitive to NCE. Based on 

these results, RP73 P. aeruginosa isolate was chosen to test the therapeutic efficacy of NCE in 

models of respiratory infections during my PhD thesis. 

 

Origin Strain Genotype/ 

Phenotype 
Antibiotic resistance 

 
  NCE COL GEN CIP CAZ MER TOB IPM 

Reference ATCC 
27853  0.03 0.5 1 0.5 2 0.5 0.25 4 

Reference PA01  0.125 0.125 1 0.125 2 2 0.25 4 
Reference PA14  0.015 0.125 0.5 0.06 2 0.25 2 ND 
Epidemic TB  0.03 1 4 0.125 4 0.25 0.5 4 

Epidemic LESB58  0.06 1 16 2 >32 4 1 8 

           
CF patient 1 RP1e A 0.03 2 2 0.25 4 0.5 2 4 

 RP2 e A 0.03 0.5 4 0.125 4 1 0.5 4 

 RP73 l B 0.125 0.125 8 0.5 16 8 2 ND 

 RP74 l B / hypermutable 0.03 0.5 8 8 >32 8 0.5 32 

           

CF patient 2 AA2 e Θ  0.06 1 8 0.25 8 2 2 2 

 AA11 i Θ / mucoid 0.06 0.125 0.5 0.125 0.5 ND 0.25 ND 
 AA12 i Θ / mucoid 0.06 0.06 0.5 0.125 0.5 ND 0.25 ND 

 AA43 l Θ / mucoid 0.125 0.5 4 0.25 8 1 1 1 

 AA44 l Θ  0.03 0.25 8 0.5 2 1 1 1 

           
CF patient 3 NN1 e  0.03 0.5 >32 1 8 2 32 4 

 NN2 e  0.03 0.5 >32 1 16 2 >32 4 

 NN83 l 1 / hypermutable 0.06 1 >32 2 32 8 >32 32 
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 NN84 l 1 0.06 1 16 8 8 16 2 32 

           

CF patient 4 BST1 e N 0.06 2 2 0.125 4 0.125 0.5 4 
 BST2 e M2 0.03 0.25 0.5 0.06 2 0.06 0.06 0.5 

 BST44 l M2 / hypermutable 0.06 0.5 8 0.25 16 16 1 8 

 BST45 l N 0.06 2 4 0.125 4 0.5 0.25 2 

           

CF patient 5 SG1 e A 0.06 0.5 1 0.125 4 2 0.5 2 

 SG2 e Γ / hypermutable 0.06 0.06 4 0.125 32 ND 0.5 ND 

 SG57 l A 0.06 0.5 4 0.25 4 1 2 2 
 SG58 l A 0.03 0.5 4 0.125 4 0.5 0.5 2 

           

CF patient 6 BT1 e Δ2 /hypermutable 0.06 0.06 32 0.125 8 ND 32 ND 
 BT2 e Δ2 / mucoid 0.06 1 1 1 1 0.5 0.125 2 
 BT72 l Δ2 / mucoid 0.06 1 8 0.125 2 0.25 1 1 

 BT73 l Δ2 / mucoid 0.03 0.06 0.125 1 1 ND 0.06 ND 

           
CF patient 7 TR1 e Ι 0.03 0.5 2 0.125 2 0.5 0.25 0.5 

 TR2 e Ι 0.03 0.5 2 0.25 2 0.5 0.25 1 

 TR66 l Ι 0.06 1 16 0.5 32 8 4 32 

           

CF patient 8 KK1 e Μ1 0.06 1 1 0.125 4 0.5 0.25 2 

 KK2 e Μ1 0.06 1 2 ≤0.03 1 0.06 0.5 2 

 KK27 i Μ1 ≤0.0078 0.5 1 ≤0.03 2 0.25 0.5 1 
 KK28 i Μ1 / mucoid 0.06 1 8 0.25 2 0.06 1 1 

 KK71 l Μ1 0.06 1 8 2 32 16 1 32 

 KK72 l Μ1 0.06 2 8 2 32 32 2 32 

           
CF patient 9 MF1 e K 0.03 0.5 0.25 0.06 4 0.5 0.125 2 

 MF2 e K / hypermutable 0.06 1 2 0.5 8 2 1 4 

 MF24 i K 0.06 0.25 16 0.5 >32 2 4 2 

 MF25 i K / mucoid 0.125 0.25 16 0.5 16 1 4 2 
 MF51 l K 0.06 0.5 16 2 32 16 4 32 

 MF52 l  0.03 0.25 32 1 8 0.25 8 2 

 

Table 4: In vitro activity of NCE and comparators against a panel of P. aeruginosa CF isolates. MIC 

values (μg/mL) were determined by the microdilution method in cation-adjusted Müller-Hinton (MH-II) 

broth, according to the CLSI guidelines (COL= colistin; GEN= gentamicin; CIP= ciprofloxacin; CAZ= 

ceftazidime; MER = meropenem; TOB= tobramycin; IMP= imipenem). Resistance is indicated in bold 

(http://www.eucast.org/clinical_breakpoints/). MIC for NCE are indicated in grey. Time of isolation is 

indicated as “e”: early; “i”: intermediate; “l”: late. Relevant P. aeruginosa strains genotype and phenotype 

are indicated as previously described (Bragonzi 2006; Bragonzi 2009), and the MDR-RP73 strain used for 

in vivo efficacy studies is indicated in grey. ND: not determined. 
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D.1.1 Therapeutic efficacy of NCE against acute P. aeruginosa respiratory infection in 

murine models 

To provide evidence of therapeutic efficacy in models of respiratory infections relevant for VAP or 

CF patients, murine models of P. aeruginosa acute respiratory infection and long-term chronic 

infection including CF mice were employed for my PhD thesis. The schedule of the experiments is 

reported in the Figure 6. 

 

Figure 6: Schedule of treatment with antibiotics in murine models of acute and chronic P. aeruginosa 

infection and read-outs. At day 0, C57Bl/6 (8-10 weeks) male mice were infected with P. aeruginosa 

planktonic cells to mimic acute infection (A) or embedded in agar beads to achieve long-term chronic 

infection (B). Schedule of treatment with antibiotics were: i) single dose by s.c. or i.t. route for acute 

infection or ii) repeated daily s.c. administration or every two days by aerosol for chronic infection. Read-

outs of the disease progression were body weight recorded daily (for chronic infection), CFUs counts (4, 8 

or 24 h for acute infection or 6/7 days after chronic infection), total and differential cell counts (24 h for 

acute infection), and cytokines and chemokines analysis assayed at the time of sacrifice (24 h for acute 

infection or 6/7 days after chronic infection).  

 

First, the antibacterial efficacy of NCE in a murine model of P. aeruginosa acute respiratory 

infection, previously described (Facchini, De Fino et al. 2014), was tested. C57Bl/6 mice were 
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challenged with 1x10
7
 colony forming units (CFUs) of P. aeruginosa RP73 by intratracheal (i.t.) 

inoculation. Mice were treated 15 minutes after infection as scheduled (Fig.6A) with a 

subcutaneous (s.c.) injection of 20 mg/kg of NCE or 80 mg/kg ciprofloxacin (CIP), as positive 

control. A group of mice was treated with saline as placebo control. S.c. treatment was chosen as 

standard antibiotic administration. Doses of each compound were chosen based on the respective 

MIC value (Table 4) (Saux 1994) and dose response of preliminary experiments (data not shown). 

The antibacterial effect of NCE and CIP in a time course (4, 8 and 24 hours post-treatment) is 

shown in figure 7A. A slight reduction of lung bacterial load was observed in NCE-treated mice in 

comparison to saline-treated controls after 8 hours post-treatment (Fig.7A). The same trend was 

observed after 24 hours in both CIP- and NCE-treated mice. However, no statistical significance 

was reached suggesting that the s.c. route of antibiotic administration may be not optimal.  

Next, the pulmonary delivery of antibiotics was investigated as specific application for 

respiratory infection in CF patients. In this case after the acute infection, performed as described 

above, mice were treated with 8 mg/kg CIP, 2 mg/kg NCE or saline by i.t. administration (Fig.7B) 

(optimal dose was chosen based on dose response experiments (data not shown)). When NCE was 

administered i.t., a significant 1 log10 CFUs reduction at 8 hours post-treatment was observed with 

compared to saline-treated mice. At 24 hours, both NCE and CIP-treated mice showed a significant 

lower number of bacterial cells in the lungs respect to placebo. NCE displayed higher efficacy as 

compared to CIP, with 3 log10 and 1 log10 CFUs reduction compared to saline-treated mice, 

respectively. 

Although NCE was effective against the P. aeruginosa MDR-RP73 isolate, the complete 

eradication of the bacterial cells was not achieved. Thus, the antibacterial activity of NCE was 

tested against the susceptible PAO1 reference strain. C57Bl/6 mice were challenged with 1x10
6
 

CFUs of P. aeruginosa PAO1 by i.t. inoculation and treated either with 2 mg/kg CIP or 2 mg/kg 

NCE by i.t. administration, based on the respective MIC values (Table 4). A group of mice was 

treated with saline as placebo group. At 24 hours post-treatment, PAO1 bacterial cells were almost 

completely cleared from the lungs both in NCE and CIP-treated mice (Fig.7C). 

In collaboration with POLYPHOR Ltd, the concentration of NCE was determined in lung tissue 

and plasma to study the absorption and bio-distribution of the compound after either 20 mg/kg s.c. 

or 2 mg/kg i.t. administration in C57Bl/6 mice. As shown in Figure 7C, the compound reached 

favorable concentrations in the lung after i.t. administration, with rather low systemic exposure. 
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Figure 7: In vivo efficacy and pharmacokinetic of NCE against P. aeruginosa in a mouse model of acute 

airway infection. C57Bl/6 (8-10 weeks) male mice were infected i.t. with 1 x 10
7
 CFUs of planktonic MDR-

RP73 (A, B). After MDR-RP73 infection, saline, 80 mg/kg CIP or 20 mg/kg NCE was administered by s.c. 

route (A) while saline, 8 mg/kg CIP or 2 mg/kg NCE was administered by. i.t. route (B). C57Bl/6 (8-10 

weeks) male mice were infected i.t. with 1 x 10
6
 CFUs of planktonic PAO1. After infection, saline, 2 mg/kg 

CIP or 2 mg/kg NCE was administered by. i.t. route (C). Mice lungs were recovered after 4, 8 (A, B) or 24 

hours (A-C), homogenized and plated on Tryptic Soy Agar (TSA) plates to determine bacterial load (A-C). 

Concentration of NCE after 4, 8 or 24 hours from treatment was measured in lung tissue and plasma (D). 

Dots represent individual mice measurements and horizontal lines represent the median values (n=6-14). 

The data are pooled from two to three independent experiments. Statistical significance by Mann Whitney t-

test or one-way ANOVA followed by Dunnett„s analysis is indicated:*p<0.05, ** p<0.01, *** p<0.001.  

 

D.1.2 Modulation of the inflammatory response after treatment with NCE in acute P. 

aeruginosa respiratory infection 

To define the effect of NCE i.t. administration on the airway inflammatory response, the 

broncholaveolar lavage fluid (BALF) was recovered after 24 hours of MDR-RP73 or PAO1 acute 

infection where  total and differential leukocyte recruitment were counted. Results of the cells count 

showed that mice treated with NCE had significantly less total cells compared to placebo group, 

indicating a reduction of inflammation. In contrast, CIP-treated mice had no difference in the 

number of recruited cells when compared to negative controls. In particular, mice infected with 
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MDR-RP73 or PAO1 and treated with NCE showed a significant decrease in neutrophils, while the 

amount of monocytes/macrophages was unchanged (Fig.8A and 8B). In the case of CIP-treatment a 

significant decrease of neutrophils was observed exclusively in PAO1 infected mice but not for 

MDR-RP73. 

 

 

Figure 8: Lung inflammatory response after P. aeruginosa acute airway infection in mice treated i.t. 

C57Bl/6 (8-10 weeks) male mice were infected and treated i.t. according to schedule in Fig. 6A with MDR-

RP73 (A) or PAO1 strain (B). BALF was recovered after 24 hours of infection and total cells, neutrophils 

and macrophages count was performed (A, B). Dots represent individual mice measurements and horizontal 

lines represent the median values (n=8-11). The data are pooled from two independent experiments. 

Statistical significance by One-way ANOVA followed by Dunnett„s analysis is indicated: * p<0.05,              

** p<0.01. 

 

The concentration of cytokines and chemokines in murine lung homogenate were measured by 

ELISA. CXCL2/MIP-2, CCL2/JE, and CXCL1/KC production in the lungs was significantly 

reduced in mice infected with MDR-RP73 (Fig.9A) or PAO1 (Fig.9B) and treated with NCE 

compared to saline-treated controls. The only exception was IL-1β which was reduced significantly 

only in PAO1 infected mice. The same trend of reduction was observed in lung homogenates of 

CIP-treated mice (Fig.9). 
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Figure 9: Cytokines and chemokines after P. aeruginosa acute airway infection and antibiotic treatment. 

C57Bl/6 (8-10 weeks) male mice were infected and treated according to schedule in Fig.6A. MIP-2, JE, KC 

and IL-1β levels were measured by ELISA in lung homogenates after 24h of P. aeruginosa acute infection 

with MDR-RP73 (A) or PAO1 strain (B). Data represent mean values±SEM of mice (n=6-11) pooled from 

two to three independent experiments. Statistical significance by One-way ANOVA followed by Dunnett„s 

analysis is indicated: * p<0.05, ** p<0.01,***p<0.001 

 

D.1.3 Therapeutic efficacy of NCE in P. aeruginosa chronic lung infection in murine 

models 

The antibacterial activity of NCE was evaluated in a murine model of P. aeruginosa chronic 

lung infection. As described before this model mimic a chronic infection similar to the one typically 

established in the lungs of CF patients (Bragonzi 2010). 1x10
6 

CFUs of
 
MDR-RP73 were embedded 

in agar beads and inoculated by i.t. injection in mice according to established procedures (Bragonzi 

A 2005; Facchini, De Fino et al. 2014). Starting from the day of the infection, a group of mice was 

treated daily with a single s.c. dose either of 80 mg/kg CIP or 20 mg/kg NCE and compared to 

saline-treated controls according to the treatment schedule shown in Figure 6B. Body weight loss 

was recorded in the first two days after infection in all the groups of mice (Fig.10A). Thereafter, a 

faster increase in body weight was observed in NCE-treated mice compared to saline-treated mice. 

NCE-treated mice recovered almost completely their initial body weight six days post infection. In 

contrast, the CIP- and saline-treated mice did not recover their body weight completely. At day 6 

post infection the CFU counts in the lungs were significantly reduced in mice treated with NCE in 

comparison to the saline-treated group while no significant differences were observed between CIP-

treated mice and controls (Fig.10B).  

To evaluate the efficacy of NCE administered by aerosol in a model of chronic lung infection, 

the commercial MicroSprayer
TM

 aerolizer (Penn Century) was used. Treatment with either 8 mg/kg 
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CIP or 2 mg/kg NCE or saline was started 15 minutes after infection and repeated every second day 

for a total of four administrations according to the treatment schedule shown in Figure 6B. After an 

initial weight loss observed in the first two days, NCE and CIP-treated mice had a faster and 

significant increase compared to the saline-treated group of mice, recovering almost completely 

their initial body weight at day 7 post infection (Fig.10C). At day seven mice treated with both 

NCE and CIP showed a significant reduction of the bacterial load (1 log10 and half-log10 CFUs 

reduction respectively) in comparison to the saline-treated group (Fig.10D). Even if a significant 

reduction in the bacterial load was achieved in mice treated with NCE administered both s.c and by 

aerosol, the local treatment demonstrated to exert a higher efficacy suggesting a better potential 

therapeutic effect of NCE. 

 

 

 

Figure 10: Efficacy of NCE against P. aeruginosa RP73 in a murine model of chronic lung infection 

after s.c. and aerosol administration. C57Bl/6 (8-10 weeks) male mice were challenged with 1x10
6
 P. 

aeruginosa RP73, embedded in agar beads, by i.t. inoculation. Mice were then treated s.c. daily with saline, 

CIP (80 mg/kg), or NCE (20 mg/kg) (A, B). Aerosol treatment was performed by Penn Century every two 

days with saline, CIP (8 mg/kg), or NCE (2 mg/kg) (C, D). Before each administration, mice were weighed 

and changes from initial body weight were averaged for each group (A, C). At day six for s.c. treatment and 
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at day seven for aerosol treatment, mice were euthanized, lungs excised, homogenized and plated onto TSA 

plates to determine bacterial load (B, D). Dots represent individual mice measurements and horizontal lines 

represent the median values (n=6-11). The data are pooled from two independent experiments. Statistical 

significance by two-way ANOVA with Bonferroni post-test is indicated in the body weight curves, one-way 

ANOVA followed by Dunnett„s analysis is indicated in the CFUs/lung: 

* p<0.05, ** p<0.01. 

 

D.1.4 Modulation of the inflammatory response after treatment with NCE in P. 

aeruginosa chronic lung infection 

Cytokines and chemokines profiles in the lung tissue of P. aeruginosa infected mice treated by 

aerosol, as the most promising treatment, were measured. Results showed that the levels of 

CXCL1/KC and CXCL2/MIP-2 were significantly reduced in lung homogenate of mice treated with 

NCE and CIP, compared to saline (Fig.11). Levels of IL-1β were reduced significantly only in NCE 

treated mice while levels of JE were reduced but differences did not reach statistical significance 

neither in NCE- nor in CIP-treated mice. These data indicates that pulmonary administration of 

NCE is effective in modulating host response in addition to bacterial burden. 
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Figure 11:. Cytokines and chemokines after P. aeruginosa chronic airway infection and pulmonary 

antibiotic administration. C57Bl/6 (8-10 weeks) male mice were infected and treated according to schedule 

in Fig.6B. MIP-2, JE, KC and IL-1β levels were measured by ELISA in lung homogenates after 7 days of P. 

aeruginosa chronic infection with MDR-RP73. Data represent mean values±SEM of mice (n= 6-11) pooled 

from two to three independent experiments. Statistical significance by One-way ANOVA followed by 

Dunnett„s analysis is indicated: ** p<0.01,***p<0.001. 

 

D.1.5 Antibacterial and anti-inflammatory effect of treatment with NCE against  

P. aeruginosa chronic lung infection in CFTR-deficient mice. 

Since the therapeutic efficacy of NCE may be relevant for CF patients, chronic infection with 

MDR-RP73 was established also in a CFTR-deficient mice. The mouse model used in these 

experiments is the Cftr
tm1UNC

TgN(FABPCFTR) (Bragonzi 2010). These knock-out mice bring an 

insertion in the exon 10 that prevents the formation of the CFTR protein already at mRNA level. 

Like all CF mice does not represent the human lung pathology of CF patients and they not become 

infected spontaneously. In particular this mouse model have been gut corrected by the insertion of 

the human transgene hCFTR that allow a standard survival rate and the facilitated maintenance of 

the colony (Zhou, Dey et al. 1994; Bragonzi 2010). Cftr
tm1UNC

TgN(FABPCFTR) (CF) and their wt 

congenic mice (non-CF) were challenged by i.t. inoculation of 1x10
6
 CFUs of MDR-RP73, 
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embedded in agar beads, and treated by MicroSprayer
TM

 aerolizer (Penn Century) 10-15 minutes 

after infection and then every second day, for a total of four administrations, either with saline or 2 

mg/kg NCE.  

Body weight loss was observed in the first two days after infection both in saline- and NCE-

treated mice (Fig.12A). While saline-treated mice did not recover weight until day seven, mice 

treated with NCE gained weight from the second day onwards, with a significant difference 

compared to the saline-treated mice from day four. After seven days of chronic infection, mice 

treated with NCE showed a significant reduction in the bacterial load in comparison to the saline-

treated group (Fig.12B). No significant differences in bacterial load between CF or non-CF mice 

has been observed indicating that the treatment is effective in different genetic background and is 

not influenced by CF environment.  

 

 

Figure 12: Efficacy of NCE against P. aeruginosa RP73 in CF murine model of chronic lung infection 

after endotracheal nebulization with MicroSprayer 
TM

 aerolizer. Cftr
tm1UNC

TgN(FABPCFTR) and their wt 

congenic mice (11-17 weeks old) were challenged with 1x10
6
 P. aeruginosa RP73, embedded in agar beads, 

by i.t. inoculation. Next, mice were treated by MicroSprayer 
TM

 aerolizer after infection and then every 

second day with a single dose of saline or NCE (2 mg/kg) for a total of four administrations. Before each 

administration, each mouse was weighed. Changes from initial body weight were calculated for each group 

of mice (A). At day seven, mice were euthanized, lungs excised, homogenized and plated on TSA plates to 

determine bacterial load (B). Dots represent individual mice measurements of CF mice (red) (n=9) or wt 

(non-CF) congenic mice (blue) (n=15) and horizontal lines represent the median values. The data are 

pooled from two independent experiments. Statistical significance by two-way ANOVA with Bonferroni post-

test in the body weight curve graph, and one-way ANOVA followed by Dunnett„s analysis in the CFUs/lung 

graph  is indicated. * p<0.05, ** p<0.01. 
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The levels of CXCL2/MIP-2 were significantly reduced in lung homogenates of both CF and 

non-CF mice treated with NCE when compared with saline-treated mice, IL-1β was significantly 

reduced only in CF mice but not in non-CF mice, while KC and JE were reduced but did not reach 

statistical significance (Fig.13).  

Taken together, these results suggest a therapeutic effect of NCE also in CF mice. 

 

Table 13: Cytokines and chemokines after P. aeruginosa RP73 chronic airway infection in CF and non-

CF mice treated with NCE by pulmonary administration. Cftr
tm1UNC

TgN(FABPCFTR) (CF) and their wt 

congenic mice (non-CF) (11-18 weeks) were infected with RP73 embedded in agar beads and treated with 

saline or NCE 2 mg/kg by Penn Century according to schedule of Fig. 6B. Lungs were collected after 7 days 

of infection and MIP-2, JE, KC and IL-1β levels were measured by ELISA on lung homogenates. Data 

represent mean values±SEM. The data are pooled from mice from two independent experiments (n=4-8). 

Statistical significance by Mann-Whitney U test analysis is indicated: * p<0.05, ** p<0.01 

 

 

 

 

 



                                                                    Novel approaches for prevention/eradication of P. aeruginosa lung infections 

 

33 
 

D.2 Selection of novel vaccine candidates against P. aeruginosa in murine model 

of acute respiratory infection 

In years before my PhD, the genomic sequence of reference strain PAO1 (Stover 2000) was 

analyzed in silico to identify open reading frames (ORFs) that potentially encoded novel surface-

exposed or exported proteins. This work was carried out in the laboratory of Dr. Bragonzi with 

collaboration of Novartis-Vaccine. Among 5,570 ORFs, there were identify 196 secreted or outer 

membrane proteins, 124 periplasmic proteins, 2111 inner membrane proteins and 2327 citoplasmic 

proteins, while 812 ORFs were not assigned to a sub-cellular localization and were annotated as 

unknown. For the following analysis attention was pointed on 320 proteins belonging to the outer 

membrane or to the periplasmic space. To verify that the selected proteins were not unique to the 

PAO1 strain, conservation of the antigens were evaluated among seven sequenced P.aeruginosa 

strains deposited in Pseudomonas Genome Database for Comparative Analysis. Conserved proteins 

were then checked for similarity to those present in human and mice and similar epitopes were 

excluded. Next, selected proteins were grouped by ranking score based on their gene expression 

profile under aerobic and anaerobic growth carried out in this work, their immunogenicity (Montor 

2009) and relevance for in vivo infection as reported by other databases (Potvin 2003). The final 

database included 53 antigens of which 29 proteins of known and 24 unknown functions. 

Successful expression in E. coli of 33 ORFs (62.3%) as His-tag fusions were obtained and finally 

32 ORFs (60.4 %) were obtained in enough amount for mice immunization (Fig.14A). 

During my PhD, novel identified vaccine candidates against P. aeruginosa were tested for 

efficacy in a murine model of P. aeruginosa acute lung infection reported in Figure 14B. 

Vaccination protocols were set up in these models. 
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A                                                                                   B 

            

Figure 14: Strategy for the identification of novel vaccine candidates against P. aeruginosa and their 

validation in murine model of acute P. aeruginosa infection. By the combination of “reverse vaccinology” 

and advanced whole genomic approaches, novel vaccine candidates were identified. 32 proteins were 

successfully expressed in E.coli and purified for mice immunization (A). At day 0, 21 and 35 groups of 10 

C57Bl/6 male mice (5 weeks) were immunized intraperitoneally (i.p.) with 10 μg of recombinant protein/s 

adsorbed in alum (alone or in combinations of two of them). To obtain antisera, mice of all groups were 

bleed at day -1, day 34, and day 49. As negative control, 10 mice each immunization round were injected 

with alum alone, while as positive control 10 mice each immunization round were boosted with 10
7
 cfu of 

heat inactivated PAO1 strain. On day 50, mice were challenged with 5x10
6 

CFU (first lethal dose) of 

planktonic P. aeruginosa PAO1 homologous strain to mimic acute infection. Mice were monitored for 

survival for 120 hrs at intervals of twelve hours and compared with un-vaccinated and PAO1 vaccinated 

control groups (B). 

 

D.2.1 Protection to P. aeruginosa acute pneumonia after immunization with single 

antigens or their combinations 

Protection after immunization with selected antigens was tested in a mouse model of acute 

pneumonia. C57Bl/6 mice were immunized intraperitoneally (i.p.) with 10 µg of selected proteins, 

challenged intratracheally (i.t.) with a lethal dose of P. aeruginosa (5x10
6
 CFU/lung) and monitored 

for survival as schedule in Figure 14B. Proteins PA number were coded due to current patent rights 

of the application number:13798638.6-1403. Vaccination with ten single antigens showed a shift in 
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the survival curve (survival up to 25% at day 5) when compared with a negative control group 

(alum alone) (mortality 100% within day 2), although this was not always significant. In particular 

PSE10, PSE11, PSE21, PSE27, PSE21, PSE44, PSE47, PSE52, PSE53 and PSE54 (Fig.15A) where 

selected for further investigation while the other 21 proteins tested did not differ substantially from 

the negative control.  

Figure 15: Survival curves of the ten single antigens selected as vaccine candidates and best combinations 

of two proteins. C57Bl/6 male mice were challenged with PAO1 (5x10
6
 CFU) two weeks after vaccination 

with ten single antigens (A) or cocktails (B) (colored lines). Black line and grey line indicate survival curves 

of representative mice from negative control (immunization with alum alone) and PAO1 heat inactivated 

groups respectively. A moderate increase in the survival was observed for mice vaccinated with single P. 

aeruginosa antigens respect to the negative control (A) while a significant increase was observed with five 
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proteins combination (B). Results are represented in Kaplan–Meier survival curves and analyzed by the 

Mantel-Cox test against negative control group : *< 0.05, ** < 0.01, ***< 0.001. n refers to the number of 

animals. 

 

Given that survival of mice to P. aeruginosa infection in mice vaccinated with single antigen 

was modest, we combined the most promising proteins two by two. 22 combinations were used to 

vaccine mice followed by P. aeruginosa infection as described above. Five out 22 protein 

combinations (PSE54 + PSE10, PSE54 + PSE44, PSE54 + PSE21, PSE54 + PSE53, PSE54 + 

PSE27) showed a significant increase in both survival curves (Mantel-Cox test p value < 0.0002, 

0.0019, 0.0027, 0.015 and 0.015 respectively) and mean survival time (one way ANOVA p value   

< 0.01) (Fig. 15B and Fig.16). The best antigens combination was PSE54 + PSE44 showing an 

increase in survival up to 50%.  

 

Figure 16: Mean survival time of the ten single antigens selected as vaccine candidates and best 

combinations of two proteins. Mean survival time was calculated based on the survival curves. Bars 

represent mean values of single antigens (colour bars) and combinations (colour striped bars) and PAO1 

heat inactivated (grey bar). Error bars represent the standard error of the mean (SEM). Dashed line 

indicates the mean survival time of representative mice immunized with alum alone. Results are analyzed by 

one way ANOVA against negative control group : ** < 0.01, ***< 0.001. n refers to the number of animals. 
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D.2.2 In vitro characterization of selected antigens 

To further characterize the antigenic potential and effective cellular localization of the selected 

antigens PSE10, PSE11, PSE21, PSE27, PSE21, PSE44, PSE47, PSE52, PSE53 and PSE54, the 

antisera obtained immunizing with the recombinant proteins were tested in western blotting (WB) 

and P. aeruginosa immunofluorescence. Results showed that all the antisera were able to recognize 

the recombinant proteins in WB, demonstrating the capacity of the vaccine candidates to induce 

specific antibody production. Next, to understand if antibodies were able to recognize also native 

proteins, WBs against whole cell extracts of the homologous P. aeruginosa strain PAO1 and the 

clinical isolate MDR-RP73, both grown in stationary and exponential growth phases, were carried 

out. Also in this case all the antisera of the selected proteins were able to recognized the native 

proteins of both PAO1 and MDR-RP73 P. aeruginosa strains. Results are summarized in Table 5. 

 

 

 

protein 

 

Western Blot 

Immuno-

fluorescence 

Amino acid identity among CF 

collection (number of strains with 

the full length gene sequence/ total 

n° of strains) 

 

Recombinant 

protein 

 

PAO1 
 

 

RP73 
 

PSE10 + + + + 100% ± 0% (19/19) 

PSE11 + + + + 99.6%± 0.3% (19/19) 

PSE21 + + + + 99.8% ± 0.2% (17/19) 

PSE27 + + + + 99.3% ± 0.2% (16/19) 

PSE41 + + + + 100% ± 0% (19/19) 

PSE44 + + + + 99.1% ± 0.8% (18/19) 

PSE47 + + + + 98.8% ± 0.5% (11/19) 

PSE52 + + + + 99.7%± 0.3% (19/19) 

PSE53 + + + + 99.9% ± 0.1% (18/19) 

PSE54 + + + + 98.8% ± 0.3% (17/19) 

 

Table 5. In vitro characterization of the 10 vaccine candidates. Solubilized recombinant proteins and whole 

cell lysates of the homologous strain PAO1 and the clinical isolate RP73, both in stationary and exponential 

growth phases, were separated by sodium dodecyl sulphate (SDS)-PAGE and electrotransferred onto 

nitrocellulose membranes (0.45µm) using a mini transblotter (Bio-Rad) following the manufacturer‟s 

instructions. Membranes were blocked 1 hour at RT in blocking buffer. Specific pooled sera from each group 

of mice collected from immunized mice at day 49 were used O/N at 4°C. Specific antibodies were detected 

with polyclonal rabbit anti- mouse. Bands at expected weight for the proteins were observed and indicated 

as +. Localization of proteins was performed on PAO1 growth spread on a coated slide. After fixation with 

4% PFA and incubation in blocking solution, bacteria were incubated with mouse anti sera (1:50) and 

specific rabbit anti P. aeruginosa cell wall (1:800). Primary antibodies were labelled with anti-mouse Fab-
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Jackson and Texas Red-labeled goat anti-rabbit. Co-localization of proteins with the cell wall is indicated as 

+.
#
 Average ± standard deviation. 

 

To determine whether the selected proteins were effectively expressed and exposed on the cell 

surface of bacterial cells a double immunofluorescence was carried out with the murine antisera and 

a specific antibody for P. aeruginosa anti-cell wall. Co-localization of the two signals suggested 

that the presence of proteins in the bacterial cell surface. All the selected antigens were surface 

exposed supporting the robustness of the screening method used in this study (Table 5 and Fig.17).  

 

Figure 17: Cellular localization of vaccine candidates PSE44 and PSE54 by immunofluorescence. 

Immunofluorescence staining observed with confocal microscopy shows localization of antigens (green) 

PSE44 (A), PSE54 (E), and bacteria cell wall (red) (B) (F) in PAO1. Co localization of both signals (yellow) 

indicates that proteins PSE44 and PSE54 are surface expose (C) (D) and (G) (H) respectively. 

 

D.2.3 Conservation of selected antigens among a collection of CF clinical isolates  

To test suitability of the selected proteins as candidate antigens for conferring protections against 

different P. aeruginosa strains and not just against the homologous strain, we used a collection of 

19 CF clinical strains isolated at the onset of infection and after years of chronic colonization. Total 

gene sequences of the 10 proteins were obtained in most of the 19 strains. To summarize, PSE10, 

PSE11, PSE41 and PSE52 showed 100% ± 0%, 99.6 % ± 0.3%, 100% ± 0%, and 99.7%± 0.3% 

average of amino acid identity to the PAO1 sequence, respectively, within the 19 P. aeruginosa CF 

clinical isolates. PSE44 and PSE53 showed 99.1% ± 0.8%, 99.9% ± 0.1%, identity to the PAO1 

sequences, respectively, within 18 CF clinical isolates. PSE21 and PSE54 showed 99.8% ± 0.2%, 

98.8% ± 0.3%, identity to PAO1 sequences, respectively, within 17 CF clinical isolates. PSE47 

showed 98.8% ± 0.5%, identity to PAO1 sequence, respectively, within 11 CF clinical isolates 



                                                                    Novel approaches for prevention/eradication of P. aeruginosa lung infections 

 

39 
 

whereas PSE27 showed 99.3% ± 0.2% of amino acid identity in the 16 strains analyzed (Table 5 

and Table 6). The results suggest that these proteins may induce immunity against most strains of 

P. aeruginosa including the late adapted strains isolated from CF patients.  
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Recombinant 

proteins 

 

aa Mutation 

 

P. aeruginosa clinical isolates 

PSE10 -  

PSE11 Q53-M 

P450-Q 

P238-A 

T82-A 

F88-L 

S478-G 

PAO1 vs AA2, AA43, AA44 

 

PAO1 vs MF1, MF51 

PAO1, SG58 vs SG1, SG57, AA2, AA43, AA44 

PAO1 vs TR1, TR66, TR67, KK1, KK71, KK72, BST2, BST44  

PAO1 vs AA2, AA43, AA44, MF1, MF51 

PSE21 A641-V 

N437-D 

T534-S 

PAO1 vs MF1, MF51 

PAO1 vs TR1, TR66, TR67, KK1, KK71,BST2 

PAO1 vs AA2, AA43, AA44, TR1, TR66, TR67,  MF1, MF51, KK1, KK71, BST2      

PSE27 N195-S 

K55-E 

Q314-L 

H516-R 

D580-E 

L609-I 

PAO1 vs AA2, AA43, AA44, BT2, BT73,  AA2, AA43, AA44, BST2, BST44, KK1, MF1, MF51, TR1,TR66,TR67 

PAO1 vs SG1, SG57, SG58, BT2, BT73,  AA2, AA43, AA44, BST2, BST44, KK1, MF1, MF51, TR1, TR66,  TR67 

 

PAO1 vs SG1, SG57, SG58, BT2, BT73 
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T585-I 

R416-S 

A486-T 

D538-E 

V600-E 

PAO1 vs BST2, BST44, KK1 

PAO1 vs BST44 

PSE41 -  

PSE44 

 

D169-E 

S111-N  

S241-N 

PAO1 vs BT2, BT72, BT73 

PAO1 vs TR1, TR66, TR67  

PAO1 vs MF51 

PSE47 S23-C  

N293-S 

V367-L 

N748-Y 

E964-K 

H992-R 

N748-D 

N748-Y 

N187-Q 

S280-T 

PAO1 vs SG1, SG57, SG58 

 

 

 

 

PAO1 vs BT2, BT72, BT73 

BT2 vs BT72 

BT2 vs BT73 

PAO1 vs  KK1 

PAO1 vs  MF1 
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K292-S 

H187-Q 

N318-K 

V39-A 

S629-N 

A633-T 

G643-A 

G700-A 

M701-T 

T801-M 

S818-G 

V878-F 

N915-S 

A882-T 

G916-S  

S917-G 

N403-S 

L958-V 

 

PAO1 vs MF1, BST 44 

PAO1 vs BT2, BT72, BT73, TR1, TR67 

PAO1 vs SG1, SG57, SG58, BT2, BT72, BT73, TR1, TR67, 

PAO1 vs SG1, SG57, SG58, BT2, BT72, BT73, KK1, BST44 

 

 

 

 

PAO1 vs SG1, SG57, SG58, BT2,BT72,BT73, KK1 

PAO1 vs SG1, SG57, SG58, BT2, BT72, BT73 

 

 

PAO1 vs TR1, TR67, MF1 

 

PAO1 vs SG1, SG57, SG58, BT2, BT72, BT73, TR1, TR67,  MF1  

PAO1 vs SG1, SG57,SG58, BT2, BT71, BT72, TR1, TR67, MF1,  KK1, BST44 

 

PSE52 A138-E PAO1 vs SG1,SG57, SG58, BT2, BT72, BT73, MF1, MF51 
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PSE53 A421-T PAO1 vs MF1, MF51 

PSE54 S142-C 

T12-A 

E104-C 

S110-N 

E114-D 

S128-N 

PAO1 vs SG1, SG57,SG58 

PAO1 vs BT2, BT72, BT73 

PAO1 vs TR1, TR66, TR67 

PAO1 vs MF1, MF51 

PAO1 vs AA2, AA43, AA44, KK1, KK71, KK72 

PAO1 vs SG1, SG57,SG58, BT2, BT71, AA2, AA43, AA44, TR1, TR66, TR67,  MF1,MF51,  KK1, KK71, KK72, BST2  

 

Table 6: Amino acid substitution between PAO1 and a collection of P. aeruginosa clinical isolates. A collection of 19 CF clinical strains isolated at the onset 

of infection and after years of chronic colonization were sequenced for the 10 vaccine candidates. Nucleotide sequences were translated into the amino acid (aa) 

sequences and compare with PAO1 protein sequence. Forward (For) primers and reverse (Rev) primers used for the gene amplification/sequencing are listed: 

PA1178: For-TAGAAAGCCTAGACCCTACTTG, Rev- TCTTCCACTACCAGCAGTTT; PA1248: For- CTGCTCAATTACCTGTTCAAG, Rev- 

AAGACAAACTACCGAAGACACT; pa5112: For- CTGATCGAGCGCGACAATAC, Rev-GTGTCGTCCTCGTACTCACG; pa0328: For-

ATGAAACGGTCCGCATCCTG Rev-CGAGCCGAACCTGTTCTACGT; PA2407: For- CATTGATCGCACATCGACTC, Rev- GTCTTGACCAGCGAACTCTTG; 

PA3526: For- GATACATCCTTCGTATTTGGAC, Rev- CATTCGGGAAATTACAGAGG; PA4082: For- CAGAGAGATACCCGTAGGAGTT, Rev- 

CTCATGGAACTCTCCAAGATT; PA4765: For- GAAGTTCGCTATTTTCAACCAT, Rev- GTATCTTCGGCAAGCTCCTG; PA5047: For-

GTATCTGGCTGGAGATGGAC, rev- TTTATTGCTTGTTGGACAGAC; PA5340: For- CTCGAGTAAGCCGGATGTTC, Rev- GCGGACTGTACTTCCTCTGG. 
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E. CONCLUSIONS AND FUTURE PROSPECTS 

 

The continuous increasing rate of infections caused by antibiotic-resistant bacteria is an alarming 

issue nowadays all around the world. The so called ESKAPE pathogens, the most dangerous 

multidrug resistant ones, literally escape to the effect of available treatments (Boucher, Talbot et al. 

2009). Pseudomonas aeruginosa is part of this category. It is a Gram-negative pathogen, considered 

one of the top three causes of opportunistic human infections being able to target a wide range of 

patients at different body sites. Of particular interest are P. aeruginosa airways infection that affect 

mainly immunosuppressed patients, patients in intensive care units which may develop ventilator-

associated pneumonia (VAP) due to the ventilation or diseases characterised by airways 

inflammation and altered mucus production like cystic fibrosis (CF) or chronic obstructive 

pulmonary disease (COPD) (Williams, Dehnbostel et al. 2010). Despite this worrisome situation in 

the last decades the number of drug candidates in clinical development relevant for P. aeruginosa 

infections are really low and most of the them are modifications of existing molecules. Thus, the 

development of antibiotics with new mechanism of action and/or alternative therapies remain at 

present the best alternatives for the treatment of P. aeruginosa infections. During my PhD, I 

focused my attentions in the pre-clinical evaluation of a New Chemical Entity (from now NCE). 

This NCE is a synthetic peptide identified by the innovative technology of protein epitope mimetics 

(PEMs). PEM technology was applied to identify a new class of synthetic molecules that exert 

potent antibacterial activity with novel mode of action. Peptidomimetics are compounds whose 

essential elements mimic a natural peptide or protein in 3D space and which retain the ability to 

interact with the biological target and produce the same biological effect. They have been designed 

to circumvent some of the problems associated with a natural peptide like stability against 

proteolysis (duration of activity) and poor bioavailability (Vagner, Qu et al. 2008). NCE is a 

peptidomimetic specifically effective against P. aeruginosa from different origins. In particular it 

has demonstrated to be active in a nanomolar range against a large collection of P. aeruginosa 

strains isolated from CF patients, including mucoid and hypermutable isolates, whose phenotypes 

have been associated to antibiotic resistance and poor prognosis or respiratory function in CF 

patients (Bonfield, John et al. 2005; Ferroni, Guillemot et al. 2009).  

One critical point in the passage form pre-clinical efficacy evaluation of an antibacterial agent to 

human clinical trials is the animal model used to assess efficacy and safety (Coller and Califf 2009). 

In this context the best choice is to select the infection model that most closely mimics the course of 

human disease. Acute infection conditions are often characterized by heavily injure or kill the host, 

with multiorgan failure that can  occur within hours or days. On the other hand, chronic infections 
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occur without rapid injury of the host and in the presence of biofilm structures, a population of 

microorganisms that aggregates on a matrix which develops over days or weeks that contain 

bacterial genetic variants. To investigate the efficacy of NCE in treating clinical conditions such as 

VAP or life threatening infection in CF patients, animal models of acute and chronic P. aeruginosa 

respiratory infection have been used (Bragonzi 2010; Facchini, De Fino et al. 2014). Another 

important issues to take into consideration should be the route of drugs administration and the 

endpoints of the study. The route of drugs administration should be those that most closely 

reproduce the clinical settings and the endpoints must be clinically relevant. Two different 

administration routes were tested for NCE and based on human clinical response to infection, we 

defined two endpoints: infection and inflammation. To evaluate the potential therapeutic effect of 

NCE, taking into account all the critical points described above, acute and chronic pneumonia 

model of P. aeruginosa infections have been used. In particular MDR-RP73 clinical isolate, strain 

isolated after years of colonization from a CF patient, and the PAO1 reference laboratory strain 

were used. Ciprofloxacin (CIP) was chosen as positive control because is one of the most effective 

clinically-approved antibiotics. First, treatments were administered by subcutaneous (s.c.) injection 

in a murine model of acute lung infection with the MDR-RP73 clinical isolate. S.c. administration 

in acute infection showed no significant efficacy in reducing the bacterial load in lung both for 

NCE- and CIP- treated mice, suggesting that this route of administration may be not optimal to treat 

this kind of respiratory infections. Then, treatments were administered locally by intratracheal 

injection (i.t.) in the same murine model. I.t. administration of NCE showed a significant reduction 

of the bacterial load in the lung demonstrating a high efficacy of the drug in mice challenged with a 

MDR strain. Despite the bacterial load reduction was significant against the MDR-RP73 strain, it 

was not complete, emphasizing the difficulty of potent drugs to obtain the complete eradication of 

P. aeruginosa patho-adaptive strains in the context of chronic infections. When the reference strain 

PAO1 was used as infectious agent the treatment achieved the complete eradication of the bacteria 

confirming a good profile of the drug. In general, the treatment with NCE demonstrated to be more 

efficacious than treatment with CIP highlighting the greater effectiveness of this new drug 

candidate compared to an antibiotic commonly used in clinics. The inflammatory profile in the 

airways suggested a positive impact of the treatment on pulmonary lung physiology, in particular 

the neutrophils recruitment and concentration of chemokines/cytokines  such as IL-1β, CXCL1/KC, 

CXCL2/MIP-2 and CCL2/JE was reduced in mice treated with NCE. PK studies showed that NCE 

reaches favorable concentrations in the lung after i.t. administration, with rather low systemic 

exposure.  
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Inhaled administration of antibiotics is an excellent alternative to circumvent problematic 

associated to intravenous or oral drug administration like side-effects of drugs, related to prolonged 

periods of treatments, and at the same time contributes in reaching higher efficacy due to increased 

local concentrations. The administration of antibiotics by the inhaled route is a widely recognized 

treatment in patients with CF and bronchiectasis, and has recently being tested for the treatment of 

pneumonia, including VAP (Ratjen 2010). In the last years many efforts have been made in this 

direction offering new formulations of existing drugs for aerosol therapy. Inhaled aminoglycosides 

(e.g. tobramycin, gentamycin), polymyxins (e.g. colistinmethate sodium), and aztreonam lysinate 

have been described. Tobramycin inhalation solution is currently the only aerosol antibiotic 

approved for the treatment of bacterial infections in patients with CF. Aerosol administration of 

tobramycin potentially reduce systemic toxicity and a clinical benefit has been shown over several 

cycles of treatment (Ramsey BW 1999). However, its long-term use has been described to be 

associated with the selection of multiple-antibiotic-resistant P. aeruginosa strains (Sermet-Gaudelus 

I 2002; Merlo CA 2007). The encouraging results of tissue distribution of NCE combined with the 

preliminary evidence of improvement of efficacy following i.t. delivery compared to s.c. 

administration in the acute infection model, supports the pulmonary administration as possible 

therapeutic approach for the treatment of chronic lung infections with this new drug candidate. For 

these reasons the pre-clinical testing of NCE was extend to a more complex models of chronic 

infection including CF mice. Long-term severe P. aeruginosa airway infection was achieved 

challenging mice with the MDR-RP73 clinical embedded in agar beads. The agar beads mouse 

model has been widely characterized in our laboratory demonstrating not only to provide micro-

anaerobic conditions for bacterial growth and biofilm formation, as those present in the mucus of 

CF patients, but also reflecting an advanced chronic pulmonary disease similar to those observed in 

patients (Worlitzsch D 2002; Bragonzi A 2005; Bragonzi 2010). This model represents a precious 

tool and has been used for pre-clinical testing of candidate anti-bacterial and anti-inflammatory 

molecules (Paroni, Moalli et al. 2013; Doring, Bragonzi et al. 2014). It has been reported that the 

use of aerosol, generated by a conventional human adopted nebulizer, resulted in a low deposition 

efficiency of drugs in rodents (Stangl 2008). The main reasons of this low efficiency are mainly the 

aerosol generation rates are too high, the increasing breathing frequencies due to the animal stress 

that lead to decrease dose deposition, particles deposition in the upper airways and large quantities 

of the aerosol remaining onto the coat or getting swallowed. For all these reasons, the preclinical 

efficacy studies of pulmonary administration of NCE in a mouse model of chronic lung infection 

was carried out taking advantage of the commercial MicroSprayer 
TM

 aerolizer (Penn Century). This 

is a non-invasive pulmonary aerosol delivery system that makes possible repeated administration 
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ensuring a good attainment and spread of molecules into the airways (Bivas-Benita, Zwier et al. 

2005). This technique has been previously used in a pre-clinical study reporting administration of a 

new formulation of levofloxacin, the MP-376, in comparison with tobramycin and aztreonam, 

(Sabet 2009) making possible the passage from the MP-376 preclinical studies to the clinical phases 

(Geller, Flume et al. 2011). In a chronic pneumonia model repeated s.c. administration of NCE 

showed an improved weight gain of mice and a significant decrease of the bacterial load, compared 

with the vehicle, against MDR-RP73 strain. However a better efficacy results regarding improved 

weight gain and decrease in bacterial load was achieve after the treatment with NCE when 

administered repeatedly by MicroSprayer 
TM

 aerolizer emphasizing the potential therapeutic effect 

of the molecule in chronic airways infections. Moreover, pulmonary administration of NCE 

attenuated the inflammatory response to chronic lung infection. In particular the concentrations of 

inflammatory mediators, including CXCL2/MIP-2, CXCL1/KC and IL-1β, were decreased in NCE-

treated mice, compared to mice treated with the vehicle. The efficacy of NCE was also 

demonstrated in a mouse model of CF. CF mice treated with NCE showed a significantly improved 

weight gain and lower bacterial load in the lung compared to animals treated with the vehicle. In 

this study long-term P. aeruginosa chronic infection and sustained inflammation has been achieved 

similarly in CF mice and non-CF. Repeated local treatment with NCE showed a similar beneficial 

effect in mice with different genetic background indicating that in this case CF environment does 

not represent an obstacle for this antibiotic treatment. Overall these data obtained in the first part of 

my PhD thesis support the further evaluation and clinical testing of NCE as a novel therapeutic for 

the treatment of P. aeruginosa infection.  

 

A suitable alternative aimed to limit the use of antibiotics and focused in the prevention of  

pulmonary colonization is represented by immunotherapy. Many efforts have been made in this 

direction, but clinical efficacy has, to date, been disappointing (Holder 2004). Several P. aeruginosa 

vaccine candidates have been assessed in experimental animals and humans, including sub-cellular 

fractions, capsule components, purified proteins and recombinant proteins (Sharma, Krause et al. 

2011). However, at present, no vaccine is available for clinical use against P. aeruginosa infections  

demonstrating that the strategies adopted for vaccine development right now are ineffective (Doring 

and Pier 2008). P. aeruginosa virulence factors like LPS, flagella or pili, have been widely taken 

under consideration as targets against immunotherapy. Despite the capacity to induce an immune 

responses of most of these vaccines has been demonstrated in rodent models of P. aeruginosa 

infection, only partial protection was achieved, underlining the need of more effective targets. A big 

limitation in the vaccine development against P. aeruginosa has been probably the limited 
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knowledge of reasonable targets. P. aeruginosa reference strain PAO1 encodes 5,570 predicted 

protein coding sequences. Notably only the 6.7% of the genome (372 ORFs) are known genes with 

demonstrated functions while a large proportion of the genome (45.8% of ORFs) is still not 

associated with a known function. Among the latter one third (769 ORFs) shares homology to genes 

with unknown function predicted in other bacterial genomes and the remaining 32% of ORFs does 

not have strong homology with any previously reported sequence and consequently their relevance 

in the course of establishing in vivo infection remain unknown (Stover, Pham et al. 2000). To 

overcome this obstacle genomic approaches have been recently exploited for the design of novel 

vaccines. They allow the identification of a large amount of antigens in silico, independently of 

their abundance and without the need to grow the microorganism in vitro (Grandi 2006). It has been 

shown that the ideal protective antigens are those particularly expressed during the infection process 

and those easily accessible for the host immune system, such as proteins localized on the bacterial 

cell surface (Rappuoli and Covacci 2003). The appropriate choice of the genomic approaches and 

the selection criteria consent the identification of novel antigens for the development of an 

efficacious vaccine. In this context the reverse vaccinology has revolutionized the approach of 

vaccine research (Scarselli, Giuliani et al. 2005). The process starts from genomic sequence and 

involves the following steps: bioinformatic software to screen genomes for surface-expressed 

proteins, high-throughput expression of these proteins and in vitro confirmation of their surface 

location, animal-based immunogenicity testing and finally conventional human vaccine trials 

(Capecchi, Serruto et al. 2004; Kelly and Rappuoli 2005). The reverse vaccinology has been 

successfully applied in the last few years. The first example of its potential has been the 

identification of novel antigens of Meningococcus B as potential candidates for a novel and 

effective vaccine and it has been successfully applied to other important human pathogens, 

demonstrating the feasibility to develop vaccines against any infectious disease (Mora, Veggi et al. 

2003). Based on these advances in vaccine development novel vaccine candidates against P. 

aeruginosa were selected by “reverse vaccinology” and by a combination of advanced whole 

genomic approaches. These activities were started before my PhD as part of the activities of the lab. 

Starting from the in silico analysis or PAO1 reference strain a final short list of 53 proteins were 

selected for the expression and 32 of them were successfully expressed obtaining a sufficient 

amount for mice immunization.  

Criteria for the elaboration of the short list of antigens were: accessibility for the immune 

system, conservation of the proteins among seven sequenced P. aeruginosa strains, expression 

profile under aerobic and anaerobic growth conditions, exclusion of epitopes similar to those 

present in human and mice, reported immunogenicity and relevance for in vivo infection by other 
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databases (Potvin, Lehoux et al. 2003; Montor, Huang et al. 2009). During my PhD work the 

efficacy of 32 vaccine candidates were tested in a mouse model of P. aeruginosa  acute pneumonia. 

10 proteins (PSE10, PSE11, PSE21, PSE27, PSE21, PSE44, PSE47, PSE52, PSE53 and PSE54)  

showed an increase in the survival curves compared with a negative control group. Mice antisera 

were used to characterized in vitro the 10 vaccine candidates for immunogenicity and cellular 

localization. Bands at expected weight were observed by western blot analysis against all the 

recombinant proteins indicating that the vaccine candidates were immunogenic. Expected bands 

were also observed in western blot against whole cell extract of homologous P. aeruginosa strain 

PAO1 and MDR-RP73 suggesting that proteins selected were effectively express in bacteria. 

Results of a double immunofluorescence staining, using murine antisera and a specific antibody for 

P. aeruginosa anti-cell wall, suggested that the proteins were presented in the bacterial cell surface. 

Together results of the antigens supported the robustness of the screening method used in this study. 

Combining together two by two the most promising vaccine candidates an increase in the protection 

was observed with some combinations reaching up to 50% of protection. In particular five 

combinations showed a statistically significant increase both in the survival curves and mean 

survival time compared with a negative control group. Surprisingly, in the most promising 

combinations the PSE54 was always present. Right now, this protein appear to be present only in P. 

aeruginosa and its function remain unknown. The combination that achieved the highest protection 

rate (50%) is composed by the unknown proteins PSE54 and PSE44; this indicated that approaches 

for the identification of vaccines candidates used in this study favor to pick out both targets with 

known and unknown functions. It has been widely described that P. aeruginosa adaptation to the 

airways include different expression of a large variety of virulence factors, modification of several 

surface antigens and an adapted metabolism (Sousa and Pereira 2014). Genetic variability among 

different P. aeruginosa strains, especially in clinical isolates, could affect the success of the 

response to vaccination preventing the clearance of the bacteria from the lung of patients (Tummler 

2006; Doring and Pier 2008). For these reason an important purpose reside in comparing multiple 

gene sequence in different P. aeruginosa strains. Amino acid identity among a collection of clinical 

isolates suggested that our vaccine candidates could be suitable for the prevention of a large number 

of P. aeruginosa infections including those due to early and late CF isolates, but also those 

phenotypes more able to escape to the current antibiotics treatments like mucoidi, hypermutable and 

multidrug resistant strains. Overall these results suggest that the combination of comparative 

genome analysis and innovative methods in vaccine design successfully applied in other organism, 

like reverse vaccinology, are valid tools for the identification of novel vaccine candidates in P. 

aeruginosa and could contribute for the new vaccines against P. aeruginosa. Now novel proteins 
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identified should be most extensively studied and characterized in order to provide a better 

understanding not only with regarding to the prevention of infection but also to learn about 

unknown factors that make this bacterium one of major causes of infection in humans. 

 

 

The validation of an antibiotic with new mechanism of action and novel vaccine candidates in 

murine model of airways infection demonstrated that both approaches could become powerful tools 

for the prevention/eradication of P. aeruginosa human infections. 
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The development and clinical exploitation of antibiotics with new modes of action are a top priority 

in fighting untreatable chronic infections in CF patients. POL7001 is a Protein Epitope Mimetic 

(PEM) antibiotic with potent activity against Pseudomonas aeruginosa (PA) (Srinivas et al, Science 

2010).  

To evaluate CF lung infections as potential clinical application of this new antibiotic, the activity of 

POL7001 was tested in vitro against PA isolated from the onset of infection up to 16 years or until 

death/lung transplantation in CF patients, and in murine models of acute and chronic lung infection. 

Comparison to clinically approved antibiotics was included. 

MICs for POL7001 ranged between 0.015−0.5mg/mL with a median of 0.125 mg/mL for all solates 

with no difference against mucoid, non-mucoid orhypermutable isolates. Over time, many of the CF 

PA isolates became resistant to antibiotics while remaining sensitive to POL7001. Mice were 

infected with a multi-drug resistant PA isolate and treated with POL7001 or ciprofloxacin. 

Subcutaneous administration showed a comparable efficacy of both antibiotics, with more than 1.5 

log10 CFU/mL reduction after 24 hrs, while intratracheal administration showed faster killing and 

better efficacy of POL7001 than ciprofloxacin, with 3 log10 and 1 log10 CFU/mL reduction after 

24 hrs, respectively. In a model of chronic lung infection daily subcutaneous treatment showed that 

POL7001 is more efficaciousthan ciprofloxacin, with 1 log10 CFU/mL reduction in the BAL. These 

results represent a step forward in the pre-clinical development of POL7001 to treat CF lung  

infections. 
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Objectives: The discovery, development, and clinical exploitation of antibiotics with a new mode of 

action combined with efficient pulmonary drug delivery systems is a top priority in the battle 

against untreatable chronic infections in cystic fibrosis (CF) patients. POL7001 is a novel Protein 

Epitope Mimetic (PEM) antibiotic with potent activity against Pseudomonas aeruginosa (Pa) 

(Srinivas et al, Science 2010). POL7001 showed a potent in vitro activity against a large panel of Pa 

CF multi-drug resistant strains. To evaluate CF lung infections as potential clinical application, the 

therapeutic efficacy of POL7001 in mouse models was investigated. 

Methods: Both Pa acute and chronic airway infection were established, and mice were treated by 

subcutaneous (s.c.) or pulmonary administrations (i.t.). Body weight, bacterial count and 

inflammation in lungs were evaluated at different time points. Comparison to clinically approved 

antibiotics was included. 

Results: High antibacterial activity of POL7001, in particular after i.t. administration, was 

demonstrated. Leukocyte recruitment (in particular neutrophils) in the airways was reduced after 

POL7001 i.t.administration. Pharmacokinetic studies confirmed that POL7001 reached favorable 

concentrations in the lung after i.t. administration, with rather low systemic exposure. 

Conclusion: The efficacy of POL7001 was superior to ciprofloxacin, one of the most effective 

clinically-approved antibiotics and used as an internal positive control in our pre-clinical studies. 

Based on these promising results, POL7001 was selected for further pre-clinical profiling. 
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ABSTRACT 

Background. Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic 

fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are 

distinguished from the initially acquired strain. However, the genetic basis and the biology of host-

bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not understood. As a 

model system to study long term and persistent CF infections, the P. aeruginosa RP73, isolated 

16.9 years after the onset of airways colonization from a CF patient, was investigated. Comparisons 

with strains RP1, isolated at the onset of the colonization, and clonal RP45, isolated 7 years before 

RP73 were carried out to better characterize genomic evolution of P. aeruginosa in the context of 

CF pathogenicity. 

Results. Virulence assessments in disease animal model, genome sequencing and comparative 

genomics analysis were performed for clinical RP73, RP45, RP1 and prototype strains. In murine 

model, RP73 showed lower lethality and a remarkable capability of long-term persistence in chronic 

airways infection when compared to other strains. Pathological analysis of murine lungs confirmed 

advanced chronic pulmonary disease, inflammation and mucus secretory cells hyperplasia. 

Genomic analysis predicted twelve genomic islands in the RP73 genome, some of which 

distinguished RP73 from other prototype strains and corresponded to regions of genome plasticity. 

Further, comparative genomic analyses with sequential RP isolates showed signatures of 

pathoadaptive mutations in virulence factors potentially linked to the development of chronic 

infections in CF. 

Conclusions. The genome plasticity of P. aeruginosa particularly in the RP73 strain strongly 

indicated that these alterations may form the genetic basis defining host- bacteria interactions 

leading to a persistent lifestyle in human lungs. 

Running title: P. aeruginosa sequential isolates from persistent infection. 

Keywords: cystic fibrosis, P. aeruginosa, genome, adaptation, chronic infection, mouse model 
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BACKGROUND 

The opportunistic pathogen Pseudomonas aeruginosa has broad capabilities to thrive in diverse 

ecological niches and to establish serious human infections [1]. Poor clinical outcome 

of P. aeruginosa-associated infection was described in immune compromised patients and those in 

intensive care units, connected to mechanical ventilation or other invasive devices. P. aeruginosa is 

also the leading cause of chronic lung infections and death in patients with cystic fibrosis (CF), as 

well as a frequent cause of exacerbations in individuals with advanced chronic obstructive 

pulmonary disease (COPD) [2]. 

The genetic basis of P. aeruginosa leading to acute or chronic infection is not yet 

understood [3]. Genome sequencing projects are underway with the aim of providing new data to 

dissect the molecular basis of P. aeruginosa infections. Seventeen completely sequenced and 

assembled genomes are currently available and draft genomes exist for 561 additional genomes. 

The genome size of P. aeruginosa is larger than those of most sequenced bacteria and varies 

between 5.2 and 7 Mbp, with ~5500 ORFs [4]. A significant number (8,4%) of P. aeruginosa genes 

are predicted to be involved in regulation, which at the time of publication was the largest fraction 

of regulators among sequenced bacterial genomes. Irrespective of their origin, P. 

aeruginosa isolates share a remarkable amount of similarity in their genome content and in 

virulence traits (core genome). The extent of divergence between strains is determined by extra-

chromosomal elements like plasmids or blocks of DNA inserted into the chromosome at various 

loci [5]. These genetic features are likely to be acquired by horizontal gene transfer from different 

sources including other species or genera and can be present in subgroups of the P. 

aeruginosa population but may also be unique to single strains, accounting for most of intra- 

and inter-clonal P. aeruginosa genome diversity. These strain-specific segments of the genome are 

not scattered randomly through the core genome; rather, they tend to be clustered in certain loci, 

referred to as regions of genome plasticity (RGPs) [6]. The genetic sequences occupying many 

RGPs are often referred to as genomic islands (GIs) and islets. Therefore, the P. 

aeruginosa chromosome presents a picture of a mosaic, consisting of a conserved core component, 

interrupted in each strain by the inserted parts of the accessory genome. Genetic elements within the 

accessory genome may encode properties that contribute to niche-specific adaptation of the 

particular strains that harbor them. 

Furthermore, mutations of single nucleotides also confer specific P. aeruginosa phenotypes that are 

advantageous under certain conditions [7-10]. Long-term colonization of the CF host is maintained 
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by P. aeruginosa pathoadaptive lineages, which are clonal with the initially acquired strain and 

carry phenotypic variants. Pathoadaptive mutations are frequent in virulence genes, essential for 

acute infection but no longer compatible with the novel lifestyle of the P. aeruginosa in CF airways. 

However, little is known about the genetic basis and the biology of host-bacteria interactions 

leading to a persistent lifestyle of P. aeruginosa. 

To define the genetic basis of P. aeruginosa persistent lifestyle, longitudinal isolates from CF 

patient were selected. In particular, P. aeruginosa RP73 was isolated after long-term chronic 

infection and compared with the preceding RP1 and clonal RP45, as well as prototype PAO1 and 

PA14 strains. When murine model of chronic lung infection was used, RP73 showed a marked 

persistent lifestyle. Thus, genome sequencing and comparative genomics analysis were carried out. 

Our results show the links between genomic properties and pathogenic potential of RP73 that may 

define the basis of long-term chronic infection by P. aeruginosa. The significance of these results is 

discussed in the context of understanding disease pathogenesis. 

 

RESULTS AND DISCUSSION 

Chronic colonization of a CF patient’s airways with the P. aeruginosa RP isolates 

CF was suspected in the exocrine-insufficient patient index case RP (CFTR genotype: 

F508del/R1162X) by a positive meconium test at birth and was confirmed by pathological sweat 

tests at the age of 4 months. The RP patient‟s airways became colonized with P. aeruginosa by the 

age of 7 years (Figure 1). The CF clinic in Hannover has collected sequential isolates from this 

patient since the onset of colonization for up to 28 years [11]. The patient was chronically 

carrying P. aeruginosa isolates of clone type OC2E, for the first eleven years. During this time 

period strains of the clone type OC4A were sporadically isolated, but thereafter OC4A has become 

the dominant clone type until today. The RP patient received one to four annual 2-week courses of 

intravenous (iv) antipseudomonal chemotherapy since onset of colonization and was administered 

aerosolized colistin on a daily basis during the last 17 years. The last clone type OC2E strain was 

isolated from the patient‟s sputum four months after the start of colistin inhalation. The patient‟s 

clinical status remained stable during the 28 years of chronic airway infection. Lung function 

parameters fluctuated between 70–90% predicted for forced vital capacity (FVC) and 60–
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80% forced expiratory volume (FEV1) during the last 20 years with no tendency to irreversible 

decline. 

In this study three P. aeruginosa isolates from RP patient were selected for genetic and biological 

characterization. RP1 was the first P. aeruginosa isolate and belongs to clone type OC2E, while 

RP45 and RP73, isolated after 10 and 16.9 years from the onset of colonization, belong to clone 

type OC4A (Additional File 1 and Cramer et al. [12]). Thus, RP73 P. aeruginosa isolate was able 

to establish long-term infection replacing the initially RP1 acquired isolate and likely adapting 

within CF airways respect to RP45. 

Pathogenicity of P. aeruginosa RP isolates in murine model of airways infection. 

To translate data from CF patients into disease models, P. aeruginosa clinical isolates RP1, RP45 

and RP73 were tested in the agar beads mouse model of chronic airways infection in comparison to 

prototype PAO1 and PA14 strains [13, 14]. Bacteria embedded in the immobilizing agents appear to 

grow in the microaerobic/anaerobic conditions in form of microcolonies, similarly to the growth in 

the mucus of patients with CF [15, 16]. RP1 isolate, as well as prototype PA14 strain, caused death 

in all mice (100%) within the first three days of P. aeruginosa infection (Figure 2 and Additional 

File 2). Lower incidence of mortality (50%) was recorded after infection with RP45 strain, while 

RP73 were not lethal (0%). Thus, despite their clonality, RP45 and RP73 were significantly 

different in the risk of death. As previously reported, prototype PAO1 showed 24% of acute 

mortality [17]. Next, the capacity to establish chronic infection in the surviving mice was assessed 

at 14 days. Nearly all mice had chronic airways colonization by RP45 (80%) and RP73 (90%), 

demonstrating the persistent lifestyle of this lineage among surviving mice. PAO1 strain showed 

less capacity to establish chronic infection (24%). The ability of the clinical isolate RP73 to 

achieve long-term chronic infection associated with no risk of mortality in mice was superior to all 

other P. aeruginosa clinical strains tested in previous studies [17]. 

To assess clinical trait of chronic infection, lung histopathology was performed after 14 days 

from P. aeruginosa challenge with the persistent RP73 isolate. Chronic pulmonary disease, 

including inflammation and mucus secretory cells, was detected. The bronchi were filled by a 

massive neutrophil inflammation, whereas the parenchyma was infiltrated by macrophages, 

lymphocytes and some neutrophils (Figure 3A). Agar beads were observed in bronchial lumina 

(Figure 3B). Mucous secretory cells hyperplasia (Figure 3C) was found. These features resembled 

lesions found in CF patients with advanced chronic pulmonary disease [18]. 
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Genome sequences of RP isolates and comparative genomics analyses. 

To link the persistent lifestyle with a genetic basis, we sequenced the genome of RP73[19], in 

addition to those of preceding RP1 and clonal RP45 isolates, and performed comparative genomic 

analysis. The fully assembled RP73 genome consists of a single circular chromosome of 6,342,034 

base pairs (Additional File 3 for genome description). Twelve genomic islands were predicted in 

this genome (Table 1); three of them distinguished RP73 from other prototype strains and 

corresponded to regions of genome plasticity (Figure 4) [5]. They include known genomic 

islands PAGI-9,which is similar to rearrangement hot spots (Rhs) [20], and plasmid pKLC102, 

which carries the pil gene cluster and chvB glucan synthetase [21]. Nucleotide blast search on NCBI 

limited to P. aeruginosa showed that the former can be found in multiple clinical isolates, while the 

latter is identical to RP73 only in strain 8380, isolated from the human gut. However, plasmid 

pKLC102 is often partially present [22]. A SMC4389 CRISPR repeat sequence also differentiates 

RP73 from most prototype strains [6]. In fact, blast search for this sequence resulted in a single hit 

from soil strain Azotobacter chroococcum NCIMB 8003. The RP73 genome also contains full 

length LESGI-4, which was identified in the Liverpool epidemic strain (LES) [23].Genomic islands 

predicted in RP73 were investigated in the draft genomes of RP1 and RP45. While RP45 carries all 

12, RP1 lacks full-length plasmid pKLC102 and an ABC transporter protein. A circular map 

comparing the 3 sequenced RP genomes clearly shows the genomic similarity between RP45 and 

RP73 on one hand, and between RP1 and strain PA14, which showed similar results in the murine 

infection model, on the other (Figure 4). 

In order to study the evolution of chronic infection and determine which genetic determinants are 

involved in this process, further comparisons were made among RP isolates. First, analyses were 

carried out to study the relationship between these three strains. A core genome phylogeny was 

performed using 53 sequences from a previous study [24] representing an extensive sampling of P. 

aeruginosa‟s diversity. In the resulting tree (Figure 5), RP73 and RP45 cluster together while RP1 

is found in a different and independent branch. A multi-locus sequence typing (MLST) analysis was 

also performed. RP73 and RP45 shared the same MLST profile while RP1 showed a different one 

(Table 2). All these analyses suggest that RP73 and RP45 are close to each other from a genetic 

point of view, while RP1 is more distantly related. 

In order to explain the molecular bases of the development of chronic infection in a CF context, 

SNPs were determined between PA14 and RP1 compared to RP45 and RP73. A genomic 

comparison between PAO1 and RP1 was already performed by Hilker et al. [22]. A total of 54,621 

SNPs was found by taking PA14 as reference strain and searching for positions at which at least one 

among RP1, RP45 and RP73 strains showed a different nucleotide compared to PA14. About one 
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fifth of these SNPs (10,819) were non-synonymous substitutions (Additional File 4) that are likely 

to have an effect on protein function and structure. Several of these SNPs were located in virulence 

genes representing good candidates to explain the diversity in patterns of mortality and chronicity 

we observed. 

Virulence factors of RP isolates and their putative role in pathogenicity . 

The genome of RP isolates contains most of the virulence factors, described for other P. a 

eruginosa genomes and identified in the Virulence Factor (VF) database 

(http://www.mgc.ac.cn/VFs/) [25], with few exceptions. Several VFs of RP73 isolate shows 

signatures of pathoadaptive mutations within the genome when compared to the preceding clonal 

RP45 isolate as reported in Additional File 4. Phenotypic characterization of RP isolates is reported 

(Table 4) and their putative role in pathogenicity discussed. 

Motility, adherence and cell interaction. Pili, flagella and outer membrane proteins promote 

motility, attach to epithelial or endothelial cells, activate or inactivate host cellular pathways and 

immune responses [26]. These P. aeruginosa VFs play a key role in acute infection and are present 

in RP1 isolate. Variations in the twitching and swimming motility are common in P. 

aeruginosa isolates from CF patients and described to be hallmarks of bacterial adaptation to the 

airways [7, 27]. Both RP73 and its clonal RP45 isolate did not 

encode pilA, pilV, pilW, pilY2 and fimT, carried a deletion at the N-terminal in pilC and a premature 

stop mutation in pilO (Table 3). The RP73 and RP45 phenotypes are consistent with the absence of 

twitching and swimming motility (Table 4). Lack of motility was associated with decreased 

virulence in models of acute infection [28, 29] and increased risk of chronic infection [17]. Our 

results obtained in RP73 and RP45-infected mice (Figure 2) are consistent with the observation that 

unlike strains RP1, PA14 and PAO1, favor long-term persistence. 

Lipopolysaccharides (LPSs) are potent immune stimulants through their interactions with Toll-

like receptor 4 (TLR4). P. aeruginosa strains isolated from CF patients evolved the capacity to 

reduce host immuno-detection by modulating LPS structure [30]. Biochemical and biological 

characterization of RP73 LPS showed to possess an under-acylated lipid A leading to a lower pro-

inflammatory capacity in a murine model of intranasal instillation when compared to the LPS from 

the prototype strain PAO1 [31]. This structure is distinguished by the absence of hexa- or hepta-

acylated lipid A species that are typical phenotypic changes that can occur on the LPS molecule of 
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a P. aeruginosa chronic strain. Furthermore, RP73 carries an R-type LPS without O-antigen in 

which the lipid A is covalently linked to the core oligosaccharide region. Absence of LPS O-

antigen in RP73 suggests an adaptation of this strain to persistent lifestyle. 

Among genes responsible for lipid A modification (lpxO1, lpxO2, phoP, phoQ, 

pagLand OprH) [30], our genetic characterization showed that RP73 isolate carries a stop mutation 

and lacks of the C-terminus of the protein in lpxO2 compared to the preceding clonal RP45, as well 

as RP1 isolate and prototype PAO1 and PA14 strains (Table 3). These data suggests that an 

adaptive process has occurred to the LPS structure of the RP lineage in the period of time between 

the isolation of RP45 and RP73. 

Secretion systems and toxins. In P. aeruginosa genome, the genes (psc, pcr, exs andpop) encoding 

the type III secretion system (T3SS) are clustered together. The pscand prc genes primarily encode 

components of the bacterial secretion apparatus whereas the exs gene products are involved in 

regulation of TTSS. Two pop genes encode proteins (PopB and PopD) essential for the 

translocation of the effectors into host cells. Remarkably, RP73 isolate lost the entire 32-

gene cluster encoding the T3SS which was present in the preceding clonal RP45, as well as RP1 

and prototype PAO1 and PA14 strains (Table 3) [25]. However, the exoS, exoT, and exoY genes 

encoding for the „„T3SS translocated effectors‟‟ are still present both in RP73 and RP45 genome 

with two non-synonymous SNPs recorded in the exoT when compared with RP1 and PA14 (Table 

3 and Additional File 4). T3SS is an important virulence determinant of P. aeruginosa which may 

act at the site of infection and contribute to subversion of the host immune response. In contrast to 

acute infection, small proportion of isolates infecting CF patients secrete T3SS proteins and this 

proportion decreases with duration of infection [32]. We speculate that the differences in the risk of 

mortality associated to RP73 and RP45 isolates may be linked to absence or presence of the T3SS 

that changed during the progression of CF chronic infection. 

Genes encoding for toxA, hcnA, hcnB and hcnC are present. However, if we consider the exotoxin 

A, we observed several non-synonymous SNPs (Table 3 and Additional File 4). 

Finally, pldA coding for the periplasmic phospholipase D (Table 3), one of effectors of the type VI 

secretion system [33], is absent in RP73 genome. However pldA is reported to be not conserved 

among P. aeruginosa genomes [34]. 
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Iron uptake and pigment. The ability to produce siderophores, like pyochelin and pyoverdine, has 

been linked to the bacterial pathogenic potential. Phenotypic assay showed that RP isolates secreted 

lower (RP73 and RP1) or no (RP45) levels of siderophores when compared to PAO1 and PA14 

(Table 4). When we look at the genome sequence, RP73 and RP45 carries stop mutations both 

in pchD and pvdD involved in the synthesis of the two principal siderophores while pvdD is deleted 

in RP1 (Table 3). PvdD production was shown to be required for airways bacterial colonization in 

rat, lethal virulence in burned and immunosuppressed mouse models[35, 36]. Pyoverdine was 

detected in the sputa of CF patients [37], while in a larger study, one-third of sputa positive for P. 

aeruginosa contained no detectable pyoverdine [38]. These data suggests that pyoverdine-

mediated iron uptake may not always be essential for chronic infection and other mechanisms are 

active in CF [39]. 

Phenotypic tests showed that RP73 and RP45 are able to secrete less pyocyanin when compared to 

RP1, PAO1 and PA14 strains (Table 4). However, no changes in genes involved in pyocyanin 

biosynthesis were found. Pyocyanin is required for full virulence in animal models and has been 

detected in patients' airway secretions, promoting virulence by interfering with several cellular 

functions in host cells including electron transport, cellular respiration, energy metabolism, gene 

expression, and innate immune mechanisms [40]. 

Antiphagocytosis. RP isolates are phenotypically non-mucoid (Table 4) with absence of mutations 

in mucABD locus. Other key regulators of alginate pathway are present with the exception 

of algP (Table 3), required for transcription of the key biosynthetic gene algD and necessary for 

exopolysaccharide production [41].Absence of functional AlgP, has been associated with non-

mucoid phenotype in strains from CF patients. 

The phenotypic switch to mucoidy in P. aeruginosa infections is a well-established paradigm in CF. 

Infection with the mucoid phenotype, which produces large amounts of the exopolysaccharide 

alginate, has been associated with a more rapid decline in pulmonary function than infection 

with non-mucoid bacteria [42]. However, some but not all P. aeruginosa isolates became mucoid in 

the CF lung suggesting that a mucoid phenotype did not always confer a selective advantage to 

bacterial cells in persistence [43]. In mouse model, CF clonal strains, displaying a mucoid and 

a non-mucoid phenotype, showed a similar capacity of persistence [17]. Our data obtained in mouse 

model with RP73 and RP45 isolates support the notion that non-mucoid P. aeruginosa strains are 

able of long-term persistence. 
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Regulation. In P. aeruginosa, many virulence determinants and secondary metabolites are 

regulated in a cell population density-dependent manner via cell-to-cell communication or “quorum 

sensing” (QS) [44]. P. aeruginosa possesses two N-acylhomoserine lactone (AHL)-dependent QS 

systems. These are termed the las andrhl systems, consisting of the LuxRI homologues, LasRI and 

RhlRI, respectively. RP isolates have no mutations in lasI, rhlR and rhlI genes. However, 

inactivation of the transcriptional regulator LasR, lacking 20 aminoacidic residues at the C-terminus 

(Table 3), was found both in RP73 and RP45, while the RP1 has no changes. The 

distinctive lasR mutant phenotype was confirmed by colony morphology that includes surface 

iridescent sheen and colony flattening exclusively in RP73 and RP45 (Table 4) [45]. 

Mutations in lasR lead to several phenotypic changes of potential clinical significance, including a 

growth advantage in amino acid abundant CF airway secretions. LasR regulates the production of 

virulence factors (elastase, protease, alkaline protease and exotoxin A) affecting the immune 

response and antibiotic resistance [46]. Most importantly, lasR mutations are often associated with 

the progression of CF lung disease and may serve as a marker of early CF adaptive change of 

prognostic significance. [47]. 

Antibiotic resistance. RP73 showed remarkable resistance to most of the antibiotic classes while 

the preceding RP45 and RP1 isolates were not, indicating an increased treatment-refractory during 

the course of the chronic infection in this CF patient (Table 4). A strong link between antibiotic 

resistance and hypermutation was observed in patients with CF [48]. However, RP73 strain does 

not have mutations inmutS, mutL and uvrD, described previously as responsible for the 

hypermutable phenotype [49]. Regarding efflux pumps, the RP73 strain did not show mutation 

inmexEF-oprN, mexCD-oprJ and mexXY. No insertions or deletions 

in ampC, ampR,mexR, mexZ and oprD were detected. An insertion at the N-terminal of MexA and 

anon-synonymous SNP was found in RP73 and RP45 (Table 3 and Additional File 4). MexA 

belongs to the efflux pump complex MexAB-OprM, which is anchored to the inner membrane 

via N-terminal fatty acids. Adaptive mutations in mexA have been reported in CF isolates [7]. 

Additional modifications were detected at the N-terminal of mexT, which is not conserved in RP73 

and RP45 (Table 3). An additional non-synonymous aa change at position 128 was found in RP73 

when compared to RP45 (Additional File 4). MexT plays a pleiotropic role in modulating P. 

aeruginosa virulence such as TTSS, pyocyanin production and early surface 

attachment [50]. Similarly to MexA, also MexT is an hallmark of P. aeruginosa adaptation in CF 
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patients [7]. Among the additional 58 PAO1 coding sequence annotated as “antibiotic resistance 

and susceptibility”, only arr, a putative aminoglycoside response regulator, is absent in RP73 while 

present in RP45 genome. 

CONCLUSIONS 

Taken together, our study combined clinical data, whole-genome analysis and animal models to link 

the persistent lifestyle of P. aeruginosa in CF lungs with the bacterial genetic basis. Starting from a 

clinical case of CF, P. aeruginosa RP73 was isolated after long-term chronic infection and 

compared with the preceding RP1 and clonal RP45, as well as prototype PAO1 and PA14 strains. 

When tested in the animal model, P. aeruginosa RP73 isolate, but not other strains, mimics most of 

the traits of airways infection and inflammation observed in CF patients. These results suggested 

that key features of RP73 isolate may contribute to its pathogenesis. The genome sequence of RP73 

and comparative genomics analysis with other P. aeruginosa genomes, pointed clearly to signatures 

of pathoadaptive mutations within the genome. This in turn correlated with the major impact on 

the in vitro phenotypes and in vivo maintenance observed and described here. Our findings support 

and better define the hypothesis that genes encoding major virulence factors are deleted and/or 

contain beneficial mutations when P. aeruginosa establishes long-term chronic infection. The 

results presented in this study provide important information with respect to the P. 

aeruginosa mosaic genome structure and chronic infections found in CF patients. 
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 METHODS 

Bacterial strains and CF patient. CF clinical P. aeruginosa RP1, RP45 and RP73 isolates were 

chosen from the collection of the CF clinic Medizinische Hochschule Hannover, Germany. 

Genotypic analysis by multimarker array and phenotypic data of P. aeruginosa strains were partly 

published [51]. P. aeruginosa was cultured in Pseudomonas isolation agar (PIA) or Trypticase Soy 

Broth (TSB) at 37°C. CF patient gave informed consent before the sample collection. Approval for 

storing of biological materials was obtained by the Hannover Medical School, Germany. 

 

Phenotypic characterization. Swimming and twitching capacities protease, siderophore and 

pyocyanin secretion, hemolytic activity, and LasR mutant phenotypic analysis were assayed as 

described in the online data supplement. 

 

Genome sequencing. The genome of RP73 was previously published [19]. Genomic DNA from 

strains RP1 and RP45 was isolated from overnight cultures using the DNeasy Blood and Tissue Kit 

(QIAGEN). Genomic DNA (500 ng) was mechanically fragmented for 40 sec using a Covaris 

M220 (Covaris, Woburn MA, USA) with default settings. Fragmented DNA was transferred to 

PCR tubes and library synthesis was performed with the Kapa Hyperprep kit (Kapa biosystems, 

Wilmington MA, USA) according to manufacturer‟s instructions. TruSeq HT adapters 

(Illumina,SanDiego, CA, USA) were used to barcode the samples and each library wassequenced in 

1/48 of an Illumina MiSeq 300 bp paired-end run at the Plateforme d‟Analyses Génomiques of the 

Institut de Biologie Intégrative et des Systèmes (Laval University, Quebec, Canada). Sequencing 

data for each genome was assembled with the A5 pipeline [52]. 

 

Genomic analyses. Blast (NCBI) was used to compare the genome of RP73 to prototype strains and 

to the complete Pseudomonas aeruginosa content in Genbank. Genomic islands were predicted 

with Island Viewer [53] and annotated with xBase [54]. The core genome phylogeny was 

determined using the Harvest suite [52]. The data set of sequences we used to generate the core 

phylogeny includes 53 strains representative of P. aeruginosa diversity [55]. MLST profiles were 

determined combining the results obtained from the pubmlst database (http://pubmlst.org) and the 

SRST2 software package [56]. SNPs between PA14 and RP1, RP45 and RP73 were detected with 

the Samtools software package [57] (samtools mpileup options: -C 50, SNPs with quality score of 

less than 30 were discarded). 
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Mouse model of P. aeruginosa acute and chronic lung infection. For chronic infection, 

C57BL/6NCrlBR male mice (20-22g, Charles River) were infected with 1-2x106 CFUs of P. 

aeruginosa strains, embedded in agar beads [15, 17]. Fourteen days post-challenge lungs were 

recovered, homogenized and plated for CFUs counting. In additional group of mice, the lungs were 

excised for histopathology. Additional details are reported in the Online data supplement. 

Student‟s t-test and the χ2 test onsidering p<0.05 as the limit of statistical significance was 

performed. 

Animal studies were conducted according to protocols approved by the San Raffaele Scientific 

Institute (Milan, Italy) Institutional Animal Care and Use Committee. 
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additional files. 

LIST OF ABBREVIATIONS 

N-acylhomoserine lactone (AHL); coding sequences (CDSs); cystic fibrosis (CF) colony 

forming units (CFUs); chronic obstructive pulmonary disease (COPD); forced expiratory 

volume (FEV); forced vital capacity (FVC); genomic islands (GIs); Liverpool epidemic 

strain (LES); Lipopolysaccharides (LPSs); multidrug-resistant(MDR); open reading 

frames (ORFs); Pseudomonas isolation agar (PIA); Pulsed Field Gel Electrophoresis 

(PFGE); Toll-like receptor 4 (TLR4); Trypticase Soy Broth (TSB); type III secretion 

system (T3SS); Virulence Factor (VF) 

COMPETING INTERESTS 

The authors declare that they have no competing interests. 

AUTHORS’ CONTRIBUTIONS 

IB, JJ, LF, BAF, MF, BB and IKI performed research; IB, AM, BT, RL, and AB 

designed research; BT, AM, RL and AB contributed new reagents/analytic tools; IB, JJ, 

LF, BAF, MF, BB, AM and AB analyzed data; IB, JJ, LF, BAF, BT, RCL and AB wrote 

the paper. 

ACKNOWLEDGMENTS 

This study was supported by grants to A.B. from the Cystic Fibrosis Foundation (US) 

(BRAGON11I0) and Ministero della Salute (project GR/2009/1579812). R.C.L. is 

funded by Cystic Fibrosis Canada and by CIHR. J.J. holds a Cystic Fibrosis Canada 

postdoctoral research fellowship. We thank members of the IBIS Plateforme d‟analyses 

génomiques and the IBIS bioinformatics group for genome assembly. Part of this work 

was carried out in ALEMBIC, an advanced microscopy laboratory established by the 

San Raffaele Scientific Institute and the Vita-Salute San Raffaele University (Milan). 
 

 

 



                                                                    Novel approaches for prevention/eradication of P. aeruginosa lung infections 

 

84 
 

REFERENCES 

1. Lyczak JB, Cannon, C.L., Pier, G.B.: Establishment of Pseudomonas aeruginosa infection: 

lessons from a versatile opportunist. Microbes Infect 2000, 2:1051–1060. 

2. Gellatly S, Hancock RE.: Pseudomonas aeruginosa: new insights into pathogenesis and host 

defenses. Pathog Dis 2013, 67(3):159-173. 

3. Yahr T, Greenberg EP.: The genetic basis for the commitment to chronic versus acute infection 

in Pseudomonas aeruginosa. Mol Cell 2004, 16(4):497-498. 

4. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle 

WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, 

Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu 

Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV.: Complete genome sequence 

of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 2000, 406(6799):959-

964. 

5. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B.: Pseudomonas aeruginosa 

Genomic Structure and Diversity. Front Microbiol 2011, 2(150). 

6. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, 

Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, 

Kodira C, Birren B, Galagan JE, Lory S.: Dynamics of Pseudomonas aeruginosa genome 

evolution. Proc Natl Acad Sci U S A 2008, 105(8):3100-3105. 

7. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, Miller SI, 

Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV.: Genetic adaptation by 

Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S 

A 2006, 30(10322):8487-8492. 

8. Nguyen D, Singh PK: Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during 

cystic fibrosis infections. Proc Natl Acad Sci U S A 2006, 30(103(22)):8305-8306. 

9. Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT, Rau MH, Hansen SK, Folkesson A, 

Johansen HK, Ciofu O, Høiby N, Sommer MO, Molin S.: Evolutionary dynamics of bacteria in a 

human host environment. Proc Natl Acad Sci U S A 2011, 108(18):7481-7486. 

10. Yang L, Jelsbak L, Molin S.: Microbial ecology and adaptation in cystic fibrosis 

airways. Environ Microbiol 2011, 13(7):1682-1689. 

11. Cramer N, Wiehlmann L, Ciofu O, Tamm S, Høiby N, Tümmler B.: Molecular epidemiology of 

chronic Pseudomonas aeruginosa airway infections in cystic fibrosis. PLoS 

One 2012, 7(11):e50731. 

12. Cramer N, Klockgether J, Wrasman K, Schmidt M, Davenport CF, Tümmler B.: Microevolution of 

the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis 

lungs. Environ Microbiol 2011, 13(7):1690- 1704. 

13. Bragonzi A: Murine models of acute and chronic lung infection with cystic fibrosis 

pathogens. IJMM 2010, 300(8):584-593. 

14. Facchini M, De Fino I, Riva C, Bragonzi A: Long-term chronic Pseudomonas aeruginosa 

airway infection in mice. J Vis Exp 2014, 17(85). 

15. Bragonzi A, Worlitzsch D, Pier GB, Timpert P, Ulrich M, Hentzer M, Andersen JB, Givskov M, 

Conese M, Doring G.: Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of 

patients with cystic fibrosis and in a mouse model. J Infect Dis 2005, 192(3):410-419. 



                                                                    Novel approaches for prevention/eradication of P. aeruginosa lung infections 

 

85 
 

16. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, 

Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Döring G.: Effects of reduced 

mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J 

Clin Invest 2002, 109(3):317-325. 

17. Bragonzi A, Paroni M, Nonis A, Cramer N, Montanari S, Rejman J, Di Serio C, Döring G and 

Tümmler B.: Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection 

establishes clones with adapted virulence AJRCCM 2009, 180(2):138-145. 

18. Bedrossian C, Greenberg SD, Singer DB, Hansen JJ, Rosenberg HS.: The lung in cystic fibrosis. A 

quantitative study including prevalence of pathologic findings among different age 

groups. Hum Pathol 1976, 7(2):195-204. 

19. Jeukens J, Boyle B, Bianconi I, Kukavica-Ibrulj I, Tümmler B, Bragonzi A, Levesque 

RC.: Complete Genome Sequence of Persistent Cystic Fibrosis Isolate Pseudomonas 

aeruginosa Strain RP73. Genome Announc 2013, 1(4):e00568-00513. 

20. Battle S, Rello J, Hauser AR Genomic islands of Pseudomonas aeruginosa. FEMS microbiology 

letters 2009, 290:70-78. 

21. Klockgether J, Reva O, Larbig K, Tümmler B.: Sequence analysis of the mobile genome island 

pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 2004, 186(2):518-534. 

22. Hilker R, Munder A, Klockgether J, Losada PM, Chouvarine P, Cramer N, Davenport CF, 

Dethlefsen S, Fischer S, Peng H, Schönfelder T, Türk O, Wiehlmann L, Wölbeling F, Gulbins E, 

Goesmann A, Tümmler B.: Interclonal gradient of virulence in the Pseudomonas aeruginosa 

pangenome from disease and environment. Environ Microbiol 2015, 17(1):29-46. 

23. Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, 

Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, 

Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC.: Newly introduced genomic 

prophage islands are critical determinants of in vivo competitiveness in the Liverpool 

Epidemic Strain of Pseudomonas aeruginosa. Genome Res 2009, 19(1):12-23. 

24. Stewart L, Ford A, Sangal V, Jeukens J, Boyle B, Kukavica-Ibrulj I, Caim S, Crossman L, 

Hoskisson PA, Levesque R, Tucker NP.: Draft genomes of 12host-adapted and environmental 

isolates of Pseudomonas aeruginosa and their positions in the core genome 

phylogeny. . Pathog Dis 2014, 71(1):20- 25. 

25. Yang J, Chen L, Sun L, Yu J, Jin Q VFDB 2008 release: an enhanced web- based resource for 

comparative pathogenomics. . Nucleic acids research 2008, 36:539-542. 

26. Filloux A: Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, 

Evolution, and Function. Front Microbiol 2011, 2(155). 

27. Bianconi I, Milani A, Paroni M, Cigana C, Levesque RC, Bertoni G, Bragonzi 

A: Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-

adaptive mutations promoting long-term airways chronic 

infection. PlosPathogen 2011, 7(2):e1001270. 

28. Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB, Prince A.: Contribution 

of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a 

neonatal mouse model of infection. Infect Immun 1996, 64(1):37-43. 

29. Sato H, Okinaga K, Saito H.: Role of pili in the pathogenesis of Pseudomonas aeruginosa burn 

infection. Microbiol Immunol 1988, 32(2):131-139. 



                                                                    Novel approaches for prevention/eradication of P. aeruginosa lung infections 

 

86 
 

30. Cigana C, Curcurù L, Leone MR, Ieranò T, Lorè NI, Bianconi I, Silipo A, Cozzolino F, Lanzetta R, 

Molinaro A, Bernardini ML, Bragonzi A.: Pseudomonas aeruginosa exploits lipid A and 

muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung 

infection. PLoS One 2009, 4(12):e8439. 

31. Di Lorenzo F, Silipo A, Bianconi I, Lore' NI, Scamporrino A, Sturiale L, Garozzo D, Lanzetta R, 

Parrilli M, Bragonzi A, Molinaro A.: Persistent cystic fibrosis isolate Pseudomonas aeruginosa 

strain RP73 exhibits an under- acylated LPS structure responsible of its low inflammatory 

activity. Mol Immunol 2014, S0161-5890(14)00084-4. 

32. Jain M, Ramirez D, Seshadri R, Cullina JF, Powers CA, Schulert GS, Bar- Meir M, Sullivan CL, 

McColley SA, Hauser AR.: Type III secretion phenotypes of Pseudomonas aeruginosa strains 

change during infection of individuals with cystic fibrosis. J Clin 

Microbiol 2004, 42((11)):5229-5237. 

33. Jiang F, Waterfield NR, Yang J, Yang G, Jin Q.: A Pseudomonas aeruginosa type VI secretion 

phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host 

Microbe 2014, 15(5):600-610. 

34. Wilderman P, Vasil AI, Johnson Z, Vasil ML.: Genetic and biochemical analyses of 

a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition 

and a role for persistence in a chronic pulmonary infection model. Mol 

Microbiol 2001, 39(2):291-303. 

35. Poole K, Dean C, Heinrichs D, Neshat S, Krebs K, Young L, Kilburn L.: Siderophore-

mediated iron transport in Pseudomonas aeruginosa. in Molecular biology of Pseudomonas ed 

Nakazawa T (American Society for Microbiology, Washington, DC) 1996:371-383. 

36. Takase H, Nitanai H, Hoshino K, Otani T.: Impact of siderophore production on Pseudomonas 

aeruginosa infections in immunosuppressed mice. Infect Immun 2000, 68(4):1834-1839. 

37. Haas B, Kraut J, Marks J, Zanker SC, Castignetti D.: Siderophore presence in sputa of cystic 

fibrosis patients. Infect Immun 1991, 59(11):3997-4000. 

38. Martin L, Reid DW, Sharples KJ, Lamont IL.: Pseudomonas siderophores in the sputum of 

patients with cystic fibrosis. Biometals 2011, 24(6):1059- 1067. 

39. Konings A, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW, Lamont 

IL.: Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection 

in cystic fibrosis lungs. Infect Immun 2013,81(8):2697-2704. 

40.Rada B, Leto TL.: Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas 

aeruginosa airway infections. Trends Microbiol 2013, 21(2):73-81. 

41. Deretic V, Konyecsni WM.: A procaryotic regulatory factor with a histone 

H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in 

regulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol 1990, 172(10):5544-5554. 

42. Li Z, Kosorok MR, Farrell PM, Laxova A, West SE, Green CG, Collins J, Rock MJ, Splaingard 

ML.: Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung 

disease progression in children with cystic fibrosis. Jama 2005, 293(5):581-588. 

43. Bragonzi A, Wiehlmann L, Klockgether J, Cramer N, Worlitzsch D, Döring G, Tümmler 

B.: Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients 

with cystic fibrosis. Microbiology 2006, 152(Pt 11):3261-3269. 

44. Diggle S, Cornelis P, Williams P, Cámara M.: 4-quinolone signalling in Pseudomonas 

aeruginosa: old molecules, new perspectives. Int J Med Microbiol 2006, 296(2-3):83-91. 



                                                                    Novel approaches for prevention/eradication of P. aeruginosa lung infections 

 

87 
 

45. D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E, Smith EE, Nguyen H, Ernst RK, 

Larson Freeman TJ, Spencer DH, Brittnacher M, Hayden HS, Selgrade S, Klausen M, Goodlett DR, 

Burns JL, Ramsey BW, Miller SI: Growth phenotypes of Pseudomonas aeruginosa lasR 

mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 2007, 64(2):512-533. 

46. Pesci E, Iglewski BH.: The chain of command in Pseudomonas quorum sensing. Trends 

Microbiol 1997, 5(4):132-134. 

47. Hoffman L, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, Miller 

SI.: Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease 

progression. J Cyst Fibros 2009, 8(1):66-70. 

48. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J: High frequency of hypermutable 

Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000, 288(5469):1251-1254. 

49. Montanari S, Oliver A, Salerno P, Mena A, Bertoni G, Tümmler B, Cariani L, Conese M, Döring 

G, Bragonzi A.: Biological cost of hypermutation in Pseudomonas aeruginosa strains from 

patients with cystic fibrosis. Microbiology 2007, 153:1445-1454. 

50. Tian Z, Mac Aogáin M, O'Connor HF, Fargier E, Mooij MJ, Adams C, Wang YP, O'Gara F.: MexT 

modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-

OprN efflux pump. Microb Pathog 

2009, 47(4):237-241. 

51. Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Köhler T, van Delden C, 

Weinel C, Slickers P, Tümmler B.: Population structure of Pseudomonas 

aeruginosa PNAS 2007, 104(19):8101- 8106. 

52. Tritt A, Eisen JA, Facciotti MT, Darling AE.: An integrated pipeline for de novo assembly of 

microbial genomes. PLoS One 2012, 7(9):e42304. 

53. Langille M, Brinkman FS.: IslandViewer: an integrated interface for computational 

identification and visualization of genomic islands. Bioinformatics 2009, 25(5):664-665. 

54. Chaudhuri R, Loman NJ, Snyder LA, Bailey CM, Stekel DJ, Pallen MJ.: xBASE2: a 

comprehensive resource for comparative bacterial genomics. Comp Immunol Microbiol Infect 

Dis 2008, 31(1):47-62. 

55. Stewart L, Ford A, Sangal V, Jeukens J, Boyle B, Kukavica-Ibrulj I, Caim S, Crossman L, 

Hoskisson PA, Levesque R, Tucker NP.: Draft genomes of 12host-adapted and environmental 

isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog 

Dis 2014, 71(1):20- 25. 

56. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, Zobel J, Holt KE.: SRST2: 

Rapid genomic surveillance for public health and hospital microbiology labs. Genome 

Med 2014, 6(11):90. 

57. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 

1000 Genome Project Data Processing Subgroup.: The Sequence Alignment/Map format and 

SAMtools. Bioinformatics 2009, 25(16):2078-2079. 

58. Grant J, Arantes AS, Stothard P.: Comparing thousands of circular genomes using the CGView 

Comparison Tool. BMC Genomics 2012, 13(202). 

59. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, Zobel J, Holt KE.: SRST2: 

Rapid genomic surveillance for public health and hospital microbiology labs. Genome 

Med 2014, 6(11):90. 

 



                                                                    Novel approaches for prevention/eradication of P. aeruginosa lung infections 

 

88 
 

LEGENDS 

Figure 1. P. aeruginosa sequential isolates from patient RP. Two clone types (OC2E and OC4A) 

of P. aeruginosa strains were isolated from patient RP who is heterozygous for F508del and 

R1162X mutations in the CFTR gene. OC2E was isolated at the onset of chronic colonization for 

the first eleven years. Thereafter OC4A became the dominant clone. Strain RP1 belongs to the 

clone type OC2E and was the first P .aeruginosa strains isolated. Strains RP45 and RP7 belong to 

the clone type OC4A and were isolated after 10 and 16.9 years respectively after the onset of 

chronic colonization of the patient‟s airways with P. aeruginosa (Additional File 1and Cramer et 

al. [12]). Lung function parameters at the time of P. aeruginosa isolation are indicated. 

Figure 2. Virulence of P. aeruginosa RP isolates in comparison with prototype strains in 

murine model. C57Bl/6NCrlBR mice were infected with 1-2*106 

CFU/lung P. aeruginosa RP1, RP45, RP73, PAO1 and PA14 strains embedded in agar beads. 

Mortality induced by bacteremia (black) and survival (light gray) was evaluated on challenged 

mice. Clearance (white) and capacity to establish chronic infection (dark gray) were determined on 

surviving mice after 14 days. The data show the percentage of mice infected with single P. 

aeruginosa strains analyzed in two to three independent experiments. Statistical significance 

by Chi-square test is indicated: *P < 0.05, **P < 0.01, ***P < 0.001. 

Figure 3. Histological lesions after chronic P. aeruginosa infection in mice. Mice were infected 

with 2x106 cfu/lung of P. aeruginosa RP73 strain embedded in agar beads and lung harvested after 

14 days from challenge. Histopathological analysis of lungs chronically infected by RP73 strain are 

characterised by acute and chronic lesions; the pulmonary parenchyma is infiltrated by 

macrophages, lymphocytes and some neutrophils (A). Agar beads (arrow) containing bacteria 

macrocolonies (*) are localised in the bronchia and surrounded by a massive neutrophils 

inflammation (B). Alcian blue staining shows mucus secretory cells hyperplasia (circle) (C). 

Figure 4: Circular map of P. aeruginosa RP isolates and prototype strain PA14. 

Circular map constructed with the CGView Comparison Tool [58]. Starting from the outside: 

genomic islands predicted with Island Viewer (see Table 1 for details) [53],RP73, RP45, RP1, 

PA14 and GC content. Colored regions are shared with RP73 according to blast search. Dotted 

lines: known genomic islands (GIs) that distinguish RP73 because they are incomplete or absent in 
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the 12 complete P. aeruginosagenomes available at pseudomonas.com. RP isolates also 

carry LESGI-4, identified in the Liverpool epidemic strain. 

Figure 5: Core genome phylogeny for RP isolates and strains representative of P. 

aeruginosa diversity. The figure represents a partial view of the tree to show the relationships 

between RP1, RP45 and RP73. The position of RP1 is indicated in blue, while the position of RP45 

and RP73 is indicated in red. PA14 is distantly related to all these strains.
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TABLES 

Table 1: Predicted genomic islands in the genome of P. aeruginosa RP73 and comparison with other RP isolates and prototype strains.  
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Genomic islands were predicted using Island Viewer [53] and described based on annotation with xBase [54] using P. aeruginosa PAO1 as a 

reference genome. 

Co-localization with regions of genome plasticity previously described by Klockgether et al. (2011) [5], P: present, *: partially present (20-

90%coverage), -: absent. 
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Table 2: MLST typing of RP isolates. 

 

 

 

In silico MLST typing was performed using Pubmlst (http://pubmlst.org) and Srst2 [59]. 
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Table 3: Comparative pathogenomics of mutations present in the major virulence factors of RP isolates respect to the prototype strain 

PAO1 and evaluation in others P. aeruginosa sequenced strains. 
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* Sources for PAO1, PA14, LESB58 and PA7 information are the Virulence Factor Database 

(http:/ /www.mgc.ac.cn/cgi-bin/VFs/compvfs.cgi?Genus=Pseudomonas&type=1) and Pseudomonas Database (www.pseudomonas.com). 
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Table 4: Phenotypic characterization of P. aeruginosa RP isolates and prototype strains. 

* Indicates twitching and swarming motility zone diameter, as measured by subsurface stab assay. 

§ Isolates with iridescent and metallic sheen of the colony surface, that is typical for a lasR mutant, are indicated (+). 

# Indicates mean value ± SD at 26h. Values ≤ 0.05 indicate no production of pyocyanin. 

° Indicates mean value ± SD at 24h. 

AMK= amikacin; CAZ= ceftazidime; GEN= gentamicin; IMP= imipenem; MER = meropenem 
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ADDITIONAL MATERIAL 

Additional File 1. PFGE of P. aeruginosa RP isolates. 

Additional File 2. Virulence of P. aeruginosa RP isolates, and prototype strains in a murine model of chronic airways infection. 

Additional File 3: Genomic features of RP strains compared to others complete P. aeruginosa genomes. 

Additional File 4: Non-synonymous SNPs between prototype strain PA14 and strains RP73, RP45 and RP1 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4                                                                                                                Figure 5 
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Submitted paper and manuscript in preparation 

 
The submitted paper “Efficacy of the novel antibiotic NCE in pre-clinical models of Pseudomonas 

aeruginosa pneumonia” (European Respiratory Journal) and the manuscript in preparation 

”Genome-based approach deliver vaccine candidates against Pseudomonas aeruginosa” cannot be 

attached due to current patent rights. 

 

 


