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Abstract 

Outer membrane biogenesis in Escherichia coli: genetic and physiological 

cell response to lipopolysaccharide transport defects 

 

The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer formed by 

phospholipids in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet, with a large number 

of embedded or associated proteins. The primary function of this structure essential for Gram-negative 

viability is to establish an additional selective permeability barrier that enables the cell to maintain 

favourable intracellular conditions even in harsh environments and the LPS layer greatly contributes to 

this peculiar property. The transport of LPS to the cell surface is an essential process for OM biogenesis; 

the LPS transport (Lpt) system, originally identified in E. coli, is the protein machine responsible for 

LPS delivery from the periplasmic side of the inner membrane (IM) to the OM. It is composed of seven 

proteins forming a complex which spans from IM to OM. At the IM the ABC transporter LptBFG, 

associated to the membrane-bound protein LptC interacts with the periplasmic protein LptA that 

connects, through structurally conserved domains, the IM ABC transporter with the OM translocon 

LptDE, responsible for LPS assembly at the cell surface.  

In order to gain more insight in the mechanism of LPS transport and more in general in OM 

homeostasis we used both a genetic and a proteomic approach. The former was based on the selection of 

suppressors of LPS transport defects obtained with two different types of mutants. i) a quadruple non-

lethal lptA mutant (lptA41) that displayed increased sensitivity to toxic compounds, and ii) a lethal 

deletion mutant of lptC.  

Genome sequencing analysis of spontaneous suppressors of lptA41 phenotype revealed two 

different mechanism of suppression: one mechanism involves the Mla system, a protein machinery 

which contributes to maintain OM asymmetry; the second mechanism involves both an intragenic 

mutation improving LptA41 protein stability and an extragenic mutation affecting osmoregulated 

periplasmic glucans (OPGs) synthesis.  

Viable mutants lacking lptC were obtained using a plasmid shuffling technique. Genome 

sequencing of such mutants revealed single amino acid substitutions at the R212 residue of the IM 

component LptF (lptFSupmutants). Our results suggest that LptC may serve as a chaperon of the Lpt 

machine assembly and/or activity rather than an essential structural component and the periplasmic 

domain of LptF might be implicated in the formation of the Lpt bridge. 

The latter approach consisted of the analysis of differential envelope proteins content of an E. coli 

lptC conditional expression mutant upon depletion of LptC and thus impairment of LPS transport. By 
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two-dimensional chromatography coupled to tandem mass spectrometry (Multidimensional Protein 

Identification Technology, MudPIT) we identified 123 proteins whose level is significantly modulated 

upon LptC depletion. Most of these proteins belong to pathways that contribute to repair OM and 

restore its permeability barrier properties, including protein involved in maintaining OM asymmetry, in 

the synthesis of phospholipids and exopolysaccharides as substrate for lipid A modification enzymes, 

and in peptidoglycan synthesis/remodelling.  

Overall these data contribute to our understanding of the multiple strategies that E. coli cells may adopt 

to respond to perturbations of the OM permeability barrier and to restore OM functionality.  
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Abbreviations 
 

 

ABC   ATP-binding cassette  

ACP   Acyl carrier protein  

ATP   Adenosine triphosphate  

Bam   β-Barrel assembly machine  

CAMP  Cationic antimicrobial peptide 

GlcNAc  N-Acetyl-D-glucosamine  

IM   Inner membrane  

Kdo   3-deoxy-D-manno-oct-2-ulosonic acid  

L-Ara4N  4-amino-4-deoxy-L-arabinose 

Lol   Localization of lipoproteins  

LPS   Lipopolysaccharide  

Lpt   Lipopolysaccharide transport  

Mla  Maintenance of OM lipid asymmetry 

NBD   Nucleotide binding domain 

OM   Outer membrane  

OMP   Integral outer membrane protein  

PEtN   phosphoethanolamine 

PL   Phospholipid  

SEC  General secretory pathway 

TMD  Transmembrane domain 

1.1  
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1.2 Introduction 

 

All living cells are surrounded by the cytoplasmic membrane composed of a symmetric lipid 

bilayer and its associated proteins, whose architecture is conserved among Bacteria, Eukarya, and, 

although with relevant peculiarities, in Archaea. The cell envelope, however, may be a much more 

elaborated construction, as most organisms have developed diverse complex structures outside of 

the cytoplasmic membrane that provide additional properties to the cell, including increased 

mechanical strength, shape determination, selective permeability barrier, specific interactions with 

other cells, organisms, and environments.  

Typically, Gram-negative Bacteria are surrounded by two biological membranes, the 

cytoplasmic (or inner) membrane (IM) and the outer membrane (OM). In such bacteria, which are 

thus more properly described as diderms (Gupta, 1998; Sutcliffe, 2010; Desvaux et al., 2009) the 

OM is an essential structure that, together with the IM, delimits an aqueous compartment, the 

periplasm, which contains a cell-wall composed of peptidoglycan (reviewed by Silhavy et al., 

2010). Different diderm phyla may have OM of different architectures (reviewed by Sutcliffe et al., 

2010); needless to say that the OM has been most extensively studied in Escherichia coli and few 

other -Proteobacteria, although relevant information have been also obtained in other 

Proteobacteria such as Neisseria meningitidis; Helicobacter pylori, Bordetella parapertussis. 

Several structural and functional aspects differentiate the OM from the IM, the most striking 

structural difference being the asymmetry of the OM lipid bilayer.  

 

 

1.3 The Outer Membrane is an asymmetric permeability barrier 

 

The OM is an asymmetric bilayer consisting of phospholipids and glycolipids, principally 

lipopolysaccharide (LPS), in the inner and in the outer leaflet, respectively (Nikaido, 2003).  

Proteins are associated to the lipidic bilayer as either integral OM proteins (OMP) or lipoproteins 

(Bos et al., 2007). The primary function of the OM is to establish a permeability barrier that enables 

the cell to maintain favourable intracellular conditions even in harsh extracellular environments. 

While typical membrane bilayers are impermeable to polar solutes, the OM is impermeable also to 

lipophilic molecules (Nikaido, 2003). This property of the OM is attributed to LPS; in fact, the 

presence of LPS causes the OM to be approximately two orders of magnitude less permeable to 
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lipophilic substances than an equivalent phospholipid membrane bilayer (Plesiat and Nikaido, 

1992). 

LPS is an amphipathic molecule composed of lipid A, a core oligosaccharide, and a long 

polysaccharide called O-antigen (Raetz and Whitfield, 2002) (Fig. 1).  

 

 

 

 

 

 

Figure 1. General structure of LPS. LPS is composed of lipidA, a core oligosaccharide and a highly 

variable O-antigen constituted of repeating oligosaccharide units. Lipid A is connected to a Kdo dimer to 

give the minimal form of LPS needed for viability. Chemical structure of Kdo2-lipid A is shown on the 

right. From Sperandeo et al., 2014.  
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Lipid A is a unique glycolipid consisting of a phosphorylated β-(1→6)-glucosamine 

disaccharide backbone decorated with several acyl chains. The core is covalently linked to lipid A 

and can be divided into inner and outer core. The inner core composition is less variable and 

normally characteristic within a genus or a family; the first residue of the core region linked to lipid 

A is 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Kdo is peculiar sugar acid present in the LPS 

core of Enterobacteriaceae and represent the chemical hallmark of LPS and a marker of Gram-

negative bacteria (Holst, 2007). The O-antigen is the distal, surface exposed LPS moiety. It is 

responsible of the immunogenic properties of the molecule and is the most variable LPS portion 

(Raetz and Whitfield, 2002). The O-antigen moiety is not essential and is missing in common 

laboratory E. coli K12 strains due to inactivation of the wbbL gene (Reeves et al., 1996; Rubires et 

al., 1997); however, it is present in most wild type strains and clinical isolates where it contributes 

to virulence by protecting bacteria from phagocytosis and complement-mediated killing (Trent et 

al., 2006).  

LPS is essential in most Gram-negative bacteria, a known exception being Neisseria 

meningitidis (Steeghs et al., 1998). The minimal LPS structure required for viability, however, 

varies among different species. In E. coli it has been defined as Kdo2-lipidA (Raetz and Whitfield, 

2002), whereas Pseudomonas aeruginosa requires to be viable the full inner core and at least part of 

the outer core (Rahim et al., 2000; Walsh et al., 2000).  

Within the LPS layer, the negative charges of phosphate groups present on adjacent molecules 

are neutralized by the presence of cations like Mg
2+

 and Ca
2+

 and the acyl chains are widely 

saturated, thus facilitating tight packing. Moreover the porins limit diffusion of hydrophilic 

molecules larger than about 700 Daltons, contributing to create a very effective selective 

permeability barrier (Nikaido, 2003). 

LPS organization can be disrupted by defects in OM components assembly (Ruiz et al., 

2006), in mutant producing LPS truncated in sugar chains (Young and Silver, 1991) or by exposure 

to antimicrobial peptides and chelating agents such as EDTA, which displace divalent cations 

between LPS molecules (Nikaido, 2003). In all these cases the consequence is that much of the LPS 

layer is lost and PLs migrate from the inner to the outer leaflet, generating locally symmetric bilayer 

rafts that are more permeable to hydrophobic molecules (Nikaido, 2005). Cells have evolved 

systems to monitor the asymmetry of the OM and to respond either by removing PLs from the outer 

leaflet or by modifying LPS. Two main mechanisms have been described that restore OM 

asymmetry by acting on PLs: the phospholipase OmpLA and the Mla pathway. 
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OmpLA, encoded by pldA, is a phospholipase that normally resides as an inactive monomer at 

the OM; however, in the presence of PLs a catalytically active OmpLA dimer is formed. Activated 

OmpLA degrades PLs that have accumulated in the outer leaflet of the OM under stress conditions 

(Dekker, 2000).  

The Mla (Maintenance of OM lipid asymmetry) proteins constitute a highly conserved ATP-

binding cassette (ABC) transport system that prevents PLs accumulation in the outer leaflet of the 

OM under non-stress conditions. Mutations in the Mla system are not lethal but lead to PLs 

accumulation in the outer leaflet of the OM (Malinverni and Silhavy, 2009). It comprises at least six 

protein distributed across the cell envelope. MlaA (formerly VacJ) is a predicted OM lipoprotein, 

MlaC is a periplasmic protein, and MlaFEDB form a putative ABC transporter (Malinverni and 

Silhavy, 2009). Recently MlaA has been found to interact specifically with the OM β-barrel OmpC 

(Chong et al., 2015) The evidence that cells lacking OmpC accumulate PLs in the outer leaflet of 

the OM in stationary phase indicate a role for OmpC in maintaining lipid asymmetry, thus 

suggesting OmpC to be an additional OM component of the Mla system (Fig. 2) (Chong et al., 

2015).  

An alternative response to OM asymmetry perturbation consists in LPS modification. As will 

be discussed in paragraph 1.3.2.2, LPS can be palmitoylated at the position 2 of lipid A by PagP, an 

OM β-barrel acyltransferase that uses PLs flipped in the OM as substrates (Bishop et al., 2000). The 

product of the PagP reaction is a hepta-acylated LPS which possesses increased hydrophobicity 

(Bishop, 2008) thus contributing to better packing within the LPS layer.  
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Figure 2. MlaA-OmpC working model. MlaA (VacJ) may extract PLs from the inner leaflet of the OM 

to prevent flipping into the OM. MlaA form a complex with OmpC that functions to remove PLs directly 

from the outer leaflet. (A) OmpC may allow PLs to be flipped back into the inner leaflet, where they are 

removed by MlaA or (B) OmpC may allow MlaA to become surface exposed, thus giving access to PLs 

accumulated in the outer leaflet. Removed PLs may be routed back to the IM by the rest of the Mla 

system. From Chong et al., 2015.  
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BOX 1. Antibiotics that affect cell envelope biogenesis: bacitracin action and 

resistance mechanisms.  

Bacitracin is a cyclic polypeptide antibiotic produced by Bacillus subtilis and Bacillus 

licheniformis (Johnson et al., 1945) that specifically interferes with cell wall biosynthesis by 

interfering with generation of undecaprenyl phosphate (C55-P) from its precursor undecaprenyl 

pyrophosphate (C55-PP). C55-P is an essential lipid carrier required for the synthesis of bacterial cell 

wall polysaccharides such as PG, LPS O-antigen, and teichoic acids (van Heijeenort, 2001; Raetz and 

Whitfield, 2002; Nauhaus and Baddiley, 2003). It is synthesized de novo as C55-PP on the cytoplasmic 

side of the inner membrane and then dephosphorylated by an undecaprenyl pyrophosphatase prior to 

its use. C55-P transports various hydrophilic precursors in the C55-PP-substrate form across the 

hydrophobic inner membrane, transfers the oligosaccharide unit to the growing polymer on the 

periplasmic side, and is then released as C55-PP. (Touzé et al, 2008). It thus requires a second 

dephosphorylation step for its recycling as a C55-P carrier molecule. 

Bacitracin prevents C55-PP dephosphorylation, by specifically binding to a complex of C55-PP and 

metal cations, thereby disrupting regeneration of C55-P (Stone and Strominger, 1971; Storm and 

Strominger, 1973). As a result cell wall biosynthesis is inhibited and cell lysis occurs (Siewert and 

Strominger, 1967; Stone and Strominger, 1971; Storm and Strominger, 1973).  

Several mutations leading to bacitracin resistance were identified in E. coli and other Gram-

negative bacteria. Interestingly, some mutations interfere with the synthesis of non-essential cell 

envelope polymers such as osmoregulated periplasmic glucans (OPGs) and capsule polysaccharides 

that also require the C55-P for their formation. It has been proposed that in these mutants the reduced 

requirement for C55-P results in higher availability of the lipid carrier for the synthesis of essential 

polymers (PG and LPS) and, as a consequence, in increased tolerance to bacitracin (Pollock et al 1994; 

Fiedler and Rotering, 1998).  

Overexpression of genes encoding proteins with a C55-PP phosphatase activity has also been 

associated to bacitracin resistance (Cain et al., 1993¸ El Ghachi et al., 2005). In E. coli different 

proteins with C55-PP phosphatase activity have been described: the membrane-bound BacA, and 

several members of a superfamily of phosphatase with a common phosphatase sequence motif, 

including YbjG, PgpB and LpxT. The latter, LpxT, transfers a phosphate group from the undecaprenyl 

pyrophosphate donor to lipid A to form lipid A 1-diphosphate (Touzé et al., 2008; Valvano, 2008). It 

has been proposed that the overexpression of phosphatase activity might accelerate the conversion of 

the pool of C55-PP to C55-P, thereby reducing the availability of the bacitracin specific target (Cain et 

al., 1993).  
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1.3 Overview of Outer Membrane biogenesis 

 

OM components synthetized in the cytoplasm (proteins) or at the inner leaflet of the IM (LPS 

and PLs) must not only be translocated across the IM, but must also cross the aqueous periplasmic 

space and be assembled in the amphipathic bilayer. The compartments outside the IM are devoid of 

ATP or other high-energy carriers. Thus the energy required for OM biogenesis must be provided 

by exergonic reactions involving substrates energized in the cytoplasm or be transduced by devices 

connected to the IM. Commonly these devices are protein machines able to use the energy released 

by ATP hydrolysis in the cytoplasm or the proton motive force. Only in recent years the protein 

systems responsible for the transport of lipoproteins, OMPs, and LPS have been identified and 

aspects of their mechanisms have been elucidated.  

  

1.3.1 OM proteins and Lipoproteins 

Cell-environment exchanges across the OM are ensured by OM proteins, which are 

implicated in several functions: nutrients uptake, transport and secretion of various molecules 

(proteins, polysaccharides, drugs), assembly of proteins or proteinaceous structures at the OM.  

Typical OM integral proteins (OMPs) are β-barrel proteins (Rigel et al., 2012), whereas OM-

associated proteins are generally lipoproteins that are anchored to the periplasmic side of the OM 

via a lipid tail attached to an N-terminal N-acyldiacylglycerylcysteine residue (Sankaran and Wu, 

1994).  

OMPs and lipoproteins are synthesised as pre-proteins in the cytoplasm and then secreted 

across the IM by the SEC translocase, a universally conserved machine that transports unfolded 

proteins (Du Plessis et al., 2011). Lipoproteins are then processed into mature forms on the 

periplasmic side of cytoplasmic membrane where a lipid moiety is attached to the N terminus to 

anchor these proteins to the membrane (Tokuda, 2009). The Lol system, composed of five essential 

proteins, is responsible for the transport of lipoproteins with OM location (Fig. 3). LolCDE 

constitute an ABC transporter and mediate the detachment of lipoproteins from the IM and their 

transfer to the periplasmic chaperone LolA. The hydrophilic complex lipoprotein-LolA crosses the 

periplasm and LolA transfers its cargo to LolB at the OM, where lipoproteins are incorporated into 

the lipid bilayer (Okuda and Tokuda, 2011). Once secreted in the periplasm, misfolding of β-barrel 

OM proteins precursors is prevented by molecular chaperones, such as SurA and Skp (Sklar et al., 
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2007) which deliver OMPs to the Bam complex (Fig. 3), a molecular machine driving β-barrel 

assembly (Ricci and Silhavy, 2012).  

The Bam machinery consists of the OM β-barrel protein BamA and four lipoproteins BamB, 

BamC, BamD, and BamE. The Bam complex is a modular molecular machine in which BamA 

forms the protein-lipid interface at which OMP substrates enter into the lipid phase of the 

membrane. BamB interacts with BamA and is proposed to form a scaffold to assist β-barrel folding. 

BamB, BamC, and BamD interact and form a module suggested to drive a conformational switch in 

the Bam complex that enables β-barrel insertion into the OM (Ricci and Silhavy, 2012).  

 

 

 

Figure 3. Lipoproteins and OMPs biogenesis. Periplasmic and OM proteins are synthesized as 

precursors with a signal peptide at their N termini in the cytoplasm and are then translocated across the 

IM by a Sec translocon. (a) OM lipoproteins are released from the IM in an ATP-dependent fashion and 

translocated to the OM by the Lol system. (b) OMPs are inserted into the OM from the periplasm by the 

Bam machine, consisting of the β-barrel protein, BamA, and four lipoproteins, BamB/C/D/E. Periplasmic 

chaperones, SurA, Skp, and DegP, are involved in the formation of the folded β-barrel structure. 

(Modified from Okuda and Tokuda 2011). 
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1.3.2 Lipopolysaccharide biogenesis in the Inner Membrane 

The biosynthesis of LPS is a complex process that occurs in three different cellular 

compartments, cytoplasm, IM and periplasm, thus, requiring spatial and temporal coordination of 

several independent biosynthetic pathways (Raetz and Whitfield, 2002; Valvano, 2003;  Samuel, 

2003) (Fig. 4).  

The first stage of the biosynthetic pathway is the synthesis of Kdo2-lipid A. The pathway is 

mediated by nine enzymes and takes place in the cytoplasm and on the inner surface of inner 

membrane. The initial building block of lipid A is UDP-N-acetylglucosamine (UDP-GlcNAc). The 

first three reactions are catalyzed by soluble enzymes LpxA, LpxC and LpxD, resulting in the 

addition of two 3-OH fatty acid chains to the 2- and 3-positions of the UDP-GlcNAc to form UDP-

diacyl-GlcN (Jackman, 1999). Next, reactions catalyzed by LpxH, LpxB, and LpxK result in the 

synthesis of the tetra-acylated lipid IVA that, in E. coli, is the substrate of WaaA, the CMP-Kdo 

dependent transferase that catalyzes the sequential incorporation of two Kdo residues synthesized in 

a separate pathway (Raetz and Whitfield, 2002). Two further acylation reactions lead to the 

synthesis of the hexaacylated Kdo2-lipid A (Clementz et al., 1996, Clementz et al., 1997). The 

additional sugars composing the oligosaccharide core are added to Kdo2-lipid A by specific 

glycosyl-transferases to generate the core-lipid A structure.  

The core-lipid A, anchored to the IM, is then flipped across the IM by the ABC transporter 

MsbA, thus becoming exposed to the periplasm (Polissi and Gergopoulos, 1998; Zhou et al., 1998). 

O-antigen repeat units are synthesized in the cytoplasm, flipped to the periplasmic face of the IM 

linked to the lipid carrier undecaprenyl diphosphate and then ligated to core-lipid A by the WaaL 

ligase, thus forming a mature LPS molecule (Perez et al., 2008).  

The enzymes for lipid A and Kdo biosynthesis are constitutively expressed (Raetz and 

Whitfield, 2002; Raetz et al., 2009). However, in E. coli the synthesis of Kdo2-lipid A is post-

transcriptionally regulated by FtsH, an essential IM metalloprotease, in conjunction with the 

recently identified heat shock protein LapB (previously YciM) (Ogura et al., 1999; Klein et al., 

2014). LpxC catalyzes the first committed step of the lipid A biosynthetic pathway (Sorensen et al., 

1996) and FabZ is the enzyme that catalyzes the first key step of PLs biosynthesis, thus competing 

with LpxC for their common precursor molecule, R-3–hydroxymyristoyl ACP. Increased cellular 

levels of LpxC are lethal to the cells due to the excess of LPS over PLs (Ogura et al., 1999), thus 

regulation of LpxC by FtsH and LapB is crucial for this biosynthetic checkpoint. The absence of 

FtsH or LapB result in an increased LpxC level and consequently an increased LPS level and this 

phenomenon can be compensated by suppressor mutations in fabZ gene or by fabZ overexpression 
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(Ogura et al., 1999; Klein et al., 2014; Mahalakshmi et al., 2014). Recently, LapB was found to co-

purify WaaC, the enzyme responsible for transfer of the first heptose sugar onto the Kdo2 moiety, 

and LPS transport (Lpt) proteins, suggesting that LapB could serve as a docking site for the LPS 

assembly by various IM-associated or IM-anchored enzymes, ensuring that only completely 

synthesized LPS molecules are translocated (Klein et al., 2014). FtsH also controls the turnover of 

WaaA, the enzyme catalyzing incorporation of Kdo residues in lipid IVA (Katz et al., 2008). 

 

 

 

Figure 4. LPS biosynthesis in E. coli. UDP-diacyl-GlcN is synthesized in the cytoplasm by LpxA, LpxC 

and LpxD enzymes. The synthesis of β-(1→6) disaccharide (Disaccharide-1-P) requires LpxH and LpxB. 

LpxK synthetizes the tetra-acylated lipid IVA (not shown) that is converted in Kdo2-lipid A by the 

sequential action of WaaA (which transfers two molecules of Kdo) and the acyltransferases LpxL and 

LpxM. Core oligosaccharide is assembled on Kdo2-lipid A via sequential glycosyl transfer of sugar 

precursors. The lipid A-core is then flipped across the IM by the ABC transporter MsbA. O-antigen 

repeat units are synthesized in the cytoplasm and at the IM; they are then transported and polymerized by 

a separated pathway (Wzx-Wzy dependent pathway). WaaL ligase catalyzes Lipid A-core ligation to O-

antigen at the periplasmic face of the IM. LPS is then delivered to the Lpt machinery. From Sperandeo et 

al., 2014.  
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1.3.2.1 LPS transport across the IM 

After its biosynthesis, the lipid A-core is anchored to the IM with its hydrophilic moiety 

exposed to the cytoplasm and is then flipped across the IM by the essential ABC transporter MsbA. 

MsbA was originally identified in E. coli as a multicopy suppressor of the thermosensitive 

phenotype of a lpxL (formerly htrB) insertion mutant (Karow and Georgopoulos, 1992; see Box 2). 

LpxL is a lauroyl acyltransferase involved in LPS biosynthesis (Clementz et al., 1996). lpxL null 

mutants are not viable at temperatures above 33°C and when exposed to non-permissive 

temperature show cell morphology alterations (such as formation of bulges and filaments), 

accumulate PLs and tetra-acylated LPS precursor in the IM (Polissi and Georgopoulos, 1996; Zhou 

et al., 1998). In the lpxL null mutant, these phenotypes can be suppressed by the overexpression of 

msbA from a plasmid vector, thus suggesting that MsbA overexpression facilitates the transport of 

the immature LPS form to the OM, despite lipid IVA acylation is not  restored (Zhou et al., 1998). 

By contrast, MsbA depleted cells accumulate hexa-acylated lipid A at the IM (Zhou et al., 1998). 

The MsbA function as a flippase was finally verified by demonstrating that modification of LPS by 

aminoarabinose (L-Ara4N) and phosphoethanolamine (PEtN), which occurs at the outer leaflet of 

the IM, depends on MsbA (Doerrler et al., 2004). 

MsbA functions as a homodimer and each monomers is composed of a nucleotide binding and 

a transmembrane domains (NBD and TMD, respectively) (Doshi and van Veen, 2013). 

Furthermore, X-ray crystallography has revealed multiple conformations of MsbA including two 

inward-facing states where the NBDs undergo a large conformational change and fluorescence 

resonance energy transfer has revealed that binding of lipid A induces NBDs dimerization and 

stimulates ATP hydrolysis (Doshi and van Veen, 2013). Recently, these conformational changes 

have been studied in a membrane-mimicking environment by single particle electron microscopy 

and it has been demonstrated that most of MsbA molecules without ATP were in a closed or 

moderately open state (Moeller et al., 2015). This conformational change is thought to insert lipid A 

into the outer leaflet of the IM.  

Interestingly, MsbA has also been implicated in multidrug transport (Reuter et al., 2003). 

Lipid A and amphipathic drugs can bind MsbA at the same time, suggesting that MsbA has separate 

binding site for these two types of substrates and may function as both a lipid flippase and a 

multidrug transporter (Siarheyeva and Sharom, 2009). 
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BOX 2. Genetic suppressors, the powerful tool 

The identification of genetic suppressors is a commonly used strategy to identify functional 

relationships between genes. The strategy is to begin with a strain that already contains a mutation 

affecting the pathway of interest, and to select for mutations able to modify its phenotype. Those 

mutations that restore a wild-type phenotype despite the continued presence of the original 

mutation are termed suppressors. Two are the main reasons that make this strategy so powerful. 

First, a pre-existing mutation often sensitizes the pathway under study, and might thus allow the 

identification of additional components. Second, suppression of a pre-existing phenotype 

establishes a genetic relationship between genes that might not have been established by other 

methods (Prelich, 1999).  

Among the described suppression mechanism, the simplest one is intragenic suppression, in 

which the primary mutation is compensated by a second mutation in the same gene affecting a 

different codon and causing an amino acid change in another position (Patterson, 1998; Nonet and 

Young, 1989). 

A second class comprises mutations that alter the amount of the original mutant protein by 

affecting gene expression, transcription, mRNA processing (Hodgkin, 1989) or protein stability 

(Nouraini et al., 1997). Alternatively the suppressor mutation can lead to a modification of the 

activity of the original protein and particularly of its ability to interact with another protein, 

disrupting or restoring that kind of interaction.  

Additional suppression mechanisms consist in the alteration of the mutant pathway or the 

alteration of a different pathway. The first class comprises mutations that affect one step of a 

multi-step pathway, often leading to the identification of other component of the pathway or 

facilitating ordering of the pathway (Huang and Sternberg, 1995; Avery and Wasserman, 1992). 

The second class comprises those suppressors that might affect the regulation of a pathway that 

has related or overlapping function or might alter the specificity of a functional unrelated pathway 

(Shuman and Beckwith, 1979). 

 

 

 

1.3.2.2 Lipid A modification systems 

Following MsbA mediated translocation, the core-lipid A moiety may be covalently modified 

during and after trafficking to the cell surface, resulting in the wide variety of lipid A structures that 

can be observed across species. Lipid A modifications are not essential, but are often necessary 

under specific conditions, such as host colonization (Raetz et al., 2007) and the involved enzymes 
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are subjected to both transcriptional and post-translational regulation (Fig. 5). To date, several two-

component systems have been implicated in transcriptional control of lipid A modifications 

enzymes, including the PhoP/PhoQ and PmrA/PmrB systems in E. coli and Salmonella and the 

ParR/ParS, ColR/ColS and CprR/CprS systems in Pseudomonas aeruginosa. Furthermore, small 

RNAs, peptide feedback loop and substrate availability are all involved in directing the activity of 

the enzymes responsible for these modifications (Needham and Trent, 2013).  

In E. coli and Salmonella, PmrA/PmrB regulon includes the enzymes ArnT and EptA, which 

catalyze the decoration of phosphate groups by addition of L-Ara4N and PEtN  respectively (Trent 

et al., 2001; Lee et al., 2004) enzymes. The addition of these residues occurs at the IM before 

transport across the periplasm and, as a consequence, the overall negative charge of LPS decreases, 

thus improving resistance to positively charged antimicrobial peptides (CAMPs). PEtN can also be 

added to the outer core by EptB. EptB is not PmrA regulated, but its expression is repressed by a 

small RNA MgrR that is induced by PhoP/PhoQ (Moon and Gottesman, 2009; Moon et al., 2013). 

The PhoP/PhoQ system is itself regulated by another sRNA, MicA, whereas MicF negatively 

regulates lpxR transcript, which encodes in Salmonella a lipid A deacylase.  

Post translational control of lipidA modification systems includes the inhibition of LpxT by the 

small peptide PmrR (Herrera et al., 2010). LpxT catalyzes the addition of a phosphate group from 

undecaprenyl-pyrophosphate to the position 1 phosphate to create lipid A 1-diphosphate, thus 

increasing the overall negative charge of the OM. Other enzymes modulate the number of acyl 

chains of lipid A; the OMP PagP (CrcA) catalyzes the addition of palmitate residue at position 2 of 

lipid A acyl chains (Hwang et al., 2002), LpxR and PagL, which are found in Salmonella but not in 

E. coli K-12, remove the 3-linked acyl chains (Reynolds et al., 2006; Kawasaki et al., 2005). 

Palmitate transfer by PagP occurs on the outer leaflet of the outer membrane where PLs are used as 

palmitoyl donors (Bishop et al., 2000). The active site of PagP faces the exterior (Hwang et al., 

2002) suggesting that its activity may be regulated by substrate availability at the outer surface of 

the outer membrane. 

Based on their sub-cellular localization and mechanism of action, lipid A modification 

enzymes have been extremely useful as reporters for LPS trafficking within the bacterial envelope.  
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Figure 5 | (a) Transcriptional control of lipid A modification system. The two-component system 

PhoPQ upregulates transcription of the genes encoding PagP and PagL. The two-component system 

PmrAB upregulates transcription of ArnT and EptA, responsible for the addition of L-Ara4N or pEtN 

respectively. Expression of EptB is repressed by the sRNA MgrR, which is induced by PhoPQ. sRNA 

MicA represses the translation of the phoP mRNA. sRNA MicF increases degradation of the lpxR 

mRNA, which encodes a lipid A deacylase. (b) Post-translational control of lipid A modification 

systems.  The kinase LpxT is inhibited by the small peptide PmrR, which is upregulated by the PmrAB 

system in response to high levels of Fe
3+

. Membrane perturbation can lead to the displacement of  PLs 

from the inner leaflet to the outer leaflet of the outer membrane. The presence of these donor substrates in 

proximity to PagP enhances enzyme activity. LpxR deacylates lipid A, but this activity is inhibited by the 

aminoarabinose lipid A modification. From Needham and Trent, 2013. 

 



Outer membrane biogenesis in Escherichia coli:  

genetic and physiological cell response to lipopolysaccharide transport defects 

 

19 

 

1.3.3 Lipopolysaccharide biogenesis: transport to the cell surface 

 

1.3.3.1 The Lpt machinery 

Mature LPS molecule assembled at the periplasmic face of the IM by WaaL ligase must be 

extracted from the IM and traverse the aqueous periplasmic space and be then inserted into the OM. 

Such functions are carried out by the Lpt (lipopolysaccharide transport) system (Silhavy et al., 

2010, Sperandeo et al., 2009, Ruiz et al., 2009). 

In E. coli the Lpt system is composed of seven essential proteins (LptABCDEFG) located in 

three distinct cellular compartments of the cell envelope (Fig. 7). The Lpt complex may be divided 

in three subassemblies: the IM sub-complex LptB2FGC, the periplasmic LptA, and the OM sub-

complex LptDE (Sperandeo et al., 2006; Braun et al., 2002; Wu et al., 2006, Ruiz et al., 2008).  

The IM sub-complex consists of LptB2CFG and is responsible for the extraction of LPS from 

the IM. LptB is a cytoplasmic protein belonging to the ABC transporter NBD family that associates 

as a dimer with IM proteins LptCFG (Chng et al., 2010, Narita and Tokuda 2009; Sherman et al., 

2014). LptFG are integral IM proteins that constitute the TMD subunits of the LptB2FG ABC 

transporter (Ruiz et al., 2008). The bitopic protein LptC has a single transmembrane domain in the 

IM and a large periplasmic domain that is structurally homologous to both LptA and the 

periplasmic domain of LptD (Suits et al., 2008; Tran et al., 2010), whereas LptA is the only 

component that completely resides in the periplasm (Tran et al., 2010). Finally, the LptDE OM sub-

complex mediates LPS translocation across the OM and its assembly at the cell surface. The OM 

protein LptD has an N-terminal periplasmic domain and C-terminal β-barrel (Chng et al., 2010a), 

whereas LptE is a lipoprotein that resides within the lumen of the LptD barrel (Chng et al., 2010a; 

Freinkman et al., 2011).  

 

1.3.3.2 Identification of the Lpt machinery components 

LPS is an essential structural component of the OM in most Gram-negative bacteria (Raetz and 

Whitfield, 2002). lptA, lptB and lptC (formerly yhbN, yhbG and yrbK respectively) were the first 

genes implicated in LPS transport downstream MsbA to be discovered by Polissi and co-workers. 

They applied a genetic screen designed to identify novel essential functions in E. coli (Serina et al., 

2004). In this work a Tn5-derived minitransposon carrying the inducible araBp arabinose promoter 

was used to generate mutants that were subsequently assayed for conditional lethal phenotypes. 

This genetic selection led to the identification of a chromosomal locus containing lptA, lptB, lptC, 
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and two LPS biosynthesis genes (kdsD and kdsC, which code for two enzymes involved in Kdo 

biosynthesis; Meredith and Woodard, 2003) (Fig. 6). The entire locus in E. coli is transcribed from 

a single upstream promoter, but at least two internal promoter regions may allow differential 

expression of the genes (Sperandeo et al., 2007; Martorana et al., 2011). In follow-up studies, 

Polissi and collaborators established the role of LptAB in LPS transport. Based on the observation 

that an altered expression of lptAB leads to increased sensitivity to hydrophobic toxic compounds or 

death, they proposed that these factors were essential proteins involved in OM biogenesis 

(Sperandeo et al., 2006) and demonstrated that depletion of either LptA or LptB causes the 

accumulation of newly synthesized LPS at the IM (Sperandeo et al., 2007).  

A powerful genetic approach to identify genes involved in specific cellular functions is to 

develop screens for specific phenotypes. It is well known that viable mutants with an altered OM 

are more permeable to molecule that normally cannot cross the OM barrier, to hydrophobic 

compounds, detergents, bile salts, dyes and large hydrophilic antibiotics (Raetz and Whitfield, 

2002; Nikaido, 2003), thus screening for increased permeability to such compounds may lead to the 

identification of mutants in OM-biogenesis factors.  

LptD was first described as a determinant of membrane permeability, and thus designated 

imp, for increased OM permeability. In a genetic screen , Benson and co-workers (1989) found 

suppressors containing mutations in imp that enabled E. coli cells deficient in lamB (the beta-barrel 

required for maltodextrin import) to survive in media containing maltodextrins as the unique carbon 

source (Sampson et al., 1989). These imp mutants were also more permeable to certain antibiotics 

and other small molecules that normally cannot traverse the OM. Independently, lptD was also 

found to affect organic solvent tolerance and was thus designated ostA (Aono et al., 1994). 

Subsequently, lptD was demonstrated to be essential in E. coli by Braun and Silhavy (2002) and 

membrane fractionation experiments showed that LptD depletion generates a novel membrane 

fraction (Braun and Silhavy, 2002), further supporting its essential role in biogenesis of the cell 

envelope. 

The role of LptD in LPS assembly was clearly established by Tommassen and co-workers. 

Exploiting the fact that in Neisseria meningitidis, unlike in E. coli, LPS is not essential (Steeghs et 

al., 1998; Zahng et al., 2013), they were able to obtain an lptD knockout mutant. The authors 

observed in lptD deleted cells a decrease of the LPS content, as expected for a gene involved in LPS 

biogenesis, and, most importantly, they showed that LPS is not accessible to extracellularly added 

neuraminidase (an enzyme that modifies LPS by adding sialic acid residues) and lipid A is not 
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deacylated by PagL, thus demonstrating that LPS is not transferred to the outer leaflet OM (Bos et 

al., 2004). 

 

 

 

 

 

Figure 6. (A) Chromosomal localization of lpt genes and msbA in E. coli K-12 (From 

Narita, 2011). (B) Organization of genetic loci implicated in LPS transport in E. coli. 

Annotation is based on that of the E. coli strain MG1655 (http:// ecocyc. org/). Lpt 

ORF lengths are drawn to scale. In grey are represented neighbouring unrelated genes 

belonging to the same transcriptional units of Lpt genes. From Sperandeo et al., 2014. 

A 
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Later, using affinity purification techniques with LptD as a bait, the Silhavy and Kahne 

laboratories discovered the other component of the OM translocon, the lipoprotein LptE (formerly 

known as RlpB) (Wu et al., 2006). Also LptE was found to be essential in E. coli; indeed LptE 

depletion strains show phenotypes similar to LptD depletions (Wu et al., 2006).  

The identification of the Lpt proteins described so far, suggested a model where LptB is a 

cytoplasmic ATPase that provides the energy source for transport, LptA shuttles LPS across the 

periplasm, and the OM complex LptDE functions as a receptor/insertase for LPS (Sperandeo et al., 

2006; Sperandeo et al., 2007; Sperandeo et al., 2008; Wu et al., 2006; Braun and Silhavy 2002; Bos 

et al., 2004). In Gram-negative bacteria transmembrane components of ABC transporters are 

constituted either by one protein with 12 transmembrane segments or two proteins with 6 

transmembrane segments each (Davidson et al., 2008); for this reason it was clear that some 

component of the Lpt transporter were still missing. These transmembrane partners were identified 

by Ruiz and co-workers (2008) using a bioinformatic approach. They selected as a model organism 

an endosymbiont whit a reduced proteome (14% of E. coli proteome) but containing most of the 

OM biogenesis factors so far identified. This led to the discovery of two essential E. coli IM 

proteins of unknown function: YjgP and YjgQ (Ruiz et al., 2008). Each one was predicted to have a 

6 transmembrane helical structure typical of ABC transporter TMDs; depletion of either YjgP or 

YjgQ resulted in phenotypes that resembled those reported for the depletion of other Lpt factors. 

YjgP and YjgQ were proposed to be the missing component of the Lpt ABC transporter and were 

thus renamed LptF and LptG, respectively (Ruiz et al., 2008). In E. coli the genes encoding LptF 

and LptG belong to an operon unlinked to lptB (Fig. 6). Their involvement in LPS transport was 

demonstrated using conditional expression mutants and analysing the PagP-mediated modification 

of de novo synthesized LPS. In LptF or/and LptG depleted cells the lack of LPS modification and 

its accumulation at the IM revealed that the two proteins are required for LPS transport downstream 

MsbA (Ruiz et al., 2008).  

 

1.3.3.3 Model for LPS transport 

The identification of the Lpt IM and OM complexes prompted a host of questions about the 

mechanism of transport to the OM. Two main transport models have been considered: the 

chaperone-mediated transit across the periplasm and the transport through a transenvelope 

proteinaceous bridge spanning IM and OM (Fig. 7).  
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The evidence that LptA is not a soluble periplasmic protein but fractionates with both IM and 

OM in sucrose density gradient centrifugation (Chng et al., 2010b) and its propensity to form 

oligomeric fibrils in vitro (Suits et al., 2008; Santambrogio et al., 2013) strongly suggest that the 

protein does not function as a soluble carrier but forms oligomeric structure spanning the width of 

the periplasm. However the most important evidence supporting the transenvelope model is that all 

the Lpt proteins co-fractionate in sucrose density centrifugation in a lighter IM fraction containing 

IM and OM components and that these proteins physically interact to form a transenvelope bridge 

(Chng et al., 2010b). Mutations impairing Lpt complex assembly result in degradation of the 

periplasmic component LptA, thus LptA abundance in the cell appears to be a marker of properly 

bridged IM and OM. (Sperandeo et al., 2011). 

Recently, new insight about the mechanism by which the transenvelope protein machine 

physically favors LPS transit through the periplasm have been provided using photo-crosslinking in 

vivo. This chemical approach allows the identification of protein residues involved in protein-

protein or protein-ligand interactions by labeling the proteins of interest in vivo with an UV reactive 

cross-linkable amino acid analog. LptE was previously shown to reside within the lumen of the β-

barrel of LptD (Chng et al., 2010a) and to bind LPS in vitro (Chng et al., 2010a). Kahne and co-

workers using photo-crosslinking demonstrated that LptE directly interacts with some residues of 

the predicted extracellular loop of LptD adopting a plug-and-barrell architecture (Freinkman et al., 

2011), suggesting a dual role for this protein: a structural component of the LptDE complex and a 

recognition site for LPS at the OM (Freinkman et al., 2011; Chng et al., 2010a). The same approach 

has been used to identify the regions in LptA, LptC, and in the N-terminal domain of LptD that are 

implicated in protein contact and thus in the formation of the protein bridge. They showed that in 

vivo LptA interacts with LptC at the IM via its N-terminal region and with LptD at the OM via its 

C-terminal region thus creating a continuous bridge of antiparallel β-strands between IM and OM 

(Freinkman et al., 2012). Indeed, LptA and LptC belong to the same OstA superfamily of the N-

terminal domain of LptD and share a very similar three dimensional structure (Suits et al., 2008; 

Tran et al., 2010). Interestingly, the periplasmic but not the transmembrane domain of LptC appears 

to be also required for interaction with the IM transporter LptBFG (Villa et al., 2013). As the 

periplasmic loop of LptF and LptG are predicted to assume the β-jellyroll structure shared by LptA, 

LptC and LptD, it has been proposed that the transenvelope bridge is based on the conserved 

structurally homologous jellyroll domain shared by five out of the seven Lpt components (Villa et 

al., 2013).  
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It is not yet known how many LptA molecules compose the transenvelope bridges. The 

residues identified for LptA-LptA dimer interaction are the same involved in LptA-LptC interaction 

or in LptA-LptD interaction, but this has been proposed to be an artefact due to LptA 

overexpression (Freinkman et al., 2012). Structural data suggest that four OstA superfamily 

domains are necessary to span the width of the periplasm (Suits et al., 2008), as a consequence, 

taking into account LptC and LptD periplasmic domains, LptA would function as a dimer within 

the transenvelope bridge. Alternatively, in proximity of Lpt bridges the periplasm could be 

constricted and only one LptA molecule would be required.  

Finally, Okuda and co-worker, using site-specific photoactivatable cross-linking in a right-

side-out vesicle system, demonstrated that LPS interacts with specific residues within the 

hydrophobic grooves of LptC and LptA (Okuda et al., 2012). They also showed that cross-linking 

of LPS to LptC and subsequent transfer of LPS from LptC to LptA depends on ATP hydrolysis and 

that LptC cannot extract LPS on its own (Okuda et al., 2012).  

How LPS is extracted from the IM and how it is transferred to the protein bridge are still open 

questions. Two main mechanisms have been proposed for LPS extraction and handing off. LptFG 

(both or just one of them) could interact directly with LPS and perform the extraction coupled to 

LptB’s ATP hydrolysis; then they should somehow pass LPS to LptC. The alternative model 

proposes that, in an ATP-dependent manner, LptFG stimulate LptC to extract LPS from the IM 

(Simpson et al., 2015). 

In conclusion, according to the current model of LPS transport, ATP hydrolysis is used to 

push a continuous stream of LPS through the transenvelope Lpt bridge in discrete steps against a 

concentration gradient (Sherman et al., 2012; Wang et al., 2014; Okuda et al., 2012), then LPS 

passes from LptA to the LptDE translocon which inserts it into the outer leaflet of the OM. The N-

terminal domain of LptD comprises a hydrophobic slide that injects the acyl tails of LPS directly 

into the OM through an intramembrane hole, and the barrel domain, through a lumen gate, delivers 

LPS hydrophilic portions across the OM lipidic bilayer (Gu et al., 2015). 



Outer membrane biogenesis in Escherichia coli:  

genetic and physiological cell response to lipopolysaccharide transport defects 

 

25 

 

 

 

 

Figure 7. Transport of LPS across the cell envelope. After flipping across the IM LPS is transported 

across the periplasm and assembled at the cell surface. LptB2FG form an ABC transporter that uses ATP 

hydrolysis to extract LPS from the IM and push it along a periplasmic bridge built of homologous 

domains in LptCAD. At the OM, the LptDE form a plug-and-barrel translocon that inserts LPS into the 

outer leaflet of the OM. From May et al., 2015 
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2.1  The present investigation 

 

This chapter is intended to discuss main results presented in the following two draft manuscripts to 

be submitted for publication and in one published paper. 

 

DRAFT MANUSCRIPT 1  

Falchi F. A., Maccagni E. A., Puccio S., Peano C., De Castro C., Polissi A., Dehò G and Sperandeo 

P. Mutational analysis of LptA, an essential LPS-transport protein, reveals strategies of outer 

membrane homeostasis in Escherichia coli. (To be submitted).  

 

DRAFT MANUSCRIPT 2 

Benedet, M., Falchi, F.A., Puccio, S., Di Benedetto, C., Peano, C., Polissi, A. and Dehò, G. 

The lack of the essential LptC component in the Escherichia coli lipopolysaccharide transport 

machine can be circumvented by suppressor mutations in the inner membrane ABC transporter 

LptF. (To be submitted).  

 

PUBLISHED PAPER 

Martorana A M., Motta S., Di Silvestre D., Falchi F., Dehò G., Mauri P., Sperandeo P., Polissi A. 

Dissecting Escherichia coli outer membrane biogenesis using differential proteomics. PLoS One. 

2014, 9(6):e100941. DOI: 10.1371/journal.pone.0100941 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100941
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2.2  Aim of the project 

 

The lipopolysaccharide (LPS)-rich OM is a unique feature of Gram-negative bacteria and LPS 

transport across the IM and through the periplasmic space is essential to the biogenesis and 

maintenance of the OM integrity. The Lpt protein machine, which in E. coli is composed of seven 

essential proteins (LptA through LptG), is responsible for LPS translocation across the periplasmic 

space to the outer leaflet of the OM. 

LPS transport is a complex process that requires overcoming energetic, structural and 

physical barrier. In the last decade the Lpt system components (operating downstream of MsbA) 

have been discovered employing a combination of genetic, biochemical and bioinformatic 

approaches but, even though many structural and functional insights have been provided, to date the 

mechanism of LPS transport is not fully understood. The current model postulates that the Lpt 

proteins create a transenvelope bridge that connects IM and OM, by interacting via homologous 

domains. These domains exhibit high structural similarity, the β-jellyroll fold, despite scarce 

sequence conservation. At the IM the heteromeric ABC transporter, LptBFG, forms a complex with 

the membrane-bound protein, LptC; the C terminus of LptC interacts with the N terminus of LptA, 

and the N terminus of LptA interacts with the C-terminal periplasmic domain of LptD.  

In this study, in order to gain more insight in the mechanism of LPS transport and its 

interactions with other cellular processes, we used both a genetic and a proteomic approach. The 

former was based on the selection of suppressors of LPS transport defects obtained with two 

different types of mutants: i) a quadruple non-lethal lptA mutant that displayed altered sensitivity to 

hydrophobic toxic compounds, and ii) a lethal deletion mutant of lptC. The latter approach 

consisted of the analysis of differential envelope proteins content upon impairment of LPS 

transport.  

More in detail, in the first part of the work we investigated more closely on the role of LptA, 

the soluble periplasmic component of Lpt system. LptA has been demonstrated to bind LPS in vitro 

and in vivo (Tran et al., 2008; Okuda et al., 2012) and is believed to chaperon LPS through the 

periplasm. We generated an lptA mutant allele (lptA41 quadruple mutant) by mutagenizing four 

LptA residues putatively involved in LPS or LptC binding and conserved among LptA homologues 

in most representative γ-Proteobacteria. The mutant was viable but displayed increased sensitivity 

to a panel of hydrophobic toxic compounds (Shc phenotype, for sensitivity to hydrophobic 

compounds) as compared to the wild-type strain, suggesting that lptA41 is a partial loss-of-function 

allele of lptA. Biochemical characterization of the mutant showed that the LptA41 mutant protein 
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was impaired in the assembly of the Lpt complex but not in LPS binding. We selected and 

characterized three different classes of suppressor in which tolerance to bacitracin was restored but 

exhibited different profiles of tolerance to other hydrophobic toxic compound. In the first mutant 

suppression appeared to depend on overexpression of LptA41. Analysis of the second suppressor 

mutant implicated the pathway for the maintenance of lipid asymmetry (Mla system) in suppressing 

bacitracin sensitivity exerted by lptA41. Finally, suppression of the Shc phenotype in the third 

suppressor strain was ensured by an additional mutation in LptA41 (lptA42 allele) that appeared to 

stabilize LptA protein and partial deletion in the opgH gene implicated in the synthesis of 

osmoregulated periplasmic glucans (Draft manuscript 1). 

In the second part of this work we selected for E. coli mutants lacking the essential gene lptC. 

All the isolated mutants harbour a suppressor mutation in LptF leading to a unique amino acid 

substitution at position 212, within the predicted periplasmic domain of the protein. This strongly 

implies such LptF region in the formation of the periplasmic bridge between the IM and OM 

complexes, and suggests that LptC may have evolved as a chaperon of a six-component Lpt 

machine assembly and/or activity (Draft manuscript 2). 

Finally, in the last part of this work we performed a proteomic analysis of E. coli cell 

envelope upon inhibition of LPS transport by LptC depletion. By this analysis 123 proteins were 

identified whose level is modulated in these conditions. Most such proteins belong to pathways 

implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding 

(Published paper Martorana et al., 2014). These data show that E. coli cells respond to severe OM 

biogenesis defect by modulating different pathways that acts integrating complementary functions 

to restore OM functionality. 
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2.3 Mutational analysis of LptA, an essential LPS-transport protein, reveals 

strategies of outer membrane homeostasis in Escherichia coli (Falchi et al., 

to be submitted). 

 

LptA is an essential periplasmic protein that has been implicated in LPS transport from the 

IM to the OM, thereby contributing to building the cell envelope and maintaining its integrity. 

According to the current model the Lpt proteins form a transenvelope bridge spanning IM and OM. 

The C-terminal domain of LptC interacts with the N-terminal domain of LptA and the C-terminus 

of LptA interacts with the N-terminal periplasmic domain of LptD, thus forming a continuous 

channel through which LPS is moved (Freinkman et al., 2012; Okuda et al, 2012; Villa et al., 

2013).  

The crystal structure of E. coli LptA has been solved by Suits and co-workers and it consists 

of 16 consecutive antiparallel β-strands, folded to resemble a slightly twisted β-jellyroll (Suits et al., 

2008) Crystallographic data showed that LptA forms oligomers in a head-to-tail fashion designing a 

continuous cavity (Suits et al., 2008). 

LptA has been demonstrated to interact with LPS in vitro (Tran et al., 2008) and some of the 

interaction sites with LptC in the IM and with the N-terminal domain of LptD in the OM, as well as 

with LPS have been recently identified using in vivo crosslinking experiments (Freinkman et al., 

2012; Okuda et al. 2012).  

In a previous work, several rationally designed lptA mutant alleles turned out to be able to 

complement LptA depleted strain for growth, although their overexpression was somewhat 

detrimental to LPS transport (Suits et al., 2008). Thus in the present study we tested whether 

multiple mutations (lptA41 allele, encoding the amino acid substitutions I36A, I38A, R76D, and 

K83D) could impair LptA functionality. We generated an E. coli strain in which the deletion of 

lptAB operon is complemented for growth, under standard conditions, by a plasmid harboring 

lptA41 lptB.
 
However, the mutant strain displayed increased sensitivity to anionic detergents (SDS), 

hydrophilic (bacitracin) and hydrophobic (rifampicin and novobiocin) toxic compounds as 

compared to a similarly generated strain expressing wild type LptA (plptA
+
 strain), suggesting that 

lptA41 is a partial loss-of-function allele that impairs LPS transport thus causing severe OM defects. 

To characterize the properties of the LptA41 mutant protein that could be correlated with the 

functional defects, we first assessed whether the amino acid substitutions in LptA41 could impair its 

affinity for LPS and/or its assembly into the Lpt complex. We performed an in vitro LPS binding 

assay using purified C-terminally His-tagged LptA and LptA41 proteins and smooth-type LPS. 
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Then we performed affinity co-purification experiments from solubilized membranes of wild type, 

lptA
+
 and lptA41 strains ectopically expressing C-terminally His tagged LptC (LptC-H). Overall, 

our results suggest that, at least in vitro, LptA41 retains the ability to interact with LPS whereas the 

phenotype associated to lptA41 allele could be imputed to impairment in Lpt complex assembly.  

In order to identify interactions between genes/protein involved in the same functional 

pathways, we sought to identify second-site mutations able to restore the integrity of OM 

permeability barrier and to overcome the increased susceptibility to toxic compound exhibited by 

the lptA41 mutant. Spontaneous bacitracin resistant mutants were selected and found at a frequency 

of 1×10
−8

.  

To identify potential suppressor mutations we performed the genomic sequencing of three 

strains with different profile of tolerance to the other toxic compound. 

Sequencing results revealed in PS102, in which only bacitracin sensitivity is suppressed, a 

deletion of 6 nucleotides in vacJ (vacJ102 allele) that improves resistance of lptA41 mutant to 

bacitracin. vacJ gene product, now renamed mlaA, is the OM lipoprotein component of the Mla 

system required in E. coli to maintain OM lipid asymmetry (Malinverni and Silhavy, 2009). To 

genetically characterize vacJ102 we generated suitable strains ectopically expressing the wild type 

and the mutant vacJ102 and confirmed that the mutant allele conferred bacitracin resistance.  

In suppressor strain PS103 bacitracin, rifampicin and SDS tolerance have been restored, 

whereas novobiocin sensitivity was not fully suppressed. Genome sequencing revealed an 

additional amino acid substitution (M112I) in LptA (allele lptA42) and a nonsense mutation in 

opgH (formerly mdoH) gene resulting in protein truncation (allele opgH103). opgH encodes for a 

glycosyltransferase involved in the synthesis of membrane derived oligosaccharides (MDOs) 

(Weissborn and Kennedy, 1984) and in control of cell size via interaction with FtsZ in a nutrient-

dependent manner (Hill et al., 2013). We thus analysed the possible contribution of each mutations 

to the suppressed phenotype exhibited by PS103 strain. 

First, we tested Lpt complex assembly performing affinity purification experiments from 

solubilized membranes of a lptA42 strain bearing lptA42 allele and ectopically expressing LptC-H. 

M112I mutation, although improving protein structural stabilization, did not restore LptA 

interaction with LptC and, therefore, with the Lpt complex. However, as expected, LptA42 mutant 

retained the ability to co-purify LPS in vitro. Finally, we tested the effect of opgH103 mutation 

alone or in combination with lptA42 allele in OM integrity restoration. lptA42 allele in opgH
+
 

background resulted in partial OM integrity restoration. However, opgH deletion did not restore 

OM permeability in lptA41 mutant, suggesting that the increased bacitracin resistance is not solely 
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the result of OPGs synthesis inhibition. lptA42 allele in opgH
-
 strain conferred partially OM 

integrity restoration, which was improved by expression of the truncated OpgH103 mutant. 

 

2.4 The lack of the essential LptC component in the Escherichia coli 

lipopolysaccharide transport machine can be circumvented by suppressor 

mutations in the inner membrane ABC transporter LptF. (Benedet et al., to be 

submitted). 

 

LptC is an IM bitopic protein with a single trans-membrane helical domain and a large 

periplasmic region (Tran et al., 2010) which stably associates to LptBFG (Narita and Tokuda, 2009) 

and to LptA (Sperandeo et al., 2011). LptA and the periplasmic domain of LptC share very little 

amino acid sequence conservation (about 13% identity); nevertheless, comparison of their 3D 

structures reveals a remarkably conserved fold based on a slightly twisted β-jellyroll, (Suits et al., 

2008; Tran et al., 2010; Villa et al., 2013). Like LptA, LptC binds lipopolysaccharide in vitro, and 

LptA can displace lipopolysaccharide from LptC, but not vice versa (Tran et al., 2010), consistent 

with their locations and their proposed placement in a unidirectional export pathway. However, 

LptC specific role in LPS transport remains unclear.  

Point mutations in the N-terminal periplasmic region (G56V) or at the C-terminus (G153R) 

are unviable and neither mutant is able to assemble the transenvelope machinery (Sperandeo et al., 

2011; Villa et al., 2013). Moreover the transmembrane N-terminal domain of LptC is not required 

for proper assembly and functionality of the Lpt complex and that the periplasmic region of LptC is 

sufficient to promote binding to the the LptBFG IM complex (Villa et al., 2013).  

Considering the dispensability of LptC transmembrane domain and the high structural 

similarity of LptC periplasmic domain and LptA, here we tested whether some functional 

redundancy could occur between these structurally analogous components of the Lpt machine and 

we selected for lptC deletion mutants.  

By plasmid shuffling, we isolated E. coli ∆lptCA mutants complemented by plasmids 

harbouring lptA or lptAB genes and missing lptC. Whole genome sequence analysis of three 

mutants revealed that the E. coli lethal phenotype associated to the lack of LptC is suppressed by 

single amino acid substitutions at a unique position of the IM component LptF. All the independent 

viable clones obtained harbored, in addition to the lptC deletion a single amino acid substitutions 

at arginine 212 (either R212C or R212S), a residue located in the predicted periplasmic domain of 
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the protein. Nine additional independent ∆lptC mutants obtained by plasmid shuffling exhibited a 

mutation in LptF R212 residues, including the new substitution R212G. These data strongly 

suggested that such lptF mutations suppress the lack of LptC. 

Complementation assays in an E. coli strain harbouring lptC under the control of the inducible 

araBp promoter and the chromosomal wild lptF allele showed that lptFR212G and lptFR212S are 

able to suppress cell lethality of LptC-depleted cells. On the contrary, lptFR212C does not restore 

cell growth in this condition, suggesting that lptFR212C is a recessive allele.  

Moreover, to address whether lptF
Sup

 mutations in the haploid state are compatible with the 

presence of lptC we replaced by plasmid shuffling in each type of lptF
Sup

 mutants the resident 

plasmid harboring either lptA or lptAB with an incompatible plasmid harboring a different antibiotic 

resistance marker and either lptCA or lptCAB. All the lptF
Sup

 clones could be transformed by the 

plasmid carrying lptCA or lptCAB and lost the resident plasmid. On the contrary, none of the strains 

transformed, as a control, by a chasing plasmid without lpt genes lost the resident plasmid as it 

carried genes essential for viability and lptF
+
 strains transformed by the chasing plasmid with lptA 

or lptAB but missing lptC did not lose the resident plasmid. By sequencing we assessed that the 

original lptF allele had been retained in each type of lptF
Sup

 shuffled clones, thus suggesting that all 

the three haploid lptF
Sup

 mutations are compatible with the presence of LptC.  

Overall our data suggest that the periplasmic region of LptF might be implicated in the 

formation of the periplasmic bridge between the IM and OM complexes, and LptC might have 

evolved as a chaperon of a six-component Lpt machine assembly and/or activity. 

Studies are in progress to understand the structure and functioning of the six-component Lpt 

machine in order to understand how the LptF
Sup

 mutants overcome the lack of LptC.  

 

2.5 Dissecting Escherichia coli outer membrane biogenesis using differential 

proteomics (Martorana et al. (2014) PLoS One. 9:e100941). 

 

Gram-negative bacteria such as Escherichia coli have extracytoplasmic compartments, 

collectively known as the cell envelope, that play a variety of protective and adaptive roles. Three 

are the principal layers in the envelope: the OM, the peptidoglycan cell wall, and the IM. The two 

concentric membranes delimit an aqueous cellular compartment, the periplasm.  

In E. coli at least five different pathways constitute complex signalling systems that monitor 

cell envelope stress. (Joly et al., 2010; Ades, 2008; Majdalani and Gottesmann, 2005; Raivio, 

2005). σ
E
, Bae, Psp, and Rcs appears to be systems specialized in assuring a specific aspect of 

http://www.ncbi.nlm.nih.gov/pubmed/24967819
http://www.ncbi.nlm.nih.gov/pubmed/24967819
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envelope biogenesis and maintenance, whereas CpxR might have a role as modulator of the 

response by integrating other endogenous signals (Bury-Monè et al., 2009). These pathways can be 

activated simultaneously in response to exogenous or endogenous stimulation and regulate mainly 

complementary functions whose contributions are integrated to mount a full adaptive response 

(Bury-Monè et al., 2009). 

To investigate on the cell response to a severe OM defect, we performed a proteomic analysis 

of E. coli cell envelope upon inhibition of LPS transport obtained by LptC depletion. The entire 

protein content of the cell envelope fractions of an E. coli lptC conditional expression mutant grown 

in permissive and non-permissive conditions was analyzed by two-dimensional chromatography 

coupled to tandem mass spectrometry [(2DC-MS/MS or MudPIT (Multidimensional Protein 

Identification Technology)] (Link et al., 1999). 

We identified 123 proteins whose level is significantly modulated upon LptC depletion. Most 

such proteins belong to pathways that may contribute to repair OM and restore its permeability 

barrier properties, including protein involved in maintaining OM asymmetry, in the synthesis of 

phospholipids and exopolysaccharides as substrate for lipid A modification enzymes. We found that 

the level of several enzymes implicated in peptidoglycan synthesis/remodelling changes in in LptC 

depleted cells, suggesting that the synthesis of peptidoglycan is inhibited and that the arrest of cell 

wall growth shifts bacteria to the cell division program. The level of ribosomal and transport 

proteins and of many folding factors decreases upon LptC depletion, conversely the level of several 

IM, periplasmic and OM proteases increases. These data are consistent with the notion that 

extracytoplasmic stress response is activated upon the block of LPS transport, as many functions 

modulated in LptC depleted cells are under the control of σ
E
, Bae, Cpx, and Rcs signalling systems.  
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2.6 Conclusions 

 

In this study, we focused on the mechanism of LPS transport, its interaction with other 

cellular processes and especially on the strategies adopted by the cells to face LPS transport defects. 

To this end we adopted both a genetic and a proteomic approach, the former based on the selection 

of suppressors of LPS transport defects obtained with two different types of mutants and the latter 

based on the analysis of differential envelope proteins content upon impairment of LPS transport.  

We first generated a quadruple non-lethal lptA mutant (lptA41) that displays altered sensitivity 

to hydrophobic toxic compounds, a phenotype that is diagnostic of altered OM permeability. 

Biochemical data revealed that LptA41 ability to interact with LptC is impaired under our 

experimental conditions, whereas LPS binding seems not to be compromised. These observations 

suggested that in lptA41 strain LPS transport, although not abolished, may not be as efficient as in a 

wild type strain. Genome sequencing analysis of two selected suppressor mutants (PS102 and 

PS103) implicated a small in-frame deletion in vacJ gene (vacJ102 allele) and an intragenic 

mutation associated to a partial deletion in the opgH gene in the respective mechanism of 

suppression.  

VacJ (MlaA) is the OM lipoprotein component of the Mla machinery, which has been 

proposed to contribute to maintain OM asymmetry. vacJ102 mutant allele is able to suppress 

sensitivity to bacitracin (the antibiotic used for the suppressors selection), but it does not restore the 

OM permeability barrier. Moreover it appears to be a negative dominant mutation that impairs the 

Mla system. These observations suggest that a specific mechanism for bacitracin tolerance have 

been selected. We may speculate that the VacJ mutant interferes with bacitracin diffusion through 

the OM or, alternatively, with the bacitracin-C55-PP interaction, in a direct or indirect way. 

However, it might be interesting to test whether the vacJ102 mode of suppression is specific to 

lptA41 mutant or rather it is able to increase bacitracin resistance in different lpt mutant 

backgrounds or to suppress mutations affecting other OM biogenesis pathway. 

In suppressor strain PS103, lptA41 phenotypic suppression appears to be ensured by the 

additive effects of an intragenic and an extragenic suppressor. The intragenic suppressor (lptA42 

allele) encodes an additional amino acid change (M112I) in LptA41. The LptA42 quintuple mutant 

protein appeared to be more stable than its parental LptA41, but did not seem to co-purify with 

LptC. LptA42 might ameliorate LPS transport and reduce OM alteration thus improving resistance 

to detergents and to the large hydrophilic antibiotic bacitracin, but not to small hydrophobic 

compounds. opgH encodes a glucosyltransferase implicated in the biosynthesis of the so called 
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osmoregulated periplasmic glucans (OPGs), a class of periplasmic glucans that function as 

osmoprotectant. The nonsense mutation opgH103 restores resistance of E. coli lptA42 to the 

lipophilic antibiotic rifampicin and, partially, to novobiocin. Thus we suggest that the lack of OPGs 

in the periplasm and/or of the OpgH in the IM make the cell envelope less permeable to these 

lipophilic compounds. 

A second type of suppressors of LPS transport defects have been obtained using a plasmid 

shuffling technique. We selected for ΔlptC viable mutants and genome sequencing analysis 

revealed in all the isolated mutants a single amino acid substitutions at a unique position (R212) in 

the periplasmic domain of the IM component LptF (LptF
Sup

). Then, by complementation assays we 

confirmed that LptF
Sup

 are able to suppress the lethal effect associated to the lack of LptC. Such a 

complete association between lack of LptC and LptF
Sup

 mutations strongly suggests that a specific 

suppressor is required for viability of the ΔlptC mutants and that LptF is the preferred suppressor 

gene. Interestingly, using the same technique, we did not obtain ΔlptA mutants, thus suggesting that 

LptA might have a more fundamental role in Lpt machine or more than one suppressor mutation 

might be required, thus reducing the chance of finding a mutant. 

Finally we showed by plasmid shuffling that LptF
Sup 

is compatible with the presence of LptC.  

Overall our data highlights the relevance of the putative LptF periplasmic domain in LPS 

transport. LptF
Sup

 could restore a functional hydrophobic groove by direct interacting with LptA or 

by recruiting LptA to replace LptC. LptC might serve as a chaperon of the Lpt machine assembly 

and/or activity rather than be an essential functional component. Affinity co-purification 

experiments will be performed to test whether LptF
Sup

 can promote the assembly of a stable Lpt 

bridge in absence of LptC and to test whether LptC can be recruited by the Lpt system when a 

LptF
Sup

 protein is present.  

In the last part of this study, we performed a comparative analysis of envelope proteome in E. 

coli LptC depleted and not-depleted cells. We show that the block of LPS transport (upon LptC 

depletion) induces the modulation of pathways that collectively may contribute to repair the OM 

and restore its permeability barrier properties. Interestingly our results suggest a functional 

interconnection between LPS transport and PLs removal from the OM (as proteins of the Mla 

system are upregulated) and support the notion that peptidoglycan synthesis and OM biogenesis are 

tightly coordinated. Moreover our data point for the first time to a feed-back control on lipid A 

synthesis signalled from the external surface of the cell when LPS transport is compromised. This 

concept is supported by the finding that the IM enzyme FtsH increases in LptC depleted cells, as 

FtsH is known to control LPS biosynthesis. The recently identified LapB IM protein, that has been 
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recently suggested to act in concert with FtsH, could have a role in transducing the signal inside the 

cell.  

In conclusion, these data contribute to our understanding of the multiple strategies that E. coli 

cells may adopt to respond to perturbations of the OM permeability barrier and to restore OM 

functionality.  
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ABSTRACT 

Lipopolysaccharide (LPS) is the major outer leaflet constituent of the Gram-negative 

bacteria outer membrane (OM). In E. coli LptA protein is a periplasmic component of the LPS 

transporter (Lpt) made of seven components (LptABCDEFG), which ferries LPS from the inner 

membrane (IM) to OM. LptA interacts with LptC and chaperons LPS through the periplasm. The 

crystal structure of LptA has been solved and some residues involved in binding LPS and other Lpt 

proteins have been identified. In order to characterize LptA structure-function we generated by site-

directed mutagenesis lptA41, a quadruple mutant in four conserved amino acids potentially involved 

in LPS or LptC binding. Although viable, the mutant exhibited increased sensitivity to antibiotics 

(the large, hydrophilic bacitracin, and the hydrophobic rifampicin and novobiocin) and to a 

detergent (SDS). This suggests that lptA41 affects LPS transport thus impairing OM permeability 

barrier. To identify interactions between genes implicated in OM functionality, we selected and 

characterized two phenotypic bacitracin resistant suppressors of lptA41. One mutant, in which 

bacitracin sensitivity had been suppressed, harbors a small in-frame deletion in vacJ, which codes 

for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of 

phospholipids in the outer leaflet. The other one, in which bacitracin, rifampicin and SDS 

sensitivity had been suppressed, harbors an additional amino-acid substitution in LptA41 (lptA42 

allele) and a nonsense mutation in opgH, a gene encoding a glycosyltransferase involved in 

periplasmic membrane-derived oligosaccharides synthesis. The former mutation is responsible for 

suppression of bacitracin and SDS sensitivity, whereas both mutations are required for restoring the 

permeability barrier against rifampicin. These results reveal different strategies adopted by the cell 

to overcome OM defects caused by defective LPS transport.  
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INTRODUCTION 

 

The majority of Gram negative bacteria are characterized by a cell envelope composed of 

two concentric membranes, the inner (IM) and the outer membrane (OM), separated by a 

hydrophilic compartment, the periplasm, in which the murein wall is embedded reviewed by 

(Silhavy et al., 2010; Ruiz et al., 2006) The two membranes have different composition and 

permeability properties. While the IM is a typical phospholipid bilayer, the OM is an asymmetric 

bilayer with phospholipids (PLs) and lipopolysaccharides (LPS) in the inner and outer leaflet, 

respectively. LPS is a negatively charged amphipathic molecule composed of three covalently 

linked moieties: the lipid A, a core oligosaccharide and a long polysaccharide called O-antigen (Fig. 

1) (Raetz and Whitfield, 2002). In the presence of divalent cations, LPS molecules pack tightly 

together to form an outer leaflet that reduces OM fluidity and permeability, selectively controlled 

by dedicated OM proteins (Nikaido, 2003). 

LPS organization can be disrupted by defects in OM components assembly (Ruiz et al., 

2006), in mutants producing LPS truncated in sugar chains (Young and Silver, 1991) or by 

exposure to antimicrobial peptides and chelating agents such as EDTA, which displace divalent 

cations between LPS molecules (Nikaido, 2003). Perturbation of the LPS layer induces PLs 

migration from the inner to the outer leaflet, generating locally symmetrical bilayer rafts that are 

more permeable to hydrophobic molecules (Nikaido, 2003). Cells have evolved systems to monitor 

the asymmetry of the OM and to respond either by removing PLs from the outer leaflet or by 

modifying LPS. Two main mechanisms have been described that restore OM asymmetry by acting 

on PLs: the phospholipase OmpLA and the Mla pathway. OmpLA, encoded by pldA, is a 

phospholipase that normally resides as an inactive monomer at the OM; however, in the presence of 

PLs a catalytically active OmpLA dimer is formed. Activated OmpLA degrades PLs that have 

accumulated in the outer leaflet of the OM under stress conditions (Dekker, 2000). The Mla 

(Maintenance of OM lipid asymmetry) proteins constitute a highly conserved ATP-binding cassette 

(ABC) transport system that prevents PLs accumulation in the outer leaflet of the OM under non-

stress conditions. Mutations in the Mla system are not lethal but lead to PLs accumulation in the 

outer leaflet of the OM (Malinverni and Silhavy, 2009). It comprises at least six proteins distributed 

across the cell envelope. MlaA (formerly VacJ) is a predicted OM lipoprotein, MlaC is a 

periplasmic protein, and MlaFEDB form a putative ABC transporter (Malinverni and Silhavy, 

2009). Recently, MlaA has been found to interact specifically with the OM β-barrel OmpC (Chong 

et al., 2015). The evidence that cells lacking OmpC accumulate PLs in the outer leaflet of the OM 
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in stationary phase indicate a role for OmpC in maintaining lipid asymmetry, thus suggesting 

OmpC to be an additional OM component of the Mla system (Chong et al., 2015).  

An alternative response to OM asymmetry perturbation consists in LPS modification. LPS 

can be decorated with the addition of a palmitoyl acid chain to lipid A by PagP, an OM β-barrel 

acyltransferase that uses PLs flipped in the OM as substrates (Bishop , 2000). The product of the 

PagP reaction is a hepta-acylated LPS which possesses increased hydrophobicity (Bishop , 2000) 

thus contributing to better packing within the LPS layer.  

LPS biosynthesis takes place at the IM and, for the crucial role of this molecule in OM 

permeability, has been object of study since long time (Raetz and Whitfield, 2002). Conversely, 

LPS transport from its site of synthesis to the OM is not yet completely understood. The first step in 

LPS transport to the cell surface is its flipping across the IM performed by the essential ABC 

transporter MsbA (Doerrler et al., 2001; Doerrler et al., 2004; Doerrler and Raetz, 2002). Then, 

mature LPS molecule assembled at the periplasmic face of the IM by WaaL ligase must be 

extracted from the IM and translocated through the periplasmic space to the OM, where LPS is 

finally assembled at the cell surface. Such functions are carried out by the Lpt (lipopolysaccharide 

transport) system. In E. coli the Lpt system is composed of seven essential proteins 

(LptABCDEFG) located in three distinct cellular compartments of the cell envelope. (Chng et al., 

2010; Ruiz et al., 2008; Sperandeo et al., 2007; Sperandeo et al., 2008; Wu et al., 2006). At the IM, 

the ABC transporter LptB2FG, associated with the bitopic protein LptC, provides the energy to the 

system to extract LPS from the membrane and to release it from LptC to LptA (Narita and Tokuda, 

2010; Okuda et al., 2012). In the periplasm, LptA provides the connection between the IM 

LptB2FGC and the OM translocon constituted by the β-barrel LptD protein and the lipoprotein LptE 

that are organized in the unique plug-and-barrel architecture (Chng et al., 2010; Freinkman et al., 

2012). LptDE is responsible for the final stages of LPS assembly at the cell surface (Chimalakonda 

et al., 2011; Okuda et al., 2012; Qiao et al., 2014). Crystal structure determination of LptC, LptA 

and LptD from different organisms revealed that, despite very low sequence similarity, the 

periplasmic domains of these three proteins share a similar β-jellyroll fold made of juxtaposition of 

a variable number of  antiparallel β-strands (Suits et al., 2008; Bollati et al., 2015; Tran et al., 2010; 

Qiao et al., 2014; Dong et al., 2014). The presence of such a fold (the “Lpt fold”) is crucial for the 

assembly of a functional Lpt complex where the C-terminus of LptC interacts with the N-terminus 

of LptA and the C-terminus of LptA interacts with the N-terminus of another molecule of LptA or 

with the N- terminus of LptD (Freinkman et al., 2012; Villa et al., 2013) . The number of LptA 

molecules present in the functional Lpt complex is currently unknown. Some of the residues 

potentially involved in protein-protein interaction within the Lpt complex have been identified by in 
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vivo photo-crosslinking experiments that demonstrated also that the hydrophobic grooves of LptA 

and LptC interact with LPS (Freinkman et al., 2012; Okuda et al., 2012).  

Although the overall architecture of the Lpt complex has been clarified, some questions 

remain open about the mechanism of LPS transport within the bridge build up by the Lpt proteins 

and in particular about the role of LptA. 

In the past years, some studies made use of site-specific amino acid substitutions to gain 

insights into the role of LptA in E. coli. Suits and co-workers tested single site-specific substitutions 

in three conserved residues delimiting the N-terminal rim of the β-jellyroll of LptA (Ile 36, Ile 38 

and Arg 76) and one in the interior of its cavity (Phe 95) for the ability to impair protein function. In 

that work, complementation analysis of an arabinose conditional lptA mutant revealed that 

physiologic expression of none of the LptA mutants impaired LPS transport (Suits et al., 2008). 

However, in vivo photo-crosslinking experiments performed in a following study revealed that Ile 

36 and F95 are involved in LPS interaction together with residues Thr 32, Tyr 114 and Leu 116. 

Residue His 37 is involved in LptC interaction or LptA homodimerization whereas Val 163 is 

implicated in LptD interaction (Freinkman et al., 2012; Okuda et al., 2012). 

Another couple of amino acid substitutions in LptA (Gln148Ala-Glu149Ala) have been 

reported, that prevents LptA oligomerization in vitro (Schultz et al., 2013), however, it was not 

tested for its ability to impair LptA function in vivo. The only inactive LptA mutant described so far 

is LptA Gln111Pro, which however is not informative for structure-function analysis (Ma et al., 

2008).  

To better understand the mechanism of  LPS transport and of cell response to LPS stress, in 

this study we have isolated a viable quadruple lptA mutant that severely impair the OM 

permeability barrier and suppressor mutants that partially restore OM functionality. 

Characterization of the lptA and suppressor mutants provides insights into the strategies adopted by 

the cells to face LPS transport defects. 
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MATERIALS AND METHODS 

 

Bacterial strains, plasmids and growth conditions. E. coli bacterial strains and plasmids 

used in this study are listed in Tables 1 and 2, respectively, with a brief outline of their construction 

by standard techniques. Oligonucleotides used in strain and plasmid constructions are listed in 

Table 3. All cloned DNA regions obtained by PCR were sequenced to rule out the presence of 

mutations. Site-directed λRed-mediated mutagenesis of E. coli was performed as described by 

(Datsenko and Wanner, 2000) and specified in Table 1. ΔlptAB::kan DNA was obtained by three-

step PCR using the external primers AP54-AP267 and, as templates, the kan cassette PCR-

amplified from pKD4 using AP79-AP80 primers and the two flanking homology regions obtained 

by PCR amplification of E. coli MG1655 DNA with oligonucleotide pairs AP54-AP268 and 

AP266-AP267. Transduction with P1 HFT (Wall and Harriman, 1974) was performed as (Miller, 

1972). Unless otherwise stated, bacteria were grown at 30 °C in LD (Ghisotti et al., 1992), or M9 

minimal medium supplemented with 0.2% glycerol as a carbon source (Kunz and Chapman, 1981) 

and, when required, 0.1 mM IPTG (isopropyl-β-D-thiogalactopyranoside), 100 μg/ml ampicillin, 30 

μg/ml chloramphenicol, 25 μg/ml kanamycin. Solid media were as described above with 1% (w/v) 

agar. 

 

Isolation of bacitracin tolerant phenotypic revertants. Independent overnight cultures of 

PS003 were grown from single colonies in 10 ml of LD medium supplemented with ampicillin, 

pelleted and individually resuspended in100 µl of LD before plating onto LD-agar with bacitracin at 

the indicated concentration. Upon overnight incubation at 37 °C bacitracin resistant (Bct
R
) 

phenotypic revertants were colony-purified in the presence of bacitracin. 

 

Outer membrane permeability assay. OM sensitivity was evaluated by measuring 

efficiency of plating (e.o.p) on LD agar plates containing bacitracin, rifampicin, novobiocin, SDS-

EDTA at non-inhibitory concentrations for the reference (wild type) strain, as indicated. Overnight 

cultures were grown from single colonies in 5 ml LD supplemented with the antibiotic required for 

the maintenance of the hosted plasmid. Cultures were serially diluted in LD in microtiter plates, 

replica plated on the selective LD agar plates and incubated overnight [or up to 24 h]. E.o.p. was 

estimated relative to plating on LD agar.  
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Genomic DNA sequencing and data analysis. The library for genomic DNA sequencing 

was prepared according to the TruSeq DNA Sample preparation protocol (Illumina). Briefly, 1 µg 

of genomic DNA was sonicated to fragments with a medium length of 400 bp; after end repair, 

indexed adapters were ligated at DNA fragment ends, libraries were quantified by quantitative Real 

Time PCR (qPCR) using KAPA Library Quant Kits (KAPA Biosystems). After a short 

amplification step the library was sequenced on Illumina GAIIX Sequence Analyzer to generate 85 

bp paired-end reads. Raw reads were individually mapped to E. coli MC4100 genome (RefSeq 

accession number: HG738867) using the accurate alignment BWA mem algorithm (Li and Durbin, 

2009) allowing 1% error; removal of duplicated reads was performed with SAMtools. A VCF file, 

containing all the variants for each sample relative to E. coli MC4100 was obtained by using 

SAMtools and Bcftools (Li et al., 2009) and filtered for low quality variants. Single nucleotide 

variations (SNVs) having a coverage of less than five high quality reads (Q>30) were discarded. 

Predicted insertion-deletion (indel) mutations having a coverage lower than six high quality reads 

(Q >30) were discarded. Then the VCF files were analysed by using SNPeff version 4.0 (De Baets 

et al., 2012) and high quality SNVs and indels were subsequently annotated to determine their 

effect and impact on coding sequences. 

 

Determination of LptA abundance. LptA abundance was assessed by Western blot 

analysis. Bacterial cultures were grown overnight at 30 °C in LD supplemented with 100 μg/ml of 

ampicillin. Samples for protein analysis were centrifuged 5 min at 16,000 g and pellets were 

resuspended in a volume (in ml) of SDSsample buffer equal to 1/24 of the total OD of the sample. 

Samples were boiled for 10 min, and equal volumes (20 μl) were fractionated by 12.5% 

polyacrylamide-SDS gel electrophoresis. Proteins were transferred onto nitrocellulose membranes 

(GE Healthcare), and Western blot analysis was performed as previously described (Sperandeo et 

al., 2007) Polyclonal sera raised against LptA (GenScript Corporation) were used as primary 

antibody at a dilution of 1:1,000. As secondary antibodies, goat anti mouse immunoglobulins (LI-

COR) were used at a dilution of 1:7,000 and bands were visualized by an Odyssey Fc Imaging 

System (LI-COR GmbH).  

The Band Analysis tools of Image Studio Lite software version 5.0 (LI-COR GmbH) were used to 

select and determine the background-subtracted density of the bands in the blot.  

 

Lipid A analysis by mass spectrometry. E. coli strains were grown in 1 l of LD 

supplemented with 100 μg/ml of ampicillin up to OD600 = 0.9, yielding to approx. 1 g of liophylized 

biomass, at 30°C under different conditions as specified. Cells were harvested by centrifugation at 4 
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°C (5000 g, 15 min). The cell pellets were washed once with 20 ml of phosphate-buffered saline 

(PBS), 0,1 mM, pH 7.4 and liophylized. Each pellet was treated twice with 10 ml of PCP solution 

(petroleum ether/chloroform/phenol 90% = 2/5/8 by vol.) (Galanos et al., 1969). For each strain, the 

two supernatants were removed at each passage by centrifugation (5000 rpm, 10 min.), pooled and 

concentrated in a rotary evaporator to a final volume of approximately 3 ml. LOS precipitation 

occurred by dropwise addition of water (ca. 0.35 ml). The solid phase was recovered by 

centrifugation, dissolved in water, dyalized (cut-off 12-14000 MW) against water for 2 days with 

five water changes, and freeze dried. On average, 5 mg of pure LOS was obtained for each strain. 

LOS (0.5-1.5 mg) was dissolved in 0.5 ml of 1% AcOH in water and heated at 100°C for 2 h to 

cleave Lipid A moiety, that was recovered as a precipitate after centrifugation (5000 rpm, 30 min.) 

in 20-25% yield. Reflectron MALDI TOF MS and MALDI TOF/TOF MS–MS of the lipid A 

fraction was performed, in negative ion mode, on a 4800 Proteomic analyzer (Applied Biosystems) 

supplied with a Nd:YAG laser (wavelength of 355 nm). Mass accuracy was better than 50 ppm in 

reflectron mode. The matrix solution was prepared by dissolving trihydroxyacetophenone (THAP) 

or 5-Chloro-2-mercaptobenzothiazole in CH3OH/0.1 % TFA/CH3CN (7/2/1 by vol) at a 

concentration of 75 mg/ ml. A sample/matrix solution mixture (1:1 v/v) was deposited (1 µl) onto a 

stain-less steel sample MALDI probe tip, and dried at room temperature. 

 

Affinity purification of membrane Lpt complexes. Membrane Lpt complexes were 

affinity purified from strains expressing His-tagged LptC from pGS108 plasmids as previously 

described (Chng et al., 2010; Villa et al., 2013) with few modifications. Cells were lysed by a 

single cycle through a Cell Disrupter (One Shot Model by Constant Systems LTD) at a pressure of 

22,000 psi and membranes were collected by ultracentrifugation of the supernatant at 100,000 g for 

2 h. Membranes were extracted at 4 °C for 30 min with 5 ml of 50 mM Tris-HCl, pH 7.4, 10% 

glycerol, 1% dodecyl β-D-maltoside (DDM) (Anatrace), 5 mM MgCl2. The mixture was 

centrifuged again at 100,000 g for 1 h and insoluble material was discarded. The supernatant was 

incubated with 0.5 ml TALON resin suspension for 20 min at 4 °C and the mixture was then loaded 

onto a column, washed with 10 ml of 50 mM Tris-HCl, pH 7.4, 10% glycerol, 0.05% 

dodecylmaltoside, 20 mM imidazole, and eluted with 5 ml of 50 mMTris-HCl, pH 7.4, 10% 

glycerol, 0.05% dodecylmaltoside, 200 mM imidazole. The eluate was concentrated using an 

ultrafiltration device (Vivaspin, GE Healthcare) by centrifugation at 7,000 x g to a final volume of 

80 μl. Samples were mixed with 5x loading buffer, boiled and separated by 12,5% SDS-PAGE 

(Laemmli et al., 1970) electroblotted and immunodetected using the anti-His monoclonal antibodies 

(1:3,000) (Sigma Aldrich) to detect LptC-H, and anti-LptA (1:250), anti-LptD (1:500), and anti-
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LptF (1:3,000) (GenScript Corporation). As secondary antibodies, goat anti rabbit or anti mouse 

immunoglobulin (LI-COR) were used at a dilution of 1:15,000. 

 

Protein Expression and Purification. Cultures of BL21(DE3) strain carrying pET vector 

expressing full length LptA or LptA mutant proteins fused to a C-terminal tag (SGRVEH6) (Suits et 

al., 2008) were grown up to OD600 0.6 at 30 °C. Expression was induced by the addition of 0.5 mM 

IPTG (Sigma-Aldrich) and further incubation for 16–18 h at 20 °C. Cells were harvested by 

centrifugation at 4 °C (5000 g, 20 min). The cell pellets were resuspended in buffer A (50 mM 

sodium phosphate, pH 8.0, 300 mM NaCl, 10 mM imidazole, 10% glycerol), followed by 30 min 

incubation at 4 °C, shaking in the presence of lysozyme (1 mg/ml), DNase (100 μg/ml), 10mM 

MgCl2, and 1 mM phenylmethanesulfonylfluoride (PMSF, Sigma-Aldrich). Cells were disrupted as 

above. Unbroken cells and cell debris were removed by centrifugation at 4 °C (39,000 g, 30 min). 

The soluble proteins were purified from the supernatant by Ni-NTA affinity columns (Qiagen). The 

columns were washed with 10 column volumes (CV) of 4% buffer B (50 mM sodium phosphate, 

pH 8.0, 300 mM NaCl, 500 mM imidazole, 10% glycerol) in buffer A. Proteins were eluted by a 

10%, 20%, 50%, 70%, and 100% buffer B stepwise gradient, 1 CV per step. Fractions were 

analyzed by 12.5% SDS-PAGE. Pooled fractions containing the purified protein were dialyzed 

against 20 mM TrisHCl, pH 7.4, 300 mM NaCl through cellulose membranes 10,000-Da cut-off 

(Sigma-Aldrich). Protein concentration was determined by a Coomassie (Bradford) assay kit 

(Thermo-Pierce), using bovine serum albumin as a standard.  

 

LPS-Binding Assay. The in vitro LPS binding assay was based on the protocol described 

previously (Santambrogio et al., 2013), with minor modifications. Briefly, assays (500 μl) were 

carried out in buffer C (50 mM sodium phosphate, pH 8, 50 mM NaCl) containing 25 μM of 

purified His-tagged protein and a 5-fold molar excess of purified smooth LPS from E. coli serotype 

O55:B5 (Sigma-Aldrich; assumed mw 10,000 Da). The reactions were incubated at room 

temperature for 1 h on a rotary shaker to allow for the formation of LPS-protein complexes. Ni-

NTA resin (200 μL, His-Select nickel affinity gel; Sigma-Aldrich), washed in 1 mL of buffer C, 

was added to the reaction mixtures and incubated for another hour to allow binding of LPS–protein 

complexes. The reaction mixture was centrifuged at 13,000 g for 1 min, and the supernatant (FT) 

was collected. The resin was then washed four times with buffer C and the protein–LPS complexes 

were eluted in two steps, with 500 μl of buffer C containing 300 mM imidazole (E1) or 500 mM 

imidazole (E2), respectively. To monitor LPS-LptA complex formation, equal volumes (20 μl) of 

the collected chromatographic fractions were analyzed by denaturing gel electrophoresis. For LPS 
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visualization, samples were fractionated by 18% tricine-SDS-PAGE (Lesse et al., 1990) and 

immunodetected using a 1:3,000 dilution of the anti-LPS WN1 222-5 monoclonal antibody (HyCult 

Biotechnology b.v.). LptA was analyzed by 12.5% SDS-PAGE and immunodetected using 1:3,000 

dilution of the anti-His monoclonal antibodies (Sigma Aldrich).  
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RESULTS 

 

Generation of a partial loss-of-function lptA allele. In a previous work (Suits et al., 2008) 

several rationally designed lptA mutant alleles turned out to be able to complement LptA-depleted 

strain for growth. We thus tested whether multiple mutations (lptA41 allele, encoding the following 

amino acid substitutions: I36A, I38A, R76D, and K83D) could impair LptA functionality. The 

quadruple lptA41 mutant allele was introduced in pWSK29-LptA LptB, a low copy number plasmid 

vector harbouring the wild type operon lptAB, and the construct transferred into the conditional 

expression E. coli mutant FL907, in which the lptAB operon is inducible by arabinose. In the 

absence of arabinose the LptA-depleted strain was complemented by lptA41 for growth.  

Impairment of LPS transport, albeit non-lethal, may be associated to increased OM 

permeability to hydrophobic toxic compounds and detergents (Ruiz et al., 2006). To test whether 

lptA41 was a partial loss-of-function allele, plasmid pWSK29-LptA41 lptB was introduced into the 

reference wild-type strain AM604 and the chromosomal lptAB operon was replaced with the 

ΔlptAB::kan allele, generating the lptA41 mutant strain PS003 in which deletion of lptAB operon is 

ectopically complemented. OM permeability of PS003 was probed by testing its sensitivity to a 

panel of antibiotics, namely bacitracin, novobiocin, and rifampicin. As a control, a similarly 

generated strain expressing wild type lptA (PS001) was used. As shown in Fig. 2B, the lptA41 

mutant displayed increased sensitivity to the antibiotics tested as compared to the corresponding 

wild-type lptA strain, suggesting that lptA41 is a partial loss-of-function allele of lptA. 

 

lptA41 allele induces LPS modification by PagP. Conditions that alter the level of LPS at 

the cell surface, such as defective LPS biogenesis or LPS release from the OM upon EDTA 

treatment, result in translocation of phospholipids (PLs) to the outer leaflet of the OM (Wu et al., 

2006; Leive, 1965; Nikaido, 2003), activation of the enzyme PagP, which transfers a palmitate 

group from PLs to lipid A (Jia et al., 2004), and the consequent conversion of hexa-acyl lipid A into 

hepta-acyl lipid A (Bishop, 2000). We thus analysed by MALDI-TOF MS the composition of lipid 

A extracted from the ectopically complemented lptA41 and lptA isogenic strains to detect the 

appearance of hepta-acyl lipid A species as a marker of LPS transport defects (Zhou et al., 1999); as 

controls we analysed the parental reference strain AM604 (wild type) untreated and treated with 

EDTA. 

As shown in Fig. 3, the EDTA-untreated wild type sample and the wild type lptA-

complemented strain (Fig. 3A and 4B, respectively) did not produce a detectable peak 



Mutational analysis of lptA 

12 
 

corresponding to hepta-acyl lipid A, whereas it was present both in the EDTA-treated wild type and 

in the lptA41-complemented samples (Fig. 3C and D, respectively). In the latter sample, a peak 

corresponding to phosphoethanolamine (PEtN)-modified lipid A, a molecule that appears when OM 

is damaged (Raetz et al., 2007) was also present. These data suggest that the lptA41 allele, although 

complementing the lptA mutant for viability, induces the translocation of PLs in the outer leaflet 

of the OM, a diagnostic trait of LPS transport impairment. 

 

LptA41 mutant fails to assemble the Lpt complex. To characterize properties of the LptA41 

mutant protein that could be correlated with the functional defect we first assessed whether the 

amino acid substitutions in LptA impaired its expression level. As shown in Fig. 2C, the steady-

state level of LptA41 was about three-fold lower than that of the wild-type LptA, as revealed by 

SDS/PAGE and immunoblotting with anti-LptA antibody, thus suggesting lower stability of the 

quadruple mutant protein. It should be noted, however, the mutant protein abundance in the 

ectopically complemented lptA mutant was greater than that of the wild type LptA expressed from 

the chromosomal locus (undetectable under our experimental conditions; Fig. 2C). Thus, the 

phenotypic defects caused by lptA41 allele could not be solely attributed to lower abundance of the 

mutant protein.  

To determine whether LptA41 affects Lpt complex assembly, we performed affinity 

purification experiments from solubilized membranes of AM604, PS001 and PS003 strains 

ectopically expressing C-terminally His tagged LptC (LptC-H) from plasmid pGS108. Affinity 

purified samples were then analyzed by SDS-PAGE-immunoblotting with a panel of specific 

antibodies, as previously described (Villa et al., 2013). As shown in Fig. 4A, in the LptA41-

complemented strain LptC-H co-purified LptF, suggesting that the IM LptB2FGC sub-complex was 

properly assembled; on the contrary, under these experimental conditions, the LptA41 signal could 

not be detected while the OM LptD signal was not detectable above the experimental background 

(no LptC-H). This result suggests that the LptA41 mutant protein is to some extent impaired in OM 

Lpt sub-complex assembly. 

LptA and LptC directly interact with LPS and some residues involved in this interaction have 

been identified by photocrosslinking experiments (Okuda et al., 2012; Tran et al., 2008). One of the 

residues mutated in lptA41, I36, is among the LptA residues crosslinked with LPS (Okuda et al., 

2012). Therefore, we also performed an in vitro LPS binding assay using purified C-terminally His-

tagged LptA and LptA41 proteins (LptA-H and LptA41-H, respectively), as previously described 

(Santambrogio et al., 2013; Tran et al., 2008). Co-purification experiments with smooth-type LPS 

revealed that, at least in vitro, LptA41 retains the ability to interact with LPS (Fig. 4B). Overall, 
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these data suggest that the phenotype associated to lptA41 allele could be imputed to impairment in 

Lpt complex assembly. 

 

Screen for suppressors of lptA41 increased antibiotic susceptibility phenotype. Analysis 

of suppressor mutants is a powerful tool to identify genetic and functional interactions between the 

gene of interest and other genes in the same or in different pathways (reviewed by (Prelich, 1999). 

We thus selected for spontaneous phenotypic revertants to bacitracin resistance by plating 

independent cultures of lptA41 mutant on LD supplemented with 0.15 mg/ml bacitracin, a lethal 

concentration for the lptA41 strain but not for the wild-type.  

Fifteen independent bacitracin resistant mutants, which arose at a frequency of approximately 

10
-8

, were colony purified and tested for sensitivity to bacitracin, novobiocin, and rifampicin. Based 

on their sensitivity profile the mutants could be grouped in three classes and a representative of each 

class (strains PS101, PS102, and PS103) was chosen for subsequent analysis. None of the mutants 

fully reverted to the wild phenotype (Fig. 2B). PS102 retained sensitivity to both novobiocin and 

rifampicin, thus suggesting that suppression was acting on a pathway specific for bacitracin rather 

than alleviating the permeability barrier defect altered by lptA41. In addition to bacitracin 

resistance, PS101 exhibited increased tolerance to novobiocin but not to rifampicin whereas PS103 

exhibited increased resistance to rifampicin and a slightly improved tolerance to novobiocin.  

Sequencing the plasmid-encoded lptA gene of these three mutants revealed that PS101 and 

PS102 harboured the lptA41 allele, whereas in PS103 an additional mutation causing the M112I 

amino acid substitution was present; such a quintuple mutant was designated lptA42.  

Analysis of LptA steady-state level in the suppressor strains showed that in PS101 mutant the 

steady-state level of LptA was much higher than that of the parental PS003 (lptA41) strain and this 

appeared to correlate with a higher copy number of the complementing plasmid (Fig. 2C). In PS102 

the LptA level resembled that of the parental lptA41 strain whereas in PS103 the level of LptA 

appeared to be intermediate between the wild type and the lptA41 mutant, suggesting that the 

additional M112I substitution may to some extent stabilize the mutant protein (Fig. 2C).  

To identify potential chromosomally encoded suppressors of the increased antibiotic 

sensitivity, we performed the genomic sequencing of the three selected strains. The total number of 

reads obtained for each strain allowed us to reach a more than 360-fold mean coverage for the 

coding portion of each strain genome (see Supplementary Table 1). In order to identify single 

nucleotide variations (SNVs) or insertions/deletions (indels) in the coding sequences (CDS), which 

could be potential suppressors of the antibiotic sensitivity phenotype, a comparative analysis was 

performed by mapping all the reads obtained for each of the three suppressor strains and their 
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PS003 parental against the reference genome of strain MC4100. PS003 harboured several variations 

relative to MC4100 many of which were common to all the suppressor strains and thus may simply 

represent mutations accumulated in different laboratory lines. Table 4 reports the mutations in the 

suppressor strains not shared with the parental PS003. In our subsequent analysis we considered as 

relevant neither the variants identified in lacZ, a gene largely manipulated in MC4100 (Ferenci et 

al., 2009), nor the single nucleotide changes in intergenic regions.  

Analysis of genomic sequencing results from PS101 did not reveal any mutation that could be 

correlated with the suppression and/or the increased complementing plasmid copy number and/or 

LptA41 abundance. It is possible that the increased copy number of the plasmid and consequently 

the higher expression level of LptA41 might contribute to the suppression of bacitracin and 

novobiocin susceptibility. Variations in non-sequenced regions (gaps) may contribute to 

suppression and/or increased plasmid copy number. No further analysis was performed on this 

suppressor strain.  

 

A mutation in vacJ is implicated in suppression of PS102 bacitracin sensitivity. Strain 

PS102 harbours, in addition to mutations in lacZ and in intergenic regions, a nucleotide insertion 

that causes a frameshift mutation at codon 193 of tus (herewith named tus-102 mutation), and a 6 

nucleotides deletion in vacJ (herewith named vacJ102 allele) that removes amino acids Asn41 and 

Phe42 of the encoded VacJ protein (Table 4). 

Tus is a non-essential E. coli protein implicated in replication termination at ter sites (Hill et 

al., 2013). VacJ, recently renamed MlaA, is the OM lipoprotein component of the Mla system, 

which is thought to maintain OM lipid asymmetry in E. coli (Malinverni and Silhavy, 2009). 

Therefore, we sought to determine whether vacJ102 and/or tus-102 mutations could be implicated 

in suppression of bacitracin sensitivity observed in PS102 strain. 

First we sequenced the chromosomal vacJ gene from 5 independent members of this class of 

suppressor mutants and found that three of them harboured the same vacJ102 allele; in another 

mutant an IS1 element was inserted downstream vacJ codon 227, whereas in the last one no 

mutation was present in vacJ. None of the strains harbouring the vacJ102 or the vacJ::IS1 alleles 

was mutated in tus, thus indicating that tus-102 is not implicated in suppression. 

To genetically characterize vacJ102, we cloned the wild and the mutant alleles in the plasmid 

vector pGS100 under the ptac promoter, transformed suitable strains, and tested the effects on cell 

permeability in the presence of lptA41 allele. To this end we also constructed strains harbouring a 

deletion of the chromosomal vacJ.  
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It has been reported that an E. coli ΔvacJ mutant exhibits increased sensitivity at critical SDS-

EDTA concentrations (SDS
S
) (Malinverni and Silhavy, 2009), whereas no effect on sensitivity to 

other drugs, including bacitracin, was observed. Thus, we tested both bacitracin and SDS-EDTA 

sensitivity as diagnostic of OM defects in the complementation and suppression tests summarized in 

Table 5.  

First of all, we observed that lptA41 conferred increased sensitivity to SDS-EDTA relative to 

the isogenic wild type strain (compare rows 1-2 with 5-6) at SDS-EDTA concentrations (0.5% and 

0.25 mM, respectively) partially tolerated even by the vacJ strains (compare rows 13 with 1-3, and 

15); the Sds
S
 phenotype was not suppressed in strain PS102 (rows 9-10). Second, in the suppressor 

strain PS102 SDS tolerance was not restored, thus further supporting the idea that suppression did 

not compensate for the OM permeability barrier defect. Ectopic expression of vacJ102 was 

sufficient to restore, at least in part, tolerance to bacitracin in lptA41 mutant strains, both in the 

haploid (row 20) and in the heterozygous state (row 8). Interestingly, in both conditions vacJ102 

also conferred sensitivity to SDS. Overall, these data suggest that vacJ102 is an (at least partially) 

dominant negative mutant that suppresses bacitracin sensitivity exerted by lptA41.  

LPS analysis of PS102 revealed a lipid A modification pattern similar to the one observed in 

the parental PS003 mutant (Fig. 3).  

 

An additional amino acid substitution in LptA41and a missense mutation in opgH 

contribute to lptA41 suppression in PS103. In the suppressor strain PS103 resistance to bacitracin 

and rifampicin and a slightly improved tolerance to novobiocin were restored. In addition, LPS 

analysis could detect only the PEtN modification of hexa-acylated lipid A but not the hepta-acylated 

forms detected in the parental mutant and in the suppressor strain PS102 (Fig. 3). Genomic 

sequencing of PS103 revealed that, besides the additional mutation in the plasmid encoded lptA41 

allele that generated lptA42, the strain harboured a Trp415Stop mutation in opgH (opgH103 allele; 

Table4). opgH (formerly mdoH) encodes an IM glycosyltransferase of 847 amino acids implicated 

in both the synthesis of osmoregulated periplasmic glucans (OPGs), alias membrane derived 

oligosaccharides (MDOs) (reviewed by Kennedy, 1966; Bohin, 2000) and control of cell size via 

interaction with FtsZ in a nutrient-dependent manner (Hill et al., 2013). We thus analysed the 

possible contribution of each mutation to the suppressed phenotype exhibited by PS103 strain. 

First, we tested Lpt complex assembly by performing affinity purification experiments from 

solubilized membranes of a strain bearing lptA42 allele and ectopically expressing LptC-H. As 

shown in Fig. 2C, the steady state level of LptA42 appeared to be more abundant than LptA41, thus 

suggesting that the LptA
M112I

 mutation, improved protein stability. Nevertheless, LptA42 did not 
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restore LptA interaction with LptC and, therefore, with the Lpt complex (Fig. 4C). As expected, 

LptA42 mutant retained the ability to co-purify LPS in vitro, as shown in Fig. 4B. 

We then analyzed the contribution of opgH103 and lptA42 alleles alone or in combination, in 

the suppression of sensitivity to toxic compounds in a suitable set of strains harbouring ectopic and 

chromosomal lptA and opgH alleles in different combinations. It should be mentioned that E. coli 

ΔopgH strains have been reported to be sensitive to SDS ≥ 0.5% (Rajagopal, 2003). However, 

under our experimental conditions, the ΔopgH mutant was tolerant to 0.5% SDS 0.25 mM EDTA 

whereas, as shown above (Table 5), the lptA41 mutant was sensitive.  

Data presented in Table 6 indicate that i) in the PS103 suppressor strain (row 1) tolerance to 

bacitracin, SDS, and rifampicin has been restored, whereas sensitivity to novobiocin was only 

partially suppressed as compared with the parental strain (line 6); ii) lptA42 allele was sufficient to 

restore bacitracin and SDS tolerance, but not rifampicin nor novobiocin tolerance in a wild type 

chromosomal opgH background (lines 10-11). On the other hand, lptA42 fully restored rifampicin 

tolerance and only partially novobiocin tolerance only in the absence of a wild type opgH allele, 

irrespective of its chromosomal or plasmid location (compare lines 22, 23, and 25 with 10-12 and 

24). The merodiploid opgH
+
/opgHJ103 heterozygous strain (ectopic opgH103) was also partially 

tolerant to novobiocin (line 13).  

In E. coli inactivation of opgH leads to increased expression of colanic acid (CA) (Ebel, 

1997). In fact, our ΔopgH and opgH103 strains produced mucoid colonies. To test whether colanic 

acid production could play any role in the suppressed phenotype, we inactivated wcaJ gene, which 

codes for the UDP-glucose lipid carrier required for the biosynthesis of CA (Dumon et al., 2001;  

Patel et al., 2012). Deletion of wcaJ in PS103 and in ΔopgH lptA42 mutant strains barely affected 

antibiotic resistance of the parental strains (Table 7), thus suggesting that CA overproduction in 

PS103 is not implicated in suppression of the increased antibiotic susceptibility. Interestingly, 

inactivation of wcaJ in opgH
- 
mutant expressing lptA41 allele conferred some amelioration in OM 

permeability. Overall, these results suggest that suppression of lptA41 Shc phenotype in PS103 is 

ensured by the combination of LptA structural stabilization and the production of a truncated OpgH 

protein and is independent from CA production.  
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DISCUSSION 

 

LptA is the periplasmic component of the Lpt machine dedicated to ferry LPS across the 

periplasm to the cell surface. LptA connects, supposedly as a head-to-tail dimer (Santambrogio et 

al., 2013) the inner membrane ABC transporter formed by the LptB2FGC sub complex with the OM 

LptDE translocon by contacting the C-terminal region of LptC at the IM and the N-terminal region 

of LptD at the OM via its N- and C-terminal domains, respectively (Freinkman et al., 2012; Polissi 

and Sperandeo, 2014). LptA also binds LPS and is thought to provide a hydrophobic environment 

for the passage of the amphipathic LPS through the periplasm (Okuda et al., 2012; Tran et al., 

2008). LptA is the prototype of peculiar β-jellyroll fold (Suits et al., 2008) conserved in LptC and 

LptD, thought to be relevant for both protein-protein and protein-LPS interactions (Suits et al., 

2008; Okuda et al., 2012; Qiao et al., 2014; Dong et al., 2014), in agreement with photo-

crosslinking studies that identified specific residues implicated in LptA-LptC and LptA-LPS 

interaction (Freinkman et al., 2012; Okuda et al., 2012). Depletion experiments with conditional 

expression mutants have shown that LptA is essential for cell viability (Sperandeo et al., 2007; Ma 

et al., 2008). However, despite several attempts of gene-specific mutagenesis, the only negative 

mutants in lptA isolated so far have been Gln111Pro and Gly138Arg substitutions (Bollati et al., 

2015; Ma et al., 2008). However, key LptA functional residues have never been yet identified as it 

is not known how the above-mentioned mutations affect LptA function.  

In the lptA41 quadruple mutant generated for this study four residues conserved in 

representative γ-Proteobacteria and lying at the N-terminal rim of LptA internal cavity were 

changed by site directed mutagenesis. Positively charged residues (R76 and K83) were substituted 

with the negatively charged residue Asp whereas apolar residues I36 and I38 were substituted with 

Ala to reduce the steric hindrance. Three such residues (I36, I38, and R76) had been previously 

mutated individually to both Asp and Glu without an appreciable phenotype (Suits et al., 2008). 

Since photocrosslinking experiments suggested that the region containing the isoleucines is also 

implicated in LptA-LptC and/or LptA-LptA interaction (Freinkman et al., 2012), the quadruple 

mutant LptA41 was designed so that it could have been impaired not only in LptA-LPS interaction 

but also in Lpt complex assembly.  

Ectopic expression of LptA41 complemented for viability both LptA-depleted cells and lptA 

deletion mutants, and thus modification of the four selected amino acid residues, potentially 

involved either in interaction with other Lpt proteins or in substrate (lipid A) binding, does not 

abolish LPS transport to the OM. LPS binding does not seem to be compromised in LptA41, 
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whereas the mutant failed to interact with LptC in affinity purification experiments using his-tagged 

LptC as a bait. To our knowledge this is the first lptA mutant affected in LptC binding. We suggest 

that LptA41-LptC interaction is too weak to be detected by affinity purification under our 

experimental condition but sufficient to form a functional, albeit partially impaired, Lpt complex. 

Alternatively, LptA41-LptC interaction could be unstable and LptA41, like LolA in the lipoprotein 

transport system across the periplasm, might transport LPS by shuttling between the IM and OM 

Lpt sub-complexes (Narita and Tokuda, 2010). It should also be noted that in the lptA41 mutant, 

LptC does not co-purify the OM sub-complex component LptD. This supports the model that the 

IM and OM Lpt sub-complexes are connected only by LptA.  

Although E. coli lptA41 is viable, the mutant exhibits increased sensitivity to three antibiotics 

(the large, hydrophilic bacitracin, and the hydrophobic rifampicin and novobiocin (Young and 

Silver, 1991) and to a detergent (SDS). This phenotype is diagnostic of an abnormal OM that is 

more accessible to the detergent, which may disrupt the OM itself, and more permeable to 

antibiotics, which have to diffuse through the OM to reach their targets either in the periplasm 

(bacitracin) or in the cytoplasm (rifampicin and novobiocin). Multiple mechanisms may contribute 

to the increased permeability of OM (see for reviews Vaara, 1993; Nikaido, 2003). Among these, 

defective LPS composition may interfere with OM proteins assembly and increase PLs 

concentration in the outer leaflet of the OM, which in turn would make the OM more permeable to 

lipophilic molecules such as rifampicin and novobiocin. On the other hand, bacitracin, a hydrophilic 

molecule too large to diffuse through porins, may exploit transient breaching of the OM to enter the 

periplasmic space or uncontrolled opening of large pores of OM  plug-and-barrel protein such as 

LptDE (Ruiz et al., 2006) or the TonB-dependent receptor FhuA (reviewed by Koebnik et al., 

2000). It thus appears that in the lpt41 mutant OM biogenesis is severely impaired and that LPS 

transport by the mutant Lpt machinery may not be as efficient as with the wild type transporter. 

This is further supported by the observation that in the lptA41 mutant lipid A could be detected in 

the hepta-acylated form (both mono- and di-phosphorylated) or decorated by PEtN. The former 

modification, catalysed by the lipid A palmitoyltransferase PagP, is induced by translocation of PLs 

to the outer leaflet of the OM (Jia et al., 2004; Bishop, 2000), where PLs are used as palmitoyl 

donors (Bishop, 2000), and is consistent with the hypothesis of inefficient transport, and 

consequently, sub-optimal concentration of LPS in the OM. On the other end, PEtN decoration, 

promoted by EptA (Raetz and Whitfield, 2002) and known to be induced by exposure of cells to 

mild acid (Gibbons et al., 2005), occurs on the outer surface of the IM (Raetz et al., 2007); 

(Doerrler et al., 2004), where LPS might idle in conditions of inefficient transport. Although such 
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lipid A modifications may be part of the homeostatic cell response to diverse envelope stress 

conditions, they appear not be sufficient to fully restore the OM permeability barrier.  

It should be noted that increased sensitivity to detergents such as SDS may not be necessarily 

associated with [detectably] increased permeability to large hydrophilic and to hydrophobic 

compounds (see below, Mla system).  

Bacitracin resistance in E. coli may occur through several indirect mechanisms, including 

amplification of the target gene product BacA and, unlike rifampicin and novobiocin, no 

chromosomal mutations in the antibiotic target gene have been isolated (Cain et al., 1993). 

Selection for lptA41 phenotypic revertants to bacitracin resistance was thus performed to avoid 

selecting mutants in rpoB and gyrB, which represent the majority of spontaneous Rif
R
 and Nov

R
 

mutants, respectively. Bac
R
 mutants produced three different antibiotic resistance profiles, none of 

which fully reverted to the resistant phenotype of the lptA wild type parental. Mutations potentially 

implicated in suppression were searched by genomic sequencing. Among the variants with adequate 

coverage (greater than 5 and 6 high quality reads for SNV and indels, respectively), we considered 

as candidate only mutations in open reading frames, with the exception of lacZ in which, for 

unknown reasons, several mutations appeared to accumulate. As we could not rule out that in 

addition to the candidate genes other mutations in the non-sequenced gaps could be implicated in 

suppression, we reconstructed the suppression phenotype by deleting the candidate genes in the 

parental (non-suppressor) PS001 and PS003 strains and ectopically complementing them with the 

putative suppressor alleles.  

The candidate suppressor mutation emerging from genomic sequencing analysis of strain 

PS102 was vacJ102, a two-codons in frame deletion in vacJ. The same mutation was found in 

additional three out of five independent mutants with similar phenotype, whereas in a fourth mutant 

an IS1 element disrupted this gene at codon 227. Whereas the fully sequenced PS102 genome 

harboured an additional mutation in tus, none of these vacJ mutations was associated with 

mutations in tus, which therefore does not seem implicated in the suppressor phenotype.   

In E. coli VacJ (MlaA) is the OM lipoprotein component of the Mla machinery, which is 

thought to contribute, together with other systems, to the maintenance of OM lipid asymmetry by 

removing PLs from its outer leaflet (Malinverni et al., 2009). It was suggested that upon disruption 

of the Mla system PLs raft accumulate in the OM outer leaflet (Carpenter et al., 2013; Malinverni et 

al., 2006). E. coli vacJ deletion mutants exhibit increased sensitivity to SDS, but not to bacitracin, 

rifampicin, novobiocin, and erythromycin (Malinverni et al., 2006; see also Table 5); this suggests 

that the lesions inflicted by disruption of the Mla system facilitate the access of the detergent to the 

OM whereas do not significantly impair the OM permeability barrier. As the vacJ102 allele confers 
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increased sensitivity to SDS but not to bacitracin in both haploid and merodiploid heterozygous 

conditions, we suggest that vacJ102 is a negative dominant mutation that impairs the Mla system 

thus leading to accumulation of PLs in the outer leaflet of the OM.  

Nevertheless, vacJ102 suppresses sensitivity to bacitracin (the antibiotic used for the selection 

of suppressors) caused by lptA41 whereas it does not restore tolerance to rifampicin and 

novobiocin. It could be suggested that vacJ102 would partially restore selectivity of the OM 

permeability barrier disrupted by lptA41 so as to reduce diffusion of large hydrophilic molecules 

such as bacitracin and not of the highly hydrophobic rifampicin and novobiocin. This would be in 

line with the persistence of phosphoethanolamine (PEtN) and hepta-acyl lipid A modification in 

LPS from PS102 mutant strain (Fig. 3E), suggestive of a partially impaired OM permeability 

barrier. However, other hypotheses implying bacitracin-specific mechanisms could be proposed. 

For example, the mutation in the OM-associated lipoprotein VacJ could interfere with bacitracin 

diffusion through the OM. This could require the presence of the lipoprotein, albeit inactive for the 

Mla function, in the OM, possibly in association with Lipid A modifications present in LPS of the 

vacJ102 mutant. This model would be consistent with the fact that deletion of vacJ does not restore 

bacitracin tolerance in lptA41 and with the negative dominant phenotype of the mutation. 

Alternatively, the vacJ102 mutant could directly or indirectly (e.g. through the periplasmic and/or 

the IM components of the Mla machinery) interfere with the bacitracin-C55-PP interaction.  

In suppressor strain PS103 bacitracin, rifampicin, and SDS tolerance have been restored, 

whereas novobiocin sensitivity was not fully suppressed. The additive effects of an intragenic and 

an extragenic suppressor appear to contribute to this phenotype.  

The intragenic suppressor (lptA42 allele) encodes an additional amino acid change (M112I) in 

LptA41. The LptA42 quintuple mutant protein did not seem to co-purify with LptC any better than 

its parental LptA41, although it appeared to be more stable as judge by the higher steady state level 

of the protein. However, lptA42 allele was sufficient to restore tolerance to bacitracin and SDS in a 

wild type chromosomal opgH background, but not to rifampicin and novobiocin. It thus appears 

that the intragenic suppressor in lptA42 allele could fix major OM defects caused by lptA41, so as to 

prevent accessibility of the OM to the detergent and decrease permeability to large hydrophilic but 

not to hydrophobic molecules. It is conceivable that LptA42 could improve to some extent LPS 

transport efficiency so as to substantially restore OM asymmetry and prevent formation of PL rafts, 

which may favour access to detergents, and other structural defects that may allow diffusion of 

large molecules. In keeping with this hypothesis, it should be noted that in the PS103 strain hepta-

acylation of lipid A, which is induced by translocation of PLs to the outer leaflet of the OM and 
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uses PLs as palmitoyl donors (Bishop, 2000), was not observed (Fig. 3F). Nevertheless, the LPS 

layer would remain sufficiently weakened so as to allow diffusion of hydrophobic compounds.  

The extragenic suppressor associated with PS103 is an amber mutation about in the middle of 

opgH, which encodes a glucosyltransferase implicated in the biosynthesis of the so called 

osmoregulated periplasmic glucans (OPGs), a class of D-glucose oligosaccharides, heterogeneous 

in size and structure, found in the periplasm of all Proteobacteria (reviewed by Bohin, 2000). E. coli 

OPGs consist of a backbone of β-1,2,-linked glucose units to which β-1,6 linked branches are 

attached, ranging from 5 to 12 (typically 8-9) glucose residues. E. coli OPGs may be further 

decorated by sn-1-phosphoglycerol and phosphoethanolamine residues originating from the 

membrane phospholipids, hence the former name of membrane derived oligosaccharides. OPGs, 

whose synthesis is induced by low osmolarity (Kennedy and Rumley, 1988; Lacroix et al., 1991), 

have been implicated in several processes including chemotaxis, virulence, osmoregulation of OM 

proteins expression, synthesis of colanic acid, resistance to SDS (Ebel, 1997; Fiedler and Rotering, 

1988; Rajagopal, 2003; Geiger et al., 1992; Bontemps-Gallo and Lacroix, 2015), but the underlying 

mechanisms are poorly understood.  

OpgH is an integral membrane protein that contains 8 transmembrane domains, with the N 

and C-termini and an internal domain of 310 residues between the second and third transmembrane 

regions located in the cytoplasm (Debarbieux et al., 1997). In addition to its enzymatic role in 

OPGs biosynthesis, OpgH has been implicated in control of cell division as an UDP-glucose-

activated inhibitor of FtsZ ring formation in E. coli (Hill et al., 2013). 

Both deletion of opgH and the opgH103 nonsense mutation restore resistance to rifampicin 

and, partially, to novobiocin in the lptA42 mutant, thus recapitulating the phenotype of the PS103 

suppressor strain. opgH103 also appears to be recessive (strain PS111 with ectopic opgH103 is Rif
S
, 

albeit not fully Nov
S
). It thus appears that the lack of OPGs in the periplasm and/or of the OpgH in 

the IM make the cell envelope of E. coli lptA42 less permeable to the lipophilic antibiotic 

rifampicin and, to a lesser extent, to novobiocin, which is about three-fold more lipophilic than 

rifampicin (Young and Silver, 1991).  

As the targets of both rifampicin and novobiocin are located in the periplasm and given the 

pleiotropic effects of opgH, we cannot tell from these data whether the increased selectivity of the 

envelope may depend on alterations of OM, periplasm, or IM composition. Although it is difficult 

to predict the effects in association with the lptA42 allele, several known phenotypes of opgH 

mutants could impact on the envelope permeability. For example, OPGs affect osmoregulation of 

porins and other OM proteins (Fiedler and Rotering, 1988; Geiger et al., 1992); the same presence 

of the hydrophilic OPGs in the periplasm or of the Opg multiprotein complex in the IM might 
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modulate diffusion of some lipophilic molecules; recycling of phospholipids, the donors of sn-1-

phosphoglycerol and phosphoethanolamine residues that decorate OPGs, may also affect the 

envelope permeability barrier. Finally, we showed that LptA42 does not co-purify with LptC, 

suggesting that assembly of the Lpt complex could be impaired to some extent. It could be proposed 

that the lack of OpgH in the IM or of OPGs in the periplasm somehow facilitate Lpt complex 

assembly with the LptA42 component, thus improving selectivity of the mutant OM.  

In this work, we have identified two different mechanisms that fix, at least partially, the OM 

permeability barrier compromised in a mutant with defective LPS transport to. In the case of 

vacJ102 mutant, the suppression is quite specific for the antibiotic used for the selection and 

unravels a possible new functional interaction of the Mla system, required in E. coli to maintain OM 

asymmetry. In the case of PS103 suppressor, on the contrary, we found a more global mechanism 

based on the synergistic effect of LptA structural stabilization and the production of molecules 

buffering OM permeability defects. Overall, this work reveals different strategies adopted by the 

cell to preserve OM barrier integrity. 
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TABLES 

Table 1. E. coli strains  

Strain Parental Relevant Characters Construction Source or 

Reference Chromosomal Plasmid 

AM604 MC4100 Ara
+
  Spontaneous Ara

+ 
revertant (Wu et al., 2006) 

BL21(DE3)  F
–
 ompT gal dcm lon hsdSB(rB

-
 mB

-
) (λDE3 

[lacI lacUV5-T7 gene 1 ind1 Sam7 nin5]) 

  (Studier and 

Moffatt, 1986)  

BW25113  laclq rrnBT14 lacZWJ16 hsdR514 

araBADAH33 rhaBADLD78 

  (Datsenko and 

Wanner, 2000) 

DH10B  araD139(ara,leu)7697 lacX74 galU galK 

rpsL deoR 80dlacZM15 endA1 nupG 

recA1 mcrA(mrr hsdRMS mcrBC) 

  (Grant et al., 

1990) 

EM001 JW2343 ΔvacJ  By FLP-mediated excision of 

kan cassette 

This work 

EM004 BW25113/pACYC184-

LptA LptB 

ΔlptAB::kan plac-lptA 

lptB; Amp
R
 

By by site-directed λRed-

mediated mutagenesis with 

ΔlptAB::kan DNA 

This work 

FL907 AM604 AM604 Φ(kan araC araBp-lptA)1   (Sperandeo et 

al., 2008) 

JW2343 BW25113 F
-
 Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ

-
 

ΔvacJ754::kan rph-1 Δ(rhaD-rhaB)568 

hsdR514 

  (Baba et al., 

2006) 

PS001 AM604/pWSK29-LptA 

LptB 

ΔlptAB::kan plac-lptA 

lptB; Amp
R
 

By P1 HFT*EM004 

transduction, selection for Kan
R
  

This work 

PS003 AM604/pWSK29-

LptA41 LptB 

ΔlptAB::kan plac-lptA41 

lptB; Amp
R
 

By P1 HFT*EM004 

transduction, selection for Kan
R
  

This work 

PS101  PS003 ΔlptAB::kan plac-lptA41 

lptB; Amp
R
 

Bct
R
, spontaneous suppressor 

mutant 

This work 

PS102  PS003 vacJ102 ΔlptAB::kan plac-lptA41 

lptB; Amp
R
 

Bct
R
, spontaneous suppressor 

mutant 

This work 
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PS103  PS003 mdoH103 ΔlptAB::kan plac-lptA42 

lptB; Amp
R
 

Bct
R
, spontaneous suppressor 

mutant 

This work 

PS107 PS134/ pWSK29-

LptA41LptB 

ΔvacJ ΔlptAB::kan  plac-lptA41 

lptB; Amp
R
 

By P1 HFT*PS001 

transduction, selection for Kan
R
  

This work 

PS109 PS132/pWSK29-LptA41 

LptB 

ΔopgH ΔlptAB::kan  plac-lptA41 

lptB; Amp
R
 

By P1 HFT*PS001 

transduction, selection for Kan
R
  

This work 

PS110 PS132/pWSK29-LptA42 

LptB 

ΔopgH ΔlptAB::kan  plac-lptA42 

lptB; Amp
R
 

By P1 HFT*PS001 

transduction, selection for Kan
R
  

This work 

PS111 AM604/pWSK29-

LptA42 LptB 

ΔlptAB::kan plac-lptA42 

lptB; Amp
R
 

By P1 HFT*PS001 

transduction, selection for Kan
R
  

This work 

PS112 PS132/pWSK29-LptA 

LptB 

ΔopgH ΔlptAB::kan  plac-lptA 

lptB; Amp
R
 

By P1 HFT*PS001 

transduction, selection for Kan
R
  

This work 

PS113  PS103 opgH103 ΔlptAB::kan ΔwcaJ::cat  plac-lptA42 

lptB; Amp
R
 

By P1 HFT*PS135 

transduction, selection for Cat
R
  

This work 

PS114 PS109 ΔopgH ΔlptAB::kan ΔwcaJ::cat  plac-lptA41 

lptB; Amp
R
 

By P1 HFT*PS135 

transduction, selection for Cat
R
  

This work 

PS115  PS110 ΔopgH ΔlptAB::kan ΔwcaJ::cat  plac-lptA42 

lptB; Amp
R
 

By P1 HFT*PS135 

transduction, selection for Cat
R
  

This work 

PS116  PS112 ΔopgH ΔlptAB::kan ΔwcaJ::cat  plac-lptA 

lptB; Amp
R
 

By P1 HFT*PS135 

transduction, selection for Cat
R
  

This work 

PS130 PS134/pWSK29-LptA 

LptB 

ΔvacJ ΔlptAB::kan plac-lptA 

lptB; Amp
R
 

By P1 HFT*PS001 

transduction, selection for Kan
R
  

This work 

PS131 AM604 ΔopgH::cat  By site-directed λRed-mediated 

recombination; primers 

FG3116-FG3117, template 

pKD3 

This work 

PS132 PS131 ΔopgH  By FLP-mediated excision of 

cat cassette 

This work 

PS133 AM604  ΔvacJ::kan  By P1 HFT*JW2343 

transduction (selection for 

Kan
R
)  

This work 

PS134 PS133 ΔvacJ  By FLP-mediated excision of 

kan cassette 

This work 
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PS135 AM604 ΔwcaJ::cat  By site-directed λRed-mediated 

recombination; primers 

FG3153-FG3154, template 

pKD3 

This work 

XL1-Blue  F
-
 λ

-
 recA1 endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac {F
’
proAB, lacIqZ ΔM15 

Tn10(Tet
R
)} 

  Agilent 

Technologies 
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Table 2. Plasmids 

Plasmid Parental 

plasmid/replicon 

Relevant characters Construction/Origin 

    

pACYC184  pSC101 ori p15A; Cam
R
, Tet

R
 (Bartolome et al., 1991) 

pACYC184-LptA LptB pACYC184 plac-lptA lptB; Cam
R
 lptAB genes were excised from plasmid pWSK29-

LptA LptB and subcloned into BamHI- SalI sites of 

pACYC184  

pCP20  bla cat; thermosensitive replication  (Datsenko and Wanner, 2000) 

pET-LptA41-H pET21a pT7-lptA41-His6 lptA41 allele was PCR amplified with AP182 and 

AP183 and cloned into BamHI-NotI sites of pET-

LptA-H. 

pET-LptA42-H pET21a pT7-lptA42-His6; Amp
R
 lptA42 was obtained by site-directed mutagenesis 

with FG3191-FG3192 primers from pET-LptA41-H 

as template 

pET-LptA-H pET21a pT7-lptA-His6; Amp
R
 Suits et al., 2008 

pGS100 pGZ119EH  ptac-TIR cat oriVColD (Sperandeo et al., 2006) 

pGS100-OpgH pGS100 ptac-opgH; Cam
R
 opgH was PCR-amplified with FG3069-FG3070 

primers from PS003 genomic DNA and cloned into 

XbaI-PstI sites of pGS100 

pGS100-OpgH103 pGS100 ptac-opgH103; Cam
R
 opgH103 was PCR-amplified with FG3069-FG3070 

primers from PS003 genomic DNA and cloned into 

XbaI-PstI sites of pGS100 

pGS100-VacJ pGS100 ptac-vacJ; Cam
R
  vacJ was PCR-amplified with FG3067-FG3068 

primers from PS003 genomic DNA and cloned into 

XbaI-PstI sites of pGS100 

pGS100-VacJ102 pGS100 ptac-vacJ102; Cam
R
 vacJ102 was PCR-amplified with FG3067-FG3068 

primers from PS102 genomic DNA and cloned into 

XbaI-PstI sites of pGS100 

pGS108 pGS100 ptac-lptC-His6 cat oriVColD (Sperandeo et al., 2006) 

pKD3  oriRγ; Amp
R
 Cam

R
; source of cat cassette (Datsenko and Wanner, 2000) 

pKD4  oriRγ; Amp
R
 Kan

R
; source of kan cassette (Datsenko and Wanner, 2000) 
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pKD46  oriR101 repA101ts araC araBp-λ red bla (Datsenko and Wanner, 2000) 

pWSK29 pBSIISK pSC101 ori f1 ori lacZa; Amp
R
 (Wang and Kushner, 1991) 

pWSK29-LptA LptB pWSK29 plac-lptA41 lptB; Amp
R
 (Santambrogio et al., 2013) 

pWSK29-LptA36 LptB pWSK29-LptA LptB plac-lptA
I36A I38A

 lptB, Amp
R
 By site-directed mutagenesis with primers AP184-

AP185  

pWSK29-LptA37 LptB pWSK29-LptA36 LptB plac-lptA36
R76D

 lptB, Amp
R
 By site-directed mutagenesis with primers AP112-

AP113  

pWSK29-LptA41 LptB pWSK29-LptA37 LptB plac-lptA37
K83D

 lptB, Amp
R
 By site-directed mutagenesis with primers AP186-

AP187  

pWSK29-LptA42 LptB pWSK29-LptA41 LptB plac-lptA41
M112I

 lptB; Amp
R
 Spontaneous mutant 

 

 

 

 



Mutational analysis of lptA 

33 
 

 

Table3. Oligonucleotides 

Name Sequence 
a
 Notes 

AP54 cgagaggaattcaccATGAGTAAAGCCAGACGTTGGG ΔlptAB::kan cassette for EM004 construction by three step PCR, with 

AP268; EcoRI 

AP79 GTGTAGGCTGGAGCTGCTTCG Amplification kan cassette from pKD4, with AP80 

AP80 CATATGAATATCCTCCTTAG Amplification kan cassette from pKD4, with, with AP79 

AP112 CAAAGTGGTCGTTACCGATCCGGGCGGCGAACAAGG pWSK29-LptA41 LptB (R76D) construction with AP113 

AP113 CCTTGTTCGCCGCCCGGATCGGTAACGACCACTTTG pWSK29-LptA41 LptB (R76D) construction with AP112 

AP182 ctcgacgcggccgcTATATACCCTTCTTCTGTG pET-LptA41-H construction with AP183, NotI 

AP183 cgagatggatccATGAAATTCAAAACAAACAAAC pET-LptA41-H construction with AP182, BamHI 

AP184 CACTGATCAGCCGGCCCACGCTGAATCGGACCAG pWSK29-LptA41 LptB (I36A and I38A) construction with AP185 

AP185 CTGGTCCGATTCAGCGTGGGCCGGCTGATCAGTG pWSK29-LptA41 LptB (I36A and I38A) construction with AP184 

AP186 GCGGCGAACAAGGTGATGAAGTGATTGACGGC pWSK29-LptA41 LptB (K83D) construction with AP187 

AP187 GCCGTCAATCACTTCATCACCTTGTTCGCCGC pWSK29-LptA41 LptB (K83D) construction with AP186 

AP266 ctaaggaggatattcatatgGATAGGGTAGAAGTTTGCG ΔlptAB::kan cassette construction, kan hybrid primer for EM004 

construction by three step PCR, with AP267 

AP267 CTAATGATCAGTCTGGCCTC ΔlptAB::kan cassette for EM004 construction by three step PCR, with 

AP266 

AP268 gaagcagctccagcctacacGATTAAGGCTGAGTTTG ΔlptAB::kan cassette construction, kan hybrid primer for EM004 

construction by three step PCR, with AP54 

AP354 GTCATGGATGGCAAACTG vacJ102-SPA::kan cassette construction, SPA-kan hybrid primer for 

EM002 construction by three step PCR, with AP403 

AP387 TCCATGGAAAAGAGAAG Amplification of SPA::kan cassette from CAG60297, with AP388 

AP388 CATATGAATATCCTCCTTAG Amplification of SPA::kan cassette from CAG60297, with AP387 

AP400 GGTATCGACAACCAAGAACC vacJ102-SPA::kan cassette construction for EM002 construction by 

three step PCR, with AP404 

AP403 catcttctcttttccatggaTTCAGAATCAATATCTTTTAAATC vacJ102-SPA::kan cassette construction, SPA-kan hybrid primer for 

EM002 construction by three step PCR, with AP354 

AP404 ctaaggaggatattcatatgGAAACAAATAAAAAAGGTG vacJ102-SPA::kan cassette construction, SPA-kan hybrid primer for 

EM002 construction by three step PCR, with AP400 

FG3067 cgactagtctagaATGAAGCTTCGCCTGTC pGS100-VacJ and pGS100-VacJ102 construction with FG3068; XbaI 

FG3068 cgagatctgcagTTATTCAGAATCAATATC pGS100-VacJ and pGS100-VacJ102 construction with FG3067; PstI 
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FG3069 cgactagtctagaATGAATAAGACAACTGAGTAC  pGS100-OpgH and pGS100-OpgH103 construction with FG3070; 

XbaI 

FG3070 cgagatctgcagTTATTGCGAAGCCGCATC pGS100-OpgH and pGS100-OpgH103 construction with FG3069; 

PstI 

FG3116 gtgaaacctggagctaccagttacctgccaatgaataagGTGTAGGCTGGAGCTGCTTC ΔopgH::cat cassette construction with FG3117 

FG3117 gtaggcctgataagcgtagcgcatcaggcaactacgttttCATATGAATATCCTCCTTAG ΔopgH::cat cassette construction with FG3116 

FG3153 catcgttaatctctatggtgcaacgcttttcagatatcacGTGTAGGCTGGAGCTGCTTC ΔwcaJ::cat cassette construction with FG3154 

FG3154 caggaaaacgattttgatatcgaaccagacgctccattcgCATATGAATATCCTCCTTAG ΔwcaJ::cat cassette construction with FG3153 

FG3191 GTCACGCTTCCCAGATTCACTACGAACTGGC pET-LptA42-H construction with FG3192 

FG3192 GCCAGTTCGTAGTGAATCTGGGAAGCGTGAC pET-LptA42-H construction with FG3191 
 

a 
Upper case letters, sequence present in the template; lower case letters, additional/modified sequence not present in the template; restriction sites are 

underlined. 
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Table 4. Mutations in the suppressor strains  

Strain Genomic 

coordinate
a 

Mutation Gene Product
b 

Gene 

coordinate
c 

Amino acid 

change
d 

PS101 290676 TG transversion Intergenic  na na na 

4178702  GC transversion lacZ β-galactosidase 246 Arg116Gly 

4178861  G insertion lacZ β-galactosidase 187 Ser63fs 

4178862  AG transition lacZ β-galactosidase 186 none 

4178862  CGG insertion lacZ β-galactosidase 183 Asp62fs 

PS102 290676 TG transversion Intergenic  na na na 

1574918  A insertion tus replication terminus 

site-binding protein 

577 Ser193fs 

2348710  AAGTTG deletion vacJ putative lipoprotein 120 ΔAsn41-Phe42 

2613172 GA transition Intergenic na na na 

4178702 GC transversion lacZ β-galactosidase 346 Arg116Gly 

4178862  AG transition lacZ β-galactosidase 186 none 

4178862  CG insertion lacZ β-galactosidase 184 Asp62fs 

PS103 425601  AG transition rhsD rhsD element  358 Ser120Gly 

1015255  GA transition opgH glucosyltransferase  1245 Trp415Stop 

3667499 TG transversion Intergenic  na na na 

3228885
e 

GT transversion lptA LPS transport protein 336 Met112Ile 

 

a
 For deletions and insertions, the coordinate indicates the first deleted base and the base after 

which insertion occurred, respectively  

b
 na, not applicable 

c
 Coordinates from the first base of the ORF. For deletions and insertions, the coordinate 

indicates the first deleted amino acid and the amino acid after which insertion occurred, 

respectively 

d
 fs, frame shift starting at the codon indicated 

e
 this region is actually harboured by the complementing plasmid  
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Table 5. Phenotypic suppression pattern by vacJ102 allele 
a
  

Strain Chromosome   Plasmid  LD Bct 50 

µg/ml 

Bct 150 

µg/ml 

SDS  

EDTA  

Row 

lptA vacJ   lptA
b
 vacJ

c
 

PS001 lptA  vacJ
+
  lptA

+
 NP + + + + 1 

 - + + + + 2 

vacJ
+
 + + + + 3 

vacJ102 + + + ‒ 4 

PS003 lptA vacJ
+
  lptA41 NP + ‒ ‒ ‒ 5 

 - + ‒ ‒ ‒ 6 

vacJ
+
 + ‒ ‒ ‒ 7 

vacJ102 + + -/+ ‒ 8 

PS102 lptA  vacJ102  lptA41 NP + + + ‒ 9 

 - + + + ‒ 10 

vacJ
+
 + + -/+ ‒ 11 

vacJ102 + + + ‒ 12 

PS130 lptA  ΔvacJ   lptA
+
 NP + + + -/+ 13 

 - + + + -/+ 14 

vacJ
+
 + + + + 15 

vacJ102 + + + -/+ 16 

PS107 lptA  ΔvacJ  lptA41 NP + -/+ ‒ ‒ 17 

 - + -/+ ‒ ‒ 18 

vacJ
+
 + -/+ ‒ ‒ 19 

vacJ102 + + -/+ ‒ 20 

 

a 
e.o.p. relative to growth on LD agar. +, e.o.p. >10

-2
; -/+, between 10

-2
 and 10

-3
; -, <10

-3
 

b 
lptA+, pWSK29-LptA LptB; lptA41, pWSK29-LptA41 LptB

 

c 
NP, no plasmid; -, empty vector pGS100; vacJ+, pGS100-VacJ; vacJ102, pGS100-VacJ102 
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Table 6. Phenotypic suppression pattern by lptA42 and opgH103 alleles 
a
  

Strain  Chromosome   Plasmid
 

LD Bct 

150 

µg/ml 

SDS-

EDTA 

Rif 

2.5 

µg/ml 

Nov 

10 

µg/ml 

row  

lptA  opgH   lptA
b
 opgH

c
 

PS103 ∆lptA  opgH103   lptA42 NP + + + + -/+ 1 

PS001 ∆lptA opgH+  lptA
+
 NP + + + + + 2 

 - + + + + + 3 

opgH
+
 + + + + + 4 

opgH103 + + + + + 5 

PS003 ∆lptA opgH+  lptA41 NP + ‒ ‒ ‒ ‒ 6 

 - + ‒ ‒ ‒ ‒ 7 

opgH
+
 + ‒ ‒ ‒ ‒ 8 

opgH103 + ‒ ‒ ‒ ‒ 9 

PS111 ∆lptA opgH+  lptA42 NP + + + ‒ ‒ 10 

 - + + + ‒ ‒ 11 

opgH
+
 + + + ‒ ‒ 12 

opgH103 + + + ‒ -/+ 13 

PS112 ∆lptA  ΔopgH  lptA
+
 NP + + + + + 14 

 - + + + + + 15 

opgH
+
 + + + + + 16 

opgH103 + + + + + 17 

PS109 ∆lptA  ΔopgH  lptA41 NP + ‒ ‒ ‒ ‒ 18 

 - + ‒ ‒ ‒ ‒ 19 

opgH
+
 + ‒ ‒ ‒ ‒ 20 

opgH103 + ‒ ‒ ‒ ‒ 21 

PS110 ∆lptA  ΔopgH  lptA42 NP + + + + -/+ 22 

 - + + + + -/+ 23 

opgH
+
 + + + ‒ ‒ 24 

opgH103 + + + + -/+ 25 

 

a 
e.o.p. relative to growth on LD agar. +, e.o.p. >10

-2
; -/+, between 10

-2
 and 10

-3
; -, <10

-3 

b
 
b 
lptA+, pWSK29-LptA LptB; lptA41, pWSK29-LptA41 LptB; lptA42, pWSK29-LptA42 

LptB
 

c
 NP, no plasmid; -, empty vector pGS100; opgH

+
, pGS100-OpgH; opgH103, pGS100-OpgH103
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Table 7. Colanic acid production does not affect PS103 suppressor phenotype 
a 

Strain
b
  Chromosome  Plasmid

c
 LD Bct 50 

µg/ml 

Bct 150 

µg/ml 

Rif 2.5 

µg/ml 

Nov 10 

µg/ml 

Row 

opgH wcaJ lptA 

PS103 opgH103 wcaJ
+
 

 
lptA42 + + + + -/+ 1 

PS113 opgH103 ∆wcaJ 
 

lptA42 + + + + -/+ 2 

PS112 ∆opgH wcaJ
+
 

 
lptA+ + + + + + 3 

PS109 ∆opgH wcaJ
+
 

 
lptA41 + ‒ ‒ ‒ ‒ 4 

PS110 ∆opgH wcaJ
+
 

 
lptA42 + + + + ‒ 5 

PS116 ∆opgH ∆wcaJ 
 

lptA+ + + + + + 6 

PS114 ∆opgH ∆wcaJ 
 

lptA41 + -/+ -/+ -/+ ‒ 7 

PS115 ∆opgH ∆wcaJ 
 

lptA42 + + + + ‒ 8 

 

a 
e.o.p. relative to growth on LD agar. +, e.o.p. >10

-2
; -/+, between 10

-2
 and 10

-3
; -, <10

-3
 

b 
All strains harbour the

 ∆lptAB::kan chromosomal deletion 

c
 lptA42, pWSK29-LptA42 LptB; lptA+, pWSK29-LptA LptB; lptA41, pWSK29-LptA41 LptB 
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FIGURE LEGENDS  

 

Fig. 1. The LPS transport system. (A) Transport of LPS from IM to OM. After flipping 

over the IM by MsbA protein, LPS is transported across the periplasm and assembled at the 

cell surface by the Lpt system. Modified from (Martorana et al., 2014). (B) Chemical 

structure of LPS from E. coli K12. Lipid A, core oligosaccharide and O-antigen are 

evidenced.Abbreviations: Gal, D-galactose; Glu, D-glucose; Hep, L-glycero-D-manno-

heptose; KDO, 2-keto-3-deoxy-octonic acid; EtN, ethanolamine; P, phosphate. Modified 

from (Ruiz et al., 2009). 

 

Fig. 2. LptA41 mutations and lptA41 suppressors phenotypes. (A) Ribbon diagram of E. 

coli LptA. Residues mutated by site-directed mutagenesis (I36, I38, R76, K83) are indicated 

in red. The intragenic suppressor (lptA42 quintuple mutant allele) encodes an additional 

amino acid change at the position indicated in green (M112). (B) OM permeability assay of 

lptA41 strain and suppressor mutants. Serial ten-fold dilutions of stationary phase cultures of 

AM604 (wild type reference strain), PS001 (wild type lptA control strain ectopically 

expressing lptAB), PS003 (ectopically expressing lptA41 lptB), PS101, PS102, PS103 (PS003 

derivative suppressor mutants) were replicated on LD (for AM604) or LD-ampicillin agar 

plates supplemented with bacitracin (50 g/ml), novobiocin (10 g/ml), rifampicin (2.5 

g/ml)as indicated. (C) Cell lysates from AM604, PS001 , PS003, PS101, PS102, PS103 

were analyzed by Western blotting with anti-LptA antibody as described in Materials and 

Methods. Culture samples of equal OD600 were processed and loaded into each lane. An 

aspecific band was used as loading control (LC). Plasmid DNA form normalized amount of 

PS003, PS101, PS102; PS103 cells were prepared and analyzed by agarose gel 

electrophoresis. 

 

Fig. 3. Lipid A modifications in lptA41 suppressor strains. MALDI-TOF profiles of lipid 

A isolated from wild type strain AM604 treated (B) or not (A) with EDTA, PS001 (C), 

PS003 (D) and suppressor strains PS102 (E) and PS103 (F). For details see Materials and 

Methods.  
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Fig. 4. Affinity purification of membrane Lpt complexes and LPS binding by LptA 

mutants. (A) Total membranes were collected from strains AM604 [expressing 

chromosomal LptA, LptA (c)], PS001 [ectopically expressing LptA, LptA (p)], PS003 

[ectopically expressing LptA41, LptA41 (p)], harboring pGS108 expressing His-tagged LptC 

(LptC-H) or pGS100 expressing the His tag (none) as a negative control. Samples were 

solubilized with dodecyl β-D-maltoside (DDM) and affinity purified using a Talon metal 

affinity resin. Proteins were then fractionated by SDS-PAGE and immunoblotting was 

performed with antibodies anti-LptD, anti-LptA, anti-LptF and anti-His (to detect LptC-H). 

(B) The ability of His-tagged LptA, LptA41, and LptA42 to bind purified LPS was assessed 

by their co-elution from Ni-NTA chromatography resin. LPS and purified His-tagged 

proteins were incubated and affinity purified on Ni-NTA resin as described in Materials and 

Methods. As a negative control LPS was incubated without any added protein (none). FT, 

flow-through; E1–E2, elutions. To monitor LPS-LptA complex formation, equal volumes of 

the collected chromatographic fractions were analyzed by denaturing gel electrophoresis. 

LptA-H protein was detected by SDS-PAGE and Western blotting with anti-His antibodies; 

for LPS visualization, samples were analyzed by Tricine-SDS-PAGE and Western blotting 

was performed with anti-lipid A-core antibodies.(C) The ability of LptA42 to assembly the 

Lpt complex was evaluated as described in panel A. Samples were prepared from PS001 

[LptA (p)], PS003 [LptA41 (p)], PS111 [LptA42 (p)] strains harboring pGS108 expressing 

His-tagged LptC (LptC-H).  
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Supplementary Table 1. Sequencing metrics 

 

Strain Total reads Mapped 

reads 

% mapped 

reads 

Mapped 

reads on 

CDS 

% mapped 

reads in CDS 

Mapped bases Mean 

coverage 

PS101 20.200.414 19.490.163 96 17.283.373 89 1.388.740.785 360.72 

PS102 30.486.926 30.110.142 99 26.598.378 88 2.134.108.807 554.33 

PS103 22.546.138 21.942.298 97 19.477.080 89 1.566.968.775 407.01 
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SUMMARY 

 

The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS 

from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer 

membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven 

essential proteins form the Lpt trans-envelope complex: LptBFG form the IM ABC 

transporter; LptDE form the OM translocon for final LPs delivery; LptC, an IM-anchored 

protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic 

protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in 

LPS transport is unclear. To clarify the functional role of LptC in the Lpt machine we 

selected, using a double selection plasmid shuffling approach, viable mutants lacking lptC. 

Genome sequencing of lptC mutants revealed single amino acid substitutions at a unique 

position in the periplasmic domain of the IM component LptF (LptF
Sup

). In complementation 

tests, lptF
Sup

 mutants suppress lethality of both lptC and lptC conditional expression 

mutants. Our data show that mutation in a specific residue of the large LptF periplasmic 

domain can compensate the lack of the essential protein LptC, implicate this LptF region in 

the formation of the periplasmic bridge between the IM and OM complexes, and suggest that 

LptC may have evolved as a chaperon of a six-component Lpt machine assembly and/or 

activity.  

 



 

INTRODUCTION 

 

Lipopolysaccharide (LPS), the major glycolipid in the outer layer of Gram-negative 

bacteria outer membrane (OM), is synthesized at the level of the inner membrane (IM) to be 

then transported to its final destination (reviewed by (Nikaido, 2003; Sperandeo et al., 

2014)). In Escherichia coli, where this process has been best characterized, the LPS 

transporter (Lpt) exhibits the overall organization of a trans-envelope ATP-binding cassette 

(ABC) transporter (Davidson et al., 2008) composed by seven proteins, LptA through LptG, 

which co-sediment in a membrane fraction that contains both IM and OM (OML fraction) and 

co-purify as a single complex spanning the cytoplasmic, IM, periplasmic and OM cell 

compartments (Chng et al., 2010a).  

LptC, LptA, and LptB are encoded, in this order, as the three promoter-distal genes of 

the six-cistrons yrbG operon, in which lptC and lptA overlap for 32 nucleotides (Fig. 1A). In 

addition to the strong yrbGp promoter, two minor promoters (lptAp1-p2) are located 

upstream of lptA within lptC (Sperandeo et al., 2006; Martorana et al., 2011). Although 

lptAp1 requires 
E
, it is not activated by several extracytoplasmic stress conditions known to 

induce the 
E
-dependent promoters, whereas it responds to conditions affecting 

lipopolysaccharide biogenesis such as depletion of LptC or LptAB, thus implying a 

specialized 
E
-dependent LPS stress signaling pathway (Martorana et al., 2011; Lima et al., 

2013). A bicistronic operon encodes lptF and lptG (Ruiz et al., 2008), whereas lptD and lptE 

map at unlinked loci (Sampson et al., 1989; Takase et al., 1987; Bos et al., 2004; Wu et al., 

2006). Genetic evidence indicates that in vivo each of the proteins composing the 

transenvelope complex is essential and that the LPS transporter operates as a single device. In 

fact, depletion of any Lpt protein using arabinose dependent conditional expression mutants 

leads to similar phenotypes, namely cell letality, LPS accumulation in the periplasmic leaflet 

of the IM, and abnormal envelope morphology (Sperandeo et al., 2008; Ruiz et al., 2008; Ma 

et al., 2008).  

The seven Lpt components form the IM ABC transporter (LptBFGC) and the OM 

translocon (LptDE) sub-complexes, connected with each other across the periplasm by LptA. 

LptF and LptG (formerly YjgP and YjgQ, respectively) (Ruiz et al., 2008) are IM proteins 

with six predicted transmembrane segments and a C-terminus located in the cytoplasm 

(Daley et al., 2005). Unlike the other components of the Lpt complex, structural information 



for these two proteins is still lacking. LptF and LptG are thought to form the dimeric IM core 

of the ABC transporter and have been shown to form a complex with a dimer of the ABC 

protein LptB, which binds and hydrolyzes ATP, at the cytoplasmic side (Stenberg et al., 

2005; Ruiz et al., 2008; Narita, and Tokuda, 2009). LptB 3D structure exhibits an overall fold 

resembling the NBD (nucleotide binding domain) proteins, with a RecA-like and an α-helical 

domain (Sherman et al., 2014; Wang et al., 2014).  

The LptB2FG IM sub complex, which provides energy to LPS transport system through 

the LptB ATPase activity (Okuda et al., 2012), is connected to the LptDE OM sub complex 

across the periplasm through LptC and LptA proteins (Sperandeo et al., 2008; Sperandeo et 

al., 2011; Freinkman et al., 2012). LptC is an IM bitopic protein with a predicted trans-

membrane helical domain and a periplasmic region of about 175 amino acids (Tran et al., 

2010), whereas LptA is a periplasmic protein of about 150 residues (Sperandeo et al., 2007; 

Tran et al., 2008). LptA and the LptC periplasmic domain share very little amino acid 

sequence conservation (about 13% identity); nevertheless, comparison of their 3D structures 

reveals a remarkably conserved fold based on a slightly twisted β-jellyroll, composed of 16 

(LptA) or 15 (LptC) antiparallel β-strands (Suits et al., 2008; Tran et al., 2010; Villa et al., 

2013). Likewise, although sharing modest sequence identity (~24%), LptA of E. coli and 

Pseudomonas aeruginosa 3D structures are largely superimposable and the latter can 

functionally complement E. coli ΔlptA mutants, thus indicating that, despite the scanty 

sequence homology, the xenogeneic protein properly interacts with the other components in 

an Lpt hybrid machine (Bollati et al., 2015).  

Concentration-dependent LptA oligomerization has been observed in solution (Merten 

et al., 2012; Schultz et al., 2013; Santambrogio et al., 2013) and, in the crystal, the C-

terminal β-strand of one protomer interacts with the N-terminal β-strand of an adjacent 

molecule (Suits et al., 2008). LptA-LptC interactions have also been shown to occur in vitro 

(Sperandeo et al., 2011) and in vivo (Freinkman et al., 2012), where the C-terminal β-strand 

of LptC is predicted to form an interface with the N-terminal β-strand of LptA (Freinkman et 

al., 2012). Both LptC and LptA have been shown to bind LPS, with LptC that binds with 

lower affinity than LptA. This is consistent with the idea that LPS transits across the 

periplasm, passing from the β-jellyroll fold of LptC to that of LptA (Tran et al., 2008; Tran et 

al., 2010; Okuda et al., 2012; Sestito et al., 2014).  

Interestingly, the twisted β-jellyroll conformation of LptA and LptC is also conserved 

by the N-terminal region of LptD (Qiao et al., 2014; Suits et al., 2008; Tran et al., 2010; 

Bollati et al., 2015). The β-barrel protein LptD and the associated lipoprotein LptE form the 



OM subcomplex of the LPS transporter (Chng et al., 2010b; Chimalakonda et al., 2011; 

Freinkman et al., 2011). The solved crystal structures of the LptD/E complex from 

Salmonella enterica sv. Typhimurium and Shigella flexneri revealed an unprecedented β-

barrel and plug architecture, in which LptD forms a 26-stranded β-barrel that surrounds the 

LptE plug (Dong et al., 2014; Qiao et al., 2014). It has been suggested that the N-terminal 

domain of LptD provides a hydrophobic intramembrane hole for the transit of the lipid A 

moiety of the LPS, whereas the hydrophilic polysaccharide moiety is translocated through the 

luminal gate and a lateral opening of the LptD β-barrel with the assistance of LptE (Gu et al., 

2015). The structure similarity between the LptD N-terminal domain and LptA and LptC 

(Qiao et al., 2014; Suits et al., 2008; Tran et al., 2010; Villa et al., 2013; Bollati et al., 2015) 

suggests that these proteins, by interacting with each other, may form a hydrophobic groove 

that accommodates the lipid moiety of LPS for its transport from the inner membrane to the 

outer membrane (Gu et al., 2015; Freinkman et al., 2012; Okuda et al., 2012; Tran et al., 

2010).  

Modeling the proposed large periplasmic domains of LptF and LptG predicted the β-

jellyroll structure (Sperandeo et al., 2011; Villa et al., 2013) similar to that of LptA, the 

periplasmic domain of LptC and the N-terminal region of LptD. It could thus be envisaged 

that a hydrophobic groove formed by the β-jellyroll domains of five different Lpt components 

accompanies LPS in his way from IM to OM. It thus appears that the β-jellyroll fold could 

provide both the hydrophobic environment for the LPS lipid moiety and the interfaces for the 

interactions of different Lpt components. 

LptC specific role and mechanism in LPS transport, however, remain unclear. Deletion 

of its transmembrane N-terminal domain is viable and does not impair LPS transport and 

LptC assembly with the LptBFG IM complex, although the LptC periplasmic domain lacking 

the TM domain seems to interact with the IM complex less efficiently than the wild type 

protein or a chimera with a heterologous TM domain. Point mutations in the N-terminal 

periplasmic region (G56V) or at the C-terminus (G153R) are unviable (Sperandeo et al., 

2011; Villa et al., 2013). The latter observation apparently contrasts with the fact that 

deletion of LptC C-terminus is not lethal, although the level of LptB required for the viability 

of the deletion mutant appears to be higher than that required for the wild type lptC (Serina et 

al., 2004; Martorana et al., accompanying manuscript).  

Considering the dispensability of LptC transmembrane domain and the high structural 

similarity of its periplasmic domain and LptA, we tested whether some functional 

redundancy could occur between these structurally analogous components of the Lpt machine 



by selecting for lptC deletion mutants. All the independent viable clones we obtained 

harbored, in addition to the lptC deletion, a suppressor mutation in LptF Arg212, a residue 

in the predicted periplasmic domain of this IM protein. This finding implies that, with a very 

specific modification in the putative periplasmic domain of the IM complex, a six-

components Lpt machine may be functional, and opens new scenarios for the understanding 

of the mechanism and evolution of the LPS transport system.  

  



MATERIALS AND METHODS 

 

Bacterial strains and plasmids  

The bacterial strains and plasmids used in this work are listed in Tables 1 and 2, 

respectively, with a brief outline of their construction by standard genetic and cloning 

techniques. Oligonucleotides used in strain and plasmid constructions are listed in Table 3. 

All plasmid-cloned DNA regions obtained by PCR were sequenced to rule out the presence 

of mutations. KG-286/pGS104 harbors a chromosomal deletion of lptC lptA genes (ΔlptCA) 

and the lptCAB genes ectopically expressed from plasmid pGS104 under the ptac promoter 

(Bollati et al., 2015). In this strain chromosomal lptB expression is driven by the main yrbGp 

promoter. KG-286 derivatives harboring plasmids other than pGS104 were obtained by 

plasmid shuffling (see below and Table 1).  

Unless otherwise stated, bacterial cultures were grown at 37 °C in LB (Bertani, 1951) 

or LD (Ghisotti et al., 1992) medium, supplemented, as required, with 0.2% arabinose, 0.2% 

glucose, 100 μg/ml ampicillin, 34 μg/ml chloramphenicol, 50 μg/ml kanamycin, 50 μg/ml 

streptomycin, and 0.1 mM IPTG. Genomic and plasmid DNA were extracted using 

commercial DNA extraction kits.  

 

Plasmid shuffling and strain characterization  

Plasmid shuffling experiments were performed according to two different approaches. 

The first one is based on double selection against the resident plasmid and for a compatible 

chasing plasmid (Fig. 1B). The bacterial host (KG-286, an MC4100 derivative with the 

chromosomal deletion of lptCA) harbors on the chromosome the recessive rpsL150 allele 

(which confers streptomycin resistance, Str
R
) whereas the resident plasmid pMBM07, an 

oriR101 replicon unable to replicate at temperatures ≥37 °C due to the repA101
ts
 mutation, 

harbors the dominant rpsL
+
 allele, a selectable Amp

R
 marker (bla), and the araBp-lptCA 

cassette for arabinose-dependent complementation of the chromosomal deletion. The parental 

strain was thus grown at 28 °C in LB supplemented with arabinose and ampicillin; 

electrocompetent cells were prepared and transformed by electroporation with the chasing 

plasmid, a compatible plasmid (oriVColD) harboring the selectable Cam
R
 marker cat and 

different combinations of lptC, lptA, and lptB genes. After 1.5 h incubation at 37 °C in LB to 

prevent replication of the resident plasmid and allow expression of the incoming plasmid 

markers, the culture was plated and incubated at either 37 or 42 °C in LB plates 

supplemented with glucose (to fully repress the araBp-lptCA cassette expression), 



chloramphenicol and streptomycin (to select for transformants by the chasing plasmid that 

had lost pMBM07). Transformants were then screened for Amp
S
 by replica plating on LB 

glucose supplemented with ampicillin and chloramphenicol. The second plasmid shuffling 

procedure is based on the spontaneous segregation of incompatible resident and chasing 

plasmid, both harbouring the oriVColD replication origin and each expressing a different 

antibiotic resistance marker (e. g. Cam
R
 and Kan

R
, respectively) with selection for the 

chasing plasmid. The parental strain was grown in LB with chloramphenicol at 37 °C, 

electroporated with the chasing plasmid, incubated 1.5 h in LB and plated on LB plates with 

kanamycin. Loss of Cam
R
 was screened by replica plating. Screening for the 

presence/absence of lptC and lptA were performed by PCR with primers FG2760- FG2761 

and FG2762- FG2763, respectively. To assess the lptF allele harbored by individual clones, 

sequencing of PCR amplicons obtained with primers AP313- AP316 was performed.  

Southern blotting and LPS extraction and analysis were performed as previously 

described (Sambrook et al., 1989; Sperandeo et al., 2007). The DNA probe for Southern 

blotting, which covered lptC from nucleotide 4to 532, was obtained by PCR amplification 

with primers FG3129-FG3130.  

 

Electron microscopy  

Bacterial samples obtained as described above were pelleted in Eppendorf tubes, 

washed with cacodylate buffer 0.2 M (pH 7.4) and fixed with 2% glutaraldehyde in 0.1 M 

cacodylate buffer. Samples were then post-fixed with 1% osmium tetroxide in 0.1 M 

cacodylate buffer, dehydrated in a graded ethanol series and embedded in an Epon-Araldite 

mixture according to standard TEM methods (19). Ultrathin sections (~50 nm) were cut with 

a Reichert-Jung ULTRACUT E using diamond knives (DIATOME Ultra 45°). Ultrathin 

sections, collected on 300 mesh cupper grids, were stained with aqueous uranyl acetate and 

lead citrate (31), carbon coated under a EMITECH K400X carbon coater and observed with a 

Jeol 100 SX electron microscope. Micrographs were taken directly under the microscope by 

Kodak 4489 photographic films for TEM.  

 

Genomic DNA sequencing and data analysis  

The library for genomic DNA sequencing was prepared according to the TruSeq DNA 

Sample preparation protocol (Illumina). Briefly, 1 µg of genomic DNA was sonicated to 

fragments with a medium length of 400 bp; after end repair, indexed adapters were ligated at 

DNA fragment ends, libraries were quantified using a quantification Real Time PCR (qPCR) 



by KAPA Library Quant Kits (KAPA Biosystems). After a short amplification step the 

library was sequenced on an Illumina MiSeq Desktop Sequencer sequencer to generate 300bp 

paired-end reads. Raw reads were individually mapped to E. coli BW2952 genome (Ferenci 

et al., 2009) (NC_012759.1) using the accurate alignment BWA mem algorithm (Li, and 

Durbin, 2009) allowing 5% error; removal of duplicated reads was performed with 

SAMtools. SNV and indels detection was performed with SAMtools and Bcftools (Li et al., 

2009). A VCF file, containing all the variants for each sample relative to E. coli BW2952 was 

obtained and filtered for low quality variants. SNV having a coverage of less than five high 

quality reads (Q>30) were discarded. Predicted indels having a coverage lower than six high 

quality reads (Q >30) were discarded. Both high quality SNVs and indels were subsequently 

annotated using SNPeff version 4.0 (De Baets et al., 2012) to determine their effect on coding 

sequences. The assembly of genomic sequences was performed using Velvet 1.2.10 (Zerbino, 

and Birney, 2008) by running the command with 20 different k-mers lengths (k) using 

VelvetOptimiser (Zerbino, 2010) and setting up the following parameters: minimum contig 

length 500bp, expected coverage automatic. The assembly metrics were obtained from the 

Velvet output. 

 



RESULTS 

 

Isolation of E. coli ΔlptC mutants  

In E. coli lptC is an essential gene, as LptC-depleted cells in arabinose-dependent lptC 

conditional expression mutants are unviable (Sperandeo et al., 2008). However, E. coli 

tolerates large variations of this protein, as i) lptC-deletion mutants lacking the N-terminal 

transmembrane domain can ectopically complement lptC conditional mutant in non-

permissive conditions (Villa et al., 2013); ii) some lptC point and C- terminal deletion 

mutants, the highly divergent P. aeruginosa lptC gene and several E. coli-P. aeruginosa 

chimeric genes can complement LptC-depleted E. coli cells under particular conditions of 

lptB expression (Martorana et al., accompanying manuscript). Actually, upon LptC depletion 

in arabinose-dependent conditional expression mutants, lptAB expression is only driven by 

the ancillary promoters lptAp1 and lptAp2 (Martorana et al., 2011), as transcription from the 

main strong promoter yrbGp (Sperandeo et al., 2006) is interrupted by the araBp cassette. In 

such condition, complementation by Pa-lptC only occurs if a level of lptB expression higher 

than that granted by the ancillary promoters lptAp1-p2 is ectopically provided (Martorana et 

al., accompanying manuscript).  

To stringently assess whether LptC or any LptC domain is strictly essential for E. coli 

viability, we selected for lptC deletion mutants using a previously described (Bollati et al., 

2015) plasmid shuffling approach in strain KG-286/pMBM07, outlined in Fig. 1B. This 

mutant harbors on the chromosome the rpsL150 allele (which confers streptomycin 

resistance, Str
R
) and the deletion of the overlapping lptC and lptA genes (ΔlptCA); the 

downstream lptB gene expression is thus driven by the principal yrbGp promoter whereas the 

ΔlptCA deletion is ectopically complemented by the lptCA genes on pMBM07, a 

thermosensitive-replication plasmid which cannot be maintained at temperatures ≥ 37 °C. 

This plasmid also carries a selectable ampicillin resistance (Amp
R
) marker and the dominant 

rpsL
+
 allele, which confers streptomycin sensitivity (Str

S
) to the otherwise Str

R
 host. This 

strain was transformed with derivatives of the non-thermosensitive, compatible plasmid 

pGS100, which confers chloramphenicol resistance (Cam
R
), harboring lptA (pGS321) or 

lptAB (pGS416), to provide different levels of lptB expression. We also tested whether strains 

missing lptA could be obtained by transforming KG-286/pMBM07 with plasmids harboring 

either lptC (pGS402) or malE-lptC (pGS420), an lptC derivative lacking the transmembrane 

domain (Villa et al., 2013). Plasmid harboring lptCA (pGS404) was used as a positive 



control, whereas the empty vector (pGS401) was used as a negative control. Loss of the 

resident plasmid was promoted by incubating the transformed cultures at 37 °C and selection 

for clones harboring the transforming plasmid (Cam
R
) and missing the resident plasmid (Str

R
) 

was performed by plating aliquots of the transformants at 37 and 42 °C on LD agar 

supplemented with the two antibiotics. Screening for the loss of Amp
R
, the selective marker 

of the resident plasmid pMBM07, was then performed by replica plating.  

Cam
R
 Str

R
 Ts

+
 transformants were obtained, as detailed in Materials and Methods, with 

plasmids pGS321 (lptA) and pGS416 (lptAB) at frequencies between 0.2 and 0.7 per ng of 

plasmid DNA (Table 4). Transformation frequency with pGS404 (lptCA) was >3000 fold 

higher, whereas no transformants (<0.25/ng plasmid DNA) were obtained with the empty 

vector pGS401. Four out of four and five out of five clones obtained by transformation with 

pGS321 and pGS416, respectively, were found to be Amp
S
. To rule out the presence of a 

displaced lptC gene in such mutants putatively lacking lptC, we performed both a PCR 

analysis on the plasmid shuffled clones with lptC-specific pairs of primers and Southern blot 

analysis with an lptC-specific probe covering the lptC region 4-532. No signal of lptC 

presence could be detected by either approach in these clones (Fig. 2), which thus represent 

bona fide viable mutants lacking LptC.  

Cam
R
 Str

R
 Ts

+
 transformants were also obtained at 37 and 42 °C at frequencies between 

0.7 and 1.8 transformants/ng of plasmids DNA with pGS402 (lptC) and pGS420 (malE-lptC). 

However, PCR analysis with primers FG2762-FG2673 revealed the presence of lptA in all 

fifteen clones tested (Fig. 2A), including six Amp
S
, thus suggesting that variable portions of 

pMBM07 containing lptA were integrated in the bacterial genome of the selected 

transformants. Thus viable ΔlptA mutants could not be obtained.  

 

Phenotypic characterization of E. coli ΔlptC mutants  

Impaired LPS transport may lead to growth defects (such as lower growth rate, cold- 

and/or thermosensitivity), LPS modifications (such as colanic acid decoration, which can be 

detected by LPS gel electrophoresis), increased sensitivity to toxic chemicals, and/or 

structural abnormalities of the cell envelope (Sperandeo et al., 2006; Sperandeo et al., 2007; 

Sperandeo et al., 2008; Chimalakonda et al., 2011). As shown in Fig. 3, different ΔlptC 

isolates exhibited variable degrees of sensitivity to a set of toxic compounds and two clones 

could not grow at 15 °C, whereas neither altered LPS electrophoretic mobility nor gross 

ultrastructural alterations could be detected (Fig. 04). Generation times of LB-glucose 

cultures at 37 °C of three strains complemented by lptA (pGS321) and three by lptAB 



(pGS416) scattered, without any apparent correlation, between 28 min (like the parental 

AM604/pGS401) and 33 min.  

 

E. coli ΔlptC mutation is suppressed by amino acid substitutions at a unique residue of 

LptF  

The phenotypic variability exhibited by the different ΔlptC isolates suggests that 

different compensatory suppressor mutations could have been selected during the plasmid 

shuffling procedure; alternatively, different adaptive regulatory systems could have been 

activated to overcome the lack of LptC. To identify potential ΔlptC suppressor mutations, we 

sequenced the genome of the parental (KG-286/pMBM07) and three ΔlptC mutants that 

exhibited different phenotypes and had been obtained upon shuffling with the plasmid 

harboring lptA (strains KG-292/pGS321and KG-293/pGS321) or lptAB (KG-294/pGS416). 

The reads were mapped to the reference strain E.coli BW2952 complete genome (Accession 

number NC_012759.1) (Ferenci et al., 2009) giving >99% coverage. Sequence variations 

between these four strains and the reference BW2952 that mapped in open reading frames are 

reported in Table 5. Comparison between the lptC mutants and their parental KG-

286/pMBM07 genomic sequences revealed the presence, in all three mutants, of a single 

nucleotide substitution at base 634 of lptF (either CA transversion or CT transition) that 

caused a single amino acid substitutions at arginine 212 of the encoded LptF protein (R212C 

in strains KG-292, and R212S in KG-293 and KG-294; Table 5). Strain KG-293/pGS321 

harbored an additional missense mutation in a small ORF of unknown function (BWG_3693) 

and a synonymous mutation in the minor tail protein M (BWG_3735), both in the placMu 

harbored by the parental strain (Ferenci et al., 2009). All remaining variations within protein 

coding sequences from the reference genome (4 mutations) were shared both by the parental 

and the three mutants. Variations between the four sequenced strains in intergenic regions, 

listed in Table 6, were clustered in regions harboring rRNA and/or tRNA genes or within 

pseudogenes. Additional 35 variations (not listed) from the reference sequence in intergenic 

regions were shared both by the parental and the mutant strains.  

Although harboring a different chasing plasmid, the two lptC
R212C

 mutants derive from 

samples of the same culture and thus cannot be considered to bear independent mutations. 

Anyway, one of the sequenced mutants harbored a different mutation in the same residue 

(R212S) of LptF, thus being an independent mutant from the same culture. These data 



strongly suggest that the change of a specific residue in LptF suppresses the lethal phenotype 

associated with the lack of the essential protein LptC.  

To better support this hypothesis and identify other potential lptC suppressor alleles of 

lptF, we selected for new, independent ΔlptC mutants from single-colony cultures of KG-

286/pMBM07 by plasmid shuffling with pGS321 or pGS416, as described above, obtaining 

Cam
R
 Str

R
 Ts

+
 transformants at 42 °C in nine out of ten cultures tested, four of which 

harboring lptA and five harboring lptAB. All nine independent isolates, upon screening for the 

Amp
R
 (by replica plating) and lptC (by PCR) markers of the resident pMBM07 plasmid, 

turned out to be ampicillin sensitive and lptC-negative. Sequencing of the lptF gene showed 

that all nine independent transformants harbored a single amino acid substitution at residue 

R212 (Table 7). In addition to the mutations found in the first round of selection (in two new 

independent R212C and three new independent R212S mutants), three R212G independent 

mutants were also obtained. Combining data of the first and second round of selection, 

however, no specific association of a given type of mutant with a specific transforming 

plasmid (harboring either lptA or lptAB) could be observed.  

 

Characterization of LptF suppressors of ΔlptC  

The presence of specific LptF R212 residue substitutions in all the eleven independent 

ΔlptC mutants isolated strongly indicates that such lptF mutations (henceforth collectively 

designated as lptF
Sup

) suppress the lethal phenotype associated to the the lack of LptC. 

However, we could not rule out that additional mutations in the <1% genome not covered by 

sequencing or any of the mutations detected in non-coding regions could contribute to the 

ΔlptC suppressor phenotype selected by plasmid shuffling. We thus addressed whether the 

different mutations in LptF R212 residue could be sufficient to support the growth of E. coli 

upon LptC depletion in the lptC conditional expression mutant FL905. Since, as explained 

above, in the absence of the arabinose inducer the downstream lptAB operon can only be 

transcribed from the ancillary promoters lptAp1-p2, and lptAB expression from lptAp1-p2 

might not be sufficient to grant cell viability (Martorana et al., 2011; Martorana et al., 

accompanying manuscript), we ectopically expressed in FL905 either the lptF
Sup

G operon 

alone or both lptF
Sup

G and lptAB. As shown in Fig. 5A, depletion of LptC (no arabinose) i) 

was complemented, in the positive control strain, by ectopically expressed lptC both with and 

without lptAB coexpression; ii) was suppressed by lptF
R212G

 and lptF
R212S

 when coexpressed 

with lptAB but not when expressed alone; and iii) was suppressed by lptF
R212C

 in neither 



condition. As in FL905 a wild copy of lptF gene is harbored on the chromosome, the lack of 

suppression by lptF
R212C could be a consequence of the recessive nature of the mutant allele, 

although in higher copy number than the wild type. Alternatively, suppression of ΔlptC by 

lptF
R212C

 may require additional mutations that are present in the original mutant but not in 

the lptC depletion strain.  

We also addressed whether lptF
Sup

 mutations in the haploid state are compatible with 

the presence of lptC. To this end we replaced by plasmid shuffling in each type of lptF
Sup

 

mutants the resident plasmid harboring Cam
R
 and either lptA or lptAB with an incompatible 

plasmid harboring a different antibiotic resistance marker (Kan
R
) and either lptCA or lptCAB. 

Selection of Kan
R
 transformants was done in the absence of chloramphenicol so as to allow 

segregation of the resident plasmid. Six Kan
R
 transformants for each strain were then colony 

purified and tested for the presence of the resident plasmid (Cam
R
). As shown in Table 8, 

none of the strains transformed, as a control, by the chasing plasmid vector without lpt genes 

lost the resident plasmid (0/6 Cam
S
) as it carried genes essential for viability; likewise, the 

lptF
+
 strains transformed by the chasing plasmid with lptA or lptAB but missing lptC did not 

lose the resident plasmid, whereas all the lptF
Sup

 clones segregated a Cam
S
 progeny. Finally, 

both lptF
+
 and lptF

Sup
 strains could be transformed, albeit at different efficiencies, by the 

plasmid carrying lptCA or lptCAB. We then assessed by sequencing for each type of lptF
Sup

 

shuffled clones that the original lptF allele had been retained. Therefore, all the three haploid 

lptF
Sup

 mutations are compatible with the presence of LptC. To rule out that this effect could 

depend on additional mutations originated upon selection of the lptF
Sup

 strains, we 

transformed with plasmids harboring the lptFG operon with the mutant lptF
Sup

 alleles the 

NR1113 strain (Ruiz et al., 2008), which expresses the wild type lptFG operon under the 

arabinose inducible promoter araBp. As shown in Fig. 05B, each of the three lptF
Sup

 was able 

to complement wild type LptF-depleted cells. Overall these data indicate that the lptF
Sup

 

alleles, which suppress the lack of LptC, are not incompatible with the presence of LptC.  

 



 

DISCUSSION 

 

Genetic and biochemical evidence indicate that LptC is an essential component of the 

LPS transport machinery and is required for E. coli viability (Sperandeo et al., 2006; 

Sperandeo et al., 2008; Sperandeo et al., 2011). LptC has been thought to connect the IM 

ABC transporter LptBFG with the periplasmic LptA that, in turn, would interact with the 

periplasmic N-terminal domain of LptD. LptA, the periplasmic C-terminal domain of the 

bitopic LptC, and the periplasmic LptD N-terminal domain exhibit high structural similarity, 

the β-jellyroll fold, despite the scarce sequence conservation (Qiao et al., 2014; Suits et al., 

2008; Tran et al., 2010; Villa et al., 2013; Bollati et al., 2015). It has been suggested that 

these three elements, by interacting with each other, form a hydrophobic groove that 

accommodates the lipid moiety of LPS for its transport from the inner membrane to the outer 

membrane (Gu et al., 2015; Freinkman et al., 2012; Okuda et al., 2012; Tran et al., 2010).  

In this model, however, the connection between the LptC-A-DE complex and the IM 

LptBFG transporter, which provides energy to the entire Lpt system by ATP hydrolysis, has 

not been clarified. The transmembrane domain of LptC does not seem to be implicated in the 

interaction with LptBFG, as deletion of this domain impairs neither LPS biogenesis nor LptC 

binding to the IM complex (Villa et al., 2013); therefore, LptF/G periplasmic domains might 

be implicated in forming the periplasmic bridge of the Lpt machine. Moreover, the role of 

LptC is still elusive. Its C-terminal end, which is thought to interact with the N-terminus of 

LptA, appears to be dispensable, at least under conditions of non-limiting LptB expression; 

on the contrary, point mutations in the same region are lethal (Sperandeo et al., 2011; Villa et 

al., 2013; Martorana et al., accompanying manuscript).  

It is also remarkable that E. coli-P. aeruginosa hybrid Lpt machines are functional. The 

lptA homologue from P. aeruginosa, lptH, complements E. coli lptA mutants (Bollati et al., 

2015); likewise, P. aeruginosa lptC complements E. coli lptC, although under conditions of 

increased lptB expression levels (Martorana et al., accompanying manuscript). Although both 

homologous couples of proteins exhibit the β-jellyroll structure, their amino acid sequence 

identity is scanty, thus suggesting that interactions between structural features, rather than 

specific amino acids, play a predominant role in the interactions between the periplasmic 

protein domains of the complex (Villa et al., 2013; Bollati et al., 2015).  



Given that i) Ec-LptA and Ec-LptC can be functionally replaced by the structurally 

similar but scarcely conserved (as far as the primary sequence is concerned) Pa-LptH and Pa-

LptC, respectively, and ii) the LptC N-terminal transmembrane domain is dispensable (and 

thus the periplasmic β-jellyroll of LptC appears to be sufficient to carry out LptC function), 

we addressed whether LptA and LptC could replace each other by testing complementation 

of E. coli bearing a chromosomal deletion of both genes (lptCA) with plasmids expressing 

lptC or lptA alone. Overall the genetic data we have obtained indicate that E. coli lptC 

mutant is viable only in the presence of specific suppressor mutations in lptF, whereas we did 

not obtain lptA mutants.  

Construction of lptC and lptA mutants was attempted by replacing, in an ectopically 

complemented lptCA mutant, the resident plasmid harboring lptCA with a chasing plasmid 

harboring either lptA or lptC alone (plasmid shuffling). Preliminary experiments using 

incompatible (i.e. with the same origin of replication) resident and chasing plasmids with 

different antibiotic resistance markers were unsuccessful, as the resident plasmid or large 

portions of it did not segregate for several rounds of growth of the transformed cultures 

selected for the presence of the chasing plasmid, eventually giving rise to rearrangements. 

However, using a strong double selection against the resident plasmid (high temperature to 

rapidly stop replication of the replication thermosensitive resident plasmid and streptomycin 

to select for the loss of the resident plasmid harboring the dominant rpsL
+
 allele), we obtained 

clones lacking lptC.  

In keeping with the low frequency of such lptC mutants, eleven out of eleven 

independent mutants thus obtained were associated with an additional mutation of LptF 

arginine 212, being cysteine, serine, or glycine the substituting residues. Such a complete 

association between lack of LptC and LptF
R212

 mutations strongly suggests that a specific 

suppressor is required for viability of the lptC mutant and that LptF is the preferred (if not 

the only) suppressor gene.  

Genomic sequencing was performed on three non-independent mutants obtained in a 

first round of screening. Two of them bore different amino acid substitution (R212C and 

R212S, thus a posteriori resulting independent mutants) without any other point mutation in 

ORFs, relative to the parental strain; the third one bore the same lptF
R212S

 allele and two 

additional single nucleotide substitution (one of which leading to a synonymous codon) 

whithin the placMu insertion harbored by the parental strain. Mutations in non-coding 

regions were clustered within spacers of rRNA and/or tRNA operons and within 



pseudogenes. It is thus very unlikely that these additional variations relative to the parental 

strain may significantly contribute to suppress the lptC mutation.  

Although the sequencing coverage was >99%, these observation do not completely rule 

out that additional mutations in regions not covered by sequencing may contribute to 

suppress the lethal phenotype of lptC. However, the lptF
R212G

 and lptF
R212S

 alleles were 

capable to suppress lethality of conditional expression lptC mutants in nonpermissive 

conditions, thus demonstrating that i) a suppressor is necessary to overcome lethality caused 

by LptC depletion and ii) lptF
R212G

 and lptF
R212S

 alleles are sufficient for such suppression 

without the additional mutations associated with the plasmid-shuffled isolate. It remains to be 

elucidated whether the inability of lptF
R212C

 allele to suppress the lethal phenotype of 

conditional expression lptC mutants depends on the recessive nature of this mutation or by 

the need of an as yet discovered co-suppressor. The latter hypothesis, however, seems less 

likely, as suppressor mutants with the lptF
R212C

 allele were obtained at comparable frequency 

(3/11) as the other two suppressors.  

The LptF R212 residue is located in a predicted large periplasmic domain (residues 

122-269) connecting the 3rd and 4th transmembrane helices and a similar organization is 

predicted for LptG (Daley et al., 2005). A β-jellyroll structure has been suggested for these 

two periplasmic domains (Villa et al., 2013), but their structure has not yet been solved. The 

suppressor phenotype exhibited by three specific mutations of LptF R212 residue, however, 

highlights the relevance of this specific amino acid and of the periplasmic loop in the 

interaction with LptC.  

We propose, as a working model, that in the wild type seven-component Lpt machine 

of E. coli the β-jellyroll domains of five different Lpt components, namely the central 

periplasmic domains of LptF and LptG, the C-terminal periplasmic domain of LptC, LptA, 

and the periplasmic N-terminal domain of LptD form a hydrophobic groove that accompanies 

LPS in his way from IM to OM. LptF, in its wild type form, specifically interacts with LptC 

and, in the absence of LptC, the continuity of the hydrophobic groove is compromised. The 

suppressor mutations in LptF
R212

 could restore a functional hydrophobic groove, for example 

by directly binding LptA without the mediation of LptC or by recruiting LptA to replace 

LptC, thus allowing a six-component Lpt machine to be functional. We also have shown that 

the presence of LptC is compatible with the LptF
Sup

 proteins. It remains to be assessed, 

however, whether LptC can be recruited by the Lpt machine when a LptF
Sup

 protein is present 

or whether the suppressors can only assemble a six-component Lpt machine. Clarifying this 



point will shed light on the reciprocal interactions of the Lpt components and on the structure 

and mechanism of the LPS transporter.  

Using the powerful plasmid shuffling technique that led to the selection of lptC 

suppressors LptF
Sup

 we did not obtain lptA clones, as all the clones selected upon shuffling 

with the chasing plasmid harboring lptC still bore a displaced lptA allele. It is possible that 

LptA plays a more fundamental role in the Lpt machine; for example, the interaction of LptA 

with OM complex might require specific function that cannot be fulfilled by LptC even with 

a suppressor mutation. Alternatively, more than one suppressor mutations would be required, 

thus decreasing the chance of finding a mutant.  

The functionality of a six-component Lpt machine suggests a modular evolution of the 

LPS transport system in which a β-jellyroll module evolved by subsequent module 

duplications which diverged to form more specialized and efficient hydrophobic grooves for 

the periplasmic passage of LPS.  
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TABLES 

 

Table 1. Bacterial strains  

Strain Parental strain Relevant characters Features/construction Origin 

Chromosomal Plasmid 

AM604 MC4100 rpsL150     (Wu et al., 

2006) 

AM604/pKD46 AM604 rpsL150 bla   (Bollati et 

al., 2015) 

AM604/pKD46/pGS104 AM604/pKD46 rpsL150 ptac-lptCAB cat; bla   (Bollati et 

al., 2015) 

FL905 AM604 Φ(kan araC 

araBp-lptC)1 

  Sperandeo 

et al., 2008 

FL905/pGS442 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-lptFG cat by transformation this work 

FL905/pGS443 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-lptF
R212C

G cat by transformation this work 

FL905/pGS444 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-lptF
R212S

G cat by transformation this work 

FL905/pGS445 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-lptFG_lptAB 

cat 

by transformation this work 

FL905/pGS446 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-

lptF
R212C

G_lptAB 

cat 

by transformation this work 

FL905/pGS447 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-

lptF
R212S

G_lptAB cat 

by transformation this work 



FL905/pGS450 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-lptF
R212G

G cat by transformation this work 

FL905/pGS451 FL905 Φ(kan araC 

araBp-lptC)1 

ptac-

lptF
R212G

G_lptAB 

cat 

by transformation this work 

KG-280/pGS104 AM604/pGS104/pKD46  ΔlptCA::kan ptac-lptCAB cat by gene specific mutagenesis  (Bollati et 

al., 2015) 

KG-286/pGS104 KG-280/pGS104/pCP20 ΔlptCA ptac-lptCAB cat by FLP-mediated kan cassette 

excision  

(Bollati et 

al., 2015) 

KG-286/pGS308 KG-286/pGS315 ΔlptCA ptac-lptCA-kan by plasmid shuffling; selection for 

KanR StrR, screening for CamS  

(Bollati et 

al., 2015) 

KG-286/pMBM07  KG-286/pGS308 ΔlptCA araBp-lptCA amp 

rpsL
+
 repA101

ts
 

by plasmid shuffling; selection for 

Amp
R
, screening for Str

S
, 28 °C  

(Bollati et 

al., 2015) 

KG-286/pGS404  

 

KG-286/pMBM07  ΔlptCA ptac-lptC_lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS  

(Bollati et 

al., 2015) 

KG-286.10/pGS321  KG-286/pMBM07  ΔlptCA ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-286.12/pGS321  KG-286/pMBM07  ΔlptCA ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-286.13/pGS416  KG-286/pMBM07  ΔlptCA ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-286.14/pGS416  KG-286/pMBM07  ΔlptCA ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-286.15/pGS416  KG-286/pMBM07  ΔlptCA ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 37 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 



KG-286.17/pGS416  KG-286/pMBM07  ΔlptCA ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-292/pGS321 KG-286/pMBM07  ΔlptCA; 

lptF
R212C

 

ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC  

this work 

KG-293/pGS321  KG-286/pMBM07  ΔlptCA; 

lptF
R212S

 

ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-294/pGS416  KG-286/pMBM07  ΔlptCA; 

lptF
R212S

 

ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 37 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-295.01/pGS321  KG-286/pMBM07  ΔlptCA; 

lptF
R212G

 

ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-295.02/pGS308 KG-295.01/pGS321  ΔlptCA; 

lptF
R212G

 

ptac-lptCA kan by plasmid shuffling; selection for 

KanR, screening for CamS lptC
+
  

this work 

KG-296/pGS416  KG-286/pMBM07  ΔlptCA; 

lptF
R212G

 

ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-297.01/pGS416  KG-286/pMBM07  ΔlptCA; 

lptF
R212C

 

ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-297.02/pGS308  KG-297.01/pGS416  ΔlptCA; 

lptF
R212C

 

ptac-lptCA kan by plasmid shuffling; selection for 

KanR, screening for CamS lptC
+
  

this work 

KG-298.01/pGS416  KG-286/pMBM07  ΔlptCA; 

lptF
R212S

 

ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-298.02/pGS308 KG-298.01/pGS416  ΔlptCA; 

lptF
R212S

 

ptac-lptCA kan by plasmid shuffling; selection for 

KanR, screening for CamS lptC
+
  

this work 

KG-299/pGS321 KG-286/pMBM07 ΔlptCA; 

lptF
R212G

 

ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 



KG-300/pGS321 KG-286/pMBM07 ΔlptCA; 

lptF
R212G

 

ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-301/pGS321 KG-286/pMBM07 ΔlptCA; 

lptF
R212S

 

ptac-lptA cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-302/pGS416 KG-286/pMBM07 ΔlptCA; 

lptF
R212S

 

ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

KG-303/pGS416 KG-286/pMBM07 ΔlptCA; 

lptF
R212C

 

ptac-lptAB cat by plasmid shuffling; selection for 

CamR StrR at 42 °C, screening for 

AmpS lptA
+
 ΔlptC 

this work 

NR1113 NR754 (λatt-

lom)::bla 

araBp-lptFG 

ΔlptFG 

   (Ruiz et al., 

2008) 

NR1113/pGS401 NR1113  ptac-void  this work 

NR1113/pGS442 NR1113  ptac-lptFG cat  this work 

NR1113/pGS443 NR1113  ptac-lptF
R212C

G cat  this work 

NR1113/pGS444 NR1113  ptac-lptF
R212S

G cat  this work 

NR1113/pGS450 NR1113  ptac-lptF
R212G

G cat  this work 

 

 



 

 

Table 2. Plasmids  

Plasmids Parental / 

replicon 

Relevant characters  Construction/Origin 

pCP20  bla, cat, thermosensitive 

replication 

(Datsenko, and Wanner, 2000) 

pGS100 pGZ119EH 

(oriVColD) 

ptac-TIR, cat, oriVColD  (Sperandeo et al., 2006) 

pGS104 pGS100 ptac-lptCAB, cat, oriVColD  (Sperandeo et al., 2006) 

pGS105 pGS100 ptac-lptAB, cat, oriVColD (Sperandeo et al., 2006)  

pGS303 pGS100 kan (Bollati et al., 2015) 

pGS305 pGS303 ptac-lptCAB, kan, oriVColD lptCAB was obtained by EcoRI-XbaI digestion of pGS104 and cloned into 

pGS303 EcoRI-XbaI sites 

pGS306 pGS100 ptac-lptCA, cat, oriVColD  lptCA was PCR-amplified with AP54-FG2723 primers from pgs104 and 

cloned into EcoRI-XbaI sites of pGS100 

pGS308 pGS303 ptac-lptCA, kan, oriVColD  (Bollati et al., 2015) 

pGS321 pGS100 ptac-lptA, cat, oriVColD lptA was PCR-amplified with AP55-FG2723 primers from pGS104 and 

cloned into EcoRI-XbaI sites of pGS100 

pGS323 pGS303 ptac-lptA, kan, oriVColD lptA was obtained by EcoRI-XbaI digestion of pGS321 and cloned into 

pGS303 EcoRI-XbaI sites 

pGS324 pGS303 ptac-lptAB, kan, oriVColD lptAB was obtained by EcoRI-XbaI digestion of pGS105 and cloned into 

pGS303 EcoRI-XbaI sites 

pGS401 pGS100  ptac-SD1-EcoRI-XbaI-SD2-SalI-

HindIII, cat, oriVColD 

(Bollati et al., 2015) 

pGS402 pGS401 ptac-lptC, cat, oriVColD (Bollati et al., 2015) 

pGS404 pGS402 ptac-lptC-lptA, cat, oriVColD (Bollati et al., 2015) 

pGS416 pGS401 ptac-lptAB, cat, oriVColD (Bollati et al., 2015) 



pGS420 pGS401 ptac- malESSlptC
Δ1–23

, cat, oriVColD malESSlptC
Δ1–23

 was amplified by three step PCR with FG3089, AP211, 

AP212 and FG3090 primers from AM604 genomic DNA and cloned into 

EcoRI-XbaI sites of pGS401 

pGS442 pGS401 ptac-lptFG, cat, oriVColD lptFG genes were PCR-amplified with FG3195-FG3196 primers from KG-

286/pMBM07 genomic DNA and cloned into EcoRI-XbaI sites of pGS401 

downstream of SD1  

pGS443 pGS401 ptac-lptF
R212C

G, cat, oriVColD lptF
R212C

G genes were PCR-amplified with FG3195-FG3196 primers from 

KG-292/pGS321 genomic DNA and cloned into EcoRI-XbaI sites of pGS401 

downstream of SD1  

pGS444 pGS401 ptac-lptF
R212S

G, cat, oriVColD lptF
R212S

G genes were PCR-amplified with FG3195-FG3196 primers from 

KG-293/pGS321 genomic DNA and cloned into EcoRI-XbaI sites of pGS401 

downstream of SD1  

pGS445 pGS416 ptac-lptFG_lptAB, cat, oriVColD lptFG genes were PCR-amplified with FG3195-FG3196 primers from KG-

286/pMBM07 (2) genomic DNA and cloned into EcoRI-XbaI sites of 

pGS416 downstream of SD1  

pGS446 pGS416 ptac-lptF
R212C

G_lptAB, cat, 

oriVColD 

lptF
R212C

G genes were PCR-amplified with FG3195-FG3196 primers from 

KG-292/pGS321 genomic DNA and cloned into EcoRI-XbaI sites of pGS416 

downstream of SD1  

pGS447 pGS416 ptac-lptF
R212S

G_lptAB, cat, 

oriVColD 

lptF
R212S

G genes were PCR-amplified with FG3195-FG3196 primers from 

KG-293/pGS321 genomic DNA and cloned into EcoRI-XbaI sites of pGS416 

downstream of SD1  

pGS450 pGS401 ptac-lptF
R212G

G, cat, oriVColD lptF
R212G

G genes were PCR-amplified with FG3195-FG3196 primers from 

KG-293/pGS321 genomic DNA and cloned into EcoRI-XbaI sites of pGS401 

downstream of SD1  

pGS451 pGS416 ptac-lptF
R212G

G_lptAB, cat, 

oriVColD 

lptF
R212G

G genes were PCR-amplified with FG3195-FG3196 primers from 

KG-295/pGS321 genomic DNA and cloned into EcoRI-XbaI sites of pGS416 

downstream of SD1  

pKD46  oriR101, repA101ts, araC, araBp-

λ red, bla 

(Datsenko, and Wanner, 2000) 



pMBM07 pKD46 araBp-lptCA, rpsL
+
, bla, oriR101, 

repA101ts   

(Bollati et al., 2015) 

 

 



 

Table 3. Oligonucleotides 

Name Sequence
a
 Notes 

AP54 cgagaggaattcaccATGAGTAAAGCCAGACGTTGGG pGS306 construction with FG2723; EcoRI 

AP55 cgagagaggaattcaacATGAAATTCAAAACAAACAAACTC pGS321 construction with FG2723; EcoRI 

AP211 GTATCGTCTTTTTCGGCCATGGCGAGAGCCGAGGCGGAAAAC pGS420 construction with AP212, FG3089 and 

FG3090 

AP212 GTTTTCCGCCTCGGCTCTCGCCATGGCCGAAAAAGACGATAC pGS420 construction with AP211, FG3089 and 

FG3090 

FG2723 gactagtctagaTTAATTACCCTTCTTCTGTGCCGGGG pGS306 and pGS321 construction with AP54 and 

AP55; XbaI 

FG3089 catattcgtctcgaattcaccATGAAAATAAAAACAGGTGCACGC 

 

pGS420 construction with AP211, AP212 and 

FG3090; Esp3I-EcoRI 

FG3090 caggttcgtctctctagaTTAAGGCTGAGTTTGTTTGTTTTG 

 

pGS420 construction with AP211, AP212 and 

FG3089; Esp3I-XbaI 

FG3129 AGTAAAGCCAGACGTTGGG Southern blotting lptC probe amplification by PCR  

FG3130 CCTTTTCAATCAGCTCGGC Southern blotting lptC probe amplification by PCR 

FG3195 gataggaattcaccGTGATAATCATAAGATATCTGG pGS442, pGS443, pGS444, pGS445, pGS446, 

pGS447, pGS450 and pGS451 construction with 

FG3196; EcoRI 

FG3196 ggctagtctagaTTACGATTTTCTCATTAACAGC pGS442, pGS443, pGS444, pGS445, pGS446, 

pGS447, pGS450 and pGS451 construction with 

FG3195; XbaRI 

 

a
 Upper case letters, sequence present in the template; lower case letters, additional/modified sequence not present in the template; restriction sites 

are underlined. 

 



 

Table 4. Frequency of transformants
a
 upon selection for the chasing plasmid at non-permissive temperature for the resident plasmid 

complementing lptCA mutant
b
  

Chasing 

Plasmid 

Genes
c
 Selection 

42 °C Str
R
 Cam

R
 37 °C Str

R
 Cam

R
 

pGS401 none <0.25 <0.25 

pGS404 lptC-lptA >2000 >2000 

pGS321 lptA 0.2 0.5 

pGS416 lptAB 0.7 0.7 

pGS402 lptC 0.7 1.1 

pGS420 malE-lptC 1.8 0.9 

 

a
 n. of transformants per ng of plasmid DNA in the indicated selective conditions 

b
 recipient strain KG-286/pMBM07 

 



 

Table 5. Point mutations in ORFs of parental and lptC viable mutants as compared with E. coli BW2952 sequence  

STRAIN
a 

ORF ID N
b 

Mutation 

type 

Position in   Change in Description 

CDS
c
 Protein Codon aa 

A, B, C, D BWG_0606 aroG-1 A missense 655 219  GcgAcg AT Phosphoglyceromutase 1 

A, B, C, D BWG_1070 orf C frameshift 156-157 52-53  - - Predicted divalent heavy-metal 

cations transporter 

A, B, C, D BWG_1086 yciE A missense 388 130  AtcTtc IF Conserved protein 

A, B, C, D BWG_3107 insD C frameshift 346-347 116  - - IS2 transposase 

C BWG_3693 orf T missense_ 103 35  GacAac DN Protein of unknown function 

C BWG_3735  M C synonymous 153 51  ccTccC P Polypeptide: Minor tail protein 

M 

B BWG_3967 yjgP T missense 634 212  CgcTgc RC LptF 

C, D BWG_3967 yjgP A missense 634 212  CgcAgc RS LptF 

 

a
 A, KG-286/pMBM07 (parental); B, KG-292/pGS321; C, KG-293/pGS321; D, KG-294/pGS416  

b
 Base substitution 

c
 CDS, coding sequence;  

 



Table 6. Point mutations in intergenic regions of parental or lptC viable mutants
a
  

STRAIN
b 

Position
c 

Nucleotide change Left gene
d 

Right gene
d 

Notes 

B 683,472  A lysZ  lysQ*
 

 

B 683,474  G lysZ  lysQ*  

B 683,636  G lysQ* lysQ  

BCD 683,681  C lysQ* lysQ  

BCD 683,682  C lysQ* lysQ  

BCD 683,695  T lysQ* lysQ  

BCD 683,735  A lysQ* lysQ  

BCD 683,736  T lysQ* lysQ  

BCD 683,739  T lysQ* lysQ  

BCD 683,742  T lysQ* lysQ  

A 683,764  - lysQ* lysQ  

B 683,765 683,766 GGTAACACCCGT lysQ* lysQ  

D 683,767  T lysQ* lysQ  

C 1,288,805  - fnr ogt within insH*  

D 1,288,862 1,288,864 C fnr ogt within insH*  

BCD 1,289,316 1,289,318 A fnr ogt within insH*  

A 4,056,058 4,056,066 TTT rrsB rrlB within gltT* 

A 4,056,061  - rrsB rrlB within gltT* 

D 4,056,210   A gltT* rrlB   

 

a
 35 mutations shared by parental and mutants relative to the reference BW2952 sequence are not reported. 

b
 A, KG-286/pMBM07; B, KG-292/pGS321; C, KG-293/pGS321; D, KG-294/pGS416  

c
 Mutation occurred at the given coordinate or within the range indicated 

d
 Genes delimiting at the left and right the intergenic region are reported; asterisk (*) denotes pseudogenes  



Table 7. Independent
a
 lptF

Sup
 mutants 

Suppressor strain Genes on 

plasmid
b
 

Transform. 

efficiency 

LptF aa 

change 

KG-292/pGS321 lptA 0.5 R212C 

KG-297/pGS416 lptAB 0.3 R212C 

KG-303/pGS416 lptAB 0.7 R212C 

KG-295/pGS321 lptA 1.5 R212G 

KG-299/pGS321 lptA 0.03 R212G 

KG-300/pGS321 lptA 0.3 R212G 

KG-296/pGS416 lptAB 0.1 R212G 

KG-293/pGS321* lptA 0.5 R212S 

KG-301/pGS321 lptA 0.3 R212S 

KG-294/pGS416* lptAB 0.7 R212S 

KG-298/pGS416 lptAB 0.3 R212S 

KG-302/pGS416 lptAB 0.7 R212S 

 

a
 The two sequenced non-independent mutants are marked by an asterisk (*)  

b
 lptA, pGS321; lptAB, pGS416 

 



Table 8. lptF
Sup

 mutants are compatible with lptC 

N Strain lptF
a
  Resident  

plasmid
b 

Chasing plasmid
c 

none  lptA(B)
d 

 lptCA(B)
d 

 n/μg Cam
S
  n/μg Cam

S
  n/μg Cam

S
 

1 KG-286/pGS404 wt lptCA 7.03E+03 0/6  1.77E+04 0/6  1.09E+02 6/6 

2 KG-292/pGS321 R212C lptA 5.73E+03 0/6  9.37E+03 6/6  8.00E+02 6/6 

3 KG-293/pGS321 R212S lptA 7.67E+03 0/6  2.87E+04 6/6  6.33E+02 6/6 

4 KG-295/pGS321 R212G lptA 2.42E+04 0/6  2.47E+04 6/6  1.50E+03 6/6 

5 KG-286/pGS104 wt lptCAB 5.17E+04 0/6  5.92E+04 0/6  6.05E+02 6/6 

6 KG-297/pGS416 R212C lptAB 5.87E+03 0/6  6.33E+03 6/6  1.00E+03 6/6 

7 KG-294/pGS416 R212S lptAB 1.01E+04 0/6  1.74E+04 6/6  2.00E+02 6/6 

8 KG-296/pGS416 R212G lptAB 1.54E+04 0/6   3.02E+04 6/6   4.67E+02 6/6 

 

a
 lptF allele of the host strain 

b
 lpt genes of the resident plasmid 

c
 lpt genes of the chasing plasmid; none, pGS303; lptA, pGS323; lptAB, pGS324; lptCA, pGS308; lptCAB, pGS305; 

d
 pGS323 and pGS308 were used for transformations n. 1-4, pGS324 and pGS305 for transformations n. 5-8 

 

 



 

FIGURE LEGENDS  

 

Fig. 1. Map of the lpt locus and schematics of the ΔlptC mutant selection by plasmid shuffling. 

A. Map of the E. coli yrbG-lptB locus. The ORFs (open large arrows) are drawn to scale. Promoters 

are indicated by bent arrows. B. Plasmid shuffling by double selection against the resident plasmid. 

The relevant chromosomal (linear drawings) and plasmid (circles) genotypes are depicted. See text 

for details.  

 

Fig. 2. Screening for the presence of lptA and lptC in plasmid shuffled clones by PCR and 

Southern blotting analysis. A. Electrophoretic analysis of amplicons obtained with lptC- and lptA-

specific primers, as indicated on the bottom of the panel, from plasmid shuffled and control strains. 

On top of the lanes the lpt genes harbored by the plasmid used for transformation of the parental 

KG-286/pMBM07 are indicated: lptC-lptA, lanes 1-2, pGS404; lptC, lanes 1-7, pGS402; malE-

lptC, lanes 1-8, pGS420; lptA, lanes 1-4, pGS321; lptAB, lanes 1-5, pGS416; M, molecular weight 

markers (100 bp ladder). See text for details. B. Southern blotting of DNA from plasmid shuffled 

transformant clones. Total DNA from strains indicated on top of the panel was digested with SalI 

(odd lane numbers) or HindIII (even lane numbers), Southern blotted and hybridized with a 

radioactive DNA probe obtained with primers FG3129-FG3130 and covering the lptC region 4-532. 

lptCA/lptA, KG-286/pGS321; lptCA/lptAB, KG-286/pGS416; wt, AM604; lptCA/lptCA, KG-

286/pMBM07; M, molecular weight markers (1 kb ladder). The fainter bands in lanes M and 

lptCA/lptA and lptCA/lptAB is due to non-specific hybridization of the probe with the DNA 

marker (M) and with the chasing plasmids (pGS321 and pGS416), both of which are linearized by 

SalI and HindIII.  

 

Fig. 03. Phenotypic analysis of ΔlptC mutants. Cultures strains indicated on the left of the panels ( 

lptCA/-, AM604/pGS401; lptCA/lptA 1, KG-292/pGS321; lptCA/lptA 2, KG-

286.10/pGS321; lptCA/lptA 3, KG-293/pGS321; lptCA/lptAB 1, KG-286.13/pGS416; 

lptCA/lptAB 2, KG-286.14/pGS416; lptCA/lptAB 4, KG-294/pGS416) grown in LB-

glucose-chloramphenicol at 37 °C were serially diluted 1:10 in microtiter wells and replica plated in 

LB agar plates supplemented with glucose and chloramphenicol alone or containing bacitracin (50 

g/ml), novobiocin (10 g/ml), rifampicin (2.5 g/ml) or SDS-EDTA (0.5%-0.25mM). MacConkey 

agar plate was supplemented with glucose and chloramphenicol. The plates were incubated 



overnight at 37 °C (or 42 °C, where indicated) or 3 d at 15 °C, as indicated on top of the pictures. 

The log of the serial dilutions is indicated on the bottom.  

 

Fig. 04. LPS analysis in ΔlptC mutants and electron microscopy. A. LPS extracted from the 

strains indicated on top (Left panel: lptCA lptF/pvoid, AM604/pGS401; lptCA lptF
R212C

/plptA, 

KG-292/pGS321;lptCA/plptA, KG-286.10/pGS321; lptCA lptF
R212S

/plptA, KG-293/pGS321; 

lptCA/plptAB, KG-286.13/pGS416; lptCA/plptAB, KG-286.14/pGS416; lptCA 

lptF
R212S

/plptAB, KG-294/pGS416. Right panel: lptCA lptF/plptCA, KG-286/pMBM07; lptCA 

lptF
R212C

/plptAB, KG-297.01/pGS416; lptCA lptF
R212G

/plptA, KG295.01/pGS321; lptCA 

lptF
R212S

/plptAB, KG-298.01/pGS416; lptCA lptF
R212C

/plptCA, KG-297.02/pGS308; lptCA 

lptF
R212G

/plptCA, KG-295.02/pGS308; lptCA lptF
R212S

/plptCA, KG-298.02/pGS308) was 

fractionated by gel electrophoresis and silver stained (upper panels) or western blotted (lower 

panels) as described in Materials and methods. B. Electron micrographs of AM604/pGS401 (+LptC 

+LptA), KG286/pMBM07 in depletion of the ectopically expressed lptCA (-LptC -LptA), and 

KG293/pGS321 (-LptC +LptA). 

 

Fig. 5.Suppression of LptC depletion and LptC compatibility by lptF
Sup

 alleles. A. Cultures of 

FL905 (araBp-lptC) strains transformed with pGS401 derivatives expressing the lpt genes listed on 

the left grown in LB-arabinose-chloramphenicol were serially diluted 1:10 in microtiter wells and 

replica plated in agar plates with arabinose (+ ara) or with glucose (+ glu) to fully repress the araBp 

promoter. The log of the serial dilutions is indicated on the right of the panel. B. The same 

procedure was applied to strain NR1113 (araBp-lptFG) transformed with pGS401 derivatives 

expressing the lpt genes listed on the left. The log of the serial dilutions is indicated on the bottom.  
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Abstract

The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic
membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability
barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer
membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is
transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a
transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the
biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to
severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on
Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of
lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant
grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC
depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell
division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS
transport defects to restore outer membrane functionality.
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Introduction

The outer membrane (OM) of Gram-negative bacteria [1] is an

asymmetric membrane containing phospholipids and a unique

glycolipid lipopolysaccharide (LPS) in the inner and outer leaflet,

respectively [2]. OM proteins (OMPs) and lipoproteins are also

embedded and anchored, respectively, in the OM [3]. LPS is a

complex molecule that can be structurally divided in three

elements: lipid A, the hydrophobic moiety that anchors LPS in

the outer membrane, the core oligosaccharide and the O-antigen

(Figure 1). The OM mainly serves as a protective barrier enabling

Gram-negative bacteria to survive in harsh environments and to

exclude several toxic molecules effective against Gram-positive

organisms [1]. LPS mainly contributes to the OM permeability

barrier properties as LPS molecules are tightly packed in the OM

and form a very effective barrier against hydrophobic compounds

[2]. Biosynthesis of LPS components occurs in the cytoplasm and

at the cytoplasmic side of the inner membrane (IM). The core-lipid

A moiety is first flipped by the essential ABC transporter MsbA

across the IM [4,5] ligated with the O-antigen and then

transported across the periplasm by a transenvelope device, the

Lpt protein machinery, composed in E. coli by seven essential

proteins (LptABCDEFG) (reviewed by [6,7]) (Figure 1). At the IM,

the LptBFG complex constitutes an ABC transporter that provides

the energy for LPS transport. LptC is a small bitopic protein [8]

that resides in the IM and interacts with the LptBFG complex [9]

and with the periplasmic protein LptA [10] [11]. LptA is thought

to transfer LPS to the LptDE protein complex of the OM. Thus,

LptA is the periplasmic protein that connects the IM Lpt

components to the OM LPS translocon (LptD and LptE), which

ensures the assembly of LPS at the cell surface [12–14]. The Lpt

machinery appears to operate as a single device as depletion of any

Lpt component leads to common phenotypes that includes the

appearance of an anomalous LPS form decorated by repeating

units of colanic acid [8,15], and in such depleted strains the

majority of de novo synthesised LPS accumulates in a novel

membrane fraction (hIM) with higher density than the IM [8].

The process by which hydrophobic LPS is transported across the

periplasm to the cell surface is not fully understood. The current

model postulates that the Lpt proteins, through homologous

domains interactions, create a transenvelope bridge that connects
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IM and OM [14,16], thus forming a continuous channel through

which LPS is moved to the cell surface [17].

The OM is an essential structure for bacterial survival and the

first site of interaction with the mammalian host [18]; mutants

defective in OM biogenesis typically display alterations of the OM

permeability barrier properties [3]. The crucial role of this

structure is highlighted by the fact that in E. coli at least five

different pathways (Bae, Cpx, Psp, Rcs and sE) constitute

signaling systems that detect and respond to alterations of the

bacterial envelope [19–22]. These pathways regulate expression of

complementary functions whose discrete contributions are inte-

grated to mount a full adaptive response [23].

In this work we sought to analyze on a global level the response

of E. coli cells to a severe OM biogenesis defect, namely the block

of transport of LPS upon LptC depletion, to investigate on the cell

response to an OM stress. To this purpose we used a proteomic

approach based on two-dimensional chromatography coupled to

tandem mass spectrometry (2DC-MS/MS), called MudPIT

(Multidimensional Protein Identification Technology) [24] to

monitor the cell envelope protein content of an arabinose

dependent lptC conditional mutant [8] grown under permissive

and non permissive conditions. Our results highlight pathways and

strategies adopted by E. coli cells to respond to severe OM

biogenesis defects.

Materials and Methods

Bacterial strains and growth conditions
The bacterial strains used in this study are derivatives of AM604

(MC4100 ara+; [25]. FL905 (AM604 W(kan araC araBp-lptC)1) is a

conditional arabinose dependent mutant carrying lptC under the

control of araBp promoter [8]. Bacteria were grown in LD medium

[26] at 37uC. When required, 0.2% (w/v) L-arabinose (as an

inducer of the araBp promoter), and 25 mg/ml kanamycin, were

added. The strain PS200 (MC4100 ara+ asmA-SPA::kan) was

obtained by moving the asmA-SPA::kan allele from CAG64009 to

AM604 by P1 transduction using standard procedures [8].

Subsequently, the kan cassette was removed from PS200 by

pCP20-encoded Flp recombinase [27], generating the mutant

PS201. The removal of the kan genes was verified by colony PCR.

Finally, to construct strain PS202 [AM604 W(kan araC araBp-lptC)1

asmA-SPA], the kan araC araBp-lptC allele was moved from FL905

(AM604 W(kan araC araBp-lptC)1) into PS201 byP1 transduction

and selecting on media containing kanamycin and 0.2%

arabinose.

Transductions were verified by colony PCR and by immuno-

blotting on whole cell extract using anti-FLAG M2 antibodies

(Sigma-Aldrich Inc., St.Louis, MO, USA).

Whole membrane proteins extraction
AM604 and FL905 cells were grown in LD supplemented with

0,2% arabinose up to OD600 = 0.2 at 37uC. Cells were then

harvested, washed in LD, diluted five hundredfold (in fresh

medium with or without 0,2% arabinose) and incubated with

aeration at 37uC. After 330 minutes, 125 OD of cell cultures were

harvested, re-suspended in 3 ml of 10 mM Tris (pH = 8.0), 1 mM

EDTA, 1 mM PMSF, 0,2 mg/ml lisozyme and incubated on ice.

After 30 minutes, 0,2 mg/ml DNAse was added and cells were

disrupted by sonication (6 cycles of 10 seconds at 20% amplitude).

The cleared lysates were then subjected to centrifugation at

100,0006g for 60 min at 4uC. Pellets, that contain whole cell

membranes, were re-suspended in MilliQ water and lyophilized,

or analysed by western blotting using anti-LptC, anti-LptE, anti-

LptB, anti-AcrB or anti-FLAG M2 antibodies (Sigma-Aldrich Inc.,

St.Louis, MO, USA).

Figure 1. LPS structure and transport in Escherichia coli. A) Chemical structure of LPS. O-antigen is indicated in parenthesis as it is not
synthesized in E. coli K12 derivatives. B) LPS transport from IM to OM. The MsbA protein catalyzes LPS flipping across the IM that is then exported to
the cell surface by the Lpt machinery.
doi:10.1371/journal.pone.0100941.g001
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Cell fractionation
AM604 and FL905 cells were grown as described above. Cells

were chilled in ice and harvested by centrifugation. IM and OM

were separated by discontinuous sucrose density gradient centri-

fugation of a total membrane fraction obtained by spheroplast lysis

as described previously [28]. Step gradients were prepared by

layering 2 ml each of 50, 45, 40, 35, and 30% (wt/vol) sucrose

solutions over a 55% sucrose cushion (0.5 ml). Fractions (300 ml)

were collected from the top of the gradient, 50 ml of each fraction

was assayed for NADH oxidase activity [28]. The total protein

concentration of each fraction was determined by the Bradford

assay (Thermo Fisher Scientific Inc. Waltham, MA) as recom-

mended by the manufacturer. The protein profiles of OmpC,

OmpF, and OmpA across the gradient were estimated by

separating 20 to 40 ml of each fraction on 12.5% SDS-PAGE

and by staining the gels with Coomassie blue. Fractions

corresponding to IM, hIM, and OM were lyophilized and

analyzed.

For the subcellular localization of AsmA-SPA, PS201 [AM604

asmA-SPA] and PS202 [AM604 W(kan araC araBp-lptC)1 asmA-SPA]

cells were grown in LD or LD with 0.2% arabinose up to

OD600 = 0.2. Cells were then harvested, washed in LD, diluted

three hundredfold (in fresh medium with or without 0,2%

arabinose) and incubated with aeration at 37uC. After 280 min-

utes, 125 OD of cell cultures were harvested. IM and OM were

separated by discontinuous sucrose density gradient centrifugation

of total membranes as described above. 20 ml of each fraction

collected from the gradient were separated on 10% SDS-PAGE

followed by immunoblot analysis using monoclonal anti-FLAG

M2 antibodies (Sigma-Aldrich Inc., St.Louis, MO, USA) to detect

AsmA-SPA.The 55 kDa IM protein that is detected by anti-LptD

antibodies and the OM protein LamB were used as IM and OM

markers, respectively [8].

Proteomic Analysis
Lyophilized samples were first resuspended in 0.1 M ammoni-

um bicarbonate, pH 8.0, and then treated with RapiGest SF

(Waters Corporation, Milford, MA, USA) at the final concentra-

tion of 0.2% (w/v). After incubation at 100uC for 5 min, the

samples were cooled to room temperature and digested with

trypsin (Sequencing Grade Modified Trypsin, Promega, Madison,

WI, USA). Initially, trypsin was added to mixtures at an enzyme/

substrate ratio of about 1:50 (w/w) and incubated at 37uC
overnight, then another aliquot of enzyme was added at an

enzyme/substrate ratio of 1:100 (w/w) and the samples were

incubated at 37uC for 4 hours.

The enzymatic reactions were chemically stopped by acidifica-

tion with TFA 0.5% (Sigma-Aldrich Inc., St.Louis, MO, USA),

incubation at 37uC for 45 min and centrifugation at 13,0006g for

10 min in order to remove hydrolytic RapiGest SF by-products.

Before MudPIT analysis, samples were desalted by PepClean C-

18 spin columns (Pierce Biothecnology Inc., Rockford, IL, USA),

concentrated in a SpeedVac (Savant Instruments Farmingdale,

NY, USA) at 60uC and finally resuspended in 0.1% formic acid

(Sigma-Aldrich Inc., St.Louis, MO, USA).

Trypisn-digested peptides were analyzed by two dimensional

micro-liquid chromatography coupled to ion trap mass spec-

trometry (Multidimensional Protein Identification Technology

(MudPIT)) using ProteomeX-2 configuration (Thermo Electron

Corporation, San Josè, CA, USA) [29]. 10 ml of the digested

peptide mixtures were loaded by means of an autosampler

(Suveyor AS Thermo) onto a strong cation exchange column

(BioBasic-SCX, 0.32 i.d.6100 mm, 5 mm, Thermo Electron

Corporation, Bellofonte, PA, USA) and then eluted using eight

steps of increasing ammonium chloride concentration (0, 20, 40,

80, 120, 200, 400, 700 mM). Eluted peptides, obtained by each

salt steps, were at first captured in turn onto two peptide traps

(Zorbax 300 SB C-18, 5 mm, 0.3 id65 mm, Agilent technologies,

Santa Clara, CA, USA) mounted on a 10-port valve, for

concentration and desalting, and subsequently loaded on a

reversed phase C-18 column (BioBasic-18, 0.180 i.d.6100 mm,

5 mm, Thermo Electron Corporation, Bellofonte, PA, USA) for

separation with an acetonitrile gradient. The gradient profile was:

5–10% eluent B in 5 min, 10–40% eluent B in 40 min, 40–80%

eluent B in 8 min, 80–95% eluent B in 3 min, 95% eluent B for

10 min, 95–5% eluent B in 4 min and 5% eluent B for 15 min

(eluent A, 0.1% formic acid in water; eluent B, 0.1% formic acid

in acetonitrile). The flow rate was 100 ml/min slit in order to

achieve a final flux of 1 ml/min.

The peptides eluted from the C-18 column were directly

analysed with an ion trap mass spectrometer (LCQ Deca XP plus)

equipped with a nano electrospray ionization source (nano-ESI)

(Thermo Finnigan Corp., San Josè, CA, USA). The heated

capillary was held at 185uC; full mass spectra were acquired in

positive mode and over a 400–2000 m/z range, followed by three

MS/MS events sequentially generated in a data-dependent

manner on the first, second and third most-intense ions selected

from the full MS spectrum, using dynamic exclusion for MS/MS

analysis (collision energy 35%).

The experimental mass spectra produced by MudPIT analyses

were correlated to tryptic peptide sequences by comparing with

theoretical mass spectra, obtained by in silico digestion of Escherichia

coli protein database downloaded from the NCBI website (www.

ncbi.nlm.nih.gov/Ftp/index.htlm). Data processing was per-

formed using the 3.3.1. Bioworks version, based on SEQUEST

algorithm (University of Washington,licensed to Thermo Finnigan

Corp., San Josè, CA, USA), and the following parameters: Xcorr

scores greater than 1.5 for singly charged peptide ions and 2.0 and

2.5 for doubly and triply charged ions, respectively, the peptide

probability #0.001 and the protein consensus score value $10.

These filters guaranteed that the resulting proteins have a

probability value p#0.001.

Data were treated with an in-house algorithm called MAProMa

[30] (Multidimensional Algorithm Protein Map), in particular a

tool of MAProMa permits the comparison of the protein list obtain

from the analysis of the samples.

Two biological replicates for the three samples of total

membrane and for the samples obtained from the fractionation

of the membranes were analysed and for each of them two

technical replicates were made.

The reproducibility of the method was evaluated as described in

our previous work [31].

Proteins with significant differences in level, were identified by

other two tools of MAProMA: DAve (Differential Average) and

DCI (Differential Coefficient Index) [32]. These two algorithms

are based on score values assigned by SEQUEST software to

each identified protein in samples to be compared. Specifically,

DAve is an index of the relative ratio between control and mutant

and DCI is an index to evaluate the absolute variation of score

value of each protein. Briefly, using MAProMA each identified

protein in the two samples were aligned and then DAve and DCI

indexes were calculated for all proteins. The threshold values

imposed were very stringent: DAve .0.4 and DAve,–0.4,

DCI.400 and DCI,–400. To increase the confidence, it is

necessary that both indexes, DAve and DCI, satisfy these

thresholds.
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Results and Discussion

Proteomic profiles of cell envelope upon LptC depletion
To understand how cells respond to severe OM damage, we

compared the cell envelope protein content of the conditional

mutant FL905 grown under permissive and non-permissive

conditions for LPS transport to the cell surface. In FL905 lptC,

which encodes a component of the LPS transport (Lpt) machinery,

is under control of the arabinose inducible araBp promoter and,

upon LptC depletion in the absence of arabinose, LPS transport is

blocked [8]. FL905 was grown under permissive (with 0.2%

arabinose, FL905+A) and non-permissive (without arabinose,

FL905–A) conditions and membrane proteins were extracted

and analysed by MudPIT. As a control, the isogenic lpt+ strain

AM604 [25] was used. MudPIT has been extensively used for

protein identification and characterization and provides a

significant improvement over gel-based analysis, as it represents

a fully automated and high-throughput technology. By this

approach we identified about 300 proteins in each sample (Table

S1). In particular, a total of 864 proteins were identified in the

three samples of total membrane analysed in replicate and among

these, 323 were detected in all the three samples. 115 were

detected in AM604 and FL905+A and 35 in AM604 and FL905–

A, whereas 47 were shared between FL905+A and FL905–A. 107,

78 and 159 unique proteins were exclusively detected in AM604

strain, in FL905+A and in FL905–A, respectively (Figure 2).

Using a in-house software called MAProMA [30], the protein

lists identified in the three samples of total membranes were

plotted on a 2-D map according to the theoretical MW and pI of

identified proteins. Figure S1 reports as an example the 2D-map of

the proteins obtained by the analysis of the FL905–A mutant

membranome.

Using DAve and DCI algorithms of MAProMa software, the

relative protein abundance, of AM604 and FL905 grown under

permissive conditions, was evaluated by means of a label-free

quantitative approach. DAve and DCI were calculated for each

pairwise comparison. Only the proteins that exceed the set

threshold values were considered. In FL905 the araBp promoter

drives the expression of lptCAB [8]. Thus as expected we found

increased abundance of LptC and the IM associated protein LptB

in FL905 as compared with the wild type AM604 control. On the

contrary, the periplasmic LptA protein was not detected in the

membrane fraction of either strain. It is worth to mention that in

the lptC depletion strain grown under non-permissive conditions

lptAB are expressed from a sE dependent promoter located within

the lptC coding sequence [33]. With the exception of proteins

involved in arabinose metabolism (Table S1) no other significant

differences in protein relative abundance were detected between

AM604 and FL905+A. For this reason the latter was used as the

reference condition in all comparisons with FL905 grown without

arabinose (data not shown).

The comparative analysis of the cell envelope protein profile of

FL905+A versus FL905–A cells showed 123 proteins differentially

represented (Table S2). These proteins are related to different

cellular pathways that collectively give a snapshot on cellular

pathways modulated by E. coli cells to respond to severe OM

biogenesis defects. As reported in the following paragraphs the

functions assigned to the proteins differentially expressed fall in

two main pathways: cell envelope biogenesis/remodeling, and

protein transport/assembly at the OM. In addition we observed

lower abundance for several proteins with a function in (i) central

metabolism, (ii) translational apparatus (iii) protein folding/

degradation. (Table S2). As lower abundance of these proteins

may be correlated with growth arrest imposed by block of LPS

transport [8,10,15,34], these functions will not be further

discussed. Interestingly the expression of many functions identified

by our analysis is under the control of signalling systems (Bae, Cpx,

Rcs, and sE) that in E. coli detect and respond to alterations of the

bacterial envelope [19–22].

Previous work [8,15] showed that mutant cells depleted of any

Lpt component exhibit strikingly similar multilayer membranous

bodies in the periplasm (hIM). In this contest, to understand the

nature of the hIM and the changes that occur at the level of

bacterial membrane in order to restore homeostasis, we used

discontinuous sucrose density gradient centrifugation to fraction-

ate IM, OM and hIM from FL905+A and FL905–A and we

analysed the protein profile of each fraction by MudPIT (Table

S1).

Below the main pathways showing different protein levels when

comparing FL905+A and FL905–A are discussed.

Cell envelope biogenesis/remodeling
Peptidoglycan synthesis and cell division. Lpt proteins

depletion leads to growth arrest and in the late phase of depletion

cells show mostly short filaments [8,10]. In line with this

phenotype we found that the level of many proteins implicated

in peptidoglycan biosynthesis decreases (Table 1). The transgly-

cosylase MurG, the transpeptidase MrdA (PBP2), peptidoglycan

hydrolases AmiA, EmtA, and MltB all have a role during cell

elongation [35,36] and show decreased abundance in FL905-A.

The same applies to LpoA and LpoB OM lipoproteins that

modulate the activity of transpeptidases involved in cell elongation

[37]. TolB, a periplasmic protein that binds peptidoglycan via the

Pal lipoprotein [36,38] and required for OM invagination also

shows a decreased level whose significance is difficult to explain.

On the contrary the level of proteins involved in peptidoglycan

remodeling and cell division appears to increase in LptC depleted

cells (Table 1). In fact we found increased abundance for DacA

(PBP5) and DacC (PBP6) carboxypeptidases that remove terminal

D-alanine residues from pentapeptide side chains thus preventing

those side chains from serving as donors for transpeptidation [39].

Also the level of PBP1B a major peptidoglycan synthase involved

in cell division [39], FtsZ the key player at the division machinery

Figure 2. Venn diagram of proteins distribution across strains
and growth conditions analysed. Proteins are identified from total
membrane samples. wt, (PS201); LptC+ (PS202, araBp-lptC) grown under
permissive condition (0,2% arabinose); LptC-depleted, PS202 grown
under non permissive condition (without arabinose).
doi:10.1371/journal.pone.0100941.g002
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apparatus [40] and ZipA a protein interacting with FtsZ and

required for preseptal peptidoglycan synthesis [41], increases upon

LptC depletion.

Thus it appears that in LptC depleted cells the synthesis of

peptidoglycan is inhibited and that the arrest of cell wall growth

shifts LptC depleted bacteria to the cell division program as

suggested by the increased level of functions implicated in

septation; this is in line with the notion that bacteria must

somehow coordinate peptidoglycan synthesis with OM assembly.

The recent discovery of OM lipoproteins LpoA and LpoB as

modulators of PBPs activity suggests that they may play a crucial

role in coupling OM biogenesis with PG synthesis [37].

Interestingly we found that the level of both lipoproteins decreases

in LptC depleted cells further strengthening the idea that

peptidoglycan synthesis is also controlled from outside of the

sacculus.

Known/putative proteins involved in LPS/OMP

biogenesis. Upon LptC depletion the level of proteins involved

in LPS biogenesis (LptD, MsbA, WbbK and WbbI) decreases

(Table 2). The decreased level of the OM LptD protein (Table 2) is

in line with our previous observation that the steady state level of

LptA is affected by depletion of LptC or LptD/E [11]. In fact

depletion of LptC or LptD removes the IM and OM docking site,

respectively, of LptA resulting in LptA degradation [11]. Assembly

of LptD requires lipoprotein LptE [42] and the Bam complex [43].

LptE was not detectable even in samples grown under permissive

conditions, possibly because it resides within the LptD b-barrel

[13] and therefore it may be protected from trypsin degradation.

However, LptE level does not change upon LptC depletion

(Figure 3A) in line with previous data [11]. LptF, and LptG were

not detectable even in samples grown under permissive conditions

due to their very low abundance in the cell [15]. Interestingly our

data show a decreased level of BamA and BamD, two members of

the Bam machinery (see Protein transport/assembly paragraph

below). The lower LptD level may thus be the result of a less

efficient assembly at the OM. Recently it has been shown that the

periplasmic protease BepA, whose expression is regulated by sE,

specifically degrades LptD when it fails to form the OM LPS

translocon [44]. As an alternative hypothesis we suggest that LptC

depletion might affect the formation of a functional OM

translocon that undergoes degradation by BepA [15]. Overall,

from our data it is not possible to discriminate whether decreased

LptD level is the result of lower synthesis, less efficient assembly or

degradation of non-functional translocon.

MsbA is the essential ABC transporter implicated in flipping

LPS across the IM [4,5] and operates in the LPS export pathway

just upstream the Lpt protein machinery (Table 2). No physical

interactions have been detected so far between MsbA and the Lpt

machinery. Our data for the first time point to a functional

interaction between the two systems and suggest that arrest of LPS

transport and its accumulation at the periplamic face of the IM

somehow affects MsbA level.

We found that the level of WbbI (galactofuranosyl transferase)

and WbbK (glucosyl transferase) decreased upon LptC depletion

(Table 2). The wbbI and wbbK genes map at a locus encoding genes

involved in O-antigen subunits and other exopolysaccharides

(including colanic acid) biosynthesis [2]; in particular, wbbIJKL

genes have been implicated in biosynthesis of O16 antigen subunit

[45]. E. coli K12 LPS, however, is lacking the O-antigen as wbbL,

which codes for a rhamnosyltransferase, is interrupted by an IS5

insertion [46]. It thus appears that in strain FL905 (an E. coli K12

derivative) the loss of wbbL does not prevents the expression of

other wbb genes, whereas the block of LPS transport affects wbb

genes expression resulting in lower levels of WbbI and WbbK.

Finally, in LptC depleted cells the level of AsmA, a non-essential

IM protein of unknown function (Table 2, Figure 3A) for which a

possible role in OM biogenesis has been previously proposed [47],

decreases. The role of AsmA in OM biogenesis stems from the

observation that a mutant asmA allele is able to correct the

assembly defect of mutated OmpC and OmpF proteins [48,49]. In

agreement with a putative role in OM biogenesis, asmA null

mutants show increased sensitivity to hydrophobic antibiotics and

Table 1. Envelope proteins exhibiting a significant variation upon LptC depletion: peptidoglycan synthesis/remodeling and cell
division.

Categorya GI Accessionb Protein Activity DAvec

Peptidoglycan synthesis 16128083 MurG Precursors synthesis - GTases 0,50

16128142 PBP1B Synthesis - GTases and DD-TPases 21,23

16128615 PBP5 Regulation of structure-DD-CPases 20,58

16128618 PBP2 Synthesis - DD-TPases 2,00

16128807 PBP6 Regulation of structure-DD-CPases 22,00

16129068 LpoB Regulation of synthesis-Synthase activators 0,50

16129156 EmtA Hydrolysis - Lytic transglycosylases 1,00

16129736 MipA Synthesis -Scaffolding protein 0,66

16130360 AmiA Hydrolysis - Amidases 1,19

16130608 MltB Hydrolysis - Lytic transglycosylases 0,85

16131039 LpoA Regulation of synthesis - Synthase activators 0,65

Cell division 16128088 FtsZ Cytosckeletal structure 21,26

16128715 TolB Outer membrane invagination 0,46

16130338 ZipA Early association with Z ring 20,76

ainferred from ecocyc.org.
bNCBI accession number.
cDAve value ranges from 22 and +2; positive value for DAve indicates that the protein is more abundant in LptC+ (grown with 0.2% arabinose); negative value for DAve
indicates that the protein is more abundant in LptC-depleted (grown without arabinose).
doi:10.1371/journal.pone.0100941.t001
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a decreased LPS level [47]. In contrast to previous reports [47] we

found that in wild type and in non LptC-depleted cells AsmA

localizes in both the IM and OM (Table 3), a typical behaviour of

membrane fusion proteins (MFP) that function in bridging IM and

OM in Gram-negative bacteria [50]. Interestingly, in LptC

depleted cells not only the level of AsmA decreased but also its

subcellular localization changed as the protein disappeared from

the IM and localized at the hIM and OM in LptC depleted cells

(Table 3 and Figure 3B). Our data support the role of AsmA in

OM biogenesis highlighting a functional link between the assembly

of OM proteins and that of LPS as the correct balance of both

OM components is required to build a functional OM.

Functions involved in OM biogenesis/

remodelling. Several proteins (WzzE, WzzB, WcaC, WcaK,

Gmd, WcaI, Wza, Wzc) belonging to the 19 genes wca (cps) cluster

and implicated in colanic acid biosynthesis [51,52] showed

increased abundance in LptC depleted cells (Table 2). This

finding is in agreement with our previous observation that

depletion of any Lpt protein leads to the production of LPS

decorated by colanic acid, indeed this modification is diagnostic of

defects in LPS transport occurring downstream of MsbA mediated

lipid A-core flipping across IM [8]. Interestingly, Salmonella enterica

mutants defective in LPS transport due to mutations in lptC also

show an altered LPS profile [53]. Although the chemical nature of

such modification is not known it is reminiscent of the high

molecular weight ladder observed upon Lpt proteins depletion.

Colanic acid is a cell surface polysaccharide synthesised by enteric

bacteria in response to envelope damaging conditions such as

osmotic, acid and cold stresses [21,54]. Expression of cps cluster is

controlled by the Rcs proteins that constitute a complex

phosphorelay system known to extend well beyond regulation of

colanic acid synthesis [21]. We recently showed that E. coli cells

treated with ammonium metavanadate, a phosphatase inhibitor

known to induce covalent modification of lipid A [55], also

produce LPS decorated by colanic acid [33]. The signals that

activate such pathways are not well known, however our data

support the idea that a specific ‘‘LPS’’ stress may induce the Rcs

system therefore activating functions needed for surface remodel-

ling.

In agreement with the notion that block of LPS export pathway

results in migration of phospholipids in the outer leaflet of the

OM, we found that the level of two components of Mla pathway,

Table 2. Envelope proteins exhibiting a significant variation upon LptC depletion: cell envelope biogenesis.

Categorya GI Accessionb Protein Activity DAvec

Known proteins involved in LPS
biogenesis

16128048 LptD Transporter 0,43

16128881 MsbA Transporter 0,80

16129972 WbbK Biosynthesis-O antigen 1,40

16129974 WbbI Biosynthesis-O antigen 0,85

Putative proteins involved in OM
biogenesis

16130004 AsmA Assembly of OM proteins? 2,00

Functions involved in OM homeostasis 16128173 FabZ Biosynthesis - b-hydroxyacyl-ACP dehydratases 21,19

16128178 AccA Biosynthesis - Acetyl-CoA carboxylase A 20,54

16128757 YbhO Biosynthesis - Cardiolipin synthase 22,00

16129985 WcaK Synthesis - glycosyl transferase 22,00

16129990 WcaI Synthesis - glycosyl transferase 22,00

16129993 Gmd Synthesis - GDP-mannose 4,6-dehydratase 22,00

16129997 WcaC Synthesis - glycosyl transferase 22,00

16130002 Wza Export - capsular polysaccharide 22,00

16130251 AccD Biosynthesis - Acetyl-CoA carboxylase D 22,00

16130740 Aas Biosynthesis - Hydroxycinnamate-CoA ligase 1,19

16131083 MlaD Transporter - Phospholipids 21,19

16131084 MlaE Transporter - Phospholipids 22,00

16131641 WzzE Regulator of O length 20,50

16131985 Psd Biosynthesis - Phosphatidylserine decarboxylase 21,13

33347613 WzzB Regulator of O length 20,99

33347615 Wzc Export - capsular polysaccharide 22,00

33347817 PlsB Biosynthesis - Glycerol-3-phosphate acyltransferase 20,77

Protein membrane turnover 16128154 DegP Protease - Periplasmic serine protease 21,52

16131068 FtsH Protease - ATP-dependent metalloprotease 21,35

16131996 HflK Regulator of FtsH 21,55

16131997 HflC Regulator of FtsH 21,41

ainferred from ecocyc.org.
bNCBI accession number.
cDAve value ranges from 22 and +2; positive value for DAve indicat that the protein is more abundant in LptC+ (grown with 0.2% arabinose); negative value for DAve
indicates that the protein is more abundant in LptC-depleted (grown without arabinose).
doi:10.1371/journal.pone.0100941.t002
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MlaD and MlaE, increases upon LptC depletion (Table 2). The

Mla (Maintenance of OM lipid asymmetry) proteins function as an

inter-membrane transport system to prevent surface exposure of

phospholipids upon stressful conditions thus maintaining OM

asymmetry [56]. Several mutants in LPS biogenesis display

increased OM permeability as phospholipids may migrate from

the inner to the external leaflet of the OM thus generating locally

symmetric bilayer rafts freely permeable to hydrophobic com-

pounds [57]. As the Mla system appears to function by retrograde

trafficking of phospholipids from the OM to the IM, the increased

level of MlaD and MlaE proteins upon LptC depletion might be

needed to maintain lipid asymmetry and therefore OM homeo-

stasis. Our data provide the first functional connection between

the LPS export and the OM phospholipid removal pathways.

Proteins implicated in de novo fatty acids (AccD, AccA, FabZ)

and in phospholipids biosynthesis (PlsB, Psd) (Table 2) also show

an increased level in LptC depleted cells. AccA and AccD

constitute the heterodimeric carboxyltransferase involved in the

first reaction of fatty acid synthesis. FabZ is an R-3 hydroxyacyl-

ACP dehydrase which provides precursors for phospholipids

synthesis [58]. Interestingly, FabZ shares the substrate R-3

hydroxyacyl-ACP with LpxA and LpxD two enzymes involved

in lipid A biosynthesis [59] and is therefore a key enzyme in

controlling phospholipids and LPS synthesis. Our data suggest that

the modulation of levels of FabZ which competes with LpxA and

LpxD for the shared precursor, can be a strategy to shift the

synthesis towards the production of phospholipids thus limiting

lipid A synthesis. Indeed in LptC depleted cells LPS can not be

inserted in the outer leaflet of the OM and consequently cells need

to fill the ‘‘void’’ with phospholipids. On the other hand, the

increased level of PlsB and Psd (Table 2), which are involved in

phosphatidlyethanolamine (PE) synthesis [60] suggests that

increased synthesis of this specific phospholipid may help cells

upon severe cell envelope damage. In fact surface exposed

phosphatidlyethanolamine (PE) is the substrate of the inducible

EptA enzyme [61] that removes phosphoethanolamine from its

donor substrate (PE) and transfers it to the 1-phophate group of

lipid A. Such modification has been detected in lipid A of several

mutants defective in LPS transport [13,15] and contributes to

polymixin resistance in several organisms such as Helicobacter pylori

[62], Neisseria meningitidis [63] and Campylobacter jejuni [64]. Lipid A

modifications by EptA are thought to stabilize and/or balance the

Figure 3. AsmA protein abundance and subcellular localization. PS201 (asmA-SPA lptC+) and PS202 (asmA-SPA araBp-lptC) cells were grown
with or without arabinose as indicated. Total membrane protein extracts prepared as described in Materials and Methods were analysed by
immunoblotting (panel A) or fractionated by sucrose density gradient (panel B). A) 10 mg of total membrane proteins were loaded in each lane. 55-
kDa protein was used as loading control. B) Fractions were collected from the top of the gradient and immunoblotted using antibodies recognizing
the 55-kDa protein as IM marker, LamB as OM marker. a-Flag antibodies were used to detect AsmA-SPA protein. wt, PS201; LptC+, PS202 (araBp-lptC)
grown under permissive condition (with 0,2% arabinose); LptC-depleted, PS202 grown under non permissive condition (without arabinose).
doi:10.1371/journal.pone.0100941.g003

Table 3. AsmA level in membrane fractions.

Strain/condition IM hIM OM

Scorea Hitsb Scorea Hitsb Scorea Hitsb

wt 40,25 7 nd nd 50,26 9

LptC+ 30,23 4 nd nd 60,21 8

LptC-depleted 0 0 50,30 7 30,33 3

aSEQUEST score value, related to the confidence of identification.
bnumber of identified peptides.
doi:10.1371/journal.pone.0100941.t003
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surface electrostatics of the OM and can be thus considered an

additional mechanism to restore the OM barrier function when

LPS transport is defective. It is thus possible that in LptC depleted

cells PE synthesis increases the donor substrate for lipid A

modification as a strategy to restore the OM functionality.

Finally, we found increased level for YhbO, a conserved protein

with unknown function that has been implicated in protection

against diverse environmental stresses such as oxidative, thermal,

osmotic and pH stresses [65]. YhbO increased level upon LptC

depletion may also help cells to recover from envelope damaging

stresses.

A decreased expression level upon LptC depletion has been

observed for Aas (Table 2), an enzyme implicated in membrane

phospholipid turnover [66]. The regulation of Aas expression has

been poorly investigated and the meaning of our observation is

presently not obvious.

Membrane protein turnover. The level of FtsH, HflK and

HflC proteins increases upon LptC depletion (Table 2). FtsH (also

named HflB) is an essential ATP dependent IM protease that

interacts with HflK and HflC membrane proteins to form a large

holoenzyme complex with a role in quality control and degrada-

tion of membrane proteins [67]. FtsH plays also a key role in

modulating LPS biosynthesis as it controls by proteolysis the

amount of LpxC, which catalyses the first committed reaction in

lipid A biosynthesis, and of KdtA, a glycosyltransferase involved in

Kdo synthesis [68]. The increased amount of FtsH in LptC

depleted cells might lower LPS synthesis as a strategy to cope with

the block of its transport and to prevent its accumulation at the

IM. Interestingly, in addition to the s70 dependent promoter, a sE

promoter has been predicted upstream the ftsH gene [69]. We

previously showed that LptC depletion activates the sE dependent

regulon [33]. Our data suggest that the predicted sE sequence

upstream of ftsH may represent a functional promoter.

DegP is a periplasmic protein functioning both as a protease

and as a chaperone whose expression is induced upon cell

envelope stresses [70]. DegP increased level in LptC depleted cells

(Table 2) fits with its dual role of protease and chaperone in being

able to both degrade irreversibly damaged proteins and to assist/

promote folding of partially unfolded periplasmic or OM proteins.

Protein transport/assembly
Upon LptC depletion we observe a decreased level for BamA

and BamD (Table 4) the essential components of the multiprotein

machinery responsible for OMP assembly at the OM [43]. LptD,

the only known essential OMP, is also a Bam complex substrate.

BamA, whose expression is regulated by sE [71], has recently been

shown to be a substrate of the BepA protease when BamA

assembly at the OM is compromised [44]. BamD interaction with

BamA appears to stabilize the Bam complex [72,73]; therefore

BamD may be an additional BepA substrate or may be degraded

by not yet known proteases. The non-essential OM lipoproteins

BamB [74] and YiaD instead showed increased abundance

(Table 4). YiaD has been identified as multicopy suppressor of a

temperature sensitive bamD allele [75] and BamB expression is

under sE control [76] possibly explaining their increased level. It

thus appears that in Lpt depleted cells growth arrest and damaged

envelope both contribute to a general reduction of protein

synthesis and therefore to lower level of components of the

machinery that insert b-barrel proteins in the OM.

An important function of the OM is the control of influx and

efflux of nutrients and toxic compounds playing an important role

in the adaptation to different environmental conditions. Accord-

ingly, in LptC depleted cells where the OM is damaged we

observed modulation of the level of proteins that regulate the

intracellular influx of toxic compounds. OmpF is a porin with a

role in the influx of small molecules [1] whose level decreases.

Instead, the level of components of efflux pumps, such as AcrA,

AcrB, MdtA increases (Table 4). AcrA, AcrB and MdtA are

proteins belonging to multidrug efflux pumps, whose expression is

up-regulated in response to envelope-damaging agents [77,78].

We confirmed by western blotting that AcrB level indeed increases

upon LptC depletion (Figure S2).

Extra-cytoplasmatic stress response
The OM functionality is essential for survival in Gram-negative

bacteria and therefore its integrity in E. coli is monitored by at least

five different but overlapping stress response systems (RpoE, Rcs,

BaeR, Cpx, Psp) [79]. In LptC depleted cells the relative

abundance of 26 proteins belonging to four such pathways (RpoE,

Rcs, BaeR, Cpx) increased and three (out of 10) belonging to

RpoE pathway (BamE, BamD, OmpF) decreased (Figure 4A).

Interestingly, this list includes most of the functions that have been

discussed in the previous paragraphs thus highlighting the

importance of such pathways in triggering adaptive responses to

OM dysfunction (Figure 4B).

Proteins of hIM
Depletion of any Lpt proteins results in appearance of a novel

membrane fraction with higher density of the IM (hIM) where

most of the novo synthesised LPS accumulates [8,10,15]. To better

clarify the nature of such fraction we analysed its proteome. We

considered hIM proteins those showing a score higher that 30

(Table S3). Out of the 53 hIM proteins matching the selected

parameter 44% are proteins normally localized at the IM, 21%

are OM proteins and the remaining fraction is represented by

cytoplasmic (26%), periplasmic (2%) and unknown (7%) proteins

(Figure S3). Most of the proteins enriched in the hIM fraction are

related to transport systems whereas the rest form a miscellaneous

group; notably none of the proteins displaying an increased level in

LptC depleted cells was found in hIM (Table S3). These data

suggest that that hIM is more similar to the IM than the OM and

are in line with the hypothesis that hIM corresponds to the

abnormal membrane structures visible by electron microscopy in

Lpt depleted cells [8,10,15] where proteins belonging to different

biological processes, unrelated to each other, remain trapped.

Conclusions

We used the MudPIT technology to analyze the envelope

proteome in LptC depleted cells, which experience a severe OM

biogenesis defect due to block of LPS transport to the cell surface.

The comparative proteomic analysis between LptC depleted and

not-depleted cells highlighted strategies adopted by bacteria to

maintain OM homeostasis. The envelope proteome of LptC

depleted cells displayed higher abundance of functions that

collectively may contribute to repair the OM and restore its

permeability barrier properties. Such functions include proteins

implicated in maintaining OM asymmetry or involved in the

synthesis of phospholipids and exopolysaccharides as substrates for

lipid A-core modification enzymes. Lipid A modifications are

generally not required for growth under laboratory conditions but

confer selective advantages, such as resistance to antimicrobial

peptides or the ability to evade the innate immune system [80].

Interestingly, we found that the level of several enzymes implicated

in peptidoglycan synthesis/remodeling changes in LptC depleted

cells. Indeed, our results suggest that when growth of the OM is

compromised by block of LPS transport cells switch from the

‘‘elongation mode’’ of peptidoglycan synthesis to the ‘‘constrictive

Proteomic Analysis of Cell Envelope Biogenesis

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e100941



mode’’ to direct cells towards the cell division program. It has been

recently shown that in E. coli the enlargement of the peptidoglycan

layer requires control or activation not only from the inside of the

cells but also from outside by proteins associated to the OM

[37,81]. Overall, our data further support the notion that OM

biogenesis and PG synthesis are tightly coordinated pathways.

The block of LPS transport result in growth arrest and as a

consequence the level of ribosomal and transport proteins as well

as many folding factors decreases in LptC depleted cells.

Conversely, the level of several IM, periplasmic and OM proteases

increases to cope with increased abundance of proteins that are

not assembled at the OM. Our data are consistent with the notion

that the extracytoplasmic stress response is activated upon block of

LPS transport as the expression of many functions implicated in

OM biogenesis, OM remodeling, protein folding/degradation

showing increased abundance in LptC depleted cells are under the

control of the Bae, Cpx, Rcs and sE signaling systems [23]. Of

note is the finding that the level FtsH, an essential IM anchored

protease, increases in LptC depleted cells. FtsH is known to

control LPS biosynthesis by degrading LpxC the enzyme that

catalyzes the first committed step of lipid A biosynthesis [82]. Our

data point for the first time to a feed-back control on lipid A

synthesis signaled from the external surface of the cell when LPS

transport to the OM is compromised. We do not know how such

signal may be transduced inside the cell; a possible candidate in

such signal transduction pathway is the recently identified YciM

IM protein that has been suggested to act in concert with FtsH to

regulate synthesis of lipid A [83,84,85].

Overall our results show a snapshot of pathways modulated by

E. coli cells to respond to a severe OM biogenesis defect namely

block of LPS transport, that act integrating complementary

functions to restore OM functionality.

Table 4. Envelope proteins exhibiting a significant variation upon LptC depletion: transport/assembly.

Categorya GI Accessionb Protein Activity DAvec

Protein transport 16128091 SecA Transporter -Sec Translocation Complex 1,55

16128170 BamA Transporter - OMPs 0,54

16128392 YajC Transporter -Sec Translocation Complex 0,66

16128393 SecD Transporter -Sec Translocation Complex 0,93

16128394 SecF Transporter -Sec Translocation Complex 0,66

16130437 BamB Transporter - OMPs 21,19

16130516 BamD Transporter - OMPs 0,57

16131423 YiaD Transporter - OMPs 21,42

Transport 16128446 AcrA Membrane fusion protein 21,63

16128447 AcrD Permease 21,17

16128896 OmpF General Bacterial Porin 0,83

16130014 MdtA Membrane fusion protein 21,32

ainferred from ecocyc.org.
bNCBI accession number.
cDAve value ranges from 22 and +2; positive value for DAve indicates that the protein is more abundant in LptC+ (FL905 grown with 0.2% arabinose); negative value for
DAve indicates that the protein is more abundant in LptC-depleted (FL905 grown without arabinose).
doi:10.1371/journal.pone.0100941.t004

Figure 4. List of proteins belonging to cell envelope stress response pathways whose level changes upon LptC depletion. A. Relative
abundance is calculated as the ratio beetween FL905 grown under permissive and non permissive conditions: q, increased; Q, decreased (see
Tables 1, 2. 4). B. Venn diagram showing functions whose regulations is shared by multiple envelope signaling systems.
doi:10.1371/journal.pone.0100941.g004
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Supporting Information

Figure S1 2D map of all the proteins identified in the
analysis of total membrane. MAProMa software plots all the

proteins according to the theoretical pI and MW. A color/shape

code is assigned to each protein according to relative SC value.

Proteins with SC$35 are reported as red/circle, proteins with

SC,35 and .15 are reported as blue/square, and proteins with

SC#15 are reported as yellow/triangle code. The dashed box

indicates the typical pI and MW ranges for 2-DE.

(TIF)

Figure S2 AcrB protein abundance upon LptC deple-
tion. PS201 (asmA-SPA lptC+) and PS202 (asmA-SPA araBp-lptC)

cells were grown with or without arabinose. Extracts of total

membrane proteins prepared as described in Material and

Methods were analysed by immunoblotting using anti-AcrB anti-

LptC antibodies. An IM 55-kDa protein was used as loading

control. 10mg of proteins were loaded in each lane. wt, PS201;

LptC+, PS202 grown under permissive condition (0,2% arabi-

nose); LptC-depleted, PS202 grown under non permissive

condition (without arabinose). The asterisk (*) indicates a band

cross reacting with anti-AcrB antibodies.

(TIF)

Figure S3 Localization of proteins identified in hIM.
(TIF)

Table S1 List of proteins identified in AM604, FL905+A
and FL905-A (total membrane, inner membrane, outer
membrane, heavy inner membrane (hIM)).

(XLS)

Table S2 Proteins identified by comparative analysis of
the cell envelope proteome of FL905+A versus FL905–A
cells.

(XLSX)

Table S3 List of proteins identified in the heavy inner
membrane (hIM) of FL905–A.

(XLSX)
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