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Abstract  

In a context of increasing food demand and increasing risk of water scarcity, 

irrigated rice systems are receiving a specific attention because of the role of rice in 

food nutrition and because of the relevant share of water withdrawals required by 

rice farming. More than 75% of the global rice supply is in fact produced in lowland 

irrigated areas, which in turn require around 40% of the global water used for 

irrigation.  

Given this background (Chapter 1), the Thesis investigates the role of water 

management in irrigated rice system, in response to the compelling pressures on 

farmers to maximise crop production while reducing the amount of water used for 

irrigation purposes. Three interlinked focus areas have been evaluated: (i) the role of 

monitoring techniques in improving knowledge on processes driving water use in 

rice systems, (ii) field-scale evaluation of the performance of different water regimes, 

(iii) effects induced by a large adoption of water saving technologies on the irrigation 

requirements at the district scale. 

First, a prototype of an innovative integrated multi-sensor system was developed in 

order to monitor water dynamics in paddy fields under different water regimes. 

Several monitoring devices were effectively used in an combined way, enabling to 

measure different processes with a high temporal resolution (Chapter 2). In addition 

to on-ground devices, the opportunity offered by the use of remote sensed data to 

capture the spatio-temporal evolution of crop growth and study crop-related 

processes was investigated (Chapter 3).  

Focussing on the field scale (Chapter 4), water balances and water use indices of 

three rice water managements were compared: water seeding-continuous flooding 

(“traditional” practice) and two alternative regimes being dry seeding-delayed 

flooding and dry seeding-intermittent irrigation. If delayed flooding determined 

average yield reductions by 3% against a decrease of water applications by 20%, 

the 65% reduction of water applications in intermittent irrigated rice was 

counterbalanced by yield losses close to 30%. Therefore, in spite of intermittent 

irrigation achieving the highest water productivity, the economic practicality of the 

method could be questioned. Moreover, the irrigation requirements of the flooded 

treatments were found to vary significantly between years, with variations by 40% to 

50% (mostly occurred in the first part of the season). Taking as a reference the 

traditional flooding regime, irrigation requirements halved from 3,000 mm in the first 

season to 1,500 mm in the subsequent one. Variations were statically validated and 

they were attributed to a combination of abiotic and biotic factors including 

groundwater levels at the beginning of the season and soil-related aspects.  

Then, the extent of reductions in irrigation requirements when replacing traditional 

flooding with intermittent irrigation was investigated at the scale of an irrigation 

district (Chapter 5). Water requirements of the different crops (flooded rice, irrigated 

maize and irrigated poplars) were investigated over a 4-year period by the 

application of a distributed modelling approach (use of the SWAP model) and water 



 
 

balance equations. An empirical relationship between groundwater recharge 

(provided by percolation from irrigated fields) and the groundwater levels was thus 

identified. For the scenario of intermittent irrigated rice, a particular attention was 

paid to the role of the feedback between groundwater levels and irrigation 

applications. The importance of feedback effects was highlighted by developing a 

case study where groundwater is assumed invariant from the present state (no 

feedback) and a case study where the estimated irrigation requirements are 

congruent with the “new” equilibrium state between groundwater levels and 

groundwater recharge. According to the estimates of the scenarios, irrigation 

withdrawals of the district decreased by around 65% when the feedback mechanism 

was neglected, while a reduction by 45% was observed when the feedback was 

accounted for. However, maintaining a 15-days turn for maize irrigation, like in the 

present state, was found to be inadequate for the full satisfaction of maize water 

requirements due to the decrease in the groundwater levels. Shortening the 

irrigation turn of maize to 10 days instead of 15 further decreased the estimate of the 

savings achievable with flush irrigated rice (reduction of irrigation requirements 

equal to 40%).  

In addition to implications on water balance terms, a specific attention was paid on 

the dynamics of dissolved organic carbon in relation to the water regime. Results of 

the study highlighted a strong link between the cycling of dissolved organic carbon 

and the reducing soil conditions resulting from field flooding (Chapter 6).  

Finally, the role of shallow groundwater table on the reduction of the irrigation 

requirements of lowland crops under intermittent irrigation was quantified via 

modelling simulations. Results showed a contribution of capillary rise up to 50% of 

the amount of water evapotranspirated by the crop (Chapter 7). 

In spite of the tendency to seek for general and global solutions, the research 

activities presented in the Thesis highlighted the difficulty to provide a univocal 

response to the question as to whether reductions of water consumptions in rice 

paddies should really represent the target to be reached regardless the specific 

context (Chapter 8). 
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Sommario 

La crescita della domanda mondiale di cibo e l’aumentata incidenza di situazioni di 

carenza idrica ha notevolmente accentuato l’attenzione sulla risicoltura, data la sua 

importanza per la nutrizione umana e il suo contributo ai prelievi idrici per fini irrigui. 

Più del 75% della produzione mondiale di riso ha infatti luogo in risaie irrigate che 

utilizzano circa il 40% dell’acqua destinata al settore agricolo. 

Alla luce di questo contesto (descritto nel Capitolo 1), la Tesi si pone l’obiettivo di 

valutare diverse tecniche di gestione dell’acqua in risaia come risposta alle crescenti 

pressioni sugli agricoltori che sono chiamati a massimizzare le  produzioni, 

riducendo al contempo i volumi irrigui apportati. Il lavoro è articolato su tre principali 

aree di indagine tra loro interconnesse: (i) ruolo delle tecniche di monitoraggio nel 

favorire l’analisi dei fattori che determinano l’efficienza d’uso dell’acqua; (ii) 

valutazione di diverse strategie irrigue alla scala di risaia; (iii) studio delle variazioni 

dei fabbisogni irrigui distrettuali laddove la sommersione tradizionale fosse sostituita 

da tecniche di risparmio idrico su larga scala. 

Per quanto concerne il primo punto, l’attività di Tesi ha contribuito allo sviluppo del 

prototipo di un innovativo sistema per il monitoraggio delle dinamiche dell’acqua in 

camere di risaia soggette a diverse tecniche irrigue. Svariati sensori sono stati 

utilizzati in maniera integrata permettendo la misura di diversi processi con alta 

risoluzione temporale (Capitolo 2). In aggiunta alle tecniche di monitoraggio a terra, 

è stata valutata la possibilità di impiego di dati da satellite per la valutazione dello 

sviluppo della vegetazione nel tempo e nello spazio, informazione necessaria per lo 

studio di processi legati allo sviluppo vegetativo (Capitolo 3). 

Alla scala di campo sono stati valutati i bilanci idrici e gli  indici di uso dell’acqua di 

tre diverse tecniche di gestione: semina in acqua e sommersione continua (pratica 

tradizionale), e due tecniche alternative che consistono nella semina interrata e 

sommersione ritardata e semina interrata e irrigazione intermittente. Se, da un alto, 

la sommersione ritardata ha determinato riduzioni del raccolto del 3% a fronte di 

risparmi idrici del 20%, l’irrigazione intermittente ha visto riduzioni del raccolto pari a 

circa il 30% come contraltare a risparmi idrici dell’ordine del 65%. I valori più alti per 

quanto riguarda l’indice di produttività dell’acqua sono stati ottenuti con riso irrigato 

ad intermittenza, tuttavia la sua sostenibilità economica sarebbe da valutare 

attentamente, date le significative perdite di raccolto osservate. Inoltre, è stata 

riscontrata una significativa variabilità nei fabbisogni irrigui dei trattamenti in 

sommersione, i quali hanno subito variazioni comprese tra il 40% e il 50% da un 

anno al successivo (variazione concentrate soprattutto all’inizio della stagione). 

Prendendo come riferimento la sommersione tradizionale, si è riscontrato un 

dimezzamento dei volumi irrigui necessari che sono passati da circa 3000 mm a 

1500 mm. Tali variazioni sono state avvalorate da un’analisi statistica e sono state 

attribuite alla combinazione di diversi fattori quali la profondità di falda all’inizio della 

stagione e modificazioni a livello delle proprietà e della struttura del suolo.  



 
 

Successivamente, il potenziale risparmio idrico conseguente ad un abbandono della 

tecnica di sommersione è stato valutato alla scala di distretto irriguo (Capitolo 5). I 

fabbisogni irrigui delle diverse colture del distretto (riso sommerso, mais irriguo e 

pioppo irriguo) sono stati stimati lungo un periodo di 4 anni grazie all’applicazione, in 

maniera distribuita, del modello idrologico SWAP e all’uso di equazioni di bilancio di 

massa. Successivamente, è stata individuata una relazione empirica che lega la 

soggiacenza alla ricarica di falda (data dall’acqua di percolazione dei campi irrigati). 

Per lo scenario di conversione a riso irrigato, si è prestata particolare attenzione al 

meccanismo di feedback che lega il livello di falda ai volumi irrigui necessari. 

L’importanza di questo legame è stata messa in luce attraverso lo sviluppo di due 

casi di studio. Nel primo caso, il feedback è stato trascurato e la stima dei fabbisogni 

irrigui è fatta sulla base degli attuali livelli di falda. Nel secondo caso invece, la stima 

devi volumi irrigui necessari è fatta in funzione dall’equilibrio soggiacenza-ricarica 

che verrebbe ad instaurarsi a seguito di una consistente variazione delle pratiche 

irrigue. Nello scenario senza feedback sono state stimate riduzioni dei fabbisogni 

irrigui dopo una conversione delle tecniche irrigue pari al 65%. Tali riduzioni sono 

state invece del 45% quando il meccanismo di feedback è stato considerato 

nell’analisi. Tuttavia il mantenimento di un turno irriguo per il mais di 15 giorni si è 

rivelato non sufficiente per il soddisfacimento dei fabbisogni idrici della coltura a 

causa dell’aumentata soggiacenza. Accorciare il turno irriguo del mais a 10 giorni ha 

determinato un’ulteriore riduzione dei risparmi ottenibili con una completa 

conversione a riso irrigato ad intermittenza (riduzione dei fabbisogni irrigui 

distrettuali pari al 40%). 

Oltre ad aspetti strettamente legati ai volumi idrici, sono state inoltre investigate le 

dinamiche del carbonio organico disciolto in funzione delle diverse tecniche di 

gestione dell’acqua (Capitolo 6). Lo studio ha evidenziato un legame molto forte tra 

il ciclo del carbonio organico disciolto e le condizioni riducenti indotte dalla continua 

saturazione del suolo. 

Infine è stato sviluppato un caso di studio per quantificare il ruolo della falda nella 

riduzione dei fabbisogni irrigui di colture irrigate ad intermittenza come il mais. I 

risultati hanno evidenziato un contributo della risalita capillare pari a circa il 50% del 

volume evapotraspirato dalla coltura in aree con bassa soggicanza di falda (Capitolo 

7). 

In conclusione, nonostante la tendenza a voler proporre soluzioni di carattere 

generale al problema dell’efficienza d’uso dell’acqua in agricoltura, le attività di 

ricerca proposte nella seguente Tesi hanno messo in luce come sia difficile stabilire 

se il risparmio idrico sia effettivamente un obiettivo da perseguire in qualsiasi 

contesto produttivo (Capitolo 8).  

 

Parole chiave: Risaia; Tecniche di risparmio idrico; Monitoraggio; Bilanci idrici; 

Profondità di falda; modello idrologico SWAP  
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CHAPTER 1 

General introduction 

The Thesis investigates the role of water management in irrigated rice 

systems, in response to the compelling pressures on farmers to maximise 

crop production while reducing the amount of water used for irrigation 

purposes. Indeed, in a context of increasing food demand and increasing 

risk of water scarcity, the call appears certainly legitimate and 

unquestionable. In this framework, rice is probably the most targeted crop for 

several reasons relating to both its importance as a food crop and to its 

share of water withdrawals.  

Rice is cultivated on surface of 165 million ha that feeds almost half of 

humanity, with a global production of unmilled rice of around 750 million 

tonnes (FAOSTAT, 2013). According to some scenarios (e.g. Timmer et al., 

2010), a general decline in rice demand may occur by 2050, especially in 

Asia and the Middle East; while an increase is expected in the African 

countries. There is, however, a high degree of uncertainty relating to these 

projections, since future rice consumption will depend on different factors 

such as the population growth, the income growth and its distribution, and 

the urbanization of the population (Timmer et al., 2010). In spite of these 

scenarios, many studies stress the importance of increasing rice productions 

in order to provide sufficient and affordable food for a growing population 

and to alleviate rural and urban poverty (Bouman et al., 2007c). However, 

even maintaining the existing levels of rice productivity in light of the 

increasing incidence of local water scarcity could become a challenge.  

The other reason driving the specific focus on rice systems is related to its 

peculiar link with water resources. Cultivated rice evolved from a 

semiaquatic perennial ancestor and, due to this origins, the crop presents 

morphological and physiological characteristics that differ from those of the 

other cereals (Lafitte and Bennett 2002). Consequently, rice is grown under 
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flooding conditions in many rice-growing countries because most of varieties 

maintain a better growth and produce higher grain yields when grown in a 

flooded soil compared to non-flooded soil (De Datta, 1981). Indeed, lowland 

irrigated rice provides more than 75% of the global rice supply (Maclean et 

al., 2002), but such productions are achieved “at the expense” of  water 

withdrawals amounting to 40% of the global water used for irrigation 

(Bouman et al., 2007c). In light of these statistics, improving water use 

efficiency and water productivity of rice systems has become an imperative, 

which is even more compelling considering the fact that the irrigated rice 

areas that will be suffering some degree of water scarcity are estimated to 

increase significantly by 2025 (Tuong and Bouman, 2003). 

Many authors have advocated improvements in water use efficiency and 

water productivity to such an extent that these two concepts are now widely 

used in most of the literature concerning water management in agriculture. 

In general terms, these concepts refer to ratios between a productive output 

such as evapotranspiration, grain yield or crop value, over a selected 

amount of water that is consumed or applied for the growing process. A 

univocal and more precise definition is hindered by the use of these 

indicators in different research fields, going from crop physiology to irrigation 

science and water management. Regardless specific uses, some authors 

agree that talking about either water use efficiency or water productivity can 

be reductive or lead to erroneous conclusions when the original domain of 

analysis is extended or a wider perspective is adopted (e.g. Perry 2007, van 

Halsema and Vincent, 2012, Heydary, 2014, Zoeble, 2006). In fact, these 

indices are generally not robust to changes in the spatial or temporal domain 

of analysis, with the consequence that any extension of results to different 

scales may bring to biased conclusions. Moreover, even though these 

indices seem to facilitate the comparison between different realities, they 

actually convey little information on the overall efficiency of the productive 

system with respect to all the productive factors. An interesting reflection on 

the matter is found in Zoeble et al. (2006), who reports the following 
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questions: “What is the value of a high yield per unit water use in a region or 

season where rain or irrigation water is not scarce? Is it advisable or wise to 

increase this water productivity in situations where a higher productivity of 

one category of desired outputs (crop yields) goes at the expense of another 

one (water table)”? In our opinion, the quote wisely highlights the need for 

evaluating the performance of agricultural systems with a wider perspective, 

going beyond a mere ratio between crop production and water inputs applied 

to achieve such production.  

This kind of approach is even more important when the focus is on rice 

systems, since the continuous presence of ponded water for most of the 

crop cycle performs relevant functions that cannot be valued if the attention 

is just on a balance between mass of grain yield per unit volume of applied 

water. In fact, continuous submergence of rice fields has relevant impacts on 

the hydrology of an area, on the environment, as well as on biodiversity, 

landscape and culture. Impacts can be either positive or negative. Positive 

functions are related to the recharge of groundwater systems by percolation 

from flooded rice fields; to the removal of nitrogen and phosphorus from 

paddy water; to the reduction of soil erosion, to the removal of salts from 

soils with a good drainage; to the mitigation of air temperature; to the 

sustainment of biodiversity; and to the maintenance of a unique and 

characteristic landscape (Bouman et al., 2007c, Bouman et al., 2007b, Kim 

et al., 2006). On the other hand, rice cultivation is an important source of 

atmospheric methane and of nitrous oxide. Moreover, biocides or their 

residues may be directly transferred to open water bodies through drainage 

water, with consequent negative impacts on the environment (Bouman et al., 

2007c; Bouman et al, 2007b; Kim et al 2006).   

Concluding, the need to investigate the sustainability of flooded rice systems 

is compelling for many reasons relating to the complex interactions between 

this agro-ecosystem and factors such as nutrition, economy, water 

resources, and the environment. In spite of the tendency to seek for simple 

and generalized solutions based on water use indicators, the Thesis 
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addresses the matter with a wider perspective that encompasses field 

experiments and scenario analysis, local and district scales, monitoring 

techniques and modelling tools.  

1.1 Research objectives 

Specific objectives of the Thesis are  

I. Develop and apply monitoring setups to investigate water dynamics 

and water productivity of rice systems. Use of in-field measurements 

and remote-sensed data depending on the domain under 

investigation. 

II. Compare water balances, water use efficiencies and water 

productivities of rice under different water regimes including 

traditional flooding and less water-demanding practices (i.e. delayed 

flooding and intermittent irrigation). Highlight the effects of 

environmental factors on seasonal water requirements and on water 

use indices of rice considering the field as spatial domain. 

III. Investigate the changes on water withdrawals at the district scale if 

traditional flooding of rice is replaced by a less water-demanding 

regime like intermittent irrigation. A specific attention is paid to the 

link between the irrigation supplies and the groundwater levels and to 

the feedbacks between the two. 

IV. Study the cycling of organic carbon at the field scale in response to 

different water regimes, including traditional flooding, delayed 

flooding and intermittent irrigation.  

 

Another sub-objective the Thesis aims to pursue that is related to the 

objective number III. is: 

V. Analyse, through modelling and simulation, the role of shallow 

groundwater table on the reduction of the irrigation requirements of 

lowland crops under intermittent irrigation. 
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1.2 Thesis outline 

The Thesis consists of a general introduction (Chapter 1) four research 

papers (Chapter 2, 4, 5 and 6), two contributions in the form of either a 

technical note (Chapter 3) or a conference paper (Chapter 7) and a general 

discussion with conclusive remarks (Chapter 8). Each chapter focuses on a 

specific objective presented in the previous section, apart from Chapter 2 

and 3, both focussing on objective I. 

Chapter 2 (Environ Monit Assess 2015, 187:586) presents the prototype of 

an integrated, multi-sensor system for the continuous monitoring of water 

dynamics in rice fields under different irrigation regimes. The system was 

successfully applied over a two-year period in three experimental rice fields 

in Northern Italy where different water regimes were compared. Information 

relating to the different instruments selected, their inter-connections, and 

their integration in a common remote control scheme are presented, along 

with considerations on material and labour costs of the installation. 

Chapter 3 (Technical note, in preparation) describes the first season of a rice 

project investigating drivers of yield variability in Australian rice farming. The 

potentialities of integrating on-ground monitoring with remote sensing are 

underlined by showing preliminary results concerning spatial variation of 

water temperature (measured by in-field sensors), crop development in 

terms of evolution of Normalized Difference Vegetation Index (from remote 

sensed data) and final grain yield (from monitoring devices on the 

harvester).  

Chapter 4 (Irrigation Sci, submitted) details results of the monitoring activity 

described in Chapter 2. It focuses on water use aspects with the aim to 

compare water balance terms, water use efficiencies and water 

productivities of the different regimes and to discuss inter-annual variations 

of paddy irrigation requirements due to environmental factors. A statistical 

analysis of percolation fluxes of flooded treatments was conducted in order 
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to validate results of the water balance and to provide insights into the 

subsurface water dynamics. 

Chapter 5 (Agr Water Manage, under review) describes a scenario analysis 

investigating the impacts on irrigation requirements induced by a shift from 

continuous flooding to flush irrigation in a rice-growing district of Northern 

Italy characterised by a shallow water table. A three-stage procedure was 

applied comprising the following steps: i) analysis of water use in the present 

state by using the SWAP (Soil, Water, Atmosphere, Plant) model to simulate 

irrigation applications, soil waster dynamics and percolation fluxes; ii) 

calibration of an empirical relationship between estimated percolation fluxes 

and measured groundwater levels; iii) prediction of the district irrigation 

requirements in the scenario of flush irrigated rice by applying the SWAP 

model and the relationship previously calibrated to identify the new 

equilibrium between percolation and groundwater levels. 

Chapter 6 (Plant Soil, accepted) evaluates the trends in dissolved organic 

carbon (DOC) concentrations, composition and fluxes in paddy soil solution, 

water supply and drainage canals during rice cropping season. It identifies 

the main mechanisms and drivers that link soil solution DOC cycling to the 

input of organic carbon to subsoils, export to surface waters and methane 

emissions as a function of different water management practices. 

Chapter 7 (Journal of Agricultural Engineering, 2013) provides an estimate 

of the capillary fluxes in an experimental case characterized by a shallow 

groundwater table, in order to quantify their contribution to the satisfaction of 

the water requirements of a lowland crop (maize) under intermittent 

irrigation. For this purpose, the hydrological SWAP model was implemented 

using detailed monitoring data collected in field. The calibration of the 

effective saturated hydraulic conductivities along the soil profile was 

achieved by coupling the SWAP model with an optimization algorithm, 
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named SCEM-UA that is extremely effective in identifying the optimal 

parameter values of non-linear systems.  

Finally, in Chapter 8 (Summary and conclusions) the main findings of the 

research are summarized and discussed with a focus on future 

developments as well. 
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CHAPTER 2 

An integrated, multisensor system for the continuous monitoring of 

water dynamics in rice fields under different irrigation regimes1 

E.A. Chiaradiaa, A. Facchia, D. Masseronia, D. Ferraria, G.B. Bischettia, O. 
Gharsallaha, S. Cesari de Mariaa, M. Rienznera, E. Naldia, M. Romanib,  

C. Gandolfia 
a
 Department of Agricultural and Environmental Sciences (DiSAA), Universitá degli Studi di 

 Milano, 20133 Milan, Italy 
b
 Centro Ricerche sul Riso, Ente Nazionale Risi (ENR), 27030 Castello d’Agogna (PV), Italy 

 

Abstract 

The cultivation of rice, one of the most important staple crops worldwide, has very 
high water requirements. A variety of irrigation practices are applied, whose pros 
and cons, both in terms of water productivity and of their effects on the environment, 
are not completely understood yet. The continuous monitoring of irrigation and 
rainfall inputs, as well as of soil water dynamics, is a very important factor in the 
analysis of these practices. At the same time, however, it represents a challenging 
and costly task because of the complexity of the processes involved, of the 
difference in nature and magnitude of the driving variables and of the high variety of 
field conditions. 
In this paper we present the prototype of an integrated, multi-sensor system for the 
continuous monitoring of water dynamics in rice fields under different irrigation 
regimes. The system consists of: 1) flow measurement devices for the monitoring of 
irrigation supply and tailwater drainage, 2) piezometers for groundwater level 
monitoring, 3) level gauges for monitoring the flooding depth, 4) multi-level 
tensiometers and moisture sensors clusters to monitor soil water status and 5) eddy 
covariance station for the estimation of evapotranspiration fluxes, 6) wireless 
transmission devices and software interface for data transfer, storage and control 
from remote computer. 
The system is modular and it is replicable in different field conditions. It was 
successfully applied over a two year period in three experimental plots in Northern 
Italy each one with a different water management strategy. In the paper, we present 
information concerning the different instruments selected, their inter-connections, 
and their integration in a common remote control scheme. We also provide 
considerations and figures on the material and labour costs of the installation and 
management of the system. 
 

Keywords Water fluxes; Rice; Monitoring; Water balance; Instrumentation 

                                                                 
 

 

1 Environ Monit Assess (2015) 187:586 
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1 INTRODUCTION 

The cultivation of rice, one of the most important staple crops worldwide, is 

undeniably characterized by high water requirements. In many areas of the 

world, rice is traditionally grown in bounded fields that are kept flooded from 

crop establishment to close to harvest by maintaining a ponded water depth 

of about 5-10 cm (Bouman et al., 2007b). Owing to this particularly 

demanding water management and to the large harvested area, it is 

estimated that irrigated rice receives about 40% of the total water globally 

used for irrigation purposes (Bouman et al., 2007b), and that the total 

seasonal water input to irrigated rice (rainfall plus irrigation) can be up to 2-3 

times more than for other cereals, like wheat or maize (Tuong et al., 2005). 

Seepage and percolation are the main responsible for the low water use 

efficiency of flooded rice since they are estimated to account altogether for 

about 25-50% of all water inputs in heavy soils with a groundwater table 

within 50 cm from the soil surface (Cabangon et al., 2004; Dong et al., 

2004), but they can reach a percentage of 80% in coarse-textured soils with 

a groundwater table of 1.5 m or more (Sharma et al., 2002; Singh et al., 

2002). As a consequence, new approaches known as “Water Saving 

Technologies” are being investigated in order to exploit the opportunity of 

reducing the water amounts required by traditional rice cropping systems 

(e.g. Tabbal et al., 2002; Belder et al., 2007; Bouman et al., 2007a; 

Govindarajan et al., 2008; Dunn and Gaydon, 2011; Sudhir-Yadav et al., 

2011). However, few studies have been carried out in Europe, where soil 

types, climate conditions and, mostly, rice cultivation practices are different 

from those adopted in Asian countries (e.g., no soil puddling to reduce water 

percolation is usually conducted). Obtaining reliable site-specific data on 

water efficiencies at the field scale under different irrigation treatments is 

crucial to address the planning and management of irrigation in rice areas. 

Besides the assessment of water consumptions, the monitoring of water 

fluxes in rice fields is crucial also for the analysis and the solution of a variety 
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of different problems related to water pollution (e.g. Vu et al., 2005; Jang et 

al., 2012), crop productivity (e.g. Cabangon et al., 2002; Bouman et al., 

2005; Xiaoguang et al., 2005), gas emissions (e.g. Yagi et al., 1996; Alberto 

et al., 2014) and ecosystems conservation (e.g. Natuhara, 2013 for a 

general review). 

In order to compute the water use efficiency, the different terms of the water 

balance must be measured or estimated. Generally, researchers use 

different approaches and methods for monitoring water fluxes, according to 

research objectives, specific field characteristics and water management 

strategy, and resources availability. In some cases, the monitoring activity 

concerns only some of the water fluxes (Alberto et al., 2014; Bethune et al., 

2001; Chen and Liu, 2002; de Silva and Rushton, 2008; Thakur et al., 2014) 

and/or is carried out for a limited interval of time during the agricultural 

season (Chen and Liu, 2002). In the literature, therefore, no unique way for 

water fluxes monitoring can be found and it is recognised that this is still a 

difficult task (Feng et al., 2007). 

Designing, implementing and managing a system for the continuous 

monitoring of water fluxes in rice fields under different water management 

strategies over the entire crop season is therefore a challenge and the 

present paper aims at contributing to fill this gap. In the paper we present an 

innovative prototypal system for water fluxes monitoring, specifically 

designed for rice fields under flooded and non-flooded conditions. In 

particular, we use the experience gained in a pilot study implementation of 

the system to provide information concerning the different sensors and 

devices selected, their connection, their field installation and their use in an 

integrated, remotely controlled system. Considerations on the material and 

labour costs of the entire installation are also included. 
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2 WATER FLUXES IN IRRIGATED RICE FIELDS 

Water fluxes in irrigated rice fields depend on the type of water management 

strategy that is adopted. Three of the strategies that are currently most 

widely used worldwide are: 

i) Water seeding, continuous FLooding (WFL): the rice field is submerged 

immediately after tillage operations; seeding is made directly in water, which 

is maintained for the whole crop cycle except for brief periods to allow 

treatments with herbicides or fertilizers; 

ii) Dry seeding and delayed FLooding (DFL): seeding is made before 

flooding, which takes place approximately when rice is around the 3-leaf 

stage; water management is then similar to WFL; iii) Dry seeding and 

intermittent IRrigation (DIR): no flooding takes place; the field is irrigated 

intermittently, either by border or sprinkler irrigation; this strategy is known 

as “aerobic rice” cultivation. Figure 1 provides a schematic representation of 

water fluxes in rice fields under flooded and non-flooded conditions. Overall, 

the main fluxes are: irrigation supply and tailwater drainage, direct 

precipitation and evapotranspiration, percolation and capillary rise. Seepage 

through bunds may be also relevant for WFL and DFL when a hydraulic 

difference exists between the water levels in adjacent fields. Only few of 

these fluxes can be measured directly - namely precipitation, irrigation 

supply and tailwater drainage – and even these few not without difficulties. 

The direct measurement of evapotranspiration and percolation is practically 

unfeasible, due to the spatially distributed nature of these fluxes and to the 

high variability of factors that determine their intensity. An estimate of 

evapotranspiration can be obtained indirectly, by measuring other related 

variables and applying suitable modelling tools to derive the unknown 

evapotranspiration value. Typically, Penman-Monteith type models (e.g. 

Bouman et al., 2005) or eddy-covariance approaches (e.g. Alberto et al., 

2011) are applied. In the first case, the variables that need to be measured 

refer to meteorological conditions (solar radiation, air temperature and 



 Multisensor monitoring system 

13 
 

humidity) and to the soil-crop system (soil heat flux and crop development 

stage). Eddy covariance approaches have been developed in the last 

decade, since high frequency sonic anemometers and gas-analysers 

became available for field applications. Evapotranspiration fluxes are derived 

from the direct measurement of 3D wind velocity components and of air 

humidity at frequencies of approximately 50 Hz, using simplified equations of 

eddy dynamics over the canopy (e.g. Alberto et al., 2011). 

Similar to evapotranspiration, estimates of the local percolation fluxes can be 

obtained by applying suitable mathematical models, usually based on 

Richards’ equation, to derive the percolation beneath the root zone. The 

application of these models requires the direct measurement of the upper 

boundary conditions (irrigation and precipitation inputs for DIR and water 

level for WFL and DFL) and of the lower ones (depth to the groundwater), 

along with an hydraulic characterization of the soil. This last is generally 

achieved through either a combination of direct measurements and indirect 

estimates, or inverse modelling, starting from the measurement of soil 

hydraulic variables as soil water content and potential. Given the high spatial 

variability of soil characteristics, several soil profiles generally need to be 

instrumented and monitored in order to capture the differences in soil water 

dynamics across the field, the number of profiles increasing with the degree 

of soil variability and with the size of the field. In summary, therefore, a 

system for the detailed monitoring of the water dynamics in rice fields needs 

to include a variety of different instruments, distributed over the entire 

extension of the monitored field, with very different sampling intervals (from 

intervals of the order of 10-1 s for the eddy covariance variables, to ones of 

the order of 103 s for saturated soil depth), and with a very high requirement 

of periodic inspections. 
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Figure1: Water fluxes and storages in flooded (on the left) and aerobic (on the right) 
rice fields 

3 SUMMARY OF THE PILOT SITE CHARACTERISTICS 

We realized a prototype version of integrated system for monitoring water 

fluxes in irrigated rice fields at the experimental station of the Italian rice 

research centre (Ente Nazionale Risi, ENR), located in Northern Italy 

(Castello d’Agogna, 45° 14’ 56.6’’ N, 8° 41’ 59.9’’ E, 108 m a.s.l., see Figure 

2). The system was designed for measuring all the relevant flux variables in 

three out of six experimental fields, where the three water regimes 

mentioned in Section 2, namely WFL, DFL and DIR, were adopted. The 

system was fully operational over the agricultural seasons 2012 and 2013. 

The experimental station is at the heart of the largest rice production district 

in Europe. The local climate is a humid subtropical climate (Cfa) according to 

the Köppen climate classification (Köppen et al. 1936). Meteorological data 

have been regularly collected since the early nineties from the 

agrometeorological station placed at the ENR site, about 100 m from the 
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experimental fields. Historical measurements show that, during the 

agricultural season (April to September), the average temperature at the 

experimental site is about 20°C, while rainfall is around 360 mm, rather 

variable throughout the years (data for years 1993-2013). Air humidity is 

generally high and implies the presence of foggy conditions during the winter 

and hot and muggy days in summer (Masseroni et al., 2014). Average wind 

velocity is 2.1 m s-1. 

Six laser-levelled fields were selected for the experiments. Each of them was 

approximately 20 x 80 m2 in size and was delimited by earth bunds. Each 

water regime was applied in replicate to two adjacent fields. Irrigation supply 

was delivered by a concrete canal running along the East side of the fields, 

while outflows were collected by an earth canal at the opposite side. Figure 

3 shows the layout of the pilot site and the location of the various 

instruments, which will be described in detail in the next section. 

Available soil maps show that soils at the station are predominantly Ultic 

Hapludalfs coarse loamy over sandy, mixed, mesic (ERSAL, 1996), but a 

dedicated soil survey was carried out in March 2012 to assess the specific 

soil properties of the experimental fields. Six trenches were opened just 

outside of the experimental fields (to avoid disturbances within the fields) to 

allow the identification and description of the sequence of horizons. In 

addition, soil variability in the fields was evaluated by collecting a significant 

number of samples across the six fields with a Dutch auger. A total number 

of 112 points were investigated by collecting samples at three fixed depths 

from the auger bore in each point, so that each sample was taken from a 

different genetic horizon along the profile.  

Standard physical and chemical analysis were performed on soil profiles 

samples (Violante, 2000), whereas only textural analysis was determined on 

auger samples. Results of the soil survey showed that all the experimental 

fields have a surface horizon (Apg) that is largely similar since the 

agronomic practices (e.g. yearly irrigations, fertilizations and laser levelling) 

significantly reduced the spatial variation of soil characteristics.  
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Figure 2: Picture of the experimental area, located west of Milan. In the foreground 
the experimental fields, in the background the ENR offices were the remote control 
is placed 

This horizon is characterized by a loam to silty loam texture, with a clay 

content ranging from 15 to 23% (coarse to fine silty granulometric classes), 

by a complete lack of coarse fragments, by a soil bulk density of about 1.4-

1.5 kg m-3; an average value of pH(H2O) of 6.3, organic C of 9 g kg-1; N of 1 g 

kg-1; and CEC of 10 cmol(+) kg-1. Differently, sub-surface horizons show wider 

differences, mainly from a granulometric point of view, but also with respect 

to the organic carbon content and the genetic horizons sequence. Details 

about the soil texture classification are reported in Table 1, while Figure 3 
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shows a map of the distribution of the soil textures, mainly based on the 

characteristics of the deeper layer. 

During the two experimental years, the seeding date was staggered for the 

different irrigation treatments, to ensure that the crop maturity was reached, 

as far as possible, at the same time. The agricultural operations were 

carefully managed in order to keep them as similar as possible to the 

ordinary ones, but avoiding disturbance to the measurements or damages to 

the installed hardware. 

Table 1 - Average particle size distribution of each explored soil layer. Three soil 
units were found: S (Sand), SCL (Silty Clay Loam) and SL (Silty Loam). The most 
superficial soil layer was homogeneous as expressed by the standard deviation, SD, 
while differences existed between deeper layers. 

 
Layer 0-35 cm Layer 45-70 cm Layer 90-120 cm 

Soil Unit Sand Silt Clay Sand Silt Clay Sand Silt Clay 

  % % % % % % % % % 

S 35.8 46.9 17.3 65.4 28.1 6.6 89.2 7.5 3.4 

SCL 28.7 50.8 20.5 21.1 52.9 26.0 19.6 54.2 26.2 

SL 29.9 50.7 19.4 24.6 54.5 20.9 27.5 58.0 14.5 

Average 31.5 49.5 19.1 37.0 45.2 17.8 45.4 39.9 14.7 

SD 3.8 2.2 1.6 24.6 14.8 10.1 38.1 28.1 11.4 

 

4 CHARACTERISTICS OF THE PROTOTYPE MONITORING 

SYSTEM 

The integrated, multi-sensor system that was installed at the experimental 

site of Castello d’Agogna for the continuous monitoring of water dynamics in 

three rice fields under different irrigation regimes includes a variety of 

instruments and devices from various manufactures and with different 

hardware specifications. A total of 12 piezometric wells for groundwater 

depth measurements, 2 stilling wells for the measurement of the flooding 

depth, 6 devices for discharge measurements, 20 tensiometers, 4 soil 

moisture multi-level probes, 1 thermo-hygrometer, 1 four-components net 

radiometer, 1 pyrgeometer, 1 pyranometer, 3 soil heat flux plates, 6 soil 
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thermistors, and an eddy-covariance station were installed (see Table 2 for a 

complete list of the sensors and of their characteristics). 

Before entering into more details for the group of sensors that we selected 

for the monitoring of the different fluxes, it is worth underlining that digital 

devices, when available, should be preferred to analogical ones, because 

signal acquisition is less affected by local noises and, therefore, the length of 

cable connections is less limiting. In addition, digital devices support many 

hardware standards and communication protocols, which simplifies the 

connection of several of them to a single data logger. 

 

 

Figure 3: Scheme of the experimental installation, showing the position of the 
instruments and the soil type distribution. WFL, DFL and DIR are the three different 
irrigation treatments. Symbols: S = sand soils, SL = silty-loam soils, SCL = silty-clay 
loam. 
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4.1 Surface water fluxes 

Irrigation distribution to rice fields generally takes place through free-surface 

canals, but pressurized pipes are sometimes used as well. In this latter case, 

irrigation inflow to the field can be measured by industrial flow meters 

(Belder et al., 2004; Xiaoguang et al., 2005; Hirozumi Watanabe et al., 2007; 

Jang et al., 2012) or estimated considering the time spent for pumping, when 

pumping occurs (Xiaoguang et al., 2005). If irrigation is supplied by free-

surface canals, generally V-notch weirs or flumes are used (see e.g. 

Bouman et al., 2005). For WFL and DFL treatments, under specific 

conditions (namely when infiltration is negligible), the irrigation input can be 

derived from the variation of the flooding level (see e.g. Watanabe and 

Takagi, 2000). 

V-notches weirs and flumes are also used for measuring the tailwater 

drainage (Bouman et al., 2005; Watanabe et al., 2007; Antonopoulos, 2010; 

Jang et al., 2012). In particular, Bouman et al. (2005) used a single Parshall 

flume installed at the end of the main drainage channel (measuring in this 

way the total discharge outflowing from several plots), and Jung et al. (2012) 

used flow rates from each outlet and related them to the measured water 

levels inside the chambers, in order to control the surface water fluxes in a 

large rice district. 

Our choice was to measure the irrigation supply to each plot by portable 

RBC long throated flumes equipped with a level gauge. The advantages in 

using this kind of device are: 1) a good performance also with small 

upstream head values, that is one of the more severe constrains in plane 

territories, 2) the possibility to predict the hydraulic performance of flumes by 

a well-known theoretical approach, allowing an accurate design and sizing, 

3) a low level of uncertainty (less than 2%) for a relatively wide range of 

discharges, 4) little problems with sedimentation (Clemmens et al., 2001) 

and algae growth, that may severely reduce the performance of the flumes, 

5) the possibility to install and remove easily the devices, in order to allow 

the annual agricultural works. 
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A first problem in the design of RBC flumes is determining the range of 

discharges that needs to be measured, which is generally unknown a priori. 

In the case study of the experimental fields at Castello d’Agogna we 

considered that, according to the consortium that manages irrigation in the 

area, the average continuous water request for flooded rice paddies is of 

about to 5 l/s ha, while the irrigation depth of an application of flush irrigation 

is of between 100 and 150 mm. Consequently, the reference mean inflow to 

both the WFL and DFL fields for the RBC flumes design was set to 1 l/s. In 

the case of the DIR field, we calculated the design flow rate assuming that 

an irrigation depth of 100 mm must be applied in one hour time, which leads 

to a value of 30 l/s. The same design flow rate was considered suitable also 

for the outflows from the WFL and DFL fields, in order to ensure a rapid 

drainage of the fields when necessary to carry out specific farming 

operations (e.g. pest control, harvesting). 

The RBC flumes were built using a 1.26 m long metal sheet, trapezoidal-

shaped in section according to Clemmens et al. (2001) guidelines. In our 

case, channel base was 0.09 m large and walls inclined of 63.4°. The throat 

was obtained by a trapezoidal element placed at the bottom of the flume. A 

stilling well was connected by a PVC tube to the upstream section and two 

metal walls were placed to increase the handcraft stiffness. Discharge scale 

was calculated using the WinFlume software version num. 1.06.0004 

(www.usbr.gov/pmts/hydraulics_lab/winflume) and verified by volumetric 

sampling tests. In paddy fields, where the terrain is nearly horizontal, a 

particular attention must be given in positioning the base of the flumes with 

respect to the seedbed, to avoid backwater when fields are flooded. 

To measure tailwater discharge from the WFL and DFL fields, thin plate 

weirs were initially adopted. Weirs were installed on a metal box of 1.2 m 

length, 1.0 m width and 0.4 m height, equipped along the internal side with a 

woody gate to allow the regulation of the flooding depth in the paddy fields. 

A stilling well was placed in the middle of a lateral wall of the box. One of the 

problems in the weir design is the great variability of possible discharge 
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values, from the small ordinary outflows required to maintain the desired 

water level in the fields, to the much greater outflows involved when the 

rapid drying of the field is needed (e.g. for agricultural operations). We 

solved this problem by customizing a standard rectangular weir with a 

moveable V-shaped plate. The plate was kept in place for measuring the 

ordinary low discharges; when field drying occurred the plate was removed, 

allowing much larger discharges (up to 30 l/s) through the rectangular weir. 

For both the triangular and the rectangular weir, a specific stage-discharge 

relationship was developed and calibrated by volumetric tests. As RBC 

flumes worked very well and, on the contrary, weirs required a continuous 

maintenance due to algae formation and presented small practical problems 

in removing the V-shaped plate, in the second year we installed RBC flumes 

also at the plot discharge points. 

Both flumes and weirs were equipped with pressure transmitters for 

industrial applications (41X, Keller, USA; www.keller-druck.com) to measure 

the water level within the stilling wells. The sensors have a full scale (FS) of 

30 mbar (relative pressure), i.e. 30.6 cm of water, and an error of 0.1-0.2 % 

FS (i.e. <1 mm). Measures were recorded every 10 minutes and stored in a 

datalogger connected by cables. Sensors were initially installed vertically 

and then they were turned in a horizontal position, in order to avoid air 

bubbles formation when the stilling well dried. 

4.2 Soil water fluxes 

The monitoring of soil water fluxes was indirectly achieved through a 

combination of sensors for the measurement of the soil water content and 

potential at multiple depths in a number of profiles, of the water table depth 

in several field locations, and of the flooding depth in the paddy fields.  

Water table depth was monitored through piezometers made by windowed 

plastic tubes (see, e.g., Watanabe and Takagi, 2000; Cabangon et al., 2002; 

Xiaoguang et al., 2005; Bouman et al., 2005; Antonopoulos, 2010) installed 

at different depths. The piezometers were positioned along the bunds 
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dividing the paired plots with the same treatment (Figure 3). One issue when 

designing groundwater depth monitoring is that the range of fluctuations of 

the variable is often unknown, or very loosely known.  In the case of the 

Castello d’Agogna experiment we carried out a preliminary survey in the 

year before the experiment started, by installing three piezometric tubes 

instrumented with pressure transducers in order to explore the water table 

depth variability. The observations that were collected showed that water 

table depth reached a minimum of about 0.5 m during the irrigation period 

and then dropped to approximately 2 m at the end of the winter season. This 

information was crucial to designing the characteristics of the piezometers 

that were installed during the seasons 2012 and 2013. Six piezometers were 

installed at the upstream side and six more at the downstream side of the 

plots; these piezometers were 3 m long and windowed for 1.5 m of their 

length from the bottom. Moreover, at the midpoint of each bund, two 

piezometer with lengths of 3 and 1.5 m respectively and a 0.10 m windowed 

segment at the bottom of each tube were installed very close to each other. 

These piezometers were designed to measure the vertical hydraulic head 

difference in the saturated zone, in order to derive the vertical component of 

the groundwater flow. The piezometers were constructed by carefully 

inserting 1’’1/5 plastic tubes into suitable holes drilled using a manual auger. 

Each piezometer was equipped with a pressure transmitters (PR-46X, 

Keller, USA) with 100 mbar FS (1.02 m) and error less than 0.1% FS (1.02 

mm), connected to dataloggers by cables. 

Water level in paddy fields is generally measured at a single point, by 

sensors inserted in windowed tubes (Watanabe and Takagi, 2000; 

Watanabe et al., 2007) or sloping gauges (Khepar et al., 2000). We used 

two pressure transmitters (41X, Keller, USA) with FS equal to 30 mbar, 

placed in a vertical windowed tube (similar to those used for the piezometer), 

firmly fixed into the ground in a position near to the datalogger. Groundwater 

and flooding depths were recorded hourly. 
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Soil water content and potential are the two relevant variables when rice 

cultivation is in aerobic conditions. For soil water content monitoring, we 

used multiple sensor capacitance probes, capable of continuous 

measurements of soil moisture at different depths. These sensors exploit a 

technique known as FDR (Frequency Domain Reflectometry) by measuring 

the change in frequency response of the soil's capacitance, which depends 

on the soil water content. We used EnviroSCAN multilevel probes (Sentek 

Pty. Ltd., South Australia), that were placed at four depths: 10, 30, 50, 70 

cm. At the same depths, we placed 4 tensiometers, as close as possible to 

the FDR sensors, in order to measure the combined values of soil water 

content and potential (see Figure 3). 

Five soil water content and tensiometers groups were installed, as shown in 

Figure 3: three groups in the DIR plot to monitor each of the three main soil 

typologies, one in each of WFL and DFL plots to monitor the most 

widespread soil type in the parcel. Data were recorded every 10 minutes. 

4.3 Atmospheric water fluxes 

Evapotranspiration fluxes are generally estimated by the application of the 

Penman Monteith equation (Allen et al., 1998) from meteorological data 

(Jang et al., 2012) or by the installation of controlled volume box (i.e. 

lysimeters) of small dimensions (30-50 cm, Khepar et al., 2000; Watanabe 

and Takagi, 2000; Vu et al., 2005; Watanabe et al., 2007). Daily weather 

data, including rainfall, are commonly collected from local agro-

meteorological weather stations (Bouman et al., 2005; Xiaoguang et al., 

2005). Advanced micro meteorological stations (i.e. eddy covariance 

stations) have been recently introduced in field monitoring activities (Alberto 

et al., 2014). 

The instruments for agrometeorological monitoring are well known and 

widespread and we refer to standard hydrology textbooks for details. In our 

case, we obtained the timeseries of the values of the agrometeorological 

variables from the monitoring station of the Regional Environmental 
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Protection Agency (ARPA Lombardia), which has been operating right at the 

ENR site since the early nineties. The station includes a rain gauge, which 

provided the data for deriving the direct precipitation inputs to the three 

experimental plots. 

The eddy covariance tower was equipped with 1) a 3D sonic anemometer, 

2) an infrared gas analyser, 3) a four component net radiometer, 4) two heat 

flux plates, 5) four thermistors, 6) a thermohygrometer, 7) a pyrgeometer 

and a pyranometer. 

The 3D sonic anemometer (Young RM-81000, Campbell Scientific, USA) 

and the infrared gas analyser (LI-COR 7500, LICOR, USA) for the 

measurement of energy and gas (H2O, CO2) were held at one meter over 

the canopy along the whole monitoring time, by moving the device according 

to the vegetation growth. The sonic anemometer was mounted on the top of 

an adjustable pole thrust into the soil, while the gas analyser was fixed on an 

aluminium arm at the same height of the anemometer, but with a horizontal 

separation of about 30 cm and a tilt of about 30 degrees with respect to the 

vertical direction. 

The four-component net radiometer (CNR1, Kipp & Zonen, USA) was 

installed in the case of non-paddy cultivation, while a pyrgeometer and a 

pyranometer (CGR3 and CMP3, Kipp & Zonen, USA), mounted on an arm 

and oriented towards the ground, were installed for flooded fields. Downward 

solar radiation and longwave components, in fact, could be considered equal 

for paddy and non-paddy fields and the cost of instrumentation was slightly 

reduced. Also radiometers were kept at the height of one meter from the 

canopy by mobile devices. 

The heat flux plates (HFP01, Hukseflux, USA) were installed as a couple in 

the non-paddy fields, while a single plate was used in the paddy field, since 

a lower spatial variability of the flux was expected for this treatment. The 

heat flux plates were installed at 8 cm below the soil surface.  
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To calculate the ground heat flux at the soil surface, two thermistors (107L, 

Campbell Scientific, USA) were respectively installed at 2 and 6 cm near 

each soil heat plate.  

The thermohygrometer (HMP155A, Vaisala, USA) was installed at the height 

of 2 m from the ground, opportunely shielded to avoid direct solar radiation.  

Eddy covariance data (gas analyser and 3D sonic anemometers) were 

acquired at high frequency (10 Hz), all the other data with a time step of 30 

min. 

The acquisition spots were installed on the levees (Figure 5) which are about 

300 meters distant from the web connected PC, which was placed in the 

ENR building (Figure 2).  

A special attention was devoted to the positioning of the eddy covariance 

tower. As shown in Table 3, the cost of the station is very high and budget 

constraints may often restrict the possibility of installing multiple stations. 

One option is using a mobile tower, which, however, has some limitations 

due to the delicacy of the operation, the restrictions in the access to the 

fields and the labour requirements. Another option, which we investigated in 

our experiment, is to install the tower on the levee between two different 

fields. If the regime of winds does not show a largely predominant direction, 

this solution may provide a reasonable amount of well-characterized data for 

each of the two fields, without the need of moving the tower (see Masseroni 

et al., 2014). In our case, the tower was installed on the levee between the 

WFL and DFL treatments, as shown in Figure 3. 

4.4 Data acquisition and storage and power supply 

The monitoring system must be able to collect and store the data coming 

from all the sensors. This poses a number of technical problems in order to 

guarantee the accuracy of data transmission and the reliability of energy 

supply 

The layout of the cable connections of sensors to dataloggers, for example, 

must take into account the requirements of agricultural operations (that in 
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the case of paddy field are peculiar because of the use of tractors with iron 

gears that can damage the cables) and power supply must be guaranteed 

without interruption in any conditions. 

The number of dataloggers (which significantly affects the total cost of the 

system) depends primarily on the total number of installed sensors and on 

their position, but also on other factors. Such factors are the maximum 

allowed cable length to limit noise and voltage losses, the distribution of 

computational work required for data recording (in order to make these 

resources equally distributed between each device), the installation costs 

(dataloggers and cables are among the more expensive materials). 

In our system CR1000 Campbell Scientifics dataloggers, DL, were used as 

data acquisition and storage spots for different sensors. Each CR1000 DL, in 

fact, can manage up to 16 single-ended analog input channels, 2 pulse input 

and 8 digital ports. Moreover, among the supported protocols, there are 

Modbus, SDI-12 and SDM, which fit with those of the sensors. 

Figure 4 shows a typical configuration of the monitoring scheme where the 

CR1000 DL spot collects data from inflow and outflow devices, from three 

piezometers, from one soil water content and soil potential measuring group, 

and from the surface water level in the paddy field. 

Analogical sensors (see Table 2) were connected directly to DL ports in 

order to make distances as short as possible (less than 5 meters) to limit 

signal noise. 

As the CR1000 DL can manage RS232 standard connection only, a 

standard RS485 to RS232 converter was use to link the LAN enslaved to the 

transmitters to the datalogger digital ports. Soil moisture sensors (Sentek) 

were instead connected through a second local network directly to one 

digital port of the CR1000 DL by a common screened 3 x 0.25 conductors 

cable (C3025, Tasker) of maximum length of 54 meters. 

Each CR1000 DL was powered by a 12 V/ 12 Ah rechargeable sealed lead-

acid battery automatically recharged by a standard solar panel 

(CanadianSolar Mo. Type CS5F-14M) with a nominal maximum power of 
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14W through a 12 V charge controller (Steca Solsum 8.8F). All groups were 

protected by an industrial control panel enclosure (Stahlin). 

 

Figure 5: General scheme of sensors and devices connected to the CR5000 
datalogger 

In the case of the eddy covariance station, all sensors were linked to a 

CR5000 Campbell Scientific datalogger (Figure 5). Power was supplied by 

two 12 V/ 98 Ah lead batteries, recharged by a couple of solar panels 

 

Figure 4: General scheme of sensors and devices connected to the CR1000 
dataloggers. 
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(nominal power 100 W and 50W). Since, in our case the distance between 

the eddy station and the batteries was quite long (50 meters), a FG7 3 x 6 

mm conductors cable was used to transfer the required power. 

One group of sensors for soil water content and soil potential measure was 

installed in a standalone mode and sensors were connected to two 

dataloggers Watchdog 2000 series (Spectrum, 2009). 

4.5 Remote control and data analysis 

The possibility of remote control of the system and the availability of tools for 

the real time analysis of monitoring data are crucial to the success of the 

monitoring activity and to the reduction of the costs. 

The system control can be obtained in many different ways, from radio or 

mobile phone networks to satellites. Our choice was to establish a 

connection between the data collecting spots and a web access point. To 

avoid the problems associated to long cables (cost, signal quality, etc.), each 

datalogger (except for the two manually controlled, of course) was wirelessly 

connected through a RF416 radio (Campbell, 2011), to a RF432 radio 

(Campbell, 2011) installed on a local PC with access to the web. The radio is 

coupled with a 0 dBd, ¼ wave whip antenna (model num. 15730). 

Figure 6 shows the steps followed by the acquisition system and all the 

preliminary checks applied to the dataseries in order to prevent loss of that 

and rapidly take actions to resolve malfunctioning. 

The data storage process was programmed by the software LoggerNet 4.3.1 

(Campbell Scientific, Inc 2012) and the connection was automatically 

scheduled every day for data download. After any download, moreover, an 

automatic procedure produced a compressed backup file of the data that 

was sent via FTP to a remote storage device by a standard web network. 

From a local PC, a routine verified that the compressed file was correctly 

created and uploaded. Possibilities of error could be due to blackouts, 

hardware breakages or operating system error. 
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In case of failures, the system sent an error message to the maintainer. 

Otherwise, the process checked the state of the new timeseries. Checks 

were about: 1) the state of the batteries to prevent energy supplies 

drawbacks at each datalogger; 2) the lack of data in the timeserie (e.g. due 

to a probable error of communication between the local PC and dataloggers, 

or their malfunction) and 3) the presence of meaningless values due to 

communication errors between sensors and dataloggers or malfunctions of 

the sensors (e.g. exceeding of the full scale).  

 

Figure 6: Flowchart of the process of data acquisition, storage and checking from 
dataloggers to the central storage. The system performed a download of the data 
every days at 8.00 a.m.. Afterwards, the system uploaded raw data to the remote 
storage system. A chain of functions verified if the connection to the datalogger was 
successful and if error in the timeseries existed. In the negative case, the maintainer 
automatically received an email with warnings and error messages, otherwise a 
report was sent to a group of selected users to inform about the state of the 
monitored variables.  
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In case the control process finished successfully, the system sent an email 

with a report of the download data to the maintainer and a restricted group of 

users. In this way the operational status of the entire monitoring system was 

controlled every day with little effort and field trips to the experimental area 

were limited to what strictly necessary and, more important, the loss of data 

was reduced at minimum. 

Finally, to manage the huge quantity of data produced in the monitoring 

activity, a custom graphical software written in Java language and supported 

by SQLite database, was developed to provide a complete framework for 

database query and graphical visualization of timeseries, for post-acquisition 

data corrections and export in text file format. 

5 IMPLEMENTATION AND MANAGEMENT COSTS OF THE 

MONITORING SYSTEM 

In Table 3 the costs of instruments, devices and other materials required for 

installing the system are reported. More than 40% of the total cost (which 

amounts to approximately 70,000 euros) is ascribed to the gas fluxes 

monitoring devices (eddy covariance station), approximately 25% to the soil 

water status probes (soil water content and potential), 16% to data loggers 

and 12% to surface water fluxes and groundwater measurements. Data 

transmission, power supply and consumables required only few percentage 

points of the total investment. As it can be noted, gas flux monitoring 

represented a great part of the budget, but, in many cases, estimating 

evapotranspiration with a great accuracy may not be so relevant and the 

Pennman-Monteith equation applied by a standard meteorological station 

can be an adequate tool (Facchi et al., 2013a). On the other hand, power 

supply, which has negligible costs, represents a key point and money used 

to guarantee a robust power supply is really well spent. 

In terms of human effort, it was not easy carrying out an accurate estimate of 

the time devoted to the installation and management of the system, also 

because of the number and the variety of skills of the people involved in the 
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different activities (7 persons in both the agricultural seasons). In particular, 

it was impossible to trace exactly the time spent in the design phase of 

choosing the appropriate combination of instruments, and in the laboratory 

for programming the sensor and data loggers during the winter 2011-2012. A 

rough (possibly underestimated) evaluation of the field activities in 2012 is 

67 man-days: 29 for the system installation, 24 days for the management 

during the crop season, 14 days for removing the system to allow the field 

operations for the new agricultural season. In 2013, the time required for the 

installation was drastically reduced, approximately to half, because all the 

elements were available near to the fields and ready to be installed (e.g. 

cables were already available in corrugated tubes and with the right length).  

Table 3: Cost of instrument (in 2011 in Italy) and devices installed during the 
research activity. Entries in italics indicate that instruments and sensor were already 
available for the research. 

Material Individual Cost 

(€) 

Number Total Cost  

(€) 

Surface flow    

Keller pressure sensor  41X 310.00 8 2,480.00 

Material for RBC flumes and V-
noch weirs 

    1,138.51 

Total     3,618.51 

Soil water    

Keller pressure sensor PR-46X 300.00 12 3,600.00 

Piezometer wells     531.19 

USB-driver for Interface 
converter K-104 

80.00 1 80.00 

Additional cables     228.00 

Groundwater     4,439.19 

EnviroSCAN 2,400.00 5 12,000.00 

Tensiometers Irrometer with 
manometer (manual recording) 

150.00 20 3,000.00 

Pressure transducers for 
tensiometers 

350.00 2 700.00 
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Table 3: (Continued) 

Material Individual Cost 

(€) 

Number Total Cost  

(€) 

Pressure transducers 

for tensiometers 

392.00 4 1,568.00 

Total     17,268.00 

Eddy station 
   

3D sonic anemometer 7,500.00 1 7,500.00 

infrared gas analyser 18,120.00 1 18,120.00 

CGR 3 pyrgeometer 1,300.00 1 1,300.00 

CMP 3 pyranometer 760.00 1 760.00 

Heat flux plate HFP01 512.00 3 1,536.00 

Thermistors  53.00 6 318.00 

Total     29,534.00 

Data Logger    

CR1000 1,438.00 3 4,314.00 

CR5000 3,500.00 1 3,500.00 

Case 270.00 3 810.00 

Mast Mount bracket 79.00 3 237.00 

SDI-12 interface for 

EnviroSmart devices 

438.00 3 1,314.00 

I/O device with 1 serial 

channel, RS232 

protocol, 485 e 422 

(NO CR5000) 

210.00 3 630.00 

Total     10,805.00 

Power supply    

12 V/ 12 Ah 

rechargeable sealed 

lead-acid battery 

65.00 3 195.00 

14 W solar panel 27.30 6 163.80 

Charge controller 8.8A 

Solsum 

31.20 3 93.60 

Total     452.40 
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Table 3: (Continued) 

Material Individual Cost 

(€) 

Number Total Cost  

(€) 

Cables, etc.    

RF416 radio 466.00 3 1,398.00 

RF432 radio 486.00 1 486.00 

Whip antenna 35.00 4 140.00 

Remote transmission     2,024.00 

Cables,      708.29 

Connectors and other 

material 

    597.00 

Total     1,305.29 

Grand Total   69,446.39 

 

6 PRELIMINARY RESULTS 

Figure 7 shows the main balance terms in the hydrological system like 

paddy field. Compared to the incoming superficial flow, superficial outflow 

represented the 63-74% in case of WFL and DFL and 40-47% in case of 

DIR. These relatively high percentages were due to the water management 

adopted that consist in applying more water than the amount needed and 

then draining the excess (so called “flow through irrigation”, Hasegawa 

1992). The contribution of precipitation during the growing season was very 

low (1-4%) in case of both flooded conditions, while it was slightly greater in 

case of DIR (10-16%). Evapotranspiration share was from 6 to 13% in case 

of WFL and DFL while it was significantly greater in case of DIR (31-48%). 

The net percolation rate obtained as the residual term of the balance and 

including the percolation (outcome) and the capillary rise (income), had a 

close range of variability (21-31%) but the greater percentages were 

obtained in case of intermittent irrigation (DIR). 

Reported data highlight the importance of the contribution of the superficial 

fluxes compared to all the other terms of the water balance. 
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Evapotranspiration and precipitation had a minimum effect on the water 

balance in case of WFL and DFL, but not in case of DIR treatment where 

both rain and ET had the same magnitude of the superficial drainage. This 

highlights the importance of using a micro weather station (i.e. eddy 

covariance station) to predict actual water losses by evapotranspiration 

processes. At the same time, the data obtained from the eddy station 

combined with those obtained from the Sentek sensor (i.e. Soil Water 

Content) permitted to analyse in detail the energy fluxes in the soil-plant-air 

continuum (Masseroni et al., 2014). 

Anyway, cumulative seasonal evaluation hides the complexity of the 

distribution of the water fluxes in rice paddy. Figure 8, for example, shows a 

sample from the monitored period for the DIR plot.  

In particular, input and output discharges, water table depth under the 

average seeding bed elevation and soil water content, SWC, at 10 and 70 

cm in depth are shown from the 27th of July 2013 to the 15th of August 

2013. The implemented monitoring system enabled to control and follow the 

trends of all the main hydrological variables: in Figure 8 – A, the irrigation 

events are well described by the peaks, that are different for inflows with 

respect to outflows both in time (the first are obviously before the latter) and 

magnitude (maximum inflow peak is 32.69 l/s while outflow peak was 35.37 

l/s). After each irrigation event,  a rise of the water table occurs with an 

increase from -1.28 m below the soil surface to - 0.80 m. SWC at 10 cm is 

naturally affected by the irrigation event, moving from 18.08 % (before 

irrigation) to 34.10 % (immediately after). At the same time, SWC at 70 cm, 

near to the water table, is almost constant at 35.0 % (standard deviation: 

0.06 %).  
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Figure 7: Cumulative water balance volumes distinguished by each terms and years: 
superficial inflow and outflow, precipitation (Prec), evapotranspiration (ET) and the 
difference between the percolation and the capillary rise, i.e. the residual term of the 
balance, net percolation (NetPerc). 

 

Figure 8: Temporal pattern of some monitored variables in DIR experimental field: 
discharge (inflow and outflow, A), water table depth (WTD, B) respect the field bed 
and soil water content (SWC, C) for a selected time period in 2013. Continuous 
monitoring activity permits to control all the irrigation practice (3 picks in the chart A), 
the following depletion of the paddy (light gray line in A), the effect of irrigation on 
the water table (B) and on the soil moisture (C). In the last case, differences 
between the upper layer and the deeper is well shown by the SWC trend at 10 cm 
and 70 cm. 
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The absence of steps (i.e. marked discontinuity) along the lines suggests 

that the frequency of acquisition was high enough with respect to the speed 

of variability of the phenomena. Such accurate monitoring activity will be the 

base for further researches related to the issue of water fluxes in paddy 

fields. Furthermore, the availability of a rich network of sensors and a 

recording step higher than those required to describe the process can help 

the researcher to check the rationality of the measurements and exclude 

spurious data. 

7 CONCLUSIVE REMARKS 

This paper presents an experimental setup for a complete and integrated 

monitoring activity of the water fluxes and water storage quantities in three 

rice plots characterized by different types of irrigation management in order 

to provide useful information to researchers that are going to deal with a 

similar issue. If, on one hand, the use of single sensors and probes, or 

groups of them, does not represent a novelty, on the other their use in a 

such massive and synergic way was a challenge in practice and, especially, 

for the rice crops. The information herein provided in great detail could 

therefore be very useful to those researchers involved in monitoring water 

fluxes, with particular reference to rice cultivation. The “in-house” character 

of our system allowed a relevant saving of economic resources, mainly by 

buying many sensors and elements directly from factories. The price of this 

saving was a great effort and time spent in choosing the right combination of 

instruments in order to guarantee the proper connection and communication 

between sensors and dataloggers over a local net and using different 

protocols. In fact, most sensors came from different manufacturers and it 

was important to evaluate the compatibility of communication protocols. 

Another point we deem is worth highlighting is the possibility to remotely 

check if all the instruments are working correctly, which represents a crucial 

point in managing a so complex in-field monitoring system subjected to 

environmental adversities (high temperature and humidity). This, in fact, 
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limited the loss of data, reduced the research costs and more important 

made the work of researcher and technicians more efficient. 

The use of open standard should be a milestone of a monitoring system but 

that it is not always possible for technical needs and constraints caused by 

the market of scientific instruments. In our case, we struggled to use 

industrial standards and to link different communication protocols in order 

give to the reader useful information out from what the vendors are used to 

suggest. In other cases, that was not possible due to the limits induced by 

“close” solutions. The development of a complete open standard architecture 

was out of the objective of the project (the main objective was to provide 

information about water fluxes to other research teams), but the use of low 

cost sensors and “open” acquisition systems in order to reduce costs and 

increase the monitoring performances, represents the future development of 

our research activity. 
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Abstract 

Spatial variations of rice yields within and between fields is a relevant issue in 
Australian rice farming. In-field variability may be ascribed to different factors 
including soil physical and chemical properties, cut/fill operations and the effects of 
water depth, wind and temperature. The latter has a strong impact on yield because 
of spikelet sterility induced by low temperatures during night-time. 
This contribution describes the monitoring activity conducted in three rice bays 
located in the Murray Valley (NSW, Australia) over the cropping season 2014-2015 
as part of a project entitled “Developing and testing tools for measuring and 
managing variability in rice”. The first season of the project focussed on the spatial 
monitoring of water temperatures in relation to crop density and water depth with the 
purpose of (i) collecting data for the development of a water temperature model 
based on NDVI values for the effects of crop shading and (ii) investigating the spatial 
component of water temperature, crop development and grain yield.  
Spatial differences of grain yield within the same bay were higher than 3 t ha-1 
according to the raw values recorded by the yield monitor on the harvester. The 
monitoring of water temperature showed spatial variations across the field that could 
be attributed to a different degree of canopy cover as shown by the different values 
of NDVI (up to 4°C difference in the daily maximum temperatures). Canopy 
thickness should be included in models simulating water temperature of rice 
paddies. The Normalized Difference Vegetation Index (NDVI) computed from 
Landsat 8 images represents a useful tool for evaluating crop development during 
the growing season and identify areas with a stunted growth that can be specifically 
managed. This spatially distributed information could be effectively used for real–
time yield forecast. 
 

Keywords: Rice, paddy, water temperature, NDVI, yield, spatial variability  
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1 GENERAL INTRODUCTION 

Australia is the country with the highest average rice production per hectare, 

which amounts to 10.2 t ha-1 (FAOSTAT, 2013). However, the cropped 

surface has been subject to relevant changes in the last fifty years, 

fluctuating from more than 170,000 ha in 2001 to less than 10,000 ha in 

2008 and 2009 because of severe drought conditions (FAOSTAT, 2013). 

Rice surface is mainly located in the temperate zones of the Riverina region, 

in southern New South Wales. The region comprises four main growing 

areas: the Murrumbidgee Irrigation Area (MIA), the Eastern Murray Valley 

(EMV), the Western Murray Valley (WMV) and the Coleambally Irrigation 

Area (CIA). Rice target yields are variable across the region, depending on 

both the area and the variety grown (DPI, 2012). As reported in the 

Ricecheck recommendations 2012 (DPI, 2012), the higher target yield of the 

region can be achieved in the MIA, where higher minimum temperatures 

allow to reach a target yield up to 11 t ha-1. On the other hand, the WMV has 

a lower potential yield than the EMV, likely due to a greater incidence of 

turbidity that lowers the water temperature in the seed zone, while no climate 

differences are found between the two zones (Humphreys and Barrs, 1999).  

Moreover, a significant spatial variability of crop yield may occur also within 

the same field as reported by many farmers of the region. According to the 

Rural Industries Research and Development Corporation (RIRDC, 2013), 

the in-field variability may be ascribed to different factors including soil 

salinity and sodicity, soil physical and chemical properties, landforming 

cut/fill operations and the effects of water depth, wind and temperature. 

Results from their field experiments conducted in Coleambally (CIA) and 

Willbriggie (MIA) indicate that nutrient deficiencies are the main cause of in-

field yield variability in case of exposed subsoils resulting from cut/fill 

operations (RIRDC, 2013). However, further research is needed to 

understand the interactions between the different factors driving on-farm 
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spatial variability and to provide farmers with prescription tools to manage it 

(RIRDC, 2011). 

Authors report that water temperature can directly influence rice yield 

through impacts on growth (Roel et al., 2005) and nitrogen uptake (Shimono 

et al., 2012). The occurrence of low temperatures during nighttime is 

considered the main factor responsible for yield losses in Australian rice 

systems (e.g. Heenan, 1981; Godwin et al., 1994, Subasinghe and Bechaz, 

2005). Farrell et al. (2001) estimated the cost of yield reduction due to low 

temperatures to be on average $20 million a year in the Riverina Region. 

Microspore stage is the more susceptible to cold injuries. Whithworth and 

Dunn (2012) suggested that minimum temperatures between 17°C and 15°C 

during the microspore stage may result in cold damages known as cold-

induced sterility or flatheads. Similarly, Boerema (1974) reported a high 

proportion of spikelet sterility due to minimum temperatures lower than 15°C 

during the reproductive stage, according to an experiment conducted in the 

MIA. An effective tool to protect the developing panicle from cold injuries is 

to raise the water depth to 20-25 cm (DPI, 2012), since deep water can 

provide an increase over the air temperature up to 9°C (Whithworth and 

Dunn, 2012). Deep water during microspore development becomes even 

more important when high nitrogen applications are applied, as the effect of 

low temperatures is further accentuated by high levels of nitrogen (e.g. 

Boerema, 1974; Williams et al., 1994). The best practices suggest 

maintaining the target water from around 7-10 days after the panicle 

initiation to around mid-flowering (Department of Primary Industries, 2012; 

Whithworth and Dunn, 2012). Heenan (1981) reported no differences in yield 

between a shallow and a deep water treatment (5 and 22 cm respectively) 

during panicle development in Yanco (MIA), nevertheless the author 

asserted that low temperatures were neither prolonged enough nor during 

the more critical stage. In light of these issues, the knowledge of water 

temperature of flooded fields is considered a key factor in modelling yield of 



Chapter 3  

42 
 

flooded rice systems (e.g. Godwin et al., 1994, Confalonieri et al., 2005, 

Shimono et al., 2005, Shimono et al., 2007a,b). 

Temperature dynamics in paddy water show a different behaviour if 

compared to non-vegetated shallow waters, due to the shading effect of 

crops, which not only reduce the amount of solar radiation reaching the 

water surface, but also alter the spectral energy distribution of the solar 

radiation itself (Uchijima, 1961; Ohta and Kimura, 2009; Hanayama et al., 

2006). For instance, Ohta and Kimura (2009) found that the difference 

between the temperature of paddy water and that of open shallow waters 

was quite uncorrelated to the solar radiation, while it depended on the stage 

of crop development, which influenced the proportion between the emission 

and the interception of radiation by the canopy.  

A few models are found in literature to predict the water temperature in rice 

paddies. These models are essentially based on either simplified empirical 

relationships (Godwin et al., 1994; Confalonieri et al., 2005, Gombos, 2008; 

Anastácio et al., 1999) or mechanistic approaches (Kuwagata et al., 2008; 

Confalonieri et al., 2005; Maruyama et al., 2010; Ohta and Kimura, 2007; 

Ohta and Kimura, 2009). Empirical models generally adopt simple or 

multilinear regression to estimate water temperature as function of air 

temperature only (Anastácio et al., 1999; Gombos, 2008), or as a function of 

air temperature plus either other meteorological variables (Gombos, 2008) or 

water depth (Godwin et al., 1994). However, these models do not consider 

the important effect of canopy on water temperature. A different empirical 

model is presented by Confalonieri et al. (2005) who used a Gaussian filter 

to simulate the smoothing effect of flooded water on temperatures and 

developed four different equations for the maximum water temperature so as 

to account also for the effect of crop development. On the other hand, 

mechanistic models adopt surface energy balance equations, estimating the 

water temperature as the residual term of the budget. An example is 

provided by Kuwagata et al. (2008) who applied heat balance equations to 

estimate first the daily mean water temperature of a water surface without 
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vegetation coverage, given meteorological data as input. Then, they 

obtained the daily mean water temperature of a rice paddy by adding an 

empirical correction term that is function of LAI, solar radiation and wind 

speed. To estimate the hourly water temperature of paddy water, 

Confalonieri et al. (2005) developed a model based on the surface energy 

balance that requires just minimum and maximum air temperature as input 

and applies empirical relationship to account for the effect of canopy 

development. A slightly different approach is proposed by Maruyama et al. 

(2010) who coupled a crop growth model and a land surface model based 

on an empirical relationship between stomatal conductance and rice 

phenology. Although these mechanistic models showed to reproduce fairly 

well the water temperature in rice fields, their potential application to different 

regions and different varieties needs to be assessed, especially with respect 

to the effects of crop development on water temperature dynamics.  

Moreover, spatial variability of water temperature within the same field is 

generally not considered, therefore water temperature models provide just of 

a representative value. Such approach may hold in small fields as shown by 

Kuwagata et al. (2008) who found little horizontal differences of water 

temperature in small test fields (14 x 18 m). However, the effect of water 

temperature on in-field variability at larger scales seems to be poorly 

understood and controversial results are found in the literature. In this 

respect, Roel et al. (2004, 2005) report that the effect of cold water on yield 

across a 10-ha field of California was not uniform and it was estimated to 

account for 84% of the yield variation. Conversely, Simmonds et al. (2013) 

did not observe any effect of water temperature on in-field yield variability, 

which was instead attributed to soil electrical conductivity and plant available 

phosphorus. 

Considering the need to better understand and manage factors driving yield 

variability, a monitoring activity was conducted in the agricultural season 

2014-2015 in three rice fields located in the Murray valley as part of a project 

entitled “Developing and testing tools for measuring and managing variability 
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in rice”. The first season of the project focussed on the spatial monitoring of 

water temperatures in relation to crop density and water depth in order to: (i) 

collect data for the development of a water temperature model based on 

NDVI values for the effects of crop shading, (ii) investigate the spatial 

component of water temperature, crop development and grain yield, (iii) 

evaluate the possibility of improving the existing rice growth model maNage 

rice, developed by Williams and Angus (1997), by including remote sensed 

data for modelling crop-related processes (evolution of Leaf Area Index, 

water temperature variations and, ultimately, crop nitrogen status). As a first 

step towards the fulfilment of these aims, the contribution describes the 

monitoring activity that was conducted and illustrates the data collected, 

providing also insights on the future developments. 

2 MATERIAL AND METHODS 

2.1 Site description 

The rice experiment was conducted at the Rice Research Australia Pty Ltd, 

located at Coree (35°18.2’S 145°32.3’E, Deniliquin, NSW, Australia) during 

the agricultural season 2014-2015.  

The area is classified as a zone with a hot dry summer, cold winter and 

uniform rainfall (yearly values between 400 and 600 mm) (Bureau of 

Meteorology, 2015). Figure 1 shows the pattern of monthly averages of 

reference evapotranspiration, rainfall, and minimum and maximum 

temperature recorded at the Finley weather station (around 35 km South of 

the site) in the years 2010-2015.  

Two main soil types are found in the area and they are classified as Non 

Self-Mulching Clays (NSMC) and Transitional Red-Brown Earths (TRBE) 

(Rengasamy et al., 2010). NSMC are characterised by a shallow topsoil 

(usually less than 5 cm in depth) with a texture ranging from a clay loam to a 

light clay, whereas the underlying subsoil is a dense heavy clay. Due to the 

texture and the propensity to disperse, both infiltration and permeability are 
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poor (Rengasamy et al., 2010). TRBEs are a specific subgroup of red-brown 

earths characterised by finer sediments than the red-brown earths. These 

soils have a shallow clay loam topsoil of 5-10 cm depth, overlying a clay 

subsoil (Rengasamy et al., 2010). 

 

Figure 1 – Pattern of monthly meteorological variables recorded at the Finley 
weather Station over the period 01/05/2010-30/04/2015. Reference 
evapotranspiration (ET0, light grey bar, left y-axis) and rainfall (dark grey bar, left y-
axis) are cumulated monthly values; Minimum Temperature (dotted line, right y-axis) 
and Maximum Temperature (thick line, right y-axis) are monthly averages. Error bars 
show 25th and 75th percentile. 

 

Figure 2 – Location of the sensors in the bays and elevation (m.a.s.l). White 
arrows represent water supply 
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2.2 Data collection 

Monitoring activities involved three adjacent fields approximately 380 m long 

and 100 m wide with actual areas of 3.65 ha (Bay 1), 3.45 ha (Bay 2) and 

3.21 ha (Bay 3). The variety Koshihikari, a short-grain rice variety better 

known as “Koshi”, was drill-seeded on Sep 28th with seed rates of 150 kg ha-

1 except for around half surface of Bay 3 where seeding rates were equal to 

75 kg ha-1 (west side of Bay 3, see Figure 2). Rice was harvested at the end 

of March. 

Fields were arranged according to a bankless channel layout, with a 

longitudinal slope going from bay 1 to bay 3 of about 0.06% (see Figure 2 

showing the field elevation as recorded by the sensor mounted on the 

tractor). Five flush irrigations were applied on days Sep 29th, Oct 11th, Oct 

29th, Nov 6th and Nov 14th until the establishment of permanent water on Nov 

29th. A water depth of around 10-15 cm was maintained until the draining 

occurred on Mar 16th, except for about ten to fifteen days in the second half 

of January when water depth was increased to 25-30 cm (progressive 

increase of water levels started after panicle initiation, which occurred on 

Dec 28th, to ensure that target water depths for microspore were achieved 

within the following 14 days). Topdress nitrogen fertiliser was applied in 

rates of 80 kg ha-1 on Jan 9th, around 12 days after panicle initiation. 

A total of 21 sensors, each equipped with its own logger, were installed in 

the field and they included 9 sensors for water temperature, 6 multilevel 

sensors measuring soil, water and canopy temperature and 6 water depth 

sensors. The location of the instruments is shown in Figure 2. Along with 

automatic measurements, three campaigns were conducted to manually 

measure soil, water, canopy and air temperature with a higher spatial 

resolution and in different moments of the days. Measurements were taken 

every 10-15 meters along transects running in the North-South direction.  

At harvesting, mass yields were measured by the yield monitor on the 

header (two rows of measurements per bay). Data have been filtered with a 

moving average once removed some outliers likely caused by occasional 
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malfunctioning of the sensor (yield values dropping down to zero followed by 

increases to up to 20 t ha-1). Point yield values were then aggregated to 

obtain average values over a cell size of 10*10 m (Figure 4). Finally, the 

evolution of the normalized difference vegetation index (NDVI) was 

investigated over the cropping season (Figure 3). NDVI was computed from 

Standard Landsat 8 data products provided by the USGS (USGS, 2015a) 

after applying the atmospheric corrections suggested by USGS (2015b). 

3 PRELIMINARY RESULTS 

Figure 3 shows variations of the NDVI index in the three bays monitored 

during the agricultural season. In the first part of the season (images related 

to  Dec 16th and Jan 1st), low values were obtained in the East side of the top 

Bay (Bay 3) due to the lower seeding rates and consequently to the poor 

coverage of the ponded water. However, in spite of the lower crop density, 

NDVI values were consistent with values in other sections of the field later in 

the season (see Feb 25th and Mar 13th).  

Yield data are shown in Figure 4. Average yield was 9.9 t ha-1, but relevant 

variations were observed across the three bays. For instance, in the East 

side of the top bay (Bay 3) yield was consistently higher reaching values of 

12 t ha-1.  

Figure 5 presents water temperature patterns recorded in Bay 3-West side 

(low density area) and in Bay 3-East side (regular seeding rates). In general 

terms, fluctuations of water temperature were higher in the first part of the 

season when the crop coverage was still quite low and the water depth was 

around 10 cm. As the season progressed and the water depth increased, the 

range of variation became smaller due to both the effect of crop shading and 

to the higher heat storage of the ponded water. Differences in water 

temperature between West and East side of Bay reached up to 4°C because 

of the effect of the canopy cover on the proportion  of radiation reaching the 

soil surface, whereas differences were smaller at night-time. 
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Figure 3 – Evolution of NDVI values over the cropping season (resolution 30x30m) 
for the three bays monitored (Bay 1 to 3 from South no North) 
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Figure 4 – Average mass yield (t ha-1) (cell size 10x10m) 

 

Figure 5 – Water temperature pattern recorded in a zone with a lower NDVI (dark 
grey line) and in a zone with a higher NDVI (light grey line) and air temperature 
(dotted grey line) on the left y-axis; water depth (black line) on the right y-axis. Data 
show West and East side of Bay 1. 
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4 CONCLUSIVE REMARKS 

From the activities conducted in the agricultural season 2014-2015, the 

following considerations can be made:  

 Variations in rice yields are a relevant issue in Australian rice farming 

and differences of more than 3 t ha-1 were observed within the same 

field as shown by values recorded by the yield monitor on the header. 

Causes of these variations have still to be understood since factors such 

as soil properties should be considered in addition to the effects of water 

temperature. 

 The monitoring of water temperature showed spatial variations across 

the field that could be attributed to a different degree of canopy cover as 

shown by the different values of NDVI. Daily fluctuations of water 

temperature are in fact higher in zones with lower values of NDVI, with 

daily maximums that could differ of up to 4°C compared to zones with a 

less dense canopy cover. It would be therefore very useful to include the 

effect of canopy shading in models simulating water temperature in rice 

paddies as relationship solely based on air temperature cannot simulate 

variations between canopies of different thickness.  

 A vegetation index computed from remote sensed data such as the 

Normalized Difference Vegetation Index (NDVI) represents a useful tool 

for evaluating crop development during the growing season and identify 

areas with a stunted growth that can be specifically managed. NDVI 

maps with a 30 m resolution can be effectively obtained from Landsat 8 

that images the Earth every 8-16 days. Dramatic improvements in both 

the temporal and spatial resolution of land surface images could be 

obtained thanks to recent Satellite Platform Sentinel 2 that capture 

images with a 10 m pixel resolution and 5 day revisiting time. Moreover, 

remote sensed data could be useful input data to models simulating the 

soil-crop-atmosphere system. In fact, they provide spatially distributed 
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information that can be used for real–time simulations such as yield 

forecast.
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Abstract 

Rice cultivation requires a significant share of irrigation water, mostly because of the 
practice of continuous flooding; therefore, interest for alternative water 
managements is increasing. The paper presents results of a 2-year experiment in 
Northern Italy comparing three rice water managements: Water seeding-continuous 
FLooding (WFL), Dry seeding-delayed FLooding (DFL), Dry seeding-intermittent 
IRrrigation (DIR). The main objective was to assess the effects of water regimes on 
the agro-ecosystem as a whole (from water use and yield components to nutrient 
dynamics etc.). This paper is focussed on water use aspects with the aim of: i) 
comparing and discussing water balance terms, water use efficiencies and water 
productivities; ii) conducting a statistical analysis of percolation fluxes of flooded 
treatments (WFL and DFL) in order to validate results of the water balance; iii) 
discussing inter-annual variations of paddy irrigation requirements due to 
environmental factors. Net irrigation requirements of WFL ranged between 1,500 
and 3,000 mm in the two seasons, while DFL and DIR determined average 
reductions by 20% and 65%. On the other hand, WFL provided an average yield of 
10.2 t ha-1, which decreased by 3% and 28% in DFL and DIR respectively. 
Percolations of flooded treatments showed a strong correlation with groundwater 
levels, especially during the first part of the season (R2 0.90 and 0.95 respectively). 
Data analysis highlighted complex subsurface water dynamics dependent on 
groundwater levels and influenced by soil characteristics. Between-years variability 
could be attributed to environmental factors including groundwater levels and soil 
responses to abiotic and biotic factors. 
 

Keywords: paddy; rice; water balance; water savings; groundwater; temporal 
variability  
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1 INTRODUCTION 

Worldwide, rice is one of the most important crops representing the staple 

food for over half of the world’s population, with a global production of more 

than 700 million tons per year (FAOSTAT, data for 2013) and an harvested 

area reaching 165 million ha (FAOSTAT, data for 2013). More than the 75% 

of the global rice supply is provided by lowland irrigated rice (Maclean et al., 

2002), where rice has been traditionally grown under the continuous 

presence of a water depth ranging between 5 to 10 cm (Bouman et al., 

2007b). Because of the large rice surface and the particularly water-

demanding regime, it is estimated that irrigated rice receives around 40% of 

the water globally used for irrigation purposes (Bouman et al., 2007b). 

According to some scenarios, improvements in the effectiveness of rice 

irrigation are becoming more and more urgent since 15–20 million ha of 

irrigated rice could suffer from some degree of water scarcity by 2025 due to 

an increasing water competition among users (Tuong and Bouman, 2003). 

In this framework, Bouman and Tuong (2001) identified three major 

challenges rice producers will have to face: i) to save water, ii) to increase 

water productivity (i.e. grain yield over water input) and iii) to “produce more 

rice with less water”. 

The irrigation amount provided to rice fields depends on several factors with 

strong cross-interactions such as the irrigation management (e.g. Belder et 

al., 2007, Tabbal et al., 2002), the land preparation method (e.g. Singh et al., 

2001; Kukal and Aggarwal, 2001), the layout of the fields (e.g. Neumann et 

al., 2009), the soil characteristics (e.g. Watanabe, 1992; Garg et al., 2009; 

Janssen and Lennartz, 2007) and the groundwater depth (e.g. Belder et al., 

2007), in addition to the meteorological conditions that directly affect the 

contribution of rainfall and evaporation to the field water balance.  

Seepage and percolation are considered the main responsible for the low 

water use efficiency of paddy rice at the field scale. They are often evaluated 

together, as it is not easy to separate those fluxes in either seepage or 
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percolation. In flooded fields they are estimated to account altogether for 

about 25-50% of all water inputs in heavy soils with a groundwater table 

within 50 cm from the soil surface (Cabangon et al., 2004; Dong et al., 

2004), but they can reach some 50-85% in coarse-textured soils with a 

deeper groundwater table (say 1.5 m or more) (Sharma et al., 2002; Singh et 

al., 2002). The two processes are driven by hydraulic conditions (e.g. depth 

to the groundwater, water level in drainage canals, ponded water depth) and 

by the soil characteristics, including porosity and presence of cracks 

(Watanabe, 1992). However, seepage is considered relevant either in case 

unpuddled spots are present within a puddled field (as for instance 

unpuddled soil underneath the bunds) (Kukal and Aggarwal, 2002; Tuong 

and Bhuiyan, 1999; Neumann et al., 2009), or in small fields with a high 

perimeter-to-area ratio that are surrounded by dry-lands (Chen et al., 2002; 

Neumann et al., 2009). Percolation is governed by a variety of soil related 

factors, such as structure, texture, bulk density, mineralogy, organic content 

(Wickham and Singh, 1978). Moreover, percolation is affected by the water 

regime in and around the field through its influence on the groundwater 

depth (Bouman et al., 2007b; Tabbal et al., 2002). Quantifying the influence 

of groundwater on the irrigation water requirements is however difficult under 

experimental conditions, therefore simulation models are generally adopted 

to study the effect of different groundwater levels (e.g. Belder et al., 2007) 

New approaches known as Water Saving Technologies (WSTs) provide an 

opportunity to lower the significant water use associated with traditional rice 

farming, especially because of their potential to reduce seepage and 

percolation losses associated with the regime of continuous submergence. 

WSTs involve a series of practices that include the land preparation method, 

the crop establishment technique and, mostly, the water management during 

the crop growth. With respect to WSTs, wet land preparation is giving way to 

dry tillage, which enables to save the water used before the actual crop 

growth (Tabbal et al., 2002). Moreover, other establishment techniques are 

replacing the transplanting of the seedlings performed after wet land 
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preparation. Such techniques consist in either direct wet seeding (i.e. 

broadcast of pre-germinated seeds) or direct dry seeding (i.e. drill-seeding). 

As regards water management during crop growth, the more common 

regimes considered as WSTs are: i) saturated soil culture (e.g. Tabbal et al., 

2002; Borrell et al., 1997); ii) delayed flooding (e.g. Dunn and Gaydon, 2011; 

Borrell et al., 1997); iii) alternate wetting and drying (e.g. Singh et al., 2001; 

Belder et al., 2007; Feng et al., 2007; Bouman et al., 2007a; Belder et al., 

2004; Yadav et al., 2011; Borrell et al., 1997; Tan et al., 2014); and iv) flush 

irrigation (e.g. Belder et al., 2007; Xue et al.,, 2008; Feng et al., 2007; 

Bouman et al., 2007a; Tabbal et al., 2002; Govindarajan et al., 2008; 

Bouman et al., 2005).  

Evaluating the performance of different water regimes requires the adoption 

of monitoring systems that enable to quantify the contribution of each 

component to the paddy water balance (e.g. Kukal and Aggarwal. 2002; 

Belder et al., 2004; Yadav et al., 2011; Bouman et al., 2005; Borrell et al., 

1997). As a further step, simulation models can be adopted in order to gain a 

deeper understanding of water dynamics and explore also the effects of 

different scenarios (e.g. Singh et al., 2001; Belder et al., 2007; Xue et al., 

2008; Feng et al., 2007; Bouman et al., 2007a; Govindarajan et al., 2008; 

Chen et al., 2002). Understandably, monitoring is generally limited to some 

of the variables of interest, therefore the water balance terms that are not 

directly measured have to be estimated from related measures when a 

modelling approach is not adopted. For instance, Singh et al. (2001) derived 

the amount of irrigation applied to flooded rice from the difference between 

the water depths measured immediately before and after the irrigation event, 

while Tabbal et al. (2002) calculated the evapotranspiration from the 

measured pan evaporation using equations developed by other authors for 

lowland rice. Additionally, some water budget terms that cannot be easily 

measured (e.g. percolation) are usually computed as the residual term of the 

mass balance equation (e.g. Zhao et al., 2015).  
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However, values obtained in this way are likely to be affected by any error 

made on the measurements/estimations of all the other components.  

Moreover, regardless the specific regime of flooding, quite a significant inter-

annual variation of paddy water requirements is found in the literature 

reporting experiments carried out in the same fields and lasting at least two 

seasons. For instance, Zhao et al. (2015) observed that the total water use 

of continuously flooded rice in some plots varied up to more than two fold as 

much between seasons and, in general terms, they attributed this difference 

to different meteorological occurrences and soil behaviour. Belder et al. 

(2007) reported more than a two-fold variation in water requirements of 

alternately submerged–nonsubmerged rice when a deep drain was 

excavated in order to increase internal drainage and lower the groundwater 

table. Increase in water use by 30% to 50% are reported also by Kukal et al. 

(2005), Sudir-Yadav et al. (2011), Bhushan et al. (2007) in rice experiments 

under different regimes of flooding, but no specific reasons are mentioned. 

Despite their relevance, such variations are often moved to the background 

since authors generally focus their discussion more on the comparison 

between different irrigation strategies  speaking about water uses averaged 

over two seasons; or, else, they deal with the issue of temporal variability, 

but mostly with respect to variations of processes within the same season. 

However, besides comparisons of different water regimes, it is very 

important to investigate also the role of environmental factors, especially 

because they can determine variations in irrigation requirements that are 

even greater than those induced by changes in water regimes themselves. 

In this framework, the paper presents the results of an intensive monitoring 

activity (years 2012 and 2013) performed at the Rice Research Centre 

located in Catello d’Agogna (Northern Italy) where the performance of three 

different water regimes of rice have been investigated and compared. The 

water management practices under evaluation are: Water seeding and 

continuous FLooding (WFL), Dry seeding and delayed FLooding imposed at 

around the 3-leaf stage (DFL), and Dry seeding and intermittent flush 
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IRrrigation (DIR). The specific objectives of the paper are: i) to compare the 

effects of the different irrigation regimes on the water balances and the water 

use indicators over two agricultural seasons; ii) to provide a validation of the 

results through the application of a multiple linear regression analysis 

examining the relationship between percolation and groundwater levels, iii) 

to critically discuss the effect of environmental factors on the inter-annual 

variability of rice irrigation requirements. 

2 MATERIAL AND METHODS 

2.1 Field experiments 

2.1.1 Description of the site  

The experiment was conducted during the growing seasons 2012 and 2013 

at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in 

Castello d’Agogna, Pavia province, Italy (45° 14’ 56.616’’ N, 8° 41’ 59.924’’ 

E, 108 m.a.s.l.). The centre is located in the main Italian rice growing area 

(around 90% of the total national surface; ENR 2013) where rice fields have 

generally a size ranging between 2 and 3 ha (INEA 2013). The traditional 

technique consists of broadcasting pre-germinated seeds over submerged 

levelled fields and then maintaining a ponded water depth from 5 to 20 cm 

for almost the whole growing season (INEA 2013). However, the practice of 

dry seeding and delayed flooding has increased in the Western Po Valley 

during the last decade, reaching a maximum of 30% of the total Italian rice 

area in 2011 (ENR 2013). In addition, flush irrigated rice has spread across 

some areas located in the Lombardy region, east of the Ticino River and it is 

gaining some interest due to the potential of reducing the irrigation 

requirements. 

The local climate of the area is humid subtropical (Cfa) according to the 

Köppen climate classification (Köppen, 1936), with average temperatures in 

the months from April till September of 20°C and rainfalls of about 360 mm, 

rather variable throughout the years (data for the period 1993-2013).  During 
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the agricultural seasons 2012-2013 (June till September), average maximum 

and minimum temperature were 29.2 °C (±3.8°C) and 17 °C (±3.2°C) 

respectively; and average daily evapotranspirations of the months June, 

July, August and September amounted, respectively,  to 4.7 mm d-1, 4.6 mm 

d-1, 4.0 mm d-1 and 2.8 mm d-1. 

In 2012, flooded paddies surrounded the experimental fields apart from a 

soybean field located on the West side (see Figure 1), while in 2013 only 

flooded paddies were adjacent to the experiments.  

Soil characteristics of the site were assessed thanks to a detailed soil survey 

carried out in March 2012. Specific results of the soil survey are presented in 

Chiaradia et al. (2015), therefore just a brief summary is reported here. The 

fields involved in the experiment are characterized by a surface horizon 

(corresponding to the Apg horizon) that is significantly homogenous in space 

due to the agronomic practices performed on a yearly basis. The texture of 

the first layer is loam to silty loam, with a clay content ranging from 15 to 

23% and a bulk density of about 1.4-1.5 Kg m-3. A greater spatial variability 

in terms of granulometry, organic carbon content and genetic horizons 

sequence was found in the underlying layers explored (corresponding to B 

horizons and to BC or C horizons). Sub-surface horizons are characterized 

by a texture going from sand to silty clay loam and some of the samples 

collected below 1 m depth revealed the presence of clay contents higher 

than 27% and an enrichment in organic carbon showed by the very dark 

colour of the soil sampled (see Figure 1 for the spatial distribution of soil 

characteristics in the deeper layers).  
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Figure 1 - Soil characteristics of the deeper layers (below 1 m depth) and locations 
of the instruments  

2.1.2 Description of the experiments  

The experiments were laid out in six plots of about 20 m x 80 m with two 

replicates for each of the following water regimes: i) continuous flooding of 

water-seeded rice (WFL), ii) continuous flooding from around the 3-leaf 

stage of drill-sown rice (DFL), and iii) surface irrigation of drill-sown rice 

(DIR).  

Thanks to the irrigation layout of the site, the method of flow-through 

irrigation is applied in the flooded plots (WFL and DFL), i.e. more water than 

the amount needed is applied to the plots and any excess is then drained to 

the drainage channel. Provided there is a stable water supply, the flow-

through irrigation is generally adopted to cool the field, save water 

management labour and exert a control over the ponded water depth 

(Watanabe, 1992). 
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The rice cultivar grown in all the plots was Gladio cv., an early, semi-dwarf 

variety of tropical japonica type. Before crop establishment, the fields were 

dry-ploughed, laser-levelled and delimited by earthen bunds 40 cm high. 

Seedbed preparation involved one run of rotary harrow for water-seeded rice 

(WFL) and two runs for drill-sown rice (DFL and DIR). In 2013, the land 

preparation and the sowing dates were postponed compared to 2012 due to 

adverse weather conditions (i.e. heavy rainfall for several days). Seed rates 

in case of both water seeding and dry seeding were 160 kg ha-1. Table 1 

presents sowing and harvesting dates of each treatment in the two seasons. 

A 25 cm-deep furrow was dug on both sides of each bund, so that possible 

lateral infiltration could be easily drained in case any seepage occurred 

between adjacent fields under different water regimes. Negligible water in 

the furrows suggested that seepage losses throughout the bunds were not 

relevant. 

The WFL treatment was flooded a couple of days before water seeding and 

then repeatedly dried out and flooded (pinpoint irrigation, LSU AgCenter, 

2014) during the early stages of seedlings in order to enhance the rooting 

phase, avoid soil hardening and keep algae under control. Two more drying 

periods of few days were imposed to apply herbicides or fertilizers, before 

the final drying occurred 17 and 29 days before harvest in 2012 and 2013 

respectively. Ponded water depth during submerged periods was maintained 

between 10 and 20 cm.  

The DFL was dry seeded and submerged at around the 3-leaf stage 

occurred 35 and 24 days after sowing in 2012 and 2013 respectively. A 

ponded water depth again between 10 and 20 was maintained until the final 

drying, except for a short drying period imposed to apply fertilizers. The 

water amounts given to WFL and DFL treatments were managed by a daily 

control on the outflow discharges in order to maintain the desired ponded 

water depth within the plot (flow-through irrigation). Therefore, the net 

irrigation amount provided to the plots is given by the difference between the 

water inflows and the water outflows. 
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The DIR treatment was drill-sown and irrigated on average every 7-10 days 

from around 35 days after sowing onwards. The number of irrigation events 

of DIR treatment were 9 in 2012 and 12 in 2013, when the crop cycle was 10 

days longer than in 2012 and less rainfall events occurred in the second half 

of the irrigation season.   

Levels of nitrogen fertilizer, given as urea, were 160 kg ha-1 to all the 

treatments in both years, but the split applications were different depending 

on the water regime as shown in Table 1. Phosphorus and potassium were 

applied before sowing through a compound fertilizer with a rate of 18 kg P 

ha-1 and 70 kg K ha-1. Pesticide treatments were diversified depending on 

the year and on the seeding technique and enabled an optimal control of 

diseases, pests and weeds in both years.  

Table 1 Details of the field experiments 

Year 

 

Treatment
a 

 

Sowing 

 

Harvest 

 

Growing 

Season (days) 

Nitrogen applications  

(kg N ha-1)  

2012 WFL 28 May 21 Sep 117 Pre-sowing: 60; Tillering: 60; 
Panicle initiation: 40; 

 DFL 15 May 21 Sep 130 Pre-sowing: 40; Tillering: 70; 
Panicle initiation: 50 

 DIR 15 May 21 Sep 130 Pre- sowing: 50; Tillering: 40; 
Panicle initiation: 40; Booting: 
30 

2013 WFL 07 Jun 14 Oct 130 Pre-sowing: 60; Tillering: 60; 
Panicle initiation: 40; 

 DFL 28 May 14 Oct 140 Pre-sowing: 40; Tillering: 70; 
Panicle initiation: 50 

 DIR 28 May 14 Oct 140 Pre- sowing: 50; Tillering: 40; 
Panicle initiation: 40; Booting: 
30 

a WFL: Water seeding-continuous FLooding; DFL: Dry seeding-delayed FLooding; DIR: 

Dry seeding-intermittent Irrigation 
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2.2 Monitoring activities 

2.2.1 Overview of the monitoring system 

One plot of each water treatment (WFL, DFL and DIR) was monitored 

throughout the growing seasons 2012 and 2013 by a non-standard and 

innovative prototypal system specifically developed for case studies on 

paddies’ water fluxes. Details about the monitoring systems are provided by 

Chiaradia et al. (2015), therefore just a brief summary is given in the 

following Sections. 

Overall, 2 water level sensors, 12 piezometric wells for groundwater 

measurements, 6 devices for discharge measurements, 20 tensiometers, 4 

soil moisture multi-level probes and, finally, an eddy-covariance station were 

installed (Figure 1). Data were automatically collected and checked 

remotely. 

2.2.2 Measurements of surface water fluxes and soil water status  

In 2012, inflow discharges in each plot were measured by a RBC long 

throated flume, while outflow discharges were measured by V-notch weir. 

Both weirs were associated to a specific stage-discharge relationship. In 

2013 instead, both inflow and outflow discharges were measured by RBC 

long throated flumes since they were found to perform better in terms of 

algae formation (Chiaradia et al. 2015). Data were recorded every 10 

minutes. 

Groundwater levels were monitored in 12 piezometric wells positioned along 

the bunds dividing the two replicates of the same water treatment (Figure 1). 

In more detail, two identical slotted wells were installed at the upstream and 

downstream section of each bund (length of the pipe: 3.00 m, length of the 

well screen: 1.50 m), while a pair of slotted wells used as differential 

piezometer were installed in the midpoint of each bund (length of the pipes: 

3.10 m and 1.6 m, length of the well screen: 0.10 m). Readings were 

recorded at hourly time-steps. In both the flooded plots (WFL and DFL), the 

water depth was recorded by a pressure transducer inserted in a slotted 
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tube installed in the field and connected to the datalogger that recorded 

hourly measures. 

Soil water contents were measured by 4 soil moisture multi-level probes 

(depths: 10, 30, 50 and 70 cm) calibrated by volumetric measures on 

undisturbed soil samples collected at the end of the season. Three out of the 

four probes were installed in DIR in order to monitor the three soil units 

characterizing the plot, while the fourth one was placed in DFL during 

periods of non-submergence. Data were recorded every 10 minutes. Nearby 

the probes, a set of four tensiometers was installed at the same depths as 

moisture sensors and one more set of tensiometers was placed also in WFL 

(Figure 1). 

2.2.3 Eddy covariance measurements 

On the bund dividing WFL and DIR an eddy-covariance station was installed 

in order to measure energy and gas exchanges of both the treatments. In 

fact, the lack of a dominant wind direction enabled a single station placed 

between the two treatments to register fluxes coming from the two cropped 

areas in different semi-hourly time steps (Facchi et al., 2013a; Masseroni et 

al., 2015). Devices comprised: a 3D sonic anemometer, an infrared gas 

analyser, a four-component net radiometer, a pyrgeometer and a 

pyranometer, three heat flux plates (placed at 8 cm below the soil surface), 

three pairs of two thermistors (placed at 2 and 6 cm below the soil surface) 

and a traditional thermohygrometer,. Moreover, water temperature was 

measured together with water level in WFL in order to estimate also the 

water heat storage in the flooded treatment. 

2.2.4 Crop measurements 

Periodic campaigns were conducted in both 2012 and 2013 (11 and 14 

campaigns, respectively) to measure Leaf Area Index (LAI, m2 m-2) by a LP-

80 AccuPAR Ceptometer, crop height (m) and rooting depth (m) of rice 

under the three different water regimes. Values of LAI and crop height of 

each plot were obtained as the average of a set of four measures taken in 
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six different points of the field so that the final data are an average of 24 

measurements. As regards rooting depth, fewer measurements both in 

space and in time were performed to limit the number of uprooted plants. 

The number of culms per square meter was assessed at tillering and before 

harvesting by averaging the number of culms quantified over a surface of 

0.25 m2 in three replicates. Moreover, a sample of 20 panicles was collected 

in order to quantify the number of sterile spikelets over the total number of 

spikelets. Eventually, harvesting was performed by an Iseki type harvester 

with grains at 21% moisture. Immediately after harvesting, grains were dried 

and, after a period of 30 days needed to reach an equilibrium in the moisture 

content, rice yield was measured and expressed at 14% moisture content (t 

ha-1). 

2.3 Calculation of the water balance  

The water balance of each treatment was computed according to the 

following equation: 

DSPTEESSRI wsws    (1) 

where I is the amount of irrigation supplied, D is the tail water drainage 

flowing out of the plot, R is the rainfall, Es is the evaporation from the soil, Ew 

is the evaporation from the ponded water for WFL and DFL, T is the 

transpiration from the canopy (the sum of Es, Ew and T thus define the crop 

evapotranspiration ET), ΔSs is the change in the soil water storage (where 

the soil water storage includes the soil water content of the root zone, 

between 0-40 cm depth), ΔSw is the difference in the ponded water depth for 

WFL and DFL (the sum of ΔSs and ΔSw defining the difference in the field 

water storage, ΔS), and SP is the sum of seepage and net percolation (i.e. 

the difference between percolation and seepage minus the capillary rise, if 

any). All terms are expressed in mm over the surface area of the individual 

plot and the water balance was computed on a daily time step from dry 
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seeding to harvest in case of DFL and DIR, and from the flooding before 

water seeding to harvest in case of WFL.  

I and D were directly measured for each treatment, while R was assumed to 

be the same for all treatments and it was obtained from the registrations of 

the agrometeorological station of the regional meteorological service 

(ARPA), located at the ENR centre, about 100 m far from the experimental 

fields.  

ET was estimated by the application of Penman-Monteith type models that 

were calibrated using the discontinuous ET data series obtained by 

processing the eddy-covariance measurements. In more detail, a careful 

footprint analysis was first performed to determine the size and the position 

of the footprint area at half-hourly time steps, thus deriving two 

discontinuous datasets of ET values related to either WFL or DIR. Thanks to 

these datasets of eddy data adjusted by Bowen ratio, and to data collected 

during three monitoring campaigns with microlysimeters, it was possible to 

calibrate the “double-layer” Shuttleworth and Wallace model (1985) for 

deriving T and ES, while the Penman equation as modified by Jensen (1987) 

for the estimation of Ew. For further details on the ET computation, the reader 

should refer to Facchi et al. (2013a) and to BioGesteca (2014). 

The ΔS values were derived from the available soil moisture measurements, 

considering also the ponded water depth in case of submergence. 

Regarding the DIR treatment, the soil water contents measured by each of 

the three probes were weighted according to the surface area of the main 

soil types within the plot. 

Finally, the term SP was obtained as the residual term of the water balance 

and will be referred to as ‘Net Percolation’ (NP) hereafter, since seepage is 

not supposed to be the most relevant component of SP due to the following 

reasons: i) ploughing involved the planted region of the fields as well as soil 

beneath the bunds, therefore no great differences in the hydraulic 

conductivities of under-bund soil were expected (Neumann et al., 2009) ii) 

bunds were created at the beginning of the agricultural season, after 
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ploughing, and well maintained during the whole season (Bouman et al., 

2007b), iii) the experimental plots are not excessively small (Zhao et al., 

2015);  and iv) any lateral seepage occurring between plots with different 

water regimes was canalized in the furrows dug alongside the bunds.  

2.4 Calculation of water use indicators 

For each treatment, the Water Use Efficiency (WUE, %) was calculated as 

proposed by Bouman et al. (2005): 

 

RI

ET
*WUE


100

   (2) 

 

WUE computed according to (2) represents the share of water effectively 

used by the crop over the total water inputs. However, the value computed 

according to (2) strongly depends on the particular water management 

adopted (i.e. flow through irrigation), since more water is deliberately applied 

and then the excess is drained to maintain the desired ponded water depth. 

Therefore, a modified index (WUE*, %) accounting only for the field water 

losses was computed as suggested by Dunn and Gaydon (2011) : 

 

DRI

ET
**WUE


100

  (3) 

 

Similarly, the Water Productivity referred to water inputs (WPIR, kg m-3) 

defined as weight of grains over cumulative weight of water inputs by 

irrigation (Bouman et al. 2007b) was computed both including (WPIR) and 

subtracting (WPIR*) the term D  according to eq. (4) (Bouman et al., 2005) 

and (5) (Dunn and Gaydon 2011) respectively: 

RI

Y
WP

in

IR




   (4) 
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DRI

Y
*WPIR




  (5) 

 

where Y is the grain yield in kg m-2, and I , D and R are expressed in m3 m-2. 

2.5 Statistical analysis 

Water balance of flooded treatments is always highly dependent on the 

amount of water percolating due to the almost continuous presence of 

ponded water. In order to check the accuracy of the percolation term NP that 

was estimated by solving Equation (1), we decided to carry out a statistical 

analysis for WFL and DFL data, investigating the relationship between NP 

and measured groundwater levels. As a matter of fact, groundwater level 

data were not used in the estimation of NP, thus a good accordance 

between the two datasets would confirm the NP data. Moreover, considering 

that NP was obtained as the residual term in the water balance and that 

water balances of flooded treatments are always highly dependent on the 

amount of water percolating, the confirmation of the reliability of NP term 

would indirectly confirm also the reliability of the measurements/estimations 

for the others terms of Equation (1). 

To this purpose, the relationship between NP and measured groundwater 

levels was investigated through a multiple linear regression with input of 

daily values. NPs of WFL and DFL in both years were first filtered by using a 

symmetric (centred) moving average with a window size of 5 in order to filter 

out the daily fluctuations while preserving the trend. The focus of the 

analysis was on the periods of submergence, therefore data related to days 

with no ponded water on the field have been excluded, since the relationship 

between percolation and groundwater dynamics is expected to hold only 

with significant downward water fluxes. Moreover, we kept out from the 

analysis data related to either two days after flooding or two days prior to 

drainage in order to remove the border effect caused by the filter.  
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Data have been firstly grouped into two samples depending only on the plot 

(either WFL or DFL). For each plot we decided to consider the two years as 

a unique sample, based on the assumption that the same relationship 

between NP and groundwater levels should hold in both years and thus 

should not be influenced by year-dependent factors involving the aquifer. 

Instead, plots were considered separately the one from the other since, in 

this case, subsurface water dynamics could be different between the two 

plots. A different form of the model may be therefore required. Finally, we 

further split each sample into two different datasets that were identified 

based on groundwater levels and of percolation trends, considering drainage 

events as benchmarks. Two phases were thus distinguished: phase I and 

phase II. Phase I is the phase characterised by transitional processes with 

increasing groundwater levels and percolation fluxes decreasing over time. 

Such occurrences were identified during the first flooding event of DFL (both 

years) and WFL-2013, while they involved the first two floodings of WFL-

2012 (see Figure 3, panel a). For the data analysis, however, just values of 

the second flooding of WFL-2012 were used since groundwater 

measurements were not available for the first flooding because of a delay in 

the automatic acquisition of pressure heads. The rationale behind the 

distinction in two phases is explained in the following. First of all, flooding 

tends to decrease the porosity and the hydraulic conductivity of the soil 

because of compaction and clogging of the pores in the top layer and this 

phenomenon is more pronounced for the first flooding events (Kukal and 

Aggarwal, 2002; Sacco et al., 2012). Secondary, an effect of the increased 

percolation following the first submersion is generally the rise of the 

groundwater levels, which, in turn, may alter the local, field scale, subsurface 

water dynamics, particularly if the saturated surface is very shallow.  

Eventually, four multiple linear regressions NP vs. groundwater levels were 

applied to the samples WFL-I, WFL-II, DFL-I, DFL-II. Pressure heads in the 

subsoil were provided by the piezometers located at the upstream and 

downstream sections of WFL, DFL and DIR (see Figure 1). The final models 
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were identified taking into consideration the relationship between the 

regressors, the adjusted R-squared, the significance of the regressors, and 

an evaluation of the meaning of the parameters signs.  

3 RESULTS AND DISCUSSION 

3.1 Seasonal water balance and water use indicators 

Results of the water balance analysis of the three treatments WFL, DFL and 

DIR over the agricultural seasons 2012 and 2013 are presented in Table 2, 

along with crop yields and indices accounting for the performance of each 

irrigation treatment. The amounts of irrigation applied to WFL and DFL were 

9,970 and 8,600 mm respectively in 2012, while they decreased to 4,340 

and 3,470 in 2013. On the other hand, irrigation water applied to DIR 

increased in the second growing season if compared to the first one, being 

1,030 in 2012 and 1,400 in 2013. The water provided to WFL and DFL is 

considerably higher than what is reported in literature, especially during 

season 2012. However, the values obtained depend strictly on the water 

management adopted that consist in applying more water than the amount 

needed and then draining the excess as reported by Watanabe (1992). 

Therefore, the actual irrigation water requirements of WFL, DFL and DIR 

treatments are more reasonably given by the difference between I and D, 

which amounted, respectively, to 3,020 mm, 2,240 mm and 620 mm in 2012; 

1,520 mm, 1,280 mm and 740 mm in 2013 (Figure 2). Rainfall was lower 

than 200 mm in both the two season. The values of net water inputs (i.e. net 

irrigation plus rainfall) applied to traditional flooding (WFL) are in reasonable 

agreement with some data found in literature reporting water consumptions 

ranging from 1,500 to 3,000 mm (see for instance Singh et al., 2001, Tabbal 

et al., 2002, Zhao et al., 2015).  

Total water use of DFL was lower than WFL by 24% in 2012 and 14% in 

2013. On the other hand, DIR determined a reduction of the total water use 

compared to WFL between 47 and 75% depending on the year. Results for 
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2013 are within the range of 27-60% found by other authors (Tabbal et al. 

2002, Bouman et al., 2005, Borrell et al., 1997). Slightly higher water savings 

were obtained in 2012 mainly because of the greater water amounts 

required by WFL. 

Total water use of WFL and DFL decreased by 48 and 41% over the two 

seasons, whereas DIR increased by 10%. The sensible variation occurred to 

WFL and DFL could be attributed to different causes that determined a 

relevant variation in the percolations, which will be discussed in detail in 

Section 3.3. In fact, values of percolations obtained for WFL and DFL 

amounted, respectively, to 2,570 and 1,820 mm in 2012; and 1,200 and 970 

mm in 2013. On the other hand, the increase of total water use in the DIR 

treatment from 2012 to 2013 is related to a greater number of irrigation 

events (9 and 12 in 2012 and 2013 respectively) due to: i) a growing season 

longer by 10 days; ii) a less favourable rainfall pattern (in 2012, the repeated 

rainfall events occurred in the late part of the growing season likely replaced 

one or two irrigation events). In this respect, while rainfall events during 

periods of submergence were not such that they determined variations in the 

water application to the flooded treatments (WFL and DFL), they did 

influence the number of irrigations events required by the flush-irrigated 

treatment (DIR). In fact, when the different length of the agricultural seasons 

and the different number of applications are taken into account, it turns out 

that the average amount of net irrigation per event in the DIR treatment was 

slightly higher in 2012 than 2013 (respectively around 70 and 60 mm per 

irrigation event), which is quite consistent with the behaviour observed for 

WFL and DFL treatments.  

No significant differences in the evapotranspiration were found between the 

treatments in either years, as the maximum difference assessed was of 

about 60 mm between WFL and DIR in 2012 (550 and 490 mm respectively) 

(see Figure 2). Other authors indeed agree on evapotranspiration being the 

water balance term less affected by changes in the water management (e.g. 

Yadav et al., 2011).  
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Values of water use efficiencies, either WUE (referred to the total water 

inputs) or WUE* (referred to the net water inputs), substantially reflect the 

variations in the irrigation water amounts among treatments and years, since 

no sensible differences were found with respect to evapotranspiration. WUE 

is relatively low (i.e. minimum 5% for WFL in 2012 and maximum 12% for 

DFL in2013) due to the D term that is not deducted from the water inputs. 

These values are due to the practice of flow through irrigation as mentioned 

before, therefore WUE* should be considered a more representative value of 

the actual water use efficiency of each treatment. In the experiment, WUE* 

amounted to 17% (WFL), 21% (DFL) and 63% (DIR) in 2012; and to 27% 

(WFL), 31% (DFL) and 49% (DIR) in 2013. In literature, a wide range going 

from 20% to more than 60% is reported for the irrigation efficiency of flooded 

rice (e.g. Tuong and Bhuiyan 1999, Singh et al., 2001). In this respect, 

comparisons between experiments may be somehow tricky due to site-

specific conditions highly affecting the value of WUE* through their influence 

on seepage and percolation and, consequently, on the irrigation amounts 

needed to compensate for these losses.  

Rice yield was higher for WFL with a production of 10.5 t ha-1 in 2012 and 

9.3 t ha-1 in 2013, followed by DFL with 10.3 (-2%) and 9.8 (-5%) t ha-1 

respectively; and by DIR with 6.9 (-34%) and 7.8 (-20%) t ha-1 respectively. 

As a result, the best performance in terms of water productivity (i.e. m3 of 

water required to produce 1 kg of rice) was achieved with DIR in both years 

with WP* values around 0.88 kg m3 in both years against 0.43 and 0.66 kg 

m3 for DFL in 2012 and 2013 respectively. Values of WP* for WFL were 0.33 

kg m3 in 2012 and 0.59 kg m3 in 2013 in agreements with findings of other 

authors (e.g Tuong and Bhuiyan, 1999). 
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Figure - 2 Daily patterns of net Irrigation (light grey bars), Percolation (dark grey 
bars) and Rainfall (black bars) on the left y-axis; and actual evapotranspiration (thick 
black line) on the right y-axis. Day of the Year (DoY) is shown on the x-axis. Panels 
a), b) and c) show, respectively, WFL, DFL and DIR during 2012 (panels 1, left hand 
side) and during 2013 (panels 2, right hand side) 
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3.2 Analysis of percolation fluxes 

As highlighted in Section 3.1 and Table 2, net percolation of the flooded 

treatments WFL and DFL decreased significantly from year 2012 to year 

2013. Table 3 reports a more detailed description of these variations 

focussing only on days when fields were actually flooded and thus when 

significant downward water fluxes are expected to occur. Data have been 

divided into two sub-datasets referred to as phase I and phase II. In addition 

to percolation fluxes, also statistics related to groundwater levels are 

reported.  

Most of the reduction in percolations from 2012 to 2013 occurred in phase I 

for both WFL and DFL, with a decrease amounting to 69% and 65% 

respectively. On the other hand, reductions in Phase II were 30% and 40% 

for WFL and DFL respectively. Disregarding the number of days of flooding 

that depend on the specific weather conditions of the year, also the average 

percolation rate of the two phases decreased significantly between 2012 and 

2013 for both WFL and DFL. Average daily percolations in phase I were 43 

mm for WFL-2012 and 39 mm for DFL-2012, while they decreased to 18 mm 

for WFL-2013 and to 10 mm for DFL-2013. Reductions were still higher than 

50% in both the treatments, reaching 70% for DFL. In phase II, average daily 

percolations were 23 mm for WFL-2012, 18 mm for DFL-2012, 11 mm for 

WFL-2013 and 12 mm for DFL-2013. The coefficient of variation tends to be 

higher in phase I that in phase II, likely due to the effect of soil compaction 

and clogging on the daily percolation. Such effect, as expected, reduced the 

daily percolation over phase I to a higher extent than what occurred in phase 

II. 

Groundwater levels on the other hand, increased from season 2012 to 

season 2013, especially at the downstream section of the plots and mostly 

during phase I. Groundwater levels of the first part of phase I in WFL are 

missing because of a delay in the automatic acquisition; however they are 

expected to be fairly below the values observed in 2013 as it can be 

deducted observing Figure 3 panel a).  
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Such a variation can be partly attributed to the heavy rainfall events occurred 

in Spring 2013, and partly to the change the water regime of the field on the 

West side (see Figure 1) that was cropped with soybean in 2012 and with 

rice under delayed flooding in 2013.  

To verify the accuracy of the percolations fluxes, which suggest significant 

variations between two consecutive growing seasons, we performed a 

statistical analysis that led to the identification of four multiple linear 

regression models for the treatments DFL and WFL during phase I and 

phase II. Net percolations obtained from the water balance (NP, considered 

here as positive quantities), were analysed in the relation to pressure heads 

(h) measured by the pressure transducers in the upstream and downstream 

piezometers of each treatment (see Figure 1 for the piezometers location). 

Figure 3 compares the trends of NP and the estimated percolations 

according to the models for WFL and DFL over the crop seasons 2012-

2013. 

Overall, the fitting between NP and pressure heads was very satisfactory 

during phase I, as shown by the high coefficient of determination (R2) 

amounting to 0.95 for DFL and 0.79 for WFL, and less satisfactory during 

phase II, mostly in case of DFL (0.40 for DFL against 0.71 obtained for WFL 

in the same phase). The lower performance of DFL-II compared to WFL-II 

was somehow expected, since groundwater levels at the North border of 

DFL were not available (see Figure 1), while for WFL both the conditions at 

the North and South borders were monitored. The coefficient of 

determination is higher in phase I than in phase II for both the plots, 

revealing that NP dynamics during the first flooding event were in very good 

agreement with the pressure heads we measured. On the other hand, the 

variability of NP in the subsequent flooding was not entirely explained by the 

pressure heads of the measurements points we monitored. 

As suggested by the models we identified, the relationship between NP and 

groundwater levels can be expressed as a linear relationship between the 

groundwater recharge (i.e. NP) and both the average pressure head in the 
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subsoil (mean between upstream and downstream) and the hydraulic 

gradients between two measurements points (namely the difference 

between pressure heads of two points divided by their distance).  

 

Figure 3 - Patterns of percolations and groundwater levels of the treatments Dry 
seeding-FLooding (DFL) and Water seeding-FLooding (WFL) during the agricultural 
seasons 2012 and 2013. Filtered net percolations obtained from the water balance 
(dotted black line) and estimated via linear regression (thick black line) are on the 
left y-axis. Upstream groundwater levels (dashed dark grey line) and downstream 
groundwater levels (dashed light grey line) are on the right y-axis. Phase I is shaded 
with dark grey background; phase II with light grey. Day of the Year (DoY) is shown 
on the x-axis. Panel a) WFL-2012, b) WFL-2013, c) DFL-2012, d) DFL-2013 
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With respect to the physical interpretation of the model, the following 

considerations can be made, on account of the soil characteristics described 

in Section 2.1. Net percolations were very well correlated with the average 

pressure heads of the same plot or in the adjacent plot (e.g. see model 

WFL-I) and with the hydraulic gradients occurring in both the East-West 

direction and the North-South direction (p-values < 0.05 in all cases, see 

Table 4). It follows that a unique predominant direction of subsurface water 

flow cannot be assumed, but rather a more complex circulation can be 

expected. Moreover, the identified models suggest that different flow 

dynamics occurred depending on the specific phase (either I or II). In fact, 

the signs of the regression coefficients are opposite in the two phases, yet 

equal among the plots. With respect to phase I, the higher the average 

pressure head in DFL, the lower the percolation of both DFL and WFL. That 

is to say, when the groundwater table is relatively deep (groundwater levels 

below 0.5 m), the percolation appears to be higher. In addition to that, the 

higher the hydraulic gradient between the upstream and downstream section 

of DFL plot, the higher the percolation occurring in both DFL and WFL. 

Finally, also an increase in the hydraulic gradient at the downstream section 

of the plots is related to higher percolations. For the above considerations, 

water fluxes in DFL-I (i.e. when the groundwater is still quite low) seem to be 

mainly in the East-West direction, but a relevant water flow towards South 

(i.e. where the DIR plot is located) appears to have occurred.   

Conversely, higher average pressure heads are related to higher 

percolations in phase II. One possible explanation is that the shallow 

groundwater depth triggers a lateral flux towards the drainage channel. 

Moreover, the significant water flux from North to South at the downstream 

section is no longer evident in phase II, since the coefficients are positive 

(see Table 4). Finally, also the upstream hydraulic gradient between WFL 

and DIR is significant in phase II, suggesting some subsurface water 

movement from the WFL plot to the DIR plot. 
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Such complex water dynamics derive their justification from the soil 

characteristics of the experimental fields. The soil survey identified an 

enrichment in organic carbon and high clay contents in some of the deep 

layers in both the WFL and DFL plots. Because of that, the field can be likely 

characterised by the presence of strata with different permeability, with a 

consequent significant anisotropy of the soil. Consequently, different water 

dynamics may occur depending on whether the groundwater level is still 

relatively low (phase I) or the soil is saturated (high groundwater table, 

phase II). 

Table 4 - Multiple linear regression models relating net percolations versus average 
pressure heads (ḣ) and hydraulic gradients (i) obtained from piezometer 
measurements located in the upstream (us) and downstream (ds) sections of the 
plots. WFL and DFL stand for Water seeding-continuous FLooding and Dry seeding-
delayed FLooding. Symbols I and II refer, respectively to the first part of the season 
(phase I) and second one (phase II). 

Sample R-squared Regressors Coefficients p-values 

WFL-I 0.90 Intercept 92 < 0.01 

    ḣDFL -16,788 < 0.01 

    i (DFLus,DFLds) 8,345 < 0.01 

    i (DFLds,WFLds) 8,749 < 0.01 

WFL-II 0.71 Intercept -69 < 0.01 

    ḣWFL 1,593 0.05 

    i (WFLus,WFLds) -1,198 0.03 

    i (DFLds,WFLds) -50 < 0.01 

    i (WFLds,DIRds) -870 0.04 

  i (WFLus,DIRus) 535 0.03 

DFL-I 0.95 Intercept -163 < 0.01 

    ḣDFL -14,585 < 0.01 

    i (DFLus,DFLds) 7,459 < 0.01 

    i (DFLds,WFLds) 7,523 < 0.01 

DFL-II 0.40 Intercept 112 < 0.01 

    ḣDFL 4,313 < 0.01 

    i (DFLus,DFLds) -2,208 < 0.01 

    i (DFLds,DIRds) -2,249 < 0.01 
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In summary, the analysis we conducted provided a validation of the 

percolation fluxes we obtained from the water balance computation in both 

the years and confirm the relevant variations we assessed between the two 

seasons. In fact, high values of the coefficient of determination were 

obtained especially in phase I, when most of the variation among years 

occurred. Furthermore, the models we identified highlighted the presence of 

flow dynamics that are phase-specific and quite complex because of the soil 

heterogeneity in the subsurface layers.  

3.3 General remarks on fluctuations of rice irrigation requirements  

Results of water balances presented in Section 3.1 highlighted that irrigation 

water requirements of flooded rice nearly double between two consequent 

crop seasons. In our case, such variation was mainly attributed to a 

significant variation in the percolation term, since crop evapotranspiration did 

not vary more than 20% between the two seasons, whereas variations in the 

percolation term reached 70% in DFL and 90% in WFL. This variability 

between the seasons is indeed supported by the analysis on groundwater 

dynamics we presented in Section 3.2.  

To our understanding, several factors can be responsible for the significant 

variations of the water use in the same field over two different cropping 

seasons. These factors are briefly discussed in the following. It was not 

possible, in our case, to clearly identify which one of factors was decisive nor 

to quantify the relative contribution of each one, however their combination 

could have played a relevant role. 

Most of the variation between the two years occurred during the period after 

the first submersion (see Section 3.2, phase I), whereas the average 

percolation rate in the remaining part of the agricultural season (phase II) 

was much more constant over the two years. Focussing just on phase I, the 

groundwater level at the beginning of the phase was shallower in 2013 than 

in 2012 and in this year lower water requirements were observed. The 
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higher groundwater level was likely due to the heavy rainfall occurred in 

Spring 2013 that amounted to 380 mm in the months from April to May.  

According to the statistical analysis presented in Section 3.2, the relatively 

deep groundwater level at the beginning of the irrigation season (say water 

table deeper than 0.5 m) was negatively correlated with the percolation 

fluxes, i.e. the lower the groundwater levels, the higher the percolation.  

A preliminary consideration on the sign of the coefficient may suggest that 

the strong negative correlation between the two trends could be due to a 

random similarity in the trends that should not be explained in terms of 

causal relationship. That is to say, the groundwater raised because of the 

recharge from flooded fields in the area, and the percolation decreased 

because of soil clogging, but none of the two occurrences was related to the 

other. However, the Richards equation (Richards, 1931) clearly 

demonstrates that the water flow between two points is a function of the 

pressure gradient between the points and of the hydraulic conductivity, 

therefore the water table depth does play a fundamental role in determining 

vertical water fluxes in the unsaturated zone. This does not mean that soil 

clogging did not have an impact on the amount of water percolating, but, 

rather, that a causal relationship between groundwater levels and 

percolation can be assumed in phase I in addition to the effects induced by 

changes in the soil structure.  

On the other hand, a different phenomenon occurred during phase II when 

the relationship between percolations and groundwater levels became 

positive, i.e. the higher the percolations, the higher the groundwater levels. 

During phase II, when the depth to the groundwater is less than 0.5 m, the 

cascading model appears to be more meaningful, i.e. downward water fluxes 

maintained a saturation of the soil profile by continuously providing a 

recharge to the phreatic aquifer (see the conceptual functioning of a tank 

model). Moreover, the shallow groundwater may trigger a lateral flux towards 

the drainage channel that further explain the positive correlation between the 
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two variables. Therefore, subsurface water dynamics could have had a not 

negligible effects on the irrigation amounts we estimated. 

Another issue involves the soil conditions. Although tillage operations were 

the same in both years, the pattern and intensity of rainfall events between 

ploughing and the first submersion was different. In this respect, intense 

rainfall events occurring between tillage operations and the first irrigation can 

lead to a greater soil compaction (Sacco et al., 2012) thus reducing the 

significant percolation that is generally observed in correspondence with the 

first flooding (see Figure 3). In our case, rainfall was higher in 2012 than in 

2013 (180 mm against 113 mm), but in 2012 they were distributed over a 

much longer period occurred between ploughing and flooding. In 2013, soil 

tillage was delayed by around one month due to adverse meteorological 

conditions and more intense rainfall events occurred shortly before the first 

flooding. This could have determined some degree of soil compaction even 

before the effect induced by the first flooding. In addition to that, Bhagat et 

al. (1996) suggest that the effect of soil tillage on the soil structure is highly 

dependent on the soil moisture antecedent to tillage. Due to the heavy 

rainfall occurred in Spring 2013, tillage was performed on a wetter soil, with 

consequent effects on the soil structure.  

Another reason for the greater irrigation amounts required in 2012 could be 

the presence of macrospores induced by earthworms, as suggested by 

some authors like Garg et al. (2009) who report on profuse earthworm casts 

in paddy plots especially early in the season. Although a systematic analysis 

on earthworm population in both years was not performed, we collected 

evidence of the presence of earthworms both in the experimental fields and 

in the surrounding (e.g. during a deep excavation 1 m deep we identified a 

specimen compatible with the Criodrilus lacuum - Hoffmeister 1845).  

On the contrary, we excluded possible effects on the hydraulic conductivity 

of variations of the water viscosity triggered by fluctuations of the water 

temperature, as reported by Yukawa (1992). In our case no significant 
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changes in water temperature were detected in the series of values recorded 

by all the sensors. 

In light of the different explanations listed above, the irrigation requirements 

of rice are clearly not only determined by the water regime that is adopted 

(either traditional flooding or less water-demanding methods) nor only by the 

mere granulometry of the soil where rice is grown. Even when the very same 

regime is applied to the very same field, a significant inter-annual variability 

my occur in response to variations of environmental factors including 

groundwater levels, changes in the soil structure, meteorological conditions 

also prior to crop establishment and biotic factors. 

4 CONCLUSIONS 

A 2-year rice experiment was carried out in a rice growing area on Northern 

Italy where three different water regimes were compared, namely continuous 

flooding of water seeded rice (WFL), delayed flooding of dry seeded rice 

(DFL) and intermittent irrigation of dry seeded rice (DIR).  Net irrigation water 

requirements of conventional flooded rice (WFL) ranged between 1,500 and 

3,000 mm with a marked variability between two consequent seasons (3,020 

mm in 2012 against 1,520 in 2013). DFL determined a reduction total water 

use compared to WFL amounting to 20% on average, while irrigation 

amounts applied to DIR were on average 60% less than WFL.  On the other 

hand, WFL determined the highest average yield (10.2 t ha-1), whereas 

reductions by 3% and 28% were observed in case of WFL and DFL 

respectively. Values of water use efficiencies (evapotranspiration over net 

water input) and water productivity (grain yield over net water input) were 

therefore in the order WFL < DFL < DIR. The latter reached a water use 

efficiency of 0.56 mm mm-1 and a water productivity of 0.88 m3 ha-1. 

Considering the values of water use indicators, the best performance was 

achieved by intermittent irrigated rice. However, the yield reduction 

compared to the other treatments is very high (more than 20%) and it 

represents a significant limitation to the adoption of this technique by rice 
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farmers in the area. Moreover, an overall balance of different water regimes 

in rice paddies should consider various aspects not addressed in this paper 

e.g. the actual water availability and its cost, a balance between the cost of 

yield losses versus the profit for the water amount that is saved, the effects 

of  water saving regimes on the hydrology of the area and the consequent 

feedbacks at both the field and the regional scale, the effects the different 

agronomic practises required by aerobic rice on pollutant loads in surface 

and subsurface water, on gas emissions, on quality of grain yields etc.  

The great difference in irrigation requirements of WFL and DFL between the 

two seasons can be mainly attributed in variations of the percolation term, 

since the difference in crop evapotranspiration was within 20% against a 

percolation that halved from 2012 to 2013. The percolations we obtained as 

the residue of the water balance were investigated in relation to 

measurements of groundwater levels collected in six different piezometers 

installed across the experimental fields. Data were divided into four samples, 

based on the type of treatment (WFL or DFL) and on the phase of the 

agricultural season (distinguishing between the period of the first submersion 

and the remaining part of the season). Data of the years were instead 

treated as a unique sample. Satisfactory R-squared were obtained 

especially during the first period (0.90 for WFL and 0.95 for DFL), when most 

of the variations between the two years occurred, revealing a very good 

agreement between percolation fluxes and groundwater levels. The 

relationship between the variables is however different depending on the 

groundwater level, as revealed by the signs of the coefficients of regressions 

that are different between the two phases, yet equal between the plots. The 

models we obtained suggest that quite complex water movements may 

occur in case of the presence of layers with different permeability like the 

case under examination, and that the flow intensity and directions may 

change significantly with varying the groundwater level itself, which is lower 

at the beginning of the agricultural season and rises after the first flooding.  
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An attempt to provide explanations for the relevant changes in percolation 

between consequent seasons is also presented. Such differences, can be 

attributed to the combined effects of the following factors: i) the groundwater 

level at the beginning of the rice season through its influence on the 

hydraulic gradients; ii) the soil moisture antecedent to the tillage operations 

affecting the soil structure; iii) the rainfall intensity occurred between soil 

tillage and the first irrigation event producing an effect of soil compaction; 

and iv) the possible occurrence of preferential macropore fluxes due the 

activity of earthworms, particularly in the early part of the agricultural season.  

In conclusion, a proper comparison of different water regimes in rice fields 

require the adoption of integrated monitoring systems able to investigate not 

only punctual phenomena, but also their dynamics across space. Moreover, 

results obtained from just one experimental season can significantly deviate 

from the average behaviour due to the significant effect of year-specific 

occurrences on paddy irrigation requirements. 
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Abstract 

Studies conducted at the field scale report significant reductions in water 
requirements of rice when continuous submergence (CS) is replaced by less water-
demanding regimes like flush-irrigation (FI, i.e. intermittent irrigations of rice growing 
in aerobic conditions). The effects of their extensive application in paddy areas with 
shallow groundwater is however much less investigated. 
The paper presents a scenario analysis investigating the impacts on irrigation 
requirements induced by a shift from CS to FI in an irrigation district of Northern Italy 
where rice is the main crop, followed by maize and poplar. The area is characterised 
by a shallow water table fluctuating between two meters (wintertime) and few tens of 
centimetres (summertime). We applied a three-stage procedure, where we first 
analysed present state conditions using the SWAP (Soil, Water, Atmosphere, Plant) 
model to simulate irrigation deliveries and percolation fluxes. Then, we calibrated an 
empirical relationship between estimated percolation fluxes and measured 
groundwater levels. Finally, we applied this relationship, in combination with the 
SWAP model, to predict the variation of district irrigation requirements due to a 
widespread shift from CS to FI.  
Results show that neglecting the feedbacks between irrigation and groundwater 
depth led to overestimating the reduction of irrigation requirements, which 
decreased from around 65% when no feedback is considered to around 40% when 
accounting for feedbacks between groundwater levels and groundwater recharge. 
Moreover, changes in the irrigation method of rice could determine higher irrigation 
requirements of maize because of decreased groundwater levels. The study 
underlines the importance of specifically addressing the role of field irrigation 
management on hydrological processes at larger scales. 
 

Keywords: Paddy; Water saving techniques; Shallow groundwater; Irrigation 
district; SWAP model; Scenario analysis 
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1 INTRODUCTION 

Water saving technologies in rice production have received more and more 

attention in the last couple of decades because of their potential to reduce 

the high water requirements of rice farming, which are estimated to be 

around 40% of the total irrigation water (Bouman et al., 2007b). Although 

water saving technologies usually represent a way to cope with water 

scarcity rather than a deliberate choice of farmers to save water (Bouman et 

al., 2007b), an increased interest towards these methods is assessed even 

in some rice-growing areas where water shortages is not an issue of major 

concern. Among water saving techniques, flush irrigation, i.e. rice irrigated 

just like an upland crop such as wheat or maize, has been tested in different 

environments (e.g. Belder et al., 2007; Bouman et al., 2005; Bouman et al., 

2007; Feng et al., 2007; Govindarajan et al., 2008; Kato et al., 2009; Tabbal 

et al., 2002; Xue et al., 2008). Various authors report that flush irrigation (FI) 

of aerobic rice may determine a reduction of water inputs by up to 60% 

compared to continuous submergence (CS), with a yield loss of 10-30% 

(Borrell et al., 1997; Bouman et al., 2005; Tabbal et al., 2002). However, 

most research on alternative irrigation techniques so far has been limited to 

individual field experiments and there is still the need to assess and quantify 

the nature of the savings when replacing continuous flooding with less 

water-demanding irrigation regimes, especially with respect to large-scale 

and long- term effects (see, e.g., Guerra et al., 1998; Humphreys et al., 

2005). One issue, in particular, refers to the role of the feedback effects on 

rice irrigation requirement due to the likely increase of groundwater depth 

when a large-scale shift from CS to FI takes place. Indeed, Belder et al. 

(2005) and Cabangon et al. (2004) observed that groundwater table depths 

remained very shallow in various field experiments, while it can be expected 

that the large-scale adoption of FI or of similar techniques will lead to an 

increase of the groundwater table depth due to reduced recharge (Belder et 

al., 2004; Mishra et al., 1990). This, in turn, will increase percolation and limit 
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the root uptake from the groundwater, affecting the actual magnitude of the 

water savings (Belder et al., 2007; Tabbal et al., 2002).  

Italy is the leading rice producer of the European Union with around 235,000 

ha amounting to 52% of the rice areas located in Europe (ENR, 2013). 

Around 92% of this surface is found in the Western Po Valley (ENR, 2013), 

where rice has been traditionally grown in bunded fields, that are kept 

flooded from April to September. The traditional agricultural practice consists 

of broadcasting pre-germinated seeds over submerged levelled fields and 

then maintaining a ponded water depth of about ten centimetres for almost 

the whole growing season. Currently, the seasonal irrigation depth averages 

approximately 3,000 mm (INEA, 2013), but it is quite variable in the area 

depending on soil characteristics and groundwater depth. The long-term 

persistence of a traditional rice cropping system in the vast majority of the 

area has created a very characteristic agro-environment, that has been 

included in the European ecological network NATURA 2000 and in the 

official list of the European Special Protected Areas (HABITAT Directive, 

92/43/EEC). Moreover, the continuous submergence practice is a key factor 

in the recharge of the phreatic aquifer, which is very shallow over most of the 

area and feeds a huge number of semi-natural springs, called “fontanili”, that 

form a longitudinal strip of groundwater dependent ecosystems across the 

area. The increasing competition among water users is pushing towards the 

adoption of water saving techniques also in this area. The practice of dry-

seeding and delayed flooding has been increasing during the last decade, 

and, more recently, the interest for the FI technique has grown significantly 

in view of its potential to reduce rice irrigation requirements and, ultimately, 

to diminish the pressure due to agricultural water diversions on the riverine 

environments, in order to achieve the objectives of the EU Water Framework 

Directive (2000/60/EC).  

In this paper, we present a pilot study on the impacts of the shift from CS to 

FI technique for rice irrigation in an agricultural district with shallow 

groundwater table, accounting for the feedbacks between water amounts 
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applied for irrigation and fluctuations of groundwater depth. The district has 

mixed land use (rice in combination with maize and poplar) and is located in 

Northern Italy, within the largest traditional rice growing area in the European 

Union. We applied a three-stage procedure based on a simplified 

representation of the complex, distributed interactions between the water 

dynamics in the unsaturated zone and in the groundwater. We first used the 

SWAP model (Kroes and van Dam, 2003) to simulate the different soil-crop 

systems, deriving an estimate of the average percolation fluxes per unit area 

(Stage 1). Then, we calibrated an empirical relationship between the 

estimated percolation fluxes and the corresponding observations of 

groundwater depth (Stage 2). Finally, we used this relationship in 

combination with the SWAP model for a scenario analysis to study the 

effects of the shift from CS to FI on the district irrigation requirements of rice 

and of the other crops (Stage 3). We compared the results obtained with 

both a static groundwater level (i.e. invariant with respect to the present 

state) and with a dynamic one (i.e. groundwater level changes according to 

smaller recharge occurring under the scenario land use) 

2 MATERIAL AND METHODS 

2.1 Pilot study area  

The study area is the San Giorgio East district, which is located at the centre 

of a large rice area about 45 km southwest of the city of Milan, Northern Italy 

(see Figure 1). 

The study area is bounded to the West and East by two small streams, 

Arbogna and Terdoppio, respectively (see Figure 1) and is characterised by 

nearly homogeneous soils and an average slope around 1‰. The main soil 

type is Argic Udipsamments mixed mesic (ERSAL, 1996; USDA, 1975), with 

a high percentage of sand (see Table 2). According to the ROSETTA pedo-

transfer functions (Schaap et al., 2001), the saturated hydraulic 

conductivities of this soil range from 170 cm d-1 in the Apg horizon, to 550 
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cm d-1 in the deeper horizon. It is a highly draining soil for CS rice 

cultivation; however, favourable conditions are created by the shallow 

groundwater depth, with summer minimums of less than one meter and 

winter maximums within two meters. 

The local climate is humid subtropical (Cfa) according to the Köppen climate 

classification (Köppen 1936), with average temperature of 20°C and 

cumulated rainfall depth of about 360 mm during the agricultural season 

(April-September, average over the period 1993-2013).  

Land use includes rice, maize and poplar (see Table 1). Rice surface has 

been steadily decreasing in the last years, from 50% of the total district 

surface in 2010 to less than 30% in 2013, mostly due to an increase of 

maize that was enhanced by the construction of a biogas plant nearby. 

Irrigation supply is provided by two canals, the S.Giorgio and Daglio canals, 

which are managed by the Associazione Irrigazione Est Sesia (AIES), one of 

the most important irrigation associations in the EU, distributing 260 m3s-1 

for irrigation over an area of more than 200,000 ha. Both the irrigation canals 

are fed by surface water diversions. CS is adopted for rice irrigation, while 

border irrigation is used for maize, with water deliveries on rotation of 15 

days. The same method and rotation interval are used also for poplars, 

which, however, are irrigated only during the first four years after plantation, 

while they are rainfed for the subsequent six years of the average production 

cycle.  

Monitoring data were obtained from AIES and from ARPA Lombardia (the 

Regional Environmental Protection Agency).  AIES provided daily values of 

the water flow in the two irrigation canals and bi-weekly values of the 

groundwater level below the soil surface at two piezometers, one located in 

Ottobiano, close to the southern border of the district and the other at 

Cascina Stella, N-E from the district (see Figure 1). 

The hourly values of the agro-meteorological variables (temperature, 

precipitation, wind speed, solar radiation and relative humidity) were 
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acquired from the closest ARPA station, located in Castello d’Agogna, less 

than 10 km N-W from district centre. 

Site-specific information on crop biometrical variables (including the typical 

evolution of crop height, root depth, Leaf Area Index), crop coefficients, and 

stomatal resistance were derived from a collateral activity that we carried out 

on experimental rice plots during the years 2012 and 2013 (Chiaradia et al., 

2015; Facchi et al., 2013a; BioGesteca, 2014). 

 

Figure 1 – Pilot study area of the San Giorgio East district (Italy) with location of the 
main streams and piezometers  

Table 1 – Surface occupied by each land use over the years 2010-2013 

Year 

 

Maize 

(ha) 

Rice 

(ha) 

Poplar 

(ha) 

Bare 

(ha) 

2010 86 240 148 24 

2011 122 223 136 18 

2012 177 163 133 26 

2013 197 136 146 19 
 



 Large conversion to water saving regimes: implications at the district scale 

93 
 

2.2 Methodological framework 

In order to assess the effects of the shift from CS to FI on the district 

irrigation requirements of the S.Giorgio-E district, we implemented a multi-

stage approach making use of either physically-based or empirical models 

and water balance equations. 

Stage 1 (Section 2.3) involved a preliminary phase of data collection and, 

later, the analysis of the water use in the district. To this purpose, we 

collected continuous measurements of total irrigation supply to the district, of 

agrometeorological variables, and of groundwater table depths over four 

years (2010-2013). Thanks to these data, we applied the SWAP model 

(Kroes and van Dam, 2003), in order to simulate the water dynamics in the 

maize, poplar and bare areas and to estimate the amount of irrigation water 

provided to the irrigated crops (Section 2.3.1). Results of the simulations 

have been aggregated to derive the total percolation from these areas and 

estimate the share of the total district irrigation that is needed to satisfy 

maize and poplars water requirements. It was then possible to obtain the 

irrigation supply to CS rice, as the residual of the district irrigation (given by 

the measurements) minus the irrigation provided to maize and poplar 

(obtained through SWAP). As last step of Stage 1, we applied the field water 

balance equation for the CS rice, in combination with a Penmann-Monteith 

type model of evapotranspiration fluxes, to estimate the amount of water 

percolating from flooded fields and thus the contribution of rice area to the 

district percolation (Section 2.3.2). 

In Stage 2 (Section 2.4), we computed the total value of the district net 

percolation flux (percolation minus the upward water flux 1 m below the soil 

surface) on a monthly basis over the four year 2010-2013; we derived the 

average monthly values of groundwater levels from bi-weekly measurements 

at the Ottobiano piezometer; and then we calibrated an empirical 

relationship between the estimated net percolation fluxes (PF) and the 

groundwater level (GWL). In the following, we will refer to this empirical 

model as PF-GWL relationship. 
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In Stage 3 (Section 2.5), we analysed the effects of a large-scale transition 

from CS to FI water management on the reduction of irrigation deliveries. 

Two different scenarios have been considered: the former assuming that the 

depth to the groundwater does not change from the present condition, the 

latter accounting for the fluctuations of groundwater depth triggered by the 

significant change of the water management in rice areas. The two cases 

are referred to as ‘No feedback’, ‘NF’ (Section 2.5.1), and ‘Feedback 

Accounting’, ‘FA’ (Section 2.5.2), depending on whether the feedback 

between the amount of water applied for irrigation and the fluctuations of 

groundwater depth are considered or not. SWAP model simulations were 

used to investigate both the scenarios. FA scenario, however, required the 

further application of the PF-GWL relationship in order to identify the target 

groundwater when CS is replaced by FI. 

2.3 Analysis of the present state 

2.3.1 Maize, poplar and bare areas 

The water balance analysis of maize, poplar and bare areas was performed 

via model simulation by applying the Soil Water Atmosphere Plant (SWAP) 

model (Kroes and van Dam, 2003) over the years 2010-2013. SWAP is a 

well-known physically-based agro-hydrological model that implements a 

finite difference solution of the Richards’ equation: 

     hS
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1  (1) 

where 𝜃 is the soil water content [-], h is the soil water potential [L], C is the 

water capacity [L-1], t is time [T], z is the vertical coordinate taken positive in 

the upward direction [L], K is the unsaturated hydraulic conductivity [LT-1] 

and S is the sink term [T-1] representing the water extraction by roots and 

evaporation from the surface soil layer. The water retention curve and the 

hydraulic conductivity curve are defined through the analytical functions of 

Van Genuchten (1980) and Mualem (1986).  
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Weather data used for the simulations were provided by the hourly values of 

the agrometeorological variables registered in the Castello d’Agogna 

weather station.  

Soil characteristics in the S. Giorgio district are quite homogeneous (ERSAL, 

1996), so we assumed that the same profile is representative of the whole 

district area. The hydraulic parameterization of the profile is reported in 

Table 3. We obtained the values of the hydraulic parameters of each horizon 

using the ROSETTA pedo-transfer functions (Schaap et al., 2001) with a soil 

bulk density estimated according to Baumer (1990). For the numerical 

solution of the Richards’ equation, the profile was discretized into 1 cm-

compartments up to 60 cm and into 5 cm-compartments up to 230 cm. 

The measured bi-weekly values of groundwater depth recorded at the 

Ottobiano piezometer were used to derive, by linear interpolation, the daily 

values that served to set bottom boundary conditions of the SWAP 

simulations. Measurements taken at Ottobiano instead of those collected in 

Cascina Stella were used as they were found to be more representative of 

the groundwater level of the district as explained in Section 2.4. 

With respect to crop development, SWAP includes two modules of different 

complexity for the simulation of crop behaviour: a detailed crop growth 

simulation model WOFOST 6.0 (Spitters et al., 1989; Hijmans et al., 1994) 

and a simple crop module, where the time patterns of Leaf Area Index or 

Soil Cover Fraction, crop height and rooting depth must be provided as input 

data. Since the former module needs input of many parameters that could 

not be calibrated due to lack of information, we chose to adopt the simple 

crop module in the simulation runs. The crop module of maize was 

parameterized using time patterns of crop variables derived from field 

observations under similar conditions, while a fixed parameterization from 

the literature was used for poplar. As regards maize, sowing and harvesting 

dates, as well as seasonal patterns of biometric parameters, were estimated 

according to a model based on the temperature sum of each year (Stockle 

and Nelson, 1996; Gandolfi et al., 2010) with reference values of LAI, crop 
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height and rooting depth that are representative of the Italian environment 

(Facchi et al., 2013b; Rienzner et al., 2013). This approach enabled to 

simulate development stages whose lengths are consistent with the thermic 

conditions of the year and a crop growth that is in agreement with field 

observations. On the other hand, since little site-specific information was 

available for poplar, we adopted the generic deciduous forest 

parameterization suggested by Kroes at al. (2008) (crop file provided with 

SWAP version 3.2.36), but we modified the pressure heads regulating root 

water uptake (model of Feddes et al., 1978) according to the specific values 

for poplars found in Lv et al. (2014). Moreover, the values of specific 

parameters of young poplars, such as Leaf Area Index, were adapted to 

account for the smaller crop development. A summary of the crop 

parameterization adopted for each crop is reported is Table 4. 

Mature poplar was treated as rainfed only, while the simulation of the 

irrigation applications to maize and young poplar was obtained using the 

irrigation scheduling option of SWAP. We set the timing of irrigation 

availability and of irrigation depth according to the information provided by 

AIES i.e. water available on a 15-days turn and amounts of approximately 

150 mm to maize and 210 mm to young poplars. In addition, AIES provided 

information on the number of irrigation supplies to both the crops, which are 

within a range of 4 to 6 for maize and 1 to 3 for poplars depending on the 

precipitation pattern. In fact, farmers will probably skip the irrigation in case 

of high soil moisture after heavy rainfalls. In order to mimic this behaviour, 

we identified a pair ‘moisture threshold-soil depth’ that triggered a number of 

irrigation events per season within the ranges stated by AIES. Once the 

threshold has been identified, we verified that no significant transpirative 

stress occurred since AIES declared that crop water requirements are 

substantially satisfied under the current irrigation management.  
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SWAP simulations provided the scheduling of the irrigation applications, the 

hourly values of evapotranspiration, and the water fluxes along the profile for 

all the land uses (maize, young and mature poplar and bare soil). These 

results are representative of the behaviour of a typical maize or poplar field 

in the district, but there are obviously variations from field to field due to a 

number of management factors (scheduling of agricultural operations, water 

availability on rotation, etc.). However, these differences tend to be filtered 

out when longer time intervals are considered. Therefore, while a lumped 

representation of the whole maize or poplar area is inadequate for intervals 

of hours or days, it becomes acceptable for longer intervals. In our case, we 

selected a monthly time interval, considering that it is long enough to 

homogenize the variability of the management factors, but still sufficiently 

detailed to capture the seasonal fluctuations of the groundwater level and 

their influence on the soil water dynamics.  

2.3.2 Rice areas 

The application of physically based models, like SWAP, simulate soil water 

dynamics in continuously submerged conditions is more difficult than in the 

case of upland crops, due to the constantly saturated soil profile, the 

significant role of horizontal components of the flow, and the high influence 

of the variability of soil characteristics, both natural and induced by 

agricultural practices. Considering these difficulties and that the objective of 

our study was the analysis of the seasonal patterns of the rice irrigation 

volumes and of the net percolation flux, we adopted a different approach, 

based on the direct application of the monthly water balance equation for a 

unit of CS rice surface: 

t,rt,rt,rt,rtt,r fsepri    (2) 

in combination with the monthly water balance equation of the irrigation 

canals network: 

 tt,yt,yt,mt,mt,rt,rt,ct,ot,i CAiAiAiPQQ   (3) 
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The variables in Equations (2) and (3) have the following meaning: 

ir,t is the irrigation depth applied [L3L-2]; 

rt is the rainfall depth [L3L-2]; 

pr,t is the net percolation depth [L3L-2]; 

er,t is the evapotranspiration depth [L3L-2]; 

Δsr,t is the specific storage variation in the rooted soil layer [L3L-2]; 

Δfr,t is the variation of the flooding depth [L3L-2]. 

Qi,t is the total inflow to the district through the S.Giorgio and Daglio canals 

[L3]; 

Qo,t is the total surface outflow from the district [L3]; 

Pc,t is the seepage flux from the canals [L3]; 

ΔCt is storage variation in the canals [L3]; 

Ar,t, Am,t, Ay,t and Ap,t are the surfaces of the rice, maize, young poplar and 

mature poplar areas, respectively [L2] (see Table 1). 

We used the two equations in cascade: first we solved Equation (3) for the 

rice irrigation ir,t and then we used the ir,t values to compute the rice 

percolation pr,t through Equation (2). We derived the values of im,t and iy,t in 

Equation (3) directly from the SWAP simulations, as illustrated in the 

previous section. The inflow Qi was obtained from the measured daily values 

of the flowrate in the two canals feeding the district, that were available for 

the four-year period 2010-2013. According to AIES, approximately one third 

of Qi,t is lost through seepage from the canal network, due to the high 

permeability of the soils. Therefore Pc,t was assumed equal to 30% of the 

surface inflow Qi,t. Surface outflows Qo,t during the agricultural season are, 

on the contrary, very small compared to the inflows Qi, occurring only after 

significant rainfall events. Following again the indications of AIES, we 

estimated a value of Qo,t of 5% of the distributed irrigation amount (i.e. of the 

total supply Qi,t minus the seepage losses Pc,t) during the irrigation season, 

while, in the remaining months, we assumed that it consisted of the whole 

inflow except for the percolation losses, since no distribution takes place, i.e. 

we considered Qo,t equal to the difference between Qi,t and Pc,t. Finally, we 
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assumed that the last term in Equation (3), namely the storage variation ΔCt, 

is negligible compared to the other terms, considering that water circulation 

in the canal network is maintained throughout the year and the actual free 

storage capacity is relatively small.  

Going back to the solution of Equation (2), we derived the rainfall depths rt 

directly from the registrations at the Castello d'Agogna meteorological station 

(assuming a uniform distribution over the district area).  

The evapotranspiration term er,t was derived from the daily estimates 

obtained with the FAO-Penman-Monteith method (Allen et al., 1998). 

Reference evapotranspiration (ET0) was computed using the meteorological 

data registered at the Castello d'Agogna station. Site-specific values of the 

crop coefficients (Kc-ini, Kc-mid, Kc-end; see Allen et al., 1998) for flooded 

rice were derived from an intensive 2-years experimental activity (2012 and 

2013) carried out in a site close to the San Giorgio-E district (Chiaradia et 

al., 2015; BioGesteca, 2014), where  the daily values of rice 

evapotranspiration in well-watered conditions, ETc, were obtained by 

integrating eddy-covariance flux measurements and Penman-Monteith type 

models, as reported in Facchi et al. (2013a). Kc-ini, Kc-mid, Kc-end values 

were then derived as the ratio of ETc and ET0 in the different development 

stages and they were equal to 0.8, 1.1 and 0.9 respectively. The Kc curve 

for the four years of the study were built using these values in combination 

with a growing a degree days model to simulate the length of the stages in 

each year. 

The storage variations Δs,t and Δf,t were considered negligible, except in May 

and September. In May, Δf,t was assumed equal to the average depth of 

submergence (100 mm) and Δs,t to the incremental water amount to reach 

the saturation of the soil profile from the condition prior to submergence. Soil 

water content prior to submergence was estimated by running a SWAP 

simulation for bare soil conditions. In September, Δf,t was assumed equal to 

minus the depth of submergence and Δs,t to half of the saturated soil water 

content.  
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Lateral-flow components are not included in Equation (2) since their 

contribution to the total water balance is not supposed to be relevant due to 

the flat topography of the area (average slope in the district around 1‰). 

2.4 Calibration of an empirical relationship between percolation fluxes 

and groundwater levels 

The hypothesis behind this stage of the procedure is that the seasonal 

fluctuations of the groundwater depth observed in the San Giorgio-E district 

were mostly driven by the recharge due to rain and irrigation. We primarily 

focussed on the seasonal fluctuations of groundwater depth caused by the 

superposition of fluxes deriving from percolation of irrigation water to the 

natural groundwater recharge, since the scope of our analysis was not to 

capture the short-term fluctuations of the groundwater depth due to single 

irrigation or rainfall events.  

Groundwater dynamics in the district are also influenced by source and sink 

terms acting at larger spatial scales and not only by the direct recharge from 

the district. However, the area included between the Agogna and Terdoppio 

streams, which represent natural boundaries of the underlying phreatic 

aquifer, is quite homogeneous in terms of land use and irrigation 

management, hence the seasonal pattern of groundwater fluctuations is 

expected to be significantly uniform in space. This is also confirmed by the 

analysis of the observations at the Ottobiano piezometer and at a second 

piezometer, at Cascina Stella (correlation coefficient 0.86). In fact, the two 

series of measurements show very similar fluctuations (not shown), though 

the absolute values of groundwater depth are different due to the higher 

elevation of Cascina Stella compared to the rest of the area. Since the 

conditions in Ottobiano are more similar to the ones of the S. Giorgio-E 

district in terms of ground elevation and soil characteristics, we assumed 

that the monthly averages of groundwater depths taken in Ottobiano are 

representative for the whole district area.  
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Following the same rationale, we assumed that the average monthly net 

percolation flux from the S. Giorgio-E district, ps,t, is representative of the 

large-scale pattern of the recharge to the aquifer. So we computed its value 

for the years 2010-2013 considering the net percolation fluxes for the 

different crops and the channel seepage flux according to equation (4):  

A/)PApApApAp(p t,ct,bt,bt,yt,yt,mt,mt,rt,rt,s   (4) 

where pr,t, pm,t, py,t,  pp,t and pb,t are the percolations from rice, maize, young 

poplars, mature poplars and bare soil respectively [L3L-2]; Ar,t, Am,t, Ay,t,  Ap,t 

and Ab,t are the corresponding areas [L2]; Pc,t is the seepage flux from the 

canals [L3] and A [L2] is the district surface.  

Then, we used non-linear regression analysis techniques to calibrate an 

empirical relationship between the monthly series of net percolation flux and 

of reference groundwater level (PF-GWL relationship) that can be expressed 

in the quadratic form: 

  t,st,st ppGWL 2
 (5) 

where the first two terms at the right hand-side account for the effect of 

recharge fluxes, while the third one reflects the background value of 

groundwater depth, mainly determined by the water levels in the Terdoppio 

and Agogna streams that represent the aquifer boundaries. The,  and   

parameters were least-squares calibrated using the first three years of 

available data (2010-2012) and validated with data of year 2013. The 

goodness of the fitting was checked using traditional statistical indicators 

(correlation coefficient and Nash-Sutcliffe coefficient); the calibrated curve is 

presented in Section 3.2. 

2.5 Prediction of the effects of the FI technique  

The shift from CS to FI technique may involve a significant reduction of the 

flows needed for rice irrigation, which in turn may produce a decrease of the 
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percolation fluxes and of the recharge to the groundwater. This is expected 

to lead to a decrease of the groundwater level and, consequently, to smaller 

amounts of water retained in the rooted soil layer and, thus, to some 

increase in the irrigation (i.e. a feedback effect). Therefore, it is necessary to 

account for the feedback between irrigation and groundwater depth when 

the effects of the FI adoption are to be investigated on a large scale. 

In Stage 3 of our procedure, we first analysed the effects of the shift from CS 

to FI neglecting these feedbacks (No Feedback scenario or NF scenario). 

Then, we repeated the same analysis applying an enumerative algorithm 

that explores a set of different groundwater depth patterns in order to find 

the one that best accounts for the feedback between irrigation and 

groundwater triggered by the shift from the CS to the FI (Feedback 

Accounting scenario–FA scenario).  

In either of the two cases, the district percolation was computed by applying 

Equation (4) with the monthly series of percolations obtained by the SWAP 

simulations for each land use. The computation of the seepage flux from the 

canal, Pc,t in equation (4) was less straightforward than in the present state 

since Pc,t is a share of the total inflow to the district Qi,t which is unknown 

under the scenario. Pc,t was then obtained as the 30% of the gross amount of 

water required by the district that, in turn, was computed from the net 

irrigations to the other crops (i.e. ir,t, im,t and iy,t )  increased to account for both 

the seepage flux from canals and surface outflows.  

2.5.1 No feedback scenario (NF) 

No-Feedback scenario represents a picture of reductions in irrigation 

deliveries if all the CS rice area is replaced by FI rice and no changes in 

groundwater levels are accounted for. Therefore, it provides estimates of the 

reductions in water withdrawals that would be obtained if results of field-

scale experiments with a shallow water table are blindly extended to the 

district scale.  
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The SWAP model was run with input of the same meteorological data (years 

2010 to 2013) and bottom boundary conditions (monthly measures of 

groundwater level) used for the present state. Maize, young and poplar 

areas were therefore treated as discussed in Section 3.3.1. We applied the 

same modelling scheme also to simulate FI rice that can be considered as 

the other upland crops. Hence, we used the same soil parameterization, 

bottom boundary conditions and meteorological input data for the years 

2010-2013 to run a SWAP simulation of FI rice. The time patterns of Leaf 

Area Index, crop height and rooting depth were derived from a two-year 

monitoring activity of FI rice that we conducted nearby the San Giorgio-E 

district over years 2012 and 2013 (Table 4). In this framework, several 

campaigns per season were conducted making use of a A LP-80 AccuPAR 

Ceptometer for measurements of Leaf Area Index and a measuring tape for 

crop height and rooting depth. Details on the research can be found in 

Chiaradia et al. (2015); Cesari de Maria et al. (submitted); BioGesteca 

(2014). Starting from these reference values, the time pattern of crop 

development was obtained applying the same approach based the thermic 

sum we explained in Section 2.3.1. Like for maize and young poplar, we 

assumed that the rice fields are flushed intermittently, with a fixed irrigation 

depth of 150 cm, but with water applications scheduled on demand for two 

main reasons: i) because water delivery to rice farmers is currently no-stop 

due to the practice of continuous submergence, ii) in order to provide 

estimates of irrigation requirements to FI rice that are not constrained by any 

rotational scheme. Finally, we selected as the criterion to trigger irrigation 

applications for FI rice, the maximum allowed daily stress which requires 

input of a threshold value given by the ratio between actual and potential 

transpiration (e.g. with a threshold value of 0.90, the model schedules an 

irrigation each time the actual transpiration drops below 90% of the potential 

one).  
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Table 4 - Crop parameters in input to the simple crop module of SWAP.  

 
Present State and Scenario Scenario 

 Maize Young 
Poplar 

Mature 
Poplar 

Aerobic 
Rice 

Crop     

LAI max (m2 m-2) 5.20 c, h 2.00 f 4.00 e 4.70 b 

Root depth max (m) 0.85 c, h 1.00 e 1.00 e 0.40 b 

Minimum canopy resistance (s m-1) 70 a 150 e 150 e 66 b 

Critical pressure heads for root 

water uptake (hPa)* 

    

h1 -10 a   0 g   0 g 100 i 

h2 -40 a   0 g   0 g 55 i 

h3h -325 a -330 g -330 g -160 i 

h3l -600 a -2000 g -2000 g -250 i 

h4 -8,000 a -15,000 g -15,000 g -16,000 i 

Irrigation Scheduling     

Timing Fixed 

interval 

Fixed 

interval 

- On demand 

Irrigation depth (mm) 150 210 - 150 

Scheduling criteria Moisture 

content 

Moisture 

content 

- Daily stress 

* h1: pressure head below which roots start to extract water from the soil; h2: pressure head 
below which roots extract water at the maximum possible rate; h3h: pressure head below 
which roots can no longer extract water at the maximum rate for higher potential transpiration 
rates; h3l pressure head below which roots can no longer extract water at the maximum rate 
for lower potential transpiration rates; h4: pressure head below which root water uptake 
ceases. 

a Baroni et al. (2010); b BioGesteca, 2014; c Facchi et al. (2013b), d Feddes et al. 1978;  e 
Kroes et al. (2008); f Kroes et al. (2008) [modified]; g Lv et al. (2014); h Rienzner et al (2013); i 

Singh et al. (2006);.  

 

2.5.2 Feedback accounting scenarios (FA-15 and FA-10) 

In order to account for the feedback between irrigation and groundwater 

depth, we implemented an enumerative algorithm, whose flowchart is shown 

in Figure 2. The algorithm is based on two assumptions: i) the changes of 

percolation during the agricultural season due the shift from the CS to FI 

technique may alter the amplitude of the seasonal groundwater fluctuation 

but do not modify significantly its shape; ii) the effects of the same changes 

will gradually fade after the end of the irrigation period and they will not 
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influence the minimum value of groundwater depth, occurring in the fallow 

season.  

The rationale of the algorithm and the steps for its implementations are 

explained in the following. The groundwater depth of the district can be 

expressed as a function of the groundwater recharge, which, in summertime, 

depends mainly on the amount of water used for irrigation purposes. 

Therefore, if it is possible to identify an empirical model describing the 

relationship between the two variables in the present state, then the model is 

supposed to hold also under scenario land use, where a “new equilibrium” 

between groundwater depth and groundwater recharge is expected. It 

follows that the calibrated empirical relationship can be used to foresee the 

groundwater level resulting from a specific groundwater recharge (i.e. district 

percolation). The district percolation is however dependent on the 

groundwater level itself, which is unknown. To overcome this cross 

feedback, we generated N patterns of 12 monthly groundwater levels (where 

N = 16) with summer maximums ranging from –0.50 m (very shallow GWL 

for N = 1) to –2.00 m (relatively deep GWL for N = 16) and the remaining (N-

2) patterns with summer maximums in between these two extremes. On the 

other hand, the winter minimum was fixed at -2.00 m for all the N patterns, 

corresponding to the average winter minimum over the years 2010-2013. 

The 16 sets were obtained by applying equation (6) to the monthly average 

data recorded at Ottobiano over the years 2010-2013.  

28

2

282
dd

dd
)dv(dv

j

,ij,i



    with   )i(..v ,i 110028   (6) 

where 

i=1, 16 is the variant index; 

j=1, 12 is the month index (from January to December); 

vi,j is the average value of groundwater depth (m) of variant i in the month j; 

�̅�𝑗 is the average observed value of groundwater depth (m) in month j at 

Ottobiano (subscript 2 for February and 8 for August). 
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We will refer to the N patterns of groundwater levels computed according to 

Equation (6) as the a priori variants. These 16 patterns were used as bottom 

conditions to run as many simulations for each land use of the scenario (i.e. 

FI rice, maize, young poplar, mature poplar and bare soil). The same 

simulation period going from 2010 to 2013 was considered.  

For each of N a priori variants, we obtained the series of irrigation 

requirements (ir,t, im,t,, iy,t) that are scheduled by SWAP taking into 

consideration that specific groundwater level set as bottom boundary 

condition. The simulations provided also the monthly specific net 

percolations pr,t, pm,t, py,t, pp,t, and pb,t, which were used to compute N series 

of district percolation ps,t through the application of Equation (4) (where N is 

still equal to 16).  

Next step was the application of the PF-GWL relationship (Equation (5)) with 

input of the N series of ps,t in order to obtain as many patterns of 

groundwater levels according to the PF-GWL relationship. These N patterns 

of groundwater levels will be referred to as a posteriori variants. The 

simulation better accounting for the scenario is the one where the a priori 

pattern (in input to SWAP) is as close as possible to the a posteriori pattern 

(from the PF-GWL relationship with input of district percolation obtained 

aggregating results from SWAP). In other words, when the a priori and the a 

posteriori groundwater levels fit, it means that this specific pattern of 

groundwater levels determines water requirements that, in turn, generate 

percolation fluxes maintaining that very same levels used in input. In order to 

identify the best fit between the a priori and a posteriori series, we select the 

pair with the smallest distance between the two summer maximum levels. 

An overview of the enumerative algorithm is reported in Figure 2. 

Two different study cases with respect to FA scenario were considered that 

differ in the rotational irrigation of maize. In the former (Feedback 

Accounting–15, FA-15), the interval between two subsequent irrigation of 

maize was equal to 15 days like in the present state, whereas in the latter 

(Feedback Accounting–10, FA–10) the interval was shortened to 10 days. 
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FA-10 was introduced since quite a significant stress, especially in the 

month of July, appeared to occur under FA-15. 

 

Figure 2 - Scheme of the enumerative algorithm used to select the best groundwater 
level (GWL) variant for the simulation of the different crops in each year 

3 RESULTS AND DISCUSSION 

3.1 Analysis of the present state 

3.1.1 SWAP simulations for maize and poplar areas 

Results from SWAP simulations provided the irrigation water requirements of 

maize and young poplars, as well as all the other water balance terms of 

maize, poplar and fallow areas over the agricultural seasons 2010-2013.  

To obtain a number of irrigation events consistent with the criteria explained 

in Section 2.3.1, we manually calibrated the pair “soil moisture-soil depth” 

triggering the application of water, which is allowed only every 15 days. The 

best combination was found to be a soil water content of 0.13 cm3 cm-3 at the 

depth of 10 cm, which corresponds to the soil moisture at field capacity 

given the high percentage of sand (more than 70%, see Table 2). The 

threshold identified therefore suggests that the irrigation is applied even at 
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high soil water contents, in order to avoid the risk of incurring in water stress 

conditions during the 15 days passing before the next turn. The same 

criterion was adopted for poplar, but with a rotation of 30 days in order to 

reproduce an average number of 2-3 irrigations per season that AIES 

indicated as the mean values per season. The calibrated threshold 

determined 5 irrigation events to maize in all years but 2010, when 

favourable amounts and distribution of rainfall during the irrigation season 

significantly reduced the number of irrigations to 3 per season. Such results 

are in agreement with the average number of irrigations in the area (AIES, 

personal communication) and enabled to prevent significant water stresses 

as shown by the transpirative ratio of the month of July which was on 

average higher than 0.85. As regards young poplars, 3 irrigation applications 

were scheduled in each season for 2011 to 2013, while again a smaller 

number amounting to 2 was needed in 2010 because of the particular 

weather conditions. 

Table 5 reports the main water budget components for a unit surface of 

maize, young poplar and mature poplar, cumulated over the months May to 

August corresponding to the irrigation season. The average water use 

(irrigation plus rainfall) of maize over the period 2010-2013 was around 900 

mm, of which 35% was provided by rainfall and the remaining part was 

supplied through border irrigations of 150 mm each on a 15-days turn. Quite 

significant variations however occurred in 2010 (as mentioned above), when 

heavy rainfalls during the irrigation period made the irrigation requirements 

drop to 450 mm (443 mm of rainfall against an average of 180 mm over the 

same period in the years 2011-2013). Instead, actual evapotranspiration is 

rather constant, being around 460 mm (±53 mm) against a potential 

evapotranspiration of 646 mm (±54).  
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Although the actual evapotranspiration is lower than the potential one by 

30%, most of this deficit is due to a decrease of evaporation, since actual 

transpiration is on average the 85% of the potential one during the whole 

period (May to August) and, especially, during the critical month of July 

when flowering occurs. The transpirative stress occurred in July 2010 is in 

fact due to excess of water rather than lack of water, as the groundwater 

levels reaching a maximum of -60 cm in the month of August determined a 

reduction of the transpiration rate by 27% . 

Irrigation requirements of young poplars were 630 mm in the years 2011 to 

2013 and 420 m in 2010 

3.1.2 Water balance of rice areas 

Water balance terms for a unit surface of submerged rice were obtained 

through the application of Equation (2) and (3), where the amount of rice 

irrigation was obtained by subtracting to the measured flow discharges the 

following components: i) amount of water lost via seepage and percolation 

from the canals, ii) amount of water required to satisfy the other crop water 

requirements (as obtained by the SWAP simulations), and iii) amount of 

water flowing out from the district. 

Results showed that average irrigation requirements under continuous 

submergence conditions range from 3,400 mm in 2010 to more than 4,300 

mm in 2013, whereas the rice cropped surface showed the opposite trend 

decreasing from 240 ha to 136 ha over the same period. On the one hand, 

some underestimation of irrigation provided to the other crops could 

potentially bring to an overestimation of rice irrigation, since the amount of 

water applied to rice was estimated as the residual term of the irrigation 

network balance (see Equation (3)). However, the 4-years average irrigation 

of 3,800 mm is a consistent value considering the very high sand percentage 

of the soils and it is in very good agreement with what found also by INEA 

(2013) who reports water requirements in the same area in excess of 4,000 

mm. Moreover, the higher value estimated in 2013 could be due to two 
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different issues both related to the contraction of the rice area. First, the 

replacement of submerged fields with flush irrigated ones occurred with a 

sparse pattern, which may contribute to increasing the local seepage fluxes 

and then the water requirements per unit of rice surface.  In addition, the 

water supply in the area has been planned for many decades under 

conditions of predominance of CS rice. In the last three years, however, rice 

has been progressively replaced by maize and it is not unlikely that the 

irrigation management still has to fully adjust to the changes in water 

requirements occurring after a significant rearrangement of land uses in the 

area. This inertia in adaptation implies that more water than the amount 

actually needed by the reduced rice surface would be diverted, with outflows 

possibly higher than the share we considered.  

Evapotranspiration from the rice surfaces in the months from May to August 

amounted to 607 mm on average and was assumed to be equal to the 

potential one, since flooding conditions are maintained throughout the 

growing season.  

The net percolation trend reflects that of irrigation with an overall increase 

from 2010 to 2013 and an average value of 3,200 mm over the years 

considered. Such relevant downward water fluxes provide a significant 

recharge to the groundwater and are responsible for the shallow water table 

in the summer period. 

3.1.3 Allocation of water resources in the district 

Figure 3 shows the monthly allocation of water resources among the 

different components namely outflows from the district, percolation from the 

channels, rice irrigation, maize irrigation, and young poplar irrigation. The 

irrigation season goes from May till August when flow rates diverted are 

used for farming purposes, while, outside this period, the amounts circulating 

are mainly due to the drainage of rainfall and waste waters. During the 

month of May, water amounts ranging between 1 and 3.5 million cubic 

metres are required for flooding the rice fields of the area, determining an 
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increase of the groundwater of about 40 cm on average. During the rest of 

the irrigation season, amounts of water comprised between 3 and 4 million 

cubic metres per month are used to satisfy water demands from farmers. 

Out of this amount, 30% percolates due to the coarse soils in the area and 

the remaining part is allocated between rice, maize and poplars with a 

predominant use for rice farming. The share of irrigation to satisfy maize 

water requirements however increased from 2010 to 2013 due to the 

expansion of the maize area. A certain inter-annual variability is also worth 

noting, which mainly depends on weather conditions. For instance, in May 

2010, in spite of the large rice area, the amount of water required to flood all 

the rice fields is lower than the following years, since around 1 million cubic 

metre (200 mm of rainfall depth) was provided by the rainfall occurred in the 

month. Likewise, a very cold and wet spring in 2013 delayed the irrigation 

requirements, with a peak demand in August similar to the previous years in 

spite of the smaller rice surface. 

 

Figure 3 - Monthly allocation of water resources among the different components: 
outflows from the district (black), percolation from the channels (grey), rice irrigation 
(white), maize irrigation (dark grey), young poplar irrigation (light grey) 

3.2 Relationship between percolation fluxes and groundwater levels 

From estimates of the amounts of water percolating from each land use in 

the present state, it was possible to compute the monthly district 

percolations representing the recharge to groundwater (see Equation (4)).  
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Figure 4 – Monthly averages of the measured groundwater levels vs monthly district 
percolations for the calibration (circles) and the validation periods (triangles), and 
calibrated regression curve (grey line). 

Figure 4 shows, in a Cartesian coordinate system, the pairs of monthly net 

percolation fluxes ps,t (simulated), versus the monthly reference groundwater 

levels GWLt (measured) and the PF-GWL relationship obtained calibrating 

Equation (5). Values of the parameters are:   = -0.92 m-1,  = 2.32 and  = -

2.06 m (correlation coefficient R2 = 0.86 in calibration and 0.90 in validation). 

Instead, Figure 5 shows a comparison of the pattern of measured and 

simulated groundwater levels. The agreement between the two patterns, as 

expressed by the Nash-Sutcliffe index, is satisfactory (0.87 and 0.82 in the 

calibration and validation respectively). The validity of the model has been 

also checked for the optimality conditions according to the regression theory 

(negligible sequential correlation of the residuals assessed by the runs test 

(Bradley, 1968) and the normality of the residuals assessed by the Lilliefors 

(Lilliefors, 1967): p-values > 0.1 in both cases). 

According to the calibrated relationship, the deeper the water table, the 

greater is the increase of the GWL in response to a unit percolation. 

Conversely, when the water table is shallower, the response is flatter; i.e. a 

smaller GWL increase is observed for the same increase of the percolation 

rate. This behaviour is in good agreement with the orography of the study 



 Large conversion to water saving regimes: implications at the district scale 

115 
 

area that is crossed by a number of differently engraved channels. That is, 

the higher the GWL, the more the channels will drain water from the aquifer 

and the greater the number and the effect of the sinks. 

As usual in case of empirical regressions, the relationship is reliable only 

within the range of the dataset, while no applications outside this range are 

to be considered reliable. In our study case, the quadratic relationship 

reaches its maximum at around -0.60 m for a percolation of 1.30 m; as the 

percolation exceeds this value, the estimated GWL starts to decrease and 

the calibrated relationship gives meaningless outcomes. However, in the 

scenario we are investigating, we expect the percolations to be fairly within 

the range of the percolations estimated for the present state, i.e. anywhere 

between the low percolations occurring in winter and the high summer 

values due to the continuous submergence of rice fields. 

 

Figure 5 – Measured groundwater level (grey line) and estimated groundwater level 
(black line) for the calibration (years 2010-2012) and the validation (year 2013).  

3.3 Prediction of the effects of FI technique  

For the scenario analysis, water balance terms of all the crops, included FI 

rice, were simulated by application of the SWAP model. Irrigation of FI rice 

was scheduled by SWAP considering fixed amounts of 150 mm, but with a 

constant water availability instead of a 15-days turn. Being the water supply 

on demand, we adopted the daily stress criterion and we scheduled an 

irrigation every time the daily transpiration dropped below 70% of the 
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potential one (i.e. ratio actual transpiration over potential transpiration equal 

to 0.70). This value enabled to maintain the mean transpirative stress as low 

as possible, especially in the month of July (average values greater than 

0.90), and avoided at the same time an excessive number of irrigations. 

3.3.1 No feedback scenario (NF) 

As expected, the amount of water required by FI rice is much lower than in 

case of CS, decreasing from an average of  3,800 mm to an average of 825 

mm, nonetheless with a very high variation among the years  (±719 mm)  

(Table 6). In fact, while in 2011 and 2012 the irrigation amounts reached 

1,350 and 1,500 mm respectively, no irrigations were scheduled in 2010 and 

just 450 mm were required in 2013. Reduction in water withdrawals 

achieved in 2010 were mainly due to the presence of shallow groundwater 

(summer maximum level of -0.60 m below the soil surface) and the higher 

rainfall that in August reached 155 mm. Similarly, the high water table levels 

that occurred in 2013 (summer maximum level of -0.80 m) reduced the 

number of irrigation events to 3 per season. As shown by the results, the 

groundwater table depth in such a coarse soil plays a significant role in 

determining the overall irrigation requirements due its effect in compensating 

for the low retention attitude of the soil.   

However, estimates obtained in this scenario are utopic as shown in Figure 

6 panel a, which highlights the incongruity between groundwater levels and 

groundwater recharge. The continuous line represents the measured 

groundwater level in the present state (i.e. with submerged rice) that was 

used as bottom boundary condition to estimate irrigation requirements and 

percolation fluxes of aerobic rice. The dashed grey line instead represents 

the a posteriori groundwater level resulting from the percolation fluxes as 

obtained by the PF-GWL relationship explained in Section 3.3.2. It is evident 

that the percolations occurring in NF scenario (i.e. with invariant 

groundwater level from the present state) do not provide a recharge to the 

groundwater that is sufficient to maintain the shallow table that used in input 
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to the model. The greater the difference between the two lines, the more 

inconsistent the investigated scenario is. The figure clearly shows that there 

is no agreement between percolations and groundwater levels in all the 

years, and especially in 2010 and 2013 when the lowest irrigation 

requirements were estimated (see Table 6). In 2010 in particular, the PF-

GWL model is inappropriate as the percolation fluxes are even lower than 

the winter values we used for calibrating and validating the model, with a 

consequent drop of the groundwater below the winter minimum of -2.00 m. 

The increase of the a posteriori groundwater level is delayed compared to 

the a priori in all the years because water for flooding rice paddies in May is 

no longer supplied in case of flush irrigated rice with a consequent delay in 

the increase of the groundwater table depth. 

3.3.2 Feedback accounting scenario (FA-15 and FA-10) 

The need to consider a 10-days rotation of maize irrigation (FA-10 scenario) 

was justified by the fact that a 15-days rotation, which enabled to achieve an 

almost complete satisfaction of crop water requirements under the present 

conditions, was found to be no longer adequate with FI rice due to average 

transpiration rates in the critical month of July that were lower than 0.80. 

Conversely, shortening the turn by 5 days (from 15 to 10 days) increased the 

ratio of actual transpiration over potential transpiration of maize by 9% on 

average, with values close to 0.90 in all the years. Such effect is caused by 

a decrease of the summer maximum level of about 25-30 cm compared to 

present state as discussed further on in this section. At the same time, also 

mature poplars benefitted from increasing the water amounts to maize due 

to the higher retention of soil moisture in the rooted soil layer and the greater 

root water uptake from the groundwater that gets shallower (the ratio 

increases from 0.81 to 0.87 moving from FA–5 to FA–10 respectively). FI 

rice, on the other hand, had always values higher that 0.90 since irrigation is 

scheduled on the demand and not according to any rotations. 



Chapter 5  

118 
 

The Feedback Accounting scenario with a 15 days rotation for maize and 

poplar (FA-15) showed a decrease of the summer maximum level of about 

25-30 cm compared to present state, as discussed further on in this section. 

This decreases the capillary rise contribution reaching the maize roots and 

brings, in the critical month of July to average transpiration rates lower than 

0.80. Therefore, a 15-days rotation, which enabled to achieve an almost 

complete satisfaction of crop water requirements under the present 

conditions, is not sustainable for maize with FI rice.  

The case study FA-10 (just like FA-15 but a 5 days shortening in the maize 

turn) increases the ratio of actual transpiration over potential transpiration for 

maize reaching values close to 0.90 in all the years.  

In changing from FA-15 to FA-10, also mature poplars benefit from the 

slightly increased GWL and their average transpiration rate increases from 

0.81 to 0.87 respectively. FI rice, on the other hand, had always values 

higher that 0.90 since irrigation is scheduled on the demand and not 

according to any rotations. 

Table 6 reports the irrigation water requirements we estimated for both FA–

15 and FA–10. When moving from a 15-days rotation to a 10-days rotation, 

irrigations amounts increased from 750 mm per season (i.e. 5 irrigations) to 

1,050 mm (i.e. 7 irrigations) per season. Flush irrigated rice required water 

amounts comprised between 1,350 mm in 2010 (9 irrigations) to 1,800 mm 

in 2013 (12 irrigations). Irrigation supplies to FI rice, according to the FA 

simulations, needed to be provided on a weekly basis or slightly less like for 

instance in August 2013. District water withdrawals under FA–10 scenario 

were estimated to be on average the 41% less than the present state, while 

in case of FA–15 and NF they were lower by 46% and 67 % respectively. 

The average of 67% for NF scenario was influenced by the very high 

reduction we estimated for 2010 (up to the 90%). Nonetheless, disregarding 

results of 2010 that was a very particular year, the average reduction in the 

period 2013-2013 was still higher by 17 % than what we obtained under FA–

10 scenario. Differences in the summer maximum of groundwater level 
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between FA–10 and the NF scenario ranged between 40 cm in both 2010 

and 2013 to 20 and 30 cm in 2011 and 2012 respectively. Therefore, it is 

evident how neglecting the feedback effects may be quite imprecise and 

lead to an overestimations of potential gains in case of FI adopted over large 

areas. 

Figure 6 panel b shows the fitting of the a priori variant and a posteriori 

pattern for the FA–10 scenario. The agreement between the two, as 

measured by the correlation coefficient (R2=0.52) and by the Nash-Sutcliffe 

index (N-S=0.42), is quite good especially during the central months of the 

irrigation season, namely June, July and August, when the two summer 

peaks are very similar. Greater differences can be noticed during winter 

time, but this is not going to affect the irrigation water requirements in 

summertime and the PF-GWD relationship is supposed to reproduce fairly 

well the groundwater behaviour in response to the superposition of fluxes 

deriving from the irrigation practice. Quite interesting is the behaviour  of the 

two lines at the beginning of the irrigation season, during May, as the 

dashed line (i.e. the a posteriori GWL) shows a delayed increase if 

compared to the continuous line (i.e. the a priori GWL). The a priori GWL 

was obtained from the average measured groundwater level in the years 

2010-2013 through the application of Equation (6). Therefore, the a priori 

pattern shows an increase of the level starting from May due to the 

submergence of rice fields. In the FA scenario, however, no significant 

recharge to the groundwater occurs in May with a consequent gap between 

the a priori and the a posteriori GWL at the beginning of the season that 

cannot be reduced because of the different distribution of irrigation supplies 

during the season. It follows that, under a scenario of FI rice, water 

requirements of maize and rice would tend to coincide, with possible 

consequences on the water availability, especially early in the season 

(namely June) when the groundwater is still relatively deep and the 

percolation from seepage and channels may be consequently higher. 
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Water use efficiencies of the different case studies 

Table 7 presents the values of water use efficiencies (WUE) of each land 

use, i.e. the ratio of actual evapotranspiration over the net water inputs given 

by irrigation plus rainfall. The last column reports values aggregated at the 

district scale and includes also the evapotranspiration of mature poplars, 

which are not irrigated, but benefit from the effects of the irrigations provided 

to the other crops through their effect on the groundwater table depth. Out of 

all the crops, CS rice grown in the present state had the lowest WUE (0.15 

on average) due to the need of continuously supply water in order to 

maintain ponding water in a coarse soil. It follows that WUE of the district in 

the present state reflected that of CS rice (0.17 on average) due the large 

area occupied by CS rice (up to the 48% in 2010). WUE of maize in the 

present state was around 0.50, again because of the combination of the soil 

type, of the groundwater table depth and of the efficiency of the irrigation 

practices that implies border irrigations with a fixed rotation scheme.  

Assuming a conversion from CS rice to FI rice and no changes in the 

groundwater depth from the present state (NF scenario), WUE of rice 

increased to 0.47 and WUE referred to the whole district reached 0.38. 

Results obtained for FI rice are fairly within ranges reported in literature for 

field-scale studies.  

However, when the feedback effects between irrigation and groundwater 

level are accounted for (see FA–15 and FA–10), WUE of FI rice decreased 

to an average of 0.20, being just 5% higher than CS rice. Such increase of 

WUE is relatively low because, although irrigations decreased by an average 

of 57% from CS to FI, as also actual evapotranspiration had a decrease of 

35% on average. However, the reduction was mostly due to a reduction of 

evaporation (because of the lack of continuous ponded water) rather than 

transpiration, as demonstrated by the values of actual transpiration (average 

ratio between actual and potential fluxes in in the month of July of 0.94 

(±0.01)). 
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If an increase of WUE for FI rice was assessed in the FA scenario compared 

to the present state, maize WUE decreased from an average of 0.49 in the 

present state to 0.36 in FA–10 due to the need of shortening the irrigation 

turn. Considering again the whole district, WUE under FA–10 scenario 

amounted to 0.21 against 0.17 in the present state. Obviously, root growth 

adaptation to the changing conditions, which we did not consider, may 

determine some small variations in WUEs we estimated. However, it is clear 

that FI rice is not as effective in all the situations as results obtained from 

experiments with shallow water tables would suggest. 

4 CONCLUSIONS AND GENERAL REMARKS 

According to numerous field-scale studies, flush irrigation management in 

rice farming has the potential to significantly reduce the water amounts 

required by the practice of continuous flooding. However, when such 

technique is adopted over large paddy areas, reduction in water withdrawals 

may be of different extent because of the effects on the groundwater 

resources caused by a decreased recharge to the groundwater. In fact, in 

areas with shallow groundwater, even a decrease of few tens of centimetres 

may have relevant impacts on the irrigation requirements because of the 

reduction of the capillary rise contribution. 

In this context, the study presents a multiple-stage approach to studying the 

large-scale effects of shifting the irrigation technique in a rice area from 

continuous submergence to flush irrigation. Stages include: i) the estimation 

of the percolation fluxes at the scale of an irrigation district under the present 

conditions, ii) the calibration of an empirical relationship between the same 

fluxes and the groundwater level, and iii) the prediction of the effects of the 

extensive adoption of flush irrigation. The approach makes a combined use 

of observative data (from monitoring data to knowledge of irrigation 

scheduling, canal seepage etc.), physically-based models (SWAP), water 

balance equations, and empirical relationships (percolation-groundwater 

levels). Through the application to a study area in Northern Italy, the S. 
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Giorgio-E district, over a four-year period (2010-2013), we show that when 

good quality data on irrigation supply and groundwater depth are available, 

robust results can be achieved in the simulation of the water fluxes under 

present conditions and in the prediction of the effects of changes in the 

irrigation practices. 

In the case of the S. Giorgio-E district, reductions in water withdrawals drop 

from an expected 67% when blindly extending to the whole district the 

results for an individual field, to 41% when fully considering the effects of 

groundwater drawdown due to the decrease of recharge after the extensive 

adoption of flush irrigation. This highlights the importance of considering 

groundwater fluctuations in order to avoid overestimates in the reductions of 

irrigation deliveries.  

Moreover, the current irrigation scheduling of maize, based on a 15-days 

rotation, is likely to be not sufficient to the satisfaction of the crop water 

requirements in the scenario. Rather, a 10-days turn was found more 

effective in reducing the transpirative stress, especially during the month of 

July.  

Gains in water use efficiency at both the field and the district level are 

possible after a conversion to flush irrigated rice, but, in our study, the 

scenario water use efficiency of the whole district was greater than that of 

present state by just 4%. Again, neglecting the groundwater response to the 

different water management brought to an overestimation of 17%. The 

feedbacks are particularly relevant in the S. Giorgio-E district due to the high 

permeability of soils in the area and may have substantially different impacts 

in less permeable areas, even if groundwater depth is similar. Therefore, we 

do not imply in any way that water saving techniques are ineffective. We 

rather stress the importance of carefully analysing all the consequences of 

their extensive adoption as several issues need to be considered. 

With respect to water resources aspects specifically addressed here, results 

from our simulations suggested that changes in the irrigation turns may be 

required. As a consequence, significant adaptations of the planning and 
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management of irrigation deliveries to farmers would need to take place. In 

fact, rice growers currently receive small flow rates and without interruption. 

However, the shift to flush irrigation practice would imply to deliver higher 

flow rates on a weekly basis, with possible need to rearrange dimensions of 

irrigation channels accordingly. Moreover, no significant competitions 

between rice and maize is occurring under the present management and it is 

yet to assess whether this will be the case under the scenario investigated. 

In fact, interrupting the flooding of rice paddies determines a delay in the rise 

of the regional groundwater table from May in the present state, to June-July 

in the scenario, with possible competitions between rice and maize in the 

first part of the season. Also poplars, which are currently benefitting from the 

shallow groundwater, could suffer from a decrease of the water table. If 

more irrigations will be required, the economic return of poplars plantation 

could be questioned. 

Furthermore, a large conversion to flush irrigated rice involves several 

issues that we did not address, as beyond the scope of this paper, but that 

need to be carefully considered too. Such issues include, for instance, yield 

gaps between submerged rice and flush irrigated rice, the susceptibility of 

rice to temperature stresses, the environmental impacts of different 

agronomic practices and the nutrient dynamics due to the shift from 

anaerobic to aerobic soils etc. Water productivity (defined as the amount of 

food produced per unit volume of water used, Molden, 1997), is determined 

not only by the amount of water contributing to seepage and percolation, but 

depends also on yield potential as determined by variety and climate, and on 

the input of other production factors such as nutrients, pesticides etc. 

(Bouman and Tuong, 2001). The value of indicators like the water 

productivity is highly influenced by the scale of analysis and net gains with 

respect to a specific domain (e.g. at the farm level) may determine off-site 

effects that not necessarily lead to an increase of the efficiency and the 

productivity of whole the system (Guerra et al., 1998). Our study suggests 

indeed that reducing the irrigation supplies to rice at the field level may 
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determine an increase of the amount needed by the other crops because of 

the feedbacks effects on the groundwater dynamics at larger scales. It 

follows that the reductions of water withdrawals cannot be the only goal 

when the efficiency of rice-based systems is under evaluation. 

In this framework, our study stresses the importance of specifically 

considering the large-scale effects that massive changes in the irrigation 

practice have on the groundwater system, especially in areas characterised 

by strong interconnections between surface water dynamics and the 

groundwater system. 
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Abstract 
Aims: Although paddy soils are generally characterized by relatively high dissolved 
organic carbon (DOC) concentrations and fluxes, little is yet known on how water 
management influences the cycling of this important organic C pool. This work aims 
at providing insights into the link between DOC cycling during rice cropping and 
organic C input to the subsoils and export with surface waters, as well as methane 
(CH4) emissions in a temperate paddy soil as a function of different water 
management practices. 
Methods: DOC quantity, quality and fluxes, as well as CH4 emissions were 
evaluated at field-scale over two cropping seasons for three water management 
systems including continuous flooding, dry seeding with delayed flooding, and 
intermittent irrigation. 
Results: DOC cycling in the different water management systems were strongly 
linked to the reducing soil conditions resulting from field flooding. In contrast to dry 
seeding or intermittent irrigation, adoption of continuous flooding not only favoured 
the accumulation of DOC in the topsoil (>10-20 mg C l-1), but also enhanced C 
inputs to the subsoil (14-51 g C m-2), and exports with surface waters (14-44 g C m-

2). Moreover, changes in DOC quality in paddy soils were linked to a positive 
feedback on the abiotic release of soil-derived DOC, and substrate availability for 
CH4 production.  
Conclusions: Water management practices in rice paddies strongly affect the 
temporal trends in DOC quantity and quality over the cropping season, with 
important implications on organic C fluxes. 

Keywords: organic carbon fluxes, soil redox conditions, reductive dissolution, 
surface waters, subsoil, methane emissions 
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1 INTRODUCTION 

1.1 Introduction 

Rice paddy soils are generally characterized by large concentrations and 

fluxes of dissolved organic carbon (DOC) in comparison to other ecosystems 

(Kögel-Knabner et al., 2010; Krupa et al., 2012). Being a relatively mobile 

and the most bioavailable fraction of soil organic carbon (SOC; Marschner 

and Kalbitz, 2003), DOC plays a role in many chemical and biological 

processes, and therefore the most dynamic in terms of ecosystem 

functionality. In particular, soil processes involving this organic C pool may 

strongly control the C source/sink functions of paddy soil agro-ecosystems.  

Indeed, paddy rice cultivation represents the major source (11%) of global 

methane (CH4) emissions, one of the principal greenhouse gases, with 

annual emissions estimated to range between 493 and 723 Mt CO2-eq yr-1 in 

2010 (Kimura et al., 2004; Smith et al., 2014). Seasonal patterns of CH4 

emissions from these soils generally follow the pattern of DOC in the root 

zone (Lu et al., 2000), suggesting that this labile C pool may serve as a 

major C source for methanogenic microorganisms. Moreover, DOC may also 

be responsible for significant C exports to adjacent water bodies with 

important implications concerning fluvial water quality and agricultural 

catchment C budgets (Abe et al., 2011; Krupa et al., 2012). Paddy soils are 

also often associated with a large accumulation of SOC compared to other 

arable ecosystems (Kögel-Knabner et al., 2010). Recently, Hanke et al. 

(2013) challenged the general assumption that increasing SOC contents 

with paddy soil development is due to a smaller C mineralization under 

anoxic conditions. They provided evidence showing how successive cycles 

of DOC desorption and partial mineralization under anoxic conditions, 

followed by re-adsorption and selective preservation under oxic conditions, 

may drive the long-term accumulation of more stable organic C and 

contribute to increasing topsoil C stocks in well-established paddy soils. 

Moreover, recent studies have shown that, whereas topsoil organic C stocks 
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and concentrations increase with years of paddy management, accumulation 

of organic C in the subsoils is slower (Kalbitz et al., 2013). This has been 

attributed to the low-permeability of the plough pan, particularly in finely 

textured soils, that could limit DOC input into the subsoil (Wissing et al., 

2011). 

Various studies have shown that the degradation of incorporated crop 

residues may contribute significantly to DOC (Katoh et al., 2005; Ruark et 

al., 2010), and also influence its heterogeneity in terms of chemical 

composition and molecular structures due to the diverse biodegradability as 

a function of soil redox conditions (Chen et al., 2010). Rice growth is also an 

important factor affecting DOC in paddy soils through the release of soluble 

root exudates and rhizodeposits (Ge et al., 2012), although root-derived 

DOC has been shown to be rapidly mineralized contributing only marginally 

to DOC fluxes (He et al., 2015). Moreover, the increase in soil pH and the 

dissolution of Fe and Mn oxyhydroxides when acidic soils are subjected to 

anoxic conditions may result in the release of significant amounts of DOC 

previously stabilized on the mineral matrix (Grybos et al., 2009). These 

mechanisms, are all considered to affect DOC concentrations and fluxes in 

rice paddies. However, little is yet known on the numerous biotic and abiotic 

factors that control the temporal and spatial variations in DOC quantity and 

quality in soils subjected to alternating redox conditions (Kalbitz et al., 2000), 

particularly for rice paddies (Hanke et al., 2013).  

Agricultural practices in rice cropping systems are expected to influence 

DOC cycling and related ecosystem functions. In the last decades, various 

studies have shown that management options involving the adoption of 

water systems alternative to continuous flooding have a high potential to 

mitigate CH4 emissions (Corton et al., 2000; Wassmann et al., 2004; Liu et 

al., 2014) and impact the timing and magnitude of DOC exports from soils to 

rivers (Abe et al., 2011; Krupa et al., 2012; Oh et al., 2013; Xu et al., 2013). 

In fact, water management practices play an important but still not well 

understood role in the production, mineralization and leaching of DOC in 
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paddy soils, although they are crucial processes affecting the ecosystem C 

balance (Kindler et al., 2011). On the basis of a two-year field experiment 

carried out in a temperate paddy field (NW Italy), the objectives of this study 

were to: (i) evaluate the trends in DOC concentrations, composition and 

fluxes in paddy soil solution, water supply and drainage canals during rice 

cropping, and (ii) identify the main mechanisms and drivers that link soil 

solution DOC cycling to the input of organic C to subsoils, export to surface 

waters, and CH4 emissions, as a function of different water management 

practices. 

2 MATERIALS AND METHODS 

2.1 Experimental site description 

The field experiment was carried out over two rice cropping seasons (2012 

and 2013) at the Rice Research Center of Ente Nazionale Risi, Castello 

d’Agogna, Pavia (45°14'48"N, 8°41'52"E), located in the plains of the river 

Po (NW Italy).  

The study area has a temperate climate with a mean annual temperature of 

12.4°C and annual precipitation of 684 mm over the experimental period. 

 

Figure 1 -Variations in mean daily air temperatures and cumulative precipitation 
(over 10 consecutive day periods) during the experimental period 

Mean daily air temperatures and cumulative precipitation over the 

experimental period are shown in Fig. 1 (data from Meteorological Station 
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125, ARPA Lombardia). The soil of the experimental field was classified as a 

Fluvaquentic Epiaquept coarse silty mixed mesic (Soil Survey Staff, 2010), 

while general soil properties are reported in Table 1. 

2.2 Experimental design and irrigation management 

Field treatments involved the comparison of three water management 

systems including water seeding with continuous flooding (WFL), dry 

seeding with flooding at tillering stage (DFL), and dry seeding with 

intermittent irrigation (DIR), with two replicate plots for each treatment. Each 

plot was hydrologically-isolated, had an area of 2000 m2 (20 × 80 m), and 

was seeded with rice (Oryza sativa L. cv. Gladio; 160 kg ha-1). In all plots, 

crop residues were incorporated with tillage in spring (2 April 2012 and 9 

May 2013).  

In the WFL treatment, water seeding was carried out on May 28 and June 7, 

for the 2012 and 2013 cropping seasons, respectively. A 6–18 cm standing 

water depth was constantly maintained during the cropping season, except 

for two 5-day mid-season drainage periods about 18-23 and 45-50 days 

after seeding (DAS). In the DFL treatment, dry seeding was carried out on 

May 15 and May 28, and the field kept without standing water for 35 and 24 

DAS, for the 2012 and 2013 seasons, respectively. Subsequently, water 

management followed the same regime as for WFL. In the DIR treatment, 

dry seeding was carried out on May 15 and May 28 for the two cropping 

seasons. Ponding water was not maintained throughout the cropping 

season, and irrigation was applied when the soil moisture tension at a depth 

of 10 cm approached –30 kPa (9 events in 2012, and 12 events in 2013). In 

all treatments, drainage was allowed at the ripening stage, 20–30 days 

before harvest that was carried out between the end of September and the 

first 15 days of October. Throughout the cropping seasons, soil pH and Eh 

were measured potentiometrically in each plot at a soil depth of 10 cm.   
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For each field treatment 160 kg N ha-1 of urea were applied and split 

between basal, tillering, panicle differentiation and booting stages as follows: 

60-60-40-0 kg N ha-1, 40-70-50-0 kg N ha-1 and 50-40-40-30 kg N ha-1 for 

WFL, DFL and DIR, respectively. All fertilizer applications were top-dressed 

except for the basal fertilization that was incorporated. A different fertilizer N 

split rate was adopted to optimize crop growth and yield performance, as 

well as limit N losses for each water management. All plots also received 18 

kg P ha-1 and 70 kg K ha-1 as basal fertilization. 

2.3 Water sampling and analyses 

Ceramic suction cups were installed vertically at 25, 50 and 75 cm depths to 

collect soil solutions, with two replicates per plot. Surface water samples 

were collected from supply canals and flumes channelling outflow waters 

from each plot to drainage canals. All water samples were collected on a 

weekly basis, filtered through a 0.45 μm nylon membrane filter, and 

subsequently analyzed for DOC, specific ultraviolet absorbance at 254 nm 

(SUVA), and Fe(II). Dissolved organic carbon was determined using Pt-

catalyzed, high-temperature combustion (850°C) followed by infrared 

detection of CO2 (VarioTOC, Elementar, Hanau, Germany), after removing 

inorganic C by acidifying to pH 2 and purging with CO2-free synthetic air. UV 

absorption at 254 nm was measured (Helios Gamma Spectrophotometer, 

Thermo Electron, Waltham, MA) after appropriate dilution to DOC <50 mg l-1. 

The SUVA values calculated by normalizing measured absorbance values to 

the concentration of DOC, were used as an estimate for the aromatic 

content of water samples (Weishaar et al. 2003). Dissolved Fe(II) 

concentrations were measured colorimetrically immediately after sampling, 

using the 1,10-phenanthroline method (Loeppert and Inskeep 1996).  

2.4 Calculation of DOC fluxes 

Daily dissolved organic C concentrations in surface (inflow and outflow) and 

subsurface (25 cm) waters were extrapolated for the entire cropping season 

by assuming a linear change in concentration between two successive 
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measured data points. Water fluxes for each irrigation management were 

determined for both cropping seasons as described in Chiaradia et al. (2013; 

2015). Briefly, irrigation inflow (I) and outflow discharges (D) for each plot 

were measured by long-throated flumes equipped with a level gauge, while 

net percolation (P) was obtained as the residual term of the water balance 

according to the equation: 

DPETSRI    

where R is the precipitation, ET is the crop evapotranspiration estimated by 

the application of Penman-Monteith type models previously calibrated using 

a discontinuous data series obtained through eddy-covariance 

measurements as described by Facchi et al. (2013a) and Gharsallah et al. 

(2013), and ∆S is the change in the field soil water storage (including the soil 

water content of the root zone up to 40 cm depth, and ponded water depth 

during flooding). The experimental fields were also instrumented with 

piezometers in order to monitor the groundwater depth and with 

tensiometers at different depths in order to assess the soil pressure profile. 

Net percolation was used to compute the percolation fluxes of DOC at 25 

cm. Concentrations at 25 cm instead of those at 50 cm have been chosen in 

light of the following considerations: (i) fluxes in the topsoil were mainly 

downward, as evidenced by data obtained from piezometers and 

tensiometers (data not shown), while horizontal water movements may not 

be excluded at depths > 40 cm, and (ii) the root water uptake between 25 

and 40 cm are in any case negligible compared to the magnitude of 

percolation fluxes, so no significant differences in percolation fluxes between 

these two depths were expected. Daily inflow, outflow and percolation fluxes 

of DOC (g m-2 d-1) were then calculated by multiplying the concentration of 

DOC (mg C l-1) by the water flux (l m-2 d-1), while cumulative fluxes over the 

cropping season were calculated as the sum of all daily fluxes. Flow-

weighted DOC concentrations for each irrigation management were 
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calculated by dividing the total DOC flux by the total water flux in the same 

time period. 

2.5 Gas sampling and methane flux measurements 

Methane emissions were measured over the whole rice cropping season by 

the non-steady-state closed chamber technique. Stainless steel flux anchors 

were permanently installed into the soil (40 cm deep) prior to seeding, to 

ensure reproducible placement of gas collecting chambers during 

successive emission measurements. The top edge of the anchor had a 

groove for filling with water to seal the rim of the chamber. The chamber was 

equipped with a circulating fan to ensure complete gas mixing and was 

wrapped with a layer of polystyrene and aluminium foil to minimize air 

temperature changes inside the chamber during the gas sampling period. 

The cross-sectional area of the chamber was 0.27 m2 (0.75 × 0.36 m). 

During gas sampling, the chamber was placed over the vegetation with the 

rim of the chamber fitted into the groove of the anchor. Extension collars 

were added to increase chamber height in order to accommodate the 

growing rice plants. During this study, CH4 efflux was usually measured once 

a week, except during drainage periods, when a higher sampling frequency 

was adopted. Gas samples (30 ml) were drawn with airtight syringes at 0, 15 

and 30 min after chamber closure, and transferred into 12 ml pre-evacuated 

vials (Exetainer®, Labco Limited, UK). Gas samples were analysed by gas 

chromatography with flame ionization detection (Agilent 7890A, Santa Clara 

CA, USA). Methane emission flux (F, expressed in g C m-2
 d-1) was 

calculated from the linear resolution of the rate of increase in gas 

concentration in the chamber (dC/dt in ppm h-1), according to the following 

equation (Yang et al., 2012): 

).T(R

P
H

dt

dC
F

2273

1024 6







 

where H is the effective height of the static chamber (m), �̅� is the mean air 

pressure in the chamber (Pa), �̅� is the mean air temperature in the chamber 
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(°C), R is the universal gas constant (R = 8.31441 J mol-1 K-1) and μ is the 

molecular weight of C. When the rate of increase in gas concentration 

between the 2nd and 3rd sampling points was lower with respect to that 

between the 1st and 2nd points, fluxes were calculated by applying the 

nonlinear Hutchinson and Mosier (1981) model. 

3 RESULTS 

3.1 Soil redox conditions and pH 

Field flooding in both WFL and DFL treatments led to the establishment of 

anoxic conditions evidenced by a decrease in soil Eh and a corresponding 

increase in pH values (Fig. 2). Eh values below –300 mV were observed for 

WFL over most of the cropping season, except for a couple of more positive 

peaks in correspondence with mid-season field drainage, while pH values 

tended to increase from around 5.0 before flooding to a maximum of 6.3-6.9 

before final field drainage (Fig. 2a). In DFL, the drop in Eh values and 

increase in pH occurred later on in the cropping season with respect to WFL, 

in correspondence with field flooding at tillering stage (Fig. 2b). However, 

once the fields were flooded, Eh values below –250 mV were recorded, 

while pH values tended to increase reaching maximum values of 6.3-6.4. In 

both WFL and DFL treatments, Eh values gradually returned to positive 

values after final field drainage towards mid-September (only observed in 

2012 due to missing data in 2013). In contrast, redox potentials in DIR were 

generally positive throughout the cropping season with only a number of 

temporary drops in Eh in correspondence with some irrigation events, 

particularly in the 2013 season (Fig. 2c). pH values for this treatment were 

relatively constant with an average value of 5.3.  

3.2 Soil solution dissolved organic carbon  

DOC concentrations generally tended to increase with the onset of anoxic 

soil conditions during field flooding, although different trends in time and with 

soil depth were observed among the three management practices (Fig. 3). 
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Figure 2 -Variations in topsoil pH (open symbols) and Eh (closed symbols) values 
over two rice cropping seasons as a function of water management practices 
involving a water seeding and continuous flooding (WFL), b dry seeding and flooding 
at tillering stage (DFL), and c dry seeding and intermittent irrigation (DIR). Shaded 
areas represent the presence of flood water. Error bars represent the standard error 
of replicated measurements (n=3) 

Moreover, temporal variations in DOC at this depth followed a bimodal trend, 

more evident in 2013, with maxima at the beginning (mid-June) and towards 

the later stages (beginning September) of the cropping season (Fig. 3a). In 

both years, increasing DOC concentrations during flooding were also 

observed at 50 cm (11-29 mg C l-1; mean 18.4 ± 7.2 mg C l-1), and to a 

lesser extent, at 75 cm (8-23 mg C l-1; mean 13.0 ± 4.3 mg C l-1). 
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Figure 3 -Variations in DOC concentrations at different depths over two rice cropping 
seasons a sa function of water management practices involving a water seeding and 
continuous flooding (WFL), b dry seeding and flooding at tillering stage (DFL), and c 
dry seeding and intermittent irrigation (DIR). Shaded areas represent the presence 
of flood water. Error bars represent the standard error of replicated measurements 
(n=4). The effects of water management, sampling date and depth, as well as water 
management×date, and water management×depth interactions, on DOC 
concentrations analysed by ANOVA for both years were all significant (p=0.000) 

In DFL, topsoil DOC concentrations also increased with the onset of flooding 

though later on in the cropping season with respect to WFL (Fig. 3b). Under 

flooded conditions DOC concentrations at 25 cm ranged between 9.8 to 33.9 

mg C l-1 with maximum values occurring towards the end of August just 

before final field drainage (Fig. 3b).  
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Figure 4 - Variations in soil solution specific UVabsorbance (SUVA) values at 
different depths over two rice cropping seasons as a function of water management 
practices involving a water seeding and continuous flooding (WFL), b dry seeding 
and flooding at tillering stage (DFL), and c dry seeding and intermittent irrigation 
(DIR). Shaded areas represent the presence of flood water. Error bars represent the 
standard error of replicated measurements (n=4). The effects of water management, 
sampling date and depth, as well as water management×date, and water 
management×depth interactions, on SUVA analysed by ANOVA for both years were 
all significant (p=0.000) 

DOC concentrations at greater depths also tended to increase during 

flooding, although this increase was more evident in 2012 than 2013. In the 

former, maximum concentrations of 24.5 mg C l-1 were measured in 

correspondence with the highest concentrations at 25 cm (end of August; 

Fig. 3b). 
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In DIR, maintenance of oxic conditions through intermittent irrigation resulted 

in relatively lower DOC concentrations throughout the cropping season and 

at all soil depths with respect to the other treatments (p < 0.001; Fig. 3c). 

Over both cropping seasons, mean DOC concentrations were 9.7 ± 3.1 mg 

C l-1 at 25 cm, 7.4 ± 2.3 mg C l-1 at 50 cm, and 6.5 ± 2.1 mg C l-1 at 75 cm 

with little variation in time. 

The increase in DOC during field flooding was generally accompanied by an 

increase in its aromatic character evidenced by increasing SUVA values at 

all soil depths (Fig. 4). In WFL, mean SUVA values at 25 cm increased from 

1.51 l mg-1 m-1 before flooding to 2.51 l mg-1 m-1 during flooding and down to 

1.91 l mg-1 m-1 after final field drainage (Fig. 4a). Maximum values of 3.59 

and 4.26 l mg-1 m-1 were observed towards the later stages of the cropping 

season in 2012 (mid-September) and 2013 (beginning August), respectively. 

This increase in SUVA values with flooding was not limited to the topsoil 

since similar trends and maximum values were also observed at 50 cm and, 

to a lesser extent, at 75 cm. 

In DFL, relatively low SUVA values were obtained at all depths at the 

beginning of the cropping season when the fields were still drained (mean 

1.31 ± 0.27 l mg-1 m-1), and again after final field drainage before harvest 

(mean  1.94 ± 0.38 l mg-1 m-1; Fig. 4b). With the onset of flooding SUVA 

values at 25 cm tended to increase steadily reaching maximum values of 

3.39 and 3.82 l mg-1 m-1 in 2012 (mid-September) and 2013 (beginning 

August), respectively. A similar trend was also observed at the greater soil 

depths although this was more evident in 2012 when maximum values at 50 

and 75 cm corresponded to peak values observed at 25 cm.  

In contrast to the other two management systems, significantly lower SUVA 

values were observed in DIR (p < 0.001), although changes over the rice 

cropping season showed similar trends (Fig. 4c). In 2012, SUVA values at all 

depths ranged between 1.07-2.25 l mg-1 m-1 with mean values of 1.70 ± 0.21, 

1.53 ± 0.30 and 1.41 ± 0.33 l mg-1 m-1 at 25, 50 and 75 cm, respectively. In 

2013, average values were slightly higher than 2012 mainly due to a small 
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increase in absorbance values towards the middle of the cropping season 

(beginning August) at all depths. Maximum values during this period reached 

2.89, 2.93 and 2.79 l mg-1 m-1 at 25, 50 and 75 cm, respectively.  

3.3 Surface water dissolved organic carbon 

Inflow and outflow DOC concentrations over the cropping seasons did not 

show any particular trend over time, and therefore collected data were 

grouped together (Table 2). Inflow DOC concentrations were significantly 

lower than those measured in outflow waters from each of the water 

management treatments. Over the two cropping seasons DOC 

concentrations in the supply canals ranged from 2.7-7.9 mg C l-1 with an 

average value of 5.1 ± 0.2 mg C l-1 (Table 2). Outflow waters showed higher 

mean DOC concentrations ranging from 6.1 to 6.8 mg C l-1 with no significant 

differences between treatments (Table 2), even though slightly higher 

maximum DOC concentrations were observed for WFL with respect to DFL 

and DIR (14.1, 8.9 and 10.9 mg C l-1, respectively). Only for WFL, maximum 

DOC concentrations in the outflow waters corresponded to the peak values 

in topsoil DOC observed in the first phase of the cropping period (end June; 

data not shown). No significant differences were observed in SUVA values 

between inflow and outflow waters from the three water management 

practices (Table 2). Compared to soil solutions, mean SUVA values in 

surface waters were relatively low and ranged between 1.91 and 2.20 l mg-1 

m-1.  

Table 2 - Mean DOC concentrations and specific UV absorbance (SUVA) values for 
inflow and outflow waters from the three water management practices.  

 n DOC (mg C l-1) SUVA (l mg-1 m-1) 

Inflow 54 5.1 ± 0.2 b 2.10 ± 0.08 
Outflow WFL 35 6.8 ± 0.3 a 1.91 ± 0.10 
Outflow DFL 26 6.1 ± 0.3 a 2.01 ± 0.13 
Outflow DIR 22 6.5 ± 0.3 a 2.20 ± 0.10 

Values represent the mean of n measurements over two cropping seasons ± standard error. 

Different letters indicate a significant difference between inflow and outflow waters tested by 

repeated measures, one-way analysis of variance and the Bonferroni post-hoc test (p < 0.05) 
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3.4 Dissolved iron(II) concentrations 

Soil solution Fe2+ concentrations generally depended on soil redox 

conditions therefore resulting in different trends in time and with soil depth 

among water management practices (Fig. 5). In WFL, Fe2+ concentrations in 

the topsoil (25 cm) increased rapidly with field flooding reaching maximum 

values of around 24-27 mg Fe l-1 in less than 20 days (Fig. 5a). These 

concentrations were sustained for most of the cropping season except for 

short periods in correspondence with mid-season drainage and after final 

drainage before harvest, when Fe2+ concentrations dropped rapidly. Mean 

topsoil Fe2+ concentrations over the flooded period were 17.5 ± 8.2 and 22.2 

± 6.0 mg Fe l-1 for 2012 and 2013, respectively. Also subsoil Fe2+ 

concentrations tended to increase during flooding reaching maximum values 

of 23-25 and 9-28 mg Fe l-1 at 50 and 75 cm respectively. 

Flooding also resulted in an increase in soil solution Fe2+ concentrations in 

DFL, though this was more contained and clearly slower with respect to WFL 

(Fig. 5b). In fact, maximum Fe2+ concentrations of 28.3 and 20.7 mg Fe l-1 at 

25 cm, were only observed after 35 (end July) and 68 (end August) days 

from initial field flooding in 2012 and 2013, respectively. Similarly, at 50 and 

75 cm soil solution Fe2+ concentrations tended to increase only slowly, 

reaching peak values later on during the cropping season (end August). In 

this treatment, mean Fe2+ concentrations during field flooding tended to 

decrease with soil depth. 

Maintenance of oxic soil conditions for most of the cropping season in the 

DIR treatment resulted in significantly lower soil solution Fe2+ concentrations 

compared to WFL and DFL (p < 0.001; Fig. 5c). Over the two years Fe2+ 

concentrations t 25 cm did not exceed 1.0 mg Fe l-1, while at deeper soil 

depths (50 and 75 cm) concentrations were generally below or close to 

detection limits (0.2 mg Fe l-1). 

Over both cropping seasons and for all water management practices, mean 

Fe2+ concentrations in surface waters (inflow and outflow) were negligible 

and never exceeded 0.5 mg Fe l-1 (data not shown).  
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Figure 5 -Variations in soil solution Fe2+ concentrations at different depths over two 
rice cropping seasons as a function of water management practices involving a 
water seeding and continuous flooding (WFL), b dry seeding and flooding at tillering 
stage (DFL), and c dry seeding and intermittent irrigation (DIR). Shaded areas 
represent the presence of flood water. Error bars represent the standard error of 
replicated measurements (n=4). The effects of water management, sampling date 
and depth, as well as water management×date, and water management×depth 
interactions, on Fe2+ concentrations analysed by ANOVA for both years were all 
significant (p=0.000) 

3.5 Dissolved organic carbon fluxes 

The combined effect of water management practices on DOC concentrations 

and components of the water balance resulted in a strong influence on DOC 

fluxes in terms of both the total amounts as well as temporal variations. Over 

both cropping seasons, mean daily inflow of DOC with the water supply for 
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the three treatments ranged between 0.04 and 0.26 g C m-2 d-1, with 

maximum fluxes of 1.32 g C m-2 d-1 for WFL and DFL, and 0.84 g C m-2 d-1 

for DIR (Fig. 6). As expected, these peak fluxes were mainly recorded in 

correspondence with the beginning of field flooding in WFL and DFL, or 

irrigation events in DIR. Cumulative input fluxes calculated over the entire 

cropping seasons evidenced a greater input of DOC (17.5-46.3 g C m-2) in 

the WFL and DFL treatments with respect to the DIR treatment (4.8-6.9 g C 

m-2; Table 3). However, similar flow-weighted DOC concentrations across 

treatments (4.6-5.1 mg C l-1) suggests that these differences were mainly 

linked to the different water flow rates in each treatment. 

Mean daily DOC fluxes of 0.24, 0.18 and 0.02 mg C m-2 d-1 with outflow 

waters were measured over both cropping seasons for WFL, DFL and DIR, 

respectively, with maximum fluxes reaching values of 1.56, 1.48 and 0.56 g 

C m-2 d-1 for the three treatments respectively (Fig. 7). Highest DOC outflow 

was generally observed during field drainage (WFL and DFL) or irrigation 

events (DIR). In both years, cumulative DOC outflow over the cropping 

season were generally greater in WFL and DFL (between 4-18 times) with 

respect to DIR, although greater cumulative fluxes were measured in 2012 

with respect to 2013 (Table 3). For all treatments, flow-weighted DOC 

concentrations in outflow waters (5.6-6.4 mg C l-1) were slightly greater that 

the respective concentrations in inflow waters (4.6-5.1 mg C l-1). 

In general, higher DOC percolation fluxes were obtained during flooded with 

respect to drained periods of the cropping season (Fig. 8). In fact, over both 

cropping seasons, higher mean daily percolation DOC fluxes were obtained 

for WFL and DFL (0.32 and 0.23 g C m-2 d-1, respectively) with respect to 

DIR (0.03 g C m-2 d-1), as were maximum percolation fluxes (1.68, 2.07 and 

0.73 g C m-2 d-1 for WFL, DFL and DIR respectively; Fig. 8). Cumulative 

percolation DOC fluxes over the entire cropping season ranged from 3.7 to 

51.1 g C m-2 and tended to decrease in the order WFL>DFL>>DIR, although 

greater cumulative fluxes were measured in 2012 with respect to 2013 

(Table 3).  



 Dissolved organic carbon cycling in relation to water management practices 
 

147 
 

 

Figure 6 - Variations in estimated DOC inflow fluxes from supply canals over two 
rice cropping seasons as a function of water management practices involving a 
water seeding and continuous flooding (WFL), b dry seeding and flooding at tillering 
stage (DFL), and c dry seeding and intermittent irrigation (DIR). Dashed line 
represents cumulative fluxes over the cropping season, while shaded areas 
represent the presence of flood water 

In the WFL treatment, the greatest amount of DOC percolation occurred 

during the first 30 DAS, accounting for 39-45% of the total cumulative flux 

(Table 3). In contrast to WFL, percolation of DOC at the beginning of the 

cropping season (0-30 DAS) in the DFL treatment was relatively limited, 

accounting for only 1-2% of the total flux, but increased rapidly with the 

onset of flooding at tillering stage. Much lower amounts of DOC were 

percolated in DIR and most of this was concentrated between 31-60 DAS 

(44-51% of the total DOC percolation flux).  
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Figure 7 -Variations in estimated DOC outflow fluxes from drainage canals over two 
rice cropping seasons as a function of water management practices involving a 

water seeding and continuous flooding (WFL), b dry seeding and flooding at tillering 
stage (DFL), and c dry seeding and intermittent irrigation (DIR). Dashed line 

represents cumulative fluxes over the cropping season, while shaded areas 
represent the presence of flood water 

Flow-weighted DOC concentrations in percolation waters were markedly 

higher than those obtained in inflow and outflow waters for all treatments 

under study (Table 3). Moreover, higher values were obtained for WFL and 

DFL (18.5-27.0 mg C l-1) with respect to DIR (9.7-12.1 mg C l-1; Table 3). The 

high flow-weighted DOC concentrations obtained for WFL were generally 

maintained throughout the cropping season. In contrast, DFL showed 

relatively lower concentrations in the first 30 DAS with respect to the rest of 

the season, in both years studied.  
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Figure 8 - Variations in estimated DOC percolation fluxes (at 25 cm) over two rice 
cropping seasons as a function of water management practices involving a water 
seeding and continuous flooding (WFL), b dry seeding and flooding at tillering stage 
(DFL), and c dry seeding and intermittent irrigation (DIR). Dashed line represents 
cumulative fluxes over the cropping season, while shaded areas represent the 
presence of flood water 

Flow-weighted DOC concentrations in DIR were generally similar throughout 

the cropping season, except for the beginning of the 2013 cropping season 

where lower than average concentrations were observed in the first 30 DAS 

and higher concentrations in the 31-60 DAS period.  
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Table 3 - Cumulative DOC fluxes and flow-weighted DOC concentrations in inflow, 
outflow and percolation waters over the two cropping seasons as a function of water 
management practices  

 DOC flux (g C m–2)  Flow-weighted DOC (mg C l-1) 

 WFL DFL DIR  WFL DFL DIR 

2012 cropping season        

 Inflowa 46.3 40.5 4.8  4.8 4.7 4.6 
 Outflowa 44.3 35.6 2.4  6.4 5.6 5.8 

 Percolationa 51.1 45.9 3.7  20.8 25.2 12.1 
 0–30 DASc 19.7 0.7 0.5  19.1 13.7 13.8 
 31–60 DAS 11.9 16.7 1.6  21.4 20.2 11.9 
 61–90 DAS 12.3 14.1 0.8  21.7 28.3 12.0 
 91–120 DAS 7.2 14.5 0.7  23.6 30.6 10.9 
        

2013 cropping season        

 Inflowb 21.6 17.5 6.9  5.0 5.1 5.0 
 Outflowb 18.1 13.5 4.1  6.4 6.2 6.3 

 Percolationb 32.6 17.9 4.2  27.0 18.5 9.7 
 0–30 DASc 14.6 0.4 0.1  32.8 1.8 1.4 
 31–60 DAS 5.8 2.8 2.1  26.5 15.5 14.4 
 61–90 DAS 7.0 8.4 1.1  20.3 24.0 8.1 
 91–120 DAS 4.1 5.7 0.7  30.8 32.7 7.4 

a Calculated over entire cropping period (between 15/05/12 and 28/09/12) 
b Calculated over entire cropping period (between 28/05/13 and 15/10/13) 
c 30-day cumulative data for percolation flows; DAS, days after seeding 
 

3.6 Net methane emissions 

Water management practices strongly influenced both the extent and 

temporal variations in net CH4 fluxes from the soil during the rice cropping 

season (Fig. 9) that were generally related to the establishment of anoxic 

soil conditions and therefore linked to the duration of field flooding. In WFL, 

CH4 emissions were recorded a few days after initial field flooding, and 

rapidly increased to reach maximum fluxes of 0.59 and 0.69 g C m-2 d-1 

within 15-20 days in 2012 and 2013, respectively (Fig. 9a). Emission rates 

fell drastically in correspondence with mid-season drainage events, only to 

increase again with subsequent flooding. However, during the cropping 

season, emission fluxes generally tended to decrease with time and returned 

to background levels (< 0.01 g C m-2 d-1) when fields were drained prior to 
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harvest (end September). Mean CH4 fluxes over the flooded period were 

0.19 ± 0.03 and 0.30 ± 0.03 g C m-2 d-2 in 2012 and 2013, respectively.  

 

Figure 9 - Variations in net CH4 emission fluxes over two rice cropping seasons as a 
function of water management practices involving a water seeding and continuous 
flooding (WFL), b dry seeding and flooding at tillering stage (DFL), and c dry seeding 
and intermittent irrigation (DIR).Shaded areas represent the presence of flood water. 
Error bars represent the standard error of replicated measurements (n=4). The 
effects of water management and sampling date, as well as their interaction, on net 
CH4 emission fluxes analysed by ANOVA for both years were all significant 
(p=0.000) 

Similarly, in DFL, CH4 emissions increased in correspondence with field 

flooding, and, after reaching maximum fluxes towards mid-July, tended to 

decrease with time (Fig. 9b). However, mean CH4 fluxes during field flooding 

(0.14 ± 0.02 and 0.10 ± 0.01 g C m-2 d-2 in 2012 and 2013, respectively) 
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were smaller, and lower maximum emissions were measured (0.30 and 0.20 

g C m-2 d-1 in 2012 and 2013, respectively), with respect to WFL (p < 0.001). 

In both years we observed singular high emission peaks just after final 

drainage in September, probably due to the release of methane trapped in 

the soil or dissolved in soil solution during drainage. 

The maintenance of oxic soil conditions in DIR resulted in measured fluxes 

that were generally below detection limits, except for some sporadic 

emissions in 2013 that however, did not exceed 0.08 mg C m-2 d-1 (Fig. 9c). 

4 DISCUSSION 

4.1 Quantity and quality of DOC in paddy soils 

Water management strongly affected trends in pore-water DOC 

concentrations with time and depth, clearly showing a dependence on soil 

water status, and consequently redox conditions. Cropping systems 

managed under continuous flooding led to the accumulation of important 

amounts of DOC, with mean topsoil concentrations of 19.4 mg C l-1 and 

maximum values up to 48 mg C l-1. High DOC concentrations in flooded rice 

paddies have frequently been reported with values often in excess of 10-20 

mg C l-1 (Katoh et al., 2004; Maie et al., 2004; Xu et al., 2013; He et al., 

2015). This has generally been attributed to the limited or incomplete 

decomposition of organic matter and accumulation of water soluble 

intermediate metabolites under anoxic conditions (Sahrawat, 2004). 

Moreover, although similar C mineralization rates have been reported under 

both anoxic and oxic conditions (Hanke et al., 2013), the higher substrate 

use efficiency by the microbial biomass under anaerobic conditions may lead 

to a reduced mineralization of straw-derived C with an enhanced preference 

for the most labile C pools (Devêvre and Horwáth, 2000). The relatively high 

DOC concentrations and low SUVA values observed at the beginning of the 

cropping season under continuous flooding seem to suggest that most of the 

accumulated soluble organic C derived from decomposing crop residues. 
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Post-harvest incorporation of crop residues represents the main input of 

organic C into paddy soils (Kimura et al., 2004), which in our experimental 

platform, accounted for a organic C input of 270-385 g C m-2 yr-1 in the form 

of rice straw alone (i.e. excluding below-ground biomass C; unpublished). 

The decomposition of these residues may supply important amounts of 

DOC, predominantly during the first stages of the cropping season (Katoh et 

al., 2005). However, the extent of this contribution also depends on the 

timing of crop residue management practices. In fact, we attributed the 

generally higher DOC concentrations observed in 2013 (Fig. 3a) to the 

shorter time span between crop residue incorporation and field flooding with 

respect to 2012 (27 and 53 days, respectively). As a consequence of the 

particularly abundant precipitation in the spring of 2013, soil tillage had to be 

delayed, probably influencing the amount of labile straw-derived C present in 

the soil during the cropping season. 

The increasing trend in SUVA with time under flooded conditions (up to 

values of 3.6-4.3 l mg-1 m-1) points to an increasing contribution of more 

aromatic, soil-derived organic C, although the selective preservation of 

aromatic, residue-derived constituents under anoxic conditions could have 

also partly contributed to this increase. The important release of Fe2+ due to 

the reductive dissolution of Fe (hydr)oxides as well as the increase in soil pH 

towards neutral values, suggest that anoxic conditions could indeed lead to 

the abiotic release of DOC previously stabilized on the mineral matrix 

(Grybos et al., 2009). This was further supported by the significant 

correlation between DOC and Fe2+ concentrations in the topsoil (r = 0.639; p 

< 0.001; Fig. 10a). Continuous flooding also resulted in an increase in DOC 

contents, SUVA values and Fe2+ concentrations in the subsoil. This points to 

the mobility of DOC along the soil profile, not only as a consequence of the 

higher concentrations in the topsoil, but also due to a limited retention of 

aromatic constituents during passage through the reduced mineral horizons. 

Moreover, maintaining anoxic soil conditions for relatively long periods of 

time could result in an important transfer of pedogenic Fe from the topsoil to 
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the subsoil, with important implications on C stabilization (Wissing et al., 

2013; Sodano et al., 2016). Fe redox transformations, transport of soluble 

Fe2+, and redistribution of pedogenetic Fe (hydr)oxides along the soil profile 

may have a profound, but still not well understood, influence on DOC cycling 

and C sink potential of paddy soils subjected to frequent changes in redox 

conditions (c.f. Kalbitz et al., 2013; Winkler et al., 2016).  

Adoption of dry seeding and delayed flooding resulted in much lower DOC 

concentrations in the first part of the cropping season with respect to water 

seeding and continuous flooding. Oxic soil conditions present during this 

period probably favoured the rapid turnover of this labile organic C pool 

preventing its accumulation. Nonetheless, with the onset of flooding at 

tillering stage, the concentration of DOC and its aromatic character tended to 

increase suggesting an important release of soil-derived DOC in this water 

management too. This was consistent with the corresponding increase in 

pore-water Fe2+ concentrations observed in the later stages of the cropping 

season. Moreover, variations in Fe2+ concentrations in the dry seeded 

treatment explained 71% of the variability in DOC concentrations (p < 

0.001), compared to only 41% in the water seeded treatment (Fig. 10a) 

supporting our hypothesis that DOC accumulated under the former water 

management was mainly soil-derived.  

The release of Fe2+ in solution during field flooding was however, more 

limited and clearly slower in the dry with respect to water seeded treatment. 

In the former, the oxic soil conditions together with the warmer ambient 

temperatures during the first 25-35 DAS probably favoured the 

decomposition of the straw-derived C incorporated into the soil. This could 

have limited the availability of labile C once the fields were flooded, partially 

reducing the supply of electrons from organic matter degradation to Fe-

reducing microorganisms. Moreover the lower pH values and slower 

decrease in Eh observed with the onset of field flooding in the dry with 

respect to the water seeded treatment, lends support to this interpretation. 

These observations suggest that whereas crop residue incorporation in 
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proximity of field flooding (water seeded) could actually result in a positive 

feedback on DOC concentrations by stimulating the microbially-driven, 

reductive dissolution of Fe (hydr)oxides and the consequent release of soil-

derived DOC, dry seeding could limit this effect. This was further 

corroborated by the generally higher DOC concentrations and maximum 

SUVA values observed under continuous flooding in the 2013 with respect to 

the 2012 cropping season as a consequence of the closer temporal 

proximity between residue incorporation and flooding in 2013. 

In contrast to the other two water management practices, maintaining rice 

cropping under aerobic conditions by intermittent irrigation resulted in 

relatively low DOC contents throughout the soil profile with concentrations 

generally <10 mg C l-1. Specific UV absorption values and Fe2+ 

concentrations were relatively low, never exceeding 2.25 l mg-1 m-1 and 1.0 

mg Fe l-1, respectively. These results suggest that maintaining oxic 

conditions not only enhanced the turnover, but also limited the release and 

mobility of DOC throughout the cropping season. 

 

Figure 10 - Correlations between topsoil DOC concentrations, and a Fe2+ 
concentrations or b CH4 fluxes for the three water management practices 

4.2 DOC export and transport from topsoil to subsoil 

Water management practices may have an important effect on the hydrology 

of paddy soils (Sacco et al., 2012; Chiaradia et al., 2014; Zhao et al., 2015), 
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and consequently on DOC fluxes. In fact, rice paddies may contribute 

significant amounts of DOC to surface waters with important impacts on 

catchment C budgets and downstream water quality in rice-dominated areas 

(Ruark et al., 2010). All three water management practices studied 

evidenced higher DOC concentrations in the outflow with respect to inflow 

water. However, for all treatments, cumulative DOC fluxes in the outflow 

were generally lower than DOC fluxes entering the rice paddies with inflow 

waters, and decreased drastically on going from continuous flooding (18-44 

g C m-2) to intermittent irrigation (2-4 g C m-2). This suggests that outflow 

rather than DOC concentrations, mainly governed organic C exports with 

surface waters from the different water management practices. This is 

consistent with the findings of other studies regarding DOC exports from 

agricultural watersheds (Hernes et al., 2008) and rice fields (Ruark et al., 

2010) in particular. Nonetheless, the slightly higher flow-weighted DOC 

concentrations in output with respect to input waters suggests that rice 

paddies could represent a net source of organic C to surface waters at field-

scale. Although Krupa et al. (2012) reported an increase in the fraction of 

aromatic and high molecular weight moieties lost with outflow waters over 

the course of the growing season, we did not observe any differences in the 

quality of DOC neither between inflow and outflow waters, nor between 

outflow waters from the different water management practices. This 

suggests that enrichment of surface waters in aromatic components is 

strongly linked to soil processes occurring in the topsoil and their 

contribution will depend on flow through these horizons.    

Leaching losses of DOC from paddy topsoils may represent a crucial 

component of the ecosystem C balance, although this is often overlooked. 

Very few studies have attempted to quantify these fluxes (Katoh et al., 2004; 

Maie et al., 2004), and even less have evaluated the influence of water 

management (Xu et al., 2013). Our results evidenced that the transport of 

DOC from the topsoil to the subsoil was dependent on the combination of 

hydrological flow regime and the resulting soil moisture conditions. The 
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former was mainly responsible for the differences in measured fluxes 

between the two years within each water management. In fact, the different 

water fluxes we observed between cropping seasons was mainly attributed 

to the higher water table depth in 2013 with respect to 2012. Over a cropping 

season, as much as 32.6-51.1 g C m-2 were lost by percolation from the silty-

loam textured topsoil under continuous flooding. This could represent an 

important input of organic C into the subsoil particularly in coarse textured 

paddy soils where the plough pan does not act as a transport barrier for 

DOC between topsoil and subsoil (c.f. Wissing et al., 2011). Large vertical 

fluxes of DOC in rice paddies may strongly contribute to the formation of 

stable SOC in the deeper mineral horizons resulting in an increase in C 

stocks, as already postulated for oxic soils (Kalbitz and Kaiser, 2008). 

However, the interaction of DOC with soil minerals and its subsequent 

stabilization against microbial mineralization (Eusterhues et al., 2014) could 

largely depend on soil redox conditions. Moreover, a significant proportion of 

this C flux (40-45%) occurred during the first month of rice cropping. 

Considering the variations in SUVA values with time, the distribution of C 

percolation fluxes over the cropping season could strongly influence the 

source and chemical composition of DOC reaching the subsoil, and 

consequently its retention on mineral surfaces.    

Total DOC percolation was reduced by about 25% with the adoption of dry 

seeding (17.9-45.9 g C m-2), and by 90% with rotation irrigation (3.7-4.2 g C 

m-2). This was in accordance with the findings of Xu et al. (2013) that 

observed a 46% decrease in DOC leaching under non-flooded, controlled 

irrigation (6.3 g C m-2) with respect to continuous irrigation (11.8 g C m-2). 

The relatively high flow-weighted concentrations >20 mg C l-1 observed 

during field flooding suggest that soil processes that led to the elevated DOC 

concentrations in topsoils under anoxic conditions, can also be responsible 

for important inputs of organic C to the subsoils. Lower, but not negligible 

flow-weighted DOC concentrations were observed during the first month of 

dry seeded rice cropping, and throughout the season where intermittent 
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irrigation was adopted. These results confirmed that the differences in DOC 

percolation we observed among treatments were not exclusively due to 

different water flows. 

4.3 Substrate availability for methane production 

Since both the production and oxidation of CH4 are known to be influenced 

by oxygen availability (Conrad, 2002; Ma et al., 2013), water management is 

one of the most important factors influencing net CH4 emissions from paddy 

fields (Neue, 1997). With respect to continuous flooding, dry seeding, and 

particularly, intermittent irrigation resulted in important reductions in net CH4 

emissions throughout the cropping season. This was in line with the findings 

of various authors (Tyagi et al., 2010; Yang et al., 2012; Ma et al., 2013; Liu 

et al., 2014) who showed that frequent field drainage during the cropping 

season could effectively mitigate CH4 emissions by reducing the production 

and also enhancing the oxidation of CH4.  

Dissolved organic C may represent the primary carbon source for CH4 

production, leading to a strong positive correlation between the seasonal 

pattern of DOC concentrations and CH4 emissions, particularly in the root 

zone (Lu et al., 2000). In fact, we observed strong correlations between 

DOC concentrations in the topsoil and CH4 fluxes in the fields managed 

under continuous flooding and dry seeding (r = 0.607 and 0.395, 

respectively; p < 0.001), but not for the intermittent irrigation treatment where 

CH4 emissions were often absent (Fig. 10b). Our findings suggest that under 

continuous flooding, the presence of a more readily mineralizable, residue-

derived DOC pool was probably linked to a greater substrate availability for 

methane production, particularly at the beginning of the cropping season 

(Watanabe et al., 1999; Katoh et al., 2005). We do not, however, have 

substantial evidence to confirm that any positive feedback of residue-derived 

C on the release of presumably, less labile, soil-derived DOC could lead to a 

corresponding increase in CH4 production as reported by Yuan et al. (2014). 

Nonetheless, maintaining aerobic soil conditions at the beginning of the 
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cropping season with dry seeding may have led to a preferential 

mineralization of the more labile constituents of the incorporated crop 

residues before the onset of flooding, consequently resulting in a lower 

amount of CH4 emitted per unit DOC (Fig. 10b).   

5 CONCLUSIONS 

Understanding how water management practices influence DOC cycling 

during the rice cropping season can provide important insights into the 

functions of this labile SOC pool in paddy soils. Our results confirm that the 

typically high DOC concentrations observed in paddy soils (>10-20 mg l-1) 

are strongly linked to the reducing conditions resulting from field flooding. 

Adopting water regimes that maintain the soil under anoxic conditions from 

most of the cropping season, not only enhance CH4 emissions, but also lead 

to important DOC fluxes with surface and subsurface waters. In particular, 

we showed that vertical fluxes of DOC could be rather consistent, and 

together with the enhanced mobility of Fe2+ under reducing conditions, could 

possibly have important implications on C inputs and accumulation in the 

subsoil. However, as for CH4 emissions, these fluxes are strongly dependent 

on water management. 

The cycling of DOC in paddy soils is intimately linked to Fe cycling. In fact, 

our results indicated that the presence of important amounts of labile, 

residue-derived organic C in correspondence with field flooding may result in 

a positive feedback on the abiotic release of soil-derived DOC by promoting 

the microbially-driven reductive dissolution of Fe (hydr)oxides present in the 

soil. Moreover, the progressive release of soil-derived DOC under anoxic 

conditions, probably responsible for the increase in aromatic character 

during the cropping season, indicated that water management can also 

influence DOC quality with important implications on the chemical 

composition of DOC reaching the subsoil. 
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Abstract 

In agricultural areas with shallow groundwater tables, capillary rise plays a crucial 
role in the satisfaction of crop water requirements. While monitoring the root zone 
inflows and water status allows the evaluation of most of the water balance 
variables, capillary rise cannot be directly measured; therefore, hydrological models 
are often employed for its estimation. In the agricultural seasons 2010 and 2011, an 
intensive monitoring activity (founded under the Lombardy Agricultural Research 
Program 2007-2009) was carried out in a 10 ha experimental field located in 
Landriano (Pavia), characterized by a shallow groundwater table depth (0.6 to 1.5 
m). The site included six Intensive Monitoring Plots (IMPs in the following), each 
equipped with instrumentation for continuous monitoring of moisture, water potential 
and groundwater table depth, and an eddy covariance tower. In the two seasons, 
periodic campaigns were conducted in the IMPs measuring crop biometric 
parameters and soil hydrological parameters. In 2010 the field was watered by 
border irrigation, while in 2011 no irrigation was applied. 
Monitoring data were used to carry out simulations with the physically based 
hydrological model SWAP, in order to assess the relative contribution of the various 
water fluxes to maize water requirements. While most parameters and inputs 
necessary for the SWAP implementation were directly measured in the field, it was 
impossible to detect with sufficient accuracy the saturated hydraulic conductivity (Ks) 
of a four layered profile. An automatic calibration of these variables was then 
performed using the optimization algorithm SCEM-UA, which is one of the most 
powerful algorithms for the search of the global optimum currently available.  Results 
presented in this contribution involves one of the IMPs for year 2010. The calibration 
procedure identified narrow Ks ranges for all the layers well in agreement with some 
Ks measurements carried out in the top soil. SWAP simulations run with the 100 
best Ks sets show a mean contribution of capillary rise amounting to 50% of the crop 
water requirements. 
 

Keywords: SWAP, calibration, SCEM-UA, maize water requirements, capillary rise 
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1 INTRODUCTION 

The unsaturated zone plays an important role in the hydrological cycle, since 

it is at the interface between atmosphere and groundwater circulation. Water 

fluxes in the unsaturated zone affect water status, development and 

production of crops; by an environmental point of view, these fluxes 

determine mobilization and transport of solutes and pollutants from the soil 

surface to the aquifer system.  

There are several reasons for modelling hydrological processes in the 

unsaturated zone, one of them is definitely the existing limit at the possibility 

of measuring all the variables we need to know about the physical system. 

The models are used to perform extrapolations or predictions that, 

reasonably, are expected to be useful in decision-making processes focused 

on hydrological issues (Beven, 2001).  

Water movements in the unsaturated zone can be described with 

mathematical formulations based on different approaches (e.g.  Gandolfi et 

al., 2006) going from very simplified conceptual schemes to models, as 

SWAP (Kroes and van Dam, 2003), Hydrus-1D (Šimůnek et al., 2008), U3M-

1D (Vaze et al., 2004), implementing the numerical solution of the Richards’ 

differential equation. The latter set of models simulates soil, plant and 

atmosphere as a continuous system in which water movements are driven 

by potential gradients. In case a thorough analysis of the physical processes 

is required and all the needed information is available, complex models are 

usually preferred. 

A modelling approach is particularly interesting in sites where there is a 

strong interaction between the processes occurring at the soil surface and 

the groundwater, as in areas characterized by shallow groundwater tables. 

In such situations, a water flow towards the root zone is triggered by the 

strong potential gradient that occurs when the soil water content nearby the 

roots becomes very negative. A model simulation can be very useful in the 
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estimation of this upward flux since a reliable direct measurement is at least 

a complex task.  

Numerous studies, performed by different approaches, attempted to quantify 

the contribution of the capillary rise to the root zone soil water balance, 

taking into account several variables including, particularly, the crop type 

and the groundwater depth. Kahlown et al. (2005) reported that with a 

groundwater depth of 0.5 m irrigation of wheat was no longer required, while 

in the case of sunflower an irrigation supply equal to the 20% of the 

evapotranspiration volume showed to be sufficient. Prathapar and Qureshi 

(1999) showed that with a groundwater depth within 2 m from the 

topographic surface, crops were able to extract a considerable fraction of the 

water they needed. Kahlown et al. (1998) illustrated how a groundwater 

depth of 1 m represents the optimum situation for the growth of many crops, 

while the capillary rise contribution to the root zone water balance becomes 

negligible when the groundwater depth becomes 2-3 m. Liu and Luo (2011) 

suggested a groundwater table at 1.5 m from the soil surface as the 

optimum for the winter wheat, since this depth allows its complete root 

development. Kahlown et al. (2005) suggested the optimal groundwater 

depth to be between 1 and 2 m for all the crops they investigated. For the 

maize crop, the same authors reported a required irrigation contribution of 

75 mm when the groundwater depth was 1 m, this contribution was shown to 

decrease approximately linearly with the increasing of the water table depth 

(the linear decrease was highlighted for all the crops examined). A linear 

relationship between the groundwater depth and the required irrigation 

amount was also detected by other authors, including Sepaskhah et al. 

(2003). Authors, however, came to different conclusions, since factors such 

as climate of the experimental areas or soil types therein play a non-

negligible role. 

Although maize is a crop fairly affected by water ponding (often happening 

when shallow groundwater combines with heavy rains or abundant 

irrigation), massive roots uptake and yields are documented also with 
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groundwater depths of few tens of centimetres. With a water table depth of 

0.5 m several authors found groundwater contributions around 40% of the 

crop water requirements and an increase in yield (Follett et al., 1974;  

Cavazza and Pisa, 1988; Pisa and Ventura, 1991). The same contribution 

was observed by Kahlown et al. (2005) for maize in an arid region of 

Pakistan. These authors also reported that the contribution decreases to 

30% of the crop water requirements with a groundwater depth of 1 m and to 

7.5% with a groundwater depth of 1.5 m. Soppe and Ayars (2003) showed 

that the contribution of shallow water tables is not constant in time but 

increases with the increasing of the rooting depth, reaching its maximum 

value at the end of the growth phase of the plant, when roots are fully 

developed. Liu and Luo (2011) concluded their study proposing irrigation 

systems in which the water table depth could be maintained at a depth of 1.5 

m or less, allowing an increase in crop production and a reduction in the use 

of surface irrigation. 

In order to have a reliable model estimation of the water fluxes, especially in 

case of complex physically based models (i.e. implementing the Richards’ 

equation), a relevant effort has to be spent for the quantification of the model 

parameters. Some of the needed parameter values are difficult to be 

quantified, even in presence of in-field or lab measurements. Among them, 

the effective soil saturated hydraulic conductivity (Ks), which is the value 

needed by the model (valid under the hypothesis of spatial homogeneity), is 

actually a virtual value since it does not correspond to any specific 

conductivity that can be measured in the field where a relevant spatial 

variability usually exists. The calibration of Ks can be done through inverse 

modelling (i.e. finding the value of the parameters giving the best fit between 

field measurements and model outputs) adopting the algorithms available in 

literature for the global optimum search (e.g. SCE-UA, SCEM-UA, PEST, 

SWARM). 

This research aims at estimating the upward groundwater flux in an 

experimental case characterized by a shallow groundwater table (as it is 
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typical for large areas of the Po valley plain) in order to assess its 

contribution to the satisfaction of maize water requirements among the other 

water inputs (rain and irrigation). For this purpose, the hydrological model 

SWAP (Soil Water Atmosphere Plant model, Kroes and van Dam, 2003) has 

been implemented using detailed monitoring data collected in field. For the 

calibration of the saturated hydraulic conductivity, the model has been 

coupled with the algorithm SCEM-UA (Vrugt et al., 2003), which is effective 

and efficient in locating the optimal values in multidimensional parameters 

spaces in case of highly-non-linear systems. In this paper, preliminary 

results concerning one site and one year are presented and discussed. 

2 MATERIAL AND METHODS 

2.1 Monitoring  activity 

In the agricultural seasons 2010 and 2011, an intensive monitoring activity 

was carried out for quantifying fluxes and storage of water and carbon in two 

maize agro-ecosystems of the Lombardy plain, according to the purpose of 

the AC-CA project (Gandolfi et al., 2012), funded under the Lombardy 

agricultural research program 2007-2009. The experimental site this paper is 

concerned is a 10 ha field located in Landriano (Figure 1 – 45°19’ N, 9°15’ E, 

88 m a.s.l), characterized by a shallow groundwater table depth (0.6 to 1.5 

m). In both the years the field was seeded with a long season Zea Mays 

variety (class 600-700) and a border irrigation was applied just in the first 

one. The monitoring setup involved an eddy covariance tower measuring 

water and carbon fluxes and instruments for the continuous monitoring of the 

soil water status installed in six Intensive Monitoring Plots (IMPs hereafter). 

Each IMP was provided with: (i) a FDR Sentek soil water content probe 

(sensors placed at 7, 27, 47, 67 cm depth), (ii) 4 tensiometers (installed at 

the same depths of the soil water content sensors) and (iii) a 3 m 

piezometric pipe equipped with a STS pressure transducer. 
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Figure 1 - Location of the experimental site (black dot) within the Lombardy region 

Moreover, about 8 campaigns per agricultural season were carried out in 

each IMP to measure crop biometric parameters (leaf area index, crop 

height and rooting depth) and to collect soil samples for assessing soil 

physico-chemical properties (soil texture, organic matter content, bulk 

density). At the same dates also saturated hydraulic conductivity 

measurements with two Guelph permeameters and one tension infiltrometer 

were carried out at the same sites (Rienzner et al., 2011). Finally, 

undisturbed soil samples were extracted in September 2010 for the 

laboratory determination of soil retention curves (by tension plates and the 

Richards’ pressure plate apparatus).  

2.2 The SWAP hydrological model 

Among the numerical models solving the Richards’ equation in the one-

dimensional vertical form, SWAP (Soil Water Atmosphere Plant model, 

Kroes and van Dam, 2003) is one of the most widely used and best 

documented. It adopts the modified differential Richards’ equation which 

includes a sink term representing the macroscopic flow extracted by the 

vegetation (depending on plant characteristics, local soil water potential and 
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transpiration demand due to climate). SWAP solves the Richards’ equation 

by a finite difference scheme adapted from those described by Haverkamp 

et al. (1977) and Belmans et al. (1983); initial and bottom boundary 

conditions must be provided as input.  

The soil profile is modelled as a sequence of layers, each one with its own 

hydraulic characteristics. The layers are further discretized into smaller 

compartments adopted in the finite differences solution scheme. Soil 

retention curves θ(h) and unsaturated hydraulic conductivity K(θ) of the 

layers are described by the analytic equations of Van Genuchten (1980) and 

Mualem (1976) respectively.  

Regarding the crop development, SWAP includes a detailed crop growth 

model (WOFOST 6.0, Spitters et al., 1989; Hijmans et al., 1994) and, 

alternatively, a simple module needing the time series of leaf area index 

(LAI) or soil cover fraction (CF), crop height, roots depth and distribution. 

The interception is modelled by the analytical model proposed by Von 

Hoyningen-Hune (1983) and Braden (1985). The potential 

evapotranspiration can be calculated either by the Penman-Montieth 

equation (Allen et al., 1998) or by applying crop factors to a reference 

evapotranspiration given in input. Then, the actual transpiration is derived 

from the potential accounting for soil cover, moisture and salinity conditions 

in the root zone (weighted by the root density), while the actual evaporation 

depends on the capacity of the soil to transport water to the soil surface.    

As regards irrigation, it can be fixed or scheduled by SWAP choosing among 

different time and depth criteria. 

2.3 Input data and SWAP parameterization 

Among the collected data (6 IMPs and two years), IMP-5 year 2010 was 

chosen as case study for this contribution. The chosen simulation period 

starts on 08/05/2010 (2 days before crop emergence) and ends at the maize 

harvesting (11/09/2010). The initial conditions of soil water potential were 

fixed according to the groundwater level measured in the day the simulation 
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starts (1 cm below the soil surface) and the bottom boundary condition was 

fixed by the daily series of groundwater depth. 

Soil profile was divided into four layers having their centre at the sensors 

depth (Section 2.1), further divided in 1cm-thick compartments; the fourth 

layer was extended up to the bottom of soil profile (4 m). 

The four retention curves were obtained by least squares regression, on the 

pairs of water content (θ) and water potential (h) values measured at the four 

different depths, with the Van Genucthen curve. The calibration values were 

the collected field measurements (along the season) and the laboratory test 

out comes made with tension and Richards’ plates apparatus on undisturbed 

soil samples taken in September 2010 at the same depths of the sensors. 

Van Genucthen curve calibration was performed by using a MATLAB 

algorithm solving nonlinear curve-fitting problems in least-squares sense 

(lsqcurvefit.m of the MATLAB Optimization Toolbox; Coleman and Li, 1996) 

for all the parameters except of the saturated water content, which was 

selected according to field measurements.  

Maize growth was computed using the simple crop module since the crop 

biometric measurements were directly collected in field (linear interpolation 

was used to obtain the complete time series).  

Daily meteorological data recorded by a 200m-far meteorological station 

were used, i.e. solar radiation (KJ m-2), maximum and minimum temperature 

(°C), air humidity (KPa), wind speed (m s-1) and rain (mm). 

As regards irrigation, on day 25/07/2010 a water amount was supplied by 

border irrigation which produced in IMP-5 an estimated infiltration of 65.9 

mm (obtained assessing local water table fluctuations and changes in soil 

moisture). 

2.4 SCEM-UA 

SCEM-UA (Shuffled Complex Evolution Metropolis - usable algorithm (Vrugt 

et al., 2003a; Vrugt et al., 2003b) is an algorithm for optimization, inverse 

modeling and assessment of hydrologic model parameters. It provides an 
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estimate of the most likely parameter set and its underlying posterior 

probability distribution. The algorithm is a Markov Chain Monte Carlo 

(MCMC) sampler, which generates multiple sequences of parameter sets 

that converge to the stationary posterior distribution for a large enough 

number of simulations. For further details of SCEM-UA’s functioning the 

reader should refer to Vrugt et al., 2003a; Vrugt et al., 2003b.  

Among the automatic calibration procedures, SCEM-UA has been chosen as 

it is consistent, effective and efficient in locating the optimal model 

parameters in multidimensional parameters spaces which may not be 

smooth. As a matter of fact, the case study performed required a calibration 

of a highly-non-linear system with a four-dimensional parameters space 

(saturated hydraulic conductivity at four depths).  

A pre-alpha version of SCEM-UA (MATLAB version) was used and coupled 

with the stand-alone model (SWAP.exe) through a set of MATLAB functions 

and scripts written in order to virtually make SWAP running within the 

MATLAB environment. 

The objective function leading the assessment of the “best” parameter set 

was defined as a weighted mean of the squared error between measured 

and simulated values (i.e. soil water potential, soil water content and water 

table depth). The weight of each term was set according to the reliability of 

the corresponding measured data. Results of the calibration procedure are 

described in Section 3. 

3 RESULTS 

In this section are presented both the optimal Ks sets given by SCEM-UA for 

the four soil layers the profile was divided in, along with some details of the 

calibration, and an analysis of the corresponding SWAP outputs.  

3.1 Estimation of the saturated hydraulic conductivities 

A wide range of Ks values, going from 0.01 to 1000 cm d-1, was given to 

SCEM-UA as prior distribution of the parameters (actually the inverse 
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problem was performed on decimal log-transformed Ks ranging from -2 to 3). 

After some exploratory SCEM-UA applications (changing e.g. the weights in 

the objective function), a suitable inverse solution was obtained with a 

15,000 simulations run. The main SCEM-UA output is a matrix having in 

each row the four parameters corresponding to each SWAP run and the 

resultant value of the objective function. A selection of 100 parameter sets 

(100-Opt hereafter) was obtained by extracting the rows having the best 100 

values of the objective function, the same was done for the 20 best sets (20-

Opt hereafter).  

Figure 2 shows the four frequency distributions, one for each layer, of 100-

Opt (light grey) and 20-Opt (dark grey). The distributions are bell-shaped 

and their ranges, compared with their mean values, are quite narrow 

indicating that the optimization, after a thorough investigation of the whole 

space, converged to a small area corresponding to the optimal solution in 

the 4D parameter space.  

The values of the objective function of 100-Opt, divided by the overall worst 

value, ranged from 0.0128 to 0.0132. As different combinations of the four 

parameters gave nearly equivalent scores of the objective function, the 

results of the inverse problem consist of multiple solutions for the saturated 

hydraulic conductivities of the soil profile. The means of the calibrated Ks 

(100-Opt), going from the first layer (close to the soil surface) to the fourth 

one, are 10.96, 1.76, 3.74 and 4.79 cm d-1 showing some variation along the 

profile. Notice the conductivity is smaller in the layers containing the plough 

pan.  

A confirm of the SCEM-UA estimation for the shallower layers is found in the 

results of the Guelph permeameter campaigns (Rienzner et al., 2011; 

Gandolfi et al., 2012) conducted in the same period and IMP. In fact, the 

measured values of Ks, involving the first 30 cm, ranged from 2.8 to 9.1 cm d-

1, in agreement with the calibration results for the first two layers. 
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Figure 2. Posterior distribution of the Ks values estimated for the layers: (a) 0-17 cm, 
(b) 17-37 cm, (c) 37-57 cm, (d) 57-77 cm 

3.2 SWAP outputs 

The SWAP model was run with the 100-Opt Ks set in order to quantify the 

upward flux. Capillary rises were thus computed on each day of simulation 

as the upward fluxes pouring out from the model compartment immediately 

below the root depth (which changes in time according to the field 

measurements). The 100 total upward fluxes were then replicated 

proportionally to their objective score (100 replicates for the best simulation 

and 1 to the 100th); the histogram of the upward flux is reported in Figure 3.  

As an example of the model fitting, Figure 4 shows the measured and 

simulated soil water contents along the crop season for the 20-Opt Ks set. In 
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the figure, the 20 lines cannot be distinguished due to an overlying of the 

results, confirming the modelling error to be equivalent in the set.  

Finally, Table 1 reports the different contribution to the maize water 

requirements due to rain, irrigation and capillary rise (100-Opt set), and the 

water percolation computed in the same way of the upward flux. 

 

Figure 3 - Histogram of the 100-Opt upward flux, weighted in frequency 
proportionally to the corresponding value of the objective function 

 

Figure 4 - Moisture trends for the four layers: measured data at the sensors depths 
(squares) and model outputs for the 20-Opt set at the same depths (straight lines); 
grey getting lighter moving downward the soil profile 
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Table 1. Average fluxes as obtained by the 100-Opt SWAP simulations, percentage 
of satisfaction of the potential evapotranspiration are also provided (E and T are the 
evaporation and transpiration components) 

Potential ET 
 

(mm) 

Net rain 
 

(mm) 

Irrigation 
 

(mm) 

Mean Actual ET 
 

(mm) 

Mean 
percolation 

(mm) 

Mean 
upward flux 

(mm) 

464  

(E 293, T 171) 

 

313 

 

(67%) 

66 

 

(14%) 

403 

(E 255, T 148) 

(86%) 

-308 

 

(-66%) 

237 

 

(51%) 

 

4 CONCLUSIONS 

In order to compute a complete water balance of a Lombardy maize field, 

including percolation and capillary rise, the SWAP model was implemented 

with a complete set of field measurements accounting for meteorology, soil 

properties, measurable water fluxes and crop features. Nevertheless, a 

calibration procedure of the saturated soil hydraulic conductivities along a 

layered profile was needed for a reliable application of the model, since it is 

rather unrealistic to measure directly the effective values of Ks within some 

square meters and at different depths without disturbing the cropped soil. 

For this purpose, the MATLAB SCEM-UA toolbox was coupled with the 

SWAP model in order to obtain an optimal estimation of Ks sets able to 

represent the experimental soil profile. 

The preliminary results for IMP-5−year 2010 show that the potential 

evapotranspiration (464 mm) is not fulfilled since actual transpiration 

amounts to 403 mm. It is worth to stress that, while irrigation and rain 

contribute to the satisfaction of both the soil evaporation and the plant 

transpiration, the upward flux (237 mm) contributes mainly to transpiration. 

Moreover, most of rain and irrigation (379 mm) percolate (308 mm) but, due 

to the shallow groundwater table, capillary rise compensates almost 80% of 

the same percolation losses, greatly increasing the water efficiency of the 

whole system.  
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Rain, irrigation and capillary rise account, respectively, for 67%, 14% and 

51% of the crop water requirements represented by the potential 

evapotranspiration. A significant contribution of capillary rise was thus 

noticed in case of shallow groundwater which ensured about half the 

potential evapotranspiration flux; this percentage is even greater than the 

values found by other authors (i.e. up to 40% with a water table 50 cm below 

the soil surface in Follett et al., 1974; Cavazza e Pisa, 1988; Pisa e Ventura, 

1991; Kahlown et al., 2005). 

Concluding, the adopted approach involving the inverse calibration of a 

physically based model is a promising tool to enhance the analysis of the 

soil-water-plant system with particular reference to the interactions between 

the groundwater and the root zone which significantly influence the whole 

system. 
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CHAPTER 8 

Summary and conclusions 

The research work presented in the Thesis has addressed the issue of water 

management in irrigated rice system in light of the call for improving their 

water productivity. Three interlinked focus areas have been evaluated: (i) 

role of monitoring techniques in improving knowledge of rice systems, (ii) 

field-scale considerations relating to water management in rice cultivation, 

(iii) impacts on water withdrawals induced by the adoption of “water-saving” 

regimes over large domains.  

This final chapter reviews and summarizes the main achievements obtained 

in each focus area and presents general considerations on the research 

question that propelled our work. 

 

Monitoring techniques in rice systems 

Identifying the scope for improvement in the efficiency of a system requires 

the adoption of monitoring techniques as an essential starting point. The 

combined use of on-ground measurements, providing detailed data though 

costly and time-consuming, with remote sensed data, less accurate but 

conveying spatial information, does offer outstanding opportunities to 

improve knowledge of agricultural systems. 

Our Thesis provided evidence that several on-ground monitoring devices 

can be effectively used in rice paddies to collect data capturing different 

processes with a high temporal resolution (data acquisition at hourly or sub-

hourly time steps). With a proper preliminary design, it is possible to 

implement an integrated system at reasonable cost, by using a combination 

of specific devices directly purchased from different manufacturers. 

However, savings on the total cost of the system are counterbalanced, to a 

certain extent, by the amount of time required to choose the right 
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combination of instruments that enables a proper communication between 

sensors and dataloggers.  

Another important aspect of in-field monitoring set-ups is the adoption, when 

possible, of systems to remotely check the functioning of the instruments. In 

fact, devices are subject to a series of disturbances such as high 

temperatures, humidity and damages from animals, so it is crucial to 

promptly detect any anomalies in the data acquisition and take actions 

timely.  

In spite of their potentialities, the use of integrated multi-sensor systems is 

reasonably limited to research purposes. However, different monitoring 

approaches can be effectively adopted by rice farmers who are seeking for 

solutions to improve water productivity. Besides point measurements, 

information provided by satellite images can be used to compute vegetation 

indices such as the Normalized Difference Vegetation Index (NDVI) that can 

be successfully used to evaluate crop development across space and time. 

Real-time data on crop development are of great importance for identifying 

areas with a stunted growth that can be managed according to precision 

agriculture techniques. Moreover, remote sensed information can be used 

as input data to spatialized models requiring knowledge on crop 

development.  

Future challenges 

- Development of monitoring set-ups based on low cost sensors and 

“open” acquisition systems in order to reduce costs and increase the 

monitoring performances; 

- Massive integration of remote sensed data of high spatial resolution 

(down to 10 m) in monitoring plans performed for both research and 

farming purposes.    

 

Water management of rice at the field scale 

Several field-scale experiments show that higher water productivities can be 

achieved when less water-demanding regimes replace traditional flooding. 
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This general evidence was indeed confirmed by results of the field 

experiment we conducted in Northern Italy where the following water 

managements were evaluated and compared: (i) continuous flooding of 

water-seeded rice (“traditional” flooding), (ii) delayed flooding of dry-seeded 

rice and (iii) intermittent irrigation of dry-seeded rice. In fact, intermittent 

irrigation and delayed flooding enabled to achieve higher water productivities 

than traditional flooding in both the years we considered (water productivities 

in the order: Intermittent Irrigation > Delayed flooding > Traditional Flooding). 

However, focussing on just a synthetic index could be indeed reductive.  

First, we observed irrigation requirements of the flooded treatments to vary 

significantly between years, with a variation of irrigation requirements by 

40% to 50%, mostly occurred in the first part of the season. Variations were 

attributed to a combination of abiotic and biotic factors including the 

groundwater level at the beginning of the rice season, the soil moisture 

antecedent to the tillage operations; the rainfall intensity occurred between 

soil tillage and the first irrigation; and the possible occurrence of preferential 

macropore fluxes due the activity of earthworms. Therefore, our study 

suggests that water applications related to a specific water treatment does 

not depend only on the water regime itself or on the soil type where rice is 

grown. In fact, even when the same water regime is applied to the same rice 

field, water requirements can halved in two subsequent seasons by the 

effect of environmental factors. Water productivity is therefore expected to 

vary accordingly if yield is not subject to relevant variations.  

Another aspect to consider is related to the decrease in yield that was 

observed with the water saving regimes. If delayed flooding determined 

average yield reductions by 3% against a decrease of water applications by 

20%, the reduction by 65% of water applications in intermittent irrigated rice 

was counterbalanced by yield losses close to 30%. The sustainability of a 

water management such as intermittent irrigation should be therefore 

evaluated by making a balance between the costs of the productive factors 

(of which water is just one component) against the income obtained from 
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grain production. These economic considerations are beyond the scope of 

this work, however it is worthwhile mentioning that water productivity does 

not convey any information on the profitability of the productive system. 

In addition to impacts on water amounts and yield productions, changes in 

the water management could have positive or negative impacts on other 

components that have to be evaluated when seeking for a sustainable 

alternative to traditional flooding. In fact, the presence of ponded water 

determines continuous downward water fluxes and maintain anaerobic soil 

conditions, which both affect the nutrient cycling and the environmental fate 

of organic chemicals. In this context, our work focussed on just one of these 

aspects by investigating the dynamics of dissolved organic carbon in relation 

to the water management. Results of the study suggest that there is a strong 

link between dynamics of dissolved organic carbon and the reducing soil 

conditions resulting from field flooding. In fact, the adoption of continuous 

flooding not only favoured the accumulation of dissolved organic carbon in 

the topsoil, but also enhanced the inputs of organic carbon to the subsoil 

and the exports with surface waters. On the other hand, maintaining oxic 

conditions through a regime of intermittent irrigation increased the turnover 

and limited the release and mobility of dissolved organic carbon throughout 

the cropping season.  

Future challenges 

- Investigate, and possibly quantify, the role of factors including 

groundwater levels, changes in bulk density and macroporosity on 

the irrigation requirements of the flooded treatments via modelling 

simulations. 

 

District-scale implications  

As mentioned before with respect to field-scale studies, intermittent irrigation 

enables to reduce significantly the water requirements for rice cultivation. 

However, a blind extension of these results to larger scales could be 

inappropriate. Our study showed that the magnitude of these reductions in a 
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rice district converting to intermittent irrigation was of different extent than 

what observed at the field scale because of variations in the groundwater 

levels.  

Under the present conditions, a total irrigation depth greater than 3,000 mm 

per season is required for growing flooded rice due to the coarse texture of 

the soils. But, at the same time, the regime of continuous submergence 

provides a significant recharge to the groundwater, which is maintained 

within one meter from the soil surface. These high groundwater levels 

provide a direct water supply to other crops of the district through the 

capillary rise. Such contribution can reach some 50% of the water 

requirements for crops like maize, as demonstrated by the case study 

presented in this Thesis. Moreover, a high water table limits the deep 

percolation fluxes, thus further reducing the irrigation requirements. 

Therefore, irrigation applications and groundwater levels are related by a 

feedback mechanism that cannot be ignored when considering relevant 

changes in the irrigation practices over large areas. Our scenario analysis, 

which assumed a large conversion to intermittent irrigation, showed that 

irrigation withdrawals of the district decreased by up to 70% when the 

feedback mechanism was neglected. However, the reduction amounted to 

around 45% when the feedback was accounted for, i.e. when the irrigation 

applications were estimated on the basis of the “new” equilibrium between 

groundwater levels and groundwater recharge. In addition to that, the 

second main crop of the district (maize) was found to suffer from some 

degree of water stress under the scenario. In fact, maintaining the original 

turn of 15 days for the irrigations of maize was no longer enough to 

guarantee timely irrigation supplies and avoid crop water stress due to the 

decrease of the groundwater level. Shortening the irrigation turn to 10 days 

further decreased the estimate of the savings achievable in the total 

irrigation withdrawals to around 40%. This is still very significant, but it 

should be viewed in a wider perspective, including the consideration of the 
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decrease of rice yield under the intermittent irrigation regime and the loss of 

the ecosystem services of the continuous flooding regime. 

Feedback effects are particularly relevant in our study area due to the high 

permeability of the soils and may have a substantially different magnitude in 

less permeable areas, even if groundwater depth is similar. Therefore, we do 

not imply that water saving techniques are ineffective. We rather stress the 

importance of carefully analysing all the consequences of their extensive 

adoption as several issues need to be considered. Besides considerations 

on yield losses and environmental aspects, one additional important issue 

regards the adaptations in the planning and management of water resource 

that may be required. In fact, rice growers currently receive relatively small 

flow rates and without interruption, but a shift to flush irrigation would imply 

to deliver higher flow rates on a weekly basis, with the possible need to 

rearrange the dimensions of the irrigation channels accordingly. Moreover, 

some competition for water between rice and maize could occur due to the 

overlap of the peak demands. 

Future challenges 

- Refine the methodology for the estimation of irrigation requirements 

of flooded rice;  

- Perform the same analysis on the adjacent rice district that is 

characterised by finer soils and different groundwater levels in order 

to evaluate the role of these two factors in the estimates we 

presented; 

- Simulate the variations of rice yields along with the variations of 

irrigation requirements. 

 

Is reducing water inputs the key? 

In spite of the tendency to seek for general and global solutions, the 

research activities presented in the Thesis clearly highlighted the difficulty to 

provide a univocal response to the question we posed. Different conclusions 



 Summary and conclusions 
 

181 
 

in fact could be drawn depending on the specific stakeholders (farmers, 

water planners, politicians) and on the domains of analysis (single field, 

farm, irrigation district, basin).  

In areas suffering from water scarcity, water saving regimes likely represent 

the only option rather than a deliberate choice to save water. In other 

contexts where water shortages are not a major issue and water availability 

is fostered by the strong interconnection between surface and subsurface 

water reserves, the call for water savings cannot be the only driving force to 

radical changes in the water management of rice farming. Extremely 

important are therefore research activities that look at the system as a whole 

by integrating knowledge on hydrology and crop physiology, soil chemistry 

and biology, as well as ecology and economics. 

 

 

 





 

183 
 

REFERENCES 

Abe Y, Maie N, Shima E (2011) Influence of irrigated paddy fields on the fluorescence 
properties of fluvial dissolved organic matter. J Environ Qual 40:1266-1272. 

Alberto MCR, Wassmann R, Buresh RJ, Quilty JR, Correa, TQ, Sandro JM, Centeno C. 
AR (2014). Measuring methane flux from irrigated rice fields by eddy covariance method 
using open-path gas analyzer. Field Crop Res 160: 12–21. doi:10.1016/j.fcr.2014.02.008 

Alberto MCR, Wassmann R, Hirano T, Miyata A, Hatano R, Kumar A, et al. (2011). 
Comparisons of energy balance and evapotranspiration between flooded and aerobic rice 
fields in the Philippines. Agr Water Manage 98(9): 1417–1430. 
doi:10.1016/j.agwat.2011.04.011 

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration —guidelines for 
computing crop water requirements. FAO Irrigation and drainage paper 56. Food and 
Agriculture Organization, Rome. 

Anastácio PM, Nielsen SN, Frias AF, Marques JC (1999) CRISP (crayfish and rice 
integrated system of production): 4. Modelling water, algae and oxygen dynamics. Ecol Model 
123: 29–40. 

Antonopoulos VZ (2010). Modelling of water and nitrogen balances in the ponded water 
and soil profile of rice fields in Northern Greece. Agr Water Manage 98(2): 321–330. 
doi:10.1016/j.agwat.2010.08.026 

Baroni G, Facchi A, Gandolfi C, Ortuani B, Horeschi D, van Dam JC (2010). Uncertainty in 
the determination of soil hydraulic parameters and its influence on the performance of two 
hydrological models of different complexity. Hydrol. Earth Syst Sc 14: 251–270. 

Baumer OW (1990). Prediction of soil hydraulic parameters. Proceedings of International 
Workshop in Indirect Methods for -Estimating the Hydraulic Properties of Unsaturated Soils. 
USDA-ARS/University of California, Riverside, CA.  

Belder P, Bouman BAM, Cabangon R, Lu G, Quilang EJP, Li Y, Spiertz JHJ, Tuong TP 
(2004) Effect of water-saving irrigation on rice yield and water use in typical lowland 
conditions in Asia. Agr Water Manage 65:193–210. 

Belder P, Bouman BAM, Spiertz JHJ (2007) Exploring options for water savings in lowland 
rice using a modelling approach. Agr Syst 92: 91–114. 

Belder P, Spiertz JHJ, Bouman BAM, Lu G, Tuong TP (2005) Nitrogen economy and 
water productivity of lowland rice under water-saving irrigation. Field Crop Res 93: 169–185. 

Belmans C, Wesseling JG, Feddes R (1983) Simulation of the water balance of a cropped 
soil: SWATRE. J Hydrol 63: 271-286. 

Bethune M, Austin N, Maher S (2001) Quantifying the water budget of irrigated rice in the 
Shepparton Irrigation Region, Australia. Irrigation Sci 20(3): 99–105. 
doi:10.1007/s002710100035 

Beven K (2001) Rainfall-Runoff Modelling. The Primer.Wiley & Sons, Ltd. 

Bhagat RM, Bhuiyan SI, Moody K (1996) Water, tillage and weed interactions in lowland 
tropical rice: A review. Agr Water Manage 31:165-184.  

Bhushan L, Ladha JK, Gupta RjK, Sing S, Tirol-Padre A, Saharawat YS, Gathala M, 
Pathak H (2007) Agron J 99:1288–1296. DOI: 10.2134/agronj2006.0227. 



References  

 

184 
 

BioGesteca, 2014. "Quaderno Gestione della risorsa irrigua". Biogesteca Project founded 
by Regione Lombardia, Regione Lombardia, Italy. 
http://www.biogesteca.unimi.it/Gestione%20della%20risorsa%20irrigua.pdf 

Boerema EB (1974) Climatic Effects on Growth and Yield of Rice in the Murrumbidgee 
Valley of New South Wales - Australia. Il Riso 385–397. 

Borrell A, Garside A, Fukai S (1997) Improving efficiency of water use for irrigated rice in a 
semi-arid tropical environment. Field Crop Res 52: 231-248. 

Bouman BAM, Feng L, Tuong TP, Lu G, Wang H, Feng Y (2007a) Exploring options to 
grow rice using less water in northern China using a modelling approach II. Quantifying yield, 
water balance components, and water productivity. Agr Water Manage 88: 23–33. 

Bouman BAM, Lampayan RM, Tuong TP (2007b) Water management in irrigated rice; 
coping with water scarcity. Los Baños (Philippines): International Rice Research Insitute. 54 
p. ISBN 978-971-22-0219-3. 

Bouman BAM, Peng S, Castañeda AR, Visperas RM (2005) Yield and water use of 
irrigated tropical aerobic rice systems. Agr Water Manage 74: 87–105. 

Bouman BAM, Tuong TP (2001) Field water management to save water and increase its 
productivity in irrigated lowland rice. Agr Water Manage 49: 11-30. 

Bouman, BAM., Barker R, Humphreys E, Tuong TP, Atlin GN, Bennett J, Dawe D, Dittert 
K, Dobermann A, Facon T, Fujimoto N, Gupta RK, Haefele SM, Hosen Y, Ismail AM, Johnson 
D, Johnson S, Khan S, Lin Shan, Masih I, Matsuno Y, Pandey S, Peng S, Thiyagarajan TM, 
Wassman, R (2007c). Rice: feeding the billions. IN: Water for food, water for life: A 
comprehensive assessment of water management in agriculture. Colombo, Sri Lanka: IWMI: 
515-549 

Braden H (1985) Ein Energiehaushalts – und Verdunstungsmodell for Wasser und 
Stoffhaushaltsuntersuchungen landwirtschaftlich genutzer Einzugsgebiete. Mittelungen 
Deutsche Bodenkundliche Geselschaft 42:294-299. 

Bradley JV (1968) Distribution-Free Statistical Tests. Prentice Hall, Englewood Cliffs, New 
York. 

Cabangon RJ, Tuong TP, Castillo EG, Bao LX, Lu G, Wang GH, Cui L, Bouman BAM, Li 
Y, Chen C, Wang J (2004) Effect of irrigation method and N-fertilizer management on rice 
yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in 
China. Paddy Water Environ 2:195-206.  

Cabangon RJ, Tuong TP, Abdullah NB (2002) Comparing water input and water 
productivity of transplanted and direct-seeded rice production systems. Agr Water Manage 
57(1): 11–31.  

Campbell Scientific, Inc. (2012). LoggerNet Version 4.1 Instruction Manual. 
www.campbellsci.com 

Cavazza L, Pisa PR (1988) Effect of watertable depth and waterlogging on crop yield. Agr 
Water Manage 14: 29-34. 

Cesari de Maria S, Bischetti GB, Chiaradia EA, Facchi A, Miniotti EF, Rienzner M, Romani 
M, Tenni D, Gandolfi C (submitted) The role of water management and environmental factors 
on field irrigation requirements and water productivity of rice. Submitted to Irrigation Sci. 

Chen HL, Zhou JM, Xiao BH (2010) Characterization of dissolved organic matter derived 
from rice straw at different stages of decay. J Soil Sediment 10: 915-922. 

Chen SK, Liu CW, Huang HC (2002) Analysis of water movement in paddy rice fields (II) 
Simulation studies. J Hydrol 268: 259–271. 



 References 
 

185 
 

Chiaradia EA, Facchi A, Masseroni M, Ferrari D, Bischetti GB, Gharsallah O, Cesari de 
Maria S, Rienzner M, Naldi E, Romani M, Gandolfi C (2015) An integrated, multisensor 
system for the continuous monitoring of water dynamics in rice fields under different irrigation 
regimes. Environ Monit Assess (2015) 187:586. DOI 10.1007/s10661-015-4796-8 

Chiaradia EA, Ferrari D, Bischetti GB, Facchi A, Gharsallah O, Romani M, Gandolfi C 
(2013) Monitoring water fluxes in rice plots under three different cultivation methods. J Agr 
Eng XLIV(s2):e161. doi:10.4081/jae.2013.s2.e161.  

Chiaradia EA, Romani M, Facchi A, Gharsallah O, Cesari de Maria S, Ferrari D, 
Masseroni D, Rienzner M, Bischetti GB, Gandolfi C (2014) Water balance of rice plots under 
three different water treatments: monitoring activity and experimental results. Geophysical 
Research Abstracts Vol. 16, EGU2014-14942, 2014 EGU General Assembly 2014. 

Clemmens AJ, Wahl TL, Bos MG, Replogle JA (2001). Water measurement with flumes 
and weirs (4th ed.). Littleton, CO: Water Resources Publications, LLC. 

Coleman TF, Li Y (1996) An Interior, Trust Region Approach for Nonlinear Minimization 
Subject to Bounds. SIAM J Optimiz 6: 418-445. 

Confalonieri R, Mariani L, Bocchi S (2005) Analysis and modelling of water and near water 
temperatures in flooded rice (Oryza sativa L.). Ecol Model 183: 269-280. 

Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutr Cycl 
Agroecosys 64:59-69.  

Corton TM, Bajita JB, Grospe FS, Pamplona RR, Assis CA, Wassmann R, Lantin RS, 
Buendia LV (2000) Methane emission from irrigated and intensively managed rice fields in 
Central Luzon (Philippines). Nutr Cycl Agroecosys 58:37-53. 

De Datta SK (1981) Principles and practices of rice production.Los Baños (Philippines): 
International Rice Research Institute. 618 p. 

De Silva CS, Rushton KR (2008). Representation of rainfed valley ricefields using a soil–
water balance model. Agr Water Manage 95(3): 271–282. doi:10.1016/j.agwat.2007.10.010 

Devêvre OC, Horwáth WR (2000) Decomposition of rice straw and microbial carbon use 
efficiency under different soil temperatures and moistures. Soil Biol Biochem 32:1773-1785. 

Dong B, Molden D, Loeve R, Li YH, Chen CD, Wang JZ (2004) Farm level practices and 
water productivity in Zanghe Irrigation System. Paddy Water Environ 2: 217-226.  

DPI (2012) 2012 Ricecheck Recommendations. Department of Primary Industries. 

Dunn BW, Gaydon DS (2011) Rice growth, yield and water productivity responses to 
irrigation scheduling prior to the delayed application of continuous flooding in south-east 
Australia. Agr Water Manage 98: 1799-1807. 

EENR (2013) XLVI Relazione Annuale Anno 2013. Ente Nazionale Risi. Il Risicoltore. 
http://www.enterisi.it/upload/enterisi/bilanci/Relazione%20Annuale%202013%20low_15916_1
63.pdf (access: March 2015). 

ERSAL. (1996). I suoli della Lomellina centro-meridionale : progetto “Carta pedologica” (p. 
127). Milano: Ente regionale di sviluppo agricolo della Lombardia. 

Eusterhues K, Neidhardt J, Hädrich A, Küsel K, Totsche KU (2014) Biodegradation of 
ferrihydrite-associated organic matter. Biogeochem 119:45-50.  

Facchi A, Gharsallah O, Chiaradia EA, Bischetti GB, Gandolfi C, (2013a) Monitoring and 
modelling evapotranspiration in flooded and aerobic rice fields. In:  Four Decades of Progress 
in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System: Applications 
and Challenges. Procedia Env Sci 19: 794-803. 



References  

 

186 
 

Facchi A, Gharsallah O, Gandolfi C (2013b) Evapotranspiration models for a maize agro-
ecosystem in irrigated and rainfed conditions. Abstract in the proceedings of the 10th 
Conference of the Italian Society of Agricultural Engineering: Horizons in agricultural, forestry 
and biosystems engineering. Viterbo (Italy): September 8-12, 2013. JAE 2013 XLIV(s2). 

FAOSTAT (2013) Food And Agriculture Organization of The United Nations, Statistics 
Division. Download data: http://faostat3.fao.org/download/Q/QC/E (access: Jan 2015). 

Farrell TC, Williams RL, Fukai S (2001) The cost of low temperature to the NSW rice 
industry. Proceeding of the 10th Australian Agronomy Conference. Hobart, Australia, 28 
January 2001- 1 February 2001. 

Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. 
Simulation Monographs. Pudoc. Wageningen. 189 pp. 

Feng L, Bouman BAM, Tuong TP, Cabangon RJ, Li Y, Lu G, Feng Y (2007) Exploring 
options to grow rice using less water in northern China using a modelling approach I. Field 
experiments and model evaluation. Agr Water Manage 88: 1–13. 

Follett RF, Doering EJ, Reichman GA, Benz LC (1974) Effect of irrigation and water-table 
depth on crop yields. Agron J 66:304– 308. 

Gandolfi C, Facchi A, Gharsallah O, Wassar F, Rienzner M, Chiaradia EA et al. (2012) 
Progetto ACCA. Relazione finale: Regione Lombardia. 
http://www.lavoro.regione.lombardia.it/shared/ccurl/291/119/ACCA_Relazione%20Finale.pdf 

Gandolfi C, Facchi A, Maggi D (2006) Comparison of 1D models of water flow in 
unsaturated soils. Environ Modell Softw 21:1759-1764. 

Garg KK, Das BS, Safeeq M, Bhadoria Pratap BS (2009) Measurement and modeling of 
soil water regime in a lowland paddy field showing preferential transport. Agr Water Manage 
96(12): 1705-1714. 

Ge T, Yuan H, Zhu H, Wu X, Nie S, Liu C, Tong C, Wu J, Brookes P (2012) Biological 
carbon assimilation and dynamics in a flooded rice. Soil system. Soil Biol Biochem 48:39-46. 

Gharsallah O, Facchi A, Gandolfi C (2013) Comparison of six evapotranspiration models 
for a surface irrigated maize agro-ecosystem in Northern Italy. Agr Water Manage 130: 119-
130.  

Godwin DC, Meyer WS, Singh U (1994) Simulation of the effect of chilling injury and 
nitrogen supply on floret fertility and yield in rice. Aus J Exp Agr 34(7): 921–926. 

Gombos B (2008) Modeling water temperature of Hungarian rice fields. IDŐJÁRÁS - 
Quarterly Journal of the Hungarian Meteorological Service 112 (1): 33–43. 

Govindarajan S, Ambujam NK, Karunakaran K (2008) Estimation of paddy water 
productivity (WP) using hydrological model: an experimental study. Paddy Water Environ 6: 
327–339. DOI 10.1007/s10333-008-0131-0. 

Govindarajan S, Ambujam NK, Karunakaran K (2008) Estimation of paddy water 
productivity (WP) using hydrological model: an experimental study. Paddy Water Environ 6: 
327–339. 

Grybos M, Davranche M, Gruau G, Petitjean P, Pedrot M (2009) Increasing pH drives 
organic matter solubilization from wetland soils under reducing conditions. Geoderma 154:13-
19. 

Guerra LC, Bhuiyan SI, Tuong, TP, Barker R (1998) Producing more rice with less water. 
SWIM Paper 5. Colombo, Sri Lanka: International Water Management Institute. 

Hanayama S, Natsuga M, Annaka  T, Kasubuchi T (2006) Effect of vegetation on the 
convection of ponded water in a paddy field. Soil Sci Plant Nutr 52: 579–583. 



 References 
 

187 
 

Hanke A, Cerli C, Muhr J, Borken W, Kalbitz K (2013) Redox control on carbon 
mineralization and dissolved organic matter along a chronosequence of paddy soils. Eur J 
Soil Sci 64:476-487. 

Hasegawa S. (1992) Soil and water engineering for paddy field management (Vol. 26). 
Thailand: Asian Institute of Technology, Bangko. 
http://EconPapers.repec.org/RePEc:eee:agiwat:v:26:y:1994:i:1-2:p:149-150 

Haverkamp R, Vauclin M, Touma J, Wierenga PJ, Vachaud G (1977) A comparison of 
numerical simulation models for one-dimensional infiltration. Soil Sci Soc Am J 41:285-294. 

He Y, Siemens J, Amelung W, Goldbach H, Wassmann R, Alberto MCR, Lücke A, 
Lehndorff E (2015) Carbon release from rice roots under paddy rice and maize-paddy rice 
cropping. Agr Ecosyst Environ 210:15-24. 

Heenan DP (1981) Minimum Temperatures within the Foliage Canopy of Rice as 
Influenced by Water Depth. J Aust I Agr Sci 47(2):118–20. 

Hernes PJ, Spencer RGM, Dyda RY, Pellerin BA, Bachand PAM, Bergamaschi BA (2008) 
The role of hydrologic regimes on dissolved organic carbon composition in an agricultural 
watershed. Geochim Cosmochim Acta 72:5266-5277. 

Heydari N (2014) Water productivity in agriculture: Challenges in concepts, terms and 
values. Irrig Drain 63(1): 22–28. 

Hijmans, RJ, Guiking-Lens IM, van Diepen CA (1994) User's guide for the WOFOST 6.0 
crop growth simulation model. Technical Document 12, Winand Staring Centre, Wageningen, 
The Netherlands, pp.144. 

Hoffmeister W (1845) Übersicht aller bis jetzt bekannten Arten aus der Familie der 
Regenwürmer. Friedrich Vieweg and Sohn, Braunschweig. 

Humphreys E, Barrs H (1999) Constraints to Rice Establishment and Yield in the Western 
Murray Valley. Rural Industries Research and Development Corporation. Report 99/32. 

Humphreys E, Meisner C, Gupta R, Timsina J, Beecher HG, Tang Yong Lu, Yadvinder-
Singh, Gill MA, Masih I, Zheng Jia Guo, Thompson JA (2005) Water Saving in Rice-Wheat 
Systems. Plant Prod Sci 8(3): 242–258. 

Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of 
nitrous oxide fluxes. Soil Sci Soc Am J 45:311-316. 

INEA (2013) A model-based irrigation water consumption estimation at farm level. Edited 
by Lupia F. Roma: INEA, 2013. 173 p. ISBN 978-88-8145-289-7. 

Jang TI, Kim HK, Seong CH, Lee EJ, Park SW (2012) Assessing nutrient losses of 
reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agr Water Manage 
104: 235–243. doi:10.1016/j.agwat.2011.12.022 

Janssen M, Lennartz B (2007) Horizontal and vertical water and solute fluxes in paddy 
rice fields. Soil Till Res 94: 133–141. 

Jensen JR, Rahman MM (1987) A semi-empirical model for calculating evaporation and 
transpiration from wetland rice. Agr Forest Meteorol 41(3–4): 289–306. 

Jung, JW, Yoon KS, Choi DH, Lim SS, Choi WJ, Choi SM, Lim BJ (2012). Water 
management practices and SCS curve numbers of paddy fields equipped with surface 
drainage pipes. Agr Water Manage 110: 78–83. doi:10.1016/j.agwat.2012.03.014 

Kahlown MA, Ashraf M, Zia–ul–Haq (2005) Effect of shallow groundwater table on crop 
water requirements and crop yields. Agr Water Manage. 76:24–35. 

Kahlown MA, Iqbal M, Skogerboe GV, Rehman SU (1998) Water logging, salinity and crop 
yield relationships. Mona Reclamation Experimental Project, WAPDA. Report No. 233. 



References  

 

188 
 

Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in 
forest mineral soils. J Plant Nutr Soil Sci171:52-60. 

Kalbitz K, Kaiser K, Fiedler S, Kölbl A, Amelung W, Bräuer T, Cao Z, Don A, Grootes P, 
Jahn R, Schwark L, Vogelsang V, Wissing L, Kӧgel-Knabner I (2013) The carbon count of 
2000 years of rice cultivation. Global Change Biol 19:1107-1113. 

Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of 
dissolved organic matter in soils: A review. Soil Sci 165:277-304. 

Kato Y, Okami M, Katsura K (2009) Yield potential and water use efficiency of aerobic rice 
(Oryza sativa L.) in Japan. Field Crop Res 113, 328–334. 

Katoh M, Murase J, Hayashi M, Matsuya K, Kimura M (2004) Nutrient leaching from the 
plow layer by water percolation and accumulation in the subsoil in an irrigated paddy field. 
Soil Sci Plant Nutr 50:721-729. 

Katoh M, Murase J, Sugimoto A, Kimura M (2005) Effect of rice straw amendment on 
dissolved organic and inorganic carbon and cationic nutrients in percolating water from a 
flooded paddy soil: A microcosm experiment using 13C-enriched rice straw. Organic 
Geochem 36:803-811. 

Khepar SD, Yadav AK, Sondhi SK, Siag M (2000) Water balance model for paddy fields 
under intermittent irrigation practices. Irrigation Scie 19(4): 199–208. 

Kim TC, Gim US, Kim JS, Kim DS (2006) The multi-functionality of paddy farming in 
Korea. Paddy Water Environ 4(4): 169-179. 

Kimura M, Murase J, Lu YH (2004) Carbon cycling in rice field ecosystems in the context 
of input, decomposition and translocation of organic materials and the fates of their end 
products (CO2 and CH4). Soil Biol Biochem 36:1399-1416. 

Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, 
Eugster W, Gleixner G, Grunwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch 
W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard K, 
Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J, 
Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon 
leaching from soil is a crucial component of the net ecosystem carbon balance. Global 
Change Biol 17:1167-1185. 

Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, 
Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1-14. 

Köppen W (1936) Das geographische System der Klimate. Handbuch der Klimatologie 
(ed. by W. Köppen and R. Geiger), Vol 1 Part C pp. 1-44. Verlag von Gebrüder Borntraeger, 
Berlin. 

Kroes JG, van Dam JC (2003) Reference Manual SWAP version 3.0.3. Alterra-report 773. 
Wageningen, Alterra, Green World Research; ISSN 1566-7197. 

Kroes JG, van Dam JC, Groenendijk P, Hendriks RFA, Jacobs CMJ (2008) SWAP version 
3.2. Theory description and user manual. Wageningen, Alterra, Alterra Report1649 (02) - 
Swap32 Theory description and user manual.doc. 
http://www.swap.alterra.nl/DownloadRecent/swap32(36)/Swap32(36).htm 

Krupa M, Spencer RM, Tate K, Six J, Kessel C, Linquist B (2012) Controls on dissolved 
organic carbon composition and export from rice-dominated systems. Biogeochem 108:447-
466. 

Kukal SS, Aggarwal GC, 2002. Percolation losses of water in relation to puddling intensity 
and depth in a sandy loam rice (Oryza sativa) field. Agr Water Manage 57: 49–59. 



 References 
 

189 
 

Kukal SS, Hira GS, Sidhu AS (2005) Soil matric potential-based irrigation scheduling to 
rice (Oryza sativa). Irrigation Sci 23: 153–159. DOI 10.1007/s00271-005-0103-8 

Kuwagata T, Hamasaki T, Watanabe T (2008) Modeling water temperature in a rice paddy 
for agro-environmental research. Agr Forest Meteorol 148: 1754-1766. 

Lafitte HR, Bennett J (2002) Requirements for aerobic rice: physiological and molecular 
considerations. In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK, 
editors. Water-wise rice production. Los Baños (Philippines): International Rice Research 
Institute. p 259-274. 

Lilliefors H (1967) On the Kolmogorov–Smirnov test for normality with mean and variance 
unknown. J Am Stat Assoc 62: 399–402. 

Liu S, Zhang Y, Lin F, Zhang L, Zou J (2014) Methane and nitrous oxide emissions from 
direct-seeded and seedling-transplanted rice paddies in southeast China. Plant Soil 374:285-
297. 

Liu T, Luo Y (2011) Effects of shallow water tables on the water use and yield of winter 
wheat (Triticum aestivum L.) under rain-fed condition. Aust J Crop Sci. 5(13):1692-1697. 

Loeppert RH, Inskeep WP (1996) Iron. In: Bigham JM (ed) Methods of Soil Analysis. Part 
3. Chemical Methods. SSSA, Madison, Wisconsin, USA. pp. 639-664. 

LSU AgCenter (2014) Louisiana Rice Production Handbook.  

Lu Y, Wassmann R, Neue HU, Huang C (2000) Dynamics of dissolved organic carbon 
and methane emissions in a flooded rice soil. Soil Sci Soc Am J 64: 2011-2017. 

Lv L, Franz TE, Robinson DA, Jones SB (2014) Measured and modeled soil moisture 
compared with cosmic-ray neutron probe estimates in a mixed forest. Vadose Zone J 3(12), 
pp. 13, doi:10.2136/vzj2014.06.0077, 2014. 

Ma K, Conrad R, Lu Y (2013) Dry/wet cycles change the activity and population dynamics 
of methanotrophs in rice field soil. Appl Environ Microb 79:4932-4939. 

Maclean JL, Dawe D, Hardy B, Hettel GP (eds) (2002) Rice almanac. Los Baños 
(Philippines): International Rice Research Institute. 253 pp. 

Maie N, Watanabe A, Kimura M (2004) Chemical characteristics and potential source of 
fulvic acids leached from the plow layer of paddy soil. Geoderma 120: 309-323. 

Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved 
organic matter in soils. Geoderma 113:211-235. 

Maruyama A, Kuwagata T (2010) Coupling land surface and crop growth models to 
estimate the effects of changes in the growing season on energy balance and water use of 
rice paddies. Agr Forest Meteorol 150: 919–930. 

Masseroni D, Facchi A, Romani M, Chiaradia EA, Gharsallah O, Gandolfi (2015) Surface 
energy flux measurements in a flooded and an aerobic rice field using a single eddy-
covariance system. Paddy Water Environ 13(4): 405-424. 

Masseroni D, Chiaradia EA, Facchi A, Gandolfi C, Naldi E (2013) A simple experimental 
apparatus for the evaluation of the correct functioning of the sensors for the measurement of 
the soil heat flux. Italian Journal of Agrometereology - Rivista Italiana di Agrometeorologia, 
18(3): 47-52.  

Mishra HS, Rathore TR, Pant RC (1990) Effect of intermittent irrigation on groundwater 
table contribution, irrigation requirements and yield of rice in Mollisols of Tarai Region. Agr 
Water Manage 18: 231–241. 

Molden D (1997) Accounting for water use and productivity. SWIM Paper 1. Colombo (Sri 
Lanka): International Irrigation Management Institute. 



References  

 

190 
 

Mualem Y (1976) A new model for predicting the hydraulic of unsatured porous media. 
Water Resour Res 12: 513-522. 

Natuhara Y (2013). Ecosystem services by paddy fields as substitutes of natural wetlands 
in Japan. Ecol Eng 56: 97–106. doi:10.1016/j.ecoleng.2012.04.026 

Neue HU (1997) Fluxes of methane from rice fields and potential for mitigation. Soil Use 
Manage 13:258-267.  

Neumann RB, Polizzotto ML, Badruzzaman ABM, Ali MA, Zhang Z, Harvey CF (2009). 
Hydrology of a groundwater-irrigated rice field in Bangladesh: Seasonal and daily 
mechanisms of infiltration. Water Resour Res 45: W09412. Doi:10.1029/2008wr007542. 

Oh NH, Pellerin BA, Bachand PAM, Hernes PJ, Bachand SM, Ohara N, Kavvas ML, 
Bergamaschi BA, Horwath WR (2013) The role of irrigation runoff and winter rainfall on 
dissolved organic carbon loads in an agricultural watershed. Agr Ecosyst Environ 179: 1-10. 

Ohta S, Kimura A (2007) Impacts of climate changes on the temperature of paddy waters 
and suitable land for rice cultivation in Japan. Agr Forest Meteorol 147: 186–198. 

Ohta S. and Kimura A. (2009) The effects of plant growth on the temperature of paddy 
waters. J Agric Meteorol 65(2): 167-178. 

Perry C (2007) Efficient irrigation; inefficient communication; flawed recommendations. Irrig 
Drain, 56: 367–378. 

Pisa PR, Ventura F (1991) Groundwater table contribution to crop water budget: a review. 
Irrigazione e drenaggio 38(1): 3-14. 

Prathapar SA, Qureshi AS (1999) Modelling the effects of deficit irrigation on soil salinity, 
depth to water table and transpiration in semi-arid zones with monsoonal rains. Int J Water 
Resour D 15:141-159. 

Rengasamy P, North S, Smith A (2010) Diagnosis and management of sodicity and 
salinity in soil and water in the Murray Irrigation region. The University of Adelaide, SA. 

Richards LA (1931) "Capillary conduction of liquids through porous mediums". Physics 1 
(5): 318–333. 

Rienzner M, Cesari de Maria S, Facchi A, Wassar F, Gandolfi C (2013) Estimating the 
contribution of rainfall, irrigation and upward soil water flux to crop water requirements of a 
maize agroecosystem in the Lombardy plain. Abstract in the proceedings of the 10th 
Conference of the Italian Society of Agricultural Engineering. Viterbo (Italy): September 8-12, 
2013. JAE 2013, XLIV(s2). 

Rienzner M, Garlaschelli F, Gandolfi C (2011) Analisi statistica della conducibilità idraulica 
satura stimata in campo per un suolo superficiale. Convegno di Medio Termine 
dell’Associazione Italiana di Ingegneria Agraria; Belgirate, 22-24 settembre 2011. 
http://www.aiia2011.unimi.it/chiave/memorie/2.pdf 

RIRDC (2011) Rice R&D Plan 2012–2017. Rural Industries Research and Development 
Corporation Publication No. 11/050. 

RIRDC (2013) Approaches to Managing Variability of Rice Growth and Yield. Rural 
Industries Research and Development Corporation Publication No. 12/080. 

Roel A, Mutters R, Plant R, Mulla D (2004) Spatial analysis of water temperature impact 
on California rice production. Proceeding 7th International Conference on Precision 
Agriculture and Other Precision Resource Management. Minneapolis, USA, 25-28 July, 2004. 

Roel A., Mutters R.G., Eckert J.W., Plant R.E. (2005) Effect of Low Water Temperature on 
Rice Yield in California. Agron J 97: 943. 



 References 
 

191 
 

Ruark MD, Linquist BA, Six J, Van Kessel C, Greer CA, Mutters RG, Hill JE (2010) 
Seasonal losses of dissolved organic carbon and total dissolved solids from rice production 
systems in northern California. J Environ Qual 39:304-313. 

Sacco D, Cremon C, Zavattaro L, Grignani C (2012) Seasonal variation of soil physical 
properties under different water managements in irrigated rice. Soil Till Res 118: 22–31. 

Sahrawat KL (2004) Organic matter accumulation in submerged soils. Adv Agron 81:169-
201. 

Schaap MG, Leij FJ, van Genuchten MTh (2001) ROSETTA: A computer program for 
estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251: 
163–176. 

Seckler D, Amarasinghe U, Molden D, de Silva R, Barker R. 1998. World water demand 
and supply, 1990 to 2025: Scenarios and issues. Research Report 19. Colombo, Sri Lanka: 
International Water Management Institute. 

Sepaskhah AR, Kanooni A, Ghasemi MM (2003) Estimating water table contributions to 
corn and sorghum water use. Agr Water Manage 58: 67–79. 

Sharma PK, Bhushan Lav, Ladha JK, Naresh RK, Gupta RK, Balasubramanian BV, 
Bouman BAM (2002) Crop-water relations in rice-wheat cropping under different tillage 
systems and water-management practices in a marginally sodic, medium-textured soil. In: 
Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK (ed). Water-wise 
rice production. International Rice Research Institute, Los Baños, Philippines. p 223-235.  

Shimono H, Hasegawa T, Iwama K (2007a) Modeling the Effects of Water Temperature 
on Rice Growth and Yield under a Cool Climate: I. Model Development. Agron J 99: 1327-
1337. 

Shimono H, Hasegawa T, Moriyama M, Fujimura S, Nagata T (2005) Modeling Spikelet 
Sterility Induced by Low Temperature in Rice. Agron J  97:1524-1536. 

Shimono H, Fujimura S, Nishimura T, Hasegawa T (2012) Nitrogen Uptake by Rice 
(Oryza sativa L.) Exposed to Low Water Temperatures at Different Growth Stages. J Agron 
Crop Sci 198: 145-151. 

Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops-an energy 
combination theory. Q J Roy Meteor Soc 111: 839–855.  

Simmonds MB, Plant RE, Peña-Barragán JM, van Kessel C, Hill J, Linquist BA (2013) 
Underlying causes of yield spatial variability and potential for precision management in rice 
systems. Prec Agric 14: 512–540. 

Šimůnek J, Šejna M, Saito H, Sakai M, van Genuchten MTh (2008) The Hydrus-1D 
Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in 
Variably Saturated Media, Version 4.0. HYDRUS Software Series 3. Department of 
Environmental Sciences, University of California Riverside, Riverside, California, USA, pp 
315. 

Singh AK, Choudhury BU, Bouman BAM (2002) Effects of rice establishment methods on 
crop performance, water use, and mineral nitrogen. In: Bouman BAM, Hengsdijk H, Hardy B, 
Bindraban PS, Tuong TP, Ladha JK (eds) Water-wise rice production. Los Baños 
(Philippines): International Rice Research Institute. p 237-246. 

Singh KB, Gajri PR, Arora VK (2001) Modelling the effects of soil and water management 
practices on the water balance and performance of rice. Agr Water Manage: 49, 77-95 

Singh AK, Choudhury BU, Bouman BAM (2002) Effects of rice establishment methods on 
crop performance, water use, and mineral nitrogen. In Bouman BAM, Hengsdijk H, Hardy B, 
Bindraban P, Tuong T, Ladha J (Eds.), Water-wise rice production. Metro Manila, Philippines : 
[Wageningen]: IRRI ; Plant Research International. 



References  

 

192 
 

Singh R, Kroes JG, van Dam JC, Feddes RA (2006) Distributed ecohydrologichal 
modelling to evaluate the performance of irrigation in Sirsa District, India: I. Current water 
management and its productivity. J Hydrol 329: 692-713. 

Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, 
House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, 
Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, Forestry and Other Land Use. In: 
Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum 
I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel 
T, Minx JC (eds.) Climate Change 2014: Mitigation of Climate Change. Contribution of 
Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change. Cambridge University Press, Cambridge, UK. 

Sodano M, Said-Pullicino D, Fiori AF, Catoni M, Martin M, Celi L (2016) Sorption of paddy 
soil-derived dissolved organic matter on hydrous iron oxide-vermiculite mineral phases. 
Geoderma 261:169-177.  

Soil Survey Staff (2010) Keys to Soil Taxonomy, 11th ed. USDA - Natural Resource 
Conservation Service, Washington, DC.  

Soppe RWO, Ayars JE (2003) Characterizing ground water use by safflower using 
lysimeters. Agr Water Manage 60: 59–71. 

Spitters CJT, van Keulen H, van Kraalingen DWG (1989) A simple and universal crop 
growth simulator: SUCROS87. In: Rabbinge R, Ward SA, van Laar HH (Eds.) Simulation and 
systems management in crop protection. Simulation Monographs, Pudoc, Wageningen, The 
Netherlands, pp. 147-181. 

Subasinghe R., Bechaz K. (2005) Cold Physiology at the Plant Level. Department of 
Primary Industries. Project number 2201. 

Sudhir-Yadav, Humphreys E, Kukal SS, Gill G, Rangarajan R (2011) Effect of water 
management on dry seeded and puddled transplanted rice. Field Crops Res 120(1): 123–132. 
doi:10.1016/j.fcr.2010.09.003 

Tabbal DF, Bouman BAM, Bhuiyan SI, Sibayan EB, Sattar MA (2002) On-farm strategies 
for reducing water input in irrigated rice; case studies in the Philippines. Agr Water Manage 
56: 93–112. 

Tan X, Shao D, Liu H (2014) Simulating soil water regime in lowland paddy fields under 
different water managements using HYDRUS-1D. Agr Water Manage 132: 69-78. 

Thakur AK, Mohanty RK, Patil DU, Kumar A (2014). Impact of water management on yield 
and water productivity with system of rice intensification (SRI) and conventional transplanting 
system in rice. Paddy Water Environ 12(4), 413–424. doi:10.1007/s10333-013-0397-8 

Timmer CP, Block S, Dawe D (2010) LongRun Dynamics of Rice Consumption, 1960–
2050, chapter 1.6. In: Pandey S, Byerlee D, Dawe D, et al. (eds) Rice in the Global Economy: 
Strategic Research and Policy Issues for food Security, pp. 139–74. International Rice 
Research Institute, Los Banos (Philippines) 

Tuong TP, Bhuiyan SI (1999) Increasing water-use efficiency in rice production: farm-level 
perspectives. Agr Water Manage 40: 117-122. 

Tuong TP, Bouman BAM (2003) Rice production in water scarce environments. In: Kijne 
JW, Barker R,  Molden D. (eds.) Water Productivity in Agriculture: Limits and Opportunities for 
Improvement. pp. 53-67. CABI Publishing, Wallingford, UK. 

Tuong TP, Bouman BAM, Mortimer M (2005) More rice, less water-integrated approaches 
for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci 8(3): 
231–241.  



 References 
 

193 
 

Tyagi L, Kumari B, Singh SN (2010) Water management - A tool for methane mitigation 
from irrigated paddy fields. Sci Tot Environ 408: 1085-1090. 

USDA (1975) Soil Taxonomy, First Edition. Soil Survey Staff, United States Department of 
Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. Crop evapotranspiration: guidelines for 
computing crop water requirements, Irrigation and Drainage Paper 56. United Nations FAO, 
Rome, pp 300.  

USGS (2015a) Landsat Archive, L8 OLI/TIRS. http://earthexplorer.usgs.gov/  (Access 
October 2015) 

USGS (2015b) Using the USGS Landsat 8 Product. 
http://landsat.usgs.gov//Landsat8_Using_Product.php (Access: October 2015) 

Van Genuchten MTh (1980) A closed form equation for predicting the hydraulic 
conductivity of unsatured soils. Soil Sci Soc Am J 44: 892-898. 

van Halsema GE, Vincent L (2012) Efficiency and productivity terms for water 
management: A matter of contextual relativism versus general absolutism. Agr Water Manage 
108: 8-15. 

Vaze J, Tuteja NK, Teng J (2004) CLASS Unsaturated Moisture Movement Model U3M-
1D. User’s Manual. NSW Department of Infrastructure, Planning and Natural Resources, 
Australia and Cooperative Research Centre for Catchment Hydrology, Australia.  ISBN 0 
7347 5513 9. 

Violante P (2000) Metodi di analisi chimica del suolo. Franco Angeli. 

Von Hoyningen-Hüne J (1983) Die Interception des Niederschlags in landwirtschaftlichen 
Beständen. Schriftenreihe des DVWK 57:1-53. 

Vrugt JA, Gupta HV, Bouten W, Sorooshian SA (2003a) A Shuffled Complex Evolution 
Metropolis algorithm for optimization and uncertainty assessment of hydrologic model 
parameters. Water Resour Res 39(8): 1201. 

Vrugt, JA, Gupta HV, Bastidas L, Bouten W, Sorooshian S. (2003b) Effective and efficient 
algorithm for multi-objective optimization of hydrologic models. Water Resour Res. 39:1214. 

Vu SH, Watanabe H, Takagi K (2005) Application of FAO-56 for evaluating 
evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan. Agr Water 
Manage 76(3): 195–210. doi:10.1016/j.agwat.2005.01.012. 

Wassmann R, Neue HU, Ladha JK, Aulakh MS (2004) Mitigating greenhouse gas 
emissions from rice-wheat cropping systems in Asia. Environ Dev Sustain 6: 65-90. 

Watanabe A, Takeda T, Kimura M (1999) Evaluation of origins of CH4 carbon emitted 
from rice paddies. J Geophys Res 104: 23623-23629. 

Watanabe T (1992) Water budget in paddy fields lots. In: Muty VVN, Koga K (eds) Soil 
and water engineering for paddy field management. Proceedings of the International 
Workshop on Soil Water engineering for paddy field management. January 28-30, 1992, AIT, 
Bangkok, Thailand. pp. 1-11. 

Watanabe H, Takagi K (2000). A Simulation Model for Predicting Pesticide Concentrations 
in Paddy Water and Surface Soil II. Model Validation and Application. Environ Technol 
21(12): 1393–1404. doi:10.1080/09593332208618169 

Watanabe H, Nguyen MHT, Souphasay K, Vu SH, Phong TK, Tournebize J, Ishihara S 
(2007) Effect of water management practice on pesticide behavior in paddy water. Agr Water 
Manage 88(1-3): 132–140. doi:10.1016/j.agwat.2006.10.009 



References  

 

194 
 

Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation 
of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of 
dissolved organic carbon. Environ Sci Technol 37: 4702-4708. 

Whitworth R, Dunn B (2012) Rice Water Depth Management at Microspore. Factsheet - 
Department of Primary Industries (July). 

Wickham TH, Singh VP (1978) Water movement through wet soils. Soils and Rice. 
International Rice Research Institute. Los Baños, Philippines. 

Williams RL, Angus JF (1994) Deep Floodwater Protects High-Nitrogen Rice Crops from 
Low-Temperature Damage. Aus J Exp Agr 34(7): 927-932. 

Williams RL, Angus JF (1997) maNage rice: a software package to assist Riverina 
ricegrowers with decisions about topdressing nitrogen fertiliser. CSIRO Australia, NSW 
Agriculture 

Winkler P, Kaiser K, Kölbl A, Kühn T, Schad P, Urbanski L, Fiedler S, Lehndorff E, Kalbitz 
K, Utami SR, Cao Z, Zhang G, Jahn R, Kӧgel-Knabner I (2016) Response of Vertisols, 
Andosols, and Alisols to paddy management. Geoderma 261:23-35. 

Wissing L, Kölbl A, Hausler W, Schad P, Cao ZH, Kӧgel-Knabner I (2013) Management-
induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. 
Soil Till Res126: 60-71. 

Wissing L, Kölbl A, Vogelsang V, Fu JR, Cao ZH, Kӧgel-Knabner I (2011) Organic carbon 
accumulation in a 2000-year chronosequence of paddy soil evolution. Catena 87: 376-385. 

Xiaoguang Y, Bouman BAM, Huaqi W, Zhimin W, Junfang Z, Bin C (2005) Performance of 
temperate aerobic rice under different water regimes in North China. Agr Water Manage 
74(2): 107–122. doi:10.1016/j.agwat.2004.11.008 

Xu J, Yang S, Peng S, Wei Q, Gao X (2013) Solubility and leaching risks of organic 
carbon in paddy soils as affected by irrigation managements. The Scientific World Journal 
2013:546750, doi:10.1155/2013/546750 

Xue C, Yang X, Bouman BAM, Deng W,  Zhang Q,  Yan W, Zhang T, Rouz A, Wang H 
(2008) Optimizing field, water requirements, and water productivity of aerobic rice for the 
North China Plain. Irrigation Sci 26: 459–474. DOI 10.1007/s00271-008-0107-2. 

Yadav S, Humphreys E, Kukal SS, Gill G, Rangarajan R (2011) Effect of water 
management on dry seeded and puddled transplanted rice. Part 2: Water balance and water 
productivity. Field Crop Res 120: 123–132. 

Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane 
emission from a Japanese rice paddy field: Automated methane monitoring. Global 
Biogeochemical Cycles 10(2): 255–267. doi:10.1029/96GB00517 

Yang S, Peng S, Xu J, Luo Y, Li D (2012) Methane and nitrous oxide emissions from 
paddy field as affected by water-saving irrigation. Phys Chem Earth 53-54: 30-37. 

Yuan Q, Pump J, Conrad R (2014) Straw application in paddy soil enhances methane 
production also from other carbon sources. Biogeosciences 11: 237-246. 

Yukawa K (1992) The fluctuations of irrigation requirement for paddy field. In: Muty VVN, 
Koga K (eds) Soil and water engineering for paddy field management. Proceedings of the 
International Workshop on Soil Water engineering for paddy field management. January 28-
30, 1992, AIT, Bangkok, Thailand. pp. 1-11. 

Zhao Y, De Maio M, Vidotto F, Sacco D (2015) Influence of wet-dry cycles on the temporal 
infiltration dynamic in temperate rice paddies. Soil Till Res 154: 14-21. 



 References 
 

195 
 

Zoeble D. (2006) Is water productivity a useful concept in agricultural water management? 
Agr Water Manage, 84: 265-273.





 

 
 

Ringraziamenti 

 

Ora che questo percorso così impegnativo ed intenso volge al termine, sento di 

dover ringraziare tutti coloro che, più o meno consapevolmente, hanno contribuito al 

suo compimento.  

Un sentito ringraziamento al Prof. Claudio Gandolfi per la sapiente guida e 

l’immancabile supporto dimostrato in questi anni. La sua figura è stata ed è per me 

quell’esempio di “virtute e canoscenza” a cui ispirarsi. 

Grazie a Michele per l’insostituibile presenza, i preziosi insegnamenti e i continui 

confronti che hanno arricchito il mio percorso di studio e di vita. 

Grazie alla Dott.ssa Arianna Facchi per le numerose occasioni di crescita e la stima 

dimostrata in questi anni. 

Desidero inoltre ringraziare tutta la Sezione di Idraulica Agraria per gli aiuti, i 

suggerimenti, i consigli, i momenti di svago e convivialità, le risate e molto altro 

ancora.  È stato un piacere e un privilegio lavorare con voi. 

I would like to pay my sincere gratitude to Dr.John Hornbuckle who gave me the 

outstanding opportunity to join his team and learn from his expertise. My special 

thanks also to Dr.Marisa Collins and to all the people of the CSIRO-Griffith lab I 

have been working with for nine incredible months. Words can hardly express my 

gratitude to all of you.      

Un grazie speciale a Luca, insostituibile amico, per aver condiviso con me questi 

anni di impegno e di fatica, e per averne alleggerito il peso (anche a 19 fusi orari di 

distanza).  

Infine, ringrazio dal profondo del cuore i miei genitori e mio fratello Matteo per 

avermi trasmesso la forza, il coraggio, la perseveranza, l'entusiasmo, la positività e 

tutto ciò che di prezioso porto con me. 

 


