
Chapter 6

Summary and Conclusions

In this thesis we investigated the transport properties of two-terminal devices in which
carbon chains act as model interconnects between metal or graphene electrodes.
In the first part of the thesis, we investigated the electronic and charge transport proper-
ties of carbon chains contacted with two ideal metallic (silver) electrodes.
As a first step, we studied the binding properties of -Cn, -CnH and -CnH2 radical species
on the three highest symmetry sites (top, hollow and bridge) of the silver Ag(100) sur-
face, finding that the binding energies strongly correlate with the coordination number
between the terminal carbon atom of the chain and the surface: the higher the coordina-
tion number the more stable the adsorbed system.
Next we computed the zero-bias transmission spectra for chains from C2 to C12, ob-
serving a significative dependence on the adsorption site. Specifically both the chain-
electrode coupling and the broadening of the resonances result strictly correlated to the
coordination number: the higher the coordination number, the stronger the coupling
and the wider the resonances. On the other hand, only a weak dependence on the chain
length was found.
This, in turn, is reflected on the current-bias characteristics, with the hollow-bound
chains providing the highest current as a consequence of higher transmission values
across the Fermi level region.
To take a deeper look on the effect of electrode geometry on the transport properties, we
further investigated systems where the carbon chain is bound to different silver (more
realistic) tips. With respect to the binding on the ideal Ag(100) surface, we found mi-
nor differences in the transmission spectra, provided the appropriate binding model is
chosen, due to some “incomplete” binding of the tip atoms. Hence, although the ge-
ometry of the electrode influences the transmission probabilities, the overall transport
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properties are mainly determined by the characteristics of the Ag-C bonds (i.e. the bond
strength).
In order to better understand the role of the electrode-molecule junction, we also inves-
tigated the electronic and transport properties of sulfur- and silicon-capped C4 chain,
bound in the above mentioned sites. The linking atoms turn out to have significative
effects on the transport properties, considerably reducing the chain-electrode coupling
and causing an overall reduction of the transmission function.
Next, by performing phonon analysis, we observed that the vibrational motion of the
atoms has negligible effects on the transmission and then on the transport properties,
resulting in stable current values for a very large range of temperature as a consequence
of the stiffness of polyynes.
Finally, we also critically discussed the reliability of our results, finding that the adopted
setup leads to an underestimation of the bandgap, resulting in an overestimation of the
current. However, this is a well-known problem related to the inaccuracy of the single-
particle spectra calculated at Density Functional Theory level.
In the second part of the thesis, we examined the transport properties of carbon chains
contacted with graphene electrodes.In particular we focused our attention on single
chains bound on zigzag and armchair electrodes considering different junction geome-
tries. We found close similarities between the two edge configurations. In fact, the
formation of a ring at the junction causes (i) the BLA to be inverted, (ii) the chain to ac-
quire a more marked radicalic character and (iii) the coupling with the electrodes to be
weakened, if compared to single-bound chains. This, in turn, lead to a general reduction
of the transmission probabilities and causes the resonances to approach the Fermi level,
confirming the key role of the junction geometry in determining the transport proper-
ties. Moreover, for both edge-shaped electrodes, the chain-electrode coupling is strong
enough to cause the identity of the (p?) chain states to be lost, each one giving rise to
a number of electronic states delocalized on the whole system as a consequence of the
strong hybridization with the p electron clouds of graphene. This turns out to be one
of the main differences between metallic and graphene electrodes. In fact, the chain-
silver coupling is not strong enough to affect the geometric and electronic structure of
the chain in a significative way, hence the chain states, although hybridized with the
electrode ones, maintain their characteristics. As opposite, the chain-graphene junction
can strongly modify the structural properties of the chain (BLA, linearity, etc), affect-
ing, in turn, the electronic and the transport properties of the system. Another relevant
difference between silver and graphene electrodes is the maximum theoretical value of
the transmission, being 4 and 2, respectively, since in the latter case only the p chain
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states orthogonal to the electrode plane hold the conduction process.
We further investigated different electrode geometries, in particular we considered chains
connected to pentagonal and triangolar tips, finding that, as opposite of the Ag-chain-
Ag systems, the tip has significative effects on the transport properties. In particular, the
triangular tips nullify the transmission in a large region across the Fermi level as a con-
sequence of the complete decoupling of the HOMO of the chain from the electrodes.
Next, we investigated double chains at different interchain distances, since these struc-
tures are expected to show quantum interference effects. We found different interference
patterns depending on the chain length, on the interchain distance and on the contact ge-
ometry. We further considered the possibility to achieve chemical gating in such struc-
tures, finding that a Li atom can be used to this aim.
We also investigated molecules able to switch between high- and low-conductive states,
making them good candidates for molecular switches applications. Specifically we con-
sidered systems in which an aromatic hydrocarbon is inserted in the middle of a chain,
allowing the current to be switched on and off by mechanical rotation of the molecule.
We found that some electronic states turn out to be conductive in the “off” configura-
tion, while hydrogenation of the dangling bonds of the aromatic hydrocarbon lead to
higher on/off ratio.
In conclusion, polyynes can find applications in molecular electronics as molecular
wires, but with some important limitations, from an experimentally point of view, due
to the high sensibility of the transport properties on the geometry of the system and on
the characteristics of the junctions.





Appendix A

Green’s Functions

A.1 Green’s matrix

Suppose we wish to solve the following linear matrix equation for the column vector f:

(EI� Ĥ0)f = g (A.1)

where E is a parameter, Ĥ0 is a N x N hermitian matrix and f and g are column matrixes.
The most straightforward way to proceed is to calculate the inverse matrix (EI�Ĥ0)

�1,
denoted as G0:

f = (EI� Ĥ0)
�1g = G0(E)g (A.2)

or, writing explicitly the matrix elements of G0:

fi = Â
j
(G0(E))i jg j (A.3)

G0 is called the Green’s matrix associated to the operator Ĥ0, and can be expressed in
terms of its eigenvalues and eigenvectors:

Ĥ0ca = Ea
0 ca (A.4)

as

(G0(E))i j = Â
a

ca
i ca⇤

j

E �Ea
0

(A.5)

Notice that each Green’s matrix element has poles for values of E equal to the eigenval-
ues of Ĥ0, i.e. the eigenvalues represent values for which G0 does not exist. In a more
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general case, the Hamiltonian contains also a potential term V:

Ĥ = Ĥ0 +V (A.6)

The associated Green’s matrix becomes:

G(E) = (EI� Ĥ0 �V)�1 (A.7)

Using eq. A.7 and the expression for G0, one can easily derive the following equation:

G(E) = G0(E)+G0(E)VG(E) (A.8)

This is the matrix form of the so-called Dyson equation.
As we will see in the following, the Green’s function for a differential equation is simply
a continuous generalization of the Green’s matrix.

A.2 One-particle Green’s function

Let’s suppose we wish to solve the inhomogeneous differential equation for f (x):

(E � Ĥ0) f (x) = g(x) (A.9)

It is possible to expand f (x) and g(x) in terms of the eigenfunctions of Ĥ0:

Ĥ0ya(x) = Ea
0 ya (A.10)

as:
f (x) = Â

a
faya(x) (A.11)

g(x) = Â
a

gaya(x) (A.12)

Since the eigenvectors form an orthogonal set and g(x) is known, the coefficients ga of
the expansion can be calculated as:

ga =
Z

dx0ya⇤(x0)b(x0) (A.13)
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Substituting eq. A.11 and A.12 in the A.9 and using A.10 we obtain:

Â
a
(E � Ĥ0)ya(x) = Â

a
(E �Ea

0 )ya(x) = Â
a

gaya(x) (A.14)

Multiplying both sides by ya⇤(x) and integrating over x we derive an expression for
ga :

ga = fa(E �Ea
0 ) (A.15)

Substituting eq. A.15 and A.12 into eq. A.11, we obtain an expression for f (x):

f (x) = Â
a

ga
E �Ea

0
ya(x) =

Z

dx0


Â
a

ya⇤(x0)ya(x)
E �Ea

0

�

g(x0) (A.16)

Defining the Green’s function as:

G0(x,x0,E) = Â
a

ya⇤(x0)ya(x)
E �Ea

0
(A.17)

eq. A.16 can be rewritten as:

f (x) =
Z

dx0G0(x,x0,E)g(x0) (A.18)

Thus we have reduced the problem of solving the inhomogeneous differential equation
A.9 to an integration (eq. A.18). Notice that G0(x,x0,E) is independent on g(x), thus
once G0(x,x0,E) is known, we can easily calculate f (x) for any given g(x).
Let’s consider the case in which g(x) is the d Dirac function to find the differential
equation obeyed by G0(x,x0,E), i.e. in order to evaluate it:

g(x) = d (x� x0) (A.19)

for which eq. A.18 reads:

f (x) =
Z

dx00G0(x,x00,E)d (x� x0) = G0(x,x0,E) (A.20)

Thus the corresponding differential equation is:

(E � Ĥ0)G0(x,x0,E) = d (x� x0) (A.21)

then:
G0(x,x0,E) =

d (x� x0)
E � Ĥ0

(A.22)
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In matrix form, this is analogues to:

(EI� Ĥ0)G0(E) = (EI� Ĥ0)(EI� Ĥ0)
�1 = I (A.23)

Thus the Green’s function is defined by a problem where the inhomogeneous term in
the differential equation is a delta function. If one knows the Green’s function of a prob-
lem one can write down its solution in a closed form as the convolution of the Green’s
function and the functions appearing in the r.h.s. of the inhomogeneous equation. From
a physical point of view, the Green’s function represents the impulse response describ-
ing how the system reacts to a single point perturbation at x0, represented by the delta
function. Then, the integration over a distribution of source points x0, given by g(x0),
will lead to the total response of the system at point x, represented by f (x).
Now let’s consider the Hamiltonian

Ĥ = Ĥ0 +V (x) (A.24)

and we know the Green’s function associated to Ĥ0. The differential equation associated
to Ĥ is:

(E � Ĥ0 �V (x))G0(x,x0,E) = d (x� x0) (A.25)

After rearrangement and calculating the integral involving the d function we obtain:

(E � Ĥ0)G(x,x0,E) = d (x� x0)+V (x)G(x,x0,E) (A.26)

G(x,x0,E) =
Z

dx00G0(x,x00,E)


d (x00 � x0)+V (x00)G(x00,x0,E)
�

(A.27)

G(x,x0,E) = G0(x,x0,E)+
Z

dx00G0(x,x00,E)V (x00)G(x00,x0,E) (A.28)

Eq. A.28 is called Dyson equation and is the continuous analogue of eq. A.8.

A.3 One-particle many-body Green’s function

To generalize Green’s function theory to many-body systems the first step is to consider
an independent particle approximation, such as Hartree-Fock or density functional the-
ory, for which:

Ĥ0 = Â
i

f (i) (A.29)
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Within this approximation we obtain a set of spin orbitals c(x) and orbital energies e
by solving the equation:

f (i)ci(x) = eici(x) (A.30)

Analogously to eq. A.17 we can define the Green’s function as:

G0(x,x0,E) = Â
i

c⇤
i (x)ci(x0)

E � ei
(A.31)

The matrix elements of the Green’s function in the basis of spin orbitals are:

(G0(E))i j =
Z Z

dxdx0c⇤
i (x)G0(x,x0,E)ci(x0) =

di j

E � e j
(A.32)

Thus, in this basis, the Green’s matrix reads as:

G0(E) = (EI� e)�1 (A.33)

where e is the diagonal matrix containing the orbital energies.
It is evident that G0(E) has poles corresponding to the orbital energies, but recalling
that Koopman’s theorem states that these orbital energies are related to the ionization
potentials and electron affinities of a N-particle system, these energies are also related
to the (approximated) energy difference between the N- and the N ±1-particle system.
Of course to get the exact ionization potentials or electron affinities, the Koopman’s
theorem must be corrected by the relaxation energies of the N ± 1-particle system and
the difference in correlation energy between the N- and N ±1-particle system.
Apparently it seems difficult to have an approximation of G(E) better than G0 retain-
ing the one-particle picture, due to the two-particle term in the Hamiltonian. But this
problem can be overcome introducing an effective energy dependent potential, called
self-energy, in the Dyson equation:

G(E) = G0(E)+G0(E)S(E)G(E) (A.34)

where S(E) is the matrix representation of the exact self-energy in the base of the one-
particle spin-orbitals. Rearranging eq. A.34 and using eq. A.33 we obtain:

(G0(E))�1 = (G(E))�1 +S(E) (A.35)

G(E) = (G0(E))�1 �S(E))�1 = (EI� e �S(E))�1 (A.36)
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It is worth highlight that the above formalism is exact, thus G(E) has poles correspond-
ing to the exact ionization potentials and electron affinities of the N-particle system. Of
course if one has to make approximations in Green’s function theory, one approximates
the self-energy. Expanding S(E) in a perturbation series:

S(E) = S(1)(E)+S(2)(E)+S(3)(E)+ . . . (A.37)

one can cut off this expansion at a given order. Notice that if S(E) = 0, then G(E) =
G0(E).

A.4 Propagators

The dynamics of a system evolving in time is described by the time-dependent Schroedinger
equation:

ih̄
∂y(x, t)

∂ t
= Ĥy(x, t) (A.38)

In order to describe a physical problem we need to specify the initial conditions. Such
general initial condition problem can be solved through the introduction of the Green’s
functions. The Green’s function G(x, t,x0, t 0) represents the solution to the Schroedinger
equation for the particular condition where the particle is at position x0 at time t 0:

lim
t!t 0

y(x, t) = d (x� x0) (A.39)

Thus the Green’s function describes the time evolution of the particle from (x0, t 0) to
(x, t) and is usually called propagator. It is useful to introduce the retarded propagator

as follows:

GR(x, t,x0, t 0) =

8

<

:

�iG(x, t,x0, t 0) if t � t 0

0 if t < t 0
(A.40)

or, introducing the heaviside function q :

q(t � t 0) =

8

<

:

1 if t � t 0

0 if t < t 0
(A.41)

eq. A.40 can be rewritten as:

GR(x, t,x0, t 0) =�iq(t � t 0)G(x, t,x0, t 0) (A.42)
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GR(x, t,x0, t 0) satisfies the equation:

✓

ih̄
∂
∂ t

� Ĥ
◆

GR(x, t,x0, t 0) = h̄d (x� x0)d (t � t 0) (A.43)

with the initial condition:

lim
t!t 0

GR(x, t,x0, t 0) =�id (x� x0) (A.44)

The retarded propagator propagates the wavefunction forward in time and can have the
following interpretation: prior to time t 0 the particle is absent, at time t 0 the particle is
created at point x0 and subsequently propagates accordingly to the Schroedinger equa-
tion. The wavefunction at time t is then given by:

y(x, t) = i
Z

dx0GR(x, t,x0, t 0)y(x0, t 0) (A.45)

Analogously we can define an advanced propagator:

GA(x, t,x0, t 0) =

8

<

:

0 if t � t 0

iG(x, t,x0, t 0) if t < t 0
=�iq(t 0 � t)G(x, t,x0, t 0) (A.46)

which propagates the wavefunction backwards in time, but is still a solution of an equa-
tion analogue to eq. A.43.
It is also useful to introduce the advanced and retarded Green’s operators, which are
related to the time evolution operator U(t, t 0) by:

GR(t, t 0) =�iq(t � t 0)Û(t, t 0) (A.47)

GA(t, t 0) = iq(t 0 � t)Û(t, t 0) (A.48)

Of course these operators satisfy the differential equation:

✓

ih̄
∂
∂ t

� Ĥ
◆

GR(A)(t, t 0) = d (t � t 0) (A.49)

Using the above relations, it turns out that the Green’s function is related to the time
evolution operator Û(t, t 0) and to the Green’s operators trough:

G(x, t,x0, t 0) = hx|Û(t, t 0) |x0i= i[GR(x, t,x0, t 0)�GA(x, t,x0, t 0)]

= ihx|GR(t, t 0)�GA(t, t 0) |x0i (A.50)
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thus:
Û(t, t 0) = i[GR(t, t 0)�GA(t, t 0)] = G(t, t 0) (A.51)

The unitarity of the time-evolution operator is reflected into the hermitian relationship
of the Green’s operators:

GR(t, t 0) = [GA(t, t 0)]† (A.52)

A.5 Propagation in a potential

Let’s consider first the case of a free particle with momentum p and mass m propagating
in time, whose Hamiltonian is:

Ĥ0 =
p̂2

2m
(A.53)

The propagator can be easily obtained in the momentum representation and depends
only on the time difference:

GR
0 (p, t, p0, t 0) = iq(t � t 0)hp|e�

i
h̄ Ĥ0(t�t 0) |p0i (A.54)

= iq(t � t 0)e�
i
h̄ Ĥ0(t�t 0) hp|p0i (A.55)

= iq(t � t 0)e�
i
h̄

p2
2m (t�t 0) = GR

0 (p, t, t 0) (A.56)

Fourier transforming we obtain the the propagator in the spatial representation:

GR
0 (x, t,x

0, t 0) = iq(t � t 0)hx|e�
i
h̄ Ĥ0(t�t 0) |x0i (A.57)

= iq(t � t 0)
✓

m
2p h̄i(t � t 0)

◆

1
2
e�

im
2h̄

(x�x0)2
(t�t0) (A.58)

If a time-independent potential V is introduced in the Hamiltonian, such as in the case
of an isolated system,

Ĥ = Ĥ0 +V (x) (A.59)

the propagator reads as:

GR(x, t,x0, t 0) = GR(x,x0, t � t 0) = hx|e�
i
h̄ Ĥ(t�t 0) |xi (A.60)

Otherwise, if the environment influences the particle with a scalar time-dependent po-
tential:

Ĥ = Ĥ0 +V̂t (A.61)
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where the potential operator V̂t is the potential function of the position operator x̂, i.e.

V̂t =V (x̂, t). The retarded Green’s function can be determined by evaluating the matrix
elements of the time-evolution operator:

GR(x, t,x0, t 0) =�iq(t � t 0)hx|U(t, t 0) |xi (A.62)

=�iq(t � t 0)hx|Te�
i
h̄
R t

t0 dt 00Ĥ(t 00) |xi

where T is the time-ordered operator.
Those matrix elements can be calculated rewriting the time evolution operator in the
interaction picture:

U(t, t 0) =U0(t, tr)UI(t, t 0)U†
0 (t

0, tr) (A.63)

=U0(t, tr)Te�
i
h̄
R t

t0 dt 00V̂I(t 00)U†
0 (t

0, tr)

where the potential operator in the interaction picture is given by:

V̂I(t) =U†
0 (t, tr)V (x̂, t)U0(t 0, tr) (A.64)

and Û0(t, tr) = e�
i
h̄ H0(t�tr). Notice that the potential operator V̂I(t) is the potential func-

tion of the position operator in the interaction picture, i.e.:

V̂I(t) =V (x̂I(t), t) (A.65)

where
x̂I(t) =U†

0 (t, tr) x̂ U0(t 0, tr) (A.66)

Indicating with |x, ti the eigenstate of x̂I(t):

x̂I(t) |x, ti= x |x, ti (A.67)

the action of V̂I(t) on such states is turned into the multiplication by the value of the
potential at (x, t):

V̂I(t) |x, ti=V (x̂I(t), t) |x, ti=V (x, t) |x, ti (A.68)

In the following we will omit the index I, i.e. x̂I(t) ⌘ x̂(t). Now we can calculate the
perturbation expansion of the propagator by expanding the time-ordered exponential:

GR(x, t;x0, t 0) =�iq(t � t 0)hx, t|Te�
i
h̄
R t

t0 dt 00VI(t 00) |x0, t 0i=
•

Â
n=0

GR
n (x, t;x0, t 0) (A.69)
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where the n-th order term of the propagator reads as:

GR
n (x, t;x0, t 0) =�iq(t � t 0)

⇣�i
h̄

⌘n 1
n!

t
Z

t 0

n

’
m=1

hx, t|T (V (x̂(tn), tn)⇥

⇥V (x̂(tn�1), tn�1) . . .V (x̂(t1), t1)) |x0, t 0i (A.70)

By inserting a complete set of the above defined eigenstates:

Î =
Z

dx |x, tihx, t| (A.71)

in between of operators V (x̂(ti), ti) in the perturbative expansion, we can easily evaluate
the terms of the expansion. The zeroth-order term, i.e. the propagator in absence of the
potential is given by:

GR
0 (x, t;x0, t 0) =�iq(t � t 0)hx|e�

i
h̄ H0(t�t 0) |x0i (A.72)

The first-order term of the propagator is given by:

GR
1 (x, t;x0, t 0) =

1
h̄

t
Z

t 0

dt1 hx, t|V (x̂(t1), t1) |x0, t 0i (A.73)

Since t < t1 < t 0, we can write the step function as:

q(t � t 0) = q(t � t1)q(t1 � t 0) (A.74)

and using eq. A.72 we obtain:

GR
1 (x, t;x0, t 0) =� i

h̄

+•
Z

�•

dx1

+•
Z

�•

dt1GR
0 (x, t;x1, t1)V (x1, t1)GR

0 (x1, t1;x0, t 0) (A.75)

where the time integral runs from �• to +• since the retarded propagators restrict the
time integration to the original time interval. The first-order time propagator can be
seen as the product of three terms: the amplitude for the free particle propagation from
(x0, t 0) to (x1, t1), where the particle experiences the effect of the potential described
by the factor V (x1, t1), and finally the amplitude for the free particle propagation from
(x1, t1) to (x, t). Since the event of interaction with the potential can occur anywhere and
at any times, we integrate over all such alternatives. It is helpful to rapidly evaluate the
higher order term introduce the Feynman diagrammatic representation of GR, in which
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a cross symbolize the interaction of the particle with the potential, let’s say for instance
a scattering event, and a line is used to represent the zeroth-order propagator:

⌘ GR
1 (x, t;x0, t 0)

(x0, t0)(x1, t1)

⇥
(x, t)

Similarly we can built the second-order term of the propagator as:

⌘ GR
2 (x, t;x0, t 0)

(x0, t0)(x2, t2)(x1, t1)(x, t)

⇥⇥

Since integration is implied over the internal space-time points where interaction with
the potential takes place, it becomes easy to write down the analytical equation corre-
sponding to the above representation:

GR
2 (x, t;x0, t 0) =�iq(t � t 0)

⇣�i
h̄

⌘2
t

Z

t 0

dt2

t2
Z

t 0

dt1 hx, t|x2, t2iV (x2, t2)⇥

hx2, t2|x1, t1iV (x1, t1)hx1, t1|x0, t 0i= (A.76)

=
1
h̄2

+•
Z

�•

dx1

+•
Z

�•

dt1

+•
Z

�•

dx2

+•
Z

�•

dt2GR
0 (x, t;x2, t2)V (x2, t2)⇥

GR
0 (x2, t2;x1, t1)V (x1, t1)GR

0 (x1, t1;x0, t 0) (A.77)

where we have used the fact that for the time relationship t 0  t1  t2  t we can write
the step function as:

q(t � t 0) = q(t � t2)q(t2 � t1)q(t1 � t 0) (A.78)

With the same token, it is possible to sum the diagrams up to an infinite order, leading
to the Dyson equation:

GR(x, t;x0, t 0) ⌘
(x0, t0)(x, t)

+
(x0, t0)(x1, t1)

⇥
(x, t)

+

(x0, t0)(x2, t2)(x1, t1)(x, t)

⇥⇥
+

(x0, t0)(x3, t3)(x2, t2)(x1, t1)(x, t)

⇥ ⇥ ⇥
+ . . .
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This series of scattering processes is iterative, since each subsequent diagram has an
extra interaction and propagator line. We indicate with a double line the propagator
including further (infinite) scattering events, in order to distinguish it from the zeroth-
order propagator. Thus the full propagator representation becomes:

GR(x, t;x0, t 0) ⌘ <
(x0, t0)(x, t)

=
(x0, t0)(x, t)

+ <
(x0, t0)(x1, t1)

⇥
(x, t)

Analytically this corresponds to the equation:

GR(x, t;x0, t 0) = GR
0 (x, t;x0, t 0)+

+
i
h̄

+•
Z

�•

dx1

+•
Z

�•

dt1 GR
0 (x, t;x1, t1)V (x1, t1)GR(x1, t1;x0, t 0) (A.79)

Notice that all diagrams have the same type of structure, in the following sense: they
are formed by an initial and a final Green’s function (the same in all diagrams) and by
a central part in which we can find the scattering processes. Obviously, this latter is the
most interesting one. Such structure allows us to define the (improper) self-energy SI

as the sum of the central part of the diagrams of all orders.

SI ⌘ ⇥ + ⇥ ⇥ + ⇥ ⇥ ⇥ + . . .

Thus the expansion of the retarded Green’s operators can be summarized in the follow-
ing equation:

GR(x, t;x0, t 0) = GR
0 (x, t;x0, t 0)+

+•
Z

�•

dx1

+•
Z

�•

dt1

+•
Z

�•

dx2

+•
Z

�•

dt2 GR
0 (x, t;x2, t2)SI(x1, t1,x2, t2)GR

0 (x2, t2;x0, t 0) (A.80)

or, in matrix notation
GR = GR

0 +GR
0 SI GR

0 (A.81)

It is useful also introduce the proper self-energy S (called just self-energy in the follow-
ing) as the part of the diagram that includes only a single scattering process and whose
diagrammatic representation is simply:
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S ⌘ <
⇥

If compared with the diagrammatic representation of SI , it appears evident that the
following relation holds (in matrix form):

SIGR
0 = SGR (A.82)

allowing to write the Dyson’s equation in its common form:

GR = GR
0 +GR

0 SGR (A.83)

Notice that, due to the symmetry of the diagrammatic series, we could have chosen to
write the above equation in an alternative way:

GR = GR
0 +GR SGR

0 (A.84)

With the same token, we obtain for the advanced Green’s function:

GA = GA
0 +GA SGA

0 (A.85)

On the other hand notice that the Dyson’s equation obtained for the one-particle problem
is just a particular case of eq. A.83, which is valid for any electron systems.
The derivation of the analogue equations for the electron-electron interaction is more
complicated and will not be reported here.

A.6 Analytic properties of Green’s functions

For an isolated system, for which the Hamiltonian is time-independent, we can for any
complex number E (which in the following will assume the meaning of an energy vari-
able) with a positive imaginary part, transform the retarded Green’s operator* defined
in eq. A.47 according to:

G+(E) =
1
h̄

+•
Z

�•

d(t � t 0)e
i
h̄ E(t�t 0)GR(t � t 0) (A.86)

*We use the notation ± for the retarded/advanced Green’s operators in energy domain in order to
distinguish them from time-domain operators
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where the Fourier transform is obtained as the analytic continuation from the upper half
plane (ImE > 0). Of course the Green’s operator must fulfill the equation:

(E � Ĥ)G+(E) = Î (A.87)

Analogously we obtain that the advanced operator satisfies an equation of the same
form:

(E � Ĥ)G�(E) = Î (A.88)

for values of the energy E in the lower half-plane (ImE < 0), and by analytic continua-
tion on the real axis we can evaluate the Fourier transform:

G�(E) =
1
h̄

+•
Z

�•

d(t � t 0)e
i
h̄ E(t�t 0)GA(t � t 0) (A.89)

By inversion of the above equations we obtain the advanced and retarded Green’s oper-
ators in time domain:

GR(t) =
1

2p

+•+ih
Z

�•+ih

dEe�
i
h̄ EtG+(E) (A.90)

GA(t) =
1

2p

+•�ih
Z

�•�ih

dEe�
i
h̄ EtG�(E) (A.91)

from which follows, in analogy with eq. A.52, the hermitian relationship:

G�(E) = [G+(E⇤)]† (A.92)

Furthermore, always in analogy with the time-domain operators, we introduce the energy-
domain Green’s operator G(E):

G(E) =

8

<

:

G+(E) if ImE > 0

G�(E) if ImE < 0
(A.93)

which admits spectral representation:

G(E) =
1

E � Ĥ
= Â

l

|el ihel |
E � el

(A.94)
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where |el i are the eigenstates of Ĥ:

Ĥ |el i= el |el i (A.95)

and the identity representation has been used:

Â
l
|el ihel |= Î (A.96)

The analytic properties of the retarded and advanced Green’s operators leads, by an
application of the Cauchy theorem, to the spectral representations:

G+(E) =
+•
Z

�•

dE 0

2p
ÂE 0

E �E 0+ ih
(A.97)

G�(E) =
+•
Z

�•

dE 0

2p
ÂE 0

E �E 0 � ih
(A.98)

where we have introduced the spectral operator ÂE , which accounts for the discontinuity
of the Green’s operator across the real axis:

ÂE = i(G+(E)�G�(E)) = i(GE+ih �GE�ih) = 2pd (E � Ĥ) =

= 2p Â
l
|el ihel |d (E � el ) (A.99)

as can be seen on using:

1
E �E 0+ ih

� 1
E � ih �E 0 =

(E � ih �E 0)� (E �E 0+ ih)

(E �E 0)2 +h2 =

=� 2ih
(E �E 0)2 +h2 =�2pi

p
h

(E �E 0)2 +h2 (A.100)

and taking the limit h ! 0+:

G+(E)�G�(E) =�2pid (E � Ĥ) (A.101)

where the density of state operator d (E � Ĥ) has been introduced:

d (E � Ĥ) = lim
h!0+

1
p

h
(E �E 0)2 +h2 (A.102)
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By using eq. A.92 we can easily demonstrate that:

G+(E)�G�(E) = G+(E)�G+(E)† = 2iImG+(E) (A.103)

i. e.

ImG+(E) =�pd (E � Ĥ) (A.104)

On the other hand the real part of G+(E) is given by:

ReG+(E) = lim
h!0+

Z

Re


1
E �E 0+ ih

�

d (E 0 � Ĥ)dE 0 = (A.105)

= lim
h!0+

Z E �E 0

(E �E 0)2 +h2 d (E � Ĥ)dE 0 = (A.106)

= P
Z 1

E �E 0d (E � Ĥ)dE 0 = Gp(E) (A.107)

where P indicates the principal value of the integral:

P
Z f (E 0)

E �E 0dE 0 = lim
d!0

8

<

:

E 0�d
Z

�•

f (E 0)

E �E 0dE 0+

+•
Z

E 0+d

f (E 0)

E �E 0dE 0

9

=

;

(A.108)

Of course,
ReG�(E) = ReG+(E) (A.109)

and thus, separating the real and the imaginary part of G±(E), we get:

G±(E) = Gp(E)⌥ ipd (E � Ĥ) (A.110)

The relationship between real and imaginary part of the position representation matrix
elements hx|G±(E) |x0i can be determined by Kramers-Kronig relations, for the retarded
operator analytic in the upper half plane:

ReG+(x,x0,E) = P
+•
Z

�•

dE 0

p
ImG+(x,x0E 0)

E 0 �E
(A.111)

while for the advanced operator in the lower half plane:

ImG�(x,x0,E) =�P
+•
Z

�•

dE 0

p
ReG�(x,x0E 0)

E 0 �E
(A.112)
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Analogously to the time-domain Green’s functions the perturbative expansion G(E) in
a static potential V reads as:

GE =
1

E � Ĥ
=

1
E � Ĥ0 +V

=
1

(E � Ĥ0)
(1� (E � Ĥ0)

�1V ) =

=
1

1� (E � Ĥ0)�1V
1

E � Ĥ0
=

= (1+(E � Ĥ0)
�1V +(E � Ĥ0)

�1V (E � Ĥ0)
�1V + ...)

1
E � Ĥ0

=

= G0(E)+G0(E)V G0(E)+G0(E)V G0(E)V G0(E)+ ...

= G0(E)+G0(E)SI(E)G0(E)

where the improper self-energy SI(E) has been introduced and where G0(E) is the
Green’s operator associated to the unperturbed Hamiltonian:

G0(E) =
1

E � Ĥ0
(A.113)

The space representation of the Green’s propagators (the Green’s function matrix ele-
ments) as a function of E can be obtained by evaluating the matrix elements:

G+(�)(x,x0,E) = hx|G+(�)
E |x0i (A.114)

and recalling eq. A.92 we can deduce the hermitian property :

[G+(x,x0,E)]⇤ = G�(x0,x,E⇤) (A.115)

By using eq. A.96, we get the spectral representation in the space-domain:

G+(x,x0,E) = Â
l

el (x)e⇤l (x
0)

E � el + ih
(A.116)

G�(x,x0,E) = Â
l

el (x)e⇤l (x
0)

E � el � ih
(A.117)

The Green’s function thus have singularities at the energy eigenvalues (the energy spec-
trum), constituting a branch cut for the continuum part of the spectrum and simple poles
for the discrete part. Along a branch cut the spectral function measures the discontinuity
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in the Green’s operator:

A(x,x0,E) = ihx|GE+ih �GE�ih |x0i= i(G+(x,x0,E)�G�(x,x0,E)) =

=�2ImG+(x,x0,E) = 2p Â
l

el (x)e⇤l (x
0)d (E � el ) (A.118)

Notice that A(x,x0,E) satisfies the completeness relation:

Z

s

dE
2p

A(x,x0,E) = d (x� x0) (A.119)

where the integration (or summation) is over the energy spectrum.
Moreover the trace of A(x,x0,E) correspond to the local density of states per unit vol-
ume:

A(x,x,E) = 2p Â
l
|yl (x)|2d (E � el ) = 2p Â

l
|hx|el i |2d (E � el ) (A.120)

i.e. the unnormalized probability per unit energy to find the particle at position x with
energy E (or vice versa the probability density for the particle with energy E to be found
at the point x). Thus the integral over x of the trace of A(x,x0,E) assumes the meaning
of the number of energy levels per unit energy, i.e. it is a density of states D(E):

Z

dxA(x,x,E) = 2p Â
l

d (E � el ) = 2pD(E) (A.121)

where resolution of the identity has been used. It follows that the relative probability
to find the particle with energy E somewhere in space is proportional to the number of
states available at that energy.
The spectral function also allows to evaluate the density matrix elements. Consider the
density operator (diagonal in energy representation)

ĝ = Â
l

p(el ) |el ihel | (A.122)

where the spectral weights p(el ) obeys

Â
l

p(el ) = 1 (A.123)
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The density matrix elements take the form:

g(x,x0) = hx| ĝ |x0i=
+•
Z

�•

dE
2p

p(E)A(x,x0,E) =
+•
Z

�•

dE p(E)d (E � Ĥ) (A.124)

The trace of g(x,x0) can be interpreted as the probability of finding at the position x,
determined by the probability to find the particle with energy E at such position (rep-
resented by A(x,x0,E)) times the probability it has energy E (represented by p(E)) and
summed over all possible energy values.
These properties establish a connection between the energy eigenstates and the dynam-
ics, making Green’s functions suitable for describing transport across a nanostructure.
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[130] T. Markussen, J. Schiötz, and K. S. Thygesen. J. Chem. Phys., 132:224104, 2010.

[131] R. Stadler, S. Ami, F. Forshaw, and C. Joachim. Nanotechnology, 15:S115, 2004.

[132] R. Stadler, F. Forshaw, and C. Joachim. Nanotechnology, 14:138, 2003.

[133] R. A. Webb, S.Washburn, C. P. Unbach, and R. B. Laibowits. Phys. Rev. Lett.,
54:2696, 1985.

[134] T. Markussen, R. Stadler, and K. S. Thygesen. Phys. Chem. Chem. Phys., 13:
14311, 2011.

[135] J. P. Bergfield, H. M. Heitzer, C. Van Dyck, T. J. Marks, and M. A. Ratner.
acsNANO, 9:6412, 2015.

[136] Y. Geng, S. Sangtarash, C. Huang, H. Sadeghi, Y. Fu, W. Hong, T. Wandlowsky,
S. Decurtins, C. J. Lambert, and S.-X. Liu. J. Am. Chem. Soc., 137:4469, 2015.

[137] G. C. Salomon, D. Q. Andrews, T. Hansen, R. H. Goldsmith, M. R. Wasielewsky,
R. p. Van Duyne, and M. A. Ratner. J. Chem. Phys., 129:154701, 2008.



Bibliography 190

[138] M. G. Reuter and T. Hansen. J. Chem. Phys., 141:181103, 2014.

[139] H.-W Lee. Phys. Rev. Lett., 82:11, 1999.

[140] P. Von R. Scheyer and A.-M. Sapse. Lithium chemistry, a theoretical and exper-

imental overview. John Wiley & Sons, 1995.

[141] H. Qian and J.-Q. Lu. Phys. Lett A, 371:465, 2007.

[142] D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols. Nature, 408:67, 2000.

[143] C. Sporer, I. Ratera, D. Ruiz-Molina, Y. Zhao, J. Vidal-Gancedo, K. Wurst,
P. Jaitner, K. Clays, K. Persoons, C. Rovira, and J. Veciana. Angew. Chem. Int.

Ed, 43:5266, 2004.

[144] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A.
Nielsen, J. F. Stoddart, and R. S. Williams. Nanotechnology, 14:5266, 2003.
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