A Concern-Oriented Framework for Dynamic Measurements

Walter Cazzola®*, Alessandro MarchettoP

*Department of Computer Science, Universita degli Studi di Milano, Italy.
b Independent researcher, Trento, Italy

Abstract

Evolving software programs requires that software developers reason quantitatively about
the modularity impact of several concerns, which are often scattered over the system. To
this respect, concern-oriented software analysis is rising to a dominant position in software
development. Hence, measurement techniques play a fundamental role in assessing the
concern modularity of a software system. Unfortunately, existing measurements are still
fundamentally module-oriented rather than concern-oriented. Moreover, the few available
concern-oriented metrics are defined in a non-systematic and shared way and mainly
focus on static properties of a concern, even if many properties can only be accurately
quantified at run-time. Hence, novel concern-oriented measurements and, in particular,
shared and systematic ways to define them are still welcome. This paper poses the basis
for a unified framework for concern-driven measurement. The framework provides a basic
terminology and criteria for defining novel concern metrics. To evaluate the framework
feasibility and effectiveness, we have shown how it can be used to adapt some classic
metrics to quantify concerns and in particular to instantiate new dynamic concern metrics
from their static counterparts.

Keywords: Software Measurements and Metrics, Static and Dynamic software artifact
analysis, Software feature and concern.

1. Introduction

A concern is any consideration that can affect the implementation and maintenance
of program modules [1]. In particular, a concern is identified by portions of code not
necessarily contiguous that contribute to implement such a concern; the concern can be
selectively exercised through ad hoc scenarios defined by, e.g., use cases or test units.
A software requirement or functionality, for instance, is a concern while the dynamic
counterpart is the execution of a requirement or functionality. As an example, the services
provided to the user by a software system that controls an automated teller machine
(ATM) are concerns.

Normally, the software is developed reasoning in term of the features! it must provide
but the tangled nature of the resulting application forces the maintainer to reason

*Corresponding author
n the rest of the paper, feature and concern will be used as synonyms.

Preprint submitted to Elsevier August 26, 2014

quantitatively about their modularity to facilitate its maintenance. With the increasing
relevance of concern-oriented programming, see, for example, the advent of aspect-oriented
programming (AOP) [2] and feature-oriented programming (FOP) [3], there is an urge
to revise existing metrics (as done by [4]) and to develop new ones supporting concern
quantification against software variability. For instance, some studies [5, 6] suggested that
an increment to software modularity might correspond to: i) an increment of undesirable
couplings involving the realization of two or more concerns; and ii) a decrement of the
cohesion among the elements realizing a concern. This kind of concern-specific design
anomalies are key factors to decrease software maintainability.

However, to provide an accurate characterization of how a concern affects a program
is not a trivial task [4]. Many concerns are often tangled and scattered across a number of
modules and, therefore, there is no direct traceability between a concern and the module
boundaries [1]. The mapping between concern and code modules —i.e., “where the
concern is implemented in the code”™— is not always well-documented and well-preserved
during the system design, implementation and maintenance. In such cases, the mapping
between concerns and code modules can be inferred by static code analysis (to the static
extent) and completed by dynamically exercising the concern, e.g., via test units (to
the dynamic extent) [7]. As a result, concern-specific properties cannot be detected by
applying conventional module-oriented metrics and proper variants of such metrics have
been investigated in the literature, such as [4, 8, 9].

By analyzing the existing literature in the field of concern-oriented metrics, however,
we observed two main limitations:

1. Existing metrics are not systematically defined, that is, there is a lack of shared
frameworks or approaches that can support the systematic definition of concern-
oriented metrics. In fact, to the best of our knowledge, there exists only one
measurement framework (i.e., the one described in [9]) devoted to design and describe
concern-oriented metrics; all the others frameworks available in the literature —such
as [10, 11]— only support module-oriented metrics, thus they cannot be reused as-is
to define new concern-oriented metrics. Consequently, designers of measurement
tools cannot rely on formal, systematic and shared terminology, set of notions and
criteria to: define and describe concern metrics and systematically validate and
compare them, e.g., with the existing ones. This leads to ambiguous and overlapping
metric definition that hampers the adoption of concern metrics in academic and
industry settings and the execution of empirical studies using these metrics in
general.

2. Existing concern-oriented metrics are mainly static, i.e., they quantify statically-
computable properties of a concern, as we have identified in a recent systematic
study [9]. However, as happens in the case of software modules [10, 11|, some
relevant properties of a concern can only be precisely discovered though the concern
execution [4], such as dynamic coupling or cohesion. Static and dynamic metrics
are hence complementary also at concern-level as well as at module-level. In fact,
static metrics are conservative and can lose precision since they are based on static
analysis of software artifacts (e.g., source code), while dynamic metrics are strongly
tied to specific software executions, thus they can be more precise than the static
ones but they can suffer of under-approximated results, i.e., the part of the system
not executed is not considered in the metric computation.

2

This paper presents a contribution in this field by providing a concern-driven framework
for defining and describing both static and dynamic metrics, at both module and concern
levels. In particular, the presented framework extends and complements our measurement
framework presented in [9] by capturing run-time properties that can be quantified for a
concern and how they can be obtained. The framework is composed of a group of terms,
notions and criteria for defining and comparing dynamic concern metrics beyond those
for defining and comparing static concern metrics.

We evaluated the presented framework’s feasibility and effectiveness in two ways.
First, we conducted an experiment (Sect. 6) where some subjects (students) have used
the framework to instantiate some dynamic concern-oriented metrics from their static
or module-oriented counterparts; the goal of this experiment was to answer the research
question: (RQ1): “Can the framework be used to describe several concern-oriented metrics
using a common and precise terminology and set of concepts?”. Second, we reported on a
case study (Sect. 7) where we used some dynamic and static concern oriented metric to
measure a pool of open source applications; the case study has been carried out with the
goal of answering to the research question: (RQ2) “Are the dynamic concern-oriented
metrics useful to predict the concern bug-proneness?”. This case study aimed at showing
utility and effectiveness of such dynamic concern metrics for bug-proneness estimation.

The rest of the paper is organized as follows. In Sect. 2 we present a survey of
existing maintainability measurements and describe their adaptation to quantify dynamic
properties. Furthermore, we stress the relevance of dynamic measurement by examples.
In Sect. 3 we analyze the specific characteristics of measuring concerns dynamically,
that are in particular, concern mapping and triggering, as well as a tool supporting the
identification of a concern and its components at runtime. We introduce the framework
in Sect. 4 and the criteria composing it in Sect. 5. Section 6 provides an experimental
evaluation of the proposed framework by metrics instantiation while Sect. 7 reports a study
we conducted about the usage of dynamic measurements instantiated at concern-level
through the presented framework. Finally, Sect. 8 summarizes the state-of-the-art about
metric frameworks, and in Sect. 9 we draw our concluding remarks.

2. Towards Dynamic Concern Measurement

To support dynamic concern-driven metrics definition and measurement we had to
understand which properties and notions characterize a concern at run-time and whether
it is worth measuring. Since the literature on dynamic concern measurement is scarce?
we have looked at the literature about metrics (both at module and concern level) and
dynamic properties of software systems for identifying such properties and characteristics.
Therefore, to have a wide and comprehensive understanding of the concern’s properties,
we studied and adapted some existing static concern metrics and some well-accepted
module-oriented metrics to quantify dynamic concern properties. Such an approach
permitted to cover a larger amount of possible measurements and relevant properties that
might otherwise be overlooked. Out of these findings, then, we defined a set of framework
criteria that capture such properties and that make the framework complete and effective
enough to describe existing and new dynamic concern-oriented metrics.

2To the best of our knowledge, [4] is the most relevant piece of work in this field by introducing
disparity, concentration and dedication metrics.

3

In the rest of this section we present the result of our investigation, in particular we
show how the considered metrics have been adapted to the dynamic and/or concern-
oriented context. We have classified the considered metrics according to their original
characteristics as follows:

e Dynamic Module Metrics. These are dynamic module-driven metrics originally
defined for object-oriented systems. They were adapted or extended to be applied
to concerns as well.

e Static Concern Metrics. These are static metrics originally defined for concerns.
They were adapted or extended to be dynamically applied.

e Dynamic Concern Metrics. These are dynamic metrics already defined for concerns
that do not require any adaptation.

Table 1 summarizes the result of the literature review we conducted. The table shows the
considered suite of metrics and it reports for each metric the original definition (column
“Original Definition”) present in the literature and the definition obtained from our
adaptation (column “Modified Definition”). To complete the picture, in Table 2 we report
the definition of those metrics that are already defined as dynamic and concern-oriented
and therefore that do not need any adaptation in order to be considered.

The adaptation process is quite straightforward and relies on the adoption of the
concept of concern execution that corresponds to the execution of the elements composing
the concern that can be prodded by, for example, an ad hoc use case or test unit. If the
considered metric is dynamic but not concern-oriented we mapped the subject and/or
the target of the measurement to the concerns; whereas if the metric is already concern-
oriented but not dynamic we have exclusively considered the events that occur during
the execution. For instance, in Concern Diffusion over Operations (CDO) we look for
components that participate in the concern definition whereas in the Dynamic Concern
Diffusion over Operations (dCDO) we narrow the metric definition to the components that
participate in the concern definition and are exercised during the concern execution. Some
further adjustments were necessary to target the metric to the corresponding dynamic
element, e.g., methods become method invocations.

The set of metrics in Table 1 has been analyzed to understand its main characterizing
factors, such as the measured run-time properties and the counted software objects/com-
ponents. These factors have to be included in our framework since they are necessary
to describe a wide variety of dynamic concern-oriented metrics. Conversely, we do not
validate these metrics any more since they are a straightforward variations of well-known
metrics and their validation can be assessed from the original validation.

Summarizing, to capture and describe dynamic concern metrics, the framework must
master all the basic elements necessary to deal with such kind of metrics. For example,
the framework should provide the elements to answer this basic questions: how does a
concern look at runtime? What are the basic elements composing a concern at runtime?
How are such elements related/connected to each other? To answer such questions

3A concern component is one of the elements (classes, methods, ...) composing the concern. Since
we are interested to the concern execution we consider their dynamic counterpart (objects, method calls,
field accesses, ...).

4

‘uorpuge((1[09 pi€) POYIPOIN 'SA (‘109) [BUISLIQ :Arewrung o3mg oLIRIN T O[qEL,

WL -UNL JD PISLILITI PUD ULIIUOD D 0} %m,ﬁ\\ﬁm

-1pja.4 spuduodwod ayy fo uoquinu 2y) sjunod (poasdgp) poaidg dvrwvufip | fizadosd usarb v 01 pary/pajpiaL sassvpo fo uaquinu ay) spunod [91] poasdg peeadsp
UOUNIILI §11 HULIND UAIIUOD D 0] PIIDIN0SSD JUIUOAUL0D D “figaadod v 0y
Jo sanquiggp pup suoyniado fo uaqunu 2y spunod (z18p) 218 2MwDURP | PagpI0ssD SsDPI D [0 $2INQLIID PuD SPoYyIIUL fo uaquinu oYy} sjunod [91] azig YA
UOUNIITI YY) burinp Juauodutod passassn ay) fiq passaippn U.Laou0d fo quauoduwiod passassn ayy fiq passaLppn suU.LaIU0D
Jaquinu ayp s3unod (DTP) U01s2Y0,) Pasnq-uLaduoy) fo yooT snwvufip | fo sequnu 2vy) sjunod [6] (DDT) worsaYyoy Ppasvq-u.saduoy fo oo 201IP
“ULIIUOD
QU0 UDY) 9L0UL fiq JMISSOLD D IDY) JULY-UN.L ID PISIAIIT SYUBUOAULOD SSD]D “2ungaf v fiq 2SS0 24D IDY)
Jo uaquunu oy spunod (@AP) 29462 burpanossos) aungoag 2nupuhfip | sassvjo fo uoquinu ay) spunod [¢1] (@) 22462 burpanossos) a.ngvag apdar
QU2UOAUL0D D UL ULIIUOD DY)
07 PADIIOSSD DUV DY) UOUNIITI WSS Y] UL SU0LIPUU0D 1oYdTa [0 UdquIny QUAUOAUWL0D D UL ULIIUOD Y] 0] PIDIIOSSD
Y] SJUN0D NDGHP ‘SPLOM U2YI0 U] “UOWNIITI ULIIU0D Y] Burunp 01 papdnod | a4n 90yp su012UU0D 1194dTa [0 L2QUINY 2Y] SUN0D)G, ‘SPLOM 42YI0 U] 0]
51 QuaUOdUL00 YUY UM D fiq PaZYDIL ULIIUOD D IDY] SJUDUOAUL0D 42LIS JO | Pa)dnod S1 JUdUOdUL0D JULD UIAD D fiq PaZYDAL ULIIU0D D DY) SJUIUOAULOD
Joquinu ay1 sarfiqunnb (HDGHP) budnoy aa1rsusg uLa0u0) 21wpUfip | 4onuas fo udquinu 2y sayfunnb 6] (DSD) budnoy 2arrsUdS ULIIUO) 2SOP
UOWNIDTI UAIIUOD YY) Buranp su01DLad0 415) "SJUIULIDYS PUD SUOLDID]IIP
buagpo 40§90 41917 bussad0D fiq UL20U02 Y fo Juduodutod fiuvwaid | ‘sadfiy uingos ‘siagouinind ur wayy buisn 1o suowvLado unay) buwd ‘saInqLID
fiun $5900D JDY] 201APD PUD ‘SLOJONLISUOD ‘SPOYIIUL JO 42QUINU DY) SJUN0D 91 | 4191y bUussa00D fiq UL20u00 2y o Juauoduwod fivwia.d fiuv $s900D DY) 2210PD
‘UOIPPD UJ UONIITI ULIIUO0D Y] BULIND PISIOUITI ULIIUOD D [0 UOWDY | PUD ‘S.LOJINLISU0D ‘SPOYIPUL [0 LIQUINU Y] SJUTOD I “UOIUPPD U] “ULIIUOD
~uuddwy Ay} 09 INQLIU0I 03 st sodind wWDW 2SOYM sUOUVLIAO Jo udquny | D fo uorpIuWI)dusL Y} 03 AINQLIIU0D 01 s1 Isodind uDW ISOYM SUOUDLIAO
2y sjunod (Q@OpP) suorvuad) 4220 uorsHLyq u40u0) 2rwwufip | fo ssquinu oy spunod [F1] (O@D) suorviadQ 4200 uoSNLf1(q ULIIUO)D oapp
UOLNIDTY UAIIUOD 1Y) BULIND SPOYIdUL 412Y) 1]DD 4O ‘§9]qDLIDA
1D20] PUD SUODAD]IIP SMOAY] ‘§2AfY UINIAL ‘S4279UWDIDA [DULLOS ‘SUOLDID]IIP "SPOYIDUL DY) DD O ‘SI)QDLIDA [DIO] PUD SUOLDID]IIP SMOLY)
9INQLUD UL WYy bursn fiq spuouoduiod fiupwiid 2y) §5920D DY) spudUOdUL0D | ‘Sadfi) UangaL ‘54979UDADA [DULLOS ‘SUOUYDID]IIP 9INQLID UL WAY] buisn fiq
Jo upquunu 9y) puv UOYNIFTI ULIIU0D Y} HULINYD PISIUITI D DY) ULIU0D | SJUdUedUL0d fupwirid 2y §590D DY) SPUUOAUL0D O LIQUINU DY) PUD ULIIUOD
D Jo uoyvjuwa)dwr 2y) 0 2INQLIPU0D DY) SJUIUOdW0D fiupwiaid [o 4qunu | D [o uoyDIUWIdWL Y] 07 2INQLIPU0D fijurpw DY) sjuUedw0d fiunwiid fo
2y spunod (DA@HP) s1udU0duwo) 4220 UOISTHLYJ ULIIU0) 21wDUlp | Loqunu ay) spunod [11] (DAD) s1uduodwoy) 4200 u0ISNLLT ULIIUO) oapp
“ULIOUOD UG D UL SUOINPOLJUL
a1y fig puv synojurod avy) fiq pagoaffv au4p DY) SJUIUOAULOD PIINIITI [0 4 19adsp usarb » ur suoonposyur Yy fiq pun sinojurod avyy fig pagoaffv sjusu
-wnu ayg sjunod (@OP) uLa0u0) D fo 22462 buranossos)y swrupufip | -odwoo fo saquinu oyy spunod () uLa0u0) D fo 22462 burInIssos) aonp
uoIuYa(Paipoy 7 uoufa (] ubri0) 7 pINIE) 1

(1120u00 fo wifiuoufis sp pasn aup suiid] fizsadosd pup ‘aingpaf “oadsn) SOLIIDIA] UIDIUOY) O19€1S

“ULIIUOD
uaa1h v fo uoynara oy) burunp buruunt 4o 201200 figsnodunynuwis spoayy Jo

.m:N:\RﬁL\ 40 20139D \Q%ﬁcwﬁwﬁ

daquinu 952bup) 213 SUN0D (DOLN) SULIIUOY) 42RO SPDALY] fO LIQUINN | -[nwns sppay) fo uoquinu 3sabin) a1 spunod [¢1] (LN) SPDa4yy fo 4aquunpT DOLN
UONIDTI UAIIUOD D HULIND PISIILITI SUOL) "PAIMIITI 24D
-On.sUL 9P02afiq D107 Y sUNSDIUWL (DO T) SULIIUO) LIAO PO AV | DY SUOUINLSUL IP02Ifiq fo uaquinu 2y saunsvow [¢1] (DT) 2poy a7 0001
‘0 07 195 §1 9N)DA 21PWL Y] ‘D01DbIU 51 ‘0 09 195 S1
AN S1Y) UDYA| OULI-UNL JD SI)QDLLDA DIUDISUL UOULULOD DADY IDY) SPOYIDUL | ANV I1LPIUL 9Y) ‘D01DBIU §1 INJDA S1Y) UDYA| “dULI-UNL JD §D)GDILDA 9IUDISUL
Jo sund fo upquinu 2y) SNUNL UOWULOD UL $2]QDLIDA IUDISUL OU DY IDY] | UOULULOD JaDY IDY] SPOYIAUL [0 s410d [0 JIQUINYU Y] STUIUL UOULULOD U SI]QDLIDA
ULIOU0D Y UL SPoYIPW 0 sand [0 42N Y} §1 ULIIU0D D 40f (DOJATQL) | 29UDISUL OU 2aDY JDY] SSD]D Y] UL SPOYPIUL [0 su1nd [0 4dqUINY Y] S SSD]I
-TP) SULIDIUO)) 420 SPOYIIJN UL UOLSIY0) fo T 2)dwrs onruoufip | v wof [71] (IWODTP) SPOYIRIN Ut u0saYy0) fo yonT 2)dwrs 21wvufip |DHONODTIP
“SULIIU0D JUIL[[1D
0] Pa1Y 9Q UDD SJUIWD]D PALIPISUOD DY) DY) 9JON DULI-UNL ID SJUIULI]D
ADYJO YPM JUIWDJD UD U2IMIIq $)AN0D [0 4dquInU 21} ULIIU0D D 4Of ‘SJUNOD DULI-UNL D §ISSD]D AYI0 Ypm §3)AN0D [0 42quinU Yy}
(Do0goP) Sutau0) 4200 5122Lq0 uIMIdg burdnoy odnwwvufip | ‘ssvp v uof ‘s;unod 1] (0GOP) $192L90 uaamzag burdnoy 2rwvufip Do0dOP
worpuifaq payipoy | uorpuifa(q purbriQ | RIEY O

SOLIJSIA] S[NPOJA dlwreud (g

Metric ‘ Definition

Given
o By is the set of execution slices of P (program) used to implement the feature f, and
e B, is the set of execution slices in ¢ component of P
where an execution slice is a portion of the program code executed by an input that exercises
a feature.

disparity The disparity measures how close a feature f is to a program component
c. It holds 1 when By N B, = 0. i.e., if and only if none of the blocks that
implement ¢ are used to implement f; it holds 0 when By = B,, i.e., if and
only if the component ¢ implements only and totally the feature f.
concentration| The concentration measures how much a feature f is concentrated in a
program component c. It holds 1 when By C B, i.e., if all the blocks used
to tmplement f are in c; whereas it holds 0 when By N B, =0, i.e., if and
only if none of the blocks that implement ¢ are used to implement f.
dedication The dedication measures how much a program component c is dedicated to
a feature f. It holds 1 when B. C By i.e., if all the blocks used to implement
¢ are also used to implement f; whereas it holds 0 when By N\ B, =0, i.e.,
if and only if none of the blocks that implement ¢ are used to implement f.

Table 2: Metric Suite Summary (Cont’d): Wong’s [4] Metrics.

we analyzed the metrics listed in Table 1 to identify relevant concepts and notions
characterizing dynamic aspects and properties of concern at runtime. For example, a
software application can be seen as a set of components (e.g., classes or aspects) capable
of interacting with each other. At runtime such components are replaced by their dynamic
counterparts (i.e., instances of classes and aspects) and the potential connections are
realized by message exchanges (i.e., method calls, effects at the join points, ...). Hence,
we enrich our (initially static) framework [9] by means of this notion of “instance” of
components. Then, we analyzed again the metrics listed in Table 1 to identify relevant
aspects and properties of dynamic concerns (e.g., run-time properties and the counted
software objects/components). Such aspects have been used, on one side, to extend
and complement those aspects and properties already captured by the criteria of our
framework (e.g., “instances” is a significant element in the dynamic metrics but it is not
for static metrics; static and dynamic coupling [10] are distinctive relationships that exist
among software elements that can be measured both statically and dynamically but with
different results). On the other side, the identified aspects and properties have been used
to look for (sub)criteria that our initial framework lacks to capture and/or to describe
(e.g., concern projection into code [9] is inadequate to dynamically map system elements
to concerns at runtime, in fact, due to code inheritance and polymorphism the effectively
executed code can be substantially different from the one statically identified).

3. Concern Mapping and Triggering

Apart from the key factors necessary to describe them, concerns and their dynamic
measurement introduce also two more aspects: 1) how to track code elements down in
the target concerns and ii) how to trigger such elements to exercise the concern in their
definition. The relevance of dynamic concern metrics. Let us try to explain this on
the object-oriented design of a product line for mobile device applications described

6

‘ tor

‘ tier

1: nextController0 | i
1.1 handleCommand() |
AbstractController i
SR " 1controrter Laimenconrotier0 |, . y
[Application Domain nextcantreller?r()) ::;g::;;;i;g)
setlextController()
1.2.2: nextController® | o ,
| \] 12,211 senassO
CoreController [PhotoController [smscontroller
\ \
—— ‘
handleCommand () hand:) ‘hand)
‘ ‘
(a) Concern projection of the CoR pattern (b) Sequence diagram of the CoR concern
Figure 1: The chain of responsibility (CoR) example
CSC | dCscC
IController 0 0
AbstractController 1 0
CoreController 0 1
PhotoController 0 1
SMSController 0 0
Total 1 2

Table 3: Static and dynamic measurements.

in [17] and partially reported in Fig. 1. Figure 1(a) shows a partial class diagram
realizing the Chain of Responsibility (CoR) design pattern implemented in the product
line. Inheritance relationships are extensively exploited by classes to make them play
the pattern roles. For instance, CoreController, PhotoController and SMSController
extend AbstractController which implements the IController interface.

Let us briefly analyze the case of the metrics Concern Sensitive Coupling (CSC) [14],
as well as its dynamic counterpart dCSC (definitions are in Table 1). To compute CSC
metric it is necessary: i) to map the target concern into the code elements, ii) to parse the
identified code elements to extract the information required to compute the metrics (that
is, the number of explicit connections associated to a concern in each element). Several
techniques [7] exist to statically map concerns into code elements. All these methods
are semi-automatic; they perform some (partial) source code analysis complemented by
user intervention to identify those code elements related to a concern. Code elements
realizing the CoR concern are shadowed in the design of Fig. 1(a) to quantify static
concern metrics, such as CSC.

Table 3 presents the measurement of CSC for the excerpt of the design illustrated in
Fig. 1(a). Due to the inheritance relationship, dynamic coupling, and polymorphism, the
effective class of the object sending or receiving a message may be different from the class
implementing the corresponding method. To make this clear, Fig. 1(b) shows a partial
sequence diagram representing one possible execution scenario of this application. An
execution scenario s is a sequence of interactions among system components/objects stim-
ulated by input data or events and that realizes a system behavior, feature or functionality.
The scenario in Fig. 1(b) represents a call chain from controller objects to the appropriate
controller (in this case, c3 which is an instance of the SMSController class) that will

7

handle the request. Observing an execution of the CoR concern according to this scenario,
or its sequence diagram (Fig. 1(b)), one can see that in addition to the static concern
coupling between AbstractController and IController pointed out in the class diagram
of Fig. 1(a), a dynamic concern coupling exists (i.e., messages passing between controller
objects couple their respective classes). For example, the CoR implementation (Fig. 1(b))
shows a message exchange between instances of CoreController and PhotoController
that reveals that these classes are coupled. This information cannot be captured by a
static code analysis, i.e., it cannot be considered for measuring CSC. Instead, it can be
point out and captured by observing some executions of the target concern, i.e., it can be
considered for measuring the dCSC. Since CSC and dCSC (Table 3) identify the static
and dynamic concern couplings respectively they are obviously complementary. The CSC
value for AbstractController is 1 since the code of the CoR concern in this class is —in
the static view— coupled to IController interface. This connection is easy to spot in
static diagrams, such as a UML class diagram (Fig. 1(a)). On the other hand, only a
system execution is able to point out the connections identified by the dCSC metric, such
as the dynamic concern coupling in CoreController and PhotoController.

How to measure dynamic concern metrics. It should be fairly evident that the dynamic
measurement of a system can only be achieved by analyzing the running system. To this
regard, a running object-oriented system is a set of class instances (objects) exchanging
messages (method invocations or field accesses) to collaborate in realizing their tasks.
The classic measurement techniques can apply also to concern-oriented (e.g., aspect-
and feature-oriented) programs but different characteristics must be addressed, e.g., the
behavior of a concern, how the concern is instantiated, and the effective coupling between
concern and base code. A dynamic concern (or a concern at run-time) is, hence, strictly
tied to the main concept of the dynamic analysis: the concern execution. In particular,
it is identified by portions of code that are executed to realize a given concern (e.g., a
given aspect, trait, feature, or functionality) and generally, at run-time a concern can be
exercised by: i) an application run; ii) a trace, i.e., a part of the application run; iii) a
given scenario that can include many traces or iv) a given set of scenarios. More formally,
the dynamic measurement of a given concern involves the following main steps:

1. the definition of the execution scenario/s and inputs necessary to exercise the
concern, e.g., a set of predefined test cases ([18] and [19] presented some approaches
to automatically derive such scenarios);

2. the tracing of the concern execution and the recording of the relevant information
via system instrumentation —as in [20] and [21]— or via some ad hoc run-time
support —as by exploiting the JVMTI*;

3. the execution of the system to exercise the selected scenario.

During the concern execution, the mechanism installed in step 2 records a set of traces
containing data about the system behavior. Off-line measurements are based on trace
analysis after the system execution has been completed (e.g., see the metrics to measure
the dynamic coupling [10, 11]) whereas on-line measurements are done on-the-fly during
or instead of the trace recording (e.g., see the metrics to measure the performance of a
system, e.g., CPU load [10, 11]).

Moreover, the dynamic measurement can be based on the execution of several execution
scenarios and on several sets of inputs contemporaneously. To have a complete picture of

4http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti

8

http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti

the system concern execution, we have to exercise as many usage scenarios as possible and
in every possible execution context. Unfortunately, this is not always possible since such
a combination of usage scenarios and contexts can be huge if not infinite: some coverage
criteria, as shown by [22], can be successfully applied that will lead to a partial view of
the concern behavior. Therefore, static and dynamic measurements have a different view
of the system and also the measurements will differ accordingly. Ad hoc scenarios allow
to exercise all and only the elements composing a given concern.

Tool Support. In [20], Cazzola and Marchetto presented AOP=HiddenMetrics: an Eclipse-
based tool that supports the measurement of dynamic metrics for Java and Aspect]
applications in a moninvasive way thanks to the use of aspect-oriented programming.
Aspect-oriented programming provides a composition mechanism that permits to clearly
separate the measurement process from the subject of the measurement avoiding code
pollution or replication typical of traditional and more invasive approaches and, thus,
widening the applicability of the measurement process. In AOP=HiddenMetrics, the
metrics are implemented as aspects and woven into the target application only when
they have to be measured. Indeed, AOP=HiddenMetrics uses a transparent plug/unplug
mechanism to instrument the code of the target application with the measurement code
(i-e., the aspects implementing the metrics). On one side, the tool supports different
measurements (e.g., coupling on method calls, lack of cohesion of operations, code
execution coverage) on several software properties (e.g., size, coupling, cohesion, memory
use, code coverage) by means of predefined aspects. On the other side, it provides also
an easy way to extend its set of metrics: to define new metrics requires only a bit of
knowledge of aspect-oriented programming. A complete overview of AOP=HiddenMetrics
can be read in [20].

In this work, the AOP=HiddenMetrics metrics set has been enriched with the concern-
level metrics presented in Table 1 and the process needed to compute and measure them
has been tuned. At this point, to measure an application the user has to:

1. define a set of system executions and code a set of test cases (e.g., in jUnit) able to

exercise them;

2. choose the metrics to measure and weave the corresponding aspect/s to the target

system; and

3. execute the test cases and wait for the aspect to collect the resulting measures.
The test case definition (i.e., step 1) is in charge of the user since it depends on the target
system to measure; the remaining steps (i.e., step 2 and 3) are completely automated by
AOPw=HiddenMetrics. See Sect. 7 for detailed examples of the tool usage.

4. Framework: Basic Concepts

This section presents the basic concepts used by our concern-oriented framework
for dynamic measurements (Table 4 summarizes them). It also introduces a standard
terminology which allows to express all the dynamic metrics in a consistent and meaningful
manner, independently of the implementing language of the target system.

4.1. Concern and System Elements

We introduce concepts and notions used to define a concern and the existing rela-
tionships between a concern and the structural elements of a system that realize such
9

Notation ‘ Description

S target system

C(S), O(S) set of components and instances of S respectively

M(c) = Att(c) U Op(c) U Dec(c) set of members (attributes, operations and declarations) of a component c

M (0b) = Att(ob) U Op(ob) set of members (attributes and operations) of an instance ob

Rt(op), Args(op), IP(op), St(op) set of return types, parameters, code-injection points and statements for an operation op
Con(S) set of concerns of S

ge(s(oc Z)n): Att(con) U Op(con) U set of members (attributes, operations and declarations) of a concern con

ca(s) set of the connections among components and instances of S

CC(c) = EC(c)UIC(c) set of (explicit and implicit) connections of a component ¢ with other components
CC(0) = EC(0) UIC(0) set of (explicit and implicit) connections of a instance o with other instances
Ancestors(c), Parents(c) sets of ancestors, parents, children and descendants of a component ¢
Children(c), Descendants(c)

AC(S), LC(S) partition of C(S) and O(S) among applications, and libraries

Table 4: Concern and system elements: summary of relevant notions

a concern. Moreover, these concepts are helpful in specifying the key abstractions for a
system, each type of abstraction is alternatively called an element.

A concern can be realized by an arbitrary set of elements of a system S. S consists of a
set of components, denoted by C(S). A component ¢ € C(S) can be, for example, a class,
an interface, an aspect, a feature or a set of these elements. At run-time, the counterpart
of C(S) is represented by a set of instances, i.e., objects denoted by O(S), any ¢ € C(S5)
can be instantiated by one or more objects ob € O(S) independently of its actual type
(e.g., class). Aspects, features, traits and so on affect the instantiation process by enriching
the final instance with data from a different concern. In general, the generic term instance
is used to identify all kinds of objects when a more precise terminology is not necessary.
The mapping ¢ : P(O(S)) — P(C(S)) connects an instance or a group to the component
they are instantiated from. For example, if ob is an instance of the class ¢ woven by
the aspect a, ¢({ob}) returns the set {c¢, a}. During the execution, an instance can be
considered in isolation or aggregated at different granularity levels such as class-, scenario-,
use-case-, and system-level. For example, Fig. 1(a) shows that the CoR pattern is statically
composed of the abstract class AbstractController, the interface IController, and the
classes: CoreController, PhotoController, SMSController. Instead, dynamically the
CoR pattern, see the scenario in Fig. 1(b), is only composed of instances of such classes,
e.g., interfaces cannot be instantiated into objects.

Each instance ob exposes a set of attributes, Att(ob), and a set of operations, Op(ob).
From the dynamic perspective, hence, given ¢ € C(S), the sets Att(c) and Op(c) are
defined as the set of attributes and operations defined or provided by c¢. Note that
operations are all those logical elements providing utilities, services and functionality. For
instance are operations: the methods as defined in the object-oriented languages like Java;
pointcuts and advices as defined in aspect-oriented languages® like AspectJ; but also the
mixins as used in feature-oriented languages (like Jak/AHEAD [23]) provide methods

5As [2] defined them, pointcuts are language elements that capture the so-called join points, —i.e.,
well-defined points in the program flow such as method calls, object instantiations, and variable accesses—,
where the advices are woven.

10

and method refinements that are considered as operations. Moreover, in the presence of
dynamic weaving (as in CaesarJ [24]) and for dynamic object-oriented languages (e.g.,
Python) attributes and operations can be added to the objects at runtime and not only
to the class; in such cases Att(ob) and Op(ob) can differ from the corresponding sets
(Att(c) and Op(c)) for the component ¢, ob is instance of c. The set M(c) of members
of ¢ is defined by M(c) = Att(c) U Op(c) U Dec(c), where Dec(c) represents a set of
declarations of the component c¢. Analogously, the set of the members of an instance
M (ob) is defined as M (ob) = Att(c) U Op(c). An operation o € Op(ob) can have a return
type, Rt(0), a set of parameters, Args(o), a set of code-injection points IP (e.g., join
points in aspect-oriented programming, mixins in feature-oriented programming), and a
set of statements or executable lines of code, St(0). At run-time, an operation o can be
invoked and/or executed by a concern, an attribute a can be instantiated and/or accessed
during the concern execution, a join point jp can be hit and thereby the woven advice
executed, and mixins mzs are composed of feature-based software units by code synthesis.
At run-time, a system can be viewed as a set of instances collaborating through messages
to realize the system functionality. These collaborations are based on the connections
CC(S) existing between elements of the systems like instances or components. Hence,
CC(S) is composed of operation calls, attributes uses, effects at join points and so on.

Notice that software concerns are compositions of generic elements of a system. A
concern is an abstraction addressed by those elements that have the purpose of realizing
it. An example of concern is a software requirement or functionality while the dynamic
counterpart of a concern is a requirement or a functionality that can be executed through,
at least, a scenario. To have a concern-based measurement, it is necessary to associate
each structural element of the system (e.g., components) to the concerns it is realizing.
For instance, Fig. 1(a) shows the projection of the CoR pattern on the code (static point
of view of the concern) and Fig. 1(b) shows one execution scenario of the CoR pattern
that can be executed to map the concern to the elements realizing it (dynamic point of
view of the concern), see Sect. 3.

The set of concerns addressed /implemented by the system S is defined as Con(S5).
SCN (con) is a set of scenarios which exercise the concern con € Con(S). C(con) is the
set of components realizing a concern. Instead, Att(con) and Op(con), are respectively
the set of attributes and operations realizing a concern and so, as well as for components,
the set of members of a concern con is defined as M (con) = Att(con) U Op(con). To
statically identify the set of members that implement a concern also a set of declarations,
Dec(con), must be considered: M (con) = Att(con) U Op(con) U Dec(con).

4.2. Components and Connections

The connection is a dependency relationship where an element (server) provides a
service to another element (client). Two elements are dynamically connected when one
of them sends a message to the other. Method and constructor invocations, attribute
accesses and effects at the join points are examples of exchanged messages. This variety
characterizes the connections among the elements.

Two kinds of connections can be identified: ezxplicit, and implicit. For instance, an
explicit connection of a component ¢, denoted by EC(c), is caused by elements of ¢
calling an operation or accessing an attribute of another component. On the other
hand, an émplicit connection of a component ¢, denoted by IC(c), is caused by hitting
a woven join point during the execution or by a handler catching an exception. The

11

Static
Element
Java AspectJ Jak
‘ System ‘ system system system, system extension
‘ Concern ‘ concern concern concern
. . classes, mixins, and their
Component classes and interfaces classes, aspects and interfaces ’ 4)
refinements and extensions
. . method signature, class/mizin
Interface method signature method signature gnature, /
specification
. . . . classes, mizins, fields and
Attribute fields and variables fields, variables and inter-types 7 e fi
variables
. methods, constructors, methods, constructors and
Operation methods and constructors . . .
inter-types and advices expressions
.) , . . . jak instructions (like java inst.
Statement java instructions java and aspectj instructions J (J)
expressions
Dynamic
Element
Java AspectJ Jak
‘ System ‘ scenarios, features scenarios, features composition of features
‘ Concern ‘ scenarios scenarios features
‘ Component‘ class instances class and aspect instances class and mixin instances
reflective invocations* of
Interface reflective invocations* reflective invocations* component and their
compositions
. . usage of fields, variables and usage of classes, mizins, fields
Attribute usage of fields and variables g fﬁ ’ ge of T i
inter-types and variables
methods, constructors, method, class, mizin and
. method and constructor . ; ! .
Operation invocations inter-types and advice constructor invocations,
invocations and advice executions expression erecutions
Statement bytecode instructions™ bytecode instructions™ bytecode instructions™

set of connections of a component c is defined as CC(c) = EC(c) U IC(c).

Table 5: Concern-Oriented Model Instantiation

Similarly,

CC(0) = EC(0) UIC(0) the set of connections of an instance o. A reflective invocation,
such as mtd.invoke(obj, args), introduces an implicit connection among, at least, three
components: the class of the obj variable, that represents the target of the message, the
class of the this element, that represents the source of the message and the class defining
the method reified by the mtd variable, that represents the contert. Note that the context
and the target can differ at run-time due to, for example, inheritance and inter-type
declarations. The objects involved as arguments are similarly coupled. Reflection hampers
static code analysis since the involved components can be reflectively created from external
inputs. Similar issues can be raised for many other language constructs, as AspectJ’s cflow
and if, CaesarJ’s deploy and Scala’s mixed trait/class based inheritance mechanism.
Furthermore, components may participate in inheritance relationships. Inheritance and
late binding can lead to different measurements with respect to the static approach (as
described in the examples of Sect. 3). To this respect, for a component ¢, the following sets
are defined: 1) Ancestors(c) —all recursively defined parents; ii) Parents(c) —the directly

12

declared parents; iii) Children(c) —the directly derived children, and iv) Descendants(c)
—the recursively derived children.

The set of all components of a system C(S) can be seen as partitioned into two subsets
according to the extent of each component in the system itself: components defined in the
system, or in a library or framework belong to the application, that are respectively AC(S)
and LC(S). Given one of these partitions it is also possible to determine the set of instances,
attributes, and operations belonging to the partition, e.g., given AC(SS) its sets of instances,
attributes and operations are O(AC(S)), Att(AC(S)) and Op(AC(S)), respectively. In
other terms, O(AC/(S)) represents the set of instances belonging to components part of
the application. The mapping ¢(O(AC(S)) : P(O(S)) = P(AC(S)ULC(S)) connects an
instance or a group of instances to the part (i.e., AC(S) or LC(S)) they are instantiated
from. For example, if ob is an instance of the class ¢ belonging to the application, i.e.,
AC(S), and woven with an aspect a belonging to a library, i.e., LC(S), ¢(ob) returns
AC(S) and LC(S). Conversely, in case both ¢ and a belonging to the application, i.e.,
AC(S), ¢(ob) returns only AC(S).

4.8. Language Mapping

The aforementioned concern-oriented model is abstract enough to be instantiated for
different modeling and programming languages. Table 5 provides a brief example on
how our model can be instantiated to Java, AspectJ and Jak programming languages.
Moreover, it shows the differences between static (given in [9]) and dynamic instantiation
on these languages. Most of the mappings are intuitive and derive directly from the
framework description. Few notes can be added: i) interfaces are typical concepts without
a dynamic counterpart but reflective calls can be identified through them also during the
application; ii) even if the bytecode instructions can be easily reverted to their source
counterparts, they have a different granularity (many bytecode instructions are out of a
single Java instruction) and metrics such as LOC clearly have a different measurement
unit; iii) scenarios can be realized by test cases written in jUnit [25] or similar tools.

5. Framework: The Criteria

This section presents the concern-oriented framework for dynamic measurement which
relies on the notions introduced in the previous sections.

The framework is defined according to a set of criteria and sub-criteria we derived
from our investigation on (dynamic) concern-oriented metrics, i.e., the one documented
in Sec. 2 and Sec. 3. Each criterion comes with a small description explaining which
is the criterion, its instantiation details and some examples showing how to use it to
describe new metrics. This version of the framework is based on the framework presented
in [9]. New criteria or sub-criteria needed for specifying dynamic measurements have
been introduced when appropriate.

5.1. Entities of Concern Measurement

The entity of measurement determines the application elements that we are going
to measure and for which we are measuring/evaluating a given property of interest.
Dynamic measurement at the concern level is aimed to capture run-time characteristics
or properties of given concerns and to manipulate them in a formal way. This criterion,

13

hence, defines the level at which the collected measurement information can be interpreted.
For instance, the run-time “size” of a concern can be different from the conventional static
size since the system elements actually executed can be different, or they can have different
characteristics from those defined in the system and composing the target concern. The
run-time size can be measured, e.g., in terms of concern instances or operations really
exercised during a software execution and it gives us an idea about the size of a given
system aspect at concern-level.

Criterion Instantiation. Usually concern measurement adopts concerns as the entity
of measurement, but other selections are also possible. Although all elements in the
concern-oriented model (see Sect. 4) may be selected in this criterion, the most common
entities of concern measurement are: i) system, ii) concern, iii) component, iv) instance,
v) attribute, and vi) operation.

Example. If we are interested in knowing how much a given concern is spread over
the operations of the application to measure, we have to measure how many operations
are executed to realize such a concern. In this case, the entities of measurement is the
“concern” since we are measuring a property of the concern of interest. Conversely, if we
want to know how many operations are exercised if a component (e.g., class, feature or
aspect) is instantiated the entity of measurement is “component”.

5.2. Concern-Aware Attributes

Attributes are the properties that a concern (or, more generally, an entity of mea-
surement) possesses and in which we are interested in. If we observe the behavior of two
concerns by using scenarios we can say, for example, that one is more spread than the
other in the system. A concern metric allows us to capture the “is more spread than”
relationship and map it to a formal system, enabling us to mathematically explore the
relationship. An entity possesses many attributes and an attribute can qualify many
different entities [15]. For example, size can apply to several different software entities,
such as components, computational units, operations, or concerns. An additional factor,
“at run-time?” —with “yes or “no” as possible values— specifies if the properties should
be observed at run-time.

Criterion Instantiation. In the attribute selection we may choose any property of
the entity that we want to measure. Possible values related to static properties (i.e.,
properties that can be observed without the system execution) can be: i) scattering, ii)
tangling, iii) closeness [4], iv) coupling, v) cohesion and vi) size. Similarly, possible values
related to dynamic properties of the system under analysis are: i) run-time scattering®, ii)
run-time tangling”, iii) run-time closeness [4], iv) run-time coupling [10, 12|, v) run-time
cohesion [12], vi) run-time size [13]; vii) used memory [13]; viii) and concurrency [13].

Ezample. If we are interested in knowing how much a given concern is spread over the
operations of the application to measure, we are interested in measuring the “scattering”
property of the concern. Conversely, if we want to know how many system elements are
composing the concern, we are interested in measuring the “size” property of the target
concern.

6That is, the situation where the execution of one concern triggers the instantiation of many objects
from different classes. For example, objects from three classes were instantiated in the execution of CoR
in Fig. 1(b).

7That is, the situation where the execution of two or more concerns triggers the instantiation of
objects from the same class.

14

5.8. Units

A concern measurement unit determines how to measure an attribute. An attribute
can be measured by one or more units and the same unit may be used to measure more
than one attribute. For example, the size of a concern at run-time might be measured
by counting either the number of executed bytecode instructions, code statements, the
number of components used during the execution of the scenario realizing the concern.

Criterion Instantiation. Possible values are any quantifiable element as computational
unit. For example, i) concerns, ii) components, iii) operations, iv) attributes, v) lines of
code, vi) bytecode instructions, vii) executable lines of code or statements, viii) allocated
memory, ix) exchanged messages, x) frequencies of statement execution, xi) number of
active threads, xii) number of reached joint points, xiii) advice executions, xiv) execution
time, xv) instances.

Ezample. 1If we are interested in knowing how much a given concern is spread over
the operations of the application to measure, we have to measure how many operations are
used to realize such a concern. In this case, the entities of measurement is the “operation”.
Instead, if we want to know how much the concern is spread over the components of the
system, we have to work at “component” (e.g., classes, aspects) level by measuring the
number of system components used to realize the target concern.

5.4. Concern Measurement Values

A measured metric value cannot be easily interpreted unless knowing the type and the
possible range of values that the metric can assume. To understand how to interpret a
measured metric value is fundamental to compare the same metric value with those that
are known to be possible values that the metric can theoretically assume. For instance, it
is important to know if the value that can be assumed by a given metric has upper/lower
limits or not; this let us understand if the measured metric value is high or not.

Criterion Instantiation. A set of permissible values may be finite or infinite, bounded
or unbounded, discrete or continuous.

Ezxample. In the case, for example, of scattering and size measured in terms of the
number of components and operations are bounded and discrete ratio-scale metrics.

5.5. Concern Granularity

The granularity of a concern metric is the level of detail at which the measurements
are gathered. This criterion is determined by the following factors: i) element granularity;
ii) element distinction; iii) direction of the connection; and iv) aggregation level.

The element granularity factor specifies which elements will be measured, that is, how
to aggregate the yielded values. For example, when we say “the number of concerns of a
component that ...” the entity is a component but what we are counting (granularity) is
the number of concerns, i.e., “concern”.

The element distinction factor defines how the elements are counted, that is, if we
ignore duplicated elements or not when we re-apply the metric to a different goal. For
instance, this factor specifies if the same component should be counted for any different
concern or not in a given metric.

The direction of the connection factor specifies if the dynamic connections can be
in the import direction (i.e., a method is executed on an object call) or in the export
direction (i.e., a method is called by another object’s method).

15

The aggregation level factor specifies the level where the measured information are
aggregated. For instance it can be: instance, class or aspect, scenario, use-case, and
system.

Criterion Instantiation. Possible values for element granularity are: i) concern, ii)
component, iii) operation, iv) attribute, v) member (attribute and/or operation), vi)
lines of code and vii)bytecode instructions. Element distinction has to be “yes” (count
only once) or “no” (count all possible occurrences). Possible values for direction of
the connection are: “import” and “export” and for aggregation level are: “instance”,
“component” (class and/or aspect), “scenario”, “use-case”, and “system”.

Ezxample. If we are measuring the strength of the dynamic connection of components
realizing a concern, we have to: identify the messages that are exchanged by instances
of the system components that are used to realize the concern; aggregate them at the
component level; and compute the corresponding metric. In such a case, the entity of
measurement is the concern, the unit of measurement is the message while the granularity
is the component. Moreover, with the aim of correctly identifying the messages to be
counted we have to decide if we have to consider all possible occurrences of the same
message independently of its direction or not, i.e., we have to decide if, for example,
object “01 uses object 05" corresponds to “os uses object 01" or if they are two different
messages.

5.6. Domain

There are three pertinent issues about domain: i) the partition of the system to take
into account, i.e., application, library or both; ii) how to account for inheritance, that is
how to consider the elements in the hierarchy of the element under analysis; and, in case,
iii) which kind of hierarchy element relationships have to consider.

Regarding the system partition, we have to define which system partition should
be accounted for; e.g., the considered elements may belong to the application domain
(excluding components of frameworks and libraries used by the system under analysis).

Regarding inheritance, a metric needs to specify if inheritance can be considered
or not and which kind of hierarchy element relationships have to be considered. For
instance, given a concern metric for run-time coupling among objects; we need to define
if messages exchanged with parents of an object must be counted in the coupling metric
or not. To precisely define the domain of the measures of interest it is important to limit
overestimation and generalization of such measurements when they are actually applied.
For example, if we are measuring the size of the components instantiated during the run
of a concern, we have to decide how to consider and measure the inherited components.
The risk, in fact, is that inherited elements of parent components can be considered twice:
when the parent component is instantiated and when a child component is instantiated
and used. Hence, different kind of relationships between elements of the element hierarchy
need to be considered (e.g., “parents”, “children’).

Criterion Instantiation. The possible values for inheritance are “yes” (consider)
or “no” (ignore). Besides, if inheritance is taken into consideration metrics have to
specify which set of elements should be included: “ancestors”, “parents”, “children”, or
“descendants”. Instead, about the domain, we may restrict elements in the domain based
on: “application” and “libraries”. Other categorizations are also conceivable.

Example. If we are measuring the size of a concern in terms of number of components
that compose it, for example, in an object-oriented system, we have to decide if we want to

16

consider the type hierarchy. For example, if a class A is used to realize the target concern
C, and A is child of Pa, to compute the size of the concern C we have two possibilities:
(i) only consider A; or (ii) consider both A and its parent Pa. This choice can lead to two
different measures especially in large systems. Hence, it is important to precisely define
how to compute the concern size. Furthermore, to measure the concern size we have to
decide if we have to take into account only the components of the target system or if
we have to consider also components used by the application but that are defined into
third-party libraries. This decision can give us more precise or fine-grained information
about the size of the software concerns we are measuring, nowadays several software use
a lot of third-party libraries to implement their features.

5.7. Concern Mapping: concern projection or triggering

One of the most crucial parts in concern measurement is how to project it into elements
in the design/application and how to trigger them. At least four issues are related to
mapping: i) what the concerns are, ii) how the concern can be implemented/exercised,
iii) onto which artifact the concern is going to be mapped, and iv) how the mapping
among concerns and elements can be executed. Clearly, it is not mandatory to specify
them. In this case, all kinds of concerns, concern-element maps and concern executions
are allowed by the considered metric. Moreover, concern metrics have to specify if they
allow concerns overlapping or not. For instance, it is possible that two different concerns
could be projected into the same operation. Often, code analysis and inspection are
used to map a concern into program/code elements. For instance, static techniques for
concept location (e.g., [26]) can be applied to this aim. However, such type of approaches
cannot be successfully used to measure dynamic concern properties. Dynamic concern
metrics require that the mapping between concerns and (measured) code is realized at
run-time (e.g., by taking into account the concern execution). Therefore, at run-time a
concern can be triggered by: i) a system execution; ii) an executable scenario; iii) a set of
scenarios (use cases). For instance, feature location techniques based on dynamic analysis
(e.g., [27]) can be successfully applied to trigger a concern.

Criterion Instantiation. As previously explained, a concern can be: a feature, or a
set of features, functional or nonfunctional requirements, an implementation mechanism.
Possible values for how to exercise a concern can be: feature execution, execution scenarios,
use-cases, and system. While, possible values for artifacts can be each computational unit
of the system (e.g., components, members, lines of code, code instructions or statements,
basic blocks, sub-systems).

FEzample. Kaur and Johari [7] surveyed existing techniques to map software concern
into code elements. Static and semi-automatic techniques are based on the analysis of
software artifacts, for instance, the prune dependency rule [28], FEAT [1] and Fan-in
Analysis [29]. While dynamic techniques require the definition of execution scenarios (as
in [18] and [19]) that can exercise the concern of interest, thus triggering its code elements,
and code instrumentation infrastructures able to capture the triggered elements.

6. Framework Evaluation by Instantiation

In a first stance, the effectiveness of the proposed framework has been evaluated by
formally instantiating a set of dynamic concern metrics. We hence answered the following
research question (RQ1):

17

Metric

Original Definition

‘ Modified Definition

dpubOp public methods [30] counts the number of “public” methods | dynamic public operations counts the number of “public”
of a class. operations exercised during the execution of a concern.

dOpLength | method length [30] counts the number of methods of a | dynamic Operation Length counts the number of opera-
class longer than n (parameter) lines of code. tions executed by a concern and that exercise more than n

(parameter) lines of code.

dDOSC degree of scattering in components (DOSC) [8] mea- | dynamic degree of scattering in components measures
sures the degree to which the components of a system compose | the degree to which the components of a system compose a
a concern. concern at runtime.

dDOSO degree of scattering in methods (DOSM) [8] measures | dynamic degree of scattering in operations measures
the degree to which the methods of a system compose a | the degree to which the methods of a system compose a
concern. concern at runtime.

dOVERL concern overlap [31] measures the percentage of overlap | dynamic overlap measures the percentage of overlap of
of concern code for two or more concerns. concern executed code for two or more concerns.

dNsO number of shared operations (NsO) [32] counts the | dynamic number of shared operations counts the op-
operations of other concerns called by every concern. erations of other concerns executed by every concern at

runtime.

diCd cyclical dependencies (iCd) [32] counts the number of | dynamic cyclical dependencies counts the number of
cyclical dependencies of the code elements con ing a given | cyclical dependencies among the components executed by a
concern. given concern at runtime.

dRR Reuse (RR) [32] measures the concern reuse in terms of | dynamic reuse measures the concern reuse in terms of
number of inherited concerns per each concern. number of concerns executed by a concern at runtime.

dIC inner concerns (IC) [32] counts the number of inner | dynamic inner concerns counts the number of sub-
concerns of a given concern. concerns executed by a concern at runtime.

dInC concerns for a component (InC) [32] counts the num- | dynamic concerns for a component counts the number
ber of concerns a given component is participating. of concerns that execute a given component at runtime.

Table 6: New concern metrics not considered in the framework construction

“Can the framework be used to describe several dynamic and concern-oriented
metrics using a common and precise terminology and set of concepts?”

To answer this question, we carried out an experiment with subjects [33] that involved
50 master students enrolled in the software engineering course. The object of the study is
the framework and the purpose of the study is to prove that the framework is usable to
define a large set of dynamic and concern oriented metrics. The master students attending
the software engineering course have a common background in computer science and are
acquainted with the necessary concepts as metrics, measurements and software quality
even if they are not experts; in few words they represent the average user: acquainted
with the topic but not too skilled. Such a choice has granted a more germane evaluation
of the framework avoiding any spike (all perfect or completely a mess) in the feedback.

The students have been asked to use our framework to define and describe the metrics
informally presented in Table 1 (plus those defined in [4] and reported in Table 2) and the
metrics reported in Table 6 that we did not use to set up the framework. The new metrics
used in the experiment (Table 6 third column) are straightforward adaptations of static
and module-oriented metrics found in the literature to dynamic concern metrics. The
two sets of metrics used in the experiment have different roles. The former set —since
used to define the framework— provides an evidence on the usability of the framework:
we already known that such metrics could be defined with the framework but we were
not aware if this can also be done by people that did not develop the framework. On the
other hand, the inclusion of the latter set of metrics in the experiment has permitted to
show that the framework is not tailored on the metrics used to define it but it can grasp
a wider set of metrics.

The experiment has taken place in two phases. In the first phase the students got
acquainted with the framework, thanks to a lecture and a guided tutorial on the framework
use we had at the end of the software engineering course. In the second phase each student

18

became an active actor in the experiment by autonomously using the framework to define
some of the metrics. In particular in this second phase the students have been scattered all
over the examination room with enough space between them to avoid collaborations and
then each of them had to draw for two distinct metrics out of a box (the box contained 4
copies of each metric for a total of 100 pieces of paper; the drawn pieces of paper were not
reinserted in the box) and then they started to work on the instantiation of the drawn
metrics. This phase of the experiment lasted for three hours and it had the final goal to
get feedback about the framework usability, completeness and effectiveness. Feedback
has been collected through an anonymous form given to the students together with the
metrics to be instantiated and the forms are put back in a separate box at the end of the
three hours; anonymity permitted to have students’ unbiased feedback since it reduces the
risk of “teachers’ retaliations” in case of negative feedback. Feedback has been collected
as open answers to few generic questions like “the framework provides all the concepts
necessary to instantiate your metrics? If no, please, explains what it is missing in your
opinion or what do you think it is necessary to change.” Basically, the experiment tested
if the students were really able to use the framework to instantiate metrics whereas the
feedback (together with the hints we could extract from the students’ instantiation) were
intended to provide suggestion for improvements.

Feedback on the instantiation activity about the metrics in Table 1, confirmed our
choices for the framework elements and components (listed in Sect. 4) and helped to
tune up the set of possible instantiations for the framework criteria (listed in Sect. 5).
All the students were able to accomplish their task with a small number of issues and
the achieved instantiations were similar to those we realized. Only in few cases the four
instantiations of the same metric were discordant. Some of the most interesting issues
were:

i) the instantiations of the dynamic operation lenght metric revealed that the meaning
of unit in the framework was ambiguous since some students gave a different inter-
pretation of it (now we extended the framework to cover all possible values for the
unit element);

ii) the instantiation of the dynamic Concern Sensitive Coupling metric revealed that
the students get confused by what a connection is; in particular the confusion was
related to the direction of the connection concept (now this concept has been deeply
explained) and

iii) often the students confused the wunit of measurement with the entities of concern
measurement; initially their differences were not clearly written;

the description of these criteria has been rewritten and some examples provided to clearly
state the differences.

Apart from what we inferred from the metric instantiations; really few (useful)
suggestions came from the students in the answers to the open questions and in general
these were related to clarify and improve some framework definitions. For instance, thanks
to the students’ feedback we have understood more deeply the role of the connections
(CC(S)) among pairs of system elements like instances and components in different
language paradigms (e.g., object-oriented, aspect-oriented and feature-oriented), and we
detected the different types of units involved in such paradigms (i.e., classes, components,
aspects, features), see Sect. 4 for details. Feedback on the instantiation activity of the
new metrics (Table 6) has permitted to evaluate the completeness of the framework in
terms of its elements and criteria and since the students were able to instantiate the

19

Concern,

. . . . Granularit; Domain and
Concern Metrics Entity Attribute Unit Values and Distinc};; Inheritance Artefact and
Overlapping
. nite, unbounded, - ‘eature, component,
£ | dCBOoC comp t coupl bers finite, R ’ member, yes application, yes f ’ P ’
g
£ discrete yes
g - .
. . inite, unbounded, attributes and I eature, operations
& | dLCOMoC component cohesion attributes finite, . ’ . application, no f » oD
= continuous operations, yes and attributes, yes
. nite, unbounded, - ‘eature, component,
% | LCoC component size statement finite, . ! statement, yes application, yes f ! P !
g discrete no
% .
nite, unbounded, I ‘eature, component
® | NToC component concurrency component finite, R ’ component, yes application, no f ’ P ’
discrete no
. inite, unbounded, Lo ‘eature, component
dCD concern scattering components fi " ! component, no application, no f ’ P ’
9 P P PP
discrete yes
° . nite, unbounded, S ‘eature, component,
2| dCDC concern scaltering — components finite, R ’ component, no application, no f 7 P 7
H discrete yes
& . nite, unbounded, . . feature, operations
o | dCDO concern scattering operations fi i 7 operation, no application, no f » OP ’
i 9 P! P PP
& discrete yes
£
8 . inite, unbounded, S ‘eature, component
£ | dFCD concern scattering components fi i ’ component, no application, no f ’ 4 ’
3 b discrete ’ yes
. nite, unbounded, . ‘eature, component,
£ | dLcc component cohesion concerns fi . ! component, no application, no f ’ P
g discrete yes
@ L
. . inite, unbounded, .
F | dSize concern size members £ i ’ member, yes appl on, no feature, member, no
b discrete ! ’
g . nite, unbounded, . ‘eature, component,
% | dSpread concern scattering components Finite, . ! component, no application, no f ’ P ’
P! 9
4] discrete no
. . inite, unbounded, S ‘eature, component,
dCSC concern coupling connections fi " ’ component, yes application, no f 7 P ’
discrete yes
¥ . concern. infinite, bounded, I eature, member,
X | Concentration ’ closeness none f i’ ’ member, no application, no f ’ !
5 component continuous yes
- s concern, infinite, bounded. S ‘eature, member,
% | Dedication ’ closeness none finite, ’ member, no application, no f ’ ’
Ed component continuous yes
S . . concern, infinite, bounded, Lo feature, member,
2 | Disparity closeness none . member, no application, no
component continuous yes
. nite, bounded, Lo ‘eature, component
dDOSC concern scattering statement Jmite, . ! component, no application, no f 7 P ’
9 P PP
continuous yes
s) . nite, bounded, . o eature, component,
2 | dDOSO concern scaltering operations finite, 7 operation, no application, no f ’ P 7
H continuous yes
& nite, bounded, . ‘eature, component
O | dOVERL concern overlapping statements Jmite, . ! statement, no application, no f ’ P ’
1 ppeng PP
5 continuous yes
= .
< . . nite, unbounded, . . ‘eature, component,
S | dNsM concern coupling operations fimite, ’ operation, yes application, yes f ’ 4 ’
s liscrete yes
2 s . nite, unbounded, . L ‘eature, component,
5 | diCd concern coupling connections fi . ! operation, yes application, yes f P
N discrete no
2 finite, unbounded, L feature, component,
£ | dRR concern tanglin, components . ’ component, yes application, no
@ ging P discrete & R4 Py ’ no
T
g . nite, bounded, - ‘eature, component
T | dIC concern reusing concern fi ’ ’ component, yes application, yes f 7 P ’
£ 9 Y Y
H discrete yes
£ -
nite, bounded, . ‘eature, component
® | dInC concern tangling concern fi ! ’ component, yes application, yes f ’ P ’
discrete no
. nite, unbounded, . - ‘eature, component,
dOpLength concern complexity statements fi ” ’ operation, yes application, yes f ’ 4 .
discrete no
. . inite, unbounded, . - eature, component
dpubOp concern complexity operations fi z’iiscrete ’ operation, yes application, yes f ’ no & ’

Table 7: Instantiation of concerns metrics

20

whole set without big problems we are confident that our criteria covers a large enough
set of possibilities. Note that the version of the framework presented in this paper already
takes into consideration all the suggestions for improvements we implicitly (from the
instantiated metrics) or explicitly (from students’ feedback) got from the experiment.
This limited experiment can be considered as the first attempt to validate the framework
by means of a set of instantiations, however, further efforts are going to be devoted to
widen the experiment and to involve other researchers in this activity for getting an,
as much as possible, complete and shared validation of the framework. In any case we
consider the experiment satisfactory and it supports our research question RQ1.

Table 7 summarizes the achieved results in terms of values for the most relevant
factors of the whole set of instantiated metrics. To complete the picture, we report
the instantiation of three of these metrics (basically as done by the students in the
experiment): dynamic Concern Sensitive Coupling (dCSC), dynamic Concern Diffusion
over Operations (dCDO) and dynamic Degree of Scattering across Components (dDOSC).
Please note that, dCSC and dCDO (Table 1) have been used to build and refine the
framework, while dDOSC (Table 6) is only used to validate the framework and not to
define it. By analyzing and selecting each criterion defined by the framework for the
chosen metrics we have the following.

dynamic Concern Sensitive Coupling (dCSC) of a concern con.

Entity of Concern Measurement. Concern is the entity of measurement for this
metric.

Attribute. dCSC quantifies coupling of each component ¢ of the concern con (¢ €
C(con)).

Unit. The unit is the number of (explicit) connections of the concern components. In
other terms, for each component ¢ € C(con), its explicit connections (r € EC(c))
are considered.

Properties of Values. Permissible values for this metric are not higher than existing
(explicit) connections of the system EC(S) (finite), do not define any interval a
priori (unbounded), and allow integers only (discrete).

Granularity. The granularity of elements that is being measured is object (i.e., the run-
time component). The direction of connections is import. Only distinct connections
are taken into consideration and the level of aggregation is component.

Domain. It considers application components (not components in the framework or
libraries) and takes inherited operations into account. In other terms, we consider
each component ¢ of the application S that is part of the concern con (¢ € (AC(S)N
C(con)). However, it does not count inheritance relationships as connections.

Concern Triggering. Concerns can be a feature executed by some input. Concerns are
identified by the execution of scenarios (SC N (con)) that triggers them. Overlapping
of concerns is allowed.

Using the selected criteria and the concern terminology described in Sect. 3 we derive the
following formal definition for dCSC:
dCSC(con) = {|r € EC(c)| s.t.c € (AC(S)NC(con))Nexec € SCN(con)Acon € Con(S)}

where exec is one of the scenarios (exec € SCN(con)) that exercises/triggers the concern
con; ¢ is a component defined in the application (we are not interested in considering
21

components of libraries and so on) and involved by the concern con (c € (AC(S)NC(con))
and r is an explicit connection from ¢ to other components of the system S; the cardinality
of this set represents the desired value for the metrics.

dynamic Concern Diffusion over Operations (dCDO).

Entity of Concern Measurement. Concern is the entity of measurement for this
metric.

Attribute. dCDO quantifies dynamic scattering of a given concern over the operations
of a running system (o € Op(95)).

Unit. The used unit is the number of operations o of each concern component ¢ (o €
(Op(c) N Op(con)).

Properties of Values. Permissible values for this metric are not higher than Op(S)
(finite), do not define any interval a priori (unbounded), and allow integers only
(discrete).

Granularity. The granularity of elements that is being measured is operation o. The di-
rection of connections is import (accessing attributes or operations). All connections
are taken into consideration and the level of aggregation is component.

Domain. It considers application components ¢ € (AC(S) (not components in the
framework or libraries) and takes into account inherited operations from all ancestor
components.

Concern Triggering. Concerns are features that can be exercised by the execution
scenarios (SCN(con)). Overlapping of concerns is allowed.

Using the selected criteria and the concern terminology described in Sect. 3 we derive the
following formal definition for dCDO:

dCDO(con) = {|o € (Op(c)NOp(con))| s.t.c € AC(S)Aexec € SCN (con)Acon € Con(S)}

where exec is one of the scenarios (exec € SCN(con)) that exercises/triggers the concern
con; ¢ is a component defined in the application (¢ € AC(S)) and o is an operation
defined by the component ¢ and invoked by the concern con (o € (Op(c) N Op(con))); the
cardinality of this set represents the desired value for the metrics.

dynamic Degree of Scattering across Components (dDOSC).

dDOSC is the dynamic counterpart of the original (static) Degree of Scattering across

Classes (DOSC) defined by Eaddy et al. [8]. They defined the DOSC metric as the degree
to which the concern code is distributed across classes of the system under analysis. The
DOSC value of a concern ranges from 0 to 1; when it is equal to 0 all the concern code is
concentrated in one class while it is equal to 1 that code is equally subdivided among the
classes of the system. The DOSC metric is inspired by —but with a finer grained than—
CDC; this metric represents the classes that compose a concern while DOSC represents
the degree to which the classes of a system form a given concern. dDOSC for a concern
is defined as the degree to which the components of a system are executed by a given
concern at runtime.
Entity of Concern Measurement. Concern is the entity of measurement for this

metric.
Attribute. dDOSC quantifies dynamic scattering of a given concern over the system

statements (st € St(.9)).

22

Unit. The used unit is the number of statement st of each concern component ¢ (st €
(St(S) N St(con))).

Properties of Values. Permissible values for this metric are ranging from 0 to 1 (finite
and bounded), and allow decimal value in this range (continuous) obtained by
dividing integer values representing number of system statement st (i.e., not higher
than St(S)).

Granularity. The granularity of elements that is being measured is statement st. The
direction of connections is import (accessing statements). All connections are taken
into consideration and the level of aggregation is component.

Domain. It considers statements of application components ¢ € (AC(S) (not components
in libraries) and takes into account inherited operations from all ancestor components,
containing statements.

Concern Triggering. Concerns are features that can be exercised by the execution
scenarios (SCN (con)). Overlapping of concerns is allowed.

Using the selected criteria and the concern terminology described in Sect. 3 we derive the
following formal definition for dDOSC:

|{st € (St(c) N St(con))|
|{st € St(con)|

dDOSC(con) = { s.t. c € AC(S) A exec € SCN(con) A con € Con(S)}

where exec is one of the scenarios (exec € SCN(con)) that exercises/triggers the concern
con; ¢ is a component defined in the application (¢ € AC(S)) and st is a statement
defined by the component ¢ and invoked by the concern con (st € (St(c) N St(con))); the
cardinality of this set divided by the cardinality of the concern statements (st € St(con))
represents the desired value for the metrics.

Qverall remarks. Summarizing, the experiment showed that we can positively answer
to the research question RQ1, i.e., the framework is usable to describe a large set of
concern-oriented metrics both static and dynamic.

7. Dynamic Concern-Oriented Metrics for Bug-Proneness

In this section we report on a case study carried out to provide an initial evidence of
dynamic concern metrics utility and effectiveness. Despite their potential usefulness, in
fact, the use of such metrics is scarcely investigated in the existing literature (cf. Sect. 8).
The study hence shows how dynamic concern measurements —in particular, size and
scattering— (1) can be calculated in actual cases; and (2) how they can be exploited to
predict bug-proneness of application code.

In this case study we tried to address the following research question (RQ2):

“Are the dynamic concern-oriented metrics useful to predict the concern bug-
proneness?”

In particular, according to the existing literature and by considering that:
i. several software characteristics and properties (e.g., software size, complexity, coupling,
scattering degree) can potentially contribute to the bug-proneness [28, 34] of a system;
ii. both static and dynamic characteristics and aspects (e.g., static coupling vs. dynamic
coupling) can impact on the bug-proneness of a software system [35-37] and that

23

.) lines of code . downloads bugs

application # developers
(LOCs) # from 2000 | # last week | year of first one | # bugs | density (%)

Mtac® 11k 2 1695 1 2003 21 0.19
Buddi® 18k 1 1014173 926 2006 279 1.55
jMove® 40k 3 4357 1 2002 53 0.13
JTopas? 2k 1 9606 5 2001 13 0.65
XmlSecurity® 43k — — — — 345 0.8
DbViz* 6k 4 15812 12 2002 69 1.15
Jtidy® 18k 8 314071 303 2000 176 0.97
2 http://sourceforge.net/projects/mtac d http://jtopas.sourceforge.net/jtopas & http://jtidy.sourceforge.net
P http://buddi.digitalcave.ca © http://santuario.apache.org
© http://jmove.sourceforge.net f http://jdbv.sourceforge.net/dbViz

Table 8: Statistics about the considered applications (missing data are unavailable).

iii. static and dynamic metrics can have comparable behavior and trends when they are
measuring related software properties and characteristics, and/or they complement
each other, when they are measuring unrelated properties [38, 39].

We can expect that static and dynamic concern metrics can complement each other in
evaluating and predicting the concern defectiveness. We investigate this intuition in the
case study.

Case Study Analysis. The case study considers seven Java applications summarized
in Table 8. All of them are open-source systems and their source code, JUnit test cases,
software documentation and bug trackers are available through their websites. The study
covers a large variety of applications in terms of code lines (size) and number of downloads
(diffusion). Buddi, Jtidy and DbViz are successful applications (high downloads rate) while
Mtac and jMove have a quite limited number of downloads. Since the users play also the
role of testers in open-source applications, a low number of users reflects on a low number
of bugs detected; e.g., jMove is quite large (40k LOCs) but only few bugs (53) have been
detected that can be explained by the low number of downloads/users (only 4357 since
2002).

Our case study is inspired by the one presented by Eaddy et al. in [28] but it has
different context, i.e., objects of the study as well as tools supporting the subject of
studies in collecting concern measurements are different, and goals, i.e., Eaddy et al.’s
goal was to capture the relationships between static concern measures and the concern
defectiveness while we aim at studying the role of dynamic concern measures on the
concern bug-proneness prediction. In the Eaddy et al.’s case study, in fact, some software
systems have been analyzed looking for the relationships between static concern measures

—i.e., size and scattering degree— and the concern defectiveness —that is the number of
defects in the concern. From the study, Eaddy et al. [28] observed that concern size and
scattering degree have a negative impact on the concern defectiveness, that is an increment
of the concern size and/or scattering degree implies an increment in its error-proneness.

Similarly to Eaddy et al.’s study, we measured size and scattering degree of a set of

software concerns for the considered Java applications. Differently from them, however,

we used both static and dynamic counterparts of three of the presented metrics (Sect. 6)
to point out how concern-oriented metrics can be used in software bug-proneness and the
difference, if any, between static and dynamic measurements.

Our case study consisted of five steps: concern selection, concern mining, concern
defectiveness, concern measurement and correlation analysis; the whole process is repeated

24

http://sourceforge.net/projects/mtac
http://buddi.digitalcave.ca
http://jmove.sourceforge.net
http://jtopas.sourceforge.net/jtopas
http://santuario.apache.org
http://jdbv.sourceforge.net/dbViz
http://jtidy.sourceforge.net

for each considered application.

Concern selection. This activity aims at identifying the set of concerns that have
to be analyzed for each considered application. To select a set of suitable concerns, the
application’s functional requirements are identified and analyzed since each application
requirement represents a concern that is a potential candidate for our study. For example,
in the case of a software that simulates ATM services, a functional requirement (i.e., a
concern candidates for our study) could be the functionality enabling the customer of
making a deposit to a given bank account. Conversely, any non-functional requirements,
e.g., software maintainability or security, is not a valid candidate for our study. Hence, we
first analyzed the application requirements documentation and, more frequently, the user
manuals and the application web site for identifying the provided functionality provided.
We then considered only those functionality whose code represents a non trivial concern.
Overall, the set of selected concerns should cover almost the main functionality provided
by the considered application with a minimal overlapping. A concern C,,e, overlaps
another concern C' if C,,e, is a sub-concern of C, e.g., all program elements of C,,, are
part of C) [28].

Concern mining. Fach selected concern is mapped to the corresponding portion of
code. This process depends on the kind of performed measurements: static or dynamic.
In the former case, static code analysis and the dependency rule® are used to point out
the concerns. In the latter case, concerns are triggered and pointed out by executing the
test cases associated to the concerns —the study exploited the jUnit test cases provided
with the application. In the case study this step has been (partially) automated by using
FLAT?? [40], JRipples'® [41] and AOP=HiddenMetrics [20].

Concern defectiveness. The actual defectiveness (i.e., number of bugs) of each consid-
ered concern has been determined by manually inspecting the application’s bug tracker,
on-line documentation and code repository. By looking at the bug trackers, we iden-
tified all failures reported by the application users (e.g., report of a crash, report of a
functionality not implemented correctly) and recognized as actual failures, thus solved
and closed by the application developers. For each of these reported failures, we again
analyzed both bug tracker and code repository with the aim of identifying the bug/s (e.g.,
a method called with wrong parameters values, un-initialized variables) that cause/s the
reported failure. To this aim, we looked in particular at the code patch implemented
by the developers to fix the bug, thus solving the failure. The failure was discarded, in
case: (i) it was a failure related to a software version different from the one considered in
the experiment, (ii) it was a still open (i.e., not solved) failure, (iii) it was not an actual
failure but for instance the request of a new software feature, (iv) we were not able to
identify the bug causing it, and (v) it was an unclear or duplicated failure description.
According to [28], each bug was then mapped to the concern/s where it occurred to
determine which is the most buggy concern. The bug was discarded if it occurs in a
non-considered concern.

Concern measurement. Size and scattering degree have been statically and dynami-
cally measured for each selected concern. The concern size has been calculated as the

8 A program element (class, method and code statement) is related to a concern if a dependency exists,
e.g., the program element is removed when the concern is removed or changed [28].

9http://www.cs.wm.edu/semeru/flat3

O0http://jripples.sourceforge.net

25

http://www.cs.wm.edu/semeru/flat3
http://jripples.sourceforge.net

Application Concern dynamic static Bug
dLOCs | dCDC | dCDO | sLOCs | sCDC | sCDO
Mtac ExpressionCalculator 870 47 148 3645 55 212 7
Mtac PlotManager 640 26 133 1602 26 189 9
Buddi Account 645 33 158 3728 80 655 26
Buddi Budget 700 32 170 2915 78 700 23
Buddi Transaction 883 40 186 2409 80 655 31
Buddi Reports 546 31 146 3253 85 693 16
jMove CodeAnalysis 7079 100 1241 14866 138 1365 7
jMove Dependencies 7073 101 1242 14924 140 1367 8
jMove Metrics 7158 102 1255 15071 143 1384 9
jMove Statistics 7283 106 1298 30576 291 2807 7
Jtopas Tokenizer 509 8 102 2309 26 281 6
Jtopas Plugin 323 5 76 1705 14 187 1
Jtopas InputStream 542 6 90 1496 9 148 6
Jtopas TokenProperties 452 6 79 1496 9 148 3
XMLsec Cl4Helper 537 35 84 5737 49 451 16
XMLsec Canonicalizer 1002 38 129 6502 42 479 33
XMLsec XalanBug 559 40 90 7400 47 598 12
XMLsec InteroperabilityBaltimore 2298 65 380 4777 26 395 67
XMLsec XMLSignature 737 49 111 8888 92 922 32
DBViz importSQL 673 23 113 590 10 39 10
DBViz PrintDiagram 27 22 113 326 7 18 5
DBViz StartDBviz 447 29 75 169 2 11 2
DBViz InputSchema 599 32 91 667 10 41 7
Jtidy Configuration 1291 57 259 5096 62 115 7
Jtidy Lexer 50 3 10 3900 9 90 12
Jtidy ReportGenerator 582 20 82 1728 20 106 4
Jtidy Utility 245 3 11 2741 39 115 3
Jtidy Encoding 220 2 5 1341 5 59 10

Table 9: Considered concerns and measured metrics per concern.

number of code lines realizing the concern (sSLOCs and dLOCSs) while the scattering degree
has been calculated considering the concern diffusion over components (sCDC/dCDC)
and operations (sCDO/dCDO). See Tables 1 and 6 for the metrics definition.

Correlation analysis. The correlation between the measured metrics and the actual
concern defectiveness has been initially evaluated by applying the Spearman’s correlation
coefficient [42] to determine its existence and strength. Then, a multiple regression analysis
—Nelder et al. [43]’s generalized linear model— has been performed to bind the measured
metrics to the variance of concern defectiveness and to determine their capability as
predictors of the actual concern defectiveness. The goal of this analysis is hence threefold:
i) answering the research question RQ2 about the usefulness of concern-level metrics; ii)
identifying the relationships between concern properties (as measured by the metrics) and
defectiveness, if any; and iii) understanding the impact of dynamic metrics with respect
to their static counterpart in the prediction of concern defectiveness.

Case Study Results. In the next, the study’s results are summarized step-by-step.

Concern selection. Twenty eight concerns —reported in Table 9— have been selected
from the functional requirements of the 7 considered applications. These concerns
represent all the relevant functionality provided by the applications with a limited
overlap. For instance, ExpressionCalculator is the most relevant feature of Mtac, it
provides in fact the capability of executing mathematical operations while PlotManager

26

" Code element
dependencie;
analysis /&

Executed code

goseoace()s

s Wi 3 Conel| 4 S

(N

code elements
assignment to
concern

(a) Environment for the static analysis (b) Code coverage information

Figure 2: Screeshots from the Jtidy example of concern-code mapping

is controlling the user interface, that is collecting the input values then elaborated
by ExpressionCalculator and showing to the user the output produced by the same
ExpressionCalculator.

Concern mining. How the concern/code mapping has been realized depends on the
type of measured concern metric. If the metric to measure is static the mapping is based
on static code analysis to determine the code element dependencies and on the application
of the dependency rule to determine the relevance of each code element for the concern
under analysis.

Figure 2(a) shows an Eclipse screenshot of the environment used to perform such an
analysis for the ReportGenerator concern of the Jtidy application. First, FLAT3 has been
used to determine a textual similarity between the concern description extracted from the
application requirements and the source code elements. The result was a list of few core
code elements for each concern, e.g., in the bottom left pane in Fig. 2(a) are listed the
elements for the ReportGenerator concern. This list was passed to jRipples to identify
new dependencies and to evaluate —thanks to the application of the dependency rule—
the relevance of each element for the concern and therefore which element implements it.
The right pane in Fig. 2(a) shows the classes composing the concern under analysis.

Conversely, if the metric to measure is dynamic, the jUnit test suite provided with each
application is analyzed and each test case is associated to the concern it mainly triggers
thanks to the tool for code coverage Emma'!; then the test cases associated to the concern
under analysis are executed by means of our tool AOP=HiddenMetrics [20] to apply the
dynamic metric measurement to the concern. Figure 2(b) shows, as an example, the code
coverage information for the ReportGenerator for Jtidy; note that ReportTest.java is
the unit test provided with the application triggering the homonymous concern.

Overall, to map a concern into the code is a crucial and time consuming task but, as
you can see:

mapping time Mtac Buddi jMove Jtopas XMLsec DBViz Jtidy
static concerns 1h 06’ 3h 35’ 6h 45’ 2h 10’ 5h 30’ 1h 45’ 3h 15’
dynamic concerns 15 25’ 1h 20’ 40’ 1h 40’ 55’ 27

the process is heavier (between 2 and 6 times) in the case of static concern measurements.
As we will observe in our analysis (see below), this is mainly due to the semi-manual

http://emma.sourceforge.net

27

http://emma.sourceforge.net

analysis conducted to statically map concern to the code versus the automatic analysis
conducted for dynamically map concern to code.

Concern defectiveness. Given the mapping between concerns and code it has been
possible to associate the bugs in the application bug tracker to the considered concerns:

Mtac Buddi jMove Jtopas XMLsec DBViz Jtidy
considered (tracked) bugs [16 (21) | 96 (279) | 31 (53) [16 (16) [160 (345) | 24 (69) | 36 (176) |

In the study, 379 bugs have been selected among those we were able to find in the bug
trackers (959 bugs) of the considered applications. 580 bugs were discarded because: (i)
they were related to a software version different from the one we considered: 40%, (ii)
they were still open bugs: 8%, (iii) they were not actual bugs but they were requests
of new features: 16%, (iv) we were not able to identify the bug causing it: 21%, and
(v) their description in the bug tracker were confused, unclear or duplicated: 15%. The
379 considered bugs have been then distributed among the 28 considered concerns; the
distribution is reported in the last column of Table 9. This has permitted to determine
the most buggy concern for each application, e.g., PlotManager, Transaction and Lexer
resulted the most buggy concerns for Mtac, Buddy, and Jtidy respectively.

Concern measurement. To permit a germane interpretation of the results, our study
considers exactly the same metrics (lines of code —LOCs—, concern diffusion over
components —CDC— and concern diffusion over operations —CDO) measured both
statically and dynamically. Table 9 reports the measured size and scattering degree for
each considered concern. In general, we can observe that static measurements tend to
be more conservative and their variability in different concerns is higher (i.e., a higher
median and standard deviation) than for the dynamic measurements. With respect to
the single metrics instead we can observe that CDC seems to be, on average, the most
conservative metric in both static and dynamic versions (low variability), while, LOCs
largely variates when statically or dynamically measured (great variability).

Correlation analysis. The correlation between two variables reflects the degree to
which the variables are related. The Spearman’s correlation coefficient (p) is the most
common measure of correlation and reflects the degree of linear and non-linear relationship
between two variables.!? By applying the Spearman’s correlation to pairs of static,
dynamic and static-dynamic metrics (the results are listed in the first six columns of
Table 10), we observed that: i) there is a strong!® correlation between pairs of static
or dynamic metrics (e.g., the correlation between dLOCs and dCDC is p = 0.88, with
p — value < 0.05); and ii) there is a moderate to strong correlation between pair of static
and dynamic related to the considered concern properties (e.g., the correlation between
dLOCs and sLOCs is p = 0.58, with p — value < 0.05). Such a result depends on having
considered properties (size and scattering) of the same “strongly related” set of code
elements; in other terms, an increment on the number of classes implies an increment of
methods and lines of code.

12The correlation p ranges from +1 to -1, the value 41 means that there is a perfect positive linear
relationship; while a coefficient of 0 means no correlation. The p — value supporting the p correlation
value is the probability that one would have found the current result if the correlation coefficient p were
in fact zero (i.e., null hypothesis); if this probability is lower than the 5% the correlation coefficient is
called statistically significant.

131In the paper the observed correlation is described using the scale proposed in [44].

28

dLOCs dCDC dCDO sLOCs sCDC sCDO Bug

dLOCs X 0.88 0.92 0.58 0.69 0.59 0.33
dCDC x 0.84 0.74 0.78 0.7 0.40
dCDO X 0.57 0.76 0.69 0.36
sLOCs X 0.82 0.81 0.44
sCDC X 0.9 0.40
sCDO 'S 0.46

Table 10: Spearman’s correlation coefficient. Notice that the correlation between dLOCs and Bug is
statistically significant at 10% (i.e., p — value < 0.1) while the others at 5% (i.e., p — value < 0.05).

On the other hand, the measured metrics seem to moderately correlate with the
number of bugs associated to the concerns —as reported in the last column of Table 10.
Moreover, we see that the static metrics have, on average, a better correlation with bugs
than their dynamic counterparts. These correlation values are aligned with Eaddy et
al. [28]’s results and they depend on dominating factors effect as well as on the existence
of un-expected confounding factors (those factors, e.g., the programming language of the
analyzed application, that even if it is not identified can potentially influence both the
measured concern metrics and the concern defectiveness).

Then the stepwise regression analysis [45] has been applied to discover and measure
these dominating factors (i.e., metrics), if any. The correlation quantifies the degree to
which a pair of variables is related, thus giving an idea about how much one of the variable
tends to change when the other one changes. However, the existence of correlation does not
imply causation. For instance, a third (unobserved) variable related to both investigated
variables can exist and can be the actual responsible for the observed correlation. In this
view, the regression analysis measures the proportion of variability explained by or due to
the regression relationship between the variables under consideration, i.e., the objective is
to predict values of a variable based on values of other ones.

The stepwise regression analysis is commonly applied to reduce a set of variables
(regression model) according to their correlation degree. To correlate concern properties
with defectiveness, a stepwise multiple regression analysis that considers all the measured
metrics per considered concern has been applied. The model has been progressively
reduced by removing those metrics with a lower correlation degree. The resulting model'4
contains 5 out of 6 considered metrics: sLOCs, sCDC, sCDO, dCDC, and dCDO. Table 11
summarizes the built model, the probability of each metric of effecting on the concern
defectiveness (the column labeled «Estimate») and the corresponding p — value for the
statistical significance analysis (the column labeled «Pr(>]t|)»).

Table 11 shows that concern size (both statically and dynamically measured) does
not significantly effect the concern defectiveness and the p — value of sLOCs reveals
that its impact is not statistically significant. This result can depend on the low bug
density reported for Mtac and jMove. Conversely, Table 11 shows that concern scattering
degree (CDC and CDO in both static and dynamic variants) impacts on the concern
defectiveness, i.e., scattering metrics explain some of the variance in the number of bugs
per concern. Even if sCDO and dCDO have a quite limited effect on the defectiveness,
sCDC and dCDC have a strong effect on it. In particular, sCDC results to have a negative
effect, i.e., an increase of such metrics would result in a decrease of the probability of

14 That is, the one with the minimal Akaike information criterion (AIC); the AIC is a measure of the
relative goodness of fit of a statistical regression model [46].

29

Coeflicients | Estimate | Std. Error | t value | Pr(>[t|)
(Intercept) 34 3.8 0.9 0.37
sLOCs -0.001 0.001 -14 0.16
sCDC -0.39 0.15 -2.5 0.018
dCDC 0.69 0.16 4.1 0.0004
sCDO 0.057 0.018 3.1 0.0049
dCDO -0.049 0.013 -3.5 0.0018

Table 11: Stepwise regression model, with [47]’s pseudo R?=.52 and AIC=219.5

having bugs in the concern, while dCDC a positive one, i.e., an increase of dCDC would
increase the probability of having bugs in the concern. An increase of the dCDC metric
represents an increase of the concern size, scattering and complexity, thus an increase
of concern’s bug-proneness. Conversely, an increase of the sCDC could not represent
an actual increase of the concern size, scattering and complexity. This should depend
on the over-approximation of the code mapped to the concerns for static metrics with
respect to the actual code of the concerns, i.e., the concern mining step could result in
a code fragment larger than the effective code of the considered concerns in the case of
static code analysis. Hence, this over-approximation could explain the different impact
we observed between the static and dynamic metric to the bug-proneness. However, only
further experimentation could support this argumentation.

From our stepwise regression analysis, we can observe that concern size and scattering
degree have a limited to strong impact in explaining the variance of the concern defective-
ness (this result is consistent with the ones of Eaddy et al. [28]). In fact, Table 11 shows
that most of the dynamic metrics we considered survive in the final model, i.e., they
impact on the bug-proneness as well as their static counterpart. Furthermore, from the
table we also see that static and dynamic metrics complement each other in explaining the
observed variance. For instance, as said we see that sSCDC results to have a negative effect
but dCDC has a positive one. The results achieved by static analysis and measurements
tend to be over-generalized since static analysis is conservative while the results achieved
by applying dynamic analysis and measurements tend to be under-generalized since
dynamic analysis consider a limited set of software behaviors. Hence, we guess that by
having in the final model (Table 11) both static and dynamic metrics, we can limit the
intrinsic characteristics and limits of static and dynamic analysis and measurements.
That is, for example, considering dynamic scattering we can limit the impact on the
defectiveness prediction of the over-generalization caused by the adoption of (only) static
analysis and metrics.

As further analysis, we used the built regression model as a proxy (indicator) to predict
the concern defectiveness. We built a prediction model by considering the output of the
regression analysis. In particular, we consider here three models built: using all metrics,
only static and dynamic metrics. By applying the leave-one-out cross-validation to the
output produced by the model we obtained the prediction accuracy values summarized
in Table 12. The accuracy gives us an idea about the prediction system performance
(“goodness” of estimations) of the metrics of being indicators of the concern defectiveness.
The accuracy [48] of prediction systems are often measured in terms of magnitude relative
error (MRE) and by counting the number of predictions within m% of the actual values

30

Prediction accuracy based on the regression model
Full regression model | Static metrics | Dynamic metrics
MMRE 1.4 1.8 1.08
MdMRE 0.71 0.77 0.5
Sd]\,{RE 2 3 1.6
Predss 0.78 0.71 0.78
Predso 0.89 0.82 0.92

Table 12: Prediction accuracy

(often m corresponds to 25% or 50%). Table 12 hence summarizes the result achieved
by the built predictor model in terms of MMRE (mean MRE), MAMRE (median MRE),
Predss and Predsg as well as standard deviation of MRE (sdasrg). The obtained MMRE
and MAMRE values (the results of the full regression model is shown in Table 12 second
column) denote that some estimated concern defectiveness values are a bit far from the
actual concern defectiveness (slightly more than the double of the actual value), but the
result of Pred shows that 78% and 89% of the estimated defectiveness are respectively
around the 25% and 50% of the actual defectiveness value. This analysis confirms again
that concern size and scattering degree can be used as proxy (indicators) of the concern
defectiveness, indeed the models achieved a reasonably accuracy while limiting the error
rate. By comparing the results of the full regression model with those achieved by the
models built using only the static (Table 12 third column) or the dynamic (Table 12
fourth column) metrics it is possible to see that the regression models built using only
dynamic metrics has a better performance, thus contributing to the improvement of the
full model.

Overall remarks. Summarizing, this case study shows that research question RQ2
can be positively answered, i.e., dynamic concern-oriented metrics are useful in bug-
proneness prediction tasks. We observed, in fact, that dynamic metrics complement static
metrics in predicting the bug-proneness of concerns, e.g., by limit the over-generalization
introduced by the adoption of static analysis and measurements. In detail, we observed
that static metrics correlate with the concern defectiveness slightly better than dynamic
ones (Table 10), but both static and dynamic metrics have a significant impact in
explaining and predicting the concern defectiveness (Table 11 and Table 12). Table 12
(third column) shows that static metrics can be used to achieve a reasonable accuracy
result on predicting the concern defectiveness but Table 12 (second column) shows also
that by using both static and dynamic metrics we can improve the achieved results. In our
opinion, this can be mainly due to the presence of unused code (e.g., “dead” code or code
of other concerns), that is, the so called over-generalization. However, to statically map
each concern into the application code is not an easy but rather an error-prone task and
the resulting mapping can be too coarse-grained for the actual concern code (e.g., it can
contain program statements or classes not-related to the current concern). In the study,
the static measurements required, on average, 3 times the effort (i.e., time spent) devoted
to perform dynamic measurements, due to the semi-manual versus automatic concern
code mining applied in the two cases, and it resulted in a less accurate mapping. Hence
tools supporting the developers in the static concern code mining should help to improve
the results. In the meantime, using both static and dynamic metrics can overcome such
a limitation of the static metrics, thus let us achieve better results in evaluating and

31

predicting the bug-proneness of the concerns.

Threat to validity. Unfortunately, the obtained results cannot be easily generalized
to other applications and situations since there are several threats to validity. As always
happens for case studies, in fact, only repetitions by other researchers and considering
other context (object and subject of the study) can better support the achieved results.
In the rest of this section we will discuss the prominent threats affecting the validity of
our study and we classified them according to Wohlin et al. [33]:

i. threats to construct validity: threats concerning the relationship between theory and
observation;
ii. threats to internal validity: threats impacting the actual causes of the study outcome;
iii. threats to external validity: threats which limit the ability to generalize the obtained
results;
iv. threats to conclusion validity: threats concerning the relationship between the main
treatment considered in the study and study outcome.
First, the subjectivity degree that affects some tasks of the study could limit the study
validity (internal validity). For instance, the selection of the concerns used in the study
is a quite subjective task and this subjectivity could negatively influence the results. We
tried to limit the subjectivity by applying a set of predefined criteria and considering a
not trivial number of concerns selected from different applications of different domains.

Again, the subjectivity degree that affects the mapping between concern and code (in-
ternal validity) and the limited set of considered applications and concerns per application
(external validity) threaten the study validity. Also the granularity (e.g., classes, fields
and methods wrt lines of code) of the concern mapping can affect the result (internal
validity). We are aware that different or wrong mapping could negatively affect the
achieved results (construct validity). For example, the lack of links between code elements
and concerns could lead to under-generalization of the code realizing a given feature or
concern as well as too coarse-grain granularity in this mapping activity could lead to an
over-generalization of the code that realizes a concern. Both under/over-generalization
can alter the achieved results. However, we are also aware that such a threat to validity
cannot be completely eliminated, more research is required toward the mapping of a
feature/concern to a piece of code. To limit such a treat, however, we tried to analyze
the application tracker and code repository, to automate the mapping task as much as
possible by using tools supporting it, to adopt tools, mapping processes and criteria (e.g.,
the prune dependency rules) successfully used by Eaddy et al. [28] in their experiments.

Another threat to the study validity is due to the used test suites (internal validity),
we are aware that different test suites could lead to potentially different results. In fact,
different test suites can have a different bug finding capability and can be differently
mapped to application concerns. To limit such a threat we used actual test suite distributed
with the application code by developers, thus used to test the application for finding bugs
and for checking the fixed code, i.e., after code maintenance activities.

Another threat to the study validity regards the used sets of bugs (internal validity),
they can potentially threaten the study validity. Indeed, different set of bugs affecting the
applications, in fact, could potentially influence the achieved results since they impact on
different set of concerns (i.e., functional requirements of the application under analysis)
and they can be revealed by different test suites. Moreover, different sets of bugs can be
differently mapped in the application code, thus in the application concerns (construct
validity). To limit such a threat we used actual bugs described in the application bug

32

trackers and solved by the application developers by means of code patches.

Other threats to the study validity concern the applications used as objects of our
study. We used 7 open-source applications developed in Java (internal validity). We
used a not trivial but, however, limited number of applications so further repetitions
of the study could extends the number of the considered applications. We tried to
select applications having different characteristics (different domain, different size and
complexity), thus we consider the select ones quite representative of the existing open-
source applications developed in Java. Another threat to validity (external validity) that
regards the application under analysis in this study are the fact that such applications
are small to medium applications (their size in terms of lines of code ranges from 2k to
43k). We consider such applications quite representative of the medium-size applications
typically distributed in the open-source community. Repetitions of the study should
involve bigger and complex applications. As already said, all the considered applications
are developed in the same programming language (Java), thus we cannot extend the
achieved results to applications written by using different programming languages. Again,
all these application are open-source applications. On one side, this was useful to have
access to several application artifacts (e.g., code, test cases, documentation, bug trackers)
but, on the other side, we cannot extend the achieved results to commercial application.
Only additional studies can consider commercial applications, even if, we have to say
that, it is always difficult to have access to their artifacts.

Finally, to limit the treats to validity related to the relationship between treatment
and outcome (conclusion validity), we conducted statistical analysis on the collected
data by using the Spearman’s correlation coefficient and the multiple regression analysis.
By means of this kind of analysis we derived conclusions and answered to the research
question of interest to the study, thus we limited the subjective interpretation and analysis
of the collected data.

Nevertheless these threats to validity, in this case study we observed that by considering
also dynamic metrics at concern-level we increased the accuracy of the conducted software
analysis and we decreased the effort required to obtain such a prediction. Therefore, our
case study encourages us in considering dynamic metrics useful to measure additional
dimensions of software properties also at concern-level. Further investigation will be
required to a large benchmark of software systems and concerns.

8. Related Works

Several works in the literature discuss metrics-based frameworks: Table 13 gives
an overview of the state-of-the-art in this field. We grouped the existing frameworks
according to their objective and the granularity of the metrics they investigated. In
detail, we identified three main objectives: i) definition about definition and description
of software metrics; ii) use and interpretation about the use and interpretation of existing
software metrics; and (iil) validation about the validation of software metrics.

The frameworks can concern, in fact, metrics working at module-level i.e., isolated
piece of code grouped in units (e.g., programs, files, and classes) and at concern- or
feature-level (piece of code crosscutting several units). Furthermore, frameworks have
been grouped according to the type of validation they proposed: empirical rather than
the purely theoretical one. In the rest of this section, we summarize the works in Table 13
by detailing some of the representative ones.

33

Metrics Framework

Definition

Module Concern

Static Dynamic Static Dynamic

[49], [50], [51], [52], [53], [35], [53], [10], [11], [12],
and [54] [13], and [36]

[55], [8], [17], [32], and [14] [4]

Use and Interpretation

Module Concern
Static Dynamic Static Dynamic
130J[15(l)?f31[*5£?72n[§"*[{,;911111' 160], [11], and [13] 161], [62], [28], and [14]
Validation
Empirical ‘ Theoretical
[63], [14], [64], [59], [34], and [65] ‘ [53], [51], [65], [66], and [67]

Table 13: Overview of the existing metrics frameworks.

Metrics definition. Most of the efforts have been spent to construct frameworks
for defining design-time and object-oriented metrics devoting to estimate static and/or
dynamic properties of an application. For instance, Jacquet et al. [51] detailed step-
by-step the process to be applied for defining new metrics while Arisholm et al. [10]
presented a measurement framework composed of dynamic metrics for object-oriented
systems. Recently, some frameworks for defining metrics for investigating properties of an
application at concern-level have been proposed. In particular, almost all efforts on this
subject have been spent to investigate static properties. For instance, Eaddy et al. [8] and
Sant’Anna et al. [14] proposed two frameworks specifically devoted to analyze software
concerns. They introduced, for example, metrics for evaluating how much some concerns
are scattering and tangling on the original code in which they are implemented. While
for what concerns dynamic metrics, as already explained in the paper, Wong et al. [4]
seems to be the unique relevant work.

Metrics use and interpretation. Frameworks guiding the users in the use and in-
terpretation of metrics are fundamental to be able to apply metrics in practice. For
instance, Erni et al. [30] suggested the use of a three-layer (factor-criteria-metrics) quality
model that relates several metrics to a number of structural measurements to design
principles and rules, aiming at evaluating and estimating the software system quality.
Eaddy et al. [28], as stated before, empirically proved that there exists a relationship
between some static concern properties (e.g., size and scattering degree) and the concern
€ITor-proneness.

Metrics Validation. One of the major threat to validity limiting the use of new metrics
concerns their validation. Several frameworks have been presented to empirically and
theoretically validate module-oriented metrics. For instance, Briand et al. [67] presented
a framework then used to empirically investigate a suite of object-oriented design metrics
as quality indicators. They empirically proved the capability of some object-oriented
metrics to predict class fault-proneness. Moreover, Basili et al. [34] proposed a generic
and rigorous mathematical framework composed of terms and notions characterizing
several software measurement properties (e.g., size, length, complexity, cohesion, coupling).
The framework is hence proposed to conduct theoretical validations of software metrics,
according to the properties that such metrics measure.

Differently to all these kind of works, we tried to fill a gap of the literature proposing,
on one side, a new framework composed of terms and notions that can be used to describe

34

the existing metrics while, on the other side, we also introduced and empirically evaluated
some new dynamic concern-oriented metrics.

9. Conclusions

In this paper we have presented a framework to define and describe software metrics
for measuring dynamic properties of applications at concern level. This framework extends
the one presented in [9] that was limited to define concern-oriented metrics for measuring
(only) static properties of a system. This extension permits to describe software metrics
for measuring dynamic properties of a system as well. The result of the work is a new
framework that introduces a unified terminology and a set of criteria used in a consistent
and rigorous process to define well-founded (static and dynamic) concern-oriented metrics
for aspect- and component-oriented applications.

To answer to the following question (RQ1 in Section 6): “Can the framework be used
to describe several concern-oriented metrics using a common and precise terminology
and set of concepts?”’ we conducted an experiment in which we have instantiated several
existing and new concern-oriented metrics by applying our framework. This experiment
helped us to improve and complete the framework and showed that the framework could
be used to describe a wide range of concern metrics.

In the paper, we reported also a case study conducted to answer the following question
(RQ2 in Section 7): “Are the dynamic concern-oriented metrics useful to predict the
concern bug-proneness?”, thus giving to the reader an idea about both the utility and the
effectiveness of the dynamic concern metrics. In the study, we measured the capability
of some static and dynamic concern metrics in evaluating and predicting the concern
bug-proneness. Even if quite preliminary, the achieved results of this study show that
dynamic metrics improve the quality of prediction systems. Further experimentation and
case study repetitions could support our findings.

In the future, we plan to extend our case study analysis for different kinds of applica-
tions: object-, aspect-, and component-oriented. The main aim of this work will be to
understand the real impact of both static and dynamic software concern-measurements and
their real effectiveness when applied to support software development and maintenance.

Acknowledgments

The authors wish to thank Alessandro Garcia, Eduardo Figueiredo and Thiago
Bartolomei for their precious help on defining the static version of this framework.
Moreover, the authors wish to thank the anonymous reviewers for their insights that helped
to improve the scientific content and presentation of this work. Walter Cazzola’s work
has been partially supported by the MIUR project CINA: Compositionality, Interaction,
Negotiation, Autonomicity for the future ICT society.

[1] M. Robillard, G. Murphy, Representing Concerns in Source Code, ACM Transactions on Software
Engineering and Methodology 16 (1) (2007) 1-38.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier, J. Irwin,
Aspect-Oriented Programming, in: 11*" European Conference on Object Oriented Programming
(ECOOP’97), Lecture Notes in Computer Science 1241, Springer-Verlag, Helsinki, Finland, 1997, pp.
220-242.

[3] S. Apel, C. Késtner, An Overview of Feature-Oriented Software Development, Journal of Object
Technology 8 (5) (2009) 49-84.

35

(4]
[5]

(6]

7]

8

(9]

[10]
[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

21]

[22]

23]

24]

[25]

E. W. Wong, S. S. Gokhale, J. R. Horgan, Quantifying the Closeness between Program Components
and Features, Journal of Systems and Software 54 (2) (2000) 87-98.

P. Greenwood, T. Bartolomei, E. Figueiredo, A. Garcia, N. Cacho, C. Sant’Anna, P. Borba,
U. Kulesza, A. Rashid, On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study, in: Proceedings of the 215* European Conference on Object-Oriented Programming
(ECOOP’07), LNCS 4609, Springer-Verlag, Berlin, Germany, 2007, pp. 176-200.

F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, C. M. F. Rubira, Exceptions and
Aspects: the Devil Is in the Details, in: M. Young, P. T. Devanbu (Eds.), Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’06), ACM,
Portland, OR, USA, 2006, pp. 152-162.

A. Kaur, K. Johari, Identification of Crosscutting Concerns: A Survey, International Journal of
Engineering Science and Technology 1 (3) (2009) 166-172.

M. Eaddy, A. V. Aho, G. C. Murphy, Identifying, Assigning and Quantifying Crosscutting Concerns,
in: Proceedings of 15 International Workshop on Assessment of Contemporary Modularization
Techniques (ACoM’07), Minneapolis, USA, 2007.

E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Cazzola, A. Marchetto, On the
Maintainability of Aspect-Oriented Software: A Concern-Oriented Measurement Framework, in:
C. Tjortjis, A. Winter (Eds.), Proceedings of the 12t" European Conference on Software Maintenance
and Reengineering (CSMR 2008), IEEE Press, Athens, Greece, 2008, pp. 183-192.

E. Arisholm, L. C. Briand, A. Fgyen, Dynamic Coupling Measurement for Object-Oriented Software,
IEEE Trans. Softw. Eng. 30 (8) (2004) 491-506.

S. Mouchawrab, L. C. Briand, Y. Labiche, A Measurement Framework for Object-Oriented Software
Testability, Journal of Information and Software Technology 47 (15) (2005) 979-997.

A. Mitchell, J. F. Power, Toward a Definition of Run-Time Object-Oriented Metrics, in: Proceedings
of the 7*® ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE’03), Darmstadt, Germany, 2003.

B. Dufour, K. Driesen, L. Hendren, C. Verbrugge, Dynamic Metrics for Java, in: Proceedings of the
18*" Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’03), ACM Press, Anaheim, California, USA, 2003, pp. 149-168.

C. Sant’Anna, A. Garcia, C. Chavez, L. Carlos, A. von Staa, On the Reuse and Maintenance of
Aspect-Oriented Software: an Assessment Framework (SBES’03), in: Proceedings of the XVII
Brazilian Symposium on Software Engineering, Manaus, Brazil, 2003, pp. 19-34.

R. E. Lopez-Herrejon, S. Apel, Measuring and Characterizing Crosscutting in Aspect-Based Programs:
Basic Metrics and Case Studies, in: M. B. Dwyer, A. Lopes (Eds.), Proceedings of the 10" Conference
on Fundamental Approaches to Software Engineering (FASE’07), LNCS 4422, Springer, Braga,
Portugal, 2007, pp. 423-437.

S. Ducasse, T. Girba, A. Kuhn, Distribution Map, in: Proceedings of the 22"4 IEEE International
Conference on Software Maintenance (ICSM’06), IEEE Press, Philadelphia, Pennsylvania, USA,
2006, pp. 203-212.

E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares, F. Ferrari,
S. Khan, F. Filho, F. Dantas, Evolving Software Product Lines with Aspects: An Empirical Study
on Design Stability, in: Proceedings of 30t International Conference on Software Engineering
(ICSE’08), ACM, Leipzig, Germany, 2008.

R. C. Martin, G. Melnik, Tests and Requirements, Requirements and Tests: A Mobius Strip, IEEE
Software 25 (1) (2008) 54-59.

J. Heumann, Generating Test Cases From Use Cases, The Rational Edge.

W. Cazzola, A. Marchetto, AOP=HiddenMetrics: Separation, Extensibility and Adaptability in
SW Measurement, Journal of Object Technology 7 (2) (2008) 53-68.

D. J. Pearce, M. Webster, R. Berry, P. H. J. Kelly, Profiling with AspectJ, Software—Practice and
Experience 37 (7) (2007) 747-777.

G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Test Case Prioritization: An Empirical Study, in:
Proceedings of the International Conference on Software Maintenance (ICSM’99), IEEE Computer
Society, Oxford, UK, 1999, pp. 179-188.

D. Batory, J. N. Sarvela, A. Rauschmayer, Scaling Step-Wise Refinement, in: Proceedings of the 25th
International Conference on Software Engineering (ICSE’03), IEEE Computer Society, Portland,
OR, USA, 2003, pp. 187-197.

I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, An Overview of CaesarJ, Transaction on Aspect-
Oriented Software Development 1 (1) (2006) 135-173.

V. Massol, T. Husted, jUnit in Action, Manning Publications Co., 2003.

36

[26]

27]
(28]
[29]

(30]

(31]

132]
133]
[34]

[35]

[36]

(37]

(38]
(39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]

A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, A. Sergeyev, Static Techniques for Concept
Location in Object-Oriented Code, in: Proceedings of the 13" International Workshop on Program
Comprehension (IWPC’05), IEEE, St. Louis, Missouri, USA, 2005, pp. 33—-Ma42.

N. Wilde, M. C. Scully, Software Reconnaissance: Mapping Program Features to Code, Journal of
Software Maintenance and Evolution: Research and Practice 7 (1) (1995) 49-62.

M. Eaddy, T. Zimmermann, K. Sherwood, V. Garg, G. Murphy, N. Nagappan, A. Aho, Do
Crosscutting Concerns Cause Defects?, IEEE Trans. Softw. Eng. 34 (4) (2008) 497-515.

M. Marin, A. Van Deursen, 1. Moonen, Identifying Crosscutting Concerns Using Fan-In Analysis,
ACM Transactions on Software Engineering and Methodology 17 (1).

K. Erni, C. Lewerentz, Applying Design-Metrics to Object-Oriented Frameworks, in: Proceedings of
the 34 IEEE International Software Metrics Symposium (METRICS’96), IEEE Computer Society,
Berlin, Germany, 1996, pp. 64-74.

M. Revelle, T. Broadbent, D. Coppit, Understanding Concerns in Software: Insights Gained from
Two Case Studies, in: Proceedings of the 13th International Workshop on Program Comprehension
(IWPC’05), IEEE Computer Society, St. Louis, MO, USA, 2005, pp. 23-32.

A. Marchetto, A Concerns-based Metrics Suite for Web Applications, INFOCOMP Journal of
Computer Science 4 (3) (2005) 11-22.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in
Software Engineering, Springer, 2012.

V. R. Basili, L. C. Briand, W. L. Melo, A Validation of Object-Oriented Design Metrics as Quality
Indicators, IEEE Trans. Softw. Eng. 22 (10) (1996) 751-761.

A. Tahir, S. MacDonell, A Systematic Mapping Study on Dynamic Software Metrics, in: Proceedings
of the 28*h TEEE International Conference on Software Maintenance (ICSM’12), IEEE Press, Riva
del Garda, Trento, Italy, 2012.

S. M. Yacoub, H. H. Ammar, T. Robinson, Dynamic Metrics for Object Oriented Designs , in:
Proceedings of the 6t International Software Metrics Symposium (METRICS’99), Boca-Raton, FL,
USA, 1999, pp. 50-61.

B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittampalam, C. Verbrugge, Measuring the
Dynamic Behaviour of AspectJ Programs, in: J. Vlissides (Ed.), Proceedings of the 19*® Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’04), ACM Press, Vancouver, BC, Canada, 2004, pp. 150-169.

R. Geetika, P. Singh, Empirical Investigation into Static and Dynamic Coupling Metrics, ACM
SIGSOFT Software Engineering Notes 39 (1) (2014) 1-8.

V. Gupta, J. K. Chhabra, Dynamic Cohesion Measures for Object-Oriented Software, Journal of
Systems Architecture 57 (4) (2011) 452-462.

T. Savage, M. Revelle, D. Poshyvanyk, FLAT3: Feature Location and Textual Tracing Tool,
in: J. Kramer, J. Bishop, P. Devanbu, S. Uchitel (Eds.), Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE’10), Cape Town, South Africa, 2010, pp.
255-258.

J. Buckner, J. Buchta, M. Petrenko, V. Rajlich, JRipples: A Tool for Program Comprehension
during Incremental Change, in: J. I. MAletic, J. R. Cordy, H. Gall (Eds.), Proceedings of the 13th
International Workshop on Program Comprehension (IWPC’05), IEEE, St. Louis, MO, USA, 2005,
pp. 149-152.

S. H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley, Reading, Ma,
USA, 2003.

J. A. Nelder, R. Wedderburn, Generalized Linear Models, Journal of the Royal Statistical Society
135 (3) (2001) 370-384.

J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Lowrence Erlbaum, 1988.

R. R. Hocking, The Analysis and Selection of Variables in Linear Regression, Biometrics, 32, 1976.
H. Akaike, A New Look at the Statistical Model Identification, IEEE Transactions on Automatic
Control 19 (6) (1974) 716-723.

D. L. McFadden, Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent
Developments, Behavioural Travel Modelling (1978) 279-318.

M. Korte, D. Port, Confidence in Software Cost Estimation Results Based on MMRE and PRED,
in: Proceedings of the 4" International Workshop on Predictor Models in Software Engineering
(PROMISE’08), ACM, Leipzig, Germany, 2008, pp. 63-70.

X. Franch, G. Grau, C. Quer, A Framework for the Definition of Metrics for Actor-Dependency
Models, in: Proceedings of the 12t International Conference on Requirements Engineering (RE’04),
IEEE Computer Society, Washington, DC, USA, 2004, pp. 348-349.

37

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

P. Ponmuthuramalingam, M. Yamunadevi, An Effective Analysis of Object Oriented Metrics in
Software Quality, International Journal of Computing Technology and Information Security 1 (2)
(2011) 43-47.

J.-P. Jacquet, A. Abran, From Software Metrics to Software Measurement Methods: A Process Model,
in: Proceedings of the 3" International Software Engineering Standards Symposium (ISESS’97),
IEEE Computer Society, Walnut Creek, CA, USA, 1997, pp. 128-135.

N. R. Brown, R. S. Siegle, Metrics and Mappings: A Framework for Understanding Real-World
Quantitative Estimation,, Psychological Review 100 (3) (1993) 511-534.

M. Genero, D. Miranda, M. Piattini, Defining Metrics for UML Statechart Diagrams in a Method-
ological Way, in: Proceedings of the 2" Workshop on Conceptual Modeling Quality (TWCMQ’03),
LNCS 2814, Springer, Chicago, IL, USA, 2003, pp. 118-128.

T. Talbi, B. Meyer, E. Stapf, A Metric Framework for Object-Oriented Development, in: Proceedings
of the 39t International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS’01), IEEE Computer Society, Santa Barbara, CA, USA, 2001, pp. 164-172.

J. C. Taveira, J. Saraiva, F. Castor, S. Soares, A Concern-Specific Metrics Collection Tool, in:
Proceedings of the OOPSLA Workshop on Assessment of Contemporary Modularization Techniques
(ACoM’09), Orlando, FL, USA, 2009.

L. C. Briand, J. Wiist, Modeling Development Effort in Object-Oriented Systems Using Design
Properties, IEEE Trans. Softw. Eng. 27 (11) (2001) 963-986.

A. Kaur, S. Singh, K. S. Kahlon, A Metric Framework for Analysis of Quality of Object Oriented
Design, World Academy of Science, Engineering and Technology 36.

D. Coleman, D. Ash, B. Lowther, P. Oman, Using Metrics to Evaluate Software System Maintain-
ability, IEEE Computer 27 (8) (1994) 44-49.

L. C. Briand, J. W. Daly, J. Wiist, A Unified Framework for Coupling Measurement in Object-
Oriented Systems, IEEE Trans. Softw. Eng. 25 (1) (1999) 91-121.

A. Seffah, N. Kececi, M. Donyaee, QUIM: A Framework for Quantifying Usability Metrics in
Software Quality Models, in: Proceedings of the 274 Asia-Pacific Conference on Quality of Software
(APAQS’01), IEEE Computer Society, Hong Kong, China, 2001, pp. 311-318.

J. M. Conejero Manzano, E. Figueiredo, A. Garcia, J. Hernandez, E. Jurado, On the Relationship of
Concern Metrics and Requirements Maintainability, Journal of Information and Software Technology
54 (2) (2012) 212-238.

A. Marchetto, A. Trentini, A Framework to Build Quality Model for Web Applications, International
Arab Journal of Information Technology 4 (2) (2007) 168-176.

K. A. McKeown, E. G. McGuire, Evaluation of a Metrics Framework for Product and Process
Integrity, in: Proceedings of the 33'd Hawaii International Conference on System Sciences (HICSS’00),
Vol. 4, IEEE Computer Society Press, Maui Island, Hawaii, USA, 2000, pp. 4046—4051.

L. C. Briand, J. Daly, V. Porter, J. Wiist, A Comprehensive Empirical Validation of Design Measures
for Object-Oriented Systems, in: Proceedings of the 5*P International Symposium on Software
Metrics (METRICS’98), IEEE Computer Society, Bethesda, Maryland, USA, 1998, pp. 246-257.
D. Soni, R. Shrivastava, M. Kumar, A Framework for Validation of Object-Oriented Design Metrics,
International Journal of Computer Science and Information Security 6 (3) (2009) 46-52.

B. Kitchenham, S. L. Pfleeger, N. E. Fenton, Towards a Framework for Software Measurement
Validation, IEEE Trans. Softw. Eng. 21 (12) (1995) 929-943.

L. C. Briand, S. Morasca, V. R. Basili, Property-Based Software Engineering Measurement, IEEE
Trans. Softw. Eng. 22 (1) (1996) 68-86.

38

	1 Introduction
	2 Towards Dynamic Concern Measurement
	3 Concern Mapping and Triggering
	4 Framework: Basic Concepts
	4.1 Concern and System Elements
	4.2 Components and Connections
	4.3 Language Mapping

	5 Framework: The Criteria
	5.1 Entities of Concern Measurement
	5.2 Concern-Aware Attributes
	5.3 Units
	5.4 Concern Measurement Values
	5.5 Concern Granularity
	5.6 Domain
	5.7 Concern Mapping: concern projection or triggering

	6 Framework Evaluation by Instantiation
	7 Dynamic Concern-Oriented Metrics for Bug-Proneness
	8 Related Works
	9 Conclusions

