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Abbreviation_________________________________________________________ 
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 6-OHDA   6-hydroxydopamine 

 AR-JP   Autosomal recessive juvenile parkinsonism 

 ATP    Adenosine triphosphate 

 BBB   Blood brain barrier   

 CNS   Central nervous system 

CS    Corpus striatum   

 DA    Dopamine 

 DAT    Dopamine transporter   

GDP   Guanosine diphosphate 

 GTP    Guanosine triphosphate 

 IBR   In between ring 

 KIF   Kinesin superfamily motor proteins 

KO   Knockout 

 LB    Lewy body  

 L-dopa   L-3,4-dihydroxyphenylalanine  

 LRRK2   Leucine-rich repeat kinase 2 also called dardarin protein 
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 PD    Parkinson’s disease 

 PINK1   PTEN-induced putative kinase 1 

 PTM   Post-translational modification 

 RING   Really interesting new gene 

 ROS    Reactive oxygen specie 

 α-syn   α-synuclein protein 

 PNS   Peripheral nervous system 

 SNpc    Substantia nigra pars compacta 

 SNpr   Substantia nigra pars reticulata 

 α-Tub    α-tubulin  

 β-Tub    β-tubulin  

 γ-Tub   γ-tubulin 

 Δ2 Tub  Δ2 tubulin 

 Ac Tub   Acetylated tubulin 

 deTyr Tub      Detyrosinated tubulin 

 Tyr Tub   Tyrosinated tubulin 

 TH   Tyrosine hydroxylase 

 TTL    Tubulin tyrosine ligase 

 TTLL   TTL-like proteins 

 UBL   Ubiquitin-like domain 

 UCH-L1  Ubiquitin carboxyl-terminal hydrolase isoenzyme L1 

 UPS   Ubiquitin-proteasome system 
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Abstract________________________________________________________________ 

 

Currently, there are just symptomatic treatments available for Parkinson’s disease (PD), that 

is the second most common neurodegenerative disease after Alzheimer’s disease and is 

predicted to increase in prevalence as the world population ages. Its central pathological 

features is the selective degeneration of dopaminergic neurons in the Substantia nigra (SN) 

pars compacta projecting to the Corpus striatum (CS), leading to a striatal dopamine 

deficiency resulting in the typical movement disorders of parkinsonism. Even though the 

majority of PD cases are sporadic, mutations in a number of genes have been associated with 

familial PD. It’s also known that parkinsonism can be induced by exposure to environmental 

toxins such as pesticide, chemical compounds and hydrocarbon solvents, including 2,5-

hexanedione (2,5-HD), the toxic metabolite of n-hexane. 2,5-HD has been shown to induce 

parkinsonism in animals and humans and to affect directly the cytoskeletal proteins. In 

particular, microtubules (MTs) have been found to interact with some of the proteins mutated 

in PD, such as α-synuclein, LRRK2 and parkin, and to be affected by the action of some PD 

toxins like MPP+ and rotenone. Therefore, in the last years, the MT dysfunction has become 

an emerging hypothesis in PD pathogenesis. In this scenario, our goal was to investigate the 

MT dysfunction in neuronal cells, primary skin fibroblasts from PD patients and transgenic 

mice, taking advantage of both a gene- (using PARK2 mutations) and toxin- (using 2,5-HD) 

based models of PD neurodegeneration. 

In the first part of the project, nerve growth factor (NGF)-differentiated PC12 cell line has 

been used as a model of dopaminergic neurons in culture using three different concentrations 

of toxin (0,2 mM; 2 mM and 20 mM 2,5-HD) for 24 hours, in order to study the early events 

of neurodegeneration. Thus, the characterization of the effects of 2,5-HD on cytoskeleton has 

been carried out through both western blot analysis and immunofluorescence techniques, 

revealing an impact on all its components (actin, neurofilaments and MTs). Subsequently, I 

focused on MT system through the analysis of different post-translational modified forms of 

α-tubulin, showing significative MT stabilizing effects of 2,5-HD in both levels and 

distribution, in particular it could increase the levels of stable MTs that appeared fragmented 

or accumulated in the cell body. In accordance with these results, the analysis of tubulin 

polymerization in cell revealed a higher content of MT mass caused by 2,5-HD. On the 

contrary, from our in vitro data no significant effects of 2,5-HD emerged in the tested 

conditions and also the ultrastructure of MTs obtained in the presence of toxin resulted 

conventional. Interestingly, the first signs of mitochondrial damage, in our experimental 
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conditions, seemed to be induced only at the highest concentration of 2,5-HD, while strong 

effects on cytoskeleton came up earlier at lower doses in our cellular model. Following, the 

effect of 2,5-HD has been tested on skin fibroblasts, obtained from healthy donors and PD 

patients carrying mutation in PARK2 gene, since it encodes for parkin, an E3 ubiquitin ligase 

that is supposed to bind and stabilize MTs. Cell viability was not affected by 2,5-HD whereas 

cell morphology appeared significantly modified just in PD patient fibroblasts. Moreover, we 

found that cytoskeletal organization and stability were affected, with a consequent alteration 

of cell morphology and behaviour, in PD patient cells already at baseline conditions without 

the addition of any stressor: all parkinsonian fibroblasts showed a reduced MT mass and 

displayed significant changes in MT stability-related signalling pathways, without any 

activation of autophagy or apoptosis. This shows for the first time that MT dysfunction occurs 

in patients and not only in experimental models of PD. The PD fibroblasts were also much 

more susceptible to 2,5-HD effects than healthy controls, suggesting that the genetic 

background may really make the difference in MT susceptibility to environmental factors. 

Consistent with this hypothesis, we observed the increase of fragmentation of stable MTs in 

PARK2 patient-derived ventral midbrain neurons. 

The second part of the project has been dedicated to in vivo experiments in wild type and 

PARK2 heterozygous (PARK2
+/-) mice. In fact, although PARK2 mutations are responsible for 

a familial early-onset autosomal recessive form of PD, some individuals carrying 

heterozygous mutations, usually asymptomatic, have been found to present nigrostriatal 

abnormalities, making PARK2 haploinsufficiency a possible risk factor for developing the 

late-onset disease or other neurological disorder. Biochemical analysis of the cytoskeletal 

protein level in lysates from SN and CS and confocal microscopy on immunostained brain 

slices have revealed that the MT system is more dynamic in PARK
+/- mice respect to wt ones. 

In addition, we evaluated the motor behaviour of these mice using a video-tracking system 

mounted above open field cages. Surprisingly, we found the heterozygous mice were 

significantly more active than wt ones. Finally, we have found no cell loss in both genetic 

backgrounds or terminal loss in the CS after treatment. The imbalance of post-translationally 

modified tubulins, that are associated with differences in MT stability, occurs also in PARK2 

knockout mice and precedes the block of mitochondrial transport.  

Our data showed that PARK2 mutations or haploinsufficiency impacts MT system in vivo, 

unravelling parkin as a regulator of MT stability in neurons and suggesting a key role for MT 

dysfunction in the PD selectively dopaminergic neurodegeneration.  
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State of art____________________________________________________________ 
 
 

1.1  Microtubule function and dysfunction in neurons 
 
The ability of eukaryotic cells to adopt a variety of shapes and to carry out coordinated and 

directed movements depends on a complex network of protein filaments that extends 

throughout the cytoplasm. This network is called the cytoskeleton, although, unlike a skeleton 

made of bone, it is highly dynamic structure that reorganizes continuously as the cell changes 

shape, divides and responds to its environment. The cytoskeleton was once thought to be a 

feature only of eukaryotic cells, but homologues to all the major proteins of the eukaryotic 

cytoskeleton have been found also in prokaryotes (Shih and Rothfield 2006). The diverse 

activities of the cytoskeleton depend on three types of protein filaments: microfilaments, 

intermediate filaments and microtubules. Each type of filament is formed from a different 

protein subunit: actin for microfilaments, tubulin for microtubules, and a family of related 

fibrous proteins for intermediate filaments. 

Actin filaments (also known as microfilaments) are two-stranded helical polymers of the 

protein actin. They appear as flexible structures, with a diameter of 5–9 nm. Actin filaments 

are also dynamic structures, but they normally exist in bundles or networks rather than as 

single filaments. A layer called the cortex is formed just beneath the plasma membrane from 

actin filaments and a variety of actin-binding proteins. This actin-rich layer controls the shape 

and surface movements of most animal cells, especially through the interaction with specific 

motor proteins like myosins (Alberts et al. 2008). Different isoforms, each codified by a 

different gene, exist, but in neurons the most abundant isoform is the β-actin (42 kDa) 

(Kandel et al., 2003). 

Intermediate filaments are strong rope-like polymers of fibrous polypeptides with a diameter 

of around 10 nm that differ in the type of polypeptide they contain. Their function is to resist 

stretch and to play a structural or tension-bearing role in the cell. A variety of cell- and tissue-

specific forms of intermediate filament proteins, which constitute a large and heterogeneous 

family, are known. Nerve cells contain a variety of unique intermediate filaments, which are 

expressed in different regions of the nervous system or at specific stages of development. By 

far the most abundant are the neurofilaments (NFs), which extend along the length of an axon 

and form its primary cytoskeletal component, especially in mature nerve cells. In mammals, 

three NF proteins have long been recognized: termed NF-L, NF-M, and NF-H, for low (70 

kDa), middle (160 kDa), and high (200 kDa) molecular weight, respectively. In each NF, all 
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three subunits are usually present. NFs in axons are linked side by side by their carboxyl-

terminal tail domains to provide a continuous rope of filaments that can be a meter or more in 

length. NF proteins are synthesized within the cell body, and hence they must travel along the 

axon to reach their final destination (Alberts et al. 2008). 

 

Figure 1. Actin and intermediate filaments structure. 
Ultrastructure of  (A) microfilaments and (B) intermediate filaments by electron microscopy and a 
schematic drawing. (modified from Alberts et al., 2008)  
 

 
Figure 2. From tubulin molecules to a microtubule.  
Schematic representation of (A) α/β-tubulin heterodimer, that is the building block of (B) 
protofilaments that, in turn, associate laterally to form a (C) MT as a hollow tube. Also the 
ultrastructure by electron microscopy is shown (D). (from Alberts et al., 2008) 
 

Microtubules (MTs) are non-covalent cytoskeletal polymers, that are involved in mitosis, cell 

motility, intracellular transport, secretion, maintenance of cell shape and cell polarization. 

They are polarized structures composed of α- and β-tubulin heterodimer subunits assembled 
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into linear protofilaments in a head-to-tail fashion. The sequence and structure of tubulins 

have been especially highly conserved throughout the evolution, resulting in a molecular 

weight of 50 kDa for each monomer that is linked to one another in a non-covalent manner. A 

single MT is comprised of 10–15 protofilaments (usually 13 in mammalian cells) that 

associate laterally to form a 25 nm wide hollow cylinder (figure 2) (Desai and Mitchison 

1997). The head-to-tail association of the α/β heterodimers makes MTs polar structures, and 

they have different polymerization rates at the two ends. In each protofilament, the α/β 

heterodimers are oriented with their β-tubulin monomer pointing towards the faster-growing 

end (plus end) and their α-tubulin monomer exposed at the slower-growing end (minus end). 

The lateral interaction between subunits of adjacent protofilaments has been described as a B-

type lattice with a seam.  

 

 
Figure 3. The polymerization curve of pure tubulin in vitro.  
The amount of MT polymers, measured by light scattering, follows a sigmoidal curve. The three 
typical phase of polymerization are specified: nucleation, elongation and steady state. For simplicity, 
subunits are shown coming on and off the MT at only one end. (from Alberts et al., 2008) 
 

The assembly of a protein into a long helical polymer such as a cytoskeletal filament typically 

shows the particular time course. MT polymerization and depolymerization are complex and 

interesting processes with important biological roles. It’s possible to follow the kinetics of 

pure tubulin polymerizing into MTs in vitro at 37°C as long as Mg2+ and GTP are present by 

light scattering measurements. The resulting polymerization curve shows an initial lag phase, 

that corresponds to time taken for nucleation, after which MTs form rapidly (elongation) until 
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a plateau level (steady state) of polymerization is reached (Fig. 3). During the lag phase 

individual tubulin molecules associate to form metastable aggregates, some of which act as a 

nucleus for polymerization. The assembly of a nucleus is relatively slow, which explains the 

lag phase seen during polymerization. The lag phase reflects a kinetic barrier to the nucleation 

process and can be reduced or abolished entirely by adding pre-made nuclei, such as 

fragments of already polymerized MTs. During the rapid elongation phase, subunits add to 

the free ends of existing MTs. When the plateau of polymerization is reached, however, not 

all the heterodimers of the tubulin will have polymerized because subunits are dissociating 

(depolymerizing) from the ends of MTs as well as adding to them. The rate of polymerization 

drops with time because this rate is proportional to the concentration of free tubulin; during 

the plateau phase, polymerization and depolymerization are balanced because the amount of 

free tubulin has dropped to the point where a critical concentration has been reached (Alberts 

et al. 2008). A third tubulin isoform, γ-tubulin, functions as a template for the correct 

assembly of microtubules (Erickson 2000), being the major constituent of the microtubule-

organizing-center (MTOC), the structure from which MTs emerge (Fig. 4a). The most 

important MTOC in most animal cells is the centrosome, a cloud of poorly defined 

pericentriolar material associated with a pair of centrioles. MTs are associate to this 

nucleating structures with their minus end, while the plus end are favoured to assembly.  

A characteristic property of MTs is their ability to undergo cycles of rapid growth and 

disassembly, known as dynamic instability (Fig. 4b) (Mitchison and Kirschner 1984), that has 

been observed both in vitro and in vivo (Desai and Mitchison 1997; Burbank and Mitchison 

2006). This behaviour enables them to reorganize rapidly according to changing conditions 

and needs of the cell. Conversion from growth to shrinkage is called catastrophe while switch 

from shrinkage to growth is termed rescue. The dynamic instability depends on a delicate 

equilibrium between the polymerization and depolymerization that require an input of energy, 

coming from hydrolysis of GTP. GTP binds to the nucleotide exchangeable site (E site) of β-

tubulin subunit of the heterodimer and when a new dimer adds to the plus end of the MT, this 

GTP is hydrolyzed to GDP.  The α-tubulin subunit also carries GTP, but this cannot be 

exchanged and is not hydrolyzed, so it can be considered a fixed part of the tubulin protein 

structure. MTs grow by addition of GTP-tubulin subunits. After they are incorporated into the 

MT, subunits are hydrolysed to become GDP-tubulin, thus, the microtubule lattice is 

predominantly composed of GDP–tubulin that is most stable in a curved state. The curving 

can only begin at the ends. While the ends are stable, a MT will grow, but once an end begins 

to come apart, the splaying propagates down the MT, that rapidly shrinks (Burbank and 
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Mitchison 2006). The plus end generally has a minimum GTP cap of one tubulin layer that 

stabilizes the MT structure. When this GTP cap is lost, the protofilaments splay apart and the 

MT rapidly depolymerizes. At the minus end, GTP cap is not present but it’s replaced by 

different capping proteins (Conde and Cáceres 2009). 

 

 
 
Figure 4. Representation of dynamic instability of microtubules.  
(a) Structure of a MT and (b) a representative scheme of typical dynamic instability of MTs. (from 
Conde and Cáceres, 2009) 
 

MT dynamics and functions are modulated by interaction with other proteins: the MT motor 

proteins and (non-motor) MT associated proteins (MAPs). The motor proteins that move 

along MTs belong to two major families: the plus-end directed kinesins involved in 

anterograde cargo transport and the minus-end directed dyneins involved in retrograde 

transport (Fig. 5). Motor proteins generate force upon interaction with MTs and these forces 

are used for various intracellular functions, most obviously intracellular transport. MT-

dependent transport takes place in almost all cell type, but of course neurons, in which 

cargoes need to be transported over long distances from the cell body to synapses, are 

particularly dependent on this crucial task.  
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Figure 5. Coordination of opposite polarity motors in the axon.  

Kinesin motors carry cargo along a unipolar array of microtubule toward the plus ends. Dynein is 
carried along with this anterograde cargo in a repressed form, and reversals in the direction of 
movement are infrequent. At a “turnaround” zone at the tip of these structures, dynein is activated and 
kinesin is repressed, and the processed cargo then can be transported back toward the cell body. The 
opposite activation/inactivation of the motors is believed to occur at the base near the cell body. 
(modified from Vale, 2003) 
 

The heterogeneous group of non-motor MAPs comprises not only many proteins that stabilize 

MTs (such as tau, MAP1 and MAP2), but also severing proteins (such as spastin and katanin) 

which destabilize MT lattice (Roll-Mecak and McNally 2010). Another group of intensely 

studied MAPs is that of the MT plus end-tracking proteins (+TIPs), which help to control MT 

dynamics and interactions with other cellular organelles and subcellular domains 

(Akhmanova and Steinmetz 2008). Thus, many, if not all, functions of MTs are mediated by a 

highly complex and diverse set of MT-interacting proteins.  
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Figure 6. Tubulin heterogeneity generated by PTMs.  
(A) Schematic representation of the distribution of different PTMs of tubulin on the α/β-tubulin dimer 
with respect to their position in the MT lattice. Acetylation (Ac), phosphorylation (P), and 
polyamination (Am) are found within the tubulin bodies that assemble into the MT lattice, whereas 
polyglutamylation, polyglycylation, detyrosination, and C-terminal deglutamylation take place within 
the C-terminal tubulin tails that project away from the lattice surface. (B) Chemical structure of the 
branched peptide formed by polyglutamylation and polyglycylation, using the γ-carboxyl groups of 
the modified glutamate residues as acceptor sites for the isopeptide bonds. (from Janke, 2014) 
 

Although the structure of MTs is conserved among cell types and organisms, they can be 

adapted to highly divergent tasks thanks to two intrinsic regulators and sources of variability 

of MTs: the incorporation of different tubulin isoforms, codified by different genes, and on 

how they have been altered by various forms of post-translational modification (PTM) (Janke 

and Kneussel 2010). Furthermore, tubulin modifications alone or in combination have the 

potential to generate complex molecular signals creating a code on MTs that can be read by 

MAPs (Verhey and Gaertig 2007). The probable downstream effectors of this code are the 

intracellular transport machinery and other molecular players that mediate neuronal 

differentiation and polarization, in fact, tubulin PTMs influence the preferences of some 

molecular motors and MAPs (Janke and Kneussel 2010). Tubulin is subject to a large range of 

PTMs (Fig. 6, 7), from well-known ones, such as acetylation or phosphorylation, to others 

that have been very recently discovered; some of them are unique to tubulin, while others are 

shared with other proteins (Janke and Bulinski 2011). PTMs of tubulin subunits mark 

subpopulations of MTs and generate chemical differences that are sufficient to confer specific 

cellular functions on MTs. Although they are not directly involved in determining the 
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dynamic properties of MTs, specific PTMs of tubulin correlate well with the half-life and 

spatial distribution of MTs (Conde and Cáceres 2009). 

 

 
Figure 7. Enzymes involved in PTM of tubulin. 
Schematic representation of known enzymes (mammalian enzymes are shown) involved in the 
generation and removal of PTMs shown in Fig. 5. Note that some enzymes still remain unknown, and 
some modifications are irreversible. (*CCP5 preferentially removes branching points; however, the 
enzyme can also hydrolyse linear glutamate chains). (from Janke, 2014) 
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Tubulin may be modified as a soluble dimer or in a MT, and some PTMs occur on both, even 

though most of the modifying enzymes act preferentially on tubulin subunits that are already 

incorporated into microtubules (Conde and Cáceres 2009). The variable C-terminal domains 

of α-tubulin represent a hot spot for modification, while fewer modifications appear to 

associate with the C-termini of b-tubulin. Studies have revealed that MTs are modified in a 

heterogeneous manner, with PTMs being coextensive or concentrated in distinct domains on 

MTs, thereby adding an additional level of complexity. Indeed, assigning specific functions to 

a given modification in vivo is complicated by the heterogeneity of modifications found in the 

MT as well as the multiple modifications that may be present on the individual tubulin dimers 

themselves (Song and Brady 2015).  

Most α-tubulin genes in different species encode a C-terminal tyrosine residue. This tyrosine 

can be enzymatically removed and religated, as occurs for the first modification discovered by 

Barra and colleagues (Barra et al. 1973). As detyrosination was mostly found on stable and 

long-lived MTs especially in neurons, it was assumed that this modification promotes or 

correlates with MT stability. The modification itself probably has no direct stabilizing ability, 

but more likely causes a lower preference of MT-depolymerizing factor for MTs. The 

carboxypeptidase catalysing detyrosination of α-tubulin has yet to be identified and acts 

preferentially on polymerized MTs. In contrast, the reverse enzyme, tubulin tyrosine ligase 

(TTL), is known and modified non polymerized tubulin dimers exclusively to re-convert them 

into the native tyrosinated tubulin (Janke 2014). In most organisms, only one unique gene for 

TTL exists and is strictly tubulin specific (Prota et al. 2013). Detyrosinated tubulin can be 

further converted to the so-called Δ2 tubulin by the removal of its C-terminal glutamate 

residue (for two C-terminal amino acids missing). Δ2 Tubulin cannot undergo retyrosination 

by TTL, thus is considered an irreversible PTM (Janke and Bulinski 2011). This modification 

is typical only for very stable MTs and is very frequent in neurons, in fact, it occurs in about 

35% of brain tubulin. Its function seems to simply lock MTs in the detyrosinated state (Janke 

2014). The enzymes responsible for Δ2 tubulin generation are members of a family of 

cytosolic carboxypeptidases (CCPs) and most of them also remove polyglutamylation from 

tubulin (Rogowski et al. 2010). These enzymes are also able to generate Δ3 tubulin, but the 

functional significance of this event is unknown. 

The second discovered tubulin PTM was acetylation (Hernault and Rosenbaumt 1985). It 

takes place on MT polymer, like detyrosination, and occurs most commonly on lysine 40 of 

α-tubulin, but recently additional acetylation sites on both α- and β-tubulin have been 
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identified (Janke and Bulinski 2011). Acetylation is generally enriched on stable MTs in cells, 

but it is rather unlikely that it directly stabilizes MTs. As a result of its localization at the 

inner face of MTs, lysine 40 acetylation might affect the binding of MT inner proteins, 

moreover it seems also to regulate intracellular transport by regulating the traffic of kinesin 

motors (Janke 2014). The enzymes involved in lysine 40 acetylation are the acetyl transferase 

α-Tat1 (α-tubulin N-acetyltransferase 1) that specifically acetylates α-tubulin lysine 40, and 

two deacetylating enzymes, HDAC6 (histone deacetylase 6) and SIRT2 (sirtuin 2), both of 

them deacetylate also other substrates (Janke and Bulinski 2011). Another acetylation event 

has been described at lysine 252 of β-tubulin. This modification is catalysed by the 

acetyltransferase San and might regulate the assembly efficiency of MTs as a result of its 

localization at the polymerization face.  In contrast with lysine 40 acetylation, this one was 

reported to take place preferentially on non-polymerized tubulin (Chu et al. 2011). 

Tubulin polyglutamylation and polyglycylation are two similar and reversible PTMs, that are 

the progressive addition of mono or poly residues of glutamine or glycine respectively, onto 

one or more glutamine residues near to the C-terminal of tubulin within the MTs. Glycylation 

and glutamylation are more heterogeneous than other known PTMs, as both can occur on 

either α- or β-tubulin and both can form long or short side chains. Moreover, both PTMs use 

similar or overlapping modification sites and can thus compete with one another. The 

enzymes able to catalyse both the glutamylation and glycylation belong to the TTLL (tubulin 

tyrosine ligase-like) family and each displays defined reaction preferences, that is, for 

modifying α- and β-tubulin and for generating short and long side chains. Deglutamylases 

were identified as members of the CCP family and, similar to the glutamylated TTLL 

enzymes, can be distinguished by their reaction preference, they can not only remove 

polyglutamylation from tubulin but also from an extensive group of other proteins. 

Polyglutamylation is a major PTM in the brain, whereas glycylation seems to be restricted to 

cilia and flagella in most organisms analysed so far. Their role in regulation of MT function is 

mostly unknown (Rogowski et al. 2010; Janke and Bulinski 2011; Janke 2014) 

Early studies identified tubulin phosphorylation, however, no specific functions were found. 

The best-studied phosphorylation event on tubulin takes place at serine 172 of β-tubulin, is 

catalysed by Cdk1 and might regulate MT dynamics during cell division (Janke 2014). 

Very recently, has been discovered a new modification on brain tubulin, the polyamination. 

Among several glutamine residues of α- and β-tubulin that can be polyaminated, glutamine 15 

of β-tubulin is considered the primary modification site. Polyamination is catalysed by 
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transglutaminases, which modify the free tubulin as well as MTs in an irreversible manner, 

and most likely contribute directly to the stabilization of MTs (Song et al. 2013). 

Several other PTMs have been found on tubulin, but they have mostly been reported without 

follow-up studies, and some of them are only found in specific cell types or organisms and/or 

under specific metabolic conditions, so further studies will be necessary.    

 

 

Figure 8. Microtubule organization and organelle distribution in axons and dendrites.  

Axons have tau bound microtubules of uniform orientation, whereas dendrites have microtubule 
associated protein 2 (MAP2)-bound microtubules of mixed orientation. Dendrites also contain 
organelles that are not found in axons, such as rough endoplasmic reticulum, polyribosomes and Golgi 
outposts. (from Conde and Cáceres, 2009) 
 

Neurons are unique among cell types as they are highly polarized and excitable cells, with 

two molecularly and functionally distinct domains that emerge from the cell body: a single 

thin, long axon, which transmits signals, and multiple shorter dendrites, which are specialized 

to receive signals. The ability of neurons to polarize is crucial for synaptic transmission, and it 

has become clear that loss of polarity correlates with characteristic changes in MT 

organization and dynamics (Baas 2002). In fact, changing MT dynamics is sufficient to alter 

axon and dendrite specification and development. In neurons, MTs actively participate in the 



 

18 

 

initial steps of neuronal polarization, the organization of intracellular compartments, the 

remodeling of dendritic spines and the trafficking of cargo molecules to pre-, post- or extra-

synaptic domains (Janke and Kneussel 2010). MTs form dense parallel bundles in neurites 

that are required for their growth and maintenance, but the MT organization differs between 

axon and dendrites in at least two major aspects (Fig. 8). First, orientation: axonal MTs have 

uniform orientation, with their plus ends facing the axonal tip, whereas dendritic MTs have 

mixed orientation, with their plus ends facing either the cell body or the dendritic tip (Baas et 

al. 1988). Second, MTs differ in their complements of MAPs: for example, MAP2 is found 

mostly in dendrites, while tau is found mainly in the axons (Matus 1994).  

First of all, in the cell body neuronal MTs are nucleated at the centrosome, rapidly release by 

the action of the MT-severing protein katanin and then transported as short polymers into 

neurites by molecular motors (Vale 2003). Then, MTs actively participate in axon 

specification during neuronal polarization; in fact, axonal MTs show increased stability. On 

the other hand, MTs in proximal dendrites display a mixed orientation with equal amounts of 

plus-ends pointing to growth cones/synapses and the cell body, whereas MTs in distal 

dendrites are unipolar, as in axons (Baas et al. 1988). On the contrary, in the growth cones 

MTs are highly dynamic: their rapid and constant reorganization and remodeling is required 

for persistent growth cone advance, axonal elongation and the recognition of guidance cues. 

During branch formation, MTs are locally disrupted by severing enzymes such as spastin and 

katanin (Janke and Kneussel 2010).  

Differentiated neurons form neuronal circuits, grow synaptic contacts and propagate 

information in a unidirectional fashion; to do that they are provided of MTs carrying elevated 

levels and unique PTMs, depending on the specific sub-localization (Fig. 9) (Janke and 

Bulinski 2011). Tubulin PTMs are dynamic and must be regulated during development and 

differentiation and in response to injury and stress. Just as MTs can be dynamic or long-lived, 

both the distribution and levels of a given PTM may be changed in response to physiological 

and pathological cues (Song and Brady 2015). In the developing neuron (Fig. 9 upper), when 

the axon is extending but the dendrites have not yet differentiated, MTs in all neurites are plus 

end out. Modification levels for detyrosination, Δ2 tubulin, glutamylation, and polyamination 

in the neuronal perikaryon are relatively low. Acetylation, glutamylation, and detyrosination 

are elevated in the growing axon, but all three are reduced in the growth cone. Little or no 

acetylation is seen in the MTs of the growth cone, consistent with the presence of highly 

dynamic MTs. The minor neurites at this stage are lower in acetylation, but relatively rich in 

detyrosinated and glutamylated/polyglutamylated MTs. Polyamination may be detectable in 
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the growing axon at a low level. In a mature neuron (Fig. 9 lower), as both dendrites and 

synaptic specializations form, tubulin modifications change both quantitatively and 

qualitatively. Dendritic MTs exhibit mixed polarity as dendrites form, while axonal MTs 

remain plus end out. Polyamination of axonal MTs increases with maturation, but may be 

relatively low or absent from dendritic domains. Detyrosinated and Δ2 tubulin levels remain 

relatively high in differentiated dendrites and axons, while acetylation increases in both axon 

shafts and dendrites. Acetylation is also detectable in the distal axon and presynaptic regions, 

consistent with reduced numbers of highly dynamic microtubules in stable connections. 

During the differentiation and maturation of neurons, there are also changes in MAPs in 

different neuronal subcellular domains (Song and Brady 2015). Tubulin PTMs are involved, 

in some way, in regulating most of the processes in which MTs function, and aberrations in 

the normal pattern of PTMs could directly or indirectly lead to disease. The prime candidate 

for such diseases are those connected to malfunctions of MTs that normally exhibit high 

levels of PTMs, such as neurodegeneration (Janke and Bulinski 2011). 

 

 
Figure 9.  PTMs of tubulin and microtubules vary in different regions of a neuron and change 

during neuronal differentiation.  

Modification levels for detyrosination (T), Δ2 tubulin (Δ2), acetylation (A), glutamylation (E), and 
polyamination (P) are shown in both a developing neuron (upper) and a mature neuron (lower). 
Tubulin modifications change both quantitatively and qualitatively as indicated. (from Song and 
Brady, 2015) 
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Many major human neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s 

disease and amyotrophic lateral sclerosis (ALS), display axonal pathologies including 

abnormal accumulations of proteins and organelles. Evidence of axonal transport defects in 

neurodegenerative diseases emerged from microscopy studies showing that, in these 

disorders, some cargoes that are usually conveyed along the axons, such as cytoskeletal 

components and mitochondria, can accumulate in the perikaryon, the proximal segment of the 

axon or the distal part of it. Now, it’s known that disruption of axonal transport is an early and 

perhaps causative event in many of these diseases, since this is an essential process in neurons 

because of the extreme polarity and size of these cells. In fact, most neuronal proteins are 

synthesized in the cell body, thus anterograde axonal transport has a role in supplying proteins 

and lipids to the distal synapse and mitochondria for local energy requirements, whereas 

retrograde transport is involved in the clearance of misfolded and aggregated proteins from 

the axon and the intracellular transport of distal trophic signals to the soma. The main 

mechanism to deliver cellular components to their actions site is long-range MT-based 

transport. The two major components of this transport machinery are molecular motors and 

MTs, the rails on which they run. Anyway, the mechanisms by which axonal transport could 

be disrupted in disease are varied and can occur via damage to the molecular motors, damage 

to MTs, damage to cargoes and damage to the ATP fuel supply (mitochondria), contributing 

all of them to the neurodegeneration (De Vos et al. 2008).  It is also possible that various 

axonal transport insults could lead to a convergent neurodegenerative pathway that affects the 

most vulnerable neurons. The identification of mutations in genes encoding proteins that are 

known to be involved in axonal transport, together with the observation that chronic exposure 

to some chemicals can provoke axonal transport disturbances and subsequent 

neurodegeneration, strongly support the view that defective intracellular transport can directly 

trigger neurodegeneration (Millecamps and Julien 2013). Even if the mechanisms by which 

axonal transport is disrupted in disease are varied, the principal system to be investigate 

should be the MT-based transport, being this one the most important transport system in the 

cells and particularly in neurons. Interestingly, in tauopathies, a group of clinically 

heterogeneous neurodegenerative disease showing alterations in the MT-associated protein 

tau, some mutations in MAPT gene, coding for tau, compromise the MT-binding function of 

tau, thereby reducing MT stability leading to impairment in axonal transport (Forman et al. 

2004). In accordance with this, also mutation in SNCA gene, coding for the small presynaptic 

protein α-synuclein, leading to neurodegenerative diseases called α-synucleinopathies, affects 

MT stability and MT-based transport, resulting in protein aggregates inclusion bodies, known 
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as Lewy bodies. Moreover, in an axonal transport deficits-related disorder as Charcot-Marie-

Tooth disease, a pharmacological approach to increase tubulin acetylation by HDAC6 

inhibitors has succeeded in correcting the axonal transport defects and consequently rescuing 

disease-related phenotypes in mouse model of the disease (d’Ydewalle et al. 2011). 

According to these evidences, axonal transport defects and in particular MTs should be 

considered as a suitable therapeutic targets in neurodegenerative diseases.    
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1.2  Parkinson’s disease 
 
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder 

after Alzheimer’s disease and affects 1% of the population worldwide after the age of 65 

years (Forman et al. 2004). Clinically, PD is characterized by motor impairment and some 

non-motor symptoms such as mood, sleep and cognitive disturbances (Fahn 2003). Its central 

pathological feature is the selective degeneration of dopaminergic neurons of the Substantia 

nigra pars compacta (SNpc) that have their projections in the Corpus striatum (CS). This 

degeneration leads to a severe dopamine (DA) deficiency in the CS, the brain region 

controlling voluntary locomotor activities, resulting in the typical symptoms of parkinsonism 

as tremor, rigidity and bradykinesia (Dauer and Przedborski 2003).  

 

 

Figure 10. Neuropathology of Parkinson’s disease. 

(A) Schematic representation of the normal nigrostriatal pathway (in red). It is composed of 
dopaminergic neurons whose cell bodies are located in the Substantia nigra pars compacta (SNpc; see 
arrows). These neurons project (thick solid red lines) to the basal ganglia and synapse in the Corpus 

striatum. The photograph highlights the normal pigmentation of the SNpc, produced by neuromelanin 
within the dopaminergic neurons. (B) Schematic representation of the diseased nigrostriatal pathway 
(in red). There is a marked loss of dopaminergic neurons that project to the putamen (dashed line) and 
a much more modest loss of those that project to the caudate (thin red solid line). The photograph 
demonstrates depigmentation (i.e., loss of dark-brown pigment neuromelanin; arrows) of the SNpc due 
to the marked loss of dopaminergic neurons. (modified from Dauer and Przedborski, 2003) 
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The nigral damage, however, is always accompanied by extensive extranigral pathology, 

involving also a number of other neuronal populations in brain region as cortex, thalamus and 

subthalamic nuclei (Braak et al. 2003). Thus, a new definition of PD should acknowledges the 

disease as a multisystem synucleinopathy with pathology extending beyond the confines of 

the central nervous system and clinical manifestation extending beyond dopamine cell loss in 

the SNpc (Stern et al. 2012). The other pathological hallmark of PD is the presence of specific 

inclusion bodies, which develop as thread-like Lewy neurites (LNs) in cellular processes, and 

in the form of globular Lewy bodies (LBs) in neuronal perikarya (Braak et al. 2003), 

composed predominantly of the presynaptic protein α-synuclein (α-syn) (Spillantini et al. 

1997).  

The bases for such degeneration are presently unknown and current therapies offer just the 

management of symptoms rather than prevention of neuron death and block or reverse of the 

disease progression. Although in the majority of PD cases are sporadic, genetic studies have 

uncovered a number of genes that, when mutated, are associated with familial PD or increased 

risk of the disorder as well as polymorphisms that enhance disease susceptibility (Hardy 

2010). These PD-related proteins include α-syn, parkin, DJ-1, PINK1 and LRRK2, and are 

responsible for less than 10% of PD cases (Dawson and Dawson 2010). In spite of the 

etiology of PD is still unclear, both genetic and environmental components are considered to 

contribute to the disease (Greenamyre et al. 2003; Vance et al. 2010; Cannon and Greenamyre 

2013). It’s well known that parkinsonism can also be induced by exposure to environmental 

toxins, such as pesticide, chemical compounds and hydrocarbon solvents. Among them, 2,5-

hexanedione (2,5-HD), the toxic metabolite of n-hexane, has been shown to induce 

parkinsonism in animals and humans (Spencer and Schaumburg 1985; Pezzoli et al. 1990; 

Pezzoli et al. 2000) and to affect the cytoskeleton in vitro and in vivo models (LoPachin and 

DeCaprio 2004; Song et al. 2007; Wang et al. 2008). So far the most studied PD-toxins have 

been resulted to be potent inhibitors of complex I of electron transport chain, thus 

mitochondrial dysfunction has been considered for long time the principal culprit of neuronal 

death in PD (Yao and Wood 2009; Malkus et al. 2009). The best studied PD-toxin is surely 

MPTP, that was associated with PD in 1982, when some young drug users developed an acute 

permanent parkinsonian syndrome (Langston et al. 1983). Later on, it was confirmed that 

MPTP could induce parkinsonism also in primates and rodents, since it could easily surpass 

the blood-brain barrier and then be converted by astrocytes into its active metabolite MPP+, 

that is selectively up-taken by dopaminergic neurons through the dopamine transporter (DAT) 

rendering these neurons particularly vulnerable (Dauer and Przedborski 2003) (Fig. 11). 
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MPP+ is a potent inhibitor of mitochondrial complex I, but it also alters MT dynamics and can 

act on different organelles. 

 

                                 

                                               

Figure 11. Schematic representation of MPTP metabolism. 

(A) After systemic administration, MPTP crosses the blood-brain barrier. Once in the brain, MPTP is 
converted within non-dopaminergic cells, such as glial cells, to MPP+ by monoamine oxidase B 
(MAO-B) and further unknown mechanism (?). Thereafter, MPP+ is released into the extracellular 
space. MPP+ is concentrated into dopaminergic neurons via the dopamine transporter (DAT). (B) 
Inside dopaminergic neurons, MPP+ can follow one of three routes: (1) block the complex I of 
mitochondrial electron transport chain; (2) interaction with cytosolic enzymes; (3) sequestration into 
synaptic vesicles via the vesicular monoamine transporters (VMAT). The interaction also with MTs 
has been proved (not shown).(modified from Dauer and Przedborski, 2003) 

A 

B 
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Figure 12. Molecular processes involved in PD pathogenesis as highlighted by genetic findings. Using 
genes recently nominated as risk factors for idiopathic PD along with those responsible for familial 
PD, it is possible to extrapolate a number of cellular processes that may underlie disease development. 
Each large gray circle represents a biological process and details the genes linked to it. Genes listed in 
italics represent nominated risk factors for idiopathic PD, identified through GWAS, whereas those in 
normal font are associated with familial PD. An asterisk denotes that the gene is linked to both forms 
of the disorder. Some genes like SNCA and LRRK2 are associated with multiple processes. While the 
majority of cellular pathways contribute to both familial and sporadic forms of the disease, 
neuroinflammations likely plays a more prominent role the latter. Conversely, mitochondrial 
dysfunction shows a greater association with familial PD. (from Kumaran and Cookson, 2015) 
 

Interestingly, MTs interact with some of the proteins mutated in PD, like α-syn (Alim et al. 

2002) and parkin (Ren et al. 2003), and they are involved in the mechanism of action of 
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model PD toxins as MPP+ and rotenone (Feng 2006). In particular, MPP+ is able to influence 

the state of tubulin polymerization in cultured neuron-like cells (Cappelletti et al. 1999) and to 

act directly on MTs in vitro by affecting their assembly and dynamics (Cappelletti et al. 

2005), while rotenone is known to induce MT depolymerization in vitro. MPP+ has been also 

proven to decrease anterograde and increase retrograde axonal transport of membranous 

vesicles in squid axoplasm (Morfini et al. 2007). There is a limited range of acceptable MT 

dynamic behaviours in neurons, outside of which MTs cannot function normally and the cells 

cannot survive (Feinstein and Wilson 2005). Moreover, dopaminergic neurons, appears to be 

particularly sensitive to any insults that could damage the MT cytoskeleton because of their 

peculiar architecture, characterized by an extremely widespread arborization and particularly 

long axons, that made their function and survival strongly dependent on intracellular 

trafficking (Hunn et al. 2015).  

PD can be defined as a disease of impaired intracellular trafficking, selectively leading to the 

dopaminergic neurons death. The typical hallmark lesions of the disease are the LB inclusion, 

which are mainly composed of hyperphosphorylated α-syn. Mutations in the gene coding α-

syn cause familial autosomal dominant PD, and revealed a reduced transport rates of the 

mutants, with the consequent disruption of α-syn transport that may contribute to the 

accumulation of this protein in LB (Saha et al. 2004). Even analysis of post-mortem patient 

brains showed that kinesin and cytoplasmic dynein subunit levels are decreased in sporadic 

PD, with kinesin levels being affected early on in the disorder, before dopaminergic loss (Chu 

et al. 2012). Consistent with these observations, dysfunction of MT system is emerging as a 

novel contributing factor in several neurodegenerative processes, including PD (Hunn et al. 

2015; Kumaran and Cookson 2015). 
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1.3  PARK2 gene 

 

Mutations in the PARK2 gene are the most frequent known cause of early-onset (<40–50 

years) PD (10–20% worldwide) with a percentage of about 50% of all recessive familial 

forms); however, the frequency of mutations decreases significantly with increasing age at 

disease onset (Corti et al. 2011). Exonic deletions in this gene were first reported in Japanese 

families with autosomal recessive juvenile-onset parkinsonism (ARJP) (Kitada et al. 1998). In 

fact, dysregulation of this gene leads to the selective loss of dopaminergic neurons in the 

SNpc, together with loss of noradrenergic neurons in Locus coeruleus. Even if AR-JP patients 

display an onset frequently occurring before the age of 20, they present a clinical phenotype 

similar to that of sporadic PD patients, but also a number of specific clinical features, such as 

the lack of LB pathology in the most of cases (Feany and Pallanck 2003).  

 

 
Figure 13. Schematic representation of parkin on transcript level and the functional domains of 

the protein. Are shown the pathogenic frameshift mutations above the transcript and protein 
organizations and missense mutations below. Parkin is a 465-amino acid protein that contains an NH2-
terminal ubiquitin-like (UBL) domain followed by three RING (really interesting new gene) finger 
domains (RING 0–2) separated by a IBR (in-between-ring) domain in the COOH-terminal part. 
Numbers under the protein line indicate the boundaries of each domain. (modified from Corti et al., 
2011) 
 

Interestingly, despite the recessive inheritance pattern of PARK2 mutations induced familial 

PD, heterozygous mutations have been found in some cases of idiopathic PD; furthermore, 
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evidences of nigro-striatal abnormalities in individuals with heterozygous mutations have 

been observed, even if asymptomatic. This suggests that PARK2 haploinsufficiency might be 

a risk factor for developing the disease (Khan et al. 2005).  Later on, more than 170 different 

mutations have been identified throughout the sequence of this particularly large gene (1.35 

Mb) made up of 12 exons, including large deletions or multiplications, small 

deletions/insertions as well as missense mutations, often resulting in exon rearrangements 

(Corti et al. 2011) (Fig. 13). PARK2 gene encodes for a 465-amino acids protein with a 

molecular weight of about 52 kDa, containing an NH2-terminal ubiquitin-like domain (UBL) 

followed by three RING (really interesting new gene) finger domains (RING 0–2) separated 

by a 51-residue IBR (In-Between-Ring) domain in the COOH-terminal part (Corti et al. 2011) 

(Fig. 13).  

 

 
Figure 14. Model of parkin inhibition and activation. 

(1) Inhibition: wt parkin is auto-inhibited in the absence of phospho-ubiquitin. PINK1 activation leads 
to phosphorylation of the accessible S65 in both parkin and ubiquitin. (2) Optimization: Parkin 
phosphorylation stabilizes the flipped-out conformation of H302, thus optimizing the phosphate-
binding site. (3) Release: Phospho-ubiquitin binds to helix H3 of the RING1 domain, leading to 
displacement of the Ubl domain and loss of structure near the RING1/IBR interface. (4) Engagement: 
The ubiquitin and E2 binding surfaces uncovered by displacement of the Ubl domain engage with 
charged E2~Ub conjugate poised for ubiquitin transfer. (from Kumar et al., 2015) 
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Functionally, parkin is an E3 ubiquitin ligases (Shimura et al. 2000), thus together with 

ubiquitin-activating (E1) and ubiquitin-conjugating (E2) enzymes confers substrate specificity 

in the ubiquitination pathway, being responsible for the final transfer of activated ubiquitin 

molecules to a protein substrate. This process, termed ubiquitination, may have various 

biological significances, including signaling and proteasomal degradation of the modified or 

misfolded protein. In the ubiquitination process the RING finger domains are required to 

recruit E2 enzymes, while the UBL domain serves to interact with the substrate and 26S 

proteasome facilitating the degrading process (Shimura et al. 2000). Very recently, the 

molecular regulation of parkin E3 ligase activity has been unraveled, showing that parkin 

exists in an autoinhibited state. It is activated by phosphorylation of its N-terminal UBL 

domain, that primes parkin for optimal phospho-ubiquitin binding, that in turn leads to a 

consequent displacement of the Ubl domain, unveiling the ubiquitin-binding site used by the 

E2~Ub conjugate, thus leading to active parkin (Kumar et al. 2015) (Fig. 14). 

In addition to its ligase activity, parkin seems to participate in other cellular functions (Alves 

da Costa and Checler 2012); in fact, it is robustly expressed in many tissues, including brain, 

skeletal muscle, heart and liver tissues, which suggests that it has a widespread physiological 

role (Youle and Narendra 2011). Parkin is also able to interact with two target involved in the 

pathogenesis of PD: mitochondria and MTs. It’s already well known that parkin is involved 

through PINK1 pathway in mitochondrial dynamics, maintenance and mitophagy (Youle and 

Narendra 2011; Scarffe et al. 2014), regulating also the transport of damaged mitochondria 

before their degradation (Wang et al. 2011). Parkin as E3 ubiquitin ligase has specificity for a 

wide range of different substrates, such as Pael-R, CDCrel1, glycosylated α-syn, synphilin-1 

and many others. Very recently, it has also been reported that parkin interacts with the kainate 

receptor GluK2 subunit, regulating the receptor functions in vitro and in vivo (Maraschi et al. 

2014). Moreover, different studies have demonstrated the role of parkin in protecting neurons 

from diverse insults: α-syn toxicity, proteasomal inhibition, Pael-R accumulation and kainate-

induced excito-toxicity (Feany and Pallanck 2003). 

Interestingly, parkin is able to ubiquitinate α- and β- tubulin, regulating their degradation by 

the 26S proteasome (Ren et al. 2003). Moreover, it can bind tubulin/MTs through strong 

redundant and independent interactions mediated by three RING domain of parkin, resulting 

in MT stabilization (Yang et al. 2005). In fact, some PARK2 mutation can abolish the MT-

binding ability of the protein, making parkin unable to protect midbrain dopaminergic 

neurons from MT-depolymerizing toxins, such as rotenone or colchicine (Ren et al. 2009). 

Interestingly, in human iPSCs-derived neurons the complexity of neuronal processes was 
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greatly reduced in both dopaminergic and non-dopaminergic neurons from PD patients with 

PARK2 mutations and that MT stability was significantly decreased as demonstrated by the 

reduction in MT mass (Ren et al. 2015).  

Several parkin knockout (KO) mice have been developed, although none has shown 

substantial dopaminergic or behavioural abnormalities, except for subtle nigrostriatal and 

Locus coeruleus alterations. These mice show a higher susceptibility both to neurotoxins and 

inflammatory stimuli, suggesting that parkin mutations may sensitize dopaminergic neurones 

to cellular insults (Blandini and Armentero 2012). On the other hand, transgenic mice 

overexpressing the Q311X parkin mutation selectively in dopaminergic neurones developed 

progressive motor deficits and age-dependent nigrostriatal degeneration, as well as a-

synuclein pathology, thereby suggesting that mutant parkin proteins may act a dominant-

negative modulators (Lu et al. 2009). 

In conclusion, parkin acts as a multipurpose neuroprotective agent against a variety of toxic 

insults, resulting necessary for neuronal functionality and survival, especially for 

dopaminergic neurons, through different pathways, especially MT stabilization. 
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1.4  2,5-Hexanedione 

 

The neurotoxic property of certain hexacarbon solvents was discovered in Japan in the early 

1960s, when workers exposed to hexanes in the laminating industry developed a sensorimotor 

polyneuropathy. Similar outbreaks of neuropathy were subsequently reported in Japan, 

Europe, and the U.S.A. (Spencer et al. 1980). After cessation of exposure, the severity of the 

neurological deficit has been observed to progress from 1 to 4 months, followed by recovery. 

The degree of recovery is inversely related to the severity of the neuropathy, and is complete 

in mild cases, while in most severely affected workers the damage persists (Graham et al. 

1995). Japanese physicians also identified the first case of neurological disease in individuals 

inhaling solvent vapours for their euphoric properties, a practise which subsequently let to the 

discovery of “glue-sniffers” neuropathy in other countries. The common thread linking the 

industrial and glue-sniffers neuropathies was repetitive exposure to normal hexane (n-

hexane). Since this compound had enjoyed wide usage, it was generally regarded as having a 

low toxicity potential, but this idea was finally overthrown when unequivocal 

neuropathological damage was demonstrated in exposed rats similar to that reported from 

examination of nerve biopsies from those patients (Spencer et al. 1980). 

 

 

Figure 15. The reactions of n-hexane in cell leading to cross-linked proteins.  

The common solvents n-hexane and methyl n-butyl methane are converted to the ultimate toxicant, 
2,5-hexanedione (2,5-HD). 2,5-HD reacts with lysyl ε-amines of proteins (black rectangle) to form 
pyrrolylated proteins, which undergo intra- and inter-molecular cross-linking reactions, including 
dimer formation. (Boekelheide et al. 2003) 
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Thus nowadays, it’s well-known that exposure to occupational and environmental solvent 

mixture containing n-hexane, cause peripheral neuropathy and damage to central nervous 

system, inducing axon atrophy and subsequent axonal swellings (LoPachin and DeCaprio 

2004). n-Hexane is metabolized in animals and humans to the γ-diketone 2,5-HD, a 

compound with substantially greater neurotoxic potency than the parent alkane (Spencer and 

Schaumburg 1985). In fact, 2,5-HD is able to react with the lysine group of proteins forming 

pyrrole adducts, which undergo secondary oxidation resulting in crosslinked proteins.  

Although this toxicant could potentially react with every protein containing lysine groups, it’s 

certain that 2,5-HD preferentially interacts with various components of the cytoskeleton and 

in particular with NFs (Graham et al. 1995). This results in the degeneration of the distal 

extent of the longest axons in the peripheral and central nervous system, preceded by the 

aggregation of NFs in the axoplasm, with the formation of large NF-filled swellings proximal 

to nodes of Ranvier (Graham 1999). The resulting neuropathy was termed by Cavanagh 

(Cavanagh 1964) a “dying back” neuropathy, that has been observed in many neurological 

diseases, PD included.  

 

 

Figure 16. Typical distal axonopathy following 2,5-HD exposure.  

Chronic exposure to n-hexane or their toxic metabolite, 2,5-hexanedione (Hexanedione) results in 
large swellings of the distal axon filled with NFs. With continued exposure, axonal degeneration 
develops distal to the axonal swellings. (from Graham et al., 1995) 
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Since different diseases could have the same pathological mechanism(s), it’s crucial to 

understand the biochemical basis of this toxin-induced neurodegeneration. The crosslinking 

of NFs and their consequent accumulation in the axonal swellings has been considered the 

central event in the γ-diketone axonopathy, however, 2,5-HD appeared to affect also the 

function of MT-associated proteins, such as motor proteins or MAPs (Zhang et al. 2010; Han 

et al. 2014) and MTs themselves  (Boekelheide 1987a; Boekelheide 1987b; Markelewicz et 

al. 2004), resulting in an impairment of axonal transport, a dysfunction already described in 

many neurodegenerative diseases (De Vos et al. 2008). The axonal transport defects, in fact, 

could explain why the NFs are apparently the most affected cytoskeletal component by this 

compound, since along the length of the axon the NFs appear as a continuous filament that 

moves down the axon at 1mm/day, the slowest moving component of axoplasm. It follows 

that it would be vulnerable to progressive derivatization and crosslinking during chronic 

intoxication, respect to the more dynamic and fast moving MTs and microfilaments (Graham 

and Gottfried 1984). Moreover, just the accumulation of NFs does not appear to explain the 

onset distal axonal degeneration, since wt mice and transgenic mice not expressing NFs, 

revealed similar patterns of distal axonal degeneration in 2,5-HD neuropathy, which is likely 

to be a consequence of axonal transport impairment (Stone et al. 1999; Stone et al. 2001). The 

2,5-HD, like other toxins such as pesticides and chemical compounds, has been clearly 

correlated also to parkinsonism in occupational exposed humans and in experimental animals 

(Pezzoli et al. 1990; Pezzoli et al. 2000; Qing-Shan and Xie 2009). Some individuals with 

particular genotype may have difficulty in metabolizing one or more environmental toxins 

(Vanacore et al. 2000; Canesi et al. 2003), and this could results in an increased susceptibility 

to develop PD following toxin exposure. However, in previous studies, the effects of 2,5-HD 

on intermediate filaments have been extensively described in different cell lines (Durham et 

al. 1988; Malorni et al. 1989; Sager 1989), but both microfilaments and MTs were poorly 

investigated. On this purpose, we took advantage of this toxin-induced experimental model of 

PD neurodegeneration to study in deep the MT dysfunction, also in combination with 

different genetic backgrounds. 
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Aim of the project_____________________________________________________ 
 

Many neurodegenerative diseases are characterized by adult-onset, progressive accumulations 

of specific proteins in different types of neurons. Whether such protein accumulations are the 

cause or the consequence of axonal transport defects is still a subject of debate. Anyway, it is 

commonly assumed that disturbances in axonal transport are key pathological events that 

contribute to neurodegeneration, making them a suitable therapeutic targets in 

neurodegenerative diseases (Millecamps and Julien 2013). Even if the mechanisms by which 

axonal transport is disrupted in disease are varied, the principal system to be investigate 

should be the MT-based transport, being this one the most important transport system in the 

cells and particularly in neurons.  

Among the major human neurodegenerative diseases, also PD can be defined as a disease of 

impaired intracellular trafficking through the dysfunction of dopaminergic pathway (Hunn et 

al. 2015). Although, the majority of PD cases are sporadic, both genetic and environmental 

components are considered to contribute to the disease (Vance et al. 2010; Cannon and 

Greenamyre 2013). Notably, MTs have been found to interact with some of the proteins 

mutated in PD and to be affected by the action of some PD toxins (Feng 2006). Therefore, in 

the last years, the MT dysfunction has become an emerging hypothesis in PD pathogenesis 

(Feng 2006; Cappelletti et al. 2015).  

In this scenario, our aim was to get lines of evidence from different experimental models that 

could suggest if the early PD pathogenesis is likely to be a consequence of and be defined by 

MT dysfunction. On this purpose, the role of MTs has been studied in detail, taking advantage 

of both a gene- (using mainly PARK2 mutations) and toxin- (using 2,5-HD) based models of 

PD neurodegeneration. Since dopaminergic neurons, appears to be particularly sensitive to 

any insult that could damage the MT cytoskeleton because of their peculiar architecture, 

characterized by an extremely widespread arborization and particularly long axons that made 

their function and survival strongly dependant by intracellular trafficking (Hunn et al. 2015), 

NGF-differentiated PC12 cells have been extensively studied as a model of dopaminergic 

neurons in culture. In addition, MT dysfunction was analysed also in vitro, in vivo using 

PARK2 transgenic mice and human models, including primary skin fibroblasts and post-

mortem brain samples from PD patients. 
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Main results___________________________________________________________ 
 

Cytoskeletal and MT dysfunctions were initially investigated in the context of toxin-based 

neurodegeneration using NGF-differentiated PC12 cells, as a model of dopaminergic neurons 

in culture, exposed to 2,5-HD. Thus, the characterization of the cytoskeleton following 

different concentrations of 2,5-HD (0.2 mM, 2 mM and 20 mM) has been carried out, 

resulting in a transient increase of actin level and the decrease of both form of NFs 

investigated, while the tubulin level was unchanged. On the other hand, the 

immunofluorescence microscopy revealed an impact on all the cytoskeletal components, 

highlighting actin ruffles, NFs accumulations in the soma and along the neurites and, finally, 

the fragmentation of the MT network. The analyses of tubulin PTMs also showed an 

imbalance of MT system, with a different level and distribution of MTs bearing specific 

PTMs. In fact, acetylated and detyrosinated tubulin levels, associated with stable MTs, were 

significantly increased and accumulated in the perinuclear zone, while the tyrosinated tubulin, 

marker of dynamic MT pool, concomitantly decreased. Consistent with these results, also the 

MT fraction was higher compared to free tubulin fraction in cell, revealing a MT-stabilizing 

effect of 2,5-HD. Unfortunately, it was no possible to see any effect on tubulin 

polymerization and MT formation in vitro in the tested conditions, probably because the 

lacking of a pre-incubation time between tubulin and the toxin. Even some mitochondrial 

effects observed, in term of increased ROS production and decreased mitochondrial 

fission/fusion (DRP1 and MFN2, respectively) protein levels, emerged later than those seen 

for cytoskeleton and tubulin PTMs (Casagrande et al. to be submitted, in PART II). Live cell 

imaging showed that the absence of parkin in PARK2-silenced neuronal-like cells, affected 

MT system causing a MT destabilization, that consequently lead to altered mitochondria MT-

based transport. This axonal transport defects were restored by the MT-stabilizing agent 

paclitaxel, confirming the importance of modulation of parkin on MT stability (Cartelli et al. 

to be submitted, in PART II).  

In agreement with the data obtained in PC12 cells, the cytoskeleton organization has been 

investigated and resulted altered also in primary fibroblasts deriving from patients with 

idiopathic or genetic PD, carrying mutations in PARK2 and LRRK2. All parkinsonian 

fibroblasts had a reduced MT mass, represented by a higher fraction of unpolymerized tubulin 

in respect to control cells, and displayed significant changes in MT stability-related signaling 

pathways, without any activation of autophagy or apoptosis. Furthermore, we show that the 

reduction of MT mass is so closely related to the alteration of cell morphology and behaviour 
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that both pharmacological treatment with MT-targeted drugs, and genetic approaches, by 

transfecting the wt parkin or LRRK2, could restore the proper MT stability and were able to 

rescue cell architecture. All these data suggest that different mechanisms of 

neurodegeneration can convergence on the same pathway in both genetic and idiopathic forms 

of parkinsonism, highlighting, for the first time, that MT dysfunction occurs in patients and 

not only in experimental models of PD (Cartelli et al. 2012, and Casagrande et al. to be 

submitted, in PART II). Moreover, fibroblasts from PD patients carrying mutations in PARK2 

resulted much more susceptible to 2,5-HD-dependent MT stabilization than healthy controls, 

suggesting that the genetic background may really make the difference in MT susceptibility to 

environmental factors (Casagrande et al. to be submitted, in PART II). 

The imbalance of tubulin PTMs, associated with MTs that behave differently, occurred not 

only in neuronal-like cell model but also in PARK2 KO mice, preceding the block of 

mitochondrial transport (Cartelli et al. to be submitted, in PART II). Even in in PARK2
+/- 

mice the MT system resulted more dynamic respect to wt ones, revealing by the increased 

level of tyrosinated tubulin both in lysates from ventral mesencephalon, containing the SNpc, 

and CS and in immunofluorescence analysis of brain slices. In addition, these heterozygous 

mice were found surprisingly more active than wt mice, considering the speed, the total 

distance travelled and the time of immobility (Casagrande et al. manuscript in preparation, in 

PART III). 

More importantly, the increased fragmentation of the acetylated MTs (stable pool) has been 

reported in iPSC-derived ventral midbrain neurons obtained from PARK2 PD patients, 

indicating again parkin as a regulator of MT stability in neurons (Cartelli et al. to be 

submitted, in PART II).  

In conclusion, evidences emerging from the multiple approaches and experimental models 

employed in this PhD work together with data coming from other laboratories converge on 

and reinforce the idea that MT dysfunction may be important in the PD pathogenesis 

(Cappelletti et al. 2015, in PART II). 
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Conclusions____________________________________________________________ 
 

All the data presented in this thesis clearly indicate that MT system has a key role in 

neurodegeneration processes. The evidences from both gene- and toxin-based experimental 

models of PD have revealed that any perturbations of the equilibrium of MT dynamics lead to 

the impairment of the axonal and intracellular transport with serious consequences on the 

maintenance and survival of cells, especially of dopaminergic neurons (Cartelli et al., 2012; 

Casagrande et al., to be submitted, in PART II). Moreover, the genetic background we 

investigated (PARK2 mutations) can make the MT cytoskeleton even more susceptible to 

various environmental insults, probably because of the lacking neuroprotective and MT-

stabilizing action of parkin. More importantly, our data also suggests for the first time the 

direct regulation of parkin on MTs occurs through the modulation of tubulin PTMs in both 

mice and human neurons, together with the observation that MT system in the PD patients 

and experimental models is destabilized respect to controls (Cartelli et al., to be submitted, in 

PART II). We also demonstrated that the other PD-linked protein α-syn is as a novel, 

foldable, microtubule-dynamase, which organizes the MT cytoskeleton at the presynapse, 

through its binding to tubulin and its regulation of MT nucleation and dynamics, and lend 

support to the concept that the a-syn/MT interaction plays a pivotal role in modulating 

synaptic physiology and its alteration can cause neuronal dysfunction (Cartelli et al., 

submitted, in PART III). Thus, MT stabilizing strategies may offer an opportunity for treating 

neurodegenerative diseases. Importantly, we have recently demonstrated that this may be true 

also in PD showing that Epothilone D, a MT stabilizer drug, exerts neuroprotective effects in 

a toxin-based murine model of PD (Cartelli et al., 2013, in PART III).  

Future work will be focused on further characterization of the molecular mechanisms 

involved in cytoskeleton dysfunction in PD neurodegeneration, including signalling pathways 

converging on the regulation of MT system. Since both toxic and transgenic classes of animal 

PD models have their own specificities and limitations, and above all they do not recapitulate 

the all the key features of PD, it is more and more crucial to step forward in the study of 

human samples closer to the real condition of the patients. Thus, we are going to use and 

analyse more in detail not only the patient brain samples available in the nervous tissue bank, 

but in particular the powerful cutting-edge model of the pluripotent stem cells (iPSCs)-

derived dopaminergic ventral midbrain neurons, obtained from PD patient fibroblasts. 
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Abstract

Data from both toxin-based and gene-based models suggest that dysfunction of the microtubule system contributes to the
pathogenesis of Parkinson’s disease, even if, at present, no evidence of alterations of microtubules in vivo or in patients is
available. Here we analyze cytoskeleton organization in primary fibroblasts deriving from patients with idiopathic or genetic
Parkinson’s disease, focusing on mutations in parkin and leucine-rich repeat kinase 2. Our analyses reveal that genetic and
likely idiopathic pathology affects cytoskeletal organization and stability, without any activation of autophagy or apoptosis.
All parkinsonian fibroblasts have a reduced microtubule mass, represented by a higher fraction of unpolymerized tubulin in
respect to control cells, and display significant changes in microtubule stability-related signaling pathways. Furthermore, we
show that the reduction of microtubule mass is so closely related to the alteration of cell morphology and behavior that
both pharmacological treatment with microtubule-targeted drugs, and genetic approaches, by transfecting the wild type
parkin or leucine-rich repeat kinase 2, restore the proper microtubule stability and are able to rescue cell architecture. Taken
together, our results suggest that microtubule destabilization is a point of convergence of genetic and idiopathic forms of
parkinsonism and highlight, for the first time, that microtubule dysfunction occurs in patients and not only in experimental
models of Parkinson’s disease. Therefore, these data contribute to the knowledge on molecular and cellular events
underlying Parkinson’s disease and, revealing that correction of microtubule defects restores control phenotype, may offer a
new therapeutic target for the management of the disease.
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Introduction

Parkinson’s disease (PD) is the most common motor neurode-

generative disorder, characterized by the loss of dopaminergic

neurons in the substantia nigra. Although it has been extensively

studied, its molecular etiopathogenesis is not well understood [1].

Monogenic forms of the disorder account for up to 10% of

parkinsonisms, and mutated parkin and leucine-rich repeat kinase 2

(LRRK2) are responsible for the majority of genetic PD cases [2].

Although parkin and LRRK2 seem to act on different physiolog-

ical processes, being parkin an E3 ligase catalyzing the addition of

ubiquitin to target proteins [3] and LRRK2 a multi-domain

protein involved in the regulation of neuronal process elongation

[4], their actions converge on microtubules (MTs) [5,6].

MTs are cytoskeletal polymers built up by a/b tubulin

heterodimers, which participate in many cellular functions, such

as morphology acquisition, cell migration and intracellular

transport. MTs usually show a dynamic behavior switching

between slow growth and rapid depolymerization [7]. a-Tubulin

post-translational modifications (PTMs) correlate with subsets of

MTs that behave differently: tyrosinated (Tyr) MTs are the most

dynamic subset, acetylated (Ac) or detyrosinated (deTyr) MTs are

more stable pools [8].

Several recent studies have highlighted the crucial role of MTs

during PD progression. Indeed, many PD-linked proteins, such as

parkin, LRRK2 and a-synuclein, are able to modulate the stability

of MTs [9–11]. However, nothing has been reported about

their ability to regulate a-tubulin PTMs. Further evidence has

been obtained from neurotoxic models of PD: both rotenone and

1-methyl-4-phenyl-piridinium (MPP+) destabilize MTs in vitro

[12,13] and in neuronal cells [14,15]. Moreover, we have

demonstrated the importance of a-tubulin PTMs in PD pathology,

reporting that MPP+ causes an early change in MT stability [15].

All these data highlight the importance of MT dysfunction in PD

experimental models, but the demonstration of MT involvement

in human disease is still lacking.

Post-mortem analyses of human brain could reveal molecular

alterations present in the very late phases of neurodegenerative

diseases, with the great disadvantage of working with dead tissues.

On the other hand, peripheral tissues are a unique source of

human living cells, and in the last few years they have become

reliable models for the identification of molecular alterations and

possible therapeutic targets in neurodegenerative disorders,

including PD [16–19]. As recently highlighted [20], human skin

fibroblasts are an easy available and robust PD experimental

model, due to some of their peculiarities: they express most of the

gene relevant to PD and mirror the polygenic risk factors of

specific patient; they comprise the chronological and biological

aging other than the environmental exposition, reflecting all the

cumulative cell damage of the patient; they make very dynamic

contacts as neurons do.
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On this basis, here we analyzed fibroblasts from patients with

idiopathic PD or from patients carrying mutations in either parkin

or LRRK2 to establish whether MT alterations are present in

baseline conditions or not. The principal findings we report are the

considerable reduction in fibroblast MT mass in PD patients with

respect to controls and the rescue resulting from either pharma-

cological or genetic approaches that stabilize MT system. Thus,

our results highlight that MT destabilization occurs in PD patients

and it seems to represent a point of convergence of genetic and

idiopathic parkinsonisms.

Materials and Methods

Ethics Statement and Patients
Primary fibroblasts were obtained by skin biopsies from 25

individuals, whose phenotype and genotype data are summarized

in Table 1, and that included 10 healthy volunteers as control

group and 15 patients affected by PD, divided into three different

pathological groups. Age distribution of each group is reported in

the scatter plot (Figure S1), and the statistical analyses did not

reveal significant differences in age between control and patient

groups. All patients were examined by movement disorder

neurologists and clinical diagnosis of PD was established

according to the UK Parkinson Disease Society Brain Bank

criteria [21,22]. The LRRK2 G2019S missense mutation and

mutations on the parkin (PRKN) gene were screened as previously

described [23,24].

The study was approved by the local ethics committee (Istituti

Clinici di Perfezionamento, July 13th 2010) and all participants

gave written informed consent.

Cell Culture and Morphometric Analyses
Human fibroblasts were cultured in RPMI 1640 (Hyclone,

Logan, UT, USA) containing 15% foetal bovine serum (HyClone)

supplemented with 2 mM L-glutamine, 100 U/ml penicillin,

100 mg/ml streptomycin, at 37uC in a humidified atmosphere,

5% CO2. For transfection experiments, human fibroblasts were

plated at the density of 5000 cells/well. The day after cells were

transiently transfected using Lipofectamine 2000 (Invitrogen) (1:3

DNA to Lipofectamine ratio, 1.5 mg of DNA per well) and

analyzed 24 h after transfection. All the plasmids for parkin

silencing and over-expression (Figure S2) were supplied by

Dr. Sassone (IRCCS Istituto Auxologico Italiano, Milano, Italy)

The plasmids encoding untagged human parkin was generated by

in-frame insertion of a PCR-amplified DNA fragment encoding

human parkin into the pcDNA4-Myc-HIS vector. The fragment

was then subcloned in the pECFP-C1 vector to produce in frame

CFP-tagged parkin. As negative control a plasmid encoding EGFP

mRNA was used. Plasmid encoding short hairpin RNA (shRNA)

selective for human parkin was generated with the GatewayH

Table 1. Phenotype and genotype characterisation of investigated individuals.

COD PHENOTYPE GENOTYPE SEX AGEa AGE OF ONSET b

CONT FFF0311991 HEALTHY F 39

FFF0541986 HEALTHY M 41

FFF0191992 HEALTHY M 43

FFF0531978 HEALTHY F 44

FFF0961978 HEALTHY M 44

FFF0401991 HEALTHY F 46

FFF0521978 HEALTHY M 51

FFF0421991 HEALTHY M 54

FFF0422011 HEALTHY M 69

FFF0412011 HEALTHY F 64

PARK FFF0302009 AFFECTED c.C815G (p.C238W); exon 6–7 del. F 57 30

FFF1072009 AFFECTED c.del202_203AG (p.Q34/X43); exon 4–6 del. M 53 40

FFF0142009 AFFECTED c.C924T (p.R275W); exon 3 del. F 41 22

FFF0292009 AFFECTED exon 3 del (homozygotes) F 69 39

FFF0902009 AFFECTED c.del202_203AG (p.Q34/X43) (homozygotes) M 51 20

FFF0072010 AFFECTED c.del202_203AG (p.Q34/X43) (homozygotes) F 59 39

LRRK2 FFF0642009 AFFECTED p.G2019S (heterozygotes) F 58 41

FFF0962009 AFFECTED p.G2019S (heterozygotes) M 47 40

FFF0112010 AFFECTED p.G2019S (homozygotes) M 68 63

FFF0092009 AFFECTED p.G2019S (heterozygotes) M 46 35

FFF0502009 AFFECTED p.G2019S (heterozygotes) F 61 46

FFF0452009 AFFECTED p.G2019S (heterozygotes) M 79 72

PD FFF0562009 AFFECTED X M 71 66

FFF0542009 AFFECTED X M 68 52

FFF0202010 AFFECTED X M 50 42

aAge at time of skin biopsy and establishment of fibroblast cell line.
bThe age at which the patient first noticed a PD-related symptom was considered the age of onset of the disease.
doi:10.1371/journal.pone.0037467.t001
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recombination cloning technology (Invitrogen, Carlsbad, CA).

The sequence is: sh-183: 59 CACCGGATCAGCAGAG-

CATTGTTCACGAATGAACAATGCTCTGCTGATCC 39.

The double stranded DNA oligo encoding a sense-loop-

antisense sequence to the targeted gene was cloned into the

pENTRTM/U6 entry vector. The shRNA cassettes was then

transferred into the plasmid pBLOCK-iT 3-DEST, suitable for

GeneticinH selection. As negative control a plasmid encoding

shRNA for bacterial lacZ mRNA was used. LRRK2 constructs

[25] were kindly gifted by Dr. Greggio (Department of Biology,

University of Padova, Padova, Italy).

For pharmacological treatment, control and patient fibroblasts

were plated at the density of 5000 cells/well. The day after cells

were incubated 2 h with 10 mM of Paclitaxel dissolved in

methanol (Sigma-Aldrich, St Louis, MO), Nocodazole dissolved

in methanol (Sigma-Aldrich) or Thiocolchine dissolved in DMSO

(provided by Dr. Passarella, Dep. of Industrial and Organic

Chemistry, Univ. of Milan, Italy) and then analyzed.

In all assays, the fibroblast passage numbers were matched

(,10). For morphometric analyses, 5 to 10 random images per

plate were captured using an Axiovert 200 M microscope (Zeiss,

Oberkochen, Germany), and analyses were made using digital

image processing software (Interactive measurement module,

Axiovision, Zeiss). All cells in each image were analyzed.

Immunofluorescence Microscopy
Cells were fixed with cold methanol or 4% paraformaldehyde

and incubated with the following primary antibodies and probes:

a-tubulin mouse IgG (clone B-5-1-2, Sigma-Aldrich, St Louis,

MO); deTyr tubulin rabbit IgG (Chemicon, Temecula, CA); Tyr

tubulin mouse IgG (clone TUB-1A2, Sigma-Aldrich); Ac tubulin

mouse IgG (clone 6-11B-1, Sigma-Aldrich); vimentin mouse IgG

(clone V6, Sigma-Aldrich); Phalloidin-Tetramethylrhodamine B

isothiocyanate and 49,6-Diamidino-2-phenylindole dihydrochlo-

ride (Sigma-Aldrich). As secondary antibodies we used Alexa

FluorTM 568 donkey anti-mouse, and Alexa FluorTM 488 goat

anti-rabbit (Invitrogen, Carlsbad, CA). The coverslips were

mounted in MowiolH (Calbiochem, San Diego, CA)–DABCO

(Sigma-Aldrich, St Louis, MO) and examined with the Axiovert

200 M microscope.

Western Blot Analysis
Whole cell extracts, Triton X-100 soluble and insoluble

fractions of human fibroblasts were prepared as previously

reported [26]. Equal proportions of each fraction or protein

samples from whole cell extracts (25 mg per lane) were separated

by 7 or 15% SDS-PAGE and blotted onto PDVF membranes

(ImmobilonTM-P, Millipore, Billerica, MA). Membranes were

probed with the following antibodies: a-tubulin mouse IgG (clone

B-5-1-2, Sigma-Aldrich, St Louis, MO); b-tubulin mouse IgG

(clone Tub 2.1, Sigma-Aldrich); deTyr tubulin rabbit IgG

(Chemicon, Temecula, CA); Tyr tubulin mouse IgG (clone

TUB-1A2, Sigma-Aldrich); Ac tubulin mouse IgG (clone 6-11B-

1, Sigma-Aldrich); microtubule-associated protein 1 light chain 3

rabbit IgG (Sigma-Aldrich); vimentin mouse IgG (clone V6,

Sigma-Aldrich); actin mouse IgM (N350, Amersham, Little

Chalfont, UK); Caspase 3 rabbit IgG (Enzo Life Sciences Ag.,

Lausen, Switzerland), GADPH mouse IgG (Biogenesis, Poole,

UK); Heat Shock Protein 70 mouse IgG (clone 3A3, Chemicon);

Glycogen synthase kinase 3 beta rabbit IgG (Abcam, Cambride,

UK); Phospho-Glycogen synthase kinase 3 beta (Ser9) rabbit IgG

(Cell Signaling Technology, Beverly, MA); p38 alpha MAP Kinase

mouse IgG (clone L53F8, Cell Signaling Technology); Phospho-

p38 MAP Kinase (Thr180/Tyr182) rabbit IgG (clone 3D7, Cell

Signaling Technology); p44/42 MAPK (Erk1/2) rabbit IgG (clone

137F5, Cell Signaling Technology); Phospho-p44/42 MAPK

(Thr202/Tyr204) rabbit IgG (clone D13.14.4E, Cell Signaling

Technology); parkin mouse IgG (clone prk8, Sigma-Aldrich).

Next, immunoblots were incubated with HRP donkey anti-mouse

IgG and HRP goat anti-rabbit IgG (Pierce, Rockfort, IL) or HRP

goat anti-mouse IgM (Sigma-Aldrich), and developed using

enhanced chemioluminescence (Supersignal West Pico Chemilu-

minescent, Pierce, Rockford, IL). Immunoblots were scanned with

JX-330 color image scanner (Sharp Electronics Europe) and

analyzed by ImageJ software (National Institute of Health).

Statistical Analysis
Statistical analysis was performed using STATISTICA (StatSoft

Inc., Tulsa, OK), and significant differences of PD patients versus

control fibroblasts, or between groups in rescue experiments, were

assessed by one-way ANOVA with Tukey HSD post hoc test. Data

are expressed as means 6 SEM.

Results

Morphological Alterations Characterize PD Fibroblasts
We observed striking differences between the cultured human

fibroblasts collected from PD patients and those collected from

controls in terms of morphology and behavior. Looking at the

general morphology of the cells, control fibroblasts were elongated

and flanked each other, whereas fibroblasts from PD patients were

wider, larger, and partly overlapped, as they lost the ability to

sense each other (Figures 1 and 2). Morphometric analyses

underlined the decrease of the ratio between maximum and

minimum axis (Figure 1B), and the measurement of the area

corroborated the idea that PD fibroblasts were larger than control

cells (Figure 1C), at least in the presence of mutated parkin or

LRRK2. Furthermore, parkinsonian fibroblasts showed a different

spatial organization, being much more enshrouded, as pointed out

by the increase in overlapping regions (Figure 1D). These data

highlight that fibroblasts deriving from PD patients are charac-

terized by altered morphology.

PD Fibroblasts Show Subtle Cytoskeleton Differences
Since changes in cell morphology are likely mediated by

rearrangements of cytoskeletal architecture, we investigated the

levels (Figure 2A–B) and organization (Figure 2C) of all the

three cytoskeletal polymers: intermediate filaments (IFs), MTs

and actin filaments. The levels and localization of vimentin, the

principal constituent of the fibroblast IFs, did not vary in PD

fibroblasts. Tubulin levels showed changes only in patients

carrying parkin mutations, whereas MT organization did not

appear to change in any of the experimental groups. It has

been reported that parkin promotes a- and b-tubulin degrada-

tion and that its PD-linked mutations remove this ability [5];

thus, the enrichment of b-tubulin in patients with parkin

mutation is not surprising. On the contrary, a-tubulin levels

were unexpectedly unchanged, suggesting possible different

regulatory mechanisms that need future and deeper investiga-

tions. Finally, we observed a dramatic increase in actin levels in

patients with idiopathic PD; phalloidin staining revealed a

higher amount of stress fibers that appeared to be randomly

oriented whereas in the other experimental groups they were

aligned with the major axis of the cells. Thus, these data

demonstrate that alterations of the cytoskeleton occur in

fibroblasts obtained from patients with parkin mutations and

from idiopathic PD patients.

Microtubule Destabilization in Parkinson’s Disease
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Impairment of MT Stability is Shared by PD Fibroblasts
Since we have already reported that MT stability plays a crucial

role in cultured PC12 cells exposed to MPP+ [15], we undertook

an in-depth analysis of a-tubulin PTMs and MT mass in human

fibroblasts. Western blotting (Figure 3A–B) and immunofluores-

cence analyses (Figure S3) revealed severe alterations of tubulin

PTMs in PD fibroblasts. Parkin mutations induced an increase in

Tyr tubulin levels (Figure 3B, dark grey bars), meaning that in the

presence of mutated parkin the MT system seemed to be more

dynamic. On the other hand, LRRK2 mutation (Figure 3B, light

grey bars) caused the enrichment of Ac tubulin, and fibroblasts

from patients with idiopathic PD (Figure 3B, black bars) showed a

significant increase in deTyr tubulin levels, suggesting that MT

(over)stabilization has occurred. The LRRK2-mediated MT

stabilization agrees with the results of Gillardon [10], showing

that G2019S mutation, the same mutation carried by fibroblasts

used here, promotes phosphorylation of b-tubulin and enhances

MT stability. We looked further at the a-tubulin PTMs

localization (Figure S3). Control cells showed an intense perinu-

clear Ac tubulin decoration, whereas Ac MTs filled the entire cell

body of PD fibroblasts, suggesting that this particular subset of

stable MTs had spread, interfering with cell morphology and

behavior. Taken together, all these data point out that the

alteration of MT stability seems to be a common feature of PD

patient fibroblasts. As it has already been reported that PD-

inducing neurotoxins affect the state of tubulin polymerization

in vitro and in neuronal cells [12–15], we wondered whether the

observed changes in MT stability were correlated with abnormal

MT mass in patient fibroblasts. By Western blotting and

densitometric analyses (Figure 3C–D) we evaluated the amount

of a-tubulin associated with Triton-soluble, i.e. dimeric pool

(Dim), and with Triton-insoluble fraction, polymerized MT

fraction (MT). The ratio between free a-tubulin versus a-tubulin

incorporated into MTs was significantly increased in PD

fibroblasts in respect to control cells (Figure 3D), meaning that

polymerized MTs were reduced. Thus, our work shows that MT

depolymerization is shared by all patient fibroblasts here analyzed

and obtained from idiopathic and genetic PD.

GSK3b Phosphorylation is Reduced in PD Fibroblasts
Looking for a possible explanation for the observed MT

destabilization in PD fibroblasts, it is reasonable that Parkin and

LRRK2 mutations directly impact MT stability [9,10]. However,

since MT depolymerization is observed also in idiopathic PD

fibroblasts, we decided to evaluate the potential implication of

signaling pathways converging on MT system. Therefore, in all

the PD fibroblast groups, we investigated the level and the activity

of glycogen synthase kinase 3 beta (GSK3b), p38 protein (p38) and

extracellular signal-related kinases (Erk) that regulate MT stability

through the phosphorylation of MT-associated proteins (MAPs).

As shown in figure 4, the levels of total GSK3b were highly

variable but they did not reach any statistical significance, whereas

GSK3b phosphorylation was significantly reduced in all classes of

PD fibroblasts (Figure 4C). Total p38 showed a significant

reduction only in the presence of mutant LRRK2, whereas

phospho-p38 was completely unchanged. On the other hand,

LRRK2 induced also a slight decrease of Erk and the significant

elevation of phospho-Erk; accordingly to Ren and colleagues [27],

fibroblasts from patients with parkin mutation displayed an

increase of Erk phosphorylation, although without statistical

significance. Nevertheless, phosphorylated GSK3b is the inactive

form and the phosphorylation of MAPs by GSK3b promotes their

detachment from MT walls [28]. Therefore, showing the

significant activation of GSK3b, our data offer a possible

mechanistic explanation for the observed MT destabilization in

idiopathic PD fibroblasts, but also in cells deriving from patients

with genetic cases of the pathology.

Figure 1. Morphological alterations characterize PD fibroblasts. (A) Representative phase contrast micrographs of cultured human
fibroblasts of healthy and PD affected people. Scale bar: 25 mm. Morphometric analysis showed reduced ratio between maximum and minimum axes
in parkinsonian fibroblast (B) and increased area in the presence of mutated parkin or LRRK2 (C). (D) Histogram showing the increased number of
overlapping regions between cells in patient fibroblasts. *p,0.05 and ***p,0.005 vs control according to ANOVA, Tukey HSD post hoc test. All values
are expressed as mean 6 SEM. CONT = control (N = 10); PARK = patients with mutations of parkin (N = 6); LRRK2 = patients carrying mutations in LRRK2
(N = 6); PD = idiopathic Parkinson’s disease patients (N = 3).
doi:10.1371/journal.pone.0037467.g001
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Stress-induced Pathways are not Activated in
PD Fibroblasts

MT stability is crucial for the activation of apoptosis and

autophagy [29,30], processes variously related to neurodegener-

ation in PD [31]. Thus, we decided to analyze the levels of caspase

3 (CASP 3), which is a terminal executioner of apoptosis, and heat

shock protein 70 (HSP 70), which is a molecular chaperone with

anti-apoptotic properties that prevents aggregation and misfolding

of proteins [32]. First of all, the lack of the cleaved form of CASP 3

(Figure 5A) highlighted that there was no activation of the

apoptotic programme; moreover, we observed the reduction in the

inactive form of the enzyme in the presence of mutated parkin

(Figure 5B, dark grey bars). On the other hand, mutant LRRK2

induced a significant reduction in HSP 70 (Figure 5B, light grey

bars); interestingly, this finding could explain the higher sensitivity

of LRRK2 mutant induced pluripotent stem cell (iPSC)-derived

dopaminergic neurons to CASP 3 activation [33]. On the

contrary, HSP 70 levels were hugely increased in fibroblasts from

idiopathic PD patients (Figure 5B, dark bars). As it has already

been reported that HSP 70 prevents MT assembly [34] and

stabilizes actin filaments [35], these results, together with the

reduction of GSK3b phosphorylation, could easily explain the

above reported MT destabilization and the increase in actin

filaments in idiopathic PD fibroblasts. Finally, we also looked at

microtubule-associated protein 1 light chain 3 (LC3) I and II, well

known markers of autophagy. The amount of LC3-II correlates

with the extent of autophagosome formation and the conversion of

LC3-I to LC3-II is a reliable indicator of autophagic activity [36].

Our results showed no significant changes in the levels of LC3-I

and LC3-II (Figure 5), and therefore in PD fibroblasts the

autophagic machinery is active at basal level. The levels of LC3-I

Figure 2. PD fibroblasts show subtle cytoskeleton differences. (A) Immunoblot and (B) densitometric analyses of vimentin (Vim), a-tubulin (a-
Tub), b-tubulin (b-Tub) and actin (Actin) were performed in whole cell extracts from human fibroblasts deriving from control (CONT, white bars,
N = 10), mutated parkin (PARK, dark grey bars, N = 6), mutated LRRK2 (LRRK2, light grey bars, N = 6) and idiopathic PD (PD, black bars, N = 3). For the
quantitation, values of each protein were normalized on the level of GAPDH of the relative sample. All values are expressed as mean 6 SEM. *p,0.05
and ***p,0.005 vs control, ##p,0.02 vs PD, according to ANOVA, Tukey HSD post hoc test. (C) Cultured human fibroblasts were stained with anti-
vimentin and anti-a-tubulin primary antibodies or with TRITC-conjugated phalloidin to reveal the organization of intermediate filaments (Vim, top),
microtubules (a-Tub, middle) and actin fibers (Actin, bottom), respectively. Concurrent nuclear staining was made by using DAPI (Blue). Scale bar:
20 mm.
doi:10.1371/journal.pone.0037467.g002
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and -II in LRRK2-linked PD differed from those already reported

in knockout mice [37], suggesting that the lack or the mutation of

LRRK2 may affect autophagy differently. These data highlight

that there is no activation of stress-induced pathways in PD

fibroblasts. However, these fibroblasts show MT system alterations

that may eventually trigger neuronal death by other mechanisms.

Pharmacological Stabilization of MTs Rescues
Fibroblast Phenotype

To validate the idea that MTs and MT destabilization are

crucial players in altering cell functions and behaviors in PD

conditions, we decided to treat patient derived fibroblasts with

taxol (Figure 6), a potent MT stabilizer that has proven to be

neuroprotective in midbrain dopaminergic neurons in cultures

[14]. After 2 h of treatment with 10 mM of Taxol, tubulin was

completely shifted toward the Triton-insoluble fraction (Figure 6A),

meaning that there was an increase in the MT pool in patients

fibroblasts. The morphometric analyses (Figure 6B–D) showed

that the increase in MTs correlated with a correction of cell

morphology and behavior, pointed out by the increase of the ratio

between maximum and minimum axis and by the reduction of

overlapping regions. Furthermore, we treated control fibroblasts

with colchicine or nocodazole, two well known MT destabilizing

drugs. As expected, we observed almost all the tubulin associated

to the unpolymerized pool (Figure 6E), the reduction of the axes

ratio and the dramatic increase of overlapped cells (Figure 6F–H),

showing that a direct interference with the MT system is sufficient

to induce the same alterations we observed in PD fibroblasts

(Figure 1). Taken together, these data demonstrate that impair-

ment of MT stability in PD patient derived cells is directly

correlated to changes in morphology and behavior, and strongly

suggest that MT system may be a good ‘‘druggable’’ candidate for

restoring the proper cell mechanics.

Genetic Manipulation Restores MT Stability and Rescues
Fibroblast Phenotype

To further consolidate our results, we decided to perform rescue

experiments, by over-expressing the wild-type (WT) parkin or

LRRK2 in the fibroblasts from patients bearing the mutations in

parkin or LRRK2, respectively. Moreover, in order to validate the

idea that genetic manipulations of these proteins directly influence

MT system, and therefore cell architecture, we tried to affect

control fibroblasts either by parkin silencing or by mutant LRRK2

expression. As reported in figure 7A, transfection of WT parkin

increased polymerized MTs in patient fibroblasts, whereas parkin

silencing reduced MT fraction in control cells. Consistent with our

hypothesis, the analyses of cell morphology revealed that

expression of WT parkin increased the axes ratio and reduced

overlapping regions whereas its silencing exerted the opposite

effects (Figure 7B–D), mimicking changes observed in patient

fibroblasts. In the same way, over-expression of WT LRRK2 in

patient fibroblasts increased MT fraction (Figure 7E), and induced

a correction of cell morphology (Figure 7F–H), as highlighted by

increased ratio between maximum and minimum axis. Similarly,

the expression of mutant LRRK2 in control cells promoted MT

destabilization, represented by the increase of free tubulin

(Figure 7E), and worsened fibroblast morphology and behavior

(Figure 7F–H), as showed by the reduced axes ratio and by the

increased overlapping regions. Our data, not only demonstrate

that alteration of cell morphology and behavior in genetic PD

patient fibroblasts are dependent on impairment of MT stability,

but, further, our results make light on the capacity of WT parkin

or LRRK2 to correct cell defects by restoring MT stability. This

point is further sharpened by the absence of significant differences

between the morphology of patient fibroblasts transfected with

WT parkin or LRRK2 and the cells from healthy subjects

expressing control vectors, indicating that the correction of MT

system is sufficient to rescue the cell architecture. Together with

the pharmacological experiments, these data reinforce the idea of

a pivotal role of MT destabilization, and make concrete the

hypothesis of a possible MT-based PD therapy.

Discussion

In this study, we demonstrate that MT stability is impaired in

human fibroblasts derived from genetic PD patients and it is likely

compromised in idiopathic PD patients, reporting the alterations

Figure 3. Impairment of MT stability is shared by PD
fibroblasts. (A) Immunoblot and (B) densitometric analyses of Tyr,
deTyr, and Ac tubulin, were performed in whole cell extracts from
human fibroblasts deriving from control (white bars), mutated parkin
(dark grey bars), mutated LRRK2 (light grey bars) and idiopathic PD
(black bars). For the quantitation, values of each a-tubulin PTM were
normalized on the level of a-tubulin of the relative sample. Triton X-
100-soluble (free a-tubulin, Dim) and -insoluble fraction (a-tubulin
incorporated into MTs, MT) of human fibroblasts were analyzed by (C)
immunoblot and (D) densitometric analyses and are shown as ratio.
*p,0.05 and ***p,0.005 vs control, ##p,0.02 vs PD, according to
ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6
SEM. CONT = control (N = 10); PARK = patients with mutations of parkin
(N = 6); LRRK2 = patients carrying mutations in LRRK2 (N = 6); PD = idio-
pathic Parkinson’s disease patients (N = 3).
doi:10.1371/journal.pone.0037467.g003
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of a-tubulin PTMs and the significant MT depletion. It has been

already shown that human fibroblasts carrying parkin with the

deletion of the 4th exon, encoding the MT binding domains, show

a higher degree of MT depolymerization when they challenged

with a MT disruptor agent such as colchicine [27]. Here we report

that MT depolymerization occurs in PD fibroblasts even without

the addition of any stressor, and that MT destabilization seems to

be a common feature shared by idiopathic and genetic parkin-

sonism. It is noteworthy, as we demonstrate here, that both

pharmacological treatment and genetic approaches are able to

restore the proper MT stability and, therefore, to rescue cell

alterations deriving from MT destabilization. Thus, our work

highlights, for the first time, that MT dysfunction is present in

patients in baseline conditions and that correction of MT defects

recovers cell phenotype, underlining the central role of MT system

in PD.

Figure 4. GSK3b phosphorylation is reduced in PD fibroblasts. (A) Immunoblot and densitometric analyses of (B) total and (C)
phosphorylated glycogen synthase kinase 3 beta (GSK3b), p38 MAP Kinase (p38) and p44/42 MAPK (Erk) were performed in whole cell extracts from
human fibroblasts deriving from control (CONT, white bars, N = 3), mutated parkin (PARK, dark grey bars, N = 3), mutated LRRK2 (LRRK2, light grey
bars, N = 3) and idiopathic PD (PD, black bars, N = 3). For the quantitation, values of total protein were normalized on the level of GAPDH of the
relative sample, whereas the levels of phosphorylated form were normalized on the values of total protein. All values are expressed as mean 6 SEM.
*p,0.05 and **p,0.02 vs control, #p,0.05 vs PD according to ANOVA, Tukey HSD post hoc test.
doi:10.1371/journal.pone.0037467.g004

Figure 5. Stress-induced pathways are not activated in PD fibroblasts. (A) Immunoblot and (B) densitometric analyses of caspase 3 (CASP 3),
heat shock protein 70 (HSP 70) and microtubule-associated protein 1 light chain 3 (LC3) I and II were performed in whole cell extracts from human
fibroblasts deriving from control (CONT, white bars, N = 10), mutated parkin (PARK, dark grey bars, N = 6), mutated LRRK2 (LRRK2, light grey bars,
N = 6) and idiopathic PD (PD, black bars, N = 3). For the quantitation, values of each protein were normalized on the level of GAPDH of the relative
sample. All values are expressed as mean 6 SEM. *p,0.05 and ***p,0.005 vs control, ##p,0.02 vs PD according to ANOVA, Tukey HSD post hoc
test.
doi:10.1371/journal.pone.0037467.g005
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Tubulin PTMs have recently been linked to neurodegener-

ative processes [38]. Our results, indeed, reveal the importance

of a-tubulin PTM dysregulation in PD etiopathogenesis. Being

Tyr tubulin the newly synthesized a-tubulin [8], the parkin-

induced enrichment of Tyr tubulin can be viewed as an attempt

to produce new MTs, as a consequence of the depolymerizaton

of the older MTs. In addition, it is a clear sign of the increase

of dynamic MTs. On the other hand, the enrichment of stable

MTs, observed in idiopathic PD and in patients carrying

mutations of LRRK2, could be the extreme effort of the cell to

stabilize a collapsing system. In any case, both the hyper-

dynamicity caused by mutant parkin and the over-stabilization

associated with LRRK2, actually represent an imbalance of MT

dynamics. Thus, the first outcome of our work is the suggestion

Figure 6. Pharmacological MT stabilization rescues fibroblast phenotype. (A) Representative immunoblot of Triton X-100-soluble (free a-
tubulin, S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of patients fibroblasts treated with paclitaxel (Tax) or solvent (Met).
Morphometric analyses showing the ratio between maximum and minimum axes (B), the area (C) and the number of overlapping regions between
cells (D) of paclitaxel (TAX) or solvent (Met)-treated patient fibroblasts. ns = not significant, *p,0.05, **p,0.02 and ***p,0.005 according to ANOVA,
Tukey HSD post hoc test. All values are expressed as mean 6 SEM. PARK = patients with mutations of parkin (N = 4); LRRK2 = patients carrying
mutations in LRRK2 (N = 3); PD = idiopathic Parkinson’s disease patients (N = 3). (E) Representative immunoblot of Triton X-100-soluble (free a-tubulin,
S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of control fibroblasts treated with colchicine (COLC), nocodazole (NOC) or solvents
(DMSO or Met). Morphometric analyses showing the ratio between maximum and minimum axes (F), the area (G) and the number of overlapping
regions between cells (H) of colchine (COLC, N = 5), nocodazole (NOC, N = 5) or solvent (DMSO or Met, N = 5 respectively)-treated control fibroblasts.
ns = not significant and ***p,0.005 according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6 SEM.
doi:10.1371/journal.pone.0037467.g006
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of a new biological mechanism for LRRK2- and parkin-

mediated regulation of MT stability, i.e. the modulation of a-

tubulin PTMs.

Neurons are not-dividing cells with an extremely long life, and

in their axons accumulate very stable MTs, that remain for much

longer time than the usual MT half-life [39]. Thus, the

Figure 7. Genetic manipulation restores MT stability and rescues fibroblast phenotype. (A) Representative immunoblot of Triton X-100-
soluble (free a-tubulin, S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of fibroblasts collected from patients with parkin mutations
(PARK) transfected with control plasmid (VEC) or WT parkin (WT), and of control fibroblasts (CONT) transfected with short hairpin RNA, sh-183 (183) or
control shRNA (VEC). (B-D) Morphometric analyses of patients fibroblasts expressing control plasmid (PARK-VEC, N = 4) or WT parkin (PARK-WT, N = 4),
and control fibroblasts transfected with control shRNA (CONT-VEC, N = 4) or silenced with sh-183 (CONT-183, N = 4), showing the ratio between
maximum and minimum axes (B), the area (C) and the number of overlapping regions between cells (D). ns = not significant, **p,0.02 and
***p,0.005 according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6 SEM. (E) Representative immunoblot of Triton X-100-
soluble (free a-tubulin, S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of fibroblasts collected from patients with LRRK2 mutations
(LRRK2) transfected with control plasmid (VEC) or WT LRRK2 (WT), and of control fibroblasts (CONT) expressing control plasmid (VEC) or G2019S
mutant LRRK2 (MUT). Morphometric analyses of patients fibroblasts expressing control plasmid (LRRK2-VEC, N = 3) or WT LRRK2 (LRRK2-WT, N = 3), or
of control fibroblasts transfected with control plasmid (CONT-VEC, N = 3) or G2019S mutant LRRK2 (CONT-MUT, N = 3), showing the ratio between
maximum and minimum axes (F), the area (G) and the number of overlapping regions between cells (H). ns = not significant, *p,0.05, **p,0.02 and
***p,0.005 according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6 SEM.
doi:10.1371/journal.pone.0037467.g007
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accumulation of aberrant tubulin dimers is likely to occur,

especially if tubulin turnover is compromised. This is exactly the

scenario we hypothesize for PD patients carrying parkin mutations

on the basis that parkin promotes ubiquitination and degradation

of tubulin [5] and that b-tubulin significantly increases in the

presence of mutated parkin, as we reported in the present work.

Moreover, a particularly long life of MTs could lead to an

unconventional subset of tubulin PTMs, and the impairment of

tubulin PMTs could have further impacts on neuronal functions,

being crucial for the regulation of various MT-dependent

functions. Through the modulation of binding and velocity of

motor proteins, tubulin PTMs are supposed to be involved in the

regulation of axonal transport [40] whose impairment has recently

been suggested as a common and early event in neurodegener-

ation [41]. We have previously reported that imbalance of a-

tubulin PTMs results in impairment of axonal transport and in

mitochondrial damage in PC12 cells exposed to MPP+ [15]. Here

we show that parkin and LRRK2 modulate tubulin PTMs,

offering alternative explanations for the reported capacity of

parkin to arrest the movement of damaged mitochondria [42] and

for the ability of LRRK2 to modulate trafficking and distribution

of synaptic vesicles in cortical neurons [43]. Furthermore, we

observe the significant activation of GSK3b in PD fibroblasts, that

with its upstream and downstream regulators has key roles in

many neuronal processes [28], as neurite outgrowth, neuronal

polarization and, perhaps, axonal transport. Active GSK3b
phosphorylates MAPs with the consequent MT depolymerization

and the breakdown of the railways along which motor proteins

move; therefore, an increase in GSK3b activation can likely affect

axonal transport. Thus, having shown the ability of parkin and

LRRK2 to modulate tubulin PTMs and MT-related signaling

pathways, the present paper could be a good starting point to

analyze the ability of parkin and LRRK2 to regulate axonal

transport.

The proper regulation of MT dynamics is critical for the

survival and for the establishment of cell-cell contacts in different

cell types [44,45]. For example, when fibroblasts collide they

undergo contact inhibition of locomotion that involves cell

retraction and reversal of polarity, allowing cells to change the

direction of migration and to move in a cell free environment.

During aging, fibroblasts motility declines contributing to deficits

in wound-healing, and this impaired behavior has been associated

to disorganization of actin cytoskeleton [46]. Further data

confirmed that mechanical properties are altered in consequence

to the increased amount of polymerized actin in fibroblasts from

old donors, whereas no significant changes in vimentin or MTs

content are associated with aging process [47]. Very recently,

Kadir and colleagues [45] have shown that this behavior resides

on the fine tuning of MT dynamics and organization, especially at

the sites of cell contact, where MT dynamics shall rise above a

threshold to permits contact inhibition of locomotion; they also

reported that Y24632-treated cells, which have hyper-stable MTs,

are unable to re-orientate. Here, we demonstrate that PD patient

fibroblasts have altered morphology and spatial organization that

could be explained by the increased of stable MTs in LRRK2 and

idiopathic PD, but also by the spreading of Ac MTs in all PD

fibroblasts, that would locally interferes with the acceptable MT

dynamics. Therefore, our data show that changes in MT stability

are specifically associated to PD conditions and suggest that PD

pathology could reside on compromised cell mechanics due to a

failure of the MT system. This idea is strengthened by the fact that

the administration of taxol, a MT stabilizing agent, or the

expression of either WT parkin or WT LRRK2 in PD patient

fibroblasts, provokes an increase in the polymerized MTs and a

recovery of the cell morphology and behavior. Interestingly, the

MT destabilization observed in patient fibroblasts unravels a

possible intrinsic MT weakness in PD affected people that could be

crucial for neuronal survival and especially for dopaminergic

neurons, being shown to be particularly vulnerable to the

colchicine-induced MT depolymerization [14,48].

Mitochondrial dysfunction has been related to the pathogenesis

of PD for a long time, and recent papers show that both parkin

[17] and LRRK2 [18] can be important for the regulation of

mitochondria function and malfunction. In the last few years,

tubulin has proved to be able to modulate mitochondrial

respiration through its interaction with voltage-dependent anion

channels, the most abundant protein in the mitochondrial outer

membrane. In particular, it has been reported that tubulin

decreases the respiration rate of isolated mitochondria [49] and

that the increase in tubulin dimers induces mitochondrial

depolarization in human cancer cells [50]. Under this light, the

increased amount of free tubulin we observed in human PD

fibroblasts could be responsible for the mitochondrial alterations in

these cells, described elsewhere [17,18]. Thus, as we and others

have already suggested [14,15,51], MTs and mitochondria

collaborate in producing dopaminergic neuron death in PD.

Taken together, our results highlight, for the first time, that

proteins associated with PD, such as parkin and LRRK2, have an

impact on MT organization and stability in humans, and that

idiopathic PD seems to display MT impairment as well.

Furthermore, our analyses reveal that these MT alterations

profoundly affects cells morphology and behavior, but also that

MT stabilization, by taxol treatment or by expression of WT

parkin or WT LRRK2, is sufficient to restore the correct cell

mechanics. The groundbreaking technique of iPSC-derived

dopaminergic neurons [52] offers the noteworthy advantage of

recapitulating key molecular aspects in a human model of

neurodegeneration, and, moreover, iPSCs enable the production

of patient-specific cell lines, with the potential use for high-

throughput drug screening and personalized therapies. We will

move onto this exciting field soon to validate in human neurons

the occurrence of MT dysfunction and to seek a possible MT-

based therapy, trying to transfer to neurons our actual findings in

human fibroblasts as well as to deeper investigate the biological

relationship among parkin, LRRK2 and MTs. Thus, the present

work can be the launch pad for the study of MT system in PD

patients.

Supporting Information

Figure S1 Age distribution in the experimental groups.
Scatter plot representing the age distribution of the individuals in

each experimental group. CONT = control (N = 10); PARK = pa-

tients with mutations of parkin (N = 6); LRRK2 = patients carrying

mutations in LRRK2 (N = 6); PD = idiopathic Parkinson’s disease

patients (N = 3). Statistical analyses did not reveal differences in

age between control or patient groups (p = 0.168 according to

ANOVA).

(TIF)

Figure S2 Parkin over-expression and silencing. (A)

Representative micrographs of cultured fibroblasts deriving from

PD affected patients bearing parkin mutation transfected with

control plasmid (PARK+VEC) or WT parkin (PARK+WT). Scale

bar: 20 mm. (B) Representative immunoblot of parkin performed

on cultured fibroblasts deriving from healthy subjects transfected

with control shRNA (CONT+VEC) or silenced with sh-183

(CONT+183).

(TIF)
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Figure S3 PD fibroblasts show altered a-tubulin PMT
staining. Human fibroblasts were immunostained for Tyr, deTyr

and Ac tubulin, to investigate MT organization and stability. All

cells were concurrently stained with DAPI (blue), to visualize the

nucleus. Scale bar: 25 mm. CONT = control; PD = idiopathic

Parkinson’s disease; PARK = patients with mutations of parkin;

LRRK2 = patients carrying mutations in LRRK2.

(TIF)
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19. Grünewald A, Voges L, Rakovic A, Kasten M, Vandebona H, et al. (2010)
Mutant Parkin impairs mitochondrial function and morphology in human

fibroblasts. PLoS ONE 5: e12962.

20. Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, et al. (2012)
Primary Skin Fibroblasts as a Model of Parkinson’s Disease. Mol Neurobiol.

[Epub ahead of print].

21. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (1992) What features improve

the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic
study. Neurology 42: 1142–6. Erratum in: Neurology 42: 1436.

22. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees A (2001) What features improve the

accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study.

1992. Neurology 57: S34–38.

23. Goldwurm S, Zini M, Di Fonzo A, De Gaspari D, Siri C, et al. (2006) LRKK2
G2019S mutation and Parkinson’s Disease: a clinical, neuropsychological and

neuropsychiatric study in large Italian sample. Parkinsonism Relat Disord 12:
410–419.

24. Sironi F, Primignani P, Zini M, Tunesi S, Ruffmann C, et al. (2008) Parkin

analysis in early Parkinson’s disease. Parkinsonism Relat Disord 14: 326–333.

25. Kumar A, Greggio E, Beilina A, Kaganovich A, Chan D, et al. (2010) The
Parkinson’s disease associated LRRK2 exhibits weaker in vitro phosphorylation

of 4E-BP compared to autophosphorylation. PLoS ONE 5: e8730.

26. Cappelletti G, Maggioni MG, Tedeschi G, Maci R (2003) Protein tyrosine

nitration is triggered by nerve growth factor during neuronal differentiation of
PC12 cells. Exp Cell Res 288: 9–20.

27. Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009) Parkin Protects Dopaminergic

Neurons against Microtubule-depolymerizing Toxins by Attenuating Microtu-

bule-associated Protein Kinase Activation. J Biol Chem 284: 4009–4017.

28. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat. Rev.
Neurosci. 11: 539–551.

29. Xiao D, Pinto JT, Soh JW, Deguchi A, Gundersen GG, et al. (2003) Induction

of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is
associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase

1 activation. Cancer Res 63: 6825–6837.

30. Xie R, Nguyen S, McKeehan WL, Liu L (2010) Acetylated microtubules are

required for fusion of autophagosomes with lysosomes. BMC Cell Biol 11: 89.

31. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s
disease: proximal triggers, distal effectors, and final steps. Apoptosis 14:

478–500.

32. Witt SN (2010) Hsp70 molecular chaperones and Parkinson’s disease.

Biopolymers 93: 218–228.

33. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, et al. (2011) LRRK2
mutant iPSC-derived DA neurons demonstrate increased susceptibility to

oxidative stress. Cell Stem Cell 8: 267–280.

34. Mitra G, Saha A, Gupta TD, Poddar A, Das KP, et al. (2007) Chaperone-

mediated inhibition of tubulin self-assembly. Protein 67: 112–120.

35. Macejak DG, Luftig RB (1991) Stabilization of actin filaments at early times
after adenovirus infection and in heat-shocked cells. Virus Res 19: 31–45.

36. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy

research. Cell 140: 313–326.

37. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, et al. (2010) Loss of

leucine-rich repeat kinase 2 causes impairment of protein degradation pathways,
accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc

Natl Acad Sci USA 107: 9879–9884.

38. Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, et al. (2010) A

Family of Protein-Deglutamylating Enzymes Associated with Neurodegenera-
tion. Cell 143: 564–578.

39. Paturle-Lafanechere L, Manier M, Trigault N, Pirollet F, Mazarguil H, et al.

(1994) Accumulation of delta 2-tubulin, a major tubulin variant that cannot be
tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci

107: 1529–1543.

40. Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding

functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33:
362–372.

41. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, et al. (2009) Axonal

transport defects in neurodegenerative diseases. J Neurosci 29: 12776–12786.

42. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. (2011) PINK1 and

Parkin target Miro for phosphorylation and degradation to arrest mitochondrial
motility. Cell 147: 893–906.

43. Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, et al. (2011) LRRK2

controls synaptic vesicle storage and mobilization within the recycling pool.

J Neurosci 31: 2225–2237.

44. Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal
microtubule dynamics: a loss-of-function mechanism by which tau might

mediate neuronal cell death. Biochim Biophys Acta 1739: 268–279.

45. Kadir S, Astin JW, Tahatamouni L, Martin P, Nobes CD (2011) Microtubule

remodelling is required fro the front-rear polarity switch during contact
inhibition of locomotion. J Cell Sci 124: 2642–2653.

46. Reed MJ, Ferara NS, Vernon RB (2001) Impaired migration, integrin function,

and actin cytoskeletal organization in dermal fibroblasts from a subset of aged
human donors. Mech. Ageing Dev. 122: 1203–1220.

Microtubule Destabilization in Parkinson’s Disease

PLoS ONE | www.plosone.org 11 May 2012 | Volume 7 | Issue 5 | e37467



47. Schulze C, Wetzel F, Kueper T, Malsen A, Muhr G, et al. (2010) Stiffening of

human skin fibroblasts with age. Biophys. J. 99: 2434–2442.

48. Liang Y, Li S, Wen C, Zhang Y, Guo Q, et al. (2008) Intrastriatal injection of

colchicine induces striatonigral degeneration in mice. J. Neurochem. 106:

1815–1827.

49. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, et al. (2008)

Tubulin binding blocks mitochondrial voltage-dependent anion channel and

regulates respiration. Proc Natl Acad Sci USA 105: 18746–18751.

50. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin

modulates mitochondrial membrane potential in cancer cells. Cancer Res 70:
10192–10201.

51. Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondria complex I activity

potentiates dopaminergic neuron death induced by microtubule dysfunction in a
Parkinson’s disease model. J Cell Biol 192: 873–882.

52. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, et al.
(2011) Direct generation of functional dopaminergic neurons from mouse and

human fibroblasts. Nature 476: 224–227.

Microtubule Destabilization in Parkinson’s Disease

PLoS ONE | www.plosone.org 12 May 2012 | Volume 7 | Issue 5 | e37467



Cartelli et al., 2012 

SUPPLEMENTARY FIGURES 

 

 

 

 

Figure S1 Age distribution in the experimental groups. 
Scatter plot representing the age distribution of the individuals in each experimental group. CONT= 

control (N =10); PARK= patients with mutations of parkin (N = 6); LRRK2= patients carrying 

mutations in LRRK2 (N =6); PD= idiopathic Parkinson’s disease patients (N =3). Statistical analyses 

did not reveal differences in age between control or patient groups (p= 0.168 according to ANOVA). 
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Figure S2 Parkin over-expression and silencing.  
(A) Representative micrographs of cultured fibroblasts deriving from PD affected patients bearing 

parkin mutation transfected with control plasmid (PARK+VEC) or WT parkin (PARK+WT). Scale 

bar: 20 mm. (B) Representative immunoblot of parkin performed on cultured fibroblasts deriving from 

healthy subjects transfected with control shRNA (CONT+VEC) or silenced with sh-183 (CONT+183). 
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Figure S3 PD fibroblasts show altered a-tubulin PMT staining.  

Human fibroblasts were immunostained for Tyr, deTyr and Ac tubulin, to investigate MT 

organization and stability. All cells were concurrently stained with DAPI (blue), to visualize 

the nucleus. Scale bar: 25 mm. CONT= control; PD = idiopathic Parkinson’s disease; PARK 

=patients with mutations of parkin; LRRK2= patients carrying mutations in LRRK2. 

 

 

  



 



Microtubule dysfunction in PD 

 

 

 

Published Paper 1 

Cartelli et al., 2012 

Manuscript 1 

Casagrande et al., To be submitted 

Manuscript 2 

Cartelli et al., To be submitted 

Published Review 

Cappelletti et al., 2015 

Manuscript in preparation 

Casagrande et al. 

Published Paper 2 

Cartelli et al., 2013 

Manuscript 3 

Cartelli et al., Submitted 



 

 

 



1 
 

ROLE OF MICROTUBULE STABILITY  

IN 2,5-HEXANEDIONE-INDUCED NEURODEGENERATION 

 

Francesca Casagrande
1
, Daniele Cartelli

1
, Kristyna Hanusova

1,§
, Martina Ferrari

1
, 

Alessandra M.E. Calogero
1
, Carmelita De Gregorio

1
, Jacopo Marangon

1
, Stefano Goldwurm

2
, 

Margherita Canesi
2
, Gianni Pezzoli

2
 and Graziella Cappelletti

1*
 

 

 

1
Department of Biosciences, University of Milan, Milan 20123, Italy;  

2
Parkinson Institute, I.C.P. Istituti Clinici di Perfezionamento, Milan 20126, Italy;  

§
Actually affiliated to San Raffaele Institute, Milan 20132, Italy. 

 

 

 

*Corresponding Author: 

Graziella Cappelletti 

Department of Biosciences 

Università degli Studi di Milano,  

Via Celoria 26,  

20133 Milano  

Italy. 

Tel: 0039 02 50314752 

Fax: 0039 02 50314801 

E-mail: graziella.cappelletti@unimi.it   

 

Running title: Microtubule dysfunction induced by 2,5-hexanedione 

Keywords: Parkinson’s disease, PC12 cells, microtubules, 2,5-hexanedione  

  

mailto:graziella.cappelletti@unimi.it


2 
 

ABSTRACT 

 

Exposure to environmental toxins, including hydrocarbon solvents such as 2,5-hexanedione 

(2,5-HD) clearly increases the risk of developing Parkinson’s disease (PD), whose 

pathogenesis is actually still unclear. Among the others, an emergent hypothesis is that 

microtubule dysfunction could be crucial in triggering neuronal degeneration in many 

diseases, including PD. Here, we used 2,5-HD to analyse the early effects of toxin-induced 

neurodegeneration on cytoskeleton, in NGF-differentiated PC12 cells as a model of 

dopaminergic neurons, the ones that are selectively lost during the disease. We found that 2,5-

HD treatment affects all the cytoskeletal components, and moreover, we observed a very early 

specific alteration in microtubule distribution and stability, in addition to the unbalance of 

modified forms of α-tubulin. Interestingly, testing the effects of 2,5-HD on human skin 

fibroblasts obtained from healthy donors and patients affected by genetic PD, we found that 

microtubule system was also altered in these cells and that the genetic background may really 

make a difference in MT susceptibility to this environmental PD toxin. In  conclusion, we 

suggest a key role of microtubules in 2,5-HD-induced damage. 
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INTRODUCTION 

 

Currently, there are just symptomatic treatments available for Parkinson’s disease (PD), that 

is the second most common neurodegenerative disease after Alzheimer’s disease, with an 

estimated 7 to 10 million people affected worldwide, and is predicted to increase in 

prevalence as the world population ages (Beitz 2014). Its central pathological features is the 

selective degeneration of dopaminergic neurons in the substantia nigra (SN) pars compacta 

projecting to the corpus striatum (CS), leading to a severe striatal dopamine (DA) deficiency 

resulting in the typical movement disorders of parkinsonism (Dauer and Przedborski 2003; 

Obeso et al. 2010). For the vast majority of PD cases, the etiology remains unknown even 

though both genetic and environmental factors are likely to be implicated (Sherer et al. 2012). 

It’s well known indeed that parkinsonism can be induced by exposure to environmental toxins 

such as pesticides, chemical compounds and hydrocarbon solvents (Di Monte et al. 2002; 

Hatcher et al. 2008). The prolonged exposure to relatively high levels of certain aliphatic 

solvents (e.g. n-hexane) can cause a dose-dependent neurodegeneration that occurs clinically 

as a symmetrical peripheral neuropathy, with clear prevalence of the damage in the distal part 

of the nerve, known as dying-back neuropathy (Spencer et al. 2002). In particular, the γ-

diketone 2,5-hexanedione (2,5-HD), the toxic metabolite of n-hexane, has been shown to 

induce parkinsonism both in humans and animals (Spencer et al. 1980; Pezzoli et al. 1990; 

Vanacore et al. 2000; Pezzoli et al. 2000) and to affect the cytoskeleton (Song et al. 2007; 

Wang et al. 2008; Zhang et al. 2010; Han et al. 2014). The 2,5-HD reacts with lysine amino 

groups of proteins forming pyrrole adducts, which probably undergo secondary oxidation, 

resulting in crosslinked proteins (Spencer et al. 1980; Graham et al. 1995; LoPachin and 

DeCaprio 2004). Neurofilament (NF) protein polymerization and crosslinking lead to giant 

neurofilamentous axonal swellings and eventual degeneration in central and peripheral 

nervous system, so they have been proposed as the cardinal lesion in aliphatic γ-diketone 

neuropathy (Graham et al. 1995; LoPachin and Gavin 2015). The accumulation of NFs, 

however, does not appear to explain the onset distal axonal degeneration, which is likely to be 

a consequence of axonal transport impairment (Stone et al. 1999). In addition, wild-type mice 

and transgenic mice not expressing NFs, revealed similar patterns of distal axonal 

degeneration in 2,5-HD neuropathy (Stone et al., 2001). Other potential targets of aliphatic 

and aromatic γ-diketones are microtubule (MT)-associated proteins (Han et al. 2014) and MTs 

themselves (Boekelheide 1987a; Boekelheide 1987b). 
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Interestingly, MTs have been found to interact with some of the proteins mutated in PD, such 

as α-synuclein, LRRK2 and parkin (Alim et al. 2002; Ren et al. 2003; Parisiadou and Cai 

2010), and to be affected by the action of some PD toxins like MPP
+
 and rotenone 

(Cappelletti et al. 2005; Ren et al. 2005). Moreover, due to their specific architecture, neuron 

functionality and survival are particularly dependent on intracellular transport, sustained by 

MTs, which impairment might result in accumulation of damaged proteins and organelles 

forming axonal swellings described in several neurodegenerative diseases (Millecamps and 

Julien 2013). MTs show a dynamic behaviour switching rapidly between growth and 

depolymerisation phases, but there is a limited range of acceptable MT dynamic behaviours in 

neurons, outside of which MTs cannot function normally and the cells cannot survive 

(Feinstein and Wilson 2005). Therefore, in the last years, the MT dysfunction has become an 

emerging hypothesis in neurodegenerative processes including PD (Feng 2006; De Vos et al. 

2008; Cartelli et al. 2010).  

In the attempt to highlight the crucial role of MTs in the molecular mechanisms underlying 

neurodegeneration in PD, here we investigate the changes in MT system induced by 2,5-HD 

in different cell lines, like nerve growth factor (NGF)-differentiated PC12 cell line as a model 

of dopaminergic neurons (Greene and Tischler 1976), and human skin fibroblasts obtained 

from healthy donors and PD patients.   
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RESULTS 

 

2,5-HD impacts cell viability and morphology in NGF-differentiated PC12 cells 

We started our investigation about the effects of 2,5-HD on NGF-differentiated PC12 cells, as 

it is a well-characterized model of dopaminergic neurons in culture.  In order to settle the PD 

toxin assays, the optimisation of the exposure time and concentration was performed (Fig. 1) 

by treating 5 days NGF-differentiated PC12 cells with different concentrations of 2,5-HD (0.2 

mM, 2 mM and 20 mM) and performing the analyzes at 24, 48, and 72 h of treatment. Firstly, 

the toxin effect on cell viability was examined by MTT test, showing that the cell survival 

was significantly reduced only at the highest concentration (20 mM) of 2,5-HD after 48 

(p<0.001) and 72 hours (p<0.01), but not after 24 hours (Fig. 1B). In parallel, the observation 

of living cells by phase-contrast microscope revealed several morphological alterations of the 

treated cells (Fig. 1A). In order to quantify these changes on cell morphology, morphometric 

analyses have been performed to evaluate the percentage of differentiated cells (Fig. 1C), the 

length of neurites of differentiated cells (Fig. 1D) and the percentage of neurites with small 

axonal swellings, called varicosities (Fig. 1E).  According to these analyses, 2,5-HD induced 

shortening of the neurite length with consequent loss of the differentiated phenotype at higher 

concentrations following treatments of 48 and 72 h (Fig. 1C-D). On the other hand, it was 

also able to induce the formation of varicosities along neurites at higher concentrations 

already after 24 h of treatment (Fig. 1E). Based on these observations, we concluded that 2,5-

HD affects cell morphology in NGF-differentiated PC12 cells at early time points leading to 

heavy alterations over time. Taking into account that the cell viability was not affected yet 

within 24 hours of treatment, ours could be applied as a good experimental paradigm to 

investigate the early events of neurodegeneration in the further experiments.  

 

Cytoskeletal proteins are affected by 2,5-HD treatment   

In accordance with the published literature suggesting that 2,5-HD affects cytoskeletal 

components, in particular NFs that are the most studied cytoskeletal proteins in cellular and in 

vivo models of neuropathy (LoPachin and DeCaprio 2004), we hypothesized that the observed 

morphological changes could be probably caused by a dysfunction of the overall 

cytoskeleton. Thus the characterization of all its components (actin, NFs and MTs) after 2,5-

HD treatment has been carried out with both biochemical and immunocytochemical 

approaches. The western blot and densitometric analysis (Fig. 2A-B) revealed a transient 

increase in actin level at 2 mM of 2,5-HD (p<0.05) and the significantly decrease at the 
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highest concentration for both NF-L and NF-M levels (p<0.001), while the overall content of 

α- and β-tubulin remains unchanged. In parallel, immunofluorescence staining has been 

performed to investigate in detail distribution and organization of the three cytoskeletal 

filaments (Fig. 1C). Actin accumulated at 2 mM of 2,5-HD and, in addition, showed a 

peculiar organization in bundle-like structures. Interestingly, this kind of rearrangement of 

microfilaments in ruffles has been seen also in epithelial cells after 6 mM 2,5-HD for 24 

hours by Malorni and colleague (Malorni et al. 1989). On the other hand, NF-L, as well as 

NF-M (data not shown), accumulated in varicosities and in the perinuclear zone in a dose-

dependent manner, as expected and already described in the literature in other neuron-like 

cellular models (Heijink et al. 1995; Hartley et al. 1997). The α-tubulin staining, instead, 

highlighted an evident fragmentation of the network in a dose-dependent manner and a 

perinuclear accumulation. These data revealed that 2,5-HD impacts on all cytoskeletal 

proteins in a model of dopaminergic neurons, NGF-differentiated PC12 cells, the cells that are 

selectively lost in PD neurodegeneration, respect to other type of neurons, astrocytes 

(Tuckwell et al. 1992) or glial cells (Boegner et al. 1992). More importantly, to our 

knowledge these results showed for the first time the loss of integrity of MTs in neuron-like 

cells following 2,5-HD treatment, likely leading to the impairment of axonal transport and so 

the consequent accumulation of NFs.  

 

2,5-HD is a strong microtubule-stabilizer agent 

The above results strongly suggest that the MT cytoskeleton could be a main target of 2,5-

HD, having a key role in neurodegeneration processes. On this purpose, we focused on a 

deeper investigation of MTs through the analysis of different post-translational modifications 

(PTMs) of α-tubulin, that specifically correlate with subsets of MTs behaving differently 

(Janke 2014). Surprisingly, the analysis of PTMs showed significative changes in both level 

and distribution after 2,5-HD treatment (Fig. 3A-B-C), unlike the overall α- and β-tubulin 

content that was unchanged (Fig. 2A-B). The western blot analysis (Fig. 3A-B) and the 

immunofluorescence imaging (Fig. 3C) of the two PTMs of α-tubulin occurring specifically 

on stable MTs (acetylation and detyrosination) highlighted a significant increase in the level 

of stable MTs and their unusual perinuclear accumulation at the highest dose of 2,5-HD. 

Consistent with these results, the level of tyrosinated tubulin, marker of dynamic MTs, 

presented a decrease at the highest dose of 2,5-HD (Fig. 3A-B). The increased level of stable 

MTs and their subsequent accumulation in the cell body, like NFs (Fig. 2C) may likely be 

explained with alterations in the MT system that cause the impairment of axonal transport and 
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protein degradation by proteasome, leading to the observed accumulation in the perinuclear 

area. This could also explain the neurite retraction and the loss of neuronal phenotype caused 

by 2,5-HD in NGF-differentiated PC12 cells.  

To further investigate the effect of the toxin on MT stability and dynamics, we have studied 

the state of tubulin polymerization in cell and the kinetics of tubulin assembly in vitro in the 

presence of 2,5-HD. In order to study the kinetics in cell, we analysed the free tubulin dimers 

fraction with respect to the tubulin in MT pool. The ratio revealed a shift of tubulin towards 

the polymerized pool caused by 2 mM 2,5-HD (Fig. 3D-E), indicating a strong MT stabilizing 

effect consistent with our data showing the significant increase levels and accumulation in the 

soma of stable MTs and with previous ones coming from different cell models (Markelewicz 

et al. 2004). On the other hand, we observed the shift back of the ratio towards free tubulin in 

cells exposed to 20 mM 2,5-HD (Fig. 3D-E), suggesting a depolymerization response of MT 

system at high toxin concentration. This compensative mechanism of the cell, due to a severe 

damage of MT system, could be probably dependent on the specific depolymerisation of 

dynamic MTs (tyrosinated ones), as shown by the ratio free/polymerized Tyr tubulin 

significantly shifted towards the free dimer pool at 20 mM of toxin (Fig. 3D-E). 

Moving to in vitro assays, we checked for the direct effect of the toxin on MT system. We  

analysed the assembly kinetics  of pure tubulin in the presence of increasing concentrations of 

2,5-HD (Fig. 4A) and calculated the following parameters: P value for nucleation phase, the 

initial velocity (Vi) of polymerization and the final absorbance at 350 nm (Fig. 4B). No 

significant changes in the assembly curves and in the parameters defining their phases were 

observed in the presence of 2,5-HD. Probably a pre-incubation of 2,5-HD with tubulin is 

necessary to see the expected strong MT-stabilizing effect previously described by 

Boekelheide (Boekelheide 1987a; Boekelheide 1987b). Electron microscopy performed on 

this samples also revealed a conventional ultrastructure of MTs formed in the presence of 2,5-

HD (Fig. 4C).     

 

Mitochondria are not an early target of 2,5-HD 

Since the most common PD toxins, such as MPP
+
 or rotenone, are potent inhibitors of 

complex I of electron transport chain, mitochondrial dysfunction has been considered for long 

time one of the principal culprit of neuronal death in PD, together with oxidative stress and 

protein degradation inefficiency (Malkus et al. 2009). On this purpose, we have looked if 2,5-

HD could induce oxidative stress and mitochondrial dynamics alteration, in the same 

condition in which we observed alterations of the cytoskeleton. In order to quantify the 
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reactive oxygen species (ROS) production as a sign of mitochondrial damage, the DCFA 

assay has been performed, revealing that a significant increase of ROS production was 

induced just at the highest concentration (20 mM) of treatment (p<0.05) (Fig. 5A). 

Interestingly, 2,5-HD strongly affects cytoskeleton in our cellular model both at 2 mM and 20 

mM of treatment, allowing us to speculate that the increase in ROS formation could be not the 

first event in cell death, but a possible consequence of MT system impairment occurring 

earlier. Moreover, the levels of DRP1 and MFN2, two crucial proteins regulating 

mitochondrial fission and fusion, respectively, have been analysed by western blot. Both of 

them were decreased just at the 20 mM of toxin (for DRP1 p<0.05; for MFN2 p<0.001) (Fig. 

5B-C). These data, together with those coming from MTT test (a cell viability test based on 

the activity of a crucial mitochondrial enzyme, the succinate dehydrogenase) (Fig. 1B) point 

out that the mitochondrial alteration do not occur in early phases of toxin action. 

 

2,5-HD alters microtubule system in human cells 

Having achieved a general picture of the impact of the 2,5-HD action on a neuron-like cellular 

model, we moved to human cells. We choose to use human skin fibroblasts, since they 

recently turned out to be an easy available and robust PD experimental model (Auburger et al. 

2012), and because we could take advantage of the expertise already present in our lab on 

working with this kind of cell lines derived from patients with different type of PD (Cartelli et 

al. 2012). On this purpose, the effect of 2,5-HD has been tested on skin fibroblasts (Fig. 6A), 

obtained from healthy donors and patients carrying mutation in PARK2, a specific PD-related 

gene coding for an E3 ubiquitin ligase also able to bind and stabilize MTs. Since the majority 

of mutations in PARK2 gene are supposed to cause a loss of function in the protein both in its 

E3 ligase activity and MT-binding ability, we wanted to evaluate if 2,5-HD could elicit 

peculiar effects in a baseline condition of MT destabilization. We applied the same 

experimental paradigm used for NGF-differentiated PC12 cells. The cell viability was not 

affected by 24 hours of treatment with the toxin (Fig. 6C), whereas the cell morphology 

between the two groups of fibroblasts appeared striking different. In fact, control fibroblasts 

were elongated, whereas fibroblasts from PD patients were wider and larger (Fig. 6B) at least 

in the presence of mutated parkin. Morphometric analyses confirmed that the PD fibroblasts 

presented a much higher cell area respect to control fibroblasts (p<0.001; Fig. 6D) with the 

consequent decrease of the ratio between maximum and minimum axis (p<0.001; Fig 6E), 

already reported by Cartelli and colleagues (Cartelli et al. 2012). It’s noteworthy, the fact that 

2,5-HD had no effects on control fibroblasts morphology for both cell area and axes ratio 
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(Fig. 6D-E), whereas PD fibroblasts showed a significant decrease in the cell area at the 

highest concentration of 2,5-HD (p<0.05; Fig.6D). 

To assess the effect of 2,5-HD on the MT stability in human fibroblasts, the state of tubulin 

polymerization was analyzed as well. We firstly confirmed that MT dysfunction was present 

in patients already at baseline conditions without the addition of any stressor as previously 

reported (Cartelli et al. 2012), and then observed that 2,5-HD treatment was able to cause the 

stabilization of MTs in both PD patients and healthy controls (Fig 6F-G). Interestingly, MT 

stabilization occurred at the lowest dose of 2,5-HD in PD fibroblasts whereas healthy controls 

were affected just at 20 mM of toxin, suggesting a greater MT susceptibility in PD patients. 

These data show that 2,5-HD impacts MT system both in neuron-like cells and in human 

fibroblasts inducing MT stabilization, and, more interestingly, suggest that the genetic 

background may really make a difference in MT susceptibility to this environmental PD 

toxin.  
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DISCUSSION  

 

MT dysfunction has become an emerging hypothesis in PD pathogenesis (Ren et al. 2005; 

Cartelli et al. 2010). In this scenario, our goal was to deeply investigate the MT dysfunction 

induced by a toxin linked to PD using both NGF-differentiated PC12 cells, as a model of 

dopaminergic neurons, and skin fibroblasts, obtained from healthy donors and PD patients 

carrying mutations in PARK2 gene, as human cellular model. We revealed a very early and 

specific alteration in microtubule distribution and stability other than the unbalance of 

modified forms of α-tubulin in PC12 cells treated with 2,5-HD. Testing the effects of the 

toxin on human skin fibroblasts, we found that microtubule system was targeted by and, 

interestingly, more susceptible to 2,5-HD in cells obtained from PD patients than from 

healthy donors. Taken together, our data strongly suggest a key role of microtubules in 2,5-

HD-induced damage. 

Dopaminergic neurons appears to be particularly sensitive to any insults that could damage 

the MT cytoskeleton because of their peculiar architecture, characterized by an extremely 

widespread arborization and particularly long axons, that made their function and survival 

strongly dependant by intracellular trafficking (Hunn et al. 2015). The dopaminergic cell line 

we used, NGF-differentiated PC12 cells, revealed morphological alterations following 2,5-

HD treatment in a dose-dependent manner but the formation of small swellings along the 

neurites became evident very early and before any loss of cell viability (Fig. 1). Moreover, the 

immunocytochemical approach (Fig. 2) highlighted the presence of accumulations of NFs 

inside these axonal swellings, called varicosities, and in the perinuclear area as expected from 

data in other cellular models (Tuckwell et al. 1992; Heijink et al. 1995; Hartley et al. 1997) 

and in the clinical situation showing distal axonal accumulation of NFs (Herskowitz et al. 

1971; Scelsi and Candura 2012). In addition, the level of both NF-L and NF-M was 

significantly decreased at the highest dose of 2,5-HD (Fig. 2A-B), in accordance with data 

coming from cultured rat dorsal root ganglia cells (Han et al. 2014) and in vivo studies (Zhang 

et al. 2005; Song et al. 2007; Wang et al. 2008). In these and other previous studies, the 

effects of 2,5-HD on intermediate filaments have been extensively described also in cultured 

fibroblasts, astrocytes, mouse neuroblastoma and melanoma, and epithelial cell lines (Durham 

1988; Malorni et al. 1989; Sager 1989), but both microfilaments and MTs were poorly 

investigated. Here we show that actin seems to be just a few and transiently affected from 2,5-

HD, showing an increased protein level and an altered distribution in bundles (Fig. 2C), also 

described in the literature (Malorni et al. 1989; Hall et al. 1992). At a glance, also MTs were 
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almost unaffected by the toxin treatment as the majority of the studies reported, since the 

tubulin levels were unchanged, but, interestingly, the fluorescent staining highlighted a partial 

fragmentation of the MT network and also a perinuclear accumulation like NFs at high doses 

(Fig. 2C). To our knowledge, this effect has been never seen before, nether in other neuron-

like cell model nor primary neurons in vitro from human foetuses (Moretto et al. 1991). We 

think that this differences could be due to the cell type used because, as already explained 

above, the dopaminergic neurons are particularly sensitive for their peculiar structure so other 

kind of neurons could underestimate the effects of toxin on MTs. Under this light, it’s 

possible to understand why the differentiated neuroblastoma cells were more sensitive 

compared to the undifferentiated ones or fibroblasts (Heijink et al. 1995; Hartley et al. 1997), 

because the neuronal-like structure is strictly dependent on cytoskeleton and, in particular, on 

MT functions. This different response of neuronal cells has been described for a much more 

percentage of cell survival, but presenting more morphological alterations, especially NF 

accumulations. Also, undifferentiated PC12 cells treated with comparable concentration of 

2,5-HD for 24 hours, showed a significant cell mortality already at 5 mM (Qi et al. 2015), 

while we didn’t observe any significant cell loss in 5-days NGF-differentiated PC12 cells. 

Moreover, Malorni and colleagues (Malorni et al. 1989) have already demonstrated that 2,5-

HD interferes with the cell proliferation, reporting that the cells detached from the substrate 

when they were in the mitotic phase after treatment. From our point of view, this is an 

additional clue of the direct action of 2,5-HD on MTs, being them responsible of the mitotic 

spindle, cell shape and the attachment to the substrate, explaining even more clearly why the 

cell viability was not affected in non-dividing cell such as neurons. 

Since MTs seemed playing a crucial role in 2,5-HD-induced neurodegeneration, we deeply 

evaluate in neuron-like cells the stability of MT system for the first time, through the analyses 

of different post-translational modified forms of α-tubulin and the state of tubulin 

polymerization in cell and in vitro. Surprisingly, although the overall tubulin content was 

unchanged, all the three PTMs analysed were significantly affected by 2,5-HD and changed in 

both levels and distributions (Fig. 3). Previous data reported that 2,5-HD is able to alter the 

tubulin assembly with a taxol-like effect (Boekelheide 1987a; Boekelheide 1987b), 

suggesting that it can likely affect the stability of MT cytoskeleton. Here we support this 

hypothesis showing that the expected MT stabilizing effect could be achieved specifically 

increasing the levels of acetylated and detyrosinated tubulin, associated to stable MTs, and 

consequently decreasing the levels of tyrosinated tubulin, marker of native and dynamic MT 

pool (Fig. 3A-B). Moreover, the localization of these stable MTs was unusual: they were 
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accumulated in the perinuclear area and partially fragmented (Fig. 3C) (meaning that these 

stable tubulins were in charge of the alterations previously observed for the distribution of 

total α-tubulin in figure 2C). Consistent with this, the analysis of tubulin polymerization in 

cell revealed a higher content of MT fraction respect to free tubulin pool caused by 2,5-HD 

(Fig. 3D-E). Indeed, this increase in MT mass represent a strong and direct proof that 

stabilization oh MTs occurs in treated cells. Unfortunately, we were not able to reproduce this 

MT stabilizing effect or any other differences respect to control with our in vitro data for 

kinetic parameters of polymerization curves neither to show any changes in MT ultrastructure 

(Fig. 4). 

Interestingly, taking a look also to mitochondria, we found that in our experimental conditions 

the increase of ROS production (Fig. 5A) was induced later than the cytoskeletal 

modifications occurred (Fig. 2), especially MT stability alteration (Fig. 3). Qi and colleagues 

(Qi et al. 2015) have exhaustively analysed the effects of 2,5-HD in undifferentiated PC12 

cells on mitochondria-related pathway, demonstrating that the toxin can induce apoptosis, 

down- and up-regulating the expression of the anti- and pro-apoptotic proteins Bcl-2 and Bax 

respectively, promoting the disruption of mitochondrial membrane potential, inducing the 

release of cytochrome c and finally increasing the activity of caspase-3. Unfortunately, the 

authors did not check for alterations in any components of the cytoskeleton in undifferentiated 

cells, so we can’t really compare their results with ours and pinpoint the respective role of 

mitochondria- and MT-based effects in triggering cell death. We can speculate that, since 

differentiated cells are more comparable to mature neurons than undifferentiated ones, the 

cytoskeletal and MT alterations observed in NGF-differentiated PC12 cells may be more 

helpful in explaining the neurotoxic actions of 2,5-HD in vivo situations. In conclusion, our 

data show that MT system impairment is an early event in neurodegeneration of dopaminergic 

neurons in culture that could consequently cause all the other alterations described here and 

by other colleagues, supporting the hypothesis that MT dysfunction has a key role in the 

process leading neurons to death. 

Finally, moving to the human cell model we have chosen the human fibroblasts since they are 

an easy available and robust PD experimental model as recently highlighted (Auburger et al. 

2012). On this purpose, skin fibroblasts were obtained from healthy donors and PD patients, 

carrying mutations in PARK2 gene, since PARK2 gene encodes for an E3 ubiquitin ligase that 

is able to bind and stabilize MTs (Ren et al. 2003; Yang et al. 2005). This allowed us to study 

two different pathways, that triggered by 2,5-HD and that triggered by PARK2, both likely 

converging on MTs. We first confirmed that fibroblasts deriving from PD patients were 
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characterized by a wider cell area and a minor axes ratio at baseline conditions as we have 

previously described also for other type of PD patients (Cartelli et al. 2012). Interestingly, 

exposure to 2,5-HD could induce morphological changes just in PD fibroblasts, pushing the 

cell morphology back to the one of control fibroblasts, decreasing the cell area. It’s 

noteworthy that healthy fibroblasts exposed to 2.8 mM 2,5-HD for many days underwent 

changes in their morphology already after 3 days of treatment, showing a large swollen cell 

body and thin elongated processes (Passarin et al. 1996), resembling our data obtained 

exposing PD fibroblasts to 20 mM 2,5-HD for 24 hours. Moreover, Passarin and colleagues 

found that exposed healthy fibroblasts presented a tubulin and tau immunostaining less 

intense and not uniform, while vimentin resulted normal, suggesting that the cytotoxicity of 

2,5-HD is not restricted to intermediate filaments, but affects other cytoskeletal components, 

such as MTs, also emerging by the impairment of the cell cycle. Here, to assess the effect of 

2,5-HD on the MT stability, we assessed the state of tubulin polymerization in fibroblasts. 

2,5-HD treatment was able to cause the stabilization of MTs in both PD patients and healthy 

controls, but this occurred at the lowest dose of toxin just in PD fibroblasts (Fig. 6), 

suggesting a greater MT susceptibility, at least in these ones carrying mutations in PARK2 

gene. These data show that 2,5-HD impacts all the cytoskeletal components and in particular 

the MT system both in neuron-like cells and in human skin fibroblasts inducing MT 

stabilization and, more interestingly, suggest that the genetic background may really make a 

difference in MT susceptibility to this environmental PD toxin.  

Nowadays no treatment exists that has been demonstrated to slow, delay or even reverse the 

disease progression. Consequently, PD will continue to be an important health issue and a 

strong economic drain due to its direct and indirect costs, moreover, the prevalence of the 

disease is expected to rise dramatically over the next 20 years as the population ages (Sherer 

et al. 2012). Unraveling the molecular mechanisms responsible for PD neurodegeneration 

represents the only way for developing new and more efficient therapy, in particular we 

suggest that MTs could be a good target for new neuroprotective drugs.  
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MATERIALS AND METHODS 

 

Maintenance and neural differentiation of PC12 cells 

PC12 cells were maintained in RPMI 1640 (EuroClone, Pero, Italy) containing 10% horse 

serum and 5% fetal bovine serum (HyClone, Logan, UT, USA), supplemented with 2 mM L-

glutamine (EuroClone), penicillin/streptomycin both 100 µg/ml (EuroClone), at 37°C in a 

humidified atmosphere, 5% CO2. In routine condition, the medium has been changed every 3-

4 days. Cells were plated at 1.5 × 10
4
/cm

2
 onto poly-L-lysine (Sigma Aldrich, St. Louis, MO)-

coated cover glass in 35-mm petri dishes for immunofluorescence microscopy or directly onto 

poly-L-lysine-coated petri dishes for biochemical analysis. For neural differentiation, the cells 

were exposed to 50 ng/ml human β-NGF (PeproTeck, London, UK) in low serum medium 

(RPMI 1640 supplemented with 2% horse serum, 2 mM L-glutamine, 

penicillin/streptomycin). The differentiation medium is changed every 2-3 days with fresh 

one. The PC12 cells were exposed to 2,5-HD (Sigma-Aldrich) after 5 days of differentiation 

with human β-NGF and analysed at different time points. 

 

Ethic statement, generation and maintenance of human fibroblast cell lines 

Primary fibroblasts were obtained by skin biopsies from 6 individuals. They included 3 

healthy subject as control group and 3 patients affected by PD, carrying mutation in PARK2 

gene, whose characteristics are summarized in the table of Figure 6A. All patients were 

examined by movement disorder neurologists and clinical diagnosis of PD was established 

according to the UK Parkinson Disease Society Brain Bank criteria (Hughes 1992). The 

mutations on the parkin (PARK2) gene were screened as previously described (Sironi et al. 

2008). The study was approved by the local ethics committee (Istituti Clinici di 

Perfezionamento, July 13th 2010) and all participants gave written informed consent. 

Human fibroblasts were cultured in RPMI 1640 (Hyclone) containing 15% foetal bovine 

serum (HyClone) supplemented with 2 mM L-glutamine, penicillin/streptomycin both 100 

µg/ml (all from EuroClone) and 50 μM β-mercaptoethanol (Sigma-Aldrich), at 37°C in a 

humidified atmosphere, 5% CO2. For 2,5-HD treatment, fibroblasts were plated at the density 

of 1.2 × 10
4
/cm

2
 on uncoated 35 mm petri dishes; the day after, the cells were incubated with 

different concentrations of 2,5-HD (Sigma-Aldrich), and then analysed. For the cell viability 

assay, the fibroblasts were grown with normal medium, and then maintained just before the 

experiments in medium with a lower fetal bovine serum concentration (only 7,5% instead of 

15%) and without β-mercaptoethanol, that could both interfere with MTT test.  
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2,5-HD treatment 

Five days NGF-differentiated PC12 cells were incubated for 24, 48 or 72 hours with the 

following concentrations of 2,5-HD: 0.2 mM, 2 mM and 20 mM. Human fibroblasts were 

exposed to the same concentration of 2,5-HD for 24 hours. The 2,5-HD was diluted in the 

fresh appropriate culture medium and filtered. Then, a change of medium with the one 

containing 2,5-HD was performed to start the treatment and the cells were incubated in 

standard conditions. When the incubations were finished, the living cells were viewed by 

phase contrast microscopy and random images were captured for morphometric analyses. 

Immediately after, the cells were fixed with 4% paraformaldehyde or cold methanol for 

immunofluorescence, lysed with cell lysis buffer for western blot analyses, or used for 

specific tests such as cell viability or reactive oxygen species production assays. 

 

Morphometric analysis 

The cell morphology of living cells at the end of treatment has been evaluated by phase 

contrast microscopy. Five random images at 20x magnification were captured per well per 

each condition using Axiovert S100 microscope (Zeiss, Oberkochen, Germany) equipped 

with AxiocamHR (Zeiss) and then analysed using digital image processing software 

(Interactive measurement module, Axiovision Release 4.8, Zeiss). All cells in each image 

were analysed. For PC12 cells were considered about 600 cells per condition, while for 

human fibroblasts were analysed about 80 cells per condition and at least 20 per individual. 

For PC12, three principal features of neuritogenesis were considered: the percentage of 

differentiated cells, the length of the longest neurite for each differentiated cell and the 

percentage of differentiated cells presenting varicosities on their longest neurite. A cell was 

considered differentiated when it had the longest neurite at least twice as long as the cell body 

diameter (Yamazaki et al. 2004). About human fibroblasts, the maximum and minimum axes 

and the cell area were measured. The ratio between the maximum and minimum axis has been 

calculated. 

 

Cell viability assay 

The MTT test has been used to assess the viability of cells in culture according to their 

mitochondria enzymatic activity. This colorimetric assay is based on the incubation of cells 

with the soluble yellowish MTT salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) (Sigma-Aldrich), as NADH dehydrogenase substrate. For NGF-differentiated PC12 
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cells the differentiation medium without NGF was used to dissolve the MTT salt, while for 

fibroblasts only RPMI was used. The filtered freshly prepared MTT solution (0.5 mg/ml) was 

added to culture medium of the cells previously plated in multi-well plates and treated with 

different concentrations of 2,5-HD. The cells were then incubated for three hours in the dark 

at 37°C. After incubation, a solution of 0.1 M HCl in isopropanol has been added to each well 

in equal volume to the one already present in the well pipetting vigorously, in order to lyse the 

cells and solubilize the insoluble purple crystals of formazan. The intensity of purple colour 

of each well has been measured through a plate-reader spectrophotometer (Infinite 200Pro, 

Tecan, Mannedorf, Switzerland) at wavelength of 570 nm. 

 

DCFDA assay 

Reactive oxygen species (ROS) production was detected using DCFDA Cellular ROS 

Detection Assay Kit (Abcam) according to manufacturer’s instructions. Briefly, NGF-

differentiated PC12 cells were grown in a black multiwell and after 5 days of differentiation 

were incubated for 45 min with 25 µM DCFDA at 37°C. After incubation, the cells were 

washed once with the kit buffer and then treated with 2,5-HD for 24 hours. The fluorescence 

intensity was measured through a plate-reader spectrophotometer (Infinite 200Pro, Tecan) 

using the excitation/emission wavelength 485 nm/535 nm. 

 

Western blot analysis 

Whole cell extracts, Triton X-100 (Sigma-Aldrich)-soluble and -insoluble fractions of PC12 

cells and human fibroblasts were prepared as follows. For preparation of whole-cell extracts, 

cells were washed twice with phosphate-buffered saline (PBS) and scraped into sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer (2% w/v 

SDS, 10% v/v glycerol, 5% v/v β-mercaptoethanol, 0.001% w/v bromophenol blue, and 62.5 

mM Tris, pH 6.8; all from Sigma-Aldrich) containing protease inhibitor cocktail 1:1000 

(Sigma-Aldrich). To determinate protein concentration of total lysates the bicinchoninic acid 

reagent assay (Micro BCA, Pierce, Rockford, IL, USA) was used and compared to a bovine 

serum albumin standard curve. To separate cytosolic tubulin dimers from the ones 

polymerized into MTs, cells were washed twice in PEM buffer (88 mM Pipes, pH 6.94, 10 

mM EGTA, 1 mM MgCl2, 2 M glycerol, protease inhibitor cocktail; all from Sigma-Aldrich), 

incubated for 10 min at room temperature with PEM buffer containing 0.1% v/v Triton X-100 

to collect the soluble cytoplasmic proteins extracted with the Triton-containing PEM buffer, 

and rinsed once again briefly with PEM buffer, adding also this one to the previous collected 
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fraction. The obtained Triton X-100-soluble fractions were diluted 3:1 with 4X SDS-PAGE 

sample buffer. The insoluble material remaining attached to the dish was scraped into SDS-

PAGE sample buffer. Equal proportions of each fraction or protein samples from whole cell 

extracts (25 µg per lane) were then boiled for 3 min, subjected to 7,5% SDS-PAGE and 

western-blotted onto PDVF Immobilon™-P membranes (Millipore, Billerica, MA). Blocking 

was performed by incubating the membranes in 5% w/v nonfat dry milk in 10 mM Tris, pH 

7.4, 150 mM NaCl (TBS) with 0.05% v/v Tween 20 for 1 hour at room temperature. Primary 

antibody incubations were performed overnight at 4°C. Membranes were washed for 30 min 

with 3 changes and incubated with horseradish peroxidase-linked antibody for 1 hour at room 

temperature. After washing the reaction was developed using enhanced chemioluminescence 

(SuperSignal West Pico Chemiluminescent, Pierce). Membranes were probed with the 

following primary antibodies: actin mouse IgM (N350, Amersham, Little Chalfont, UK) 

1:4000; NF-L rabbit IgG (AB-10685, Immunological Sciences, Rome, Italy) 1:40000, NF-M 

mouse IgG (MAB-10338, Immunological Sciences) 1:40000, α-tubulin mouse IgG (clone B-

5-1-2, T6074, Sigma-Aldrich) 1:1000; β-tubulin mouse IgG (clone Tub 2.1, T4026, Sigma-

Aldrich) 1:4000; deTyr tubulin rabbit IgG (ab 48389, Abcam) 1:1000; Tyr tubulin mouse IgG 

(clone TUB-1A2, Sigma-Aldrich) 1:1000; Ac tubulin mouse IgG (clone 6-11B-1, T7451, 

Sigma-Aldrich) 1:2000; DRP1 rabbit IgG (clone D6C7, #8570, Cell Signaling, Danvers, MA, 

USA) 1:1000; Mitofusin-2 rabbit IgG (clone D2D10, #9482, Cell Signaling) 1:1000; VDAC1 

rabbit IgG (ab15895, Abcam) 1:500. As secondary antibodies were used: HRP goat anti-

mouse IgG (31430, Pierce) 1:20000; HRP goat anti-rabbit IgG (31460, Pierce) 1:40000; HRP 

goat anti-mouse IgM (ab5930, Abcam) 1:5000. To ensure equal protein loading for the whole 

protein lysates (not for Triton-soluble/insoluble fractions), protein samples were assayed by 

densitometry of Coomassie blue-stained PVDF membranes and adjusted for blotting. 

Immunoblots were scanned with Epson WP-4525 color image scanner (Seiko Epson 

Corporation, Suwa, Japan) and analyzed by ImageJ software (National Institute of Health).  

 

Immunofluorescence and labeling 

Cells were fixed with methanol at -20°C or 4% paraformaldehyde for 10 min and incubated 

with the following primary antibodies and probes: Atto 565 Phalloidin (94072, Sigma-

Aldrich) 1:100; NF-L rabbit IgG (AB-10685, Immunological Sciences) 1:1000, NF-M mouse 

IgG (MAB-10338, Immunological Sciences) 1:500; α-tubulin mouse IgG (clone B-5-1-2, 

T6074, Sigma-Aldrich) 1:500; Tyr tubulin mouse IgG (clone TUB-1A2, Sigma-Aldrich) 

1:100; deTyr tubulin rabbit IgG (ab48389, Abcam) 1:100; Ac tubulin mouse IgG (clone 6-
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11B-1, Sigma-Aldrich) 1:100; and 49,6-Diamidino-2-phenylindole dihydrochloride DAPI (D-

8417, Sigma-Aldrich) 1:40000. As secondary antibodies we used: Alexa Fluor
TM

 568 goat 

anti-mouse (A11004, Life Tecnologies, Carlsbad, CA, USA) 1:1000; Alexa Fluor
TM

 488 goat 

anti-rabbit (ab150077, Abcam) 1:1000. The coverslips were mounted in Mowiol® 

(Calbiochem, San Diego, CA)–DABCO (Sigma-Aldrich) and samples were examined with 

the Axiovert 200M microscope (Zeiss) or with a confocal laser scan microscope imaging 

system (TCS SP5, Leica Microsystem, Heidelberg, Germany).  

 

Tubulin purification 

Tubulin was purified from fresh bovine brain conserved in ice-cold PBS (20 mM Na-

phosphate, 150 mM NaCl, pH 7.2). Pure tubulin was obtained by two cycles of 

polymerization–depolymerization in a high-molarity buffer (Castoldi and Popov 2003) 

resuspended in BRB80 (80 mM K-Pipes pH 6.9, 2 mM EGTA, 1 mM MgCl2; all from Sigma-

Aldrich), snap-frozen in liquid nitrogen, and stored in small aliquots at -80 °C. 

 

Tubulin assembly in vitro 

The kinetics of tubulin polymerization was studied using a standard protocol (Contini et al. 

2012) in the absence or presence of different concentration of 2,5-HD without preincubation. 

Reactions were followed turbidimetrically at 350 nm for 90 min at 37°C in a multimode plate 

reader (Infinite 200Pro, Tecan) equipped with a temperature controller. Pure bovine brain 

purified tubulin was diluted in assembly buffer (80 mM K-Pipes, pH 6.9, 2 mM EGTA, 1 mM 

MgCl2, 10% glycerol, and 1 mM GTP) to the working concentration of 30 µM, previously 

degassed, and kept on ice; the reaction was started by warming the solution at 37°C. 

Polymerization time-course was dissected in order to calculate the kinetic parameters 

describing the different phases of the process. The number of successive steps in the 

nucleation (P) was determined by plotting log(A(t)/A∞) against log(t). The maximal velocity 

of polymerization (Vi) was calculated as the variation of mass versus time (δA/δt) at the very 

initial elongation phase, whereas total extent of MT assembly was deduced from the total 

absorbance variation (ΔA) achieved as the steady-state was established. The tubulin critical 

concentration, namely the lowest tubulin concentration allowing MT formation, was 

extrapolated as the x-intercept of the linear dependence of ΔA from the initial tubulin 

concentration. 
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Electron microscopy 

Negative staining of pure tubulin was prepared by leaving a drop of assembled MTs, 

previously fixed with 1% (v/v) glutaraldehyde, on Formvar Carbon Film-coated 200 square 

mesh Nickel grids (FCF200-Ni-50, Electron Microscopy Sciences, Hatfield, PA, USA) for 30 

min at 25°C. The grids were first washed three times for 1 min with 5 mM EGTA, then 

dipped rapidly two times in 1% uranyl acetate for 5 sec and, finally, let dry on filter paper at 

room temperature protected from dust. The samples were viewed with Philips CM10 

transmission electron microscope at 80 kV; images were acquired using a Morada Olympus 

digital camera with different magnifications (46000x, 92000x, 130000x). 

 

Statistical analysis 

Statistical analysis was performed using STATISTICA (StatSoft Inc., Tulsa, OK), and 

significant differences of 2,5-HD treated versus control cells were assessed by one-way 

ANOVA with Tukey HSD, Fisher LSD or Dunnett 2-sided as post hoc test; χ
2
 test was used to 

analyze qualitative variables. Data are expressed as means ± SEM. All experiments were 

repeated at least three times. 
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LEGENDS 

 

Figure 1.  

2,5-HD treatment induces morphological changes in NGF-differentiated PC12 cells. 

(A) Representative phase-contrast micrographs of 5-days NGF-differentiated PC12 cells 

treated with different concentration of 2,5-HD (0.2 mM, 2 mM and 20 mM) for 24, 48 and 72 

hours. Scale bar: 50 µm. For all the histograms (B, C, E) the following color code has been 

used: control (CTRL, white bars), 0.2 mM 2,5-HD (light grey bars), 2 mM 2,5-HD (dark grey 

bars) and 20 mM 2,5-HD (black bars). (B) The cell viability, evaluated by MTT test, was not 

affected just at 20 mM for 48 and 72 hours of exposure. *p<0.01 and **p<0.001 vs CTRL 

according to ANOVA, Tukey HSD post hoc test. (C-E) Morphometric analysis showed 

morphological alterations induced by 2,5-HD in a dose-dependent manner. Three principal 

features of neuritogenesis were considered: the percentage of differentiated cells (histogram, 

C), the length of the longest neurite for each differentiated cell (box plot, D) and the 

percentage of differentiated cells presenting varicosities on their longest neurite (histogram, 

E). 2,5-HD treatment induced the shortening of the neurite length with consequent loss of the 

differentiated state of the cells and induced the formation of small axonal swelling. For the 

percentage of neuronal differentiation (C) and neurites with varicosities (E) *p<0.05 and 

**p<0.001 vs CTRL according to χ
2
 test. For the neurite length (D) *p<0.05 and **p<0.001 

vs CTRL according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean 

± SEM.  

 

Figure 2.  

2,5-HD impacts all the components of the cytoskeleton in NGF-differentiated PC12 cells.  

(A) Immunoblot and (B) densitometric analyses of actin (Actin), NFs (NF-L and NF-M), α-

tubulin (α-Tub) and β-tubulin (β-Tub) were performed in whole cell extracts from 5-days 

NGF-differentiated PC12 cells treated for 24 hours with different concentration of 2,5-HD: 

control (CTRL, white bars), 0.2 mM (light grey bars), 2 mM (dark grey bars) and 20 mM 

(black bars). For the quantitation, values of each protein were normalized on the total amount 

of protein loaded per lane, through the Coomassie blue staining. All values are expressed as 

mean ± SEM. *p<0.05 and **p<0.001 vs CTRL according to ANOVA, Tukey HSD post hoc 

test. (C) NGF-differentiated PC12 cells were stained with Atto 565-conjugated phalloidin or 

with primary antibodies anti-NF-L and anti-α-tubulin to reveal the organization of actin fibers 

(Actin, top), NFs (NF-L, middle) and MTs (α-Tub, bottom), respectively. Scale bar: 20 µm. 
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Figure 3.  

2,5-HD alters MT stability in NGF-differentiated PC12 cells. 

(A) Immunoblot and (B) densitometric analyses of post-translational modified forms of α-

tubulin (α-Tub): tyrosinated tubulin (Tyr Tub), detyrosinated tubulin (deTyr Tub) and 

acetylated tubulin (Ac Tub). The analyses were performed on whole cell extracts from 5-days 

NGF-differentiated PC12 cells treated for 24 hours with different concentration of 2,5-HD: 

control (CTRL, white bars), 0.2 mM (light grey bars), 2 mM (dark grey bars) and 20 mM 

(black bars). For the quantitation, values of each protein were normalized on the total amount 

of protein loaded per lane, through the Coomassie blue staining. All values are expressed as 

mean ± SEM. *p<0.01 and **p<0.001 vs CTRL according to ANOVA, Tukey HSD post hoc 

test; #p<0.01 vs CTRL according to ANOVA, Fisher LSD post hoc test. (C) 2,5-HD altered 

the distribution of stable MTs. NGF-differentiated PC12 cells were stained for tyrosinated 

(Tyr), detyrosinated (deTyr) and acetylated (Ac) tubulin to investigate MT organization and 

stability. All cells were concurrently stained with DAPI (blue), to visualize the nucleus. Scale 

bar: 20 µm. (D-E) Triton-X100-soluble (representing the free α-tubulin dimers, Dim) and –

insoluble fraction (α-tubulin incorporated into MTs, MTs) of modified forms of α-tubulin in 

NGF-differentiated PC12 cells were analysed by (D) immunoblot and (E) densitometric 

analyses, shown as ratio. 2,5-HD influenced the tubulin distribution between the two 

fractions. As expected for a MT-stabilizing action, in fact, the ratio was shifted towards the 

MTs fraction even at low doses of toxin. *p<0.05 vs healthy CTRL according to ANOVA, 

Fisher HSD post hoc test; **p<0.001 vs CTRL of each group according to ANOVA, Tukey 

HSD post hoc test. All values are expressed as mean ± SEM. 

 

Figure 4. 

Tubulin assembly in vitro and MT ultrastructure in the presence of 2,5-HD. 

(A) Kinetic curves of pure tubulin (30 µM), purified from bovine brain, polymerized in 

assembly buffer in the absence (CTRL) or presence of different concentration of 2,5-HD (0.2 

mM, 2 mM and 20 mM) without any preincubation. Reactions were followed 

turbidimetrically at 350 nm for 90 min at 37°C. (B) Table reporting the kinetic parameters 

calculated from the polymerization curves: the number of successive steps in the nucleation 

phase (P value), the maximal velocity of polymerization at the very initial elongation phase 

(Vi, ΔA/min) and the total extent of MT assembly as the total absorbance variation (ΔA). All 

values are expressed as mean ± SEM. (C) Ultrastructure of the tubulin assembly products 

performed in the same conditions described above. Control and 20 mM 2,5-HD treated 
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tubulin were fixed with 0.5% glutaraldehyde prior to perform the negative staining with 

uranyl acetate. Scale bar: 100 nm. 

 

Figure 5.  

Mitochondria seemed not to be an early target of 2,5-HD. 

(A) Reactive oxygen species (ROS) production was measured using DCFDA Cellular ROS 

Detection assay on 5-days NGF-differentiated PC12 cells treated for 24 hours with different 

concentration of 2,5-HD: control (CTRL, white bars), 0.2 mM (light grey bars), 2 mM (dark 

grey bars) and 20 mM (black bars). *p<0.05 vs CTRL according to ANOVA, Fisher LSD post 

hoc test. (B) Immunoblot and (C) densitometric analyses of dynamin-related protein 1 

(DRP1) and mitofusin-2 (MFN2) were performed in whole cell extracts from 5-days NGF-

differentiated PC12 cells treated for 24 hours with different concentration of 2,5-HD: control 

(CTRL, white bars), 0.2 mM (light grey bars), 2 mM (dark grey bars) and 20 mM (black 

bars). For the quantitation, values of each mitochondrial protein were normalized on the level 

of mitochondrial porin (VDAC) of the relative sample. *p<0.05 and **p<0.001 vs CTRL 

according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean ± SEM. 

 

Figure 6. 

2,5-HD alters morphology and MT stability in PD fibroblasts. 

(A) Table presenting the information of investigated individuals: the identification code; the 

genotype (just for PD patients); the sex; the age at time of skin biopsy and establishment of 

fibroblast cell line; the age at which the patient first noticed a PD-related symptom was 

considered the age of onset of the disease. (B) Representative phase-contrast micrographs of 

cultured human skin fibroblasts of healthy and PD affected people treated for 24 hours with 

different concentration of 2,5-HD. Scale bar: 50 µm. For all the graphics the following color 

code has been used: control (CTRL, white bars), 0.2 mM 2,5-HD (light grey bars), 2 mM 2,5-

HD (dark grey bars) and 20 mM 2,5-HD (black bars). (C) The cell viability, evaluated by 

MTT test, was not affected in both groups by the toxin. (D-E) Morphometric analysis showed 

increased area in the presence of mutated parkin (D) and reduced ratio between maximum and 

minimum axes in parkinsonian fibroblasts (E). Moreover, just PD fibroblasts morphology was 

affected by 2,5-HD, at 20 mM after 24 hours of treatment the cell area was significantly 

reduced. **p<0.001 vs control group according to ANOVA, Dunnett post hoc test; #p<0.05 

vs PD CTRL according to ANOVA, Fisher LSD post hoc test. (F-G) Triton-X100-soluble 

(representing the free α-tubulin dimers, Dim) and –insoluble fraction (α-tubulin incorporated 
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into MTs, MTs) of human skin fibroblasts were analysed by (F) immunoblot and (G) 

densitometric analyses, shown as ratio. The genetic background influenced the tubulin 

distribution between the two fractions already at the base line condition. The PD fibroblast 

resulted also much more susceptible to the MT-stabilizing action of 2,5-HD, in fact, the ratio 

was shifted towards the MTs fraction even at low doses of toxin. ##p<0.001 vs healthy CTRL 

according to ANOVA, Tukey HSD post hoc test; **p<0.001 vs CTRL of each group 

according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean ± SEM. 

CTRL= control (N=3); PD (PARK2)= patients with mutations in PARK2 gene (N=3). 
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FIGURE 6 
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ABSTRACT 

Mutations in the parkin gene (PARK2) are associated with neurodegeneration and lead to 

familial forms of Parkinson’s disease. In addition to the well-known ligase activity of parkin, 

it seems to regulate other cellular functions including mitochondria homeostasis and 

microtubule stability, although the latter one has been largely neglected during the past years. 

To gain more insights into the intracellular roles of parkin, here we investigated its influence 

on microtubule behaviour in murine and human neurons. Live cell imaging reveals that 

parkin-silencing alters mitochondria movement in cultured neuronal cells through 

microtubule destabilization, since this defect is rescued by paclitaxel. The imbalance of post-

translationally modified tubulins, that are associated with differences in microtubule stability, 

occurs in PARK2 knockout mice and precedes the block of mitochondrial transport. Finally, 

moving to human tissues, we observe changes in tubulin post-translational modifications in 

the autoptic brain of PARK2 patients, and the increase in the fragmentation of stable (i.e. 

Acetylated) microtubules in PARK2 patient-derived neurons. Therefore, our work pinpoints 

parkin as a regulator of microtubule stability in neurons, which would work through the 

balancing of tubulin post-translational modifications, and reinforces the idea that microtubule 

dysfunction may be important in the pathogenesis of Parkinson’s disease. 
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INTRODUCTION 

Mutations in the parkin gene (PARK2) are tightly associated with neurodegeneration and lead 

to familial forms of Parkinson’s disease (PD) known as Autosomal Recessive Juvenile 

Parkinsonism (ARJP, OMIM #600116) (1). Parkin is an ubiquitin E3-ligase involved in the 

maintenance of cellular health (2): its enzymatic activity promotes the degradation of 

misfolded and damaged proteins through the ubiquitin-proteasome system (UPS). In addition 

to its ligase activity, parkin seems to participate in other cellular functions (3) and is able to 

interact with two targets involved in the pathogenesis of PD: mitochondria and microtubules 

(MTs).  

The ability of parkin to regulate mitochondrial dynamics, through the modulation of fusion 

and fission processes (4), is largely accepted. The phosphatase and tensin homolog (PTEN)-

induced putative kinase 1 (PINK1)/parkin pathway acts upstream of mitofusin inducing 

mitochondrial fusion. The same pathway regulates the transport of mitochondria, promoting 

the docking of damaged ones prior to their degradation (5). Nevertheless, the direct 

involvement of PINK1/parkin in the regulation of mitophagy is somewhat controversial. 

Supporting observations came mainly from cultured mammalian cells overexpressing parkin, 

but in induced-pluripotent stem cell (iPSC)-derived human neurons the endogenous parkin is 

not sufficient to initiate mitophagy (6). Therefore, it is unclear whether parkin involvement in 

this process really is relevant in neurons or during PD pathogenesis or not (7). 

Notably, parkin not only interacts with tubulin, the building block of MTs, promoting its 

ubiquitination and degradation via UPS (8), but it is also able to directly bind and stabilize 

MTs (9). Therefore, it is not surprising that PARK2 mutations or exons’ deletion destabilize 

MTs and abolish the ability of parkin to counteract the MT depolymerization induced by 

rotenone and colchicine in both murine and human midbrain dopaminergic neurons (10, 11). 

This process seems to be mediated by the regulation of MAP kinase pathway (10) which, 

interestingly, is a direct regulator of MT stability via the modulation of tubulin post-

translational modifications (PTMs). In agreement with these observations, we recently 

reported that PD-patient skin fibroblasts bearing PARK2 mutations display altered tubulin 

PTM patterns and reduced MT mass, and either MT-targeted pharmacological treatment or 

the overexpression of wild-type (WT) parkin rescues control phenotype (12).   

In order to clarify the effects of parkin on the MT system and MT-dependent functions in 

neurons, using live cell imaging, we first demonstrate that parkin-silencing accelerates MT 

growth and, consequently, impairs mitochondrial trafficking. Afterward, we look at PARK2 

knock out (KO) mice and show that in absence of parkin the equilibrium between stable and 
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dynamic MTs is altered. Finally, through analysis of PD brain tissue and PD iPSC-derived 

neurons, we show for the first time that parkin deletions/mutations affect MT stability in PD 

patients. 
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RESULTS 

 

Parkin regulates mitochondrial trafficking through MT dynamics  

In order to verify the hypothesis that parkin modulates MT dynamics directly and to 

investigate the interplay between MT system and mitochondrial transport in depth, we carried 

out live cell imaging analysis. We used parkin-silenced NGF-differentiated PC12 cells 

(Figure S1) expressing either mCherry-EB3, a fluorescent protein that specifically binds 

growing MT plus-end (13), or Mito-DsRed, which enables us to follow mitochondrial 

movement (14). The kymographs depict the overall effects of parkin-silencing on MT 

dynamics and mitochondrial transport (Figure 1A). According to its proposed MT-stabilizing 

effect (9), we show that parkin absence significantly accelerates MT-growth (Figure 1B); 

furthermore, since it has no effects on the frequency of MT catastrophes (Figure 1C), parkin 

also increase the MT growing distance (Figure 1D). At the same time, parkin-silencing speeds 

up the anterograde velocity of mitochondrial transport (Figure 1E), with no effects on 

retrograde transport (Figure 1F); furthermore, silenced cells display a higher fraction of 

mitochondria moving towards the soma (Figure 1G), meaning that parkin absence causes a 

disorientated mitochondrial trafficking. Therefore, to ascertain whether the mitochondrial 

motility defects were strictly related to alterations in the MT system, we performed rescue 

experiments using the MT-stabilizing agent paclitaxel. As shown in Figure 1, paclitaxel 

restores the physiological MT-growth rate and, very interestingly, rescues mitochondria 

transport defects, reverting the direction of mitochondria movement and slowing down its 

velocity. Altogether, our data pinpoint that parkin directly regulates MT dynamics and, in turn 

modulates mitochondrial trafficking.       

 

Parkin absence affects MT stability in knock out mice 

The majority of pathological PARK2 mutations are loss-of-function and result in the absence 

or, at least, in an inactive form of parkin. Although the PARK2 KO mouse is not a suitable PD 

model to investigate nigro-striatal neuronal degeneration (15, 16), it can be useful and 

informative for studing parkin biology. Therefore, we decided to evaluate MT stability in 

Corpus striatum (Figure 2) and Substantia nigra (Figure 3) of WT and PARK2 KO mice at 

different ages, ranging from young adult to old mice (2-24 months). Biochemical analyses of 

α tubulin PTMs, which are markers of MTs with different stability (17), showed the 

enrichment of Tyrosinated (Tyr) tubulin, the most dynamic MT pool, in the Corpus striatum 

of PARK2 KO mice (Figures 2A and 2B). The increase of Tyr tubulin is detectable already at 
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2 months of age but it vanishes over time. Furthermore, we observed a mild but significant 

increase in the level of Acetylated (Ac) tubulin in 7 months old PARK2 KO mice (Figures 2A 

and 2B). To uncover whether the observed changes of tubulin PTMs in the Corpus striatum 

can be attributed to dopaminergic terminals, we used confocal microscopy and the analysis of 

Manders’ parameters (18). Dopaminergic terminals showed a specific trend of tubulin PTM 

changing that somehow differs from the whole region (Figures 2C and 2D). Indeed, co-

localization between stable MTs, i.e. Ac and deTyrosinated (deTyr) tubulin, and tyrosine 

hydroxylase (TH) staining increases, whereas loss of Tyr tubulin staining is detectable in 

young mice and exacerbated in old ones. This is intriguing as it suggests that the MT 

cytoskeleton inside dopaminergic terminals of PARK2 KO mice specifically loses its dynamic 

component and accumulates stable MTs making terminals less prone to rapidly reorganize.  

Western blotting analysis performed on ventral mesencephalon lysates (Figures 3A and 3B), 

revealed a significant increase of Tyr tubulin in young adult PARK2 KO mice followed by a 

non significant decrease in older ones. Our analyses also revealed the reduction of Ac tubulin 

in 2-year old PARK2 KO mice. Confocal analyses, and the quantification of fluorescence 

intensity inside dopaminergic neurons, showed that the early accumulation of Tyr tubulin and 

its later decrease occurred specifically in dopaminergic neurons (Figures 3C and 3D). Since 

fluorescence quantification revealed an enrichment of Ac MTs in dopaminergic neurons 

(Figures 3C and 3D), the slight reduction in Ac tubulin levels observed by Western blotting is 

probably due to an alteration occurring in other cell types, such as glia or non-dopaminergic 

neurons. Taken together, our data uncover the ability of parkin to modulate α tubulin PTMs in 

vivo and well agree with its capability in regulating MT dynamics directly. 

 

Parkin absence impacts mitochondrial transport 

Axonal transport is a process that is strictly dependent on the MT system. It has been shown 

that the PINK1/parkin pathway arrests mitochondrial movement to quarantine damaged 

mitochondria in hippocampal neurons (5). Thus, we analysed mitochondrial transport in 

PARK2 KO mice, evaluating the distribution of mitochondria inside dopaminergic fibres, as 

previously described (19). We observed dopaminergic fibres with a homogeneous distribution 

of mitochondria as well as fibres showing mitochondria that are sparse or clustered into 

varicosities (Figure 4A), a typical sign of axonal transport impairment (20). We quantified the 

different types of fibres (Figure 4B) and found no differences in mitochondria distribution in 

2-month old mice, whereas fibres with mitochondria clustering significantly increased in 

PARK2 KO mice, starting from 7 months of age. We also performed qualitative ultrastructural 
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analysis of TH-positive fibres by pre-embedding immunocytochemistry, which enabled us to 

identify these two types of fibres (Figure 4C), as showed by the axons with one 

mitochondrion (arrowheads) and by the dopaminergic axons engulfed by several clustered 

mitochondria (arrows). In agreement with previous evidence (21), these mitochondria display 

a normal gross morphology (Figure 4C). Moreover, a rough estimation of the mitochondrial 

profile inside dopaminergic axons xxx mExxx (data not shown) reveals that the percentage of 

fibres with 3 or more clustered mitochondria is in agreement with the percentage of fibres 

with a “clustered” mitochondria distribution as evaluated by confocal microscopy, and 

indicate that in these fibers mitochondria cover a higher surface of the axon, easily leading to 

block of intracellular transport. Thus, our data show clustered mitochondria revealing 

transport failure in old mice. According to the chain of events we depicted in parkin-silenced 

cells, the evidences we thus far accumulated led us to hypothesize that the mitochondria 

accumulation observed in PARK2 KO mice may be directly caused by the imbalance in post-

translational regulation of tubulin, which is already noticeable in 2-month old PARK2 KO 

mice.  

 

PARK2 mutations reduce MT stability in PD patients 

Thus far, our data strongly indicate that parkin modulates MT stability in rodent experimental 

models; yet, their relevance had to be validated in human cells, since MT stability in human 

brains in PARK2-linked pathological states is still elusive. Because of the unavailability of 

nigral tissue from PARK2-linked PD patients, we analysed the brain cortex obtained by 

autopsy of PARK2-related PD patients (Figure 5A). Looking at the levels of α tubulin PTMs, 

we found an unbalance of MT stability. Albeit non significant, an overall enrichment of Tyr 

tubulin, the most dynamic MT pool, and a mild increase in Ac tubulin occur in tissues from 

PD patients compared to controls (Figure 5B and 5C). These data are in agreement with our 

observations on the mouse nigro-striatal system (Figure 2 and 3) and suggest, for the first 

time, that PARK2-linked PD patient brains show MT stability defects. In order to refine our 

analyses, and especially to look at midbrain neurons, we took advantage of cellular 

reprogramming technologies to access dopaminergic neurons from iPSCs generated from 

PARK2-linked PD patients and evaluate any possible MT-linked phenotype reminiscent of 

alterations (deletions or mutations) in the PARK2 gene (Figure 5D and Figure S2). Our 

observations unexpectedly revealed that patient-derived cultures show axons with  specific 

disruption of stable MTs, as pointed out by the continuous Tyr Tubulin staining (Figure S2) 

and the fragmented Ac tubulin one (Figure 5). The z-projection (Figure 5E) and the 3D 
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reconstruction (supplementary video 1 and 2) demonstrate that this discontinuous staining is 

not a problem of focal plane but a real fragmentation of stable MTs. A carefull quantification 

of the axons with continuos or interrupted Ac staining highlighted the significantly higher 

percentage of fragmented MTs in PD patient-derived cultures (Figure 5F). This result 

highlights an intrinsic weakness of patient MTs, confirming the already reported MT 

destabilization in human cells (11, 12). 

Overall, our data identify parkin as a modulator of MT stability in neurons. Hence, MT 

destabilization may play an important role in PD pathogenesis and is a relevant therapeutic 

target in PD. 
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DISCUSSION  

As for other PD-related proteins, the functional role of parkin is somewhat controversial. It is 

clearly related to the protein degradation system, via its ubiquitin-ligase activity (2), and to 

mitochondrial homeostasis (4). On the other hand, although the ability of parkin to modulate 

the MT system was proposed many years ago (22), it remained largely neglected. Here, we 

have demonstrated the direct involvement of parkin in the regulation of tubulin PTMs and MT 

dynamics in neurons, both in rodent experimental models and human systems. Furthermore, 

our data indicate that the impact of parkin on MT cytoskeleton likely leads to the impairment 

of mitochondrial transport. 

We have shown that in absence of parkin the equilibrium between stable and dynamic MTs is 

altered and, hence, that parkin modulates MT growth directly. In accordance with the 

proposed MT-stabilizing effect of parkin (9), its absence results in a faster MT growing rate 

(Figure 1). This is consistent with the enrichment of the most dynamic MT pool, i.e. Tyr-

MTs, both in human fibroblasts (12) and in human cortex (Figure 5). To our knowledge, this 

is the first suggestion of MT alterations in human PARK2 PD brains. The very recent 

demonstration of MT destabilization induced by parkin mutations in iPSC-derived neurons 

(11) well matches with our observation of stable MT fragmentation in PD patient-derived 

neurons (Figure 5), regardless of whether they originate form patients with PARK2 exon 

deletions (PA9 and PB2 lines) or a point mutation (CSC-7A). As a whole, these data strongly 

indicate that parkin may be a MT stability modulator in humans, both in physiological and in 

PD contexts. Moreover, in PARK2 KO mice we observed early increase in dynamic MTs 

followed by the accumulation of stable MT pools, which are consistent with the fine tuning of 

MT dynamics and tubulin PTMs associated with neuronal development and brain aging (23). 

Therefore, our data unmask parkin as a novel regulator of MT stability/dynamics, via the 

modulation of tubulin PTMs.  

An expected consequence of the alteration of MT stability is the dysregulation of axonal 

transport. Indeed, proteins and organelles run along MT tracks and we have already reported 

that mitochondrial transport block can be the result of MT destabilization in toxin-induced 

parkinsonism (14, 19). Our work adds on to the previous accrued evidence on the role of 

parkin, and reveals that parkin, a PD-related protein, physiologically modulates mitochondrial 

trafficking in a MT-dependent manner. Indeed, the analyses performed on brain slices and 

live cell imaging experiments on cultured cells revealed that the transport defects observed in 

the absence of parkin are dependent on MT dynamics, as they are rescued by MT 

stabilization. It has been already reported that parkin regulates the trafficking of mitochondria 
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in hippocampal neurons, especially of those that are damaged and have to be degraded, and 

that this process is dependent on Miro phosphorylation (5). In the present work, we provide 

further detail on this physiological event showing that parkin is able to regulate mitochondrial 

mobility in vivo (Figure 4) through the regulation of MT system. Nevertheless, our results are 

not necessarily in contrast with those of Wang and colleagues; indeed, Schwarz’s lab had 

already demonstrated that the Miro/Milton complex acts as an adaptor recruiting the heavy 

chain of conventional kinesin-1 (24). Kinesin-1, which is highly expressed in neuronal cells, 

is sensitive to tubulin PTMs, which modulate its axonal recruitment (25), its preferential 

binding to specific MT subsets (26) and the velocity of its movement (27). Furthermore, MT 

acetylation rescues axonal transport and locomotor deficits caused by mutations of Leucine-

Rich Repeat Kinase 2 (28), a common genetic cause of PD. Hence, the changes in tubulin 

PTMs and MT dynamics reported here could be an attempt designed to restore the correct 

mitochondrial trafficking in the absence of parkin.  

Another aspect to be considered is the regulation of mitochondrial homeostasis. The direct 

involvement of parkin in mitophagy is debated (6, 7), although the PINK1/parkin pathway has 

been very recently implicated in the initiation of local mitophagy in the distal axon (29). 

Nevertheless, parkin is crucial for the maintenance of mitochondrial dynamics (4). It has also 

been reported that MTs participate in the regulation of this process (30), which is essential in 

the modulation of mitochondrial function and movement. In concordance with the evidence 

that PARK2 KO mice do not accumulate mitochondria with an abnormal morphology (21), 

our qualitative ultrastructural analysis showed mitochondria with a conventional gross 

morphology (Figure 4C). Nevertheless, this mouse strain shows early respiratory defects in 

striatal mitochondria (21, 31) and MT alterations (present data). The fact that these problems 

do not worsen with time can be explained in two ways. First, there are many pathways 

converging on the regulation of either mitochondria or MTs; therefore the early defects, due 

to parkin absence, can likely be buffered over time. Second, mouse models have a shorter 

lifespans than humans and this does not allow the full unmasking of this particular phenotype 

and the accumulation of sufficient defects overcoming a hypothetical pathological threshold. 

The difficulties in developing animal models that exhibit all the key features of human PD are 

further exacerbated by the different scales of human and rodent nigral dopaminergic neurons, 

whose axons reach an average arborization of 460 and 46 cm, respectively (32, 33). This 

particular morphology gives rise to the selective vulnerability of these neuronal subtypes, and 

the different time- and space-scale could explain why in many animal models those neurons 

do not degenerate. Nevertheless, since MT destabilization and energy failure are associated 
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with the latency period of axonal degeneration (34), all data emerging from PARK2 KO mice, 

as the ones presented here, can be used for the analyses of earlier events occurring in 

degenerating dopaminergic neurons, eventually leading to PD. 

Altogether, our data indicate that parkin should be considered as a novel controller of MTs 

which, through the regulation of tubulin PTMs, balances stable and dynamic MTs in rodent 

and human experimental models as well as in human PD brain. When this equilibrium 

deviates from physiological conditions, as we have demonstrated here in the absence of 

parkin, it results in the alteration of mitochondrial transport and, likely, in mitochondrial 

damage and axonal degeneration, mirroring the pathological chain of events we reported in 

toxin-induced parkinsonism (19).  
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MATERIALS  METHODS 

 

Animals 

Wild type and PARK2 knock out (15) C57 Black mice (male and female) were purchased 

from Charles River (Calco, Italy) and used for all experiments. Mice were kept under 

environmentally controlled conditions (ambient temperature = 22°C, humidity = 40%) on a 

12-h light/dark cycle with food and water ad libitum. Mice were kept in pathogen-free 

conditions and all procedures complied with Italian law (D. Lgs n° 2014/26, implementation 

of the 2010/63/EU) and were approved by the University of Milan Animal Welfare Body and 

by the Italian Minister of Health. All efforts were made to minimize suffering. Mice were 

killed by decapitation or by transcardiac perfusion to perform biochemical or 

immunohistochemical analysis respectively. 

 

Human brain samples 

Fresh frozen specimens of human prefrontal cortex were obtained from the Department of 

Neurology, Juntendo University School of Medicine, Japan. The samples were obtained from 

four patients with Autosomal Recessive Juvenile Parkinsonism and three control subjects, 

whose phenotype and genotype are summarized in Figure 5A. The diagnosis was confirmed 

by neuropathological examination of the brain tissues as PD, and neurodegenerative disorders 

were excluded in control subjects. Gene analyses of parkin and sample preparation were 

performed as previously reported (35). The study protocol was approved by the Human Ethics 

Review Committee of Juntendo.  

 

Western blot analysis 

Western blot analysis was performed on protein extracts obtained from human (35) or mouse 

brain regions, as follows. Corpus striatum and ventral mesencephalon were immediately 

dissected out on ice, mechanically homogenized and sonicated in SDS-PAGE sample buffer. 

Western blots were made as previously described (19) using the following antibodies: α 

tubulin mouse IgG (clone B-5-1-2, Sigma-Aldrich, Saint Louis, MO); deTyr tubulin rabbit 

IgG (Chemicon, Temecula, CA); Tyr tubulin rat IgG (clone YL 1/2, Abcam, Cambridge, 

UK); Ac tubulin mouse IgG (clone 6-11B-1, Sigma-Aldrich); parkin rabbit IgG (Abcam). 

Membranes were washed for 30 min and incubated for 1 h at room temperature with HRP 

donkey anti-mouse IgG (Pierce, Rockford, IL), HRP goat anti-rat IgG (Sigma-Aldrich), or 

HRP goat anti-rabbit IgG (Pierce). Immunostaining was revealed by enhanced 
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chemiluminescence (Super-Signal West Pico Chemiluminescent, Pierce). Acquisition and 

quantification were performed by ChemiDoc and Image Lab software (Bio-Rad, Hercules, 

CA).  

 

Confocal analysis  

Mice were anesthetized with chloralium hydrate (320 mg/kg, i.p.) and transcardially perfused 

with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB), pH 7.4. Brains were 

removed, post-fixed 3 h in 4% PFA. Sagittal sections (50 µm thick) were cut with a 

Vibratome (VT1000S, Leica Microsystems, Heidelberg, Germany), and part of them were 

cryoprotected for long-term conservation at -20°C. Sections were stained with the following 

antibodies previously used for immunoblotting: deTyr tubulin rabbit IgG; Tyr tubulin rat IgG; 

Ac tubulin mouse IgG and with VDAC1/porin rabbit IgG (Abcam). To identify dopaminergic 

neurons and fibres, each section was concurrently stained with anti-TH antibody, made in 

mice (clone LCN1, Millipore, Darmstadt, Germany) or rabbits (Millipore) as appropriate. As 

secondary antibodies we used Alexa Fluor
TM 

568 donkey anti-mouse IgG, Alexa Fluor
TM 

488 

goat anti-rabbit IgG and Alexa Fluor
TM 

568 donkey anti-rat IgG (Invitrogen). Samples were 

examined with a confocal laser scan microscope imaging system (TCS SP2 AOBS, Leica 

Microsystems) equipped with an Ar/Ar-Kr 488 nm, 561 nm and 405 nm diode lasers. 

Photomultiplier gain for each channel was adjusted to minimize background noise and 

saturated pixels and, once defined for control conditions, parameters were kept constant for 

all acquisitions. To estimate the overlapping area between red and green signals, analyses 

were carried out on single-plane raw images and Manders’ coefficients were calculated 

applying the JACoP plug-in (developed and reviewed by 18) for ImageJ software. 

Quantification of the fluorescence inside dopaminergic neurons was performed using the 

appropriate module of the NIH ImageJ software. As previously described (19), to evaluate the 

mitochondria distribution, the porin signal was superimposed on dopaminergic fibres, using 

the Mask tool of the Leica Confocal Software (Leica); mitochondria accumulations were 

identified as white pixel-containing areas, as thick as long, clearly separated from other white 

pixels. A TH-positive signal longer than 5 µm was considered as dopaminergic fibre, and 

signals separated by more than 10 µm were counted as two distinct fibres. 
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Immuno-electron microscopy 

Mice were perfused with 4% PFA and 0,5% glutaraldehyde in PB 0,1 M as described for 

confocal analysis. Vibratome sagittal sections were incubated sequentially with anti-TH rabbit 

IgG (Millipore), biotinylated goat anti-rabbit IgG (Vector Laboratories, Burlingame, CA) and 

with avidin biotinylated peroxidase complex (ABC method, Vector Laboratories). After 

completion of the immunoenzymatic procedure and visualization of reaction with DAB, 

sections were washed in PB, osmicated, dehydrated and flat embedded in Epon-Spurr 

between acetate foils (Aclar, Ted Pella, Reddin, CA). Selected areas of the embedded sections 

were then cut with a razor blade and glued to blank blocks of resin for further sectioning. Thin 

sections (70 nm) were obtained with an ultramicrotome (Reichert Ultracut E, Leica 

Microsystems, Heerbrugg, Switzerland) and were observed with a Philips CM10 transmission 

electron microscope at 80 kv; images were acquired using a Morada Olympus digital camera.  

 

Live cell imaging 

PC12 cells were maintained in cultures and differentiated for 3 days with NGF, as previously 

described (Cartelli et al., 2010). PC12 cells were transiently transfected using Lipofectamine 

2000 (Invitrogen) (1:3 DNA to Lipofectamine ratio), with the shRNA previously reported (36, 

37) and together with EB3-mCherry construct
 

(13) or Mito-dsRed (14). 3 days after 

transfection, cultures were transferred to a live cell imaging workstation composed of an 

inverted microscope (Axiovert 200M, Zeiss), a heated (37°C) chamber (Okolab, Naple, Italy), 

and a Plan neofluar 63x/1.25 numerical aperture oil-immersion objective (Zeiss). Images were 

collected with a cooled camera (Axiocam HRM Rev. 2; Zeiss, Oberkochen, Germany), every 

6 s for the analyses of MT growth and every 10-15 s for mitochondrial trafficking; single 

movie duration was set at 1-3 min and the total recording time did not exceed 60 min for each 

dish. For rescue experiments, cells were incubated for 2 h with 1 µM paclitaxel (Sigma-

Aldrich) dissolved in methanol. MT growth dynamics were analyzed from EB3 time-lapse 

movies using plusTipTracker software (38), and the reported catastrophe frequency is 

calculated as the inverse of the average growth time; mitochondrial movement was analyzed 

by the Imaris software, kindly provided by Immagini & Computer (Bareggio, Italy). 

Kymographs were constructed using the MetaMorph Software.  

 

Generation and differentiation of human iPSCs 

The generation of iPSC lines B7, WD, PA7 and PB2 was reported elsewhere (39). Fibroblasts 

used to generate the lines CSC-9A (healthy control) and CSC-7A (PD patient carrying the 
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mutation C253Y located in exon 7 of PARK2 gene in homozygosity) were obtained from the 

Parkinson Institute Biobank (Milano, Italy). Fibroblasts were reprogrammed according to 

previous published protocol (40). Randomly selected colonies (2-4 per line) were validated 

for pluripotency markers expression (by both immunocytochemistry and RT-qPCR for SOX2, 

NANOG, SSEA4, TRA1-80), alkaline phosphatase activity (86R-1KT, Sigma Aldrich), 

generation of cell types (SMA
+
, AFP

+
 and B-III-tubulin

+
) reminiscent of the 3 embryonic 

germ layers following spontaneous differentiation of putative iPSC lines grown as embryoid 

bodies, when exposed to DMEM medium + 10% FBS, and telomerase activity (S7700, 

Millipore). Genetic analysis and karyotyping was outsourced to the Department of Genetics, 

at the hospital of Lund, Sweden (Medicinsk service/Labmedicin, Klinisk genetik och 

biobank) and showed no karyotype abnormalities for the 2 lines selected. Mutation in PARK2 

in line CSC-7A was confirmed by sequencing, using the primers 

AGGATTACAGAAATTGGTCT (forward) and TCTGTTCTTCATTAGCATTAGA 

(reverse). The differentiation of the iPSC lines B7, WD, PA7 and PB2 was carried out as 

previously reported (39). The differentiation of the lines CSC-7A and CSC-9A was carried 

out using a modified protocol (see 41), where LDN-193189 (100 nM, Stemgent) was 

employed instead of Noggin, and CHIR was kept in differentiation medium, together with 

neurotrophic factors. At 30 DIV, EBs were seeded on adherent coated surfaces for final 

differentiation for 7 additional days. Differentiated cells were stained with Ac tubulin mouse 

IgG (Sigma-Aldrich) and with anti-TH rabbit IgG (Millipore). As secondary antibodies we 

used Alexa Fluor
TM 

568 donkey anti-mouse IgG, and Alexa Fluor
TM 

488 goat anti-rabbit IgG 

(Invitrogen). Samples were examined with a confocal laser scan microscope imaging system 

(TCS SP5, Leica Microsystem, Heidelberg, Germany)  and axonal fragmentation were 

analysed with ImageJ software. Thus, we used two sets of iPSC lines, generated in 2 different 

laboratories using two different protocols and bearing different parkin mutations as exon 

deletions (PA7: exon 2-4 homozygous deletion of PARK2 gene, and PB2: exon 6,7 

homozygous deletion of PARK2 gene, from the Okano’s Laboratory in Japan) or a point 

mutation (CSC-7A: C253Y located in exon 7 of PARK2 gene, from the Roybon’s Laboratory 

in Sweden). 
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Statistical analysis and data management 

The statistical significance of genetic background or treatment was assessed by Student’s t-

test, one-way ANOVA with Fischer LSD post-hoc testing or 
2
 test when appropriate. 

Analyses were performed using STATISTICA software (StatSoft Inc., Tulsa, OK). 
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LEGENDS 

 

Figure 1. Parkin modulates mitochondrial trafficking via the regulation of MT dynamics. A, 

Representative kymographs (inverted contrast) of MT growth (EB3-mCherry) and 

mitochondrial movement (Mito-DsRed) in parkin-silenced (shPARK2) and scramble-treated 

(shSCR) NGF-differentiated PC12 cells, in basal conditions (CONT) or after 2 h of treatment 

with 1 µM paclitaxel (PTX). B, C and D, Box plots of the MT growth rate (B), histograms 

showing the catastrophe frequency (fCAT, C) and box plots of the MT growth displacement 

(D) in parkin-silenced (shPARK2) and scramble-treated (shSCR) NGF-differentiated PC12 

cells, in basal conditions (CONT) or after 2 h of treatment with 1 µM paclitaxel (PTX). n ≥ 

1500 MTs deriving from at least 10-15 cells per experimental group. *p<0.05 vs 

shSCR/CONT, #p<0.05 vs shPARK2/CONT according to ANOVA, Fischer LSD post hoc 

test. The actual statistical values correspond to: B) F = 40.74, p = 0.00000001, and the 

indivual p value are shSCR/PTX vs shSCR/CONT = 0.000004, shPARK2/CONT vs 

shSCR/CONT = 0.0000005 and shPARK2/PTX vs shPARK2/CONT = 0.000002; D) F = 

65.15, p = 0.00000001, and the indivual p value are shSCR/PTX vs shSCR/CONT = 

0.008576, shPARK2/CONT vs shSCR/CONT = 0.000008 and shPARK2/PTX vs 

shPARK2/CONT = 0.000008, shPARK2/PTX vs shSCR/CONT = 0.008516.  E and F, Box 

plots of anterograde velocity (E) and retrograde velocity (F) of mitochondrial transport in 

parkin-silenced (shPARK2) and scramble-treated (shSCR) NGF-differentiated PC12 cells, in 

basal conditions (CONT) or after 2 h of treatment with 1 µM paclitaxel (PTX). n ≥ 200 

mitochondria tracks per condition, deriving from at least 10-15 cells per experimental group. 

*p<0.05 vs shSCR/CONT, #p<0.05 vs shPARK2/CONT according to ANOVA, Fischer LSD 

post hoc test. The actual statistical values correspond to: E) F = 4.64, p = 0.00033, and the 

indivual p value are shPARK2/CONT vs shSCR/CONT = 0.0014 and shPARK2/PTX vs 

shPARK2/CONT = 0.00018. G, Histogram showing the percentage of immobile mitochondria 

(Stop, black), mitochondria forward (FWD, light grey) or backward (BWD, dark grey) 

moving and vibrating mitochondria (Vibr, white) in the same conditions reported in E and F. 

*p<0.05 vs shSCR/CONT (p value = 0.00025), #p<0.05 vs shPARK2/CONT (p value = 

0.0013) according to 
2
 test. 

 

Figure 2. Parkin absence affects MT stability in the Corpus striatum. A and B, Representative 

western blot (A) and densitometric analyses (B) of Tyrosinated (Tyr Tub), deTyrosinated 

(deTyr Tub) and Acetylated (Ac Tub) tubulin on lysates of Corpus striatum of wild type 
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(WT) and PARK2 knockout (PARK2) mice of different ages (2, 7 and 24 months). The level 

of tubulin PTMs were normalized on the level of total α tubulin (α Tub) in the respective 

sample and are expressed as fold chance on wild type level (mean ± SEM, n = 3-5 individuals 

per group). *p<0.05 according to Student’s t-Test, performed on the rough data. Actual p 

value are: Tyr Tub, 2 months = 0.035 and 7 months = 0.0099; Ac Tub, 7 months = 0.0124. C, 

Confocal images of striatum of wild type (WT) and PARK2 knockout (PARK2) mice of 

different ages (2, 7 and 24 months). Green represents TH staining and red signals tubulin 

PTMs. Scale bar, 50 µm. D, Analysis of M1 parameter (Tubulins vs. TH) in striatal sections. 

Data are expressed as mean ± SEM, n = 2-3 sections for each mouse from 3-4 mice per group. 

*p<0.05 according to Student’s t-Test. Actual p value are: Tyr Tub, 2 months = 0.017 and 24 

months = 0.0047; deTyr Tub, 2 months = 0.034 and 7 months = 0.001; Ac Tub, 2 months = 

0.021 and 7 months = 0.04. 

 

Figure 3. Parkin absence affects MT stability in the dopaminergic neurons of ventral 

mesencephalon. A and B, Representative western blot (A) and densitometric analyses (B) of 

Tyrosinated (Tyr Tub), deTyrosinated (deTyr Tub) and Acetylated (Ac Tub) tubulin on 

lysates of ventral mesencephalon of wild type (WT) and PARK2 knockout (PARK2) mice of 

different ages (2, 7 and 24 months). The levels of tubulin PTMs were normalized on the level 

of total α tubulin (α Tub) in the respective sample and are expressed as fold chance on wild 

type level (mean ± SEM, n = 3-5 individuals per group). *p<0.05 according to Student’s t-

Test, performed on the rough data. Actual p value are: Tyr Tub, 2 months = 0.039; Ac Tub, 7 

months = 0.02. C, Confocal images of Substantia nigra of wild type (WT) and PARK2 knock 

out (PARK2) mice of different ages (2, 7 and 24 months). Green represents TH staining and 

red signals tubulin PTMs. Scale bar, 50 µm. D, Quantification of fluorescence of Tyrosinated 

(Tyr Tub), deTyrosinated (deTyr Tub) and Acetylated (Ac Tub) tubulin inside dopaminergic 

neurons in the Substantia nigra. Data are expressed as fold change on wild type level (mean ± 

SEM, n = 2-3 sections for each mouse from 3-4 mice per group). *p<0.05 according to 

Student’s t-Test, performed on rough data. Actual p value are: Tyr Tub, 2 months = 0.000068 

and 7 months = 0.000026; deTyr Tub, 2 months = 0.00000018, 7 months = 0.000055 and 24 

months = 0.0001; Ac Tub, 2 months = 0.000024, 7 months = 0.000026 and 24 months = 

0.00006. 

 

Figure 4. Parkin absence impacts mitochondrial transport in vivo. A, Representative confocal 

images showing the different distribution of mitochondria (Porin, red signal) inside 
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dopaminergic fibres (TH, green signal). Arrowhead indicates a fibre with an homogeneous 

distribution of mitochondria whereas arrow highlights a cluster. Scale bar, 20 µm. B, 

Percentage of dopaminergic fibres displaying a homogeneous distribution of mitochondria 

(homogeneous, white) or mitochondria accumulation (clustered, black) in wild type (WT) and 

PARK2 knockout (PARK2) mice of different ages (2, 7 and 24 months). n = 3 sections for 

each mouse from 3-4 mice per group. ns = not significant and *p<0.05 according to 
2
 test. 

The actual p value are 7 months = 0.000005 and 24 months = 0.0000005. C, Electron 

micrographs of TH-positive fibres. Arrowheads indicate fibres with an homogeneous 

distribution of mitochondria whereas arrows highlight mitochondrial clustering in both 

longitudinal (left) and trasversal (right) sectioned dopaminergic axons. Scale bar, 500 nm.  

 

Figure 5. Parkin mutations reduce MT stability in PD patients. A, Phenotype and genotype 

characterization of the investigated individuals. B and C, Representative Western blot (B) and 

densitometry (C) of Acetylated (Ac Tub) and Tyrosinated (Tyr Tub) tubulin in extracts of 

human cerebral cortex deriving from healthy control (Healthy Control, white bars) or ARJP 

patients (PARK2, black bars). The levels of tubulin PTMs were normalized on the level of 

total α tubulin (α Tub) in the respective sample. D, Confocal micrographs of control (Healthy 

Control) and patient (PARK2) iPSC-derived neurons, stained for Ac tubulin (Ac Tub, green) 

and tyrosine hydroxylase (TH, red). Scale bar, 20 µm. E, Three dimensional reconstruction of 

the images showed in D. Reconstructed orthogonal projections represented as viewed in the x-

z (bottom) and y-z (right) planes. F, Histogram showing the percentage of axons with 

continuous (CONT, white) or fragmented (FRAG, black) Ac tubulin staining in control 

(Healthy Control, iPSC-lines B7, WD, CSC-9A) and patient (PARK2, iPSC-lines PA9, PB2, 

CSC-7A) iPSC-derived neurons. *p<0.05 according to 
2
 test (p value = 0.000026). 

 

Figure S1. Representative western blot (A) and relative quantification of parkin (B), in 

parkin-silenced (shPARK2) and scramble-treated (shSCR) NGF-differentiated PC12 cells. 

The level of parkin has been normalized on the total amount of loaded proteins (as revealed 

by Comassie Blue staining). *p<0.05 according to Student’s t-Test (p value = 0.026).  

 

Figure S2. Micrographs of control (Healthy Control) and patient (PARK2) iPSC-derived 

neurons, stained for Tyrosinated tubulin (Tyr Tub, green) and tyrosine hydroxylase (TH, red). 

DAPI signal is also shown (blue). Scale bar, 50 µm. 
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Supplementary movie 1. 3D reconstruction of the z-stack of the iPSC-derived neuronal 

culture obtained from Healthy Control. The movie refers to images shown in Figure 5D and 

5E. 

 

Supplementary movie 2. 3D reconstruction of the z-stack of the iPSC-derived neuronal 

culture obtaibed from PARK2 patients. The movie refers to images shown in Figure 5D and 

5E. 
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Linking microtubules to Parkinson’s disease: the
case of parkin
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Abstract
Microtubules (MTs) are dynamic polymers consisting of α/β tubulin dimers and playing a plethora of roles
in eukaryotic cells. Looking at neurons, they are key determinants of neuronal polarity, axonal transport
and synaptic plasticity. The concept that MT dysfunction can participate in, and perhaps lead to, Parkinson’s
disease (PD) progression has been suggested by studies using toxin-based and genetic experimental models
of the disease. Here, we first learn lessons from MPTP and rotenone as well as from the PD related genes,
including SNCA and LRRK2, and then look at old and new evidence regarding the interplay between parkin
and MTs. Data from experimental models and human cells point out that parkin regulates MT stability and
strengthen the link between MTs and PD paving the way to a viable strategy for the management of the
disease.

Introduction
The molecular pathways implicated in neurodegenerative dis-
orders are gradually being elucidated and several contributing
factors have been identified. To date, aetiopathogenic mech-
anisms in Parkinson’s disease (PD) converge on accumulation
of aberrant or misfolded proteins, mitochondrial injury,
and oxidative/nitrosative stress, making PD a multifactorial
disease [1,2]. However, the primary degenerative events
remain unclear, thus making it really hard to develop an
efficient therapy for this devastating disorder.

PD is a progressive neurodegenerative disorder that is
characterized by tremor, muscular rigidity and bradykinesia,
with a prevalence of 2–5 % in the population aged 60 years,
worldwide. PD can be defined in biochemical terms as a
dopamine-deficiency state resulting from loss of dopamine
neurons in the substantia nigra pars compacta accompanied
by characteristic intraneuronal protein inclusions, termed
Lewy bodies. On these grounds, starting in the 1950s, the
strategy for treating PD has been to restore the dopamine
concentrations in the brain by administering pharmacological
treatment. However, thanks to a huge amount of clinical and
basic research work, a redefinition of PD as a multiorgan
disease has been proposed recently and novel therapeutic
strategies are emerging [3].

In recent years, growing attention has been dedicated to
neuronal cytoskeleton dysfunction and increasing evidence
suggests a role for the microtubule (MT) system in the
pathogenesis of neurodegenerative disorders. Mutations in
tubulin, the major constituent of MTs, have been found

Key words: microtubules, microtubule stability, microtubule-dependent functions, neurodegen-

eration, parkin, Parkinson’s disease.

Abbreviations: iPSC, induced-pluripotent stem cells; MPP+ , 1-methyl-4-phenylpyridinium;

MPTP, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MT, microtubule; PD, Parkinson’s disease.
1To whom correspondence should be addressed (email graziella.cappelletti@unimi.it).

to induce severe neurological disorders, such as peripheral
neuropathy and loss of axons in many kinds of brain
neurons [4] and, very recently, to be associated with familial
amyotrophic lateral sclerosis [5]. Moreover, defects in the
proper regulation of MT organization and stability are
tightly linked to neuronal damages. Indeed, significant
impairment in MT-associated proteins has been extensively
reported in Alzheimer’s disease, frontotemporal dementia
and other tauopathies [6] and, notably, the failure in
polyglutamilation of tubulin can dramatically lead to a rapid
neuronal cell death in an ataxia mouse model [7]. Besides
MT organization and stability, MT-dependent functions, such
as overall axonal transport, are increasingly investigated in
the field of neurodegeneration. The intracellular transport
of organelles along an axon is a complex and crucial
process for the maintenance and function of a neuron.
Several different mechanisms including defects in the proper
organization of MTs, mutations in MT-associated proteins
and molecular motors, and activation of MT-targeting kinases
act in concert and produce deficits in axonal transport
underlying several neurodegenerative diseases, as extensively
reviewed by Millecamps and Julien [8]. In addition, recent
evidence suggests that axon degeneration underlying PD
could depend mainly on the failure of axonal transport
[9].

The question arises as to whether we can reasonably
include MT dysfunction among the culprits triggering
neurodegeneration in PD or not. Here, we bear in mind
such a key question and move from a brief insight into the
basis of MT functions in neurons to the evidence that MT
dysfunction occurs in experimental parkinsonism and, finally,
to the critical discussion on the interplay between parkin
and MT system in cellular and animal models and in human
tissues.
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Microtubules and microtubule-dependent
functions in neurons
MTs are non-covalent cytoskeletal filaments, which occur in
all eukaryotic cell types from fungi to mammals. They consist
of α/β tubulin heterodimers that assemble in a head-to-tail
fashion into linear protofilaments whose lateral association
forms polarized 25 nm wide hollow cylindrical polymers.
MTs are heterogeneous in length and highly dynamic in vivo
and in vitro, undergoing cycles of polymerization and rapid
depolymerization. This ‘dynamic instability’ property was
first described in 1984 [10] as a feature that is crucial to many
MT functions. The tight regulation of their organization and
dynamics depends on the incorporation of alternative tubulin
isotypes, a highly complex and diverse set of MT-interacting
proteins, and posttranslational modifications occurring on
MTs [11].

MTs play several essential roles in cell shape acquisition
and in the performance of many intracellular processes.
Neurons are a striking example of cells in which MTs
are essential to achieve a high degree of morphological
and functional complexity. Neuronal MTs display different
orientation and dynamics in axons and dendrites, and
interact with specific associated proteins [12]. In addition,
the incorporation of tubulin isotypes and posttranslational
modifications of tubulin are selectively combined and
distributed among different subcellular compartments, thus
generating a tubulin code, that might regulate basic as well
as higher-order neuronal functions. Highly dynamic MTs
are enriched in tyrosinated tubulin and accumulate a set
of factors known as MT plus-end tracking proteins; they
are essential for rapid remodelling and reorganization in the
growth cone underlying axonal elongation during neuronal
differentiation [12] and synaptic plasticity in mature neurons
[13]. On the contrary, a high stability is favoured for MT
functions in the shaft of axons and for the preferential
binding of MT-based motors transporting membrane-bound
organelles and regulatory macromolecular complexes [12].
Neuronal MT stability is related to the accumulation of
several posttranslational modifications of tubulin including
acetylation, detyrosination, #2-tubulin, polyglutamylation
and the very recently described polyamination [14], and to
spatial gradient of tau [15].

Beyond their known conventional roles for supporting
neuronal architecture, organelle transport and synaptic
plasticity, a novel function as ‘information carriers’ has been
attributed to neuronal MTs [16]. This amazing theory posits
that both the short, stable and mobile MTs and the highly
dynamic ends of longer MTs can act as information carriers
in the neuron thanks to their ability to interact with a vast
array of proteins. Short MTs, which appear to be unusually
stable, move rapidly along axons and presumably in dendrites
as well. It is reasonable to assume that they may convey
information and signalling molecules with them. In addition,
highly dynamic regions would act as scaffolds concentrating
MT plus end tracking proteins, which, in turn, interact
with many other proteins and structures contributing to

the plasticity of the neuron, including kinases and small G
proteins that impact the actin cytoskeleton and proteins that
reside at the cell cortex [17].

Microtubule dysfunction in experimental
models of Parkinson’s disease
The concept that MT dysfunctions can participate in, and
perhaps lead to, PD progression has been suggested by
studies on toxin-based and genetic experimental models of
the disease.

Within the context of studies on PD-inducing neurotoxins,
intriguing results have been reported with N-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin
widely used as a tool for studies on sporadic PD [1],
and the herbicide rotenone. We showed that 1-methyl-4-
phenylpyridinium (MPP+ ), the toxic metabolite of MPTP,
reduces MT polymerization and interferes with dynamic
instability of MTs in vitro acting as a destabilizing factor [18].
Then, we confirmed and extended these results reporting that
MPP+ leads to MT alteration in neuronal cell and, in turn,
to mitochondrial trafficking impairment [19]. Finally, we
showed that systemic injection of MPTP to mice induces MT
dysfunction that occurs very early, before axonal transport
deficit, depletion of tyrosine hydroxylase and, ultimately,
dopaminergic neuron degeneration [20]. Moving to the
herbicide rotenone, old studies demonstrated its ability to
induce MT depolymerization in vitro [21], whereas more
recent data suggest that MT disruption may be an alternative
mechanism underlying rotenone-induced dopamine neuron
death in cellular models [22,23].

We can find further signs of MT involvement in PD looking
at PD-linked genes. Interestingly, several independent GWAS
and meta-analysis studies have shown a genome-wide
significant association of single nucleotide polymorphisms
in the gene coding for α-synuclein (SNCA) and the MT-
associated protein tau [24]. α-Synuclein, the first protein
associated to familial form of PD [25], interacts with tubulin
with crucial consequences: the promotion of its aggregation
in fibrils [26], the interference with tubulin assembly [27] and
the recycling of monoamine transporter [28]. More recently,
MT disruption has been reported in cells overexpressing
α-synuclein [29] or following incubation with extracellular
α-synuclein [30]. In addition, the kinase LRRK2 has been
shown to interact with and to phosphorylate β-tubulin
[31,32] and tubulin-associated tau, whereas a novel role of
DJ-1 in the regulation of MT dynamics has been proposed
[33].

Although these studies provide evidences that the MT
cytoskeleton could be involved in neuronal damage caused
by PD-related proteins or toxins, very little is known about
MT dysfunction in patients. Using cybrid cell lines generated
from idiopathic PD patients, Esteves et al. [34] showed
significant alterations in MT integrity as compared with
healthy subjects. Notably, we have recently analysed primary
fibroblasts deriving from patients with idiopathic or genetic
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PD and disclosed reduction in MT mass and significant
changes in signalling pathways related to MT stability [35].

We believe that it is not a coincidence that tubulin and
MTs represent a point of convergence in so many different
PD experimental models, thus making the study of MT
dysfunction a challenge leading to a better comprehension
of PD pathogenesis.

The interplay between parkin and
microtubules
Exonic deletions in the Parkin gene were first reported in
Japanese families with autosomal recessive juvenile-onset
parkinsonism with onset frequently occurring before the age
of 20 [36]. The Parkin gene encodes for a member of the
E3 ligase family that catalyses the addition of ubiquitin to
numerous target proteins [37]. The molecular understanding
of the regulation of parkin E3 ligase activity is emerging
[38]. However, it has been suggested that parkin, in addition
to its ligase activity, has a number of other roles including
the regulation of mitochondria dynamics and quality control
designed to preserve mitochondria integrity [39]. Most of
the supporting observations derive from mammalian cell
lines overexpressing parkin, but endogenous parkin does not
induce mitophagy in induced-pluripotent stem cell (iPSC)-
derived human neurons [40]. This raises the issue of whether
parkin involvement in this process is actually relevant in
neurons or in PD pathogenesis [41]. Very recently, it has also
been reported that parkin interacts with the kainate receptor
GluK2 subunit and regulates the receptor function in vitro
and in vivo [42].

Parkin interaction with tubulin and MTs has been
proposed many years ago and remained largely neglected
for a long time. Interestingly, parkin binds and increases
the ubiquitination and degradation of both α- and β-
tubulin [43], whose complex folding reactions are prone to
produce misfolded intermediates. In addition to its E3 ligase
activity on tubulin, however, Yang et al. [44] proposed that
parkin strongly binds tubulin/MTs through three redundant
interaction domains resulting in MT stabilization. At the
moment, we can simply speculate that the anchorage of
parkin to MTs could provide an important environment for
its E3 ligase activity on misfolded substrates that are usually
transported on MTs themselves. Further work demonstrates
that parkin protects midbrain dopaminergic neurons against
PD-causing substances, as rotenone and colchicine, by
stabilizing MTs [45]. This process seems to be mediated by the
regulation of the MAP kinase pathway, which, interestingly,
is a direct regulator of MT stability via the modulation of
tubulin posttranslational modifications.

Bringing into focus the impact of parkin on MT-
dependent functions, a reliable consequence of the alteration
of MT stability could be the dysregulation of axonal
transport. Indeed, previously, parkin has proved to regulate
the trafficking of mitochondria in hippocampal neurons,
especially when they are damaged and have to be degraded.

This process was found to be dependent on the Miro
phosphorylation [46].

Striking data coming from human cells have recently
contributed to our understanding of the interplay between
parkin and MTs strengthening interest in this aspect. We
reported that PD-patient skin fibroblasts bearing Parkin
mutations display reduced MT mass and imbalance in the
pattern of tubulin posttranslational modifications, and that
MT pharmacological stabilization or the overexpression of
wild-type parkin rescue control phenotype [39]. This is
not restricted to skin cells from patients but, interestingly,
has been confirmed in iPSC-derived neurons. Ren et al.
[47] found that the complexity of neuronal processes was
greatly reduced in both dopaminergic and non-dopaminergic
neurons from PD patients with parkin mutations and that
MT stability was significantly decreased as demonstrated by
the reduction in MT mass. Overexpression of parkin, but not
its PD-linked mutants, restored the complexity of neuronal
processes and MT mass. Notably, the MT depolymerizing
agent colchicine mirrored the effect of parkin mutations
by decreasing neurite complexity in control neurons while
the MT stabilizing drug taxol mimicked the effect of
parkin overexpression. These results strongly support the
concept that the interaction of parkin with MTs in neurons
may have an important physiological role. Thus, although
the hypothesis of the interaction of parkin with MTs is
supported mainly by studies in cellular models, it seems
to be a promising theory, which provides a mechanistic
explanation for the multiple intracellular functions and,
possibly, dysfunctions of parkin. Indeed, we are currently
undergoing the analyses of brain samples from Parkin
knockout mice; our preliminary results have shown an early
alteration of MT stability, thus confirming and expanding the
importance of parkin in modulating the MT system.

Concluding remarks
A growing body of evidence from experimental models and
human cells indicates that parkin regulates MT stability and
strengthens the link between MTs and PD. Indeed, the MT
cytoskeleton represents a point of convergence in the action
of various proteins mutated in PD and of PD-inducing
neurotoxins, suggesting that it has a major role in the onset of
the disease and providing the rationale for novel therapeutic
interventions. Thus, MT stabilizing strategies may offer an
opportunity for treating neurodegenerative diseases [48–50].
Importantly, we have recently demonstrated that this may be
true also in PD showing that Epothilone D, a MT stabilizer
drug, exerts neuroprotective effects in a toxin-based murine
model of PD [20].
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Adamczyk, A. (2014) Extracellular α-synuclein leads to microtubule
destabilization via GSK-3β-dependent Tau phosphorylation in PC12 cells.
PLoS One 9, e94259 CrossRef PubMed

31 Gillardon, F. (2009) Leucine-rich repeat kinase 2 phosphorylates brain
tubulin-beta isoform and modulates microtubule stability: a point of
convergence in parkinsonian neurodegeneration? J. Neurochem. 110,
1514–1522 CrossRef PubMed

32 Law, B.M., Spain, V.A., Leinster, V.H., Chia, R., Beilina, A., Cho, H.J.,
Taymans, J.M., Urban, M.K., Sancho, R.M., Blanca Ramı́rez, M. et al.
(2014) A direct interaction between leucine-rich repeat kinase 2 and
specific β-tubulin isoforms regulates tubulin acetylation. J. Biol. Chem.
289, 895–908 CrossRef PubMed

33 Sheng, C., Heng, X., Zhang, G., Xiong, R., Li, H., Zheng, S. and Chen, S.
(2013) DJ-1 deficiency perturbs microtubule dynamics and impairs
striatal neurite outgrowth. Neurobiol. Aging 34, 489–498
CrossRef PubMed

34 Esteves, A.R., Arduino, D.M., Swerdlow, R.H., Oliveira, C.R. and Cardoso,
S.M. (2010) Microtubule depolymerisation potentiates alpha-synuclein
oligomerization. Front. Aging Neurosci. 1, 5 CrossRef PubMed

35 Cartelli, D., Goldwurm, S., Casagrande, F., Pezzoli, G. and Cappelletti, G.
(2012) Microtubule destabilization is shared by genetic and idiopathic
Parkinson’s disease patient fibroblasts. PLoS One 7, e37467
CrossRef PubMed

36 Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y.,
Minoshima, S., Yokochi, M., Mizuno, Y. and Shimizu, N. (1998) Mutations
in the parkin gene cause autosomal recessive juvenile parkinsonism.
Nature 392, 605–608 CrossRef PubMed

37 Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S.,
Shimizu, N., Iwai, K., Chiba, T., Tanaka, K. and Suzuki, T. (2000) Familial
Parkinson’s disease gene product parkin, is a ubiquitin-protein ligase.
Nat. Genet. 2, 302–305

38 Walden, H. and Martinez-Torres, R.J. (2012) Regulation of Parkin E3
ligase activity. Cell. Mol. Life Sci. 69, 3053–3067 CrossRef PubMed

39 Scarffe, L.A., Stevens, D.A., Dawson, V.L. and Dawson, T.M. (2014) Parkin
and PINK1: much more than mitophagy. Trends Neurosci. 37, 315–324
CrossRef PubMed

40 Rakovic, A., Shurkewitsch, K., Seibler, P., Grunewald, A., Zanon, A.,
Hagenah, J., Krainc, D. and Klein, C. (2013) PTEN-induced putative kinase
1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates
mitophagy: study in human primary fibroblasts and induced pluripotent
stem (iPS) cell-derived neurons. J. Biol. Chem. 288, 2223–2237
CrossRef PubMed

41 Grenier, K., McLelland, G.L. and Fon, E.A. (2013) Parkin- and
PINK1-dependent mitophagy in neurons: will the real pathway please
stand up? Front. Neurol. 4, 100 CrossRef PubMed

42 Maraschi, A.M., Ciammola, A., Folci, A., Sassone, F., Ronzitti, G.,
Cappelletti, G., Silani, V., Sato, S., Hattori, N., Mazzanti, M. et al. (2014)
Parkin regulates kainate receptors by interacting with the GluK2 subunit.
Nat. Commun. 5, 5182 CrossRef PubMed

43 Ren, Y., Zhao, J. and Feng, J. (2003) Parkin binds to α/β tubulin and
increases their ubiquitination and degradation. J. Neurosci. 23,
3316–3324 PubMed

C©The Authors Journal compilation C©2015 Biochemical Society



296 Biochemical Society Transactions (2015) Volume 43, part 2

44 Yang, F., Jiang, Q., Zhao, J., Ren, Y., Sutton, M.D. and Feng, J. (2005)
Parkin stabilizes microtubules through strong binding mediated by three
independent domains. J. Biol. Chem. 280, 17154–17162
CrossRef PubMed

45 Ren, Y., Jiang, H., Yang, F., Nakaso, K. and Feng, J. (2009) Parkin protects
dopaminergic neurons against microtubule-depolymerizing toxins by
attenuating microtubule-associated protein kinase activation. J. Biol.
Chem. 284, 4009–4017 CrossRef PubMed

46 Wang, X., Winter, D., Ashrafi, G., Schlehem, J., Wong, Y.L., Selkoe, D.,
Rice, S., Steen, J., LaVoie, M.J. and Schwarz, T.L. (2011) PINK1 and Parkin
target Miro for phosphorylation and degradation to arrest mitochondrial
motility. Cell 147, 893–906 CrossRef PubMed

47 Ren, Y., Jiang, H., Hu, Z., Fan, K., Wan, J., Janoschka, S., Wang, X., Ge, S.
and Feng, J. (2015) Parkin mutations reduce the complexity of neuronal
processes in iPSC derived human neurons. Stem Cells 33, 68–78
CrossRef PubMed

48 Gozes, I. (2011) Microtubules (tau) as an emerging therapeutic target:
NAP (davunetide). Curr. Pharm. Des. 17, 3413–3417
CrossRef PubMed

49 Baas, P.W. and Ahmad, F.J. (2013) Beyond taxol: microtubule-based
treatment of disease and injury of the nervous system. Brain 136,
2937–2951 CrossRef PubMed

50 Brunden, K.R., Trojanowski, J.Q., Smith, III, A.B., Lee, V.M.-Y. and
Ballatore, C. (2014) Microtubule-stabilizing agents as potential
therapeutics for neurodegenerative disease. Bioorg. Med. Chem. 22,
5040–5049 CrossRef PubMed

Received 13 January 2015
doi:10.1042/BST20150007

C©The Authors Journal compilation C©2015 Biochemical Society



 



Microtubule dysfunction in PD 

 

 

 

 

 

 

 

 

 

 

 

 

PART III 

 

 

 

 

 

 

 

 

 

 

 



 

2 

 

Contents________________________________________________________________ 
      

Manuscript in preparation 

Casagrande F., Cartelli D., Amadeo A., Calogero A.M., De Gregorio C., Modena D., Signo 

M., Pezzoli G. and Cappelletti G.. 

“PARK2 haploinsufficiency affects microtubule stability in mice” 

      

 

 

SIDE RESEARCHES: 

      

Published Paper 2 

Cartelli D., Casagrande F., Busceti C.L., Bucci D., Molinaro G., Traficante A., Passarella D., Giavini 

E., Pezzoli G., Battaglia G. and Cappelletti G. (2013)  

“Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer 

Epothilone D is neuroprotective.”  

Sci Rep 3:1837. 

      

Manuscript 3 

Cartelli D., Aliverti A., Barbiroli A., Santambrogio C., Ragg E., Casagrande F., De Gregorio C., 

Pandini V., Emanuele M., Chieregatti E., Pieraccini S., Holmqvist S., Roybon L., Pezzoli G., Grandori 

R., Arnal I. and Cappelletti G.  

“α-Synuclein is a novel microtubule dynamase”  

Submitted



Microtubule dysfunction in PD 

 

 

 

Published Paper 1 

Cartelli et al., 2012 

Manuscript 1 

Casagrande et al., To be submitted 

Manuscript 2 

Cartelli et al., To be submitted 

Published Review 

Cappelletti et al., 2015 

Manuscript in preparation 

Casagrande et al. 

Published Paper 2 

Cartelli et al., 2013 

Manuscript 3 

Cartelli et al., Submitted 



 

 

 



 

1 
 

PARK2 HAPLOINSUFFICIENCY 

AFFECTS MICROTUBULE STABILITY IN MICE 

 

Francesca Casagrande
1
, Daniele Cartelli

1
, Alida Amadeo

1
, Alessandra M. Calogero

1
, 

Carmelita De Gregorio
1
, Debora Modena

1
, Michela Signo

1
, Gianni Pezzoli

2
 and Graziella 

Cappelletti
1
. 

 

 
1
Department of Biosciences, Università degli Studi di Milano, Milano, Italy  

2
Istituti Clinici di Perfezionamento, Parkinson Institute, Milano, Italy 

 

 

 

ABSTRACT 

 

Currently, just symptomatic treatments are available for Parkinson’s disease (PD), since the 

molecular mechanisms underlying the loss of dopaminergic cells in the Substantia nigra are 

not yet solved. Recently, the involvement of microtubule (MT) system has been clearly 

proved in many neurodegenerative diseases, so our goal is to understand if the MT 

dysfunction could be a primary cause in PD neurodegeneration. Mutations in a number of 

genes have been associated with familial PD and, among them, PARK2 encodes for parkin, an 

E3 ubiquitin ligase that is also able to bind and stabilize MTs. Here, we investigate if PARK2 

haploinsufficiency could make aged mice differently susceptible to Substantia nigra damage 

and motor impairment and if this could be dependent on their MT system.  

On this purpose, we have studied in deep the levels and the organization of cytoskeletal 

proteins in wt and PARK2 heterozygous C57BL/6 sex-matched aged mice (15 months old). In 

particular, we focused on MT stability through the analysis of different post-translational 

modified forms of α-tubulin that are associated to MTs with different stability. The results 

highlighted a significant increase in the levels of dynamic pool of MTs in the two regions of 

interest, the Substantia nigra and Corpus striatum, in the heterozygous mice, with both 

immunoblotting and confocal microscopy approaches. Moreover, the stereological count of 

the number of dopaminergic neurons in the Substantia nigra and the quantification of 

dopaminergic terminals in the Corpus striatum have been performed. Finally, we have 

evaluated also the motor behaviour of these mice using a video-tracking system and, 

surprisingly, we found the heterozygous mice being significantly more active than wt ones. 

Our data show that PARK2 haploinsufficiency impacts MT system in vivo leading to a more 

dynamic MT cytoskeleton, and suggest a key role for MT stability in the dopaminergic 

neurons’ survival and functionality.  
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LEGENDS 

 

Figure 1. 2,5-HD and PARK2 haploinsufficiency do not impact level and distribution of 

cytoskeletal proteins in the Corpus striatum. (A) Representative western blot and 

densitometric analysis of actin (42 kDa), NF-L (70 kDa), NF-M (160 kDa) and α-tubulin (α-

Tub, 50 kDa) on striatal protein extracts of wt and PARK2
+/-

 15 months old mice treated with 

i.p. injection of 2,5-HD (8 mmol/kg) or saline for 19 days. The number of mice in the 

experimental groups was the following: wt saline (n = 3), wt 2,5-HD (n = 1), PARK2+/- 

saline (n = 7), PARK2+/- 2,5-HD (n = 5). All the values are expressed as mean ± SEM. No 

significative differences among the groups were observed. (B) Scheme of a sagittal section 

with the Corpus striatum shown in green. (C) Representative confocal images of 

dopaminergic fibers in sagittal sections of Corpus striatum of wt and PARK2
+/-

 15 months old 

mice treated with i.p. injection of 2,5-HD (8 mmol/kg) or saline for 19 days. Green represents 

tyrosine hydroxylase (TH) staining and red signals the NF proteins, in particular NF-L is 

shown. Scale bar, 20 µm. 

  

Figure 2. PARK2 haploinsufficiency increases tyrosinated tubulin in the Corpus striatum.  

(A) Representative western blot and densitometric analyses of tyrosinated (Tyr Tub), 

detyrosinated (deTyr Tub), acetylated (Ac Tub) and Δ2 (Δ2 Tub) tubulin on striatal protein 

extracts of wt and PARK2
+/-

 15 months old mice treated with i.p. injection of 2,5-HD (8 

mmol/kg) or saline for 19 days. The number of mice in the experimental groups was the 

following: wt saline (n = 3), wt 2,5-HD (n = 1), PARK2
+/-

 saline (n = 7), PARK2
+/-

 2,5-HD (n 

= 5). The level of tubulin PTMs were normalized on the level of total α-tubulin (α-Tub) in the 

respective sample and are expressed as the ratio α-tubulin PTM/α-tubulin (mean ± SEM). 

*p<0.05 vs wt saline group according to ANOVA, Fisher post hoc test; #p<0.01 vs PARK2
+/-

 

saline group according to ANOVA, Fisher post hoc test. (B) Scheme of a sagittal section with 

the Corpus striatum showed in green. (C) Representative confocal images of dopaminergic 

fibers in sagittal sections of Corpus striatum of wt and PARK2
+/-

 15 months old mice treated 

with i.p. injection of 2,5-HD (8 mmol/kg) or saline for 19 days. Green represents tyrosine 

hydroxylase (TH) staining and red signals the α-tubulin post-translational modifications 

(PTMs), in particular tyrosinated (Tyr Tub) and detyrosinated (deTyr Tub) are shown. Scale 

bar, 20 µm.  
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Figure 3. 2,5-HD does not cause the loss of dopaminergic fibers in the Corpus striatum. 

(A) Densitometric analyses of TH-positive fibers in total, dorsal and dorso-lateral Corpus 

striatum of wt and PARK2
+/-

 15 months old mice treated with i.p. injection of 2,5-HD (8 

mmol/kg) or saline for 19 days, were performed with ImageJ software. The number of mice in 

the experimental groups was the following: wt saline (n = 6), wt 2,5-HD (n = 6), PARK2+/- 

saline (n = 7), PARK2+/- 2,5-HD (n = 4). All the values are expressed as mean ± SEM. No 

significative differences among the groups were observed. (B) Overview of representative 

micrographs of the Corpus striatum used for quantitative immunohistochemical analysis. 

 

Figure 4. 2,5-HD and PARK2 haploinsufficiency do not impact level and distribution of 

cytoskeletal proteins in the dopaminergic neurons of ventral mesencephalon. (A) 

Representative western blot and densitometric analysis of actin (42 kDa), NF-L (70 kDa), NF-

M (160 kDa) and α-tubulin (α-Tub, 50 kDa) on ventral mesencephalon protein extracts of wt 

and PARK2
+/-

 15 months old mice treated with i.p. injection of 2,5-HD (8 mmol/kg) or saline 

for 19 days. The number of mice in the experimental groups was the following: wt saline (n = 

3), wt 2,5-HD (n = 1), PARK2+/- saline (n = 7), PARK2+/- 2,5-HD (n = 5). All the values are 

expressed as mean ± SEM. No significative differences among the groups were observed. (B) 

Scheme of a sagittal section with the Substantia nigra pars compacta shown in green. (C) 

Representative confocal images of dopaminergic neurons in sagittal sections of Substantia 

nigra of wt and PARK2
+/-

 15 months old mice treated with i.p. injection of 2,5-HD (8 

mmol/kg) or saline for 19 days. Green represents tyrosine hydroxylase (TH) staining and red 

signals the NF proteins, in particular NF-L is shown. Scale bar, 20 µm.  

 

Figure 5. Parkin haploinsufficiency affects tyrosinated tubulin levels in the 

dopaminergic neurons of ventral mesencephalon. (A) Representative western blot and 

densitometric analyses of tyrosinated (Tyr Tub), detyrosinated (deTyr Tub), acetylated (Ac 

Tub) and Δ2 (Δ2 Tub) tubulin on ventral mesencephalon protein extracts of wt and PARK2
+/-

 

15 months old mice treated with i.p. injection of 2,5-HD (8 mmol/kg) or saline for 19 days. 

The number of mice in the experimental groups was the following: wt saline (n = 3), wt 2,5-

HD (n = 1), PARK2
+/-

 saline (n = 7), PARK2
+/-

 2,5-HD (n = 5). The level of tubulin PTMs 

were normalized on the level of total α-tubulin (α-Tub) in the respective sample and are 

expressed as the ratio α-tubulin PTM/α-tubulin (mean ± SEM). *p<0.05 vs wt saline group 

according to ANOVA, Fisher post hoc test; #p<0.05 vs PARK2
+/-

 saline group according to 

ANOVA, Fisher post hoc test. (B) Scheme of a sagittal section with the Substantia nigra pars 
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compacta shown in green. (C) Representative confocal images of dopaminergic neurons in 

sagittal sections of Substantia nigra of wt and PARK2
+/-

 15 months old mice treated with i.p. 

injection of 2,5-HD (8 mmol/kg) or saline for 19 days. Green represents tyrosine hydroxylase 

(TH) staining and red signals the α-tubulin post-translational modifications (PTMs), in 

particular tyrosinated (Tyr Tub) and detyrosinated (deTyr Tub) are shown. Scale bar, 20 µm.  

 

Figure 6. Heterozygous mice present an increased level of tyrosinated tubulin in  

sections of Substantia nigra pars compacta. Quantification of fluorescence intensity with 

ImageJ software of tyrosinated (Tyr Tub) (A-B) and detyrosinated (deTyr Tub) (C-D) tubulin 

inside dopaminergic neurons in the Substantia nigra pars compacta in sagittal section of wt 

and PARK2
+/-

 15 months old mice treated with i.p. injection of 2,5-HD (8 mmol/kg) or saline 

for 19 days. The same sections stained for TH (green signal) and different forms of tubulin 

(red signal), shown in the figure 5C, were used for the analysis. Data are expressed as grey 

levels in box plot graphs (A-C, upper), while the tables (B-D, lower) report the number of 

animals, sections and cells counted during the analyses. ***p<0.001 vs wt saline or 

PARK2+/- saline group according to ANOVA, Tukey post hoc test. 

 

Figure 7. 2,5-HD does not induce the dopaminergic neuron death in the Substantia nigra 

pars compacta. (A) Overviews of five caudo-rostral levels through the Substantia nigra pars 

compacta (SNpc) used for quantitative immunohistochemical analysis. Representative 

photomicrographs were taken under a 4x objective from the SNpc of wt (right) and PARK2
+/-

 

(left) mice treated with saline. (B) Stereological counts of TH-positive cells were performed 

with the StereoInvestigator software in the SNpc of wt and PARK2
+/-

 15 months old mice 

treated with i.p. injection of 2,5-HD (8 mmol/kg) or saline for 19 days. Values represent the 

mean ± SEM of seven sections per animal throughout the SNpc and are expressed as the total 

number of SN dopaminergic neurons in both hemispheres. The number of mice in the 

experimental groups was the following: wt saline (n = 8), wt 2,5-HD (n = 5), PARK2+/- 

saline (n = 8), PARK2+/- 2,5-HD (n = 6).  

 

Figure 8. Heterozygous mice are more active than wt ones and 2,5-HD causes motor 

impairment. The motor behaviour of wt and PARK2
+/-

 15 months old mice, treated with i.p. 

injection of 2,5-HD (8 mmol/kg) or saline for 19 days, has been monitored with a video-

tracking system once a week for 3 weeks. Each mouse was freely to move spontaneously for 

1 hour within an open-field cage during the video-tracking sessions. The resulting movies 
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were analysed for (A) the total distance travelled, (B) the average speed and (C) the total time 

the mice were immobile in the cage. Data are expressed as mean ± SEM. The heterozygous 

group of mice resulted more active at each time point, nonetheless the 2,5-HD treatment that 

caused anyway a motor impairment in all the groups. Surprisingly, the wt mice resulted more 

susceptible to the toxin.  
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FIGURE 1 
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Microtubule Alterations Occur Early in
Experimental Parkinsonism and The
Microtubule Stabilizer Epothilone D Is
Neuroprotective
Daniele Cartelli1, Francesca Casagrande1, Carla Letizia Busceti2, Domenico Bucci2, Gemma Molinaro2,
Anna Traficante2, Daniele Passarella3, Erminio Giavini1, Gianni Pezzoli4, Giuseppe Battaglia2*

& Graziella Cappelletti1*

1Department of Biosciences, Università degli Studi di Milano, Milan, Italy, 2I.R.C.C.S. Neuromed, Pozzilli (IS), Italy, 3Department of
Chemistry, Università degli Studi di Milano, Milan, Italy, 4Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy.

The role of microtubule (MT) dysfunction in Parkinson’s disease is emerging. It is still unknown whether it
is a cause or a consequence of neurodegeneration. Our objective was to assess whether alterations of MT
stability precede or follow axonal transport impairment and neurite degeneration in experimental
parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57Bl mice. MPTP
induced a time- and dose-dependent increase in fibres with altered mitochondria distribution, and early
changes in cytoskeletal proteins and MT stability. Indeed, we observed significant increases in
neuron-specific bIII tubulin and enrichment of deTyr tubulin in dopaminergic neurons. Finally, we showed
that repeated daily administrations of the MT stabilizer Epothilone D rescued MT defects and attenuated
nigrostriatal degeneration induced by MPTP. These data suggest that alteration of MTs is an early event
specifically associated with dopaminergic neuron degeneration. Pharmacological stabilization of MTs may
be a viable strategy for the management of parkinsonism.

A
xonogenesis and dendritogenesis, which are essential for the normal development of neurons, rely on the
coordinated organization and dynamics of the actin and microtubule (MT) cytoskeleton. MTs are poly-
mers built up by a/b tubulin heterodimers, characterized by an intrinsic resistance to bending and

compression1. They are capable of switching between phases of slow growth and of rapid depolymerization2,
features implicated in generating pushing and pulling forces within cells3. During neuronal differentiation, MTs
are highly dynamic and ensure outgrowth and branching4. In mature neurons, MT stability increases5. The proper
control of MT dynamics is essential for many neuronal activities, such as synaptic remodelling6, and both MT
stability and neuronal functions are regulated through tubulin posttranslational modifications (PTMs)7.

Axon degeneration is a hallmark of neurodegenerative disorders and often precedes the onset of symptoms.
Axonal destruction is an active process rather than a passive event8. Although little is known about the mechan-
isms involved, a growing body of evidence suggests a primary role of the MT system. In fact, MT fragmentation is
the first detectable event during Wallerian degeneration9, and disorganized and bent MTs accompany the
formation of retraction bulbs10 and axonal retraction11.

Parkinson’s disease (PD) is the most common motor neurodegenerative disorder and each symptom depends
on the reduction in dopamine (DA) levels in the striatum. Degeneration of nigrostriatal dopaminergic synaptic
terminals precedes the death of dopaminergic neurons in the substantia nigra12. Many PD-linked proteins, such as
a-synuclein13, parkin14, and leucine rich repeat kinase 215, modulate the stability of MTs, highlighting the crucial
role of MTs during PD progression. Furthermore, PD is the only neurodegenerative disorder that is clearly related
to environmental toxins, such as 1-methyl-4-phenylpiridinium (MPP1) or rotenone12, which both destabilize
MTs16,17. Alterations in MT stability precede axonal transport impairment and neurite degeneration in MPP1-
exposed PC12 cells18, suggesting that MT dysfunction plays an important role in mediating the toxicity of these
compounds. It is noteworthy that both prophylactic and interventional treatments with the MT-stabilizer
Epothilone D (EpoD), which is able to pass the blood-brain barrier, improve axonal MT density, reduce axonal
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dystrophy and alleviate cognitive deficits in transgenic mouse models
of tauopathies19,20. It has also been shown that the dynamicity of MTs
is increased in tau transgenic mice and that treatment with EpoD
restores MT dynamics to baseline levels and exerts beneficial effects
on behavior, tau pathology and neurodegeneration21.

We now show that C57Bl mice treated with 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) express early alterations of a-
tubulin PTMs specifically in dopaminergic neurons, and that
systemic injections of EpoD rescue MT defects and attenuate nigros-
triatal degeneration in mice with parkinsonian symptoms produced
by exposure to the toxin MPTP.

Results
Treatment paradigm underlines early alterations. One single dose
of MPTP (30 mg/kg, i.p.) induced about 50–60% reduction in striatal
DA levels 7 days later in C57Bl mice, as expected22. To highlight very
early alterations, mice were treated either with a single dose (30 mg/
kg, i.p.) or with a cumulative dose (60 mg/kg) of MPTP, and sacri-
ficed 12 or 72 h later. Biochemical analyses showed that MPTP
induced a significant reduction in striatal DA and its metabolites,
a sign of ongoing neurodegeneration (Fig. 1a). Western Blotting
analysis showed that TH, the rate-limiting enzyme of DA biosyn-
thesis, was decreased in the striatum and substantia nigra only with
the highest dose of MPTP (Fig. 1b,c). Ara and colleagues23 showed
that MPTP induces early inactivation of the enzyme, followed by

reduction in TH levels; therefore, mice treated with the low dose of
MPTP (30 mg/kg), which do not show any changes in TH levels,
can be considered to be in an early phase of neurodegeneration,
and may be used to uncover very early alterations in experimental
parkinsonism.

MPTP causes axonal transport impairment in dopaminergic
fibres. Mitochondria, as well the other organelles, accumulate into
varicosities when axonal transport is impaired24, and there is
evidence that MPP1 interferes with this process18,25,26. Therefore, to
assess the status of axonal transport in MPTP-treated mice, we
evaluated mitochondria distribution within dopaminergic fibres by
performing a double immunohistochemical analysis in sagittal
sections of TH and voltage-dependent anion channel (VDAC)-
porin, a structural protein of the mitochondrial pore. We observed
dopaminergic fibres with a homogeneous distribution of mito-
chondria and fibres showing sparse or accumulated mitochondria
(Fig. 2a, arrowheads). It is noteworthy that only mice treated with
MPTP and killed 72 h later showed empty fibres (Fig. 2a, arrow),
as the mitochondria had been kept out of neuronal processes.
Quantification of the different types of fibres (Fig. 2b), showed a
time- and dose-dependent increase in fibres with altered mito-
chondria distribution in treated mice. No significant differences
were observed between control mice and mice treated for 12 h
with 30 mg/kg MPTP. These data show that MPTP affects axonal
transport in vivo.

Figure 1 | Treatment paradigm underlines early alterations. (a) Biochemical analyses of striatal dopamine, DOPAC and HVA levels in C57Bl mice

injected with saline or MPTP (30 mg/kg, i.p., single injection or 20 mg/kg, i.p., 3 3, 2 h apart) and killed 12 or 72 hours later (mean 6 S.E.M., n 5 8–10

mice per group). *P , 0.05; one-way ANOVA, Dunnett post hoc versus saline-injected mice. (b) Immunoblot of TH levels in lysates of the corpus

striatum and substantia nigra of mice injected with saline or MPTP as in a. (c) Densitometric analyses of immunoblot reported in b (mean 6 S.E.M.,

n 5 8–10 mice per group). *P , 0.05; one-way ANOVA, Dunnett post hoc test versus saline-injected mice. hpi 5 hours post last injection of MPTP.
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MPTP increases the neuron-specific bIII tubulin isotype. Axonal
transport defects could be related to alterations of cytoskeletal
proteins and molecular motors. Thus, we evaluated levels of actin,
a- and b-tubulin, and the neuron-specific bIII tubulin isotype.
Western blotting and densitometric analyses showed that levels of
actin and a/b tubulin were unchanged in the striatum (Fig. 3a,b) and
substantia nigra (Fig. 3c,d) of MPTP-treated mice. b-tubulin was
significantly reduced in the striatum of mice treated with MPTP

(30 mg/kg) and killed 72 h later (Fig. 3a,b). The specific change in
b-tubulin is not surprising, because Chung and colleagues27 already
showed differential variations in a- and b-tubulin monomers in a rat
model of synucleinopathy, and we have recently found significant
enrichment of b-tubulin in the fibroblasts of PD patients carrying
parkin mutations28. On the other hand, the neuron-specific bIII
tubulin isotype was significantly increased by MPTP treatment in
both striatum and substantia nigra, although at different time points

Figure 2 | MPTP causes axonal transport impairment. (a) Mask projections of sagittal sections of the nigrostriatal pathway in mice injected with saline

or MPTP as in Fig. 1, showing the distribution of mitochondria (white spots) inside dopaminergic fibres (red). Arrowheads indicate mitochondria

accumulations and arrow highlights an empty fibre. Scale bar 5 20 mm. (b) Percentage of fibres displaying a homogeneous distribution of mitochondria,

fibres showing dispersed or accumulated mitochondria or empty fibres. hpi 5 hours post last injection of MPTP (mean 6 S.E.M., n 5 9 sections from 3

different mice per group). *P , 0.05; x2 test versus saline-injected mice.

Figure 3 | MPTP treatment increases the bIII tubulin isotype. (a) Immunoblots of actin, a-tubulin, b-tubulin and bIII tubulin in lysates of striatum of

mice treated as in Fig. 1. (b) Densitometric analyses of immunoblot reported in a (mean 6 S.E.M., n 5 4–6 individuals per group). *P , 0.05;

one-way ANOVA, Dunnett post hoc test versus saline-injected mice. (c) Immunoblot of actin, a-tubulin, b-tubulin and bIII tubulin in lysates of

substantia nigra of mice treated as in Fig. 1. (d) Densitometric analyses of immunoblot reported in c (mean 6 S.E.M., n 5 4–6 individuals per group).

*P , 0.05; one-way ANOVA, Dunnett post hoc test versus saline-injected mice. hpi 5 hours post last injection of MPTP.
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(Fig. 3). Levels of kinesin and dynein, responsible for MT-dependent
anterograde and retrograde axonal transport, respectively29, were not
affected by MPTP treatment (Supplementary Fig. S1), suggesting
that axonal transport defects may be due to alternative factors.

MPTP specifically affects MT stability in dopaminergic neurons.
a-tubulin PTMs are usually used as markers of MTs with different
stability, being tyrosinated (Tyr) MTs the most dynamic, and acety-
lated (Ac) or detyrosinated (deTyr) MTs the most stable pools7.
Recently, it has been shown that a-tubulin PTMs are directly
linked to neurodegeneration in mice30 and MPP1 affects a-tubulin
PTMs in PC12 cells18. Therefore, we evaluated MT stability in the
striatum (Fig. 4) and substantia nigra (Fig. 5) of MPTP-treated mice,
as well as along their nigrostriatal pathway (Supplementary Fig. S2).
Biochemical analyses showed the enrichment of deTyr tubulin in
striatum (Fig. 4a,b), which was detectable already 12 h after the
injection of the lowest dose of MPTP, and a later increase in both
Tyr and Ac tubulins. Confocal analyses and the evaluation of Man-
ders’ coefficients (M1 and M2, reported in Table 1 and Supplemen-
tary Table S1, respectively), which are good indicators of relative
signal distribution31, showed that changes in the levels of tubulin
PTMs were located in dopaminergic terminals. In fact, we obser-
ved an increased co-localization between deTyr or Ac Tub and TH
signals (Fig. 4c) and significant elevation in M1 parameter (Table 1).
On the other hand, the significant decrease in the M1 parameter
(Table 1) demonstrated that the enrichment of Tyr tubulin was
associated with neurons residing in the striatum.

Western blotting analysis performed on substantia nigra lysates
(Fig. 5a, b), revealed a significant decrease in Tyr tubulin in MPTP-
treated mice, suggesting that the dynamic MT pool was reduced, as
we already showed in cultured cells18. On the other hand, MPTP
induced a significant enrichment of deTyr tubulin in mice treated
with MPTP (60 mg/kg) and killed 12 h later, suggesting an increase
in stable MTs, which mirrors the changes observed in the striatum.
Confocal analyses showed that a-tubulin PTM changes occurred in
dopaminergic cell soma (Fig. 5c), and the quantification of fluor-
escence intensity within single cells (Supplementary Table S2)

showed that alterations of MT stability are higher in dopaminergic
neurons. Indeed, we observed a significant reduction in Tyr tubulin
and an early increase in deTyr and Ac tubulins that resulted in the
decrease of stable MTs.

Finally, as a-tubulin PTMs influence axonal transport32,33, we eval-
uated potential changes within dopaminergic fibres by confocal
microscopy (Supplementary Fig. S2). Besides the slight changes
observed in Tyr and Ac tubulin content, the overall result we
obtained is an early increase in deTyr tubulin, in line with the mod-
ifications of this subset of stable MTs in the striatum and substantia
nigra of MPTP-treated mice, which could be responsible for the
impairment of axonal transport, as already suggested18. Taken
together, these results show that MPTP affects MT stability in vivo,
and that the alteration of a-tubulin PTMs is an early event specif-
ically associated with dopaminergic neurons.

Stabilization of MT attenuates MPTP-induced neurodegener-
ation. To test the hypothesis that stabilization of MT is able to
exert a neuroprotective effect in experimental parkinsonism, we
used the classical model induced by MPTP. C57 Black mice were
challenged with a single dose of MPTP (30 mg/kg, i.p.), which led, 7
days later, to about 50% reduction in striatal DA levels. Similar
reductions were found in the striatal levels of DOPAC and HVA,
although changes in DOPAC and HVA levels were variable in
different experiments (Fig. 6a). Reductions in DA were not
affected in mice systemically injected with 1 or 3 mg/kg, i.p., of
EpoD 30 min prior to MPTP (Fig. 6a). Repeated treatment with
EpoD (1 mg/kg, i.p.), injected 30 min prior to MPTP and then for
the following 4 days once a day, induced substantial attenuation of
MPTP-induced striatal DA reduction (Fig. 6b). Note that, for
unknown reasons, MPTP toxicity was greater in control animals
injected with DMSO alone. Neuroprotection by repeated injections
of EpoD was confirmed by stereological counts of TH-positive
neurons in the pars compacta of substantia nigra (Fig. 6c,d). To
assess the effects of EpoD on motor activity, mice were treated i.p.
with EpoD alone (3 mg/kg, every day for four days) or 30 min prior
MPTP and then every day for four days. EpoD did not affect the

Figure 4 | MPTP affects MT stability in dopaminergic terminals. (a) Immunoblot of levels of tyrosinated tubulin (Tyr Tub), detyrosinated tubulin

(deTyr Tub) and acetylated tubulin (Ac Tub) in lysates of striatum of mice treated as in Fig. 1. (b) Densitometric analyses of immunoblot reported in a

(mean 6 S.E.M., n 5 4–6 mice per group). For the quantitation, values of each a-tubulin PTM were normalized on the level of a-tubulin (a Tub) of the

relative sample. *P , 0.05; one-way ANOVA, Dunnett post hoc test versus saline-injected mice. (c) Confocal images of striatum of mice treated as in Fig. 1.

Green represents TH staining and red signals the various tubulin PTMs. Scale bar 5 50 mm. hpi 5 hours post last injection of MPTP.
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motor performance on the rotarod test by itself (not shown). At the
doses of MPTP used, we did not observe any modification of motor
performance and EpoD treatment did not modify the motor coor-
dination at the rotarod test (not shown). We also monitored general
health conditions of mice treated with EpoD and MPTP1EpoD.
Both fur and body weight were not affected by EpoD or MPTP1

EpoD treatments.
To verify that the neuprotective effect of EpoD was due to its

action on MT system, we analyzed a-tubulin PTMs in the corpus
striatum and substantia nigra of mice challenged with MPTP and
chronically treated with EpoD. We observed significant increase of
both Tyr and deTyr tubulin in the striatum of MPTP-treated mice
(Fig. 7a,b), whereas only deTyr tubulin was increased by MPTP in the
substantia nigra (Fig. 7c,d). Furthermore, our data show the ability of
EpoD to restore deTyr tubulin baseline levels, both in striatum
(Fig. 7a,b) and substantia nigra (Fig. 7c,d). The reduction in a marker
of stable MTs, as deTyr tubulin is, induced by a stabilizer drug, as
EpoD is, could seem surprising. However, this is perfectly consistent
with the hypothesis that the increase of stable MTs in MPTP-treated
mice may be an attempt to counteract the drug-induced MT desta-
bilization18. MPP1 is known to promote MT catastrophes16 and, in
respect to dynamic ones, deTyr MTs are more resistant to induced
MT depolymerization; hence, tubulin detyrosination could reduce
MPP1-provoked MT catastrophes. On the other side, as many other
MT-stabilizing agent, EpoD directly induces MT polymerization

under conditions in which tubulin is not more able to assemble,
shifting the equilibrium of tubulin toward the polymeric state. To
verify our hypothesis, we measured the amount of tubulin associated
to cytosolic dimers and to polymeric MTs (Fig. 7e,f), both in striatum
and substantia nigra. Our data reveal, for the first time, that MPTP is
able to specifically destabilize MTs in the substantia nigra of treated
mice and that chronic treatment with EpoD prevents the MPTP-
induced destabilization (Fig. 7e,f).

Discussion
Cytoskeletal alterations have been described in many central nervous
system disorders, but it is unclear whether they are a cause or simply
a by-product of neurodegeneration. Here, we show that systemic
injection of MPTP in mice induces MT dysfunction that occurs very
early, before axonal transport impairment, TH depletion, and,
ultimately, dopaminergic neuron degeneration. Noteworthy is that
chronic administration of the MT stabilizer Epo D rescues MT
defects and is neuroprotective, supplying reliable proof that MT
dysfunction may contribute to actually cause neurodegeneration.

Axonal transport impairment in the MPTP model of PD was first
suggested by Morfini et al. (2007), who proposed that it was an early
event in neurodegeneration, based on the outcome of a study on giant
squid axons. Here we demonstrate that axonal transport impairment
occurs in MPTP-treated mice, showing changes in mitochondria
distribution in dopaminergic fibres. In addition, the earlier decrease

Figure 5 | MPTP affects MT stability in dopaminergic neurons. (a) Immunoblot of levels of tyrosinated tubulin (Tyr Tub), detyrosinated tubulin

(deTyr Tub) and acetylated tubulin (Ac Tub) in lysates of substantia nigra of mice treated as in Fig. 1. (b) Densitometric analyses of immunoblot reported

in a (mean 6 S.E.M., n 5 4–6 mice per group). For the quantitation, values of each a-tubulin PTM were normalized on the level of a-tubulin (a Tub) of

the relative sample. *P , 0.05; one-way ANOVA, Dunnett post hoc test versus saline-injected mice. (c) confocal images of substantia nigra of mice treated

as in Fig. 1. Green represents TH staining and red signals the various tubulin PTMs. Scale bar 5 50 mm. hpi 5 hours post last injection of MPTP.

Table 1 | Analysis of M1 parameter (Tubulins vs. TH) in striatal sections

Tyr Tubulin deTyr Tubulin Ac Tubulin

Saline 0.41 6 0.032 0.30 6 0.025 0.16 6 0.013
MPTP, 30 mg/kg (12 h) 0.27 6 0.021 (*) 0.39 6 0.013 0.28 6 0.028 (*)
MPTP, 30 mg/kg (72 h) 0.27 6 0.048 (*) 0.51 6 0.027 (*) 0.33 6 0.021 (*)
MPTP, 60 mg/kg (12 h) 0.17 6 0.029 (*) 0.34 6 0.034 0.36 6 0.019 (*)
MPTP, 60 mg/kg (72 h) 0.24 6 0.043 (*) 0.32 6 0.030 0.16 6 0.023

Data are expressed as mean 6 S.E.M., n 5 4 sections for each mouse from 4–6 mice per group. *P , 0.05; one-way ANOVA, Dunnett post hoc: versus saline-injected mice.
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in TH in striatum, followed by TH depletion in substantia nigra, can
easily be explained by impairment of axonal transport, other than by
the dying back mechanism of degeneration, typical of PD12 and mice
exposed to MPTP34. Looking for the mechanisms underlying axonal
transport impairment, we found that MPTP does not impact motor
protein levels. However, it affects the levels of deTyr MTs, suggesting
that altered MT stability is responsible for the alterations of axonal
transport. Indeed, Kinesin 1, which is particularly abundant in neu-
rons, is preferentially recruited, but moves slowly along highly

modified MTs33. Furthermore, MPP1 induces increases in deTyr
tubulin content that precede and therefore may cause the reduction
in mitochondrial transport in PC12 cells18. Consequently, we sup-
posed that a similar scenario is likely to occur in MPTP-treated mice.
Nevertheless, another paper by O’Malley’s group26 reported that
MPP1 specifically impairs mitochondria transport in dopaminergic
neurons, an event that precedes autophagy and MT defects. How-
ever, they looked at gross, i.e. Ac-MT fragmentation and a-tubulin
content reduction, rather than at subtle alterations of MTs, such as

Figure 6 | Repeated systemic injections of EpoD attenuate MPTP toxicity in mice. (a) Biochemical analyses of striatal dopamine, DOPAC,

and HVA levels in C57Bl mice injected with MPTP (30 mg/kg, i.p., single injection) alone or in combination with EpoD (1 or 3 mg/kg, i.p.) dissolved in

DMSO and injected 30 min before MPTP. Mice were killed 7 days later (mean 6 S.E.M., n 5 8–10 mice per group). *P , 0.05; one-way ANOVA,

Dunnett post hoc test versus saline-injected mice. (b) Biochemical analyses of striatal dopamine, DOPAC, and HVA levels in C57Bl mice injected with

MPTP (30 mg/kg, i.p., single injection) alone or in combination with EpoD (1 mg/kg, i.p.) dissolved in DMSO and injected 30 min before MPTP and

then for the following 4 days once a day. Mice were killed 7 days later (mean 6 S.E.M., n 5 8–10 mice per group). *, # P , 0.05; one-way ANOVA,

Dunnett post hoc test versus saline-injected mice (*) or versus mice injected with MPTP alone (#). (c) Immunohistochemical analysis of TH in the pars

compacta of substantia nigra of mice injected with a single i.p. injection of 30 mg/kg of MPTP, alone or combined with EpoD (1 mg/kg, i.p.,

30 min prior to MPTP and then for the following 4 days, once a day). Scale bar 5 250 mm. (d) Stereological counts of TH-positive cell in the substantia

nigra pars compacta (mean 6 S.E.M., n 5 5 mice per group). *, # P , 0.05; one-way ANOVA, Dunnett post hoc test versus saline-injected mice (*) or

versus mice injected with MPTP alone (#).
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changes in PTMs. A further possible cause of the axonal transport
block is MT reorientation, which is induced either by MPP1 18 or by
human mutant Tau expression35 leading to traffic jams. Therefore,
the observed impairment of axonal transport is likely mediated by
alterations of MT stability and organization, which, in turn, lead to
distal axon degeneration, as dying back is, and to the accumulation of
DA loaded vesicles in cell soma. This could really be detrimental to
the neurons since DA oxidation produces large quantities of reactive
oxygen species (ROS) triggering dopaminergic neuron death36.

The observation that levels of the neuron-specific bIII tubulin,
which is the most dynamic among the b-tubulin isotypes37, are
increased points out the importance of MT dynamics and its tight
regulation in MPTP-mediated neurodegeneration, as we have

already shown16,18. bIII tubulin enrichment could be explained as
an adaptive mechanism to counteract the MPTP-induced reduction
in Tyr a2tubulin, usually associated with highly dynamic MTs.
Moreover, bIII tubulin expression is primarily restricted to the nerv-
ous system38, and it has been suggested that different b-tubulin iso-
types could serve specific and unique roles39, such as neuronal
elongation and axon guidance. Banarjee and colleagues40 showed
that in the presence of Tau, a neuron-specific MT binding protein,
bIII tubulin was more prone to polymerize than the other isotypes.
Worthy of note is the recent suggestion that the Tau-MTs interaction
may be important not only in the pathogenesis of Alzheimer’s dis-
ease, but also of PD. Indeed, both MPTP and a-synuclein mutations
promote Tau phosphorylation, causing MT instability, which leads

Figure 7 | EpoD rescues MT system in MPTP-treated mice. (a) Immunoblot of levels of tyrosinated tubulin (Tyr Tub), detyrosinated tubulin

(deTyr Tub) and acetylated tubulin (Ac Tub) in lysates of striatum of mice treated as in Fig. 6. (b) Densitometric analyses of immunoblot reported in a

(mean 6 S.E.M., n 5 5 mice per group). For the quantitation, values of each a-tubulin PTM were normalized on the level of a-tubulin (a Tub) of the

relative sample. *, # P , 0.05; one-way ANOVA, Fischer LSD post hoc test versus saline-injected mice (*) or versus mice injected with MPTP alone (#).

(c) Immunoblot of levels of tyrosinated tubulin (Tyr Tub), detyrosinated tubulin (deTyr Tub) and acetylated tubulin (Ac Tub) in lysates of substantia

nigra of mice treated as in Fig. 6. (d) Densitometric analyses of immunoblot reported in c (mean 6 S.E.M., n 5 5 mice per group). For the quantitation,

values of each a-tubulin PTM were normalized on the level of a-tubulin (a Tub) of the relative sample. *, # P , 0.05; one-way ANOVA, Fischer LSD post

hoc test versus saline-injected mice (*) or versus mice injected with MPTP alone (#). Tubulin dimers (Dim) and MT polymers (MT) of corpus striatum

and substantia nigra were analyzed by (e) immunoblot and (f) densitometric analyses and are shown as ratio (mean 6 S.E.M., n 5 3 mice per group).

*, # P , 0.05; one-way ANOVA, Fischer LSD post hoc test versus saline-injected mice (*) or versus mice injected with MPTP alone (#).
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to loss of dopaminergic neurons in PD brain41. Nevertheless, trying
to counteract the ongoing axonal destruction, the dopaminergic neu-
rons could promote MT polymerization through increase in the bIII
tubulin content or in MT stability, as suggested by the enrichment in
deTyr and Ac a-tubulin.

Mitochondria are largely considered crucial players in the patho-
genesis of PD. Indeed, both MPP1 42 and rotenone43 inhibit mito-
chondrial complex I, reducing ATP synthesis and increasing ROS
production. However, the lack of complex I does not protect dopa-
minergic neurons from toxin administration44, suggesting the exist-
ence of alternative mechanisms of action. It is well known that
tubulin interacts with VDAC, the most abundant protein in the
mitochondrial outer membrane, and mitochondria-associated tubu-
lin is enriched in bIII isotype45. Recently, it has been reported that
tubulin decreases the respiration rate of isolated mitochondria46 and
that the increase in tubulin dimers induces mitochondrial depol-
arization in human cancer cells47. Furthermore, the administration
of tubulin-targeted drugs induces mitochondrial depolarization and
Ca11 release48. This body of evidence clearly shows that interfering
with MT system impairs mitochondria activity. Therefore, enrich-
ment in free tubulin dimers in PC12 cells18 and MPTP-induced
increase in bIII tubulin (present data) could induce adverse effects,
such as mitochondrial dysfunction. Being life a matter of balance,
when the equilibrium shifts from a beneficial event, such as MT
polymerization induced by bIII tubulin increases, toward a det-
rimental one, such as mitochondrial dysfunction caused by the same
factor, dopaminergic neurons may die leading to PD. In this context,
it is essential to consider parkin, an E3 ligase promoting degradation
of tubulin and other proteins, known to interact with MTs and to
play a central role in the regulation of mitophagy. Thanks to its
particular position, parkin may quarantine damaged mitochondria,
by severing their connection to the MT network, before promoting
their clearance49. If MT-parkin interaction was impaired, as in the
case of MT destabilization, proper regulation of mitophagy would
fail, leading to dopaminergic neuron loss. Thus, tubulin partitioning
between dimer and polymer pools regulates multiple steps in mito-
chondrial metabolism and, therefore, in the control of neuronal
health and death.

A first step designed to block the progression of the disease would
be the regeneration of collapsing axons. MT stabilization could be
useful to physically counteract axon disruption, reinforcing the pil-
lars that support the structures, and to prevent mitochondrial
damage, reducing the level of free tubulin dimers. In fact, the activa-
tion of signal cascades that converge on MT stability modulation has
trophic effects on axon formation in vivo50,51. It has already been
shown that the MT-stabilizer Taxol protects cultured dopaminergic
neurons against rotenone toxicity17,52, reduces scarring formation
and promotes regeneration of central nervous system axons53,54.
Unfortunately, the blood-brain barrier penetration of Taxol is
very poor55. EpoD, another MT-stabilizing compound, penetrates
through the blood-brain barrier and has resulted to be neuroprotec-
tive in mouse models of schizophrenia56 and tauopathy19. Moreover,
it improves axonal MT density, reduces axonal dystrophy and alle-
viates cognitive deficits in transgenic mouse models of tauopa-
thies19,20. What is more, the dynamicity of MTs is increased in tau
transgenic mice and treatment with EpoD restored MT dynamics.
MT stabilization had beneficial effects on behavior, tau pathology
and neurodegeneration21. Here, we used the classical model of
experimental parkinsonism induced by MPTP to test the hypothesis
that MT stabilization is also able to counteract degeneration in
another model of neurodegeneration. Acute injections of EpoD did
not affect the toxic effect induced by MPTP, whereas repeated injec-
tions of EpoD restored tubulin PTMs and MT mass in the substantia
nigra and exerted neuroprotective effects in the dopaminergic
nigrostriatal system of MPTP-treated mice. Therefore, doses of
EpoD, which were chosen according to Barten and colleagues21, are

also effective in the MPTP model of dopaminergic neurotoxicity.
These data pinpoint that alterations of MTs are very early events,
which specifically occur in dopaminergic neurons in experimental
parkinsonism, and reinforce the idea that the cytoskeleton of dopa-
minergic neurons is particularly vulnerable but is also highly
responsive to MT-targeting agents.

Taken together with our recent findings that MT stability is
impaired in human fibroblasts deriving from PD patients and that
MT stabilization rescues control phenotype28, the present work sug-
gests that MTs are a potential target for pharmacological therapy
designed to block the axonal disruption leading to PD. Thus, chronic
pharmacological stabilization of MT may be a viable strategy for the
management of the disease.

Methods
Materials. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was purchased
from Sigma (St. Louis, MO). Epothilone D was purchased from Acme Bioscience
(Palo Alto, CA).

Animals. Male C57 Black mice (22–24 g, b.w., 8–9 week old) were purchased from
Charles River (Calco, Italy) and used for all experiments. Mice were kept under
environmentally controlled conditions (ambient temperature 5 22uC, humidity 5

40%) on a 12-h light/dark cycle with food and water ad libitum. The study was carried
out in strict accordance with the recommendations in the Guide for the Care and Use
of Laboratory Animals of the National Italian Institute of Health. The protocol was
approved by the Committee on the Ethics of Animal Experiments of the I.R.C.C.S.
Neuromed Institute. Permit Number 432007/A was issued by the Italian Ministry of
Health. All efforts were made to minimize suffering.

Treatments. Mice were treated with one single i.p. injection of 36 mg/kg of MPTP
(corresponding to 30 mg/kg of free MPTP) or with three doses of 24 mg/kg of MPTP
hydrochloride (corresponding to 20 mg/kg of free MPTP), injected i.p. at 2 h
intervals (cumulative dose 5 60 mg/kg of free MPTP). Twelve or 72 h after last
injection of MPTP, mice were killed by decapitation or by intracardiac perfusion, to
perform biochemical or immunohistochemical analysis, respectively. One cerebral
hemisphere of mice used for biochemical analysis, was used to evaluate levels of
striatal DA and its metabolites, 3,5-dihydroxyphenylactic acid (DOPAC) and
homovanillic acid (HVA). For EpoD experiments, mice were injected with a single i.p.
dose of 36 mg/kg of MPTP and then acutely (1 or 3 mg/kg, i.p., 30 min prior to
MPTP) or chronically treated (1 mg/kg, i.p., 30 min prior to MPTP and then every
day for 4 days) with EpoD. Mice were killed 7 days later for biochemical analysis of
MTs and biochemical and immunohistochemical assessment of nigro-striatal
damage. EpoD was dissolved in DMSO and injected i.p. (in a volume of 50 ml/mouse).
Control mice were injected with the vehicle alone.

Motor activity assessment. Motor coordination was assessed by the rotarod test. The
rotarod apparatus consisted of a motor driver control unit (Ugo Basile, Varese, Italy)
and a rotating horizontal cylinder (30 mm), divided into five separate rotating
compartments and fully enclosed to ensure that the mice did not jump out of their
area. Automatic timers recorded the time (in seconds) the mice remained on the rod,
which was rotating at an accelerating speed from 5 to 15 rpm. Mice were tested for
10 min on the rotarod every day, starting 2 days after MPTP or EpoD injection (as
above). General health conditions (fur, body weight and mortality) were also
monitored by an experimenter unaware of treatments.

Monoamine assay. The corpus striatum was immediately dissected out homogenized
by sonication in 0.6 ml of ice-cold 0.1 M PCA. Fifty ml of the homogenate were used
for protein determination57. The remaining aliquot was centrifuged at 8,000 g for
10 min, and 20 ml of the supernatant was injected into an HPLC equipped with
autosampler 507 (Beckman Instruments, Fullerton, CA), a programmable solvent
module 126 (Beckman), an analytical C-18 reverse-phase column kept at 30uC
(Ultrasphere ODS 5 mm, 80 Å pore, 250 3 4.6 mm (Beckman), and a Coulochem II
electrochemical detector (ESA, Inc., Chelmsford, MA). The holding potentials were
set at 1350 and 2350 mV for the detection of DA, DOPAC and HVA. The mobile
phase consisted of 80 mM sodium phosphate, 40 mM citric acid, 0.4 mM EDTA,
3 mM 1-heptansulphonic acid and 8.5% methanol, brought to pH 2.75 with
phosphoric acid (run under isocratic conditions, at 1 ml/min).

Western blot analysis. Western blot analysis was performed on protein extracts or
cytoskeletal fractions obtained from mouse brain regions. To get total proteins,
corpus striatum and substantia nigra were immediately dissected out on ice,
mechanically homogenized and, subsequently, sonicated in SDS-PAGE sample
buffer. Separation of cytosolic tubulin dimers from MT polymers was performed
accordingly to Fanara and colleagues58. Briefly, corpus striatum and substantia nigra
were gently homogenized in MT-stabilizing buffer and postnuclear supernatants
were centrifuged at 200,000 g at 20uC for 20 min; the supernatant (containing the
soluble dimeric tubulin) and the pellet (containing the MT fraction) were separated
and stored at 220uC. Western blots were made as previously described18 using the
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following antibodies: a-tubulin mouse IgG (clone B-5-1-2, Sigma-Aldrich); deTyr
tubulin rabbit IgG (Chemicon, Temecula, CA); Tyr tubulin mouse IgG (clone TUB-
1A2, Sigma-Aldrich); Ac tubulin mouse IgG (clone 6-11B-1, Sigma-Aldrich); b-
tubulin mouse IgG (clone Tub 2.1, Sigma-Aldrich); bIII tubulin mouse IgG (clone
TU-20, kindly provided by Dr. Pavel Dràber, Prague, Czec Republic); actin mouse
IgM (N350, Amersham, Little Chalfont, UK); tyrosine hydroxylase (TH) mouse IgG
(clone 6dt, Abcam, Cambride, UK) 15600; kinesin rabbit IgG (Abcam) 151000;
Dynein mouse IgG (clone 74.1, Millipore) 15500, GAPDH (Abcam). Membranes
were washed for 30 min with 3 changes and incubated for 1 h at room temperature
with HRP donkey anti-mouse IgG (Pierce), HRP goat anti-mouse IgM (Sigma-
Aldrich), or HRP goat anti-rabbit IgG (Pierce). Immunostaining was revealed by
enhanced chemiluminescence (Super-Signal West Pico Chemiluminescent, Pierce).
Quantification was performed by ImageJ software (NIH, Bethesda, MD).

Confocal analysis. Mice were anesthetized with chloralium hydrate (320 mg/kg, i.p.)
and transcardially perfused with 4% PFA in 0.1 M phosphate buffer, pH 7.4. Brains
were removed, postfixed overnight in 4% PFA, and then transferred in 30% sucrose
for cryoprotection. Sagittal sections (50 mm thick) were cut with a Vibratome
(VT1000S, Leica). Sections were stained with porin rabbit IgG (VDAC1/porin,
Abcam, Cambride, UK) and the following antibodies previously used for
immmunoblotting: deTyr tubulin rabbit IgG; Tyr tubulin mouse IgG; Ac tubulin
mouse IgG; porin rabbit IgG (VDAC1/porin, Abcam). To identify dopaminergic
neurons and fibres, each section was concurrently stained with anti-TH antibody,
made in mice (clone LCN1, Millipore) or rabbits (Millipore) as appropriate. As
secondary antibodies we used Alexa FluorTM 568 donkey anti-mouse IgG, and Alexa
FluorTM 488 goat anti-rabbit IgG (Invitrogen). Coverslips were mounted in PBS-
glycerol and examined with a confocal laser scan microscope imaging system (TCS
SP2 AOBS, Leica Microsystems, Heidelberg, Germany) equipped with an Ar/Ar-Kr
488 nm, 561 nm and 405 nm diode lasers. Photomultiplier gain for each channel was
adjusted to minimize background noise and saturated pixels and, once defined for
control conditions, parameters were kept constant for all acquisitions. To estimate the
overlapping area between red and green signals, analyses were carried out on single-
plane raw images and Manders’ coefficients were calculated applying the JACoP plug-
in (developed and reviewed by 31) for ImageJ software. To evaluate the mitochondria
distribution, the porin signal was superimposed on dopaminergic fibres, using the
Mask tool of the Leica Confocal Software (Leica); mitochondria accumulations were
identified as white pixels-containing area, as thick as long, clearly separated from
other white pixels. TH-positive signal longer than 5 mm was considered as
dopaminergic fibre, and signals separated by more than 10 mm were counted as two
distinct fibres.

Immunohistochemical analysis of tyrosine hydroxylase. Brains were removed,
fixed in ethanol (60%), acetic acid (10%), and chloroform (30%), and included in
paraffin. Tissue sections (30 mm) were incubated overnight with monoclonal mouse
anti-TH (15200; Sigma-Aldrich) and then for 1 h with secondary biotin-coupled
anti-mouse antibodies (15200; Vector Laboratories, Burlingame, CA). 3,3-
Diaminobenzidine tetrachloride (Sigma) was used for detection.

Stereological cell counting of tyrosine hydroxylase-positive cells in the substantia
nigra pars compacta. The number of TH-positive cells in the substantia nigra pars
compacta was assessed by stereological technique and an optical fractionator using a
Zeiss Axio Imager M1 microscope equipped with a motorized stage and focus control
system (Zeta axis), and with a digital video camera. The software Image-Pro Plus 6.2
for Windows (Media Cybernetics, Inc., Bethesda, MD) equipped with a Macro was
used for the analysis of digital images. The Macro was obtained by ‘‘Immagini e
Computer’’ (Bareggio, Italy). The characteristics of this Macro are published59. The
analysis was performed on 6 sections of 20 mm, sampled every 200 mm on the rostro-
caudal extension, in which the substantia nigra was identified and outlined at 2.53

magnification. TH-positive cells were counted at 1003 magnification as described60.
For stereological analysis, we used a grid of disectors (counting frame of 100 3

100 mm; grid size 50 3 50 mm), with 1.3 as numerical aperture of the lens. The total
number of TH-positive cells in the substantia nigra was computed from the formula:
N 5 S(n) 3 1/SSF 3 1/ASF 3 1/TSF, where n is the total number of cells counted on
each disector; SSF (fraction of sections sampled) the number of regularly spaced
sections used for counts divided by the total number of sections across the substantia
nigra pars compacta; ASF (area sampling frequency) the disector area divided by the
area between disectors (7500 mm2 3 disector number/region area); and TSF
(thickness sampling frequency) the disector thickness divided by the section thickness
(20 mm).

Statistical analysis and data managing. The statistical significance of treatment was
assessed by one-way ANOVA with Dunnett 2-sided or Fischer LSD post-hoc testing
or x2 test when appropriate. Analyses were performed using STATISTICA (StatSoft
Inc., Tulsa, OK).
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Supplementary Figure S1. MPTP does not affect the levels of motor proteins.  

(a) Immunoblot of levels of kinesin (Kin) and dynein (Dyn) in lysates of striatum and substantia 

nigra of mice treated as in Fig. 1. (b) Densitometric analyses of immunoblot reported in d 

(mean + S.E.M., n = 4-6 mice per group). hpi = hours post last injection of MPTP.  

 

 

 



Supplementary Figure S2. MPTP affects MT stability inside dopaminergic fibres.  

Confocal images of the nigrostriatal pathways of mice treated as in Fig. 1. Green represents TH 

staining and red signals the various tubulin PTMs. Scale bar = 50 m. hpi = hours post last injection 

of MPTP. 

 

 



Supplementary Table S1 

Analysis of M2 parameter (TH vs. tubulins) in striatal section. 

 

       Tyr Tubulin      deTyr Tubulin  Ac Tubulin 

 

Saline          0.79±0.019        0.77±0.049   0.88±0.040 

MPTP, 30 mg/kg (12 h)     0.77±0.052        0.92±0.017   0.79±0.043 

MPTP, 30 mg/kg (72 h)     0.75±0.043        0.90±0.041   0.86±0.026 

MPTP, 60 mg/kg (12 h)     0.64±0.052        0.85±0.048   0.80±0.049 

MPTP, 60 mg/kg (72 h)     0.67±0.083        0.94±0.081   0.94±0.011 

 

Data are expressed as mean ± S.E.M., n=4 sections for each mouse from 4-6 mice per group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S2 

Analysis of the Fluorescence Intensity (AU) inside dopaminergic neuron. 

 

       Tyr Tubulin  deTyr Tubulin  Ac Tubulin 

 

Saline          93.6 ± 3.6  32.9 ± 2.8    28.8 ± 3.1 

MPTP, 30 mg/kg (12 h)     48.0 ± 4.9 (*) 104 ± 6.5 (*)    58.2 ± 6.5 (*) 

MPTP, 30 mg/kg (72 h)     77.5 ± 6.9  97.9 ± 5.6 (*)   89.6 ± 5.3 (*) 

MPTP, 60 mg/kg (12 h)     22.8 ± 4.4 (*) 106 ± 8 (*)  25.2 ± 4.7  

MPTP, 60 mg/kg (72 h)     53.6 ± 8.3 (*) 20.6 ± 3.8    2.4 ± 1.3 (*) 

 

Data are expressed as mean ± S.E.M., n=4 sections for each mouse from 4-6 mice per group. *P < 

0.05; one-way ANOVA, Dunnett post hoc: versus saline-injected mice.  
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ABSTRACT 

 

Background: α-Synuclein is a presynaptic unfolded protein associated to Parkinson’s 

disease. After decades of intense studies, α-Synuclein physiology is still difficult to clear up 

due to its interaction with multiple partners and its involvement in a pletora of neuronal 

functions. Here, we looked at the remarkably neglected interplay between α-Synuclein and 

microtubules, which potentially has a profound impact on synaptic functionality.  

Results: We first show that human α-Synuclein is able to set microtubule mass at the 

presynapse by inducing microtubule nucleation and by modulating their dynamics in a rat 

neuronal cell line. Confocal analyses indicated that these are direct effects, since transfected 

human α-Synuclein show a significant higher degree of co-localization with the most dynamic 

microtubule pool. As well, endogenous α-Synuclein co-localizes with polymerization prone 

subsets of microtubules in both murine primary neuronal cultures and human neurons. In 

order to identify the mechanisms underlying these actions, we investigated the interaction 

between purified α-Synuclein and tubulin. We demonstrated that α-Synuclein binds to 

microtubules and the tubulin α2β2 tetramer; the latter interaction induces the formation of 

helical segment(s) in the α-Synuclein polypeptide. This structural change enables -Synuclein 

to promote microtubule nucleation and to enhance both microtubule growth rate and 

catastrophe frequency. Finally, we showed that α-Synuclein variants that are linked to 

Parkinson’s disease do not undergo tubulin-induced folding and cause tubulin aggregation 

rather than polymerization, in vitro as well as in neuronal cells.  

Conclusions: Our data enable us to propose α-Synuclein as a novel, foldable, microtubule-

dynamase, which organizes the microtubular cytoskeleton at the presynapse, through its 

binding to tubulin and its regulation of microtubule nucleation and dynamics, and lend 

support to the concept that the -Synuclein/microtubule interaction plays a pivotal role in 

modulating synaptic physiology and in causing neuronal dysfunction. 
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BACKGROUND 

 

Microtubules (MTs) are dynamic polymers consisting of αβ tubulin dimers that play an 

essential role in cell shape acquisition and in the performance of many intracellular processes 

[1]. In large cells, such as neurons, little is known about how MTs nucleate far away from the 

cell body and the MT-organizing center, i.e. in the axonal compartment, and about the 

regulation of the MT dynamics underlying synaptic functions. Many MT-interacting proteins 

are believed to regulate these phenomena; for example, dispersed  tubulin complexes are 

reliable nucleating structures in the axon [2].  

Nowadays, there is increasing evidence for a direct interplay between MTs and α-Synuclein 

(Syn), a presynaptic protein widely expressed in brain tissues. Despite the controversial issues 

on its physiology, Syn has been clearly associated with neurodegeneration, since its 

overproduction due to multiplications of the SNCA locus encoding for Syn and point 

mutations in the gene itself cause familial forms of Parkinson’s disease (PD) [3]. The 

underlying pathogenic mechanism is still unclear. Cytotoxicity is currently attributed to Syn 

oligomers [4], whose overexpression induces MT disruption in cells [5]. MT disruption is also 

achieved by incubating cells with extracellular Syn [6, 7]. Furthermore, tubulin is known to 

promote Syn fibrillation in vitro [8]. However, it is not clear whether destabilization of the 

MT cytoskeleton potentiates [9] or prevents [10]
 
Syn aggregation in vivo. 

Although many efforts have been devoted to the identification of a link between tubulin and 

Syn in pathological contexts, their physiological interaction has been largely ignored. Alim 

and colleagues [11] have revealed that wild type (WT) Syn promotes MT assembly, whereas 

Chen and colleagues have claimed that neither monomeric nor oligomeric Syn influences MT 

polymerization in vitro [12]. Here we point out the physiological relevance of the interaction 

between Syn and MTs, showing that Syn organizes the MT cytoskeleton at the presynapse, 

through its binding to tubulin and its regulation of MT nucleation and dynamics.   
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RESULTS 

 

Syn induces MT nucleation and increases MT dynamics in neuronal cells 

To define the effects of Syn on MT system, we looked at two essential steps in the MT 

assembly process, i.e. the regulation of MT nucleation and MT dynamics. Up to now, it has 

been reported that the only nucleating structures in the axon are the plus ends of pre-existing 

MTs [13] or the dispersed γ tubulin complexes [2]. Syn is a presynaptic protein [3] and could 

likely interact with MTs in axon terminals. Thus, we assessed its ability in nucleating MTs in 

distal neurites using differentiated rat PC12 cells, a long-standing model of sympathetic 

neuronal differentiation. PC12 cells naturally express rat Syn starting from 7
th

 day of NGF 

treatment [14], therefore we decided to perform experiments at 5
th 

day of NGF-induced 

differentiation when parental PC12 cells lack of endogenous Syn whereas transfected ones 

display expression of either WT or mutant human Syn (Figure S1). Thereby, we analysed the 

distal neurite of differentiated PC12 cells expressing either WT GFP-Syn or GFP alone under 

basal conditions (cells kept at 37 °C), after MT-destabilizing cold-treatment (30 min at 4 °C), 

and during MT (re)nucleation (15 and 60 min at 37 °C); α tubulin staining shows the presence 

of MTs in cells overexpressing WT Syn after 15 min of re-warming unlike control cells and 

MTs are more abundant in transfected than in control cells after 60 min of rewarming (Figure 

1A). This suggests that the recovery of MT network is more favoured in the presence than in 

the absence of WT Syn. In order to substantiate our observations, we next removed the pool 

of unassembled tubulin and measured the fluorescence of total α tubulin (Figure 1B), which is 

proportional to MT mass, and of tyrosinated (Tyr) tubulin (Fig. 1C), which is associated with 

dynamic and neo-synthetized MTs [15]. The quantification was performed in the distal part of 

the neurite taking into account total fluorescence intensities that were measured in comparable 

areas, as shown in Figure S2. Our analysis reveals that, after 15 min of re-warming, the 

presence of Syn significantly increases α tubulin fluorescence and, notably, enhances Tyr 

MTs, highlighting that Syn favours MT (re)nucleation. In parallel, we performed biochemical 

analyses on cytoskeletal fractions obtained from cells following destabilization and 

(re)nucleation of MTs as described above. We measured the amount of α tubulin and Tyr 

tubulin associated to cytosolic dimers and to polymeric MTs under basal conditions, after 

MT-destabilizing cold-treatment, and during MT (re)nucleation (Figure 1D-E). Our results 

show, a significant Syn-dependent increase of α tubulin and Tyr tubulin incorporated into 

MTs. Collectively, our results indicate, for the first time, that WT Syn promotes MT 

nucleation in neuronal cells.  
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We next used end-binding protein 3 (EB3)-mCherry [16], a fluorescent protein which 

specifically binds growing MT plus-ends, and live cell imaging to visualize MT dynamics 

under basal conditions or during the MT recovering phase following cold-treatment (Figure 

2). This approach reveals that Syn increases the number of detectable growing MTs per cell 

(Figure 2C), even though the analysed surfaces do not change (Figure S3), and thus confirms 

that Syn favours MT nucleation. Moreover, Syn accelerates MT growth (Figure 2B-D) and 

reduces MT lifetime (Figure 2E), the latter observation being consistent with an enhancement 

of the catastrophe frequency. 

To elucidate whether Syn acts as a simple catalyst or, in addition, steadily interacts with MTs, 

we examined the interplay between Syn and MTs in PC12 cells and primary cultures from 

mouse ventral mesencephalon. Confocal analyses show that both transfected human Syn in 

PC12 cells and endogenous mouse Syn in primary mesencephalic neurons decorates MTs at 

growth cone and distal neurite (Figure S4). We performed the analyses of co-localization 

parameters [17] that allow to correlate the distribution of Syn with different MT 

subpopulations. As pointed out in Table 1, Syn preferentially co-localizes with the most 

dynamic MT subset, i.e. the Tyr and βIII MTs, as revealed by the higher value of 

superimposition between the Syn and tubulin(s) signals. These latter data are consistent with 

the already reported interaction of Syn with tubulin βIII isotype [10]. To confirm the 

relevance of our observations, we assessed endogenous human Syn localisation in midbrain 

neurons derived from human embryonic stem cells and showing dopaminergic phenotype 

(Figure 3). Our confocal analyses confirm that Syn decorates polymerization-prone MTs, with 

a mild preference for Tyr MTs in respect to βIII MTs as revealed by Manders’ coefficients, 

0.57±0.08 and 0.46±0.06, respectively. Our analyses therefore suggest that Syn promotes MT 

dynamics at neuronal growth cone via its preferential association with Tyr-enriched MTs. 

Moreover, these data are a clear and convincing indication of an interaction between Syn and 

tubulin in human samples.  

 

Syn binds to MTs and folds upon interaction with the tubulin α2β2 tetramer 

In order to further investigate the mechanism by which Syn regulates MTs and to exclude that 

the above results were mediated by the action of a third player, we studied the interaction 

between purified Syn and tubulin. First of all, differential interference contrast (DIC) and 

fluorescence microscopy analyses confirmed that WT Syn co-polymerizes with MTs (Figure 

S5). Co-sedimentation assay, an approach which allows investigating the capability of a 

protein to bind polymerized and stabilized MTs, revealed that Syn also interacts with 
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preformed MTs (Figure 4A-B) and enabled us to calculate an apparent Kd of 7.48 ± 1.38 µM, 

which is indicative of loose binding between Syn and MTs. These data confirm our results 

obtained in cells (see Figure 3 and Figure S4) and the already reported binding of Syn to MTs 

[11]. Previously reported co-immunoprecipitation and affinity chromatography offer 

additional evidence that Syn interacts with free tubulin [18], although it is still unclear 

whether it forms a complex with tubulin dimers or with higher-order assemblies. This issue 

has been addressed by native mass spectrometry (MS) and nano-electrospray ionization 

(nano-ESI). The spectra of 14 μM tubulin and a mixture of 14 μM tubulin and 14 μM Syn 

(Figure 4C-F) show that Syn forms a specific complex with the tubulin α2β2 tetramer. The 

measured mass of the complex (217.8 kDa) was in agreement with the calculated one and its 

average charge (34.5+) is close to the expected value for a globular protein of the same mass 

(36.1+) [19], suggesting that the complex has a compact conformation. Therefore, Syn seems 

to acquire an ordered structure upon binding. However, bound Syn does not necessarily have 

a globular conformation; it cannot be ruled out that the protein wraps around the tubulin 

tetramer in an ordered, but extended conformation. Structural changes resulting from the 

tubulin/Syn interaction were studied by far UV circular dichroism (CD). These studies 

confirmed that Syn is unfolded in the absence of the ligand, whereas an equimolar 

Syn/tubulin mixture gives an overall secondary structure CD signal, which is more intense 

than the sum of the signals of the two individual proteins (Figure 5A). Moreover, the CD 

signal originating in the mixture shows a minimum at 220 nm, which is typical of α-helix 

structures. Considering that (i) the interaction of tubulin with ligands is widely studied and an 

increase in its α-helix content has never been observed, and (ii) Syn is a soluble, intrinsically 

unfolded protein [20, 21] able to adopt α-helix structure in adequate conditions [22], we 

hypothesize that Syn folds into a structure of high α-helix content upon its interaction with 

tubulin. This resembles the behavior (in terms of complex stoichiometry and secondary 

structure transition) of the complex formation between tubulin and RB3-SLD (Figure 5B). 

The latter protein belongs to the stathmin-like family of proteins, which share several 

structural features with Syn, as discussed below. According to this hypothesis, the CD spectra 

of Syn in a complex with tubulin has been extrapolated (Figure 5A, differential spectrum) and 

the related α-helix content estimated as 35%. It is worth remembering that such helical 

content does not reflect the amount of α-helix in a single folded molecule, but rather the 

average content of α-helix in the whole sample, taking into account the Syn folded molecules 

that interact with tubulin and the unfolded ones that remain free in solution. Evidence for the 

formation in solution, at neutral pH, of a Syn/tubulin complex came from 
1
H-NMR diffusion 
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measurements (Figure 5C). Tubulin had a diffusion coefficient (D= 0.37x10
-10

 m
2
sec

-1
) 

consistent with the presence of  dimers in solution, whereas Syn showed a D value (D= 

0.83x10
-10

 m
2
sec

-1
) smaller than expected for a globular ~14 kDa protein and consistent with 

the presence of unfolded species [23]. In the presence of tubulin, the diffusion coefficient 

measured for Syn significantly decreased from 0.83x10
-10

 m
2
sec

-1
 to 0.59x10

-10
m

2
sec

-1
. This 

clearly indicates complex formation; however, as the measured value is actually less than that 

one expected for a stable 1:1 complex, it should be concluded that in our conditions a certain 

fraction of Syn still remains in its free state in solution and that the Syn molecules exchange 

between the free and bound states at a rate which is fast compared to both the NMR chemical 

shift and diffusion measurement time scales (fast exchange limit, kex < 100 sec
-1

). The 

fraction of free Syn has been estimated within the 45-55% range, leading to a corresponding 

estimate of the Syn/tubulin dissociation constant between 10 and 20 M. 

Altogether, our data provide a relatively detailed insight into the binding of Syn to tubulin and 

MTs, demonstrating, for the first time, the formation of a complex between Syn and the 

tubulin α2β2 tetramer, which enables us to posit a Syn folding step. 

 

Folded Syn promotes MT nucleation and increases MT dynamics 

Until now, the effects of Syn on MT polymerization have been studied without a 

preincubation [11, 12] that is to say without previous induction of Syn folding. Here, we 

decided to incubate Syn for 10 min at 20 °C with tubulin in order to allow Syn conformational 

rearrangement (as demonstrated in Figure 5) and, then, we carefully analysed the tubulin 

assembly kinetics (Figure 6A-B), finding that only pre-folded Syn impacts MT assembly, as 

revealed by the impacts on initial velocity of polymerization (Vi) and MT assembly at plateau 

(ΔA). By plotting log(A(t)/A∞) against log(t) we extrapolated the parameter P, which is 

indicative of the successive steps during the nucleation phase [24]; the significant reduction of 

P (Figure 6B) and of tubulin critical concentration (Figure 6C), underscored the ability of 

structured Syn to nucleate MTs, in agreement with the above reported effects in neuronal cells 

(Figure 1). Electron microscopy analyses revealed the conventional ultrastructure of MTs 

assembled in the presence of folded Syn (Figure 6D). Furthermore, we estimated the length 

and the number of assembled MTs in the presence of folded Syn (Figure 6 E-G), during the 

early phase and at the steady state of the polymerization process, by using optical microscopy 

and fluorescent tubulin (Figure S6), which allow the analyses of higher amount of MTs. Our 

analyses revealed that Syn leads to formation of shorter and more abundant MTs. Thus, 

besides stimulating MT nucleation, Syn might reduce MT elongation, either by slowing down 
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MT growth rate or increasing catastrophe frequency, as strongly suggested by the reduction in 

(initial velocity of polymerization in vitro) and the reduction of MT growth lifetime in cells. 

Notably, this would explain the decrease in total polymer mass (ΔA in Figure 6A-B).  

Thus, we used video-enhanced differential interference contrast (VE-DIC) light microscopy to 

analyse Syn effects on MT dynamics directly (Table 2). Tubulin (10 and 15 µM) was 

assembled from purified axonemes, in the absence or in the presence of increasing 

concentrations of Syn (0-15 µM). These protein to protein ratios are comparable to those 

observed in vivo, since the actual cellular concentration of tubulin is up to 40 µM [25] and the 

estimated presynaptic Syn concentration varies between 30 and 60 µM in neurons [26]. At 

low tubulin concentrations (10 µM), Syn dramatically increased catastrophe frequency, up to 

6.5-fold in comparison to the control, an effect that was mitigated at the highest tubulin 

concentration (15 µM).  With the two highest Syn concentrations (10 and 15 µM), we also 

noticed a significant increase in the MT growth rate in the presence of 15 µM tubulin. These 

results indicate that Syn increases MT dynamics by speeding up the growth rate and 

promoting catastrophe events. Altogether, our data demonstrate that, upon interaction with the 

tubulin α2β2 tetramer, Syn acquires helical structure and becomes able to govern multiple 

steps of MT assembly and dynamics, such as nucleation, growth rate and catastrophe 

frequencies, both in purified systems and in neuronal cells.    

 

Syn displays sequence similarity to stathmin 

Syn displays striking structural and functional similarities with the tubulin-interacting protein 

stathmin. Both of them are about 14-15 kDa, intrinsically disordered proteins, capable of 

adopting α-helix conformation upon interaction with binding partners [28, 29]. It is 

noteworthy that Syn, like stathmin and RB3-SLD, interacts with the tubulin α2β2 tetramer and 

promotes MT catastrophes. Thus, we explored sequence similarities between Syn and the 

members of the stathmin family. Pairwise alignment of WT Syn to stathmin showed about 

20% identical residues and over 50% conservative substitutions. Interestingly, the 21-residue 

fragment centred around Syn residue 53, in which four of the five PD-linked point mutations 

are clustered [30], aligned to a functionally relevant region of the stathmin family (Figure 7, 

blue lines), namely one of the tubulin-binding domains [31]. This region displays multiple 

invariant residues (Figure 7, asterisks), including the sites of the Syn pathological mutations 

A53T and E46K (Figure 7, red arrows), besides several other conservative or semi-

conservative substitutions (Figure 7, colons and dots, respectively). Therefore, the 

pathological point mutations likely compromise Syn/tubulin interaction. These data 
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demonstrate that Syn and stathmin share physico-chemical and functional properties. 

Furthermore, the good alignment with functionally relevant regions of stathmin strongly 

indicates that Syn and proteins belonging to the stathmin-family may be involved in the same 

biological processes, namely the regulation of MT cytoskeleton. 

 

Pathological Syn mutations corrupt Syn/tubulin interaction 

Having shown that four out of five PD-linked mutations map to the putative tubulin-binding 

domain of Syn (Figure 7), these substitutions are expected to have a profound effect on 

protein-protein interactions and, therefore, on Syn induced folding. Indeed, CD analyses 

revealed that the A53T variant is much less sensitive than WT Syn to the structuring effect of 

tubulin (Figure 8A). Although the pathological A30P mutation mapped far away from the 

tubulin-interacting domain (Figure 7), this amino acid substitution has the potential to 

interfere with tubulin-induced folding of Syn, as confirmed by CD analyses (Figure 8A). As a 

consequence, MTs assembled following preincubation with A30P and A53T mutants are 

conventional but flanked and surrounded by abundant tubulin aggregated in vitro, as revealed 

by both optical (Figure S5) and electron microscopy (Figure 8B). NGF-differentiated PC12 

cells expressing mutant GFP-Syn showed a lower extent of individual MTs (Figure 8C) in 

respect to control cultures (as shown in Figure S4); furthermore, MTs seem to be confined 

into the most proximal part of the growth cone (Figure 8C). Noteworthy, during the recovery 

after cold-induced depolymerization, the presence of mutant Syns causes MT bundling and 

aggregation (Figure 8D) instead of proper regrowth as we observed with WT Syn (Figure 

1A). Co-localization analysis reveals a slight, but significant, reduction in Syn/tubulin 

overlapping (Table 1), which we hypothetically attribute to the aberrant conformation of the 

mutated Syn. Furthermore, these analyses revealed a decrease in the co-localization between 

mutated Syn and Ac tubulin and no change in the supposed interaction with deTyr MTs. The 

impaired binding can likely result from conformational changes due to aminoacidic 

substitutions in mutants Syn. Indeed, our data revealed that mutant Syn forms do not undergo 

tubulin-induced folding and promote tubulin aggregation rather than polymerization in vitro, 

as well as in neuronal cells. Therefore, mutant Syn forms impair the correct organization of 

the MT system and, consequently, could have a profound impact on neuronal processes in 

which Syn is implicated, as for example neuronal differentiation [32, 33]. Indeed, our 

analyses (Figure S7) show that mutant Syns reduce morphological differentiation of PC12 

cells, whereas the WT one slightly favours this process, in agreement with the effects on MT 

nucleation and dynamics we undisclosed.  
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DISCUSSION 

 

As stated by Feng and Walsh [34] a decade ago: “Protein-protein interactions are a little like 

human relationships. Some are dedicated, faithful and lifelong, while other relationships are 

brief flings with a promiscuous variety of partners that may leave no lasting trace or may 

induce profound changes”. Here we show that the interplay between Syn and tubulin is a 

multifaceted protein-protein interaction. Indeed, their encounter triggers the structural 

rearrangement of Syn which, in turn, regulates the birth, the growth and the lifespan of 

individual MTs. Therefore, we set forth the hypothesis that Syn is a MT “dynamase”, a term 

introduced by Erent and colleagues [35]
 
for Kinesin-8, which is able to regulate both MT 

nucleation and catastrophes in S. pombe, exactly as Syn does in neuronal cells, setting MT 

mass at the neuronal growth cone. 

MTs exhibit non-equilibrium dynamics that depend on free-tubulin concentration. In cell 

systems, a constant free tubulin concentration, and the presence of a multitude of MT-

interacting proteins, likely buffers and mitigates perturbations in MT dynamics, conferring a 

degree of robustness and homeostasis to the MT cytoskeleton [36]. Such a mechanism could 

explain why we did not observe large differences in tubulin partitioning between polymerized 

and free tubulin in the presence of Syn under basal conditions, differences that, in contrast, 

are magnified under stress conditions, such as cold treatment, in which the free tubulin 

content changes considerably. When tubulin concentration is high, the initial response of a 

MT-associated protein will be potent and would induce MT assembly, as we observe at the 

beginning of assembly kinetics in the presence of Syn or in VE-DIC experiments performed 

at high tubulin concentrations. In the mechanistic model we propose, the ability of Syn to 

interact with the tubulin α2β2 tetramer enables Syn to fold (Figure 9, STEP 1) and, possibly, to 

act as a tubulin carrier by delivering small tubulin oligomers (α2β2 tetramers), which have 

recently been recognized as the species that usually occurs in MT nuclei and is added during 

MT elongation [37]. This is a very controversial issue. Indeed, while a previous paper stated 

that MT assembly occurs almost exclusively via single-subunit addition [38], a concomitant 

study proposed that +TIPs proteins share the ability of multimerizing tubulin, thus acting as 

polymerization chaperones that aid in subunit addition to the MT plus ends [39]. Thus, Syn 

could either crosslink tubulin heterodimers, inducing nucleation (Figure 9, STEP 2-high 

[Tub]free), and/or stabilize them in a favourable orientation promoting the supramolecular 

interactions involved in MT formation. As net polymerization is promoted, the free tubulin 

concentration drops down, mitigating the assembly-inducing activity of Syn, as observed at 
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the steady state of assembly kinetics or with low tubulin concentrations in VE-DIC 

experiments, when catastrophe stimulation prevails. How are these catastrophe events 

induced? If we consider stathmin, the destabilization of MT is supposed to rely on two 

possible mechanisms [40]: (i) the sequestering of soluble tubulin into an assembly-

incompetent tubulin/stathmin complex, which has the same stoichiometry of the Syn/tubulin 

complex observed here, or (ii) the direct binding to MT ends, which would increase the 

frequency of switching from growth to shortening. The mechanism by which Syn promotes 

MT catastrophes is not known. It is unlikely that it acts by sequestering tubulin dimers, since 

such a phenomenon would reduce MT growth rate in contrast to our observations. We 

hypothesize that, once bound to the MT lattice, Syn affects the whole stability of the polymer, 

inducing a change in the intra- or inter-dimer angle that amplifies the intrinsic tendency of 

MTs to undergo catastrophes (Figure 9, STEP 2-low [Tub]free). Nevertheless, further studies 

are needed to definitively solve the mechanism by which Syn promotes MT catastrophes. 

Besides a similar effect on MT catastrophes and similar binding to tubulin tetramer, we also 

show that the primary structure of Syn and stathmin is very similar. Considering that both Syn 

knock-out [41] and stathmin knock-out [42] mice develop normally and show neuronal 

defects only with aging, we propose the existence of some functional redundancies. Indeed, 

both stathmin [43] and Syn, as we demonstrated here, are involved in the regulation of 

neuronal process outgrowth. Our data confirm the recent evidence that WT Syn promotes 

neuronal differentiation [33] and, notably, provide a possible mechanistic explanation, 

showing that Syn enhances both MT dynamics and stability, which are crucial aspects of axon 

specification [44]
 
and elongation [2]. Also the effects of Syn on MT dynamics support our 

hypothesis of a possible biological redundancy between Syn and the proteins belonging to the 

stathmin family, especially under forcing circumstances. Indeed, the mean MT growth rate in 

basal condition is mildly affected by the presence of Syn (p value = 0.02) but it is more 

significantly speeded up under stressful condition, i.e. recovery after cold treatment (p value = 

0.007). These data are clearly supported by the analyses on pure protein; hence, we can 

imagine a realistic biological significance for the Syn-mediated regulation of MT dynamics 

especially under limiting conditions, and this can give reason why the alteration of Syn (i.e. 

mutations) takes time to become detrimental (i.e. during aging processes).  Furthermore, our 

co-localization analyses, performed on rat PC12 cell line as well as on murine and human 

neurons, showed that Syn displays some specificity toward MT subtypes, preferentially 

interacting with the most polymerization-prone MTs, which allows Syn to be in the right 

place at the right time. Indeed, the ability of Syn to interact with many fundamental synaptic 
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elements makes it the master of control at the synapse. Syn interacts with synaptic vesicles 

[45] and its chemistry enables it to work as a membrane-curvature sensor mediating selective 

lipid binding [46]. Furthermore, Syn regulates the polymerization of both actin [47] and MT 

cytoskeleton and, in addition, interacts with Tau [48], a neuronal MT associated protein that 

bundles MTs and modulates the interplay with actin microfilaments [49]. As a whole, this 

body of evidence indicates that Syn is a central player in coordination the interactions 

between membrane phospholipids and cytoskeletal proteins, which are necessary to govern 

force at cell cortex and synapses, to organize membrane subdomains and, in turn, to modulate 

axon advancement.  

Here, we demonstrate that PD-linked Syn variants do not exhibit binding-induced folding in 

the presence of tubulin and induce tubulin aggregation instead of proper MT assembly. A30P 

mutation is located on the short helix of the lipid-folded Syn [30], and the fact that the 

polypeptide region that includes this mutation is not part of the putative tubulin-interacting 

domain could explain why it is the most “benign” PD point mutation [50]. Conversely, the 

other 4 described point mutations of Syn (E46K, H50Q, G51D and A53T) fall inside a region 

corresponding to the tubulin-interacting domain of proteins belonging to the stathmin family, 

providing a stimulating mechanistic insight into the molecular pathology of PD. Indeed, as we 

and others [11]
 
have demonstrated, Syn mutations induce tubulin aggregation, and both Syn 

[52] and tubulin [52] occur in Lewy bodies, the pathological hallmark of PD. Furthermore, 

Lewy bodies and, more specifically, excessive MT bundles engulf axons [53]. It has been 

reported that mutant Syn is defectively transported [54] and induces alterations of cytoskeletal 

and motor proteins [55]. Therefore, axonal transport disruption could be the missing link 

between Syn/tubulin interaction and PD. In accordance, a very recent paper showed that Syn 

oligomers, the most toxic Syn species, reduce MT stability, kinesin/MTs interplay and 

neuritic kinesin-dependent cargoes, promoting early neurite pathology [5]. Although 

alteration of axonal transport is considered one of the earliest events in neurodegeneration 

[56], we showed that it follows MT dysfunction in the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropiridine-induced model of PD [57, 58]. Hence, MT dysfunction may trigger the 

chain of events leading to PD. Indeed, MT-targeted molecules have beneficial effects in both 

1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine-treated [58] and Syn-overexpressing [59] mice 

and the correction of MT defects rescues control phenotype and cell homeostasis in PD 

patient derived cell lines [60-62]. Therefore, providing insights into the interaction between 

Syn and MT, our data would clear up some essential steps in neuronal function and 

degeneration. 
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CONCLUSIONS 

 

Many controversial issues remain to be clarified, such as solving the puzzle of the actual 

naïve state of Syn: is it a folded tetramer [63] or a labile unstructured monomer [21]? 

Nevertheless, here we have demonstrated that monomeric Syn forms a specific complex with 

the tubulin α2β2 tetramer, acquiring a defined secondary structure. We could speculate that 

local accumulation of free tubulin dimers would change the equilibrium between unfolded 

and tetrameric Syn, which may have evolved to act as a sensor for the state of MT 

cytoskeleton. In addition, we have clearly shown the co-localization between Syn and the 

different MT subpopulations, with a preference for polymerization prone subtypes, in various 

models of neuronal cells, ranging from differentiated rat PC12 cells to murine and human 

mesencephalic neurons. Last, but not least, we have unmasked a new physiological role for 

Syn, namely that it locally regulates both MT nucleation and dynamics. Therefore, we 

propose that Syn can be considered a neuronal MT dynamase, which sets MT mass at the 

presynapse. 
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METHODS 

 

Protein purification 

Tubulin was purified by two cycles of polymerization/depolymerization in high molar Pipes 

buffer [64], suspended in BRB buffer (80 mM K-Pipes, pH 6.9, 2 mM EGTA, 1 mM MgCl2), 

snap-frozen in liquid nitrogen, and stored in small aliquots at -80 °C. 

Recombinant Syn was overproduced in Escherichia coli using the plasmid constructs and 

culturing conditions reported by Martinez et al. [65]. Recombinant RB3-SLD (kindly gifted 

by prof. Patrick A. Curmi, Evry University, France) was produced and purified according to 

Charbaut et al. [66]. For the isolation of both proteins, bacterial pellets were lysed by 

sonication and followed by incubation at 90 °C for 5 min. After removal of cell debris and 

denatured proteins by centrifugation, supernatants were subjected to ion exchange 

chromatography on a Q Sepharose HP column (GE Healthcare, Uppsala, Sweden). Aliquots 

of Syn (in 20 mM Hepes, pH 7.4, 100 mM KCl) and RB3-SLD (in 10 mM Hepes, pH 7.2,150 

mM NaCl) were snap-frozen in liquid nitrogen and kept at -80 °C until needed. Each aliquot 

was clarified by ultracentrifugation (230000×g at 4 °C for 30 min) immediately before use. 

 

MT self-assembly 

The kinetics of tubulin polymerization was studied using a standard protocol [67] or after 

preincubation with Syn. Reactions were followed turbidimetrically at 350 nm in a multimode 

plate reader (Infinite 200Pro, Tecan, Mannedorf, Switzerland) equipped with a temperature 

controller. Tubulin was diluted to different concentrations in assembly buffer (80 mM K-

Pipes, pH 6.9, 2 mM EGTA, 1 mM MgCl2, 10% glycerol, and 1 mM GTP), previously 

degassed, and kept on ice; as WT or mutated Syns were added, the reaction was started by 

warming the solution at 37 °C. For the preincubation, two solutions were prepared: T1 (80 

mM K-Pipes, pH 6.9, 2 mM EGTA, 1 mM MgCl2, 20% glycerol, and 2 mM GTP) and T2 (80 

mM K-Pipes, pH 6.9, 2 mM EGTA, 1 mM MgCl2, and double of the final protein 

concentration); T2 was incubated 10 min at 20 °C, allowing Syn folding, but preventing 

tubulin polymerization; the reaction was started mixing T1 and T2 1:1 and raising the 

temperature at 37 °C. 

Polymerization time-course was dissected in order to calculate the kinetic parameters 

describing the different phases of the process [24]. The number of successive steps in the 

nucleation (P) was determined by plotting log(A(t)/A∞) against log(t) and extrapolated as the 

pendency of the linear part of the resulting plot [24]. The maximal velocity of polymerization 
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(Vi) was calculated as the variation of mass versus time (δA/δt) at the very initial elongation 

phase, whereas total extent of MT assembly was deduced from the total absorbance variation 

(ΔA) achieved as the steady-state was established. The tubulin critical concentration, namely 

the lowest tubulin concentration allowing MT formation, was extrapolated as the x-intercept 

of the linear dependence of ΔA from the initial tubulin concentration. 

To assess the ultrastructure of assembled MTs, at the end of polymerization, samples were 

fixed with 0.5% glutaraldehyde and then placed on Formvar-coated nickel grids. MTs were 

negative stained with uranyl acetate and observed with a Philips CM10 transmission electron 

microscope at 80 kV; images were acquired using a Morada Olympus digital camera. To 

verify the capability of Syn to co-polymerize with MTs, the sedimentable fraction obtained by 

centrifugation of tubulin polymerized in the presence of Syn was gently resuspended in BRB 

buffer, laid on poly-L-lysine coated coverslips, and immunostained with anti-Syn rabbit IgG 

(Sigma-Aldrich, St. Louis, MO) and Alexa Fluor
TM 

488-labeled goat anti-rabbit IgG 

(Invitrogen, Carlsbad, CA,) antibodies. The coverslips were mounted in Mowiol


 

(Calbiochem, San Diego, CA)–DABCO (Sigma-Aldrich) and examined with an Axiovert 

200M microscope (Carl Zeiss, Oberkochen, Germany), using differential interference contrast 

(DIC) optics to observe MTs and fluorescence to visualize Syn staining. 

To evaluate MT length and number, 2.7 µM rhodamine-labelled tubulin (Cytoskeleton, 

Denver, CO) was included in the polymerization solutions before starting assembly. Reaction 

was stopped at different times by addition of 0.5% glutaraldehyde. MTs were laid on slides 

and images acquired with the Axiovert 200M microscope. Length was measured using a 

digital image processing software (Axiovision, Zeiss). 

 

Co-sedimentation assay 

MTs were polymerized 20 min at 37 °C, stabilized 10 min with equimolar paclitaxel and then 

diluted to 4 µM (calculated on the tubulin concentration). Syn at different concentrations (0.5-

32 µM) was incubated 20 min at 37 °C in the absence or in the presence of MTs and then 

centrifuged at 70000xg for 15 min at 25 °C. Supernatant and pellet were loaded on SDS-

PAGE. According to Ackmann et al. [68], [Syn]bound was plotted versus [Syn]free and the data 

fitted by nonlinear regression to a standard binding equation (Equation 1) using SigmaPlot 

(Jandel, CA): 

 

[𝑆𝑦𝑛]𝑏𝑜𝑢𝑛𝑑 =  
𝐵𝑚𝑎𝑥  [𝑆𝑦𝑛]𝑓𝑟𝑒𝑒

𝐾𝑑 + [𝑆𝑦𝑛]𝑓𝑟𝑒𝑒
                           (1) 
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Mass spectrometry 

Nano-ESI-MS was performed on a hybrid quadrupole-time-of-flight instrument (QSTAR 

Elite, Applied Biosystems, Foster City, CA) with minor modifications to previously reported 

conditions [69]. Purified proteins were thawed and buffer exchanged by two cycles of 

desalting on Micro Bio-Spin™ P-6 Gel columns (Bio-Rad laboratories, Hercules, CA), 

immediately before use. All spectra were acquired in 10 mM ammonium acetate after 

incubation at room temperature for at least 10 min and no longer than 1h.  

 

Circular dichroism  

Circular dichroism spectra were acquired using a Jasco J810 spectropolarimeter. Secondary 

structure of Syn (0.2 mg/ml) and RB3-SLD (0.1 mg/ml), either alone or in the presence of 

tubulin (1.4 mg/ml), was investigated by recording far-UV circular dichroism spectra in 0.1 

cm quartz cuvettes. All proteins were dissolved in BRB buffer. Spectra of pure Syn and RB3-

SLD were baseline-corrected by subtracting a buffer spectrum, while difference spectra of the 

Syn/tubulin and RB3-SLD/tubulin mixtures were “tubulin-corrected” by subtracting the 

spectrum of the pure tubulin from those of the mixtures. Syn spectra were normalized in terms 

of mean residual ellipticity by using a mean residue weight of 103 Da. Since BRB buffer does 

not allow to record spectra below 215 nm, the α-helical content was estimated from the mean 

residual ellipticity at 222 nm according to Chen and Yang [70]. 

 

NMR spectroscopy 

The NMR spectra were recorded at 25 °C on a Bruker AV600 spectrometer (Bruker 

Spectrospin AG, Rheinstetten, Germany), operating at 600.10 MHz for the 
1
H nucleus and 

equipped with a standard triple-resonance probe with z-axis gradients. Temperature control 

was achieved through the spectrometer BVT3000 temperature control unit, using nitrogen gas 

(flow 270 l/h) pre-cooled with a Bruker BCU20 refrigeration unit. 
1
H-NMR chemical shifts 

(δ) were measured in ppm, using as reference external sodium 4,4-dimethyl-2-silapentane-1-

sulfonate  (DSS) set at 0.00 ppm. DOSY (Diffusion Oriented Spectroscopy) measurements 

were performed at 25 °C on a freshly prepared 27 µM solution of tubulin, dissolved in 0.6ml 

H2O:D2O 9:1 (v/v), pH 6.8 50 mM phosphate buffer,  in the presence of various amounts of 

Syn (Syn/tubulin molar ratios were between 0 and 10) after at least 0.5 h incubation. DSS, 

deuterium oxide  (99.8% purity) and 5 mm O.D. NMR tubes (Wilmad 535-PP type) were 

purchased from Sigma-Aldrich. Solvent suppression was achieved by including in the DOSY 

pulse-sequence a WATERGATE pulse-scheme [71]. A gradient-based stimulated echo 
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bipolar pulse sequence
 
was utilized [72], with a 0.3 s diffusion delay ("big delta") and a 1.5 

ms gradient pulse length ("little delta"). 32 one-dimensional spectra were collected with a 

gradient strength varying between 0.67 and 33.4 Gauss/cm. Values for "little delta" and "big 

delta" parameters were chosen by taking also into account the expected short transverse 

relaxation rates due to the formation of high molecular weight aggregates. Other relevant 

acquisition parameters: time-domain: 2 K; number of scans: 196; relaxation delay: 2 s. Raw 

data were Fourier-transformed after apodization with a 90 °-shifted sine-bell-squared function 

and baseline corrected. Log(D) values were derived by a two-components non-linear fitting 

and displayed as pseudo-2D spectra.  

Limiting values for the molar fraction of free Syn () were estimated from the experimental 

diffusion coefficients (D, Equation 2) as: 

 

(𝐷𝑒𝑥𝑝−𝐷𝑡𝑢𝑏:𝑠𝑦𝑛)

(𝐷𝑠𝑦𝑛−𝐷𝑡𝑢𝑏:𝑠𝑦𝑛)
<  𝑎 <

(𝐷𝑒𝑥𝑝−𝐷𝑡𝑢𝑏2:𝑠𝑦𝑛)

(𝐷𝑠𝑦𝑛−𝐷𝑡𝑢𝑏2:𝑠𝑦𝑛)
               (2) 

 

where Dsyn is the experimental  value determined  for free Syn. Dtub:syn  and Dtub2:syn are the D 

values expected for complexes formed by Syn with  tubulin dimer and 22 tubulin 

tetramer, respectively. These last values were estimated by applying the following correction 

factors to Dtub:  
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The dissociation constant Kd of Syn-tubulin complex was derived by applying the following 

equation 5 [74]: 

K
d
= TUBé
ë

ù
û0

D
bound

-D
exp

D
exp
-D

syn

+ Syné
ë

ù
û0

D
exp
-D

bound

D
bound

-D
syn

            (5) 

where 𝐷𝑏𝑜𝑢𝑛𝑑 can be either 𝐷𝑡𝑢𝑏:𝑠𝑦𝑛 or 𝐷𝑡𝑢𝑏2:𝑠𝑦𝑛 as derived from  equation  3 and 4. 

 

Video-microscopy and data analysis 

MTs were assembled from purified axonemes with tubulin (10-15 μM) and increasing 

concentrations of preincubated Syn (5-15 μM). Samples were prepared in perfusion chambers, 

previously saturated with 50 µM Syn, and observed at 37 °C with an Olympus BX-51 
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microscope equipped with DIC prisms and a video camera coupled to an Argus 20 image 

processor (Hamamatsu, Hamamatsu City, Japan), as previously described [73]. Images were 

recorded every 2 s over periods of 5 min. The total recording time did not exceed 60 min for 

each chamber. Measurements of MT dynamics and data analysis were carried out using Image 

J (NIH, Bethesda, MD) and Kaleidagraph (Synergy Software Systems, Dubai, UAE), as 

previously described [73].   

 

Cell cultures and transfection  

PC12 cells were maintained in cultures and differentiated as previously described [57]. PC12 

cells were transiently transfected using Lipofectamine 2000 (Invitrogen) (1:3 DNA to 

Lipofectamine ratio), with GFP-fused WT or mutated Syns or with GFP-containing control 

vector; the quantity of DNA was chosen according to previously reported data, as the Syn 

expression level was low (see Figure 1D) and comparable to the average physiological levels 

of the protein in the brain [47]. For live cell imaging experiments, GFP-WT Syn and GFP-

containing vectors were co-transfected with EB3-mCherry construct [16])
 
(kindly provided by 

Dr Galjart, Medical Genetic Center, Erasmus University, Rotterdam, The Netherlands).  

For morphometric analyses, living cells were observed by phase contrast microscopy 

(Axiovert 200M) with 10 random images captured per plate, and measurements were made 

using the Axiovision software. Cells were considered to be differentiated when the longest 

neurite became twice as long as the cell diameter [74]. All cells in each image were analyzed 

and only the longest neurite was measured.  

 

Primary mesencephalic cultures 

According to a described protocol [75], ventral mesencephalons were taken from E12.5 

C57Bl mouse embryos, dissected in ice-cold PBS with 1% of penicillin-streptomycin, 1% of 

gentamicin and 1 μg/ml amphotericin B (EuroClone, Pero, Italy) and then transferred to PBS 

containing 0,6% glucose. Tissues were incubated in Accumax™ (Merk Millipore, Darmstadt, 

Germany) at room temperature for 30 min and then mechanically dissociated. The cells were 

resuspended in MACS Neuro Medium (Miltenyi Biotech, Italy), containing 1% L-glutamine, 

1% penicillin-streptomycin and 2% of MACS NeuroBrew-21 and were seeded in one drop 

(5x10
4
 cells/ml) on 0.1 mg/ml poly-D-lysine (Millipore) – 0.01 mg/ml laminin (Sigma 

Aldrich) pre-coated coverslip. Cells were kept at 37 °C in a humidified 5% CO2 incubator 

and half volume of the medium was changed every two days. Cells were fixed in cold 

methanol (6 min at -20 °C) at the 6
th

 day in vitro (DIV). 
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Differentiation of human embryonic stem cells into midbrain neurons  

The differentiation of the human embryonic stem cells (line HuES13= H13) toward 

mesencephalic neurons was performed according to previous published protocol [76] with the 

following modifications: LDN-193189 (100 nM, Stemgent) was employed instead of Noggin, 

and CHIR was kept in differentiation medium together with neurotrophic factors until 

embryoid bodies were dissociated and seeded onto coated surfaces, at 30DIV. Three days 

later cultures were fixed in cold methanol (6 min at -20 °C) and processed for 

immunocytochemistry. 

 

Western blotting   

Whole cell extracts, Triton X-100 soluble and insoluble fractions of PC12 cells were made as 

previously reported [57]. After SDS-PAGE, proteins were transferred onto polyvinylidene 

difluoride membranes and immunostained with the following antibodies: anti-α tubulin mouse 

IgG (clone B-5-1-2, Sigma-Aldrich); anti-tyrosinated tubulin mouse IgG (clone TUB-1A2, 

Sigma-Aldrich); anti-Syn rabbit IgG (Sigma-Aldrich); anti-actin mouse IgM (N350, 

Amersham, Little Chalfont, UK). Membranes were washed for 30 min with 3 changes and 

incubated for 1 h at room temperature with HRP donkey anti-mouse IgG (Pierce, Waltham, 

MA), HRP goat anti-rabbit IgG (Sigma-Aldrich) or HRP goat anti-mouse IgM (Sigma-

Aldrich). Immunostaining was revealed by enhanced chemiluminescence (Super-Signal West 

Pico Chemiluminescent, Pierce). Quantification was performed by Image J software (NIH) 

and subtracting the background around bands.  

 

Live cell imaging  

Cultures were transferred to a live cell imaging workstation composed of an inverted 

microscope (Axiovert 200M), a heated (37 °C) chamber (Okolab, Naples, Italy), and a Plan 

neofluar 63x/1.25 numerical aperture oil-immersion objective (Zeiss). Images were collected 

every 6 s with a cooled camera (Axiocam HRM Rev. 2; Zeiss) for periods of 3-4 min, and the 

total recording time did not exceed 60 min for each dish. MT growth dynamics were 

automatically analysed from EB3 time-lapse movies using plusTipTracker software [77]. In 

order to get a representative image, kymographs were constructed using the Multiple 

Kymograph plug-in for Image J [78]. The area of the analysed neurites was estimated by 

ImageJ software, just to ascertain that no differences were present in the surface extension 

(Figure S3). 
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Immunofluorescence  

Transfected PC12 cells were fixed with cold methanol (6 min at -20°C); to remove 

unassembled tubulin, before fixation, some slides were extracted in PEM buffer (80 mM K-

Pipes, 5 mM EGTA, 1 mM MgCl2, pH 6.8, containing protease inhibitors) with 0.5% Triton 

X-100, 0.2 M NaCl and 10 µM Paclitaxel (Sigma-Aldrich). PC12 cells, murine and human 

neurons were saturated 15 min with 5% BSA and stained with anti-α tubulin mouse IgG, anti-

tyrosinated tubulin mouse IgG, anti-detyrosinated tubulin rabbit IgG, anti-acetylated tubulin 

mouse IgG, anti-βIII tubulin mouse IgG, anti-Syn rabbit IgG or anti-Syn mouse IgG (clone 

4D6, abcam) for 1h at 37 °C. After washing in PBS, samples were stained with Alexa Fluor
TM

 

568 goat anti-mouse, Alexa Fluor
TM 

488 donkey anti-rabbit, Alexa Fluor
TM 

568 donkey anti-

rabbit or Alexa Fluor
TM 

488 goat anti-mouse IgG (Invitrogen). Coverslips were mounted in 

Mowiol
®
-DABCO and examined either with epifluorescence microscope (Axiovert 200M) or 

with a confocal laser scan microscope imaging system (TCS SP5 AOBS, Leica Microsystems, 

Heidelberg, Germany) equipped with Ar/Ar-Kr 488 nm, 561 nm and 405 nm diode lasers. For 

co-localization analyses photomultiplier gain for each channel was adjusted to minimize 

background noise and saturated pixels and parameters were kept constant for all the 

acquisitions. To estimate the co-localization area between red and green signals, analyses 

were carried out on single-plane raw images and Manders’ coefficients were calculated using 

the JACoP plug-in for Image J software [17], and using a threshold-based approach to 

exclude background noise. 

By using Image J software, total fluorescence intensity was measured on the growth cone 

area. The region of interest was manually drowned, and the analyses of the surface extension 

revealed that there were no significant differences between control cultures and WT-

expressing PC12 cells (Figure S2).  

 

Protein alignment  

Pairwise alignments between Syn and stathmin sequences were made using Pam250 or Bl50 

matrix, whereas multiple protein alignment was performed with ClustalW software.  

 

Statistical analyses 

For multiple comparisons, the statistical significance of treatment was assessed by one-way 

ANOVA with Dunnett 2-sided or Fischer LSD post-hoc testing, whereas differences between 

WT Syn and controls were assessed using Student’s t-test. For the analyses of qualitative 
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variables, 
2
 test was used. All analyses were performed using STATISTICA (StatSoft Inc., 

Tulsa, OK). 

 

Abbreviations 

Ac, acetylated; CD, circular dichroism; A, absorbance variation; deTyr, detyrosinated; DIC, 

differential interference contrast; EB3, end-binding protein 3; MT, microtubule; PD, 

Parkinson’s disease; Syn, -Synuclein; Tyr, tyrosinated; VE-DIC, video-enhanced differential 

interference contrast; WT, wild type 
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LEGENDS 

 

FIGURE 1. WT Syn promotes MT nucleation in differentiated PC12 cells. A. 

Fluorescence microscopy micrographs of PC12 cells differentiated 5 days with NGF 

expressing GFP-Syn chimera (Syn) or GFP control vector (GFP), fixed before (BASAL), 

immediately after the MT destabilizing cold-treatment, 30 min at 4 °C (0), or at various times 

after rewarming (15 and 60 min at 37 °C) and stained for α tubulin (α TUB). Insets represent 

the GFP channel, and the yellow boxes the magnified areas shown on the right (GFP channel 

in green and α tubulin in red). Scale bar, 10 µm. Quantification of total fluorescence of α 

tubulin (α TUB, B) and tyrosinated tubulin (Tyr TUB, C) in PC12 cells expressing GFP-Syn 

chimera (Syn) or GFP (GFP), extracted and fixed after the treatment described in A. Values 

are expressed as mean ± SEM, and the cells analysed are at least 12 for each experimental 

condition. *p<0.05 vs CONT, according to Student’s t-test. ROI’s area is reported in Figure 

S2. Western blotting (D) and densitometric analyses (E) of α tubulin (α TUB) and tyrosinated 

tubulin (Tyr TUB) associated to tubulin dimers (Dim) or to MTs (MT) in PC12 cells 

expressing GFP-Syn chimera (Syn) or GFP (GFP), treated as described in A. In E, values 

(mean ± SEM) represent ratio between MTs and dimers of α tubulin (α TUB, white bars) and 

tyrosinated tubulin (Tyr TUB, black bars) of Syn-transfected PC12 cells, and are expressed as 

control percentage (GFP-expressing PC12 cells). Data are obtained from at least three 

independent experiments. *p<0.05, according to Student’s t-test, performed on the rough data. 

 

FIGURE 2. WT Syn increases MT dynamics in differentiated PC12 cells. A. 

Representative kymographs illustrating the growth of EB3-mCherry-decorated MT tips in 

GFP-expressing  (GFP) or GFP-Syn (Syn) transfected PC12 cells. Box plots of the number 

(B), speed (C) and lifetime (D) of MT growths, in each experimental condition. BASAL 

indicates cell cultures maintained at 37 °C whereas RECOVERY indicates registration during 

the rewarming phase after 30 min at 4 °C. At least 30 cells per condition were analysed, for a 

total number of 2200 tracks, or more. *p<0.05 vs GFP, according to Student’s t-test. The 

analysis of the relative neurite’s area is reported in Figure S3. 

 

FIGURE 3. Syn interacts with MTs in human mesencephalic neurons. A. Human 

embryonic stem cell-derived mesencephalic neurons co-express otx2 and TH. B. Confocal 

micrographs of human mesencephalic neurons stained for endogenous Syn (Syn, green) and 
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tyrosinated tubulin (Tyr TUB, red), or βIII tubulin (βIII TUB, red). The co-localizing pixels 

are shown (Coloc). Scale bar, 5 µm.  

 

FIGURE 4. WT Syn interacts with preformed MTs and tubulin α2β2 tetramer.  A-B. Co-

sedimentation assay. Representative Western blotting (A) of Syn recovered in the supernatant 

(S) or pellet (P) fraction without (Syn) or after (Syn+MTs) incubation with preformed MTs 

(Tub) at constant total MT concentration (4 μM tubulin dimers). B. Bound Syn plotted versus 

free Syn (r
2 

= 0.94). C-F. Mass spectrometry analyses. Nano-ESI-MS spectra of 14 μM 

tubulin: the peak distributions relative to the tubulin dimer and the α2β2 tetramer are grouped 

by brackets, with the indication of the measured mass (C). Overlay of spectra of 14 μM 

tubulin (black), and a mixture of 14 μM tubulin and 14 μM Syn (red), in the m/z range 4000-

5200 (D, αβ dimer) or in the m/z range 5600-7000 (E, α2β2 tetramer). The peaks 

corresponding to the α2β2/Syn complex are labelled by asterisks. F. Magnification of panel E, 

in the m/z range 6100-6500. The arrows point to the peaks of the α2β2/Syn complex, labelled 

by the corresponding charge state. The measured mass of the complex is also indicated. In 

each panel, the most intense peak of each distribution is labelled by the corresponding charge 

state.  

 

FIGURE 5. WT Syn interacts with tubulin and acquires secondary structure. A. Far UV 

CD spectra of isolated WT Syn (dashed line, Syn Alone) and differential spectra of 14 µM 

WT Syn in the presence of equimolar tubulin (solid line, differential spectrum). B. Far UV 

CD spectra of isolated RB3-SLD (dashed line, RB3 alone) and differential spectra of 7 µM 

RB3-SLD in the presence of 14 µM tubulin (solid line, differential spectrum). C. 
1
H-NMR 

diffusion coefficient measurements at 25 °C from 2D-DOSY projections of 27 µM Syn (Syn), 

Syn/tubulin equimolar mixture ([Syn]/[TUB]=1) and 27 µM tubulin (TUB).  

 

FIGURE 6. Folded Syn promotes MT nucleation in vitro. A. Tubulin assembly was 

recorded as a function of time by measuring the increase in absorbance (ΔA) at 350 nm. 

Tubulin (40 µM) was polymerized in the absence (CONT) and in the presence of 5 µM of 

naïve (Syn w/o pre-incubation) or preincubated (Syn with preincubation) WT Syn. B. 

Parameters describing nucleation (P), elongation (Vi) and steady state (ΔA), were calculated 

from the analysis of the sigmoid kinetics of polymerization of tubulin (40 µM) in the absence 

(CONT) and in the presence of 5 µM of naïve (Syn w/o pre-incubation) or preincubated (Syn 

with preincubation) WT Syn. Values are expressed as mean ± SEM of at least five 
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independent experiments. *p<0.05vs CONT and 
#
p<0.05 vs Syn w/o pre-incubation, 

according to ANOVA, Fisher LSD post hoc test. C. Final ΔA obtained with different initial 

concentrations of tubulin were plotted against tubulin concentration, and the x-intercept of 

fitting lines, representing the tubulin critical concentration (arrows), was calculated for 

polymerization in the absence (CONT, black line) and in the presence of 5 µM of WT Syn 

(Syn, blue line). Plotted values are mean ± SEM of at least three independent experiments. D. 

Electron microscope images of MTs assembled in vitro in the absence (CONT) or in the 

presence of WT Syn (Syn). Micrographs were taken at two different magnifications: 46000x 

(left column, scale bar, 200 nm) and 130000x (right column, scale bar, 100 nm). MT length 

measured during the initial phase (E) and at steady state (F) of tubulin polymerization (40 

µM) in the absence (CONT) and in the presence of 5 µM of WT Syn (Syn). The number of 

measured MTs is at least 600 for each experimental condition, obtained from two independent 

experiments. *p<0.05 vs CONT, according to Student’s t-test. G. Quantification of MT 

number over time assembled in the presence of WT Syn (Syn, blue points). Values (mean ± 

SEM) are expressed as control percentage, and the number of analysed fields is at least 15 for 

each experimental condition, obtained from two independent experiments. *p<0.05 vs CONT, 

according to Student’s t-test, performed on the raw data. MT length and number were 

obtained from fluorescent microscopy images of MTs assembled in the presence of 

rhodamine-labelled tubulin (see Figure S6). 

 

FIGURE 7. Syn displays sequence similarities with stathmin. Multiple alignment of Syn 

with four members of stathmin family was performed by ClustalW. Blue lines delimitate the 

domains of stathmin family involved in tubulin binding. Arrows mark the sites of Syn 

pathological mutations: Ala30 (green arrow), the conserved Glu46 and Ala53 (red arrows), 

His50 and Gly51 (blue arrows). Asterisks mark invariant positions, while dots and colons 

highlight semi-conservative and conservative substitutions, respectively. 

 

FIGURE 8. Pathological Syn mutations corrupt Syn/tubulin interaction. A. Far UV CD 

spectra of mutated Syns, obtained with naïve proteins (A30P w/o pre-incubation or A53T w/o 

pre-incubation) or after pre-incubation (A30P with pre-incubation or A53T with pre-

incubation) with equimolar tubulin, performed at 20 °C for 10 min in the presence of 14 µM 

tubulin. B. Electron microscope images of MTs assembled in vitro in the presence of mutated 

(A30P and A53T) Syns. Micrographs were taken at two different magnifications: 46000x (left 

column; scale bar, 200 nm) and 130000x (right column; scale bar, 100 nm). C. Confocal 
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micrographs of PC12 cells differentiated 5 days with NGF expressing A30P (A30P) or A53T 

(A53T) GFP-Syn chimeras (green) and stained for α tubulin (red). By side merge images, are 

shown the Syn channel (I), the tubulin channel (II) and the co-localizing pixels (III). Scale 

bar, 10 µm. D. Fluorescent microscopy photographs of PC12 cells differentiated 5 days with 

NGF expressing mutated (A30P and A53T) GFP-Syn chimeras, fixed before (BASAL), 

immediately after the MT destabilizing cold-treatment, 30 min at 4 °C (0), or at 15 min after 

rewarming (37 °C), and stained for α tubulin. Insets show the GFP channel and the yellow 

boxes the magnified areas. Scale bar, 10 µm. 

 

FIGURE 9. Model for Syn/MTs interaction. Syn senses and binds free tubulin dimers 

forming a specific complex with tubulin α2β2 tetramer and acquiring α-helix conformation 

(STEP 1). Afterwards, Syn behaves like a tubulin deliverer promoting MT nucleation (STEP 

2-High [Tub]free). When entrapped in the MT wall, Syn promotes MT catastrophes probably 

inducing changes in intra- or inter-dimer angles (STEP 2-Low [Tub]free). 

 

FIGURE S1. Expression of human Syn. Western blot showing the level of expression of 

human Syn (Syn) in 5 days NGF-differentiated control (CONT) and transfected PC12 cells. 

The staining was performed using an antibody (cod. S3062, Sigma-Aldrich) that recognizes 

both human and rat Syn. Actin is used as loading reference. 

 

FIGURE S2. Measurement of growth cone area. Histogram representing the area of the 

growth cone (region of interest, ROI) of Syn-expressing PC12 cells, differentiated 5 days with 

NGF, used to evaluate α tubulin (α TUB) and Tyr tubulin (Tyr TUB) fluorescence, before 

(BASAL), immediately after the MT destabilizing cold-treatment (30 min at 4°C) or at 

various times after rewarming (15 and 60 min at 37°C). Values (mean ± SEM) are expressed 

as percentage of the area of growth cone of GFP-expressing cells. The statistical analyses 

(Student’s t-test, performed on the rough data) reveal that there are no significant differences 

among the groups. The analyses refer to Figure 1. 

 

FIGURE S3. Measurement of neurite area. Histogram representing the area of the neurite 

of PC12 cells expressing GFP (GFP) or GFP-Syn (Syn), differentiated 5 days with NGF, and 

used to evaluate MT growth by the analyses of EB3 movies in basal conditions (BASAL, cell 

maintained at 37 °C) and during the rewarming phase (RECOVERY) after 30 min at 4 °C. 

The analyses refer to Figure 2. 



35 
 

 

FIGURE S4. WT Syn co-localizes with MTs in murine neurons. Confocal micrographs of 

rat PC12 cells (PC12) differentiated 5 days with NGF expressing human WT GFP-Syn 

chimeras (green) and of ventral mesencephalon neurons (ventral mesencephalon) from mouse 

stained for endogenous Syn (green). Both cell types were stained for α tubulin (α TUB, red), 

tyrosinated tubulin (Tyr TUB, red), detyrosinated tubulin (deTyr TUB, red), acetylated 

tubulin (Ac TUB, red) and βIII tubulin (βIII TUB, red). Under the merge images, for each 

group of images are shown the Syn channel (I), the tubulin channel (II) and the co-localizing 

pixels (III). Scale bar, 5 µm. 

 

FIGURE S5. Syn co-polymerizes with MTs. MTs assembled in vitro in the presence of WT 

(WT) or mutated (A30P and A53T) Syn are observed by DIC microscopy, and stained with 

anti-Syn (Syn) antibody (green). Scale bar, 2 µm. 

 

FIGURE S6. Rhodamine-labelled MTs. Images of MTs assembled using rhodamine-

labelled tubulin were captured after 2 and 45 min of polymerization by fluorescent 

microscope and showed in inverted contrast. The images obtained in the absence (CONT) or 

in the presence of WT Syn (WT) were analysed to measure the MT length and number (as 

reported in Figure 6). Scale bar, 2 µm. 

 

Figure S7. WT Syn promotes neuronal differentiation. A. Phase contrast micrographs of 

PC12 cells differentiated 5 days with NGF, naïve (CONT) or expressing wild type (WT) or 

mutated (A30P and A53T) Syns (Syn). Scale bar, 50 µm. B-C. Morphometric analyses of 

differentiated cells. B. Histogram representing the percentage of differentiated cells (i.e. cells 

with a neurite’s length equal to double of the cell body, according to Peunova and Enikolopov 

[74]). Values are expressed as mean ± SEM of at least three independent experiments (around 

800 cells analysed per experimental condition). *p<0.05 vs CONT and 
#
p<0.05 vs WT, 

according to 
2
 test. C. Box plot of the neurite length. Measured neurites were at least 200 per 

experimental condition. *p<0.05 vs CONT and 
#
p<0.05 vs WT, according to ANOVA, 

Fischer LSD post hoc test.  
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FIGURE S1 
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Table 1. Syn co-localizes with MTs in neuronal cells. Manders’ coefficient representing the 

overlapping between transfected GFP-Syn (PC12 cells) or endogenous Syn (ventral 

mesencephalon neurons from mouse embryo) and total α tubulin (α TUB), its 

posttranslational modifications (Tyr TUB, deTyr TUB and Ac TUB) and βIII tubulin (βIII 

TUB), calculated according to Bolte and Cordelieres [17] and using a threshold-based 

approach. *p<0.05 vs WT according to ANOVA, Dunnett post hoc test. 
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Table 2. Folded Syn increases MT dynamics in vitro. Dynamic parameters were determined 

by VE-DIC light microscopy for MTs assembled from purified axonemes in the presence of 

tubulin (10 and 15 μM) and increasing concentrations of Syn (0-15 µM). Velocities are 

expressed as mean ± SEM. The total growth and shrinkage times analysed, as well as the 

number of MTs used for each condition, are given in the last three rows. Catastrophe and 

rescue frequencies were calculated by dividing the total number of events by the time spent in 

growth and shrinkage, respectively. The standard deviation is calculated by dividing Fcatastrophe 

or Frescue by √n assuming a Poisson distribution [27]. (n) represents the total number of 

measurements for the growth and shrinkage rates, and the total number of observed events for 

the catastrophe and rescue frequencies.  *p<0.05 vs Syn 0µM, according to ANOVA, Dunnett 

post hoc test.  
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