
Chapter 3

Theory

One of the ultimate goals in nanotechnology is the development of electronic devices
whose main building blocks are individual conductive molecules contacted with two or
more leads. To this aim it is certainly necessary to measure, control and understand
electron transport phenomena occurring in such systems.
Transport is an inherently non-equilibrium phenomenon, where the role of dissipation
and the coupling to the environment play a crucial role. The driving forces carrying the
system out of equilibrium are usually electrical or magnetic, such as the electric field
associated with an applied source-drain bias voltage, but also thermal and electrochem-
ical potential gradients allow electronic transport to occur and its external manifestation
in terms of macroscopic current.
The electrical conduction in macroscopic materials is described by first Ohm’s law,
which states that the current I is proportional to to the applied voltage V (for relatively
small biases):

I =
1
R

V = GV (3.1)

The constant of proportionality is known as conductance G (the inverse of the resistance
R), which for a given conductor grows linearly with the transverse area S and it is
inversely proportional to its length L (second Ohm’s law):

G = s S
L

(3.2)

where s is a specific property of the material known as conductivity, a quantity inde-
pendent on the geometry of the system.
The conductance is a key quantity in the description of the transport properties, but
second Ohm’s law is not applicable at the atomic scale, since the properties become
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FIGURE 3.1: Schematic pictures of the diffusive and ballistic regimes

strongly geometry-dependent and quantum effects arise. Then different approaches are
required when the dimensions of the system are scaled down to the mesoscale or to the
nanoscale.
The nature of transport strongly depends on the characteristic dimensions of the ac-
tive region of the device. Specifically, we can distinguish different transport regimes
depending on how the width W and the length L of the conductor relate with the De
Broglie wavelength of electrons near the Fermi energy (known as Fermi wavelength,
lF ). In fact, most of the properties of solids, involving electronic transport, are de-
scribed by the dynamics of such electrons, thus one has to account for their scattering
due, for instance, to a potential arising by phonons. If the variations in this potential
are comparable to the Fermi wavelength then quantum effects become more prominent
otherwise, e. g. if the potential is slowly varying, one can use the semi-classical de-
scription of the system.
Another important length scale is the elastic mean free path of the carriers lc, which
roughly measures the distance between elastic collisions with static impurities.
If both L and W are much larger than lc the transport is purely diffusive and second
Ohm’s law hold. In a semi-classical picture the electron motion can be viewed as as a
random walk of step size lc among the impurities and the system properties obey the
Boltzmann transport equation (see fig. 3.1-left).
Otherwise, if W is smaller than lc, while L is still much longer, we deal with the case
of a quantum confined system, in which the carrier motion is quantized in one (or two)
dimension, but essentially behaves as a diffusive conductor in the others.
Finally, when both L and W are comparable with lc, we reach the ballistic regime in
which the electron momentum can be assumed to be constant and eventually only lim-
ited by the boundaries of the sample, then the motion of the carriers is governed by the
wave-like behavior of the particle and its reflection and transmission properties through
the structure. (see fig. 3.1-right)
One interesting aspect of transport in nanostructure systems is that the characteristic
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length scales lie in transition range from classical to quantum transport. Hence trans-
port may be semi-classical or purely quantum, or even more difficult, a mixture of the
two in which the effects of decoherence and dissipation (inelastic scattering) play im-
portant roles, while at the same time, quantum effects are still dominant. Decoherence,
in particular, introduces a further length scale which is decoherence length, fundamental
for the definition of semiclassical transport, i.e. whereby interference can be neglected.
Thus it appears clear that it becomes very cumbersome to describe the correct physics
of such devices, since a single description (purely semi-classical or purely quantum)
may not be sufficient.
Electronic transport at its most fundamental level requires a full many body quantum
mechanical description. Clearly, a full many particle description of transport including
the real number of particles of the device, its contact to the external environment, and
the external environment itself, is beyond the ability of any computational platform.
Hence, successive levels of approximation, neglecting some of such effect, are neces-
sary in any sort of realistic description of transport.
The currently most popular method to compute electron transport in nanoscale sys-
tems is based on the use of Non-equilibrium Green’s functions and on a mean-field
approximation for the (coherent) electronic motion, necessary to transform the many-
body problem into an effective one-electron problem. The central idea of this approach
is that, if inelastic interactions can be ignored, transport in nanoscale devices can be
treated as a quantum scattering problem. This means in practice that transport proper-
ties like the electrical conductance can be determined from the transmission probability
for an electron to cross the conductor.
A full quantum, coherent approach bridging the gap between ballistic and (quantum)
diffusive behavior is the Kubo-Greenwood approach, where conductivity is obtained
by the velocity-velocity correlation function in a disordered system (treated at the one-
electron level, eventually adjusted for many-body effects in an effective way).
Beyond these approximations, common methods are the quantum kinetic approaches
in terms of the Liouville-von Neumann equation of motion for the density matrix or
Wigner distribution approaches, both including quantum correlations but retaining the
form of semi-classical approximation in terms of the distribution function.
In going from the quantum to the classical description, electronic transport start to be
treated in terms of a classical particle system, in which informations concerning the
phase of the electron and its non-local behavior are lost. The primary approximation for
describing transport in semiconductors at the meso- and macroscale is the Bolzmann
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transport equation (BTE). Within the relaxation time approximation, the BTE repre-
sents a kinetic equation describing the time evolution of the global non-equilibrium
distribution function of the position and momentum of the particles in terms of local
equilibrium distributions.
Finally further approximations to the BTE lead to the hydrodynamic and the drift-
diffusion approaches to the transport. Specifically, the isothermal drift-diffusion model
consists of carrier balance equations and current equations for electrons and holes, ac-
counting for carrier drift induced by external driving forces. In the non-isothermal
drift-diffusion approach, local thermal equilibrium is assumed, and an heat-flow equa-
tion has to be solved self-consistently with the carrier balance and flux equations, in
order to describe thermal effects. If carriers are driven far from equilibrium, the hydro-
dynamic transport model is more appropriate, since it includes equations for the carrier
energies and for the corresponding energy fluxes.
In this chapter we first summarize the concepts of Density Functional Theory (DFT)78,79.
Next we introduce the basic concepts of electron transport in nanodevices considering
the simple case of a single level conductor contacted with two electrodes80,81. Finally,
we present the formalism allowing to compute the transport properties by means of
Non-Equilibrium Green’s Function (NEGF) approach81,82. In this respect the DFT
mean-field potential can be considered to an approximation to the exact, non-local and
energy-dependent self-energy governing the quasi-particle dynamics. An introduction
to Green’s functions81–85 and their application in some relevant problems can be found
in appendix A.

3.1 Density Functional Theory

The general expression for the electronic Hamiltonian for a system of N electron is

Ĥ(r, t) =
N

Â
i=1

✓

�1
2

—2
i +Vext(ri, t)

◆

+
N

Â
i=1

N

Â
j>i

1
ri j

+VNN (3.3)

where the four terms are respectively the kinetic energy of electrons, the external poten-
tial, the repulsive potential energy between electrons and between nuclei. The latter is
a constant and can be simply added to eigenvalues and in the following will be ignored.
As well know, the Hartree-Fock theory cannot properly account for the electronic cor-
relation, then a number of theoretical methods have been developed with the attempt to
overcome this limit and recover the largest part of the correlation energy. On one hand
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the possibility of building excited configurations from the Hartree-Fock determinant
(configuration interaction (CI) methods) allows to radically improve the description of
the electron-electron correlation, but at a very high computational costs. On the other
hand, observing that the terms appearing in the Hamiltonian involve only one or two
electronic coordinates, one can ask if it is necessary to deal with a complex wavefunc-
tion of 4N variables (3 spatial coordinates and one of spin for each electron) or if there
is a simpler quantity allowing to calculate the properties of a system. Moreover, one
can notice that for an N-electron system the external potential completely determines
the Hamiltonian, because the kinetic and repulsion potential terms are fixed by N. Such
a quantity exists, it is the electron density r(r) and is the basic variable in the density
functional theory (DFT) method.
The electron density r(r) is defined as:

r(r) = N
Z

...
Z

|Y(x1,x2...,xN)|2ds1dx2...dxN (3.4)

where N accounts for the indinstinguibility of electrons. The electron density has
the physical meaning of probability to find an electron in the infinitesimal volume
ds1dx2...dxN and is a simple function of only three spatial variables. The integral
on all space must give the total number of electrons:

Z

r(r)dr = N (3.5)

3.1.1 Hohenberg-Kohn theorem and Levi constrained search

The first Hohemberg-Kohn theorem legitimizes the use of electron density as basic
quantity to determine the ground-state wavefunction and the properties of the systems.
Indeed it states that the external potential Vext is determined, within a trivial addictive

constant, by the electron density.
The proof of such theorem is remarkably simple and proceeds by reductio ad absur-

dum. Let there be two different external potentials, Vext,1(r) and Vext,2(r), that give rise
to the same density r0(r). The associated Hamiltonians, Ĥ1 and Ĥ2, will therefore have
different ground-state wavefunctions, Y1 and Y2, both yielding r0(r). Applying the
variational principle and after some mathematical rearrangements, one obtains:

E0
1 < hY2| Ĥ1 |Y2i= hY2| Ĥ2 |Y2i+ hY2| Ĥ1� Ĥ2 |Y2i=

= E0
2 +

Z

r0(r)[Vext,1(r)�Vext,2(r)]dr (3.6)
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where E0
1 and E0

2 are the ground-state energies corresponding to Ĥ1 and Ĥ2 respec-
tively. It is at this point that the Hohenberg-Kohn theorems, and therefore DFT, apply
rigorously to the ground-state only. An expression equivalent to 3.6 holds when the
subscripts are interchanged:

E0
2 < hY1| Ĥ2 |Y1i= hY1| Ĥ1 |Y1i+ hY1| Ĥ2� Ĥ1 |Y1i=

= E0
1 +

Z

r0(r)[Vext,2(r)�Vext,1(r)]dr (3.7)

Therefore adding eq. 3.6 and 3.7 leads to the result:

E0
1 +E0

2 < E0
2 +E0

1 (3.8)

which is a contradiction, and as a result the ground-state density uniquely determines
the external potential Vext(r), to within an additive constant.
The main consequence of this theorem is that the external potential is a functional of
the electron density, implying that also the ground-state energy must be a functional of
the same quantity:

Vext =Vext [r(r)] ) E0 = E0[r(r)] (3.9)

Moreover, since r(r) determines all properties of the ground-state system, all compo-
nents of the energy must be functionals of the electron density. The ground-state energy
is usually divided into different contributions as follows:

E0[r] = T [r]+Vee[r]+Vext [r] = FHK[r]+
Z

r(r)Vextdr (3.10)

where FHK[r] includes the kinetic energy term T [r] and electron-electron energy Vee[r].
The latter is usually further split in two contributions:

Vee = J[r]+nonclassical term (3.11)

J[r] is the classical repulsion between two charge distributions, whereas the nonclas-
sical term are usually referred as “exchange-correlation energy” and it will be defined
later.
The second Hohemberg-Kohn theorem states that the ground-state energy can be ob-
tained variationally: for a trial density r̄(r) such that r̄(r) > 0 and integrating to N

electrons, the condition E0[r(r)]6 Ē0[r̄(r)] holds, where E0[r(r)] and Ē0[r̄(r)] are the

ground-state energies arising from the exact and the trial density, respectively.
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This is the analogous to the variational principle for wavefunctions. The proof of this
theorem is also straightforward: as just shown, r̄(r) determines its own V̄ext(r), and in
turn Ĥtrial and wavefunction Ȳ, which can be taken as a trial function for the problem
of interest having external potential Vext . Thus

hȲ| Ĥ |Ȳi=
Z

r̄(r)Vext(r)dr+FHK[r̄(r)] = E0[r̄(r)]> hY| Ĥ |Yi= E0[r(r)] (3.12)

Assuming differentiability of E0[r] the second Hohemberg-Kohn theorem requires that
the ground state density satisfy the stationary principle:

d
⇢

E[r]�µ
✓

Z

r(r)dr�N
◆�

= 0 (3.13)

where the Lagrange multiplier µ (which is the chemical potential) is introduced to en-
sure the conservation of the number of electrons. Solving, we obtain the Euler-Lagrange
equation:

µ =
dE[r]
dr(r)

=Vext(r)+
dFHK[r]

dr(r)
(3.14)

Notice that if we knew the exact FHK[r], the above equation would be an exact equa-
tion for the ground-state density. Moreover that FHK is defined independently of the
external potential, meaning that FHK is a universal function of r(r). Once we have an
explicit form (approximate or accurate) for FHK we can apply this method to any sys-
tem. However, although the Hohemberg-Kohn theorems are extremely powerful, they
do not offer a practical way of computing the ground-state density of a system.
Moreover, the Hohenberg-Kohn theorems, as defined above, require a one-to-one corre-
spondence between ground-state wave function and the electronic density. It is through
this unique mapping that a density determine the ground-state properties. A density
which satisfy this condition is called v-representable, that is, it would be the density
of an antisymmetric wavefunction for a given external potential. This condition is far
to be achieved, since often many wavefunctions give rise to the same electron density.
Fortunately it has been shown by Levi that a condition weaker than v-representability
is sufficient: the N-representability. This condition is satisfied by every reasonable den-
sity, that is by every density derived from an antisymmetric wavefunction. This can be
easily demonstrated by means of the Levi constrained search, schematized in fig. 3.2.
From the variational principle we have:

E0[Y] hY| Ĥ |Yi (3.15)
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FIGURE 3.2: Let be the black square the set of r(r) integrating to N electrons. Each
gray square is the set of all wavefunction integrating to a particular r(r). The first
step of the Levi method is the minimization of the y associated to each r , let’s say we
obtain y9 for r1, y15 for r2... The second step of minimization will be over the such

obtained subset {y9,y15,y2,y8}.

The procedure of minimization of energy can be divided in two steps. First we consider
the wavefunctions giving by quadrature the same electron density r(r) and constrain
the search for the minimum energy in this subset only:

Er [r] = minY!r hY| Ĥ |Yi= minY!r hY|T +Vee +Vext |Yi=

= minY!r hY|T +Vee |Yi+
Z

Vext(r)r(r)dr =

= FHK[r]+
Z

Vext(r)r(r)dr (3.16)

Once obtained the variational functional energy for a given density, in order to complete
the search we minimize such functional with respect to the densities that integrate to N
electrons:

E0[r] = minr!NEr [r] = minr!N

⇢

FHK[r]+
Z

Vext(r)r(r)dr
�

=

= minr!N
�

minY!r hY| Ĥ |Yi
 

= minY hY| Ĥ |Yi (3.17)
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In this form it is equivalent to the second theorem of Hohemberg-Kohn.

3.1.2 Kohn-Sham method

In the previous section we have seen that the ground-state energy of an atomic or molec-
ular system can be written as

E0[r] = T [r]+Vext [r]+ J[r]+Vxc[r] = FHK[r]+Vext [r] (3.18)

where the functional FHK[r] contains the contributions of the kinetic energy T [r], the
classical Coulomb interaction J[r] (called Hartree potential) and the non-classical part
Vxc[r] including all the other terms, specifically exchange and electron correlation ef-
fects. Of these, only Vext [r] and J[r] are known:

Vext [r] =
Z

Vext [r]r(r)dr (3.19)

J[r] = 1
2

Z

dr1dr2
r(r1)r(r2)

r12
(3.20)

while the explicit forms of the other two contributions remain a mystery. To understand
how Kohn and Sham tackled this problem, we have to recall the Hartree-Fock scheme, in
which the wave function was a single Slater determinant FHF constructed from N spin
orbitals ci. While the Slater determinant enters the HF method as the approximation to
the true N-electron wave function, it can also be looked upon as the exact wave function
of a fictitious system of N non-interacting electrons, moving in an effective potential
due to the nuclei. For such system the kinetic energy can be exactly expressed as:

TKS =�
1
2

N

Â
i
hci|—2 |cii (3.21)

The Hartree-Fock spin orbitals ci that appear in this expression are chosen such that
the expectation value EHF attains its minimum (under the usual constraint that the ci

remain orthonormal).

E0 [c] = minFHF!N hFHF |T +Vee +Vext |FHFi (3.22)

The important connection to DFT is that we can use the above kinetic energy expression
to compute the major fraction of the kinetic energy of our interacting system. We further
ask if it is possible to built, also for DFT, a non-interacting reference system, introducing
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an effective, local potential Ve f f (r) in the Hamiltonian:

He f f =�
1
2

N

Â
i

—2
i +

N

Â
i

Ve f f (ri) (3.23)

Accordingly, its ground-state wavefunction would be represented by a Slater determi-
nant where the spin orbitals, in complete analogy to Hartree-Fock equations are deter-
mined by:

fKS(i)cKS
i = eicKS

i (3.24)

fKS(i) =�
1
2

—2
i +Ve f f (ri) (3.25)

where the subscript KS indicates that those are the Kohn-Sham orbitals.
The connection of this artificial system to the interacting one is now established by
choosing the effective potential Ve f f such that the density of the non-interacting system
r(r) = Âi |ci(r)|2 exactly equals the ground state density of the real system.
At this point, we come back to the original problem: finding a better way for the deter-
mination of the kinetic energy. The very clever idea of Kohn and Sham was to realize
that if we are not able to accurately determine the kinetic energy through an explicit
functional we should be a bit less ambitious and concentrate on computing as much as
we can of the exact kinetic energy, treating the other fraction in an approximate way.
Hence, they suggested to calculate the exact kinetic energy of the non-interacting ref-
erence system TKS with the same density as the interacting one using eq. 3.21 and
including the remainder (DT [r]) in the exchange-correlation functional:

T [r] = TKS[r]+DT [r] (3.26)

FKS[r] = TKS[r]+ J[r]+EXC[r] (3.27)

As a consequence of the first Hohemberg-Kohn theorem, TKS is also necessarily a func-
tional of the density but notice that we do not have a simple expression for TKS where the
density enters explicitly. So far so good, but before we are in business with this concept
we need to find a prescription to uniquely determine the orbitals of the non-interacting
reference system. In other words, we ask: how can we define Ve f f such that it really
provides us a Slater determinant which is characterized by exactly the same density as
our real system? To solve this problem, we write down the expression for the energy of
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our interacting, real system in terms of the separation described by equation 3.27:

E[r] = TKS[r]+ J[r]+EXC[r]+Vext [r]

= TKS[r]+
1
2

Z Z

dr1dr2
r(r1)r(r2)

r12
+EXC[r]+

Z

Vextr(r)dr (3.28)

=�1
2

N

Â
i
hci|—2 |cii+

1
2 Â

i
Â

j

Z Z

dr1dr2|ci(r1)|2
1

r12
|c j(r2)|2+

+EXC[r]�Â
i

Â
A

Z

dr1
ZA

r1A
|ci(r1)|2 (3.29)

The only term for which no explicit form can be given is of course EXC[r]. Applying
the variational principle to eq. 3.28 in order to minimize the energy expression under
the usual constraint of orthonormality we obtain the so-called Kohn-Sham equations:



�1
2

—2 +

✓

Z r(r2)

r12
dr2 +VXC(r1)+Vext(r1)

◆�

ci =

=

"

�1
2

—2 +

 

Z |ci(r2)|2

r12
dr2 +VXC(r1)�Â

A

ZA

r1A

!#

ci =

=



�1
2

—2 +Ve f f (r1)

�

ci = eici (3.30)

If we compare this with the one-particle equation for the non-interacting reference sys-
tem 3.25, we see immediately that Ve f f reads as:

Ve f f (r) =
Z r(r2)

r12
dr2 +VXC(r1)+Vext(r1) (3.31)

Thus, once we know the various contributions in the equation above we have a grip
on the potential Ve f f which we need to insert into the one-particle equations, which in
turn determine the orbitals and hence the ground state density and energy. It should be
noticed that Ve f f (r) already depends on the density (and thus on the orbitals) through
the Coulomb term. Therefore, just like the Hartree-Fock equations, the Kohn-Sham
equations also have to be solved iteratively. One term in the above equation needs some
additional comments, VXC, that is the potential due to the exchange-correlation energy
EXC (but also containing the kinetic energy correction) and is formally defined as its
functional derivative:

VXC =
dEXC[r]

dr
(3.32)

Since we do not know how this energy should be expressed, we of course also have no
clue on the explicit form of VXC. Notice that, if we would knew VXC, the Kohn-Sham
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strategy would not contain any approximation, thus it would lead to the exact energy,
i. e. the correct eigenvalue of the Hamilton operator of the Schroedinger equation.
Then, unlike the Hartree-Fock model, where the approximation is introduced right at the
beginning (the wave function is assumed to be a single Slater determinant), the Kohn-
Sham approach is in principle exact. The approximation only enters when we have
to introduce an explicit form of the unknown functional accounting for the exchange-
correlation energy EXC and the corresponding potential VXC. The central goal of modern
density functional theory is therefore to find better and better approximations to this
quantity.
Here we briefly cite only the most common used exchange-correlation functionals:

• Local density approximation (LDA): is a class of local functionals, i.e. depending
only on the value of the electronic density at each point in space. In general,
for a spin-unpolarized system, a local-density approximation for the exchange-
correlation energy86,87 is written as

ELDA
xc [r] =

Z

r(r)exc(r)dr (3.33)

where eXC = eX +eC is the exchange-correlation energy per particle of an uniform
electron gas, weighted with the probability r(r) of finding the electron in this
position of space. The exchange energy term eX is analytic, while the correlation
term eC is a fit of the quantum montecarlo results of Ceperley and Alder88.

• Generalized gradient approximation (GGA): is a class of local functional taking
also into account the gradient of the electron density at the same point of space.
This leads to an exchange-correlation functional approximation of the form:

EGGA
xc =

Z

ELDA
xc [r]Fxc(r,s)dr (3.34)

where s is the so-called reduced density gradient:

s =
|—r|
r4/3 (3.35)

and Fxc(r,s) is a dumping function that accounts for the properly physical behav-
ior of EGGA

xc in the limit r! •. For instance, in the Perdew, Burke and Ernzerhof
(PBE) functional89,90 the exchange component of such function takes the form:

EPBE
x =

Z

ELDA
x [r]Fx(r,s) =

Z

ELDA
x [r]

h

1+
as2

1+bs2

i

(3.36)
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where a and b are constants fitted by experimental data. The correlation term
has a more complicated form, but also includes a dumping function to correctly
describe the behavior of the correlation energy.

• Hybrid functionals: is a class of functionals in which a component of the Hartree-
Fock exchange EHF

x is included. For example, the popular B3LYP (Becke three-
parameters91 Lee-Yang-Parr) exchange-correlation functional is defined as:

EB3LY P
xc =ELDA

x +a0(EHF
x �ELDA

x )+ax(EGGA
x �ELDA

x )+ELDA
c +ac(EGGA

c �ELDA
c )

(3.37)
where a0, ax and ac are three parameters, EGGA

x and EGGA
c are the exchange and

correlation terms of a generalized gradient approximation, specifically the Becke
88 and the Lee, Yang and Parr (LYP)92,93, respectively, while ELDA

c is the local-
density approximation to the correlation functional.

A long-range correction94 can be applied to those functionals since the non-Coulomb
part of exchange functionals typically decays too rapidly and usually becomes very in-
accurate at long distances. This correction turns out to be particularly relevant in mod-
eling processes such as electron excitations to high orbitals, considerably improving
the description of charge transfer excitation energies and oscillator strengths in time-
dependent Kohn-Sham calculations.

3.2 Single Level Model

Next, we move to the transport problem, starting from a simple model80.
Consider a molecule (the channel) coupled with two electron reservoirs, which serve as
a source and drain electrodes, as shown in fig. 3.3. For simplicity we assume metallic-
like reservoirs characterized by chemical potentials µl and µr.
Of course, it is worth highlighting that the net separation of a nanodevice into ideal
injecting and extracting contacts, and a channel region which limits the charge transport,
has important limitations, since the contacts themselves are really part of the channel
system, and are driven out of equilibrium due to current flow, as well as they strongly
couple to the channels through the long range Coulomb interaction of charge carriers.
At the equilibrium the chemical potential must be the same throughout the system:
µ f = µl = µr, as shown in fig. 3.3-left. The application of an external (positive) bias
lowers the energy levels in the drain contact with respect to the source, driving the
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channels into a non-equilibrium energy state ( fig. 3.3-right). This gives rise to different
Fermi functions for the two electrodes:

fl(E) =
1

1+ e
(E�µl )

KBT

= f0(E�µl) (3.38)

fr(E) =
1

1+ e
(E�µr)

KBT

= f0(E�µr) (3.39)

The difference Dµ between the electrochemical potentials µl and µr is proportional to
the applied bias VSD:

Dµ =�|e|VSD (3.40)

where e is the electron charge. Each contact seeks to bring the channel in equilibrium
with itself. The source keeps pumping electrons into it, while the drain keeps pulling
electrons out in its bid, but equilibrium is never established since the bias ensures that
Dµ being fixed. This generates an electrical current flowing from the source to the drain.
The current thus depends on the electrochemical potential difference but also on the
transmission properties of the channel region itself. Although it is straightforward that
the conduction depends on the availability of molecular level with energy in between of
µl and µr, it is less obvious that there is an upper limit to conductance value G0 for each
level:

G0 =
|e|2

h
= 38.7 µS (3.41)

where h is the Plank constant. Actually, typical molecular channels have two degenerate
levels (one for spin up and one for spin down), giving rise to a maximum conductance
of 2G0.
Consider, for instance, the simple case in which a molecule with only one level at energy
e is coupled with a source and a drain contacts at different electrochemical potentials,
as shown in fig. 3.3-right. Of course the source pumps electrons into the level, while
the drain extracts electrons from it, both attempting to reach an equilibrium state. When
this is achieved, the average occupation N of the level will be something intermediate
between fl(e) and fr(e). Thus, a net flux of electrons Il across the left junction,
proportional to fl�N (the energy argument is dropped for clarity), is achieved:

Il =�
|e|gl

h̄
( fl�N) (3.42)

With the same token, the net flux across the right junction reads as:
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µl µrµF

SOURCE DRAIN

V = 0

µl

µr

SOURCE DRAIN

Dµ
=
�
|e
|V

I IV

FIGURE 3.3: Energy level diagram of a two terminal device in equilibrium (left) and
under forward bias (V>0) (right)

µl
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e

I IV

gl fl(e)
h̄ !

 glN
h̄

 gr fr(e)
h̄

grN
h̄ !

e

N

I IV

FIGURE 3.4: Energy level diagram taking into account level broadening (left) and flux
of electrons into and out a one level channel (right)

Ir =�
|e|gr

h̄
( fr�N) (3.43)

where gl/h̄ and gr/h̄ assume the meaning of rate constants, i. e. the rates at which one
electron placed on level e can escape into the source or drain, respectively (see fig. 3.4-
right).
At steady state the net electron flux into or out of the channel must be zero, then

Il + Ir = 0 (3.44)

from which follows that the occupation N of the level is the weighted average of fl and
fr:

N =
gl fl + gr fr

gl + gr
(3.45)
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Substituting this result into eq. 3.42 or 3.43, we get an expression for the steady-state
current I (per spin):

I = Il =�Ir =�
e
h̄

glgr

gl + gr
[ fl(e)� fr(e)] (3.46)

It is evident from eq. 3.46 that no current flows if fl(e) = fr(e). Thus, a level locate
above ( fl(e) = fr(e) = 1) or below ( fl(e) = fr(e) = 0) both electrochemical potentials
will not contribute to the current. Thus we arrive at the fundamental results that only
levels in between of µl and µr take part in the conduction process.
Depending on whether the level e is empty or filled (at steady state) we can distinguish
two type of current:

• n-type: empty state at e , electrons are first injected by the negative contact and
subsequently collected by the positive contact.

• p-type: filled state at e , electrons are first collected by the positive contact and
then refilled by the negative contacts.

Let’s assume that µl < e < µr. If the temperature is low enough that fl(e) ⇡ 1 and
fr(e)⇡ 0 we can simplify the above expression for the current:

I =�e
h̄

glgr

gl + gr
(3.47)

Furthermore, for a symmetric device we have:

gl = gr = g (3.48)

and eq. 3.47 reduces to:
I =�eg

h̄
(3.49)

This would suggest that we can pump unlimited current through this one level device
by increasing the coupling with the electrodes (g). But this is in contrast with one of
the main results stated above, that is the upper limit of conductance G0 associated with
a one-level device. What we have ignored is that the coupling causes the broadening of
the level, the more the higher the coupling (see fig. 3.4-left). If the coupling is strong
enough, part of the level is spread outside µl and µr, then the current is reduced by a
factor:

µl�µr

Cg
(3.50)
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where C is a constant introduced in order to take into account the fraction of the level
between µl and µr and Cg represents the width of the level. Since µl�µr =�|e|VSD, it
follows that:

I =
|e|2gVSD

2h̄Cg
(3.51)

G =
I

VSD
=

|e|2

2Ch̄
(3.52)

Then we arrive to the reasonable result that G approaches a constant value independent
of the strength of the coupling to the contacts.
To make the result more general, one should introduce the density of states De(E)

generated by the broadening of the level e , then eq. 3.45 and 3.46 become:

N =

+•
Z

�•

dE De(E)
gl fl(E)+ gr fr(E)

gl + gr
(3.53)

I =�e
h̄

+•
Z

�•

dE De(E)
glgr

gl + gr
[ fl(E)� fr(E)] (3.54)

To further generalize the problem we introduce a gate potential U =�|e|VG, where VG

is the gate bias, which is assumed to only raise in energy the level of the molecule and
not to affect the density of states (i.e. the gate is capacitively coupled to the molecule).
Thus the expression for N reads as:

N =

+•
Z

�•

dE De(E�U)
gl fl(E)+ gr fr(E)

gl + g2
=

+•
Z

�•

dE n(E) (3.55)

where
n(E) = De(E�U)

gl fl(E)+ gr fr(E)
gl + g2

(3.56)

assumes the meaning of the electron density per unit energy, while for I we get:

I =� |e|
h̄

+•
Z

�•

dE De(E�U)
glgr

gl + g2
[ fl(E)� fr(E)]

=�e
h

+•
Z

�•

dE T (E)[ fl(E)� fr(E)] (3.57)

where we have introduced the transmission function T (E):
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T (E) = 2pDe(E�U)
glgr

gl + gr
(3.58)

This is a key quantity in the transport theory, describing the probability that an electron
with energy E passes from one contact to the other through the level.

3.3 Dyson’s equation for the single level model

Let’s consider again the case of a single energy level coupled to two infinite electrodes.
Such system is described by the Hamiltonian:

Ĥ = Ĥl + Ĥr +Â
s

e0c†
0s c0s+

+Â
s

tl
�

c†
0s cls + c†

ls c0s
�

+Â
s

tr
�

c†
0s crs + c†

rs c0s
�

(3.59)

where Hl and Hr describe the left and right leads, e0 is the energy of the level and the
hopping elements tl and tr, assumed to be real, describes the coupling between the level
and the electrode. c and c† are the usual creation and annihilation operators for elec-
trons. The subindex 0 refers to the level, while l and r refer to the outermost sites of the
left and right electrode.
Specifically we want to understand how the level is modified by the coupling to the
electrodes. For this reason it will not be necessary for the present discussion to spec-
ify anything about the shape or the electronic structure of the leads. To this aim we
need to compute the local density of states projected onto the level. This requires the
calculation of the Green’s function matrix element G00(E) (no matter whether it is re-
tarded or advanced) by means of the Dyson’s equation*. Our choice for the unperturbed
Hamiltonian H0 is the sum of the Hamiltonians of the three uncoupled subsystems:

Ĥ0 = Ĥl + Ĥr +Â
s

e0c†
0s c0s (3.60)

Thus the perturbation V includes the terms describing the coupling between the local-
ized level and the electrodes:

V = Â
s

tl
�

c†
0s cls + c†

ls c0s
�

+Â
s

tr
�

c†
0s crs + c†

rs c0s
�

(3.61)

*The definition and the properties of Green’s functions are reported in appendix A
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Indicating with G the full Green’s function and with g that of the unperturbed systems,
the Dyson’s equation in matrix form reads as:

0

B

B

@

Gll Gl0 Glr

G0l G00 G0r

Grl Gr0 Grr

1

C

C

A

=

0

B

B

@

gll 0 0
0 g00 0
0 0 grr

1

C

C

A

+

+

0

B

B

@

gll 0 0
0 g00 0
0 0 grr

1

C

C

A

0

B

B

@

0 Vl0 Vlr

V0l 0 V0r

Vrl Vr0 0

1

C

C

A

0

B

B

@

Gll Gl0 Glr

G0l G00 G0r

Grl Gr0 Grr

1

C

C

A

(3.62)

Neglecting the interactions between the leads we have Vlr =Vrl = 0.
Specifically we are interest in the G00 element:

G00(E) = g00(E)+g00(E)V0lGl0(E)+g00(E)V0rGr0(E) (3.63)

where V0l = tl , V0r = tr and g00(E) = (E� e0)�1. To close this equation we need to de-
termine the functions Gl0(E) and Gr0(E). This can be done by taking the corresponding
elements in Dyson’s equation:

Gl0(E) = gll(E)Vl0G00(E) (3.64)

Gr0(E) = grr(E)Vr0G00(E) (3.65)

where Vl0 = tl , Vr0 = tr and gll(E) and grr(E) are the Green’s functions of the two
outermost sites of the left and right electrodes, respectively. Substituting into eq. 3.63
we obtain:

G00(E) = g00(E)+g00(E)V0lgll(E)Vl0G00(E)+g00(E)V0rgrr(E)Vr0G00(E) (3.66)

In this equation it is easy to identify the self-energy S00:

G00(E) = g00(E)+g00(E)
⇥

V0lgll(E)Vl0 +V0rgrr(E)Vr0
⇤

G00(E) (3.67)

= g00(E)+g00(E)
⇥

gll(E)t2
l +grr(E)t2

r
⇤

G00(E) (3.68)

= g00(E)+g00(E)S00(E)G00(E) (3.69)

In terms of the self-energy we can express G00(E) as:

G00(E) =
1

E� e0�S00(E)
(3.70)
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where we have used the expression of g00(E). Here it appears evident that the self-
energy describes how the resonant level is modified by the interaction with the leads.
In particular its real part accounts for the renormalization of the level position, which
becomes

e0 ! ē0 = e0 +ReS00(E) (3.71)

while its imaginary part describes the broadening in energy of the level due to the cou-
pling with the electrodes. This latter point becomes more clear by using the following
approximation. Let us assume that the Green’s function of the (uncoupled) leads are
imaginary for energy close to e0 and that they do not depend significantly on energy in
this region. Hence gll and grr are related to the local density of states rl,r of the leads at
the energy e0:

gR,A
ll ⇡⌥iprl(E = e0) gR,A

rr ⇡⌥iprr(E = e0) (3.72)

Introducing the scattering rates Gl,r, i.e. the rates at which one electron on level e can
escape into the left or right electrodes:

Gl = t2
l prl(E = e0) Gr = t2

r prr(E = e0) (3.73)

the self-energy becomes:
Sr,a

00 =⌥i(Gl +Gr) (3.74)

Finally, substituting the self-energy in eq. 3.70 the function G00(E) reads as:

G±
00(E) =

1
E� e0 ± i(Gl +Gr)

(3.75)

The local density of states is related to the imaginary part of the Green’s function, thus
we arrive at the result:

r0(E) =⌥
1
p

ImG±
00(E) =

1
p

Gl +Gr

(E� e0)2 +(Gl +Gr)2 (3.76)

which is a lorentzian function where G = Gl +Gr is the half-width at half-maximum.
This result shows clearly that the resonant level, which originally had zero width, being
an eigenstate of the isolated central region, acquires a finite width G as a consequence
of the coupling to the leads. Of course this width depends both on the strength of the
coupling, via the tl,r elements, and on the local electronic structure of the leads, through
gll and grr. Furthermore, the inverse of the level width h̄/G assumes the meaning of the
time spent by an electron in the resonant level. In other words, the stronger the coupling
the quicker the electrons flow from the electrode into the level and viceversa.
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3.4 Non-equilibrium Green’s function method

In this section we will present a comprehensive description of the non-equilibrium
Green function (NEGF) formalism applied to transport†. In particular our aim is to de-
rive an equation for the current flowing between the leads when a bias voltage is applied.
To this aim the Green functions can be used to calculate the steady-state charge density
and a self-consistent procedure can be put in place provided the system’s Hamiltonian
is a functional of the charge density (or the density matrix). In order to simplify the
problem we will further show that we can focus on an “extended molecule” region and
add the effects of the electrodes in terms of self-energies which are only statically (non-
self-consistently) affected by the external potential. The procedure presented here is
very general. In principle, one could use any Hamiltonian to calculate the Green func-
tion. Specifically throughout this thesis the Hamiltonian will be computed at density
functional theory (DFT) level, as implemented in the Siesta95/Transiesta96 package.

3.4.1 Green’s operator for the (coupled) scattering region

Let us consider a contact with an arbitrary geometry, that can be either an atomic con-
tact or a molecular junction. The system can be divided intro three parts: the electron
reservoirs L and R (the electrodes) and a central region C (the scattering region) that
can have arbitrary shape and size (see fig. 4.1). In principle also the reservoirs could
also have an arbitrary shape and we assume that an electron in these subsystems has
a well defined temperature and chemical potential. The separation of the contact into
these three subsystems is somewhat arbitrary, but we assume that the central part is
large enough to avoid interactions between the reservoirs and to account for the screen-
ing effects (transferred charges). L and R are semi-infinite regions, but where electronic
motion is non-interesting provided it does not interfere with the motion in C. We thus
seek to express the relevant quantities in terms of operators pertaining to region C only.
The Hamiltonian for the whole system, in matrix notation, reads as:

2

6

6

4

ĤLL ĤLC 0
ĤCL ĤCC ĤCR

0 ĤRC ĤRR

3

7

7

5

(3.77)

†The content of this section is largely based on ref. [Martinazzo 82], for courtesy of Prof. Martinazzo.
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C

L R

GLL

GCR,GRCGLC,GCL

GRRGCC

FIGURE 3.5: Schematic representation of an atomic scale contact with arbitrary ge-
ometry. The left and right electron reservoirs, in principle semi-infinite, are labeled L

and R, respectively, the scattering region with C

where the diagonal elements are the Hamiltonians for the three subsystems and the re-
maining terms account for the coupling between them. In order to calculate the Green’s
function for the scattering region GCC, we first introduce the projector operators for the
three subsystems, which satisfy:

R2 = R = R† C2 =C =C† L2 = L = L†

RL = LC = RC = 0 LHR = RHL = 0 R+L+C = 1 (3.78)

The Green’s function of the whole system obeys the equation:

(l � Ĥ)G(l ) = Î (3.79)

in terms of the components of the above spaces. In matrix notation we obtain:

2

6

6

4

l � ĤLL �ĤLC 0
�ĤCL l � ĤCC �ĤCR

0 �ĤRC l � ĤRR

3

7

7

5

2

6

6

4

GLL(l ) GLC(l ) GLR(l )
GCL(l ) GCC(l ) GCR(l )
GRL(l ) GRC(l ) GRR(l )

3

7

7

5

=

2

6

6

4

L 0 0
0 C 0
0 0 R

3

7

7

5

(3.80)
Since we are interest only in GCC, we focus on the middle-column equation only:

8

>

>

>

<

>

>

>

:

(l � ĤLL)GLC(l )� ĤLCGCC(l ) = 0

(l � ĤCC)GCC(l )� ĤCLGLC(l )� ĤCRGRC(l ) = 0

(l � ĤRR)GRC(l )� ĤRCGCC(l ) = 0

(3.81)
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Solving for GLC and GRC the first and third equations we get:

GLC(l ) = gL(l )ĤCLGCC(l ) (3.82)

GRC(l ) = gR(l )ĤRCGCC(l ) (3.83)

where gL(l ) and gR(l ) are the Green’s functions for the uncoupled left and right elec-
trodes, given by:

gL(l ) = (l � ĤLL)
�1 (3.84)

gR(l ) = (l � ĤRR)
�1 (3.85)

Substituting in eq. 3.81 we arrive at:

⇥

(l � ĤCC)� ĤCLgL(l )ĤLC� ĤCRgR(l )ĤRC
⇤

GCC(l ) =C (3.86)

Thus the scattering region projection of the exact Green’s function is the Green’s func-
tion of an effective Hamiltonian in C space:

(l � Ĥe f f (l ))GCC(l ) =C (3.87)

i.e.
GCC(l ) =

C
(l � Ĥe f f (l ))

(3.88)

where
Ĥe f f (l ) = ĤCC + ĤCLgL(l )ĤLC + ĤCRgR(l )ĤRC (3.89)

In particular, considering l = limh!0+(E + ih) we can write:

Ĥe f f (E) = ĤCC +S+
L (E)+S+

R (E) (3.90)

where
S+

L (E) = ĤCLg+L (E)ĤLC (3.91)

S+
R (E) = ĤCRg+R (E)ĤRC (3.92)

are the left and right self-energies of the electrodes, expressed in terms of the Green’s
functions of the semi-infinite leads. They have both a real and an imaginary part which
readily follow from the real and imaginary part of g+L and g+R :

ReS+
L (E) = ĤCLgp

L(E)ĤLC = DL(E) (3.93)
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ImS+
L (E) = ĤCL(�pd (E� ĤLL))ĤLC =�GL(E)

2
(3.94)

where gp
L(E) is the principal value of gL(E). In this way we can rewrite Ĥe f f (E) as:

Ĥe f f (E) = ĤCC +D(E)� i
G(E)

2
(3.95)

where we have introduced the self-adjoint operators D(E) and G(E) defined as:

D(E) = DL(E)+DR(E) (3.96)

G(E) = GL(E)+GR(E) (3.97)

As anticipated in the single-level model section, the self-energy accounts for the modi-
fications of the energy level of the scattering region. Specifically, D(E) describes their
shift in energy while G(E) their broadening as a consequence to the coupling with the
electrodes. The problem of determining G+

CC(E) thus reduces to the problem of com-
puting the electrodes self-energies and build up (and invert) the effective Hamiltonian.
It is obvious that the self-energies account for the motion in the region L, R in which we
are not interested. Note, however, that gL (gR) refers to ĤLL (ĤRR) i.e. to the dynamics
in electrode L (R) when it is not coupled to the scattering region (otherwise we would
need of GLL instead of gL).

3.4.2 Green’s operator for the uncoupled electrodes

The left (right) electrode regions are semi-infinite themselves, and no real simplification
would occur if we could not compute the Green’s operators g+L,R(E). Fortunately, to
compute the self-energy expression (here for the left electrode):

S+
L (e) = ĤCLg+L (E)ĤLC (3.98)

C

L4 L3 L2 L1

FIGURE 3.6: Schematic representation of the partitioning of the left electrode
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we only need those matrix elements hEi,L| ĤLC |E 0i ,Li involving electrode states |Ei,Li,
|E 0i ,Liwhich are coupled to the scattering region states |fCi, i.e. for which hEi,L| ĤLC |fCi 6=
0. This is the key observation, which considerably simplifies the problem. As before we
could use the partitioning technique to divide the left electrode in infinite subregions,
as shown in fig. 3.6. This allows to calculate the Green’s function gii(E) that accounts
for the electron dynamics in the Li region, i.e. the Li projection of the exact Green’s
function of the uncoupled electrode.
Suppose that ĤLC is of “short” range and consider the region L1 which couples to C via
ĤCL. If the subregions L1, L2 ... are large enough to interact with the nearest neighbors
only we can write down the equation for g11(l ) (and for L1):

2

6

6

6

6

6

6

6

4

l � Ĥ11 �V12 0 0 0
�V21 l � Ĥ11 �V23 0 0

0 �V32 l � Ĥ11 . . . 0
0 0 . . . . . . �VN�1,N

0 0 0 �VN,N�1 l � ĤNN

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

g11(l )
g21(l )
g31(l )

...
gN1(l )

3

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

4

L1

0
0
...
0

3

7

7

7

7

7

7

7

5

(3.99)
Upon truncating at the N-th order, we solve for the N-th equation:

�VN,N�1gN�1,1(l )+(E� ĤNN)gN1(l ) = 0 (3.100)

from which follows:

gN1(l ) = (l � ĤNN)
�1VN,N�1gN�1,1(l ) (3.101)

and inserting this expression in the N�1-th equation:

�VN�2,1gN�2,1(E)+
⇥

E� (ĤN�1,N�1�VN�1,N(E� ĤNN)
�1VN,N�1)

⇤

gN�1,1 = 0
(3.102)

we get the gN�1,1 element:

gN�1,1(l ) =
⇥

l � (ĤN�1,N�1�VN�1,N(l � ĤNN)
�1VN,N�1)

⇤

VN�2,1gN�2,1(l )
(3.103)

Keeping reasoning in this way, we arrive at the solution for g11:

g11(l ) = (l � Ĥe f f
1 (l ))�1L1 (3.104)
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where the N-th order electrode effective Hamiltonian and self-energy read as:

(

Ĥe f f
N (l ) = ĤNN +SN(l )

SN(l ) =VN,N+1(l � Ĥe f f
N+1(l ))�1VN+1,N

N=1,2... (3.105)

Thus this procedure allows to compute the L1 projection of gL in terms of the self-energy
S+

1 (l ) of the remainder region L2 +L3 + .... In turn we would need the self-energies
S+

2 (l ), S+
3 (l ), ... up to some high order N where we can reasonably truncate the

procedure.
The alghoritm is completely general, considerable simplifications occur when Ln are
periodic images of each other. Indeed in this case, upon introducing the matrices Ĥ and
V̂:

Hnm =
n

hc(1)
n | Ĥ |c(1)

m i
o

(3.106)

Vnm =
n

hc(1)
n |V |c(2)

m i
o

(3.107)

where |c(1)
m i and |c(2)

m i are basis vectors in L1 and L2
‡, one obtains the matrix elements

of the Green’s functions of interest:

gnm(l ) = hc(1)
n |gL(l ) |c(1)

m i (3.108)

which solves the matrix equation:

h

l � (Ĥ+ V̂g(l )V̂†)
i

gL(l ) = 1 (3.109)

3.4.3 Scattering states

The Green’s functions defined above provide a convenient way to calculate the current.
Assuming that no energy relaxation processes occur in the scattering region, we can di-
vide the electron in such region in two set of scattering-wave states, those coming from
the left lead and those from the right. The left-lead states are, of course, filled up to the
chemical potential in the left lead, µL, the right-lead states up to µR. The Green’s func-
tion easily allows the determination of such scattering states, i. e. of those (improper)
eigenvectors of the Hamiltonian which describe the evolution of a “free” propagating

‡Of course the basis vectors in L2 are the periodic images of the basis vectors in L1
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state into (and out) of the scattering region. According to the general scattering the-
ory §, the eigenstate |li,L+i evolves from the freely propagating state |li,Li in the left
electrode according to Lippman-Schwinger equation:

(l � Ĥ) |li,L+i= (l � ĤLL) |li,Li (3.116)

Introducing G(l ) = (l � Ĥ)�1 and rearranging the above equation:

|li,L+i= G(l )(l � Ĥ + Ĥ� ĤLL) |li,Li=
⇥

1+G(l )(Ĥ� ĤLL)
⇤

|li,Li (3.117)

§ Typically, the scattering formalism is described in the following way: an incident particle in state
|y0i is scattered by the potential V , resulting in a scattered state |ysi. The incident state |y0i is assumed
to be an eigenstate of the free-particle Hamiltonian Ĥ0, with eigenvalue E. The goal of scattering theory
is then to solve the full eigenstate problem:

(E� Ĥ0�V ) |yi= 0 (3.110)

where |yi is the eigenstate of the full Hamiltonian Ĥ = H0 +V with energy E. It should be clear that
there is a different |y0i and correspondingly, a different |yi for each energy E, even though the notation
does not indicate this explicitly. We first define the scattered state |ysi as:

|ysi= |yi� |y0i (3.111)

Introducing this definition in eq. 3.110 and noticing that (E� Ĥ0) |yi= (E� Ĥ0) |y0i we get:

|ysi= (E� Ĥ0)
�1 |yi= G0(E) |yi (3.112)

Where the unperturbed Green’s function G0(E) has been introduced. Adding |y0i to both sides:

|yi= |y0i+G0(E)V |yi (3.113)

This is known as the Lippman-Schwinger equation, and can be solved iteratively. After an infinite number
of iterations, this procedure leads to:

|yi= (1+G0(E)V +G0(E)V G0(E)V +G0(E)V G0(E)V G0(E)V + ...) |y0i (3.114)

which is known as the Born series. This is a perturbation expansion which is not guaranteed to converge,
even though the above Lippman-Schwinger equation is always well defined (and the scattering states with
it). Written as an integral equation, this reads as:

y(r) = y0(r)+
Z

dr0G0(r,r0)V (r0)y0(r0)+
Z

dr0
Z

dr00G0(r,r0)V (r0)G0(r0,r00)V (r00)y0(r00)+ ...

(3.115)
We can interpret this result as follows: if we put a detector at position r, the first term represents the
probability amplitude that the particle arrive in r without scattering. The second terms describes the
particle scattering once, at a point r0, where its amplitude is increased/decreased by a factor V (r0), and
then propagating as a free-spherical wave centered at r0 to the detector. The integral over all r0 then sums
over all possible collision locations. The next terms describes the particle scattering twice, summing
over both collision locations and so on. Thus we see that the total amplitude is the sum over all possible
trajectories that the particle could travel to reach the detector, assuming straight-line propagation between
point-contact collisions.
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Specifically, considering l = limh!0+(E + ih), the above equations are well defined
and have a single solution:

|Ei,L+i= |Ei,Li+G+(E)(Ĥ� ĤLL) |Ei,Li (3.118)

The advantage of using the above formalism in defining the eigenstate |Ei,L+i is that
one explicitly introduce in that way the desired boundary condition, i. e. |Ei,L+i !
|Ei,Li when the interaction Ĥ� ĤLL is switched off.
The propagating states |Ei,Li satisfy the equations:

L |Ei,Li= |Ei,Li (3.119)

(Ĥ� ĤLL) |Ei,Li= ĤCL |Ei,Li (3.120)

since we have assumed no interactions between the leads (ĤRL = 0), hence:

|Ei,L+i= |Ei,Li+G+(E)ĤCL |Ei,Li (3.121)

from which the components of |Ei,L+i in the R, C, and L spaces, respectively, read as:

|fRi= R |Ei,L+i= G+
RC(E)ĤCL |Ei,Li (3.122)

|fCi=C |Ei,L+i= G+
CC(E)ĤCL |Ei,Li (3.123)

|fLi= |Ei,Li+G+
LC(E)ĤCL |Ei,Li (3.124)

The latter in particular show both an “incident” contribution (|Ei,Li) and a “scattered”
term (second term on the r.h.s.). Introducing the previously obtained expressions for the
Green’s functions (eq. 3.82 and 3.83) in the scattering region we obtain:

|fRi= g+R ĤRCG+
CC(E)ĤCL |Ei,Li (3.125)

|fCi= G+
CC(E)ĤCL |Ei,Li (3.126)

|fLi= |Ei,Li+g+L ĤLCG+
CC(E)ĤCL |Ei,Li (3.127)

now in terms of the fundamental G+
CC Green’s function, defined, in according to eq.

3.88, as:
G+

CC(E) = lim
h!0+

(E + ih� Ĥe f f (E))�1C (3.128)
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where, as previously defined, the effective Hamiltonian and the self-energies are defined
by:

Ĥe f f (E) = ĤCC +S+
R (E)+S+

L (E) (3.129)

S+
L (E) = ĤCLg+L (E)ĤLC (3.130)

S+
R (E) = ĤCRg+R (E)ĤRC (3.131)

It is obvious that, by construction, the vectors |Ei,L+i are eigenvectors of the full
Hamiltonian with energy E, as it can be verified by an explicit calculation:

(E� Ĥ) |Ei,L+i= (E� Ĥ) |Ei,Li+(E� Ĥ)G+(E) |Ei,Li=

= (E� ĤCL� ĤLL) |Ei,Li=�ĤCL |Ei,Li+ ĤCL |Ei,Li= 0 (3.132)

where limh!0+(E� Ĥ)G+(E) = 1 and (E� ĤLL) |Ei,Li= 0 have been used. The vec-
tors |Ei,L+i contain the basic information we need to describe the scattering process
and can be obtained through eq. 3.125-3.127 from GCC(E). In practice such equations
determine the projection of the scattering states onto the R, C and L regions.

3.4.4 Self-consistency

So far we have assumed that the Hamiltonian is given and focused on how to express
the quantities of interest in terms of the Green’s function of the scattering region only.
However Ĥ is at most a mean field Hamiltonian, i. e. an effective mono-electronic
operator which has to be self-consistent with its solutions. For a system in equilibrium
(i. e. µR = µL = µC) this condition is easily established by looking at the density of
states and populating them up to the Fermi level, namely introducing the density matrix
of the electronic system, g . Explicitly, in the interesting scattering region this reads as:

g =
Z

dE f (E�µ)d (E� Ĥe f f ) (3.133)

where f (E�µ) is the Fermi-Dirac distribution function:

f (E�µ) = 1

1+ e
(E�µ)

KbT

(3.134)

and d (E � Ĥe f f ) is the density-of-states operator of the scattering region. Then, re-
membering that ImG+(E) = �pd (E � Ĥ), we can establish a connection between g
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and G+
CC(E):

g =� 1
p

Im
+•
Z

�•

G+
CC(E) f (E�µ)dE (3.135)

which is usually evaluated by exploiting the analytic properties of GCC(E), namely
replacing the path along the real axis with an equivalent path on the upper half plane,
where GCC(l ) is free of singularities. Notice that the chemical potential is fixed by the
normalization condition

Trg = N (3.136)

where N is the number of electrons in the scattering region. We can explicitly write the
density-of-states operator in terms of the effective Hamiltonian Ĥe f f by using

ImGCC(l ) = Im
⇥

GCC(l )(G+
CC(l ))

�1G+
CC(l )

⇤

= Im
h

GCC(l )(l ⇤ � Ĥe f f †)G+
CC(l )

i

=

= GCC(l )
h

Im(l ⇤ � Ĥe f f †)
i

G+
CC(l ) = GCC(l )



Iml ⇤ � G(l )
2

)

�

G+
CC(l )

where eq. 3.88 and 3.94, along with the hermitian properties of Green’s functions have
been used. Considering l = limh!0+(E + ih)¶:

d (E� Ĥe f f ) =
1

2p
G+

CC(E)G(E)G
�
CC(E) (3.137)

Taking into account that G has contribution from both the left and right electrodes (eq.
3.97), we end up with:

g = gL + gR (3.138)

where, recalling eq. 3.94, we define gL as:

gL =
1

2p

Z

dE f (E�µ)G+
CC(E)GL(E)G�CC(E) =

=
Z

dE f (E�µ)G+
CC(E)ĤCLd (E� ĤLL)ĤLCG�CC(E) (3.139)

and similarly for gR. In particular the charge density at the point x in the scattering
region reads as:

r(x) = rL(x)+rR(x) = hx|gL |xi+ hx|gR |xi (3.140)
¶Notice that Iml ⇤ ! 0+, but if G vanishes, i.e. in the presence of an isolated conductor, Iml ⇤ cannot

be neglected.
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where

rL(x) =
Z

dE f (E�µ)hx|G+
CC(E)ĤCLd (E� ĤLL)ĤLCG�CC(E) |xi (3.141)

is the contribution of electrons from the left electrode and similarly for rR(x). More
precisely with the help of the scattering states introduced above we can write down the
contribution of the states which evolved from the left electrode:

d (E� Ĥe f f ) = Â
i

C |Ei,L+ihEi,L+|C =

= Â
i

G+
CC(E)ĤCL |Ei,L+ihEi,L+| ĤLCG�CC(E) =

= G+
CC(E)ĤCLd (E� ĤLL)ĤLCG�CC(E) (3.142)

and similarly for the right electrode. This observation is crucial to investigate the case
where the system is in a non-equilibrium state, i. e. µR� µL = Dµ 6= 0. In this case,
indeed it is reasonable to define the non-equilibrium density matrix as:

g = gL + gR (3.143)

gL =
Z

dE f (E�µL)dL(E� Ĥe f f ) (3.144)

gR =
Z

dE f (E�µR)dR(E� Ĥe f f ) (3.145)

where µR and µL are now external parameters, typically expressed as:

µL = µ +
Dµ
2

(3.146)

µR = µ� Dµ
2

(3.147)

where µ = µL+µR
2 is the equilibrium chemical potential and Dµ is related to the “macro-

scopic” bias:
Dµ =�|e|Vbias (3.148)

Thus the non-equilibrium charge r(x) in the scattering region used to built the effective
Hamiltonian has to be consistent with the density matrix defined above, namely:

r(x) = hx|g |xi= hx|gL |xi+ hx|gR |xi (3.149)
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This define a self-consistent procedure which is of paramount importance to correctly
describe screening effects within the scattering region; at self-consistency, Ĥe f f (for a
given Dµ) is the effective Hamiltonian whose eigenvectors contain the scattering infor-
mation needed to describe transport across the scattering region.

3.4.5 Transmission probability and current

Having defined an effective Hamiltonian for a given non-equilibrium condition, we are
in a position of computing the relevant scattering information. We are interested in the
probability that an electron coming from the left electrode ends up in the right electrode,
that can be called the transmission probability. According to general scattering theory
this probability is the expectation value of a product-region flux operator FR which, in
our case, reads as:

FR = i
⇥

Ĥ,R
⇤

= i(ĤR�RĤ) = i(ĤCR� ĤRC) =�2ImHCR (3.150)

on account of the property ĤLR = ĤRL = 0. The probability that an electron in the state
|Ei,Li “evolves” into the right electrode is then given by:

Pi = 2p hEi,L+|FR |Ei,L+i (3.151)

The total (or cumulative) transmission probability from left to right is obtained upon
summing over |Ei,L+i:

TR L(E) = 2p Â
i
hEi,L+|FR |Ei,L+i=�4p Â

i
ImhEi,L+|HCR |Ei,L+i (3.152)

and takes a simple form once

R |Ei,L+i= g+R (E)ĤRCG+
CC(E)ĤCL |Ei,L+i (3.153)

C |Ei,L+i= G+
CCĤCL |Ei,L+i (3.154)

are introduced in eq. 3.152 and the sum is replaced by an appropriate trace operation,
the trace being conveniently taken over states in the scattering region. To this end, we
introduce a basis |cki in C:

TR L(E) =�4p Â
i,k

Im
⇥

hEi,L+ |ckihck| ĤCR |Ei,L+i
⇤

(3.155)
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After some mathematical rearrangements and introducing GL(E) (defined in eq. 3.94)
we arrive at:

TR L(E) =�2Im
⇥

Tr(ĤCRg+R (E)ĤRCG+
CC(E)GL(E)G�CC(E))

⇤

(3.156)

The imaginary part is easily computed after noticing that:

Tr(ĤCRg+R (E)ĤRCG+
CC(E)GL(E)G�CC(E))

† =

= Tr(G+
CC(E)GL(E)G�CC(E)ĤCRg�R (E)ĤRC) =

= Tr(ĤCRg�R (E)ĤRCG+
CC(E)GL(E)G�CC(E)) (3.157)

thanks to the invariance under cyclic permutation of the traced operator and we found
that:

TR L(E) = Tr
⇥

ĤCR(�2Img�R (E))ĤRCG+
CC(E)GL(E)G�CC(E)

⇤

(3.158)

where �2Img�R (E) = 2pd (E� ĤRR) and thus:

TR L(E) = Tr
⇥

GR(E)G+
CC(E)GL(E)G�CC(E)

⇤

(3.159)

once GR(E) = 2pĤCRd (E� ĤRR)ĤRC has been introduced. From this expression it is
not hard to show that, if Ĥ is invariant under time-reversal operation,|| we have for the
reverse process:

TL R(E) = TR L(E) = Tr
⇥

GL(E)G+
CC(E)GR(E)G�CC(E)

⇤

(3.161)

Thus, under such circumstances, we can unambiguously refer to the cumulative trans-

mission probability as:

T (E) = Tr(GR(E)G+
CC(E)GL(E)G�CC(E)) (3.162)

||The anti-linear time-reversal operator T̂tr, acts on the position and momentum operators as follows:

T̂ †
tr x̂T̂tr = x̂ T̂ †

tr p̂T̂tr =�p̂ (3.160)

If no linear terms in p̂ appear in the Hamiltonian e.g., this results invariant under time-reversal operations
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The current can be computed with the help of the above results. The current L! R

carried by the states |Ei,Li is given by:

dIi,L =�|e|nL(E)Pi(E)vi(E)
dk
2p

(3.163)

where nL is the occupation probability of the state, Pi(E) is the above transmission
probability, vi(E) = ∂E/∂k is electron velocity in the state and dK/2p accounts for the
discretization of states in k-space:

dk
2p

= number o f states f or unit length ⇥ number o f states f or unit k (3.164)

The number of states for unit length times nL(E)Pi(E) defines the linear density of
current-carrying electrons. Upon summing over i and noticing that vi(E)dk = dE, irre-
spective of the dispersion relation (along the transport direction):

dIL =� |e|
h

nL(E)TR L(E)dE (3.165)

Thus the total current from left to right reads as:

I =� |e|
h

+•
Z

�•

dE [nL(E)TR L(E)�nR(E)TL R(E)] (3.166)

on accounts of those electrons that starting from the right electrode ends up to the left
one. Under time-reversal invariance the above expression simplifies to:

I =� |e|
h

+•
Z

�•

dE T (E)(nL(E)�nR(E)) (3.167)

The zero-temperature case is schematically shown if fig. 3.7. Here, for small bias d µ
and at ordinary temperatures, which are well below the fermi temperature of the metals,

nL(E)�nR(E)⇡
∂n
∂ µ

(E,µ)d µ ⇡ d (E�µ)d µ (3.168)

where µ = µL+µR
2 is the average chemical potential, hence:

d I =
|e|2

h
T (µ)dV = G(µ)dV (3.169)
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FIGURE 3.7: Energy level diagram of a two terminal device under applied bias. Notice
that the maxima of the transmission function correspond to the energy levels of the
molecule. The current flowing between the leads is proportional to the green area of

the transmission plot.

where d µ =�|e|dV has been used and

G(µ) = |e|2

h
T (µ) (3.170)

is the conductance (at zero bias), when the Fermi level is positioned at µ . Thus we can
interpret T (E) as the zero-bias conductance (in units of the quantum of conductance
|e|2/h) when the fermi level is located at energy E, provided we disregard the effect
that any gate potential has on the effective Hamiltonian used to compute T (E). Alter-
natively, but always assuming that T (E) does not essentially depend on the bias we can
consider the differential conductance:

dI
dV

=�|e| dI
d(Dµ)

=
|e|2

2

+•
Z

�•

dE T (E)
d

d(Dµ)



n(E,µ +
Dµ
2
)�n(E,µ� Dµ

2
)

�

(3.171)

=
|e|2

2

+•
Z

�•

dE T (E)
1
2



∂n
∂ µ

(E,µL)�
∂n
∂ µ

(E,µR)

�

(3.172)

where ∂n
∂ µ (E,µ)⇡ d (E�µ) and thus:

dI
dV
⇠=

|e|2

2
T (µL)+T (µR)

2
(3.173)

which obviously reduces to the previous result when the conductance is taken at zero
bias (µL = µR = µ). The above result also show that under the above hypothesis
dI/dV > 0, thus the negative differential resistance which is observed in some instances
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can only be due to the dependence of T (E) on the applied bias.

3.4.6 Combining DFT with NEGF

The junction considered above are neither finite nor periodic, making difficult the ap-
plication of DFT. Moreover we are interest in situations in which the system is driven
out of equilibrium, for instance by the application of a bias voltage. Although these
situations are out of the scope of the standard ground-state DFT, we can combine this
technique with NEGF in order to describe transport properties of nanoscale devices.
Essentially two issues need to be answered, specifically (i) how to compute the charge
density and (ii) how to make finite the dimension of the problem. To this aim we first
divide the junction into three parts, the left and right electrodes and the central scatter-
ing region, as already explained in the previous sections.
In this division one assumes that the electrodes are not perturbed by the central part
and thus their Hamiltonians and charge densities can be obtained from a separated DFT
bulk-like calculation. This is based on the assumption that deep inside a solid the Kohn-
Sham potential approaches the bulk potential. This approximation is often referred as
the screening approximation and in practice defines the size of the scattering region.
Second, within the LCAO approach, the charge density can be computed in terms of the
density matrix, which in turn can be calculated from the Green’s functions. These, in
terms of the local basis functions |ci, admit spectral representation:

G±
µn(E) = Â

i

|cµiihcin |
E�Ei ± ih

(3.174)

As shown in the previous section, the retarded or advanced Green’s function of the
central part allows to calculate the density matrix of this part of the system:

g =⌥ 1
p

•
Z

•

dE ImG±
CC f (E�µ) (3.175)

Now these Green’s function can be computed via their Dyson’s equation:

G± =
⇥

(E ± ih)S�H�S±
L �S±

R
⇤�1 (3.176)

where S = hci|c ji is the overlap matrix, H the one-electron Kohn-Sham hamiltonian of
the central part and S±

L,R are the self-energies of the left and right electrodes. The cal-
culation of these self-energies requires the computation of the Hamiltonian and Green’s
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FIGURE 3.8: Flowchart of the self-consistent loop for the solution of the non-
equilibrium transport problem. Adapted from ref. [Cuevas and Scheer 81]

function of the electrodes.
In this case DFT is used to compute the density matrix rather than solving the Kohn-

Sham equations. Such evaluation requires the calculations of the Green’s functions via
eq. 3.176 from the Kohn-Sham Hamiltonian of the central part. Since this in turn de-
pends on the charge density (and thus on the density matrix), eq. 3.175 and 3.176 are
coupled and need to be solved self-consistently. In this way we obtain an effective one-
electron description of the system and we can calculate the transmission probabilities.
One of the practical difficulties in the implementation of this method is the efficient and
accurate integration of the density matrix because of the poles of the Green’s function
on the real axis. However this problem is usually overcome using the fact that Green’s
functions are analytical functions in the upper and lower parts of the complex plane.
This means in practice that the integral in eq. 3.175 can be done by integrating along
a contour in the complex plane, where these functions are very smooth. Moreover, for
negative energy values, the integral in eq. 3.175 only requires the inclusion of all occu-
pied states of the scattering region and of the electrodes. Hence we can chose a finite
value for the lower limit of integration providing all the available states below the Fermi
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level being counted.
The practical implementation of the DFT-NEGF method in general follows the general
scheme shown in fig. 3.8, and differentiates mainly in the way in which the electrodes
Green’s functions are determined and how the potential and the Hamiltonian of the
central part are forced to match the corresponding ones of the electrodes.
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