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INTRODUCTION

Meta-analysis is a powerful tool to cumulate and summarize the knowledge in a research
field through statistical instruments, and to identify the overall measure of a treatment’s
effect by combining several study-specific results. However, it is a controversial tool,
because even small violations of certain rules can lead to misleading conclusions. Pooling
data through meta-analysis can create problems, such as non linear correlations,
multifactorial rather than unifactorial effects, limited coverage, or inhomogeneous data that
fails to connect with the hypothesis. In this work we provided and discussed methods to
overcome the limits of standard (univariate) meta-analysis, focusing on the ability to cope
with multiple treatments and to deal with correlated data where correlation can derive from

multiple endpoints, time-varying responses or from clustered observation.

In the first chapter we explore the principal steps (from writing a prospective protocol of
analysis to results’ interpretation) in order to minimize the risk of conducting a mediocre
meta-analysis and to support researchers to accurately evaluate the published findings.

The second chapter represents an overview of conceptual and practical issues of a network
meta-analysis. We start from general considerations on network meta-analysis to specifically
appraise how to collect study data, structure the analytical network, and specify the
requirements for different models and parameter interpretations. Specifically, we outline
the key steps, from literature search to sensitivity analysis, necessary to perform a valid
network meta-analysis on binomial data.

In the third party of this work, we focus our attention on data which can be analyzed with a
binomial model applying the Bayesian hierarchical approach and using Markov Chain Monte
Carlo approach. We also apply this analytical approach to a case study on the beneficial
effects of anesthetic agents in order to further clarify the statistical details of the models,

diagnostics, and computations.



In the fourth chapter we propose an alternative frequentist approach to estimate
consistency and inconsistency models for a network meta-analysis. We discuss the multilevel
network meta-analysis which include a three-level data structure: subjects within studies at
the first level, studies within study designs at the second level and design configuration at
the third level. We discuss multilevel modeling which may be carried out within widely
available statistical programs such as SAS software, and we compare the results of a
published Bayesian network meta-analysis on a binary endpoint which examines the effect
on mortality of desflurane, isoflurane, sevoflurane, and total intravenous anaesthetics at the
longest follow-up available.

In the final chapter we compare the Bayesian and the novel frequentist-multilevel approach
in performing network meta-analysis on publicly available data and we investigate the
descriptive characteristics that may contribute to decrease or increase the potential
difference between the estimates derived from the two approaches. The two approaches
were compared in terms of the difference between the pooled estimates or their

standardized values, and of the Euclidean distance.



CHAPTER 1
LIMITS OF STANDARD META-ANALYSIS

1.1 CRITICAL ISSUES AROUND META-ANALYSES: AN INTRODUCTION

The statistical origin of meta-analysis reaches back to the 17% century when intuitions and
experiences, in astronomy, suggest that combinations of data might be better than attempts
to select amongst them. Karl Pearson [1] was probably the first medical researcher to report
the use of formal techniques to combine data from different studies when examining the
preventive effect of serum inoculations against enteric fever. He analyzed data comparing
infection and mortality among soldiers who had volunteered for inoculation against typhoid
fever in various places across the British Empire with that of other soldiers who had not
volunteered. All individual estimates were presented for the first time in a table, together
with the pooled estimate. Karl Pearson appears to have been the first to analyse clinical trial
results using meta-analysis. He was especially thorough about questioning the consistency of
individual trial results and equally keen to discover clues from this for better future research.
However, a method for uncertainty estimation had not yet been identified. Although such
techniques would be widely ignored in medicine for many years to come [2], social sciences,
especially psychology and educational research, showed particular interest in them. Indeed,
in 1976 the psychologist Gene Glass [3] coined the term “meta-analysis” in a paper entitled
“Primary, Secondary and Meta-analysis of Research”, to help make sense of the growing
amount of data in literature. A meta-analysis was defined as analysis of analysis. This is a
powerful tool to summarizing several individual result into an overall measure of treatment
effect.

Since the 80s, the amount of information generated by meta-analyses grew constantly, up to
the point of becoming overwhelming. A PubMed search of the word “meta-analysis” in the
title or in the abstract yielded 55,986 hints (update at August 11™ 2014). The 30% of them
only in the years 2013 and 2014.



Meta-analysis is a powerful tool to cumulate and summarize the knowledge in a research
field through statistical instruments, and to identify the overall measure of a treatment’s
effect by combining several individual results [4]. However, it is a controversial tool, because
several conditions are critical and even small violations of these can lead to misleading
conclusions. In fact, several decisions made when designing and performing a meta-analysis
require personal judgment and expertise, thus creating personal biases or expectations that
may influence the result [5,6].

As statistical means of reviewing primary studies, meta-analyses have inherent advantages
as well as limitations [7]. Pooling data through meta-analysis can create problems, such as
non linear correlations, multifactorial rather than unifactorial effects, limited coverage, or
inhomogeneous data that fails to connect with the hypothesis. Despite these problems, the
meta-analysis method is very useful: it establishes whether scientific findings are consistent
and if they can be generalized across populations, it identifies patterns among studies,
sources of disagreement among results, and other interesting relationships that may emerge

in the context of multiple studies.

1.2 META-ANALYSIS’ PROTOCOL REGISTRATION

It is important to write a prospective analysis’ protocol, which specifies the objectives and
methods of the meta-analysis. Having a protocol can help restrict the risk of biased post hoc
decisions in methods, such as selective outcome reporting.

The PRISMA (Preferred Reporting Items Systematic Reviews and Meta-Analysis) guidelines
[8] recommend the prior registration of the protocol of any systematic review and meta-
analysis, requiring that this protocol should be made accessible before any hands-on work is
done. The prior registration (i.e. through PROSPERO - International prospective register of
systematic reviews) should prevent “the risk of multiple reviews addressing the same
qguestion, reduce publication bias, and provide greater transparency when updating
systematic reviews”. It is also true that meta-analyses are published only after passing
through at least two steps: peer reviews and an editorial decision. These filters may be

sufficient to decide whether a meta-analysis is good and novel enough to deserve



publication. Takkouche B et al. [9] stated that an additional committee or register does not
increase the quality of what is published but it only increases bureaucracy.

In a recent letter on British Medical Journal, Krumholz H et al. [10] showed how different
approaches on same patient level clinical trial data can bring to interpret the data
differently, and emphasise different points. Krumholz H et al. assert the redundancy should
be welcomed but it is important clarify similarities and contrasts with previous publications.
Rigorous meta-analyses undertaken according to standard principles (pre-specified protocol,
comparable definitions of key outcomes, quality control of data, and inclusion of all
information available) will ultimately lead to more reliable evidence on the efficacy and

safety of interventions than either retrospective meta-analysis [11].

1.3 IDENTIFICATION AND SELECTION OF STUDIES

The first reason to criticize the meta-analytic method is that it provides evidence extracted
and integrated from a number of primary studies, not from a random sampling; thus, results
cannot lead to test relations such as causality [12]. However, meta-analysis may lead to
support or rejection of the generalization of primary evidence, and may contribute to direct
future research in a field. Moreover, meta-analysis results can improve understanding but
sometimes they may not be very helpful in clinical practice. In this context, the definition of
the scientific start-point (population and intervention) is crucial: the clinical question can
either be broad or very narrow. Broad inclusion criteria could increase the heterogeneity
between studies, making it difficult to apply the results to specific patients; narrow inclusion
criteria make it hard to find pertinent studies and to generalize the results in clinical practice.
Hence, the researcher should find the right compromise, focusing on the benefits for the
patient.

One of the aims of meta-analysis is to take into account all the available evidence from
multiple independent sources to evaluate a hypothesis [6]. However, meta-analysis usually
includes only a small fraction of the published information, often derived from a small range
of methodological designs (i.e. meta-analysis restricted to randomized clinical trials or to

English languages). It is also true that with limited resources it is impossible to identify all the



evidence available in the literature. Systematic reviews, in contrast to traditional narrative
reviews, require an objective and a reproducible search of a series of sources to identify as
many relevant studies as possible [13]. The search strategy should be comprehensive and
sensitive; searching more than one computerized database is strongly recommended.
Commonly searched databases are: MEDLINE, including PubMed, The Cochrane Central
Register of Controlled Trials (CENTRAL), and EMBASE. These databases are available to
individuals free of charge, on a subscription or on a ‘pay-as-you-go’ basis. They can also be
available free of charge through national provisions, professional organization or site-wide
licenses at institutions such as universities or hospitals. There are also regional electronic
bibliographic databases that include publications in local languages [13]. Additional studies
can be identified employing the “backward snowballing” (i.e. scanning of references of
retrieved articles and pertinent reviews) or investigating the “grey literature”, namely the
literature that is not formally published in sources such as books or journal articles (i.e.
personal communications, conferences, abstracts, etc). Authors often provide
supplementary data, not included in the original publications or relative to unpublished
studies.

Decisions regarding what primary evidence to include in a meta-analysis depend on evidence
availability. Practical problems, regarding access to primary data, include studies published
in languages foreign to the researcher and evidence available only confidentially or in the
“gray literature” of congress and dissertations. Similar issues are faced by analysts who want
to perform a meta-analysis with individual patient data (which has several advantages over
analysis on aggregate-level data [14]), since patient-level data is often confidential or
protected by corporate interests.

Moreover, many other biases linked to study selection may influence the estimates and the
interpretation of findings: citation bias, time-lag bias and multiple publications bias [13]. To
overcome these biases, several tools are available. For example, the sensitivity analysis can

spot bias by exploring the robustness of the findings under different assumptions.



1.4 QUALITY OF INCLUDED STUDIES

The conclusions of a meta-analysis depend strongly on the quality of the studies identified to
estimate the pooled effect [15]. The internal validity may be affected by errors and incorrect
evaluations during all the phases of a clinical trial (selection, performance, attrition, and
detection bias [16]), so the assessment of the risk of study bias is a central step when one
carries out a meta-analysis. The quality of randomized clinical trials should be evaluated with
regard to randomization, adequate blinding and explanation for dropouts and withdrawals,
which addresses the issues of both internal validity (minimization of bias) and external
validity (ability to generalize results) [17]. The information gained from quality assessment is
fundamental to determine the strength of inferences and to assign grades to
recommendations generated within a review. The main problem during the quality
assessment process is the inconsistent base for judgment: if the studies were re-examined,
the same trained investigator might alter category assignments [6]. The investigator may
also be influenced (consciously or unconsciously) by other unstated aspects of the studies,
such as the prestige of the journal or the identity of the authors [6]. The published work can
and should explain how the reviewers made these judgments, but the fact remains that
these approaches can suffer from substantial subjectivity. Indeed, it is strongly
recommended that reviewers use a set of specific rules to assign a quality category, aiming

for transparency and reproducibility.

1.5 BIAS

1.5.1 PUBLICATION BIAS

The biggest potential source of type | error (increase of false positive results) in meta-
analysis is probably the publication bias [15]. This occurs when, in clinical literature,
statistically significant “positive” results have either a better chance of being published, are
published earlier or in journals with higher impact factors, and are more likely to be cited by
others [18]. The graphical representation to evaluate the presence of publication bias is the
funnel plot. In a funnel plot, effect size is plotted versus a measure of its precision, such as

sample size. If no publication bias were present, we would expect that the effect size of each



included study to be symmetrically distributed around the underlying true effect size, with
more random variation of this value in smaller studies. Asymmetry or gaps in the plot are
suggestive of bias, most often due to studies which are smaller, non-significant or have an
effect in the opposite direction from that expected, having a lower chance of being
published [15]. Therefore, it is important to note that conclusions exclusively based on
published studies can be misleading. Methods as Trim and Fill [19] allow estimation of an

adjusted meta-analysis in the presence of publication bias.

1.5.2 SMALL-STUDY EFFECT

The small-study effect occurs when small studies have systematically different effects from
the large ones. It has often been suggested that small trials tend to report larger treatment
benefits than larger trials [20,21]. Such small-study effects can result from a combination of
lower methodological quality of small trials or publication bias (small studies with negative
effects are unpublished or less accessible than larger studies) or other reporting biases [15].
However, this effect could also reflect clinical heterogeneity, if small trials were more careful
in selecting patients, so that a favorable outcome of the experimental treatment might be
expected [22]. Researchers that are worried about the influence of small-study effects on
the results of a meta-analysis in which there is evidence of between-study heterogeneity (I-
square >0) should compare the fixed- and random-effects estimates of the treatment (figure
1.1). If the estimates are similar, then any small-study effect has little influence. If the
random-effects estimate is more beneficial, researchers should consider whether it is
reasonable to conclude that the treatment was more effective in smaller studies. This is
because the weight given to each included study through the random effect model is less
influenced by the sample size than that given by means of the fixed effects model. In the
eventuality the small-study effect is present, the researcher should consider analyzing only
large studies (if these tend to be conducted with more methodological stringency [23]). One
must note that if there is no evidence of heterogeneity between studies, the fixed- and
random-effects estimates will be identical, so there will be an actual difficulty in identifying

the small-study effect. [13]



Figure 1.1: Example of small-study effect (Moore RA, BMJ 1998). Meta-analysis of 37
placebo-controlled randomized trials on the effectiveness and safety of topical non-steroidal
anti-inflammatory drugs in acute pain.
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1.6. DATA ANALYSIS

1.6.1 HETEROGENEITY

The degree of heterogeneity is another important limitation, and the random effects model
should be used during the data analysis phase to incorporate in the treatment effect the
identifiable or non-variability between-studies [24]. It is fundamental to observe that
exploring heterogeneity in a meta-analysis should start at the stage of protocol writing, by
identifying a priori which factors are likely to influence the treatment effect. Visual
inspection of the meta-analysis plots may show whether the results of a subgroup of studies
have the same overall direction of the treatment effect. One should pay attention to meta-
analysis in which results have a discordant treatment effect for groups of studies and no
explanation of variance has been done. Sources of variation should be identified and their

impact on effect size should be quantified using statistical tests and methods, such as



analysis of variance (ANOVA) or weighted meta-regression [15]. Actually, when high
heterogeneity is evident, individual data should be not pooled and definitive conclusions

should be drawn when more studies become available.

1.6.2 RARE EVENTS

Meta-analysis makes it possible to look at events that were too rare in the original studies to
show a statistically significant difference. However, analyzing rare events represents a
problem because small changes in data can determine important changes in the results and
this instability can be exaggerated by the use of relative measures of effect instead of

absolute ones. To overcome this problem several methods have been proposed [13,25,26].

1.6.3 AGGREGATE DATA ANALYSIS

Another problem that affects meta-analysis carried out with aggregate data, is the ecological
fallacy that arises when the averages of the patient’s features fail to properly reflect the
individual-level association [27]. The best scenario is when data at an individual-level is
available, but it is equally true that there is resistance from authors to allow ready access to
their own dataset containing individual patient data. Very often aggregate data is the only

information offered.

1.6.4 MULTIPLE SUBGROUP ANALYSIS

Finally, it is essential to spend a few moments discussing the common problem that occurs
when one wants to perform multiple subgroup analysis, according to multiple baseline
characteristics, and then examine the significance of effects not set a priori into the protocol.
Testing effects suggested by data and not planned a priori considerably increase the risk of
false-positive results [28]. To minimize this error it is important to identify the effects to test
before data collection and analysis [5]; otherwise, one may adjust the p-value according to
the number of analysis performed. In general, post hoc analysis should be deemed

exploratory and not conclusive.
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1.7 DISCUSSION

Important decisions in a systematic review are often based on understanding the medical
domain and not the underlying methodology. The clinical question must be relevant to
clinicians and the outcomes must be important for patients. Efforts are made to avoid bias
by including relevant research, using adequate statistical methodology and interpreting
results based on the context and available evidence. Published reports should include quality
criteria and should describe the selected tools and their reliability and validity. The synthesis
of the evidence should reflect the a priori analytic plan including quality criteria, regardless
of statistical significance or the direction of the effect. Published reviews should also include
justifications of all post hoc decisions to synthesize evidence. Organizing and carrying out a
meta-analysis is hard work, but the findings can be significant. In the best-case scenario, by
revealing the magnitude of effect sizes associated with prior research, meta-analysis can
suggest how future studies might be best designed to maximize their individual power. On
the other hand, low-powered analysis based on a small number of studies can still provide
useful insights by revealing publication bias through a funnel plot or highlighting a deficiency
in a particular topic that deserves further attention.

Meta-analysis represents a powerful way to summarize data and effectively increase sample
size to provide a more valid pooled estimate. However, the results of a meta-analysis should
be interpreted in the light of the various checks previously discussed in this work, which can

inform the readers of the likely reliability of the conclusions.
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CHAPTER 2
THE NETWORK META-ANALYSIS

2.1 SCOPE AND BACKGROUND

The search for accurate and reliable sources of evidence represents a ongoing challenge in
medicine, as only a comprehensive yet synthetic analytical effort can accurately guide
clinical decision making. Any single empirical observation on the apparent relationship
between events and exposures or between events and interventions may provide useful
information [29], but systematic reviews and meta-analyses of large high quality randomised
controlled trials (RCT) with low heterogeneity represent the highest degree of evidence, as
they offer increased precision and external validity [30]. Moreover, meta-analyses offer a
quick and cost-effective method to gather information for clinical decision making. When
head-to-head treatment comparisons are not available or conclusive, the limitations of
standard (i.e. pairwise) meta-analyses can be overcome by network meta-analyses (NMA,
i.e. mixed treatment comparisons [MTC]), which can provide estimates of treatment efficacy
or safety of multiple treatment regimens. Different treatment strategies are analyzed by
statistical inference methods rather than simply summing up trials that evaluated the same
intervention compared to another intervention, standard care, or placebo. If a first trial
compares drug A to drug B, showing that drug A is significantly superior to drug B, and a
second-trial investigates the same or a similar patient population comparing drug B versus
drug C (demonstrating that drug B is equivalent to drug C), NMA may allow to infer that drug
A is also potentially superior to drug C for this given patient population, even though there
was no direct test of drug A against drug C (figure 2.1).

Specifically, if two particular treatments have never been compared against each other but
have been compared to a common comparator, then an adjusted indirect treatment
comparison (ITC) can exploit the direct effects of the two treatments versus the common

comparator to estimate the indirect treatment effect [31-33]. In such perspective, ITC

12



represents the simplest type of NMA or MTC. In addition to this, it is important to
understand that both direct and indirect information provide data for evidence synthesis,

and thus any NMA is inherently more efficient and accurate.

Figure 2.1: Example of indirect effect estimation.
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As pairwise meta-analysis, NMA is accurate and clinically useful only when it combines
studies that are similar enough to be grouped, with the aim to explore and limit as much as
possible the sources of variability while concomitantly maximizing the statistical precision.
The results obtained from the combination of direct and indirect estimates may also
strengthen the validity within comparison [34]. Even when the results of the direct evidence
are conclusive, merging them with the results of indirect estimates in MTC may give a more

accurate estimate optimizing the existing information of the network. [35,36].

The pioneering work by Thomas Lumley [35] presented the first methodology to perform a
meta-analysis for direct and indirect comparisons and proposed the term “network meta-
analysis”. In this work, Lumley detailed the approach to using potentially very complex
networks of treatment comparisons to detect inconsistency (or incoherence) between
randomized trials, to estimate treatment differences and to assess the uncertainty in these
estimates. Moreover, Lumley suggested the application of Bayesian approaches, to model
both heterogeneity between treatments and the underlying inconsistency, due to their

flexibility.
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The extension to handle multi-armed trials in the classical field was faced from authors such
as Salanti et al. [37], Jackson et al. [38], White et al. [39,40] and Higgins et al. [41]. Salanti
and collaborators [37] detailed the general set-up for NMA with both arm-based, where the
effect measures are reported for each arm (i.e. odds, absolute risk, hazard or mean), and
contrast-based models, where results are presented as the difference in effect between
arms (i.e. odds ratio, risk ratio, hazard ratios or mean difference). However, this paper left
open some important topics such as the quantification of inconsistency, the evaluation of
bias and the development of a user-friendly software to NMA models. White and colleagues
[40] have updated a STATA (College Station, TX, USA) command, mvmeta, to perform a
multivariate meta-regression and obtain suitable difference effect estimates. Jackson, Riley
and White [38] explored the potential of the multivariate model for fitting a network data
structure adopting a two-stage approach to analysis. The trial-specific parameter of interest
and the variance-covariance matrix are obtained at the first stage and then these estimates
are combined at the second stage. In this case, the aggregate input data are managed as
contrast-level summaries, namely as the relative difference in effect between arms (i.e. odds
ratio, risk ratio, hazard ratio, or mean difference). White et al. [39] and Higgins et al. [41]
review the meaning of inconsistency, best modeled by a design-by-treatment interaction,
and the method to fit both consistency and inconsistency models.

On the other hand, Lu and Ades [36] proposed an alternative Bayesian approach to make
NMA for multi-arm studies by including both direct and indirect comparisons. Moreover,
they explored results from Markov Chain Monte Carlo (MCMC) algorithm to set up a strategy

for selecting the best treatment regimen.

2.2 NETWORK EVIDENCE

The evidence of the network must include all randomised clinical trials of relevant
treatments (interventions, drugs, or procedures) that have been compared directly in a
reasonably similar patient and diagnostic setting. The inclusion of all relevant evidence in
systematic reviews is crucial to avoid bias and maximize precision [16]. The literature search

for a NMA applies the same basic standards exploited for pairwise comparisons. Indeed, a
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standard meta-analysis involves a single search for any trial that compares the treatment of
interest with any other therapy, that may be theoretically exploited also in a NMA focusing
on differences in treatment effects.

However, the choice of treatments to include in a NMA is more challenging. Since the
literature search is time consuming and requires resources, one may decide that it is not
worthwhile to search for all the possible indirect evidences. Hawkins et al. [42] suggest an
efficient search strategy to identify clinical trials that may provide indirect evidence when
comparing different treatment comparators: a series of iterative searches where the set of
comparators included in each search is dependent on the results of the previous one. This
iterative process continues or stops considering the marginal cost of searching for higher
order indirect data and the marginal benefit of progressively less informative data. If the
search is stopped before finding all the entire evidence, the missed treatments are assumed

as missing at random [43], but it is important to pay attention to the applicability of results.

2.3 CONFIGURATION OF NETWORK

Before starting a NMA, it is important to have a complete view of the distribution of
included studies. The network diagram allows an intuitive approach to symbolically
represent all the direct comparisons among treatments. This graph consists of a set of nodes
representing the interventions linked by lines that depict how many RCT have been included.
Two important properties of network configuration are geometry and asymmetry [37,44].
Geometry refers to the overall structure of treatment contrasts, while asymmetry
summarizes the amount of data for a specific comparison.

The network structure must be carefully built and examined so that each pattern of data
may be used to reveal particular characteristics that may assist in the choice of the analytical
method [33]. For example, the diagram in figure 2.2.a (star-shaped) allows an ITC analysis of
treatments B, C and D all linked to the common comparator A. The graph in figure 2.2.b
comprises three nodes representing three interventions (A, B, C) and three edges (arrows).
An important property of this network is that each contrast has both direct and indirect

evidence (closed loops). For example, the BC comparison obtains direct information from
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trials that compare BC and indirect evidence from trials that analyse AB and AC treatment
differences. Moreover, the structure of the network can become extremely complex as in
figure 2.2.c (multiple loops). A network where some pairwise contrasts have both direct and
indirect evidence can be analyzed performing an MTC analysis [34,36]. Actually, all
connected networks can be examined using NMA, as even pairwise meta-analysis is only a

special case of NMA, and can be analyzed using the exact same model.

Figure 2.2: Examples of network configurations.
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Network configuration can help to establish which treatment can be defined as reference
(usually the one that appears more frequently than others, or the one which is most
commonly used in clinical practice) or to show the head-to head comparative relations. In

the network structure, the effect estimates may be included, with the corresponding 95%

16



confidence, credibility or credible intervals, the number of studies and the study reference
for each pairwise comparisons.

Focusing on diagram asymmetry, it is crucial to understand the extent to which different
nodes or links are present in the diagram, weighting for the number of trials. Salanti et al.
[37,44] propose metrics and tests employed in the ecological literature [45]. Specifically,
they suggest to investigate the diversity and the co-occurrence inherent in the network
[46,47]. Diversity refers to the number of nodes contained in a network and to different
frequencies in treatments. Conversely, co-occurrence is measured with the C-score [48] or
other widely cited similarity scores (e.g. Jaccard, Dice, or Cosine coefficients) [49], and
represents the tendency of a particular comparison to occur more frequently than expected

by chance. In other words it tests for the presence of favorite couples of treatment.

2.4 ASSUMPTIONS

2.4.1 PRESERVATION OF THE RANDOMISATION PROCESS

When there is no or insufficient evidence from direct comparison trials, it may be possible to
use results of different studies to obtain the pooled estimates of relative treatment effect.
One fundamental assumption is the preservation of the randomisation process within each
trial, comparing the estimates of relative effect among treatments. Let us suppose that we
have three treatments (A, B, C) compared head-to-head in N trials. Treatment estimates will
not be accurate if the researcher only calculates the indirect effect estimate of B versus C, by
AB and AC trials, by balancing the observed fraction of respondents on treatment B from AB
trials to the observed fraction of respondents on treatment C from AC trials. In fact, in this
way, the analysis fails to separate the treatment effects from the other sources of variability
[50,51]. However, one can compare the (log) odds ratio of A versus B from the AB trials to
the (log) odds ratio for A versus C from AC trials [33]. This indirect comparison, adjusted
according to the results of their direct comparison with a common comparator, largely

preserves the force and validity of the randomised trials [54].

17



2.4.2 HOMOGENEITY AND CONSISTENCY

Both homogeneity (no variation in treatment effect between trials within pairwise contrasts)
and consistency (no variation in treatment effect between pairwise contrasts) ensure the
validity of the analysis. Evaluation of heterogeneity represents another milestone and should
be based on the use of a random-effect meta-analysis approach assuming each individual
estimate is different at random and generated from a common distribution. For a large
sample, classical inference based on the classic DerSimonian-Laird methods is unbiased [55];
but this is not true for small samples. For a large sample, classical inference based on the
standard DerSimonian-Laid method is unbiased [55], even when the distribution of the
effects is extremely non-normal [56,57]. However, the performance of the method
deteriorates rapidly as the number of studies decreases, especially for meta-analyses of 5
studies or fewer [55-57]. The advantage of Bayesian methods in comparison to such
frequentist approaches is that inference is exact for any sample size, assuming the prior
assumptions are valid.

The between-trial variability can be attributed to specific characteristics (i.e. inclusion
criteria, choice of outcomes, differences in follow-up, or methods of randomisation) that can
be sources of confounding and bias. The true treatment effect would be similar across all
trials of network even if these did not include one or both of these two comparative
elements. If the included trials have differences that are modifiers of the relative treatment
effect, the similarity will be violated and the pooled estimated will be biased [58-61]. The
classic measure of heterogeneity is Cochran Q, calculated as the weighted sum of squared
differences between individual study effects and the pooled effect across studies. However,
the Q test statistic has generally low power, even more so when the data are sparse [55,62].
Another commonly used statistic is |-square [13,54,63], that describes the percentage of
variation across studies that is due to heterogeneity rather than chance. However, use of I-
square can be challenging since it is not independent from the meta-analysis size [64].
Nevertheless, Bayesian meta-analysis allows the incorporation, into the random effect
model, of between-study heterogeneity, including a prior distribution for it as well.

Heterogeneity should also be taken into account by performing adjusted analysis, planning
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appropriate subgroup analyses or using meta-regression techniques to adjust for differences

in study-level characteristics.

2.4.3 THE CONSISTENCY EQUATION

The exchangeability assumption [65] justifies the fact that the treatment effects may be non-
identical but their magnitudes cannot be differentiated a priori. Within the context of NMA,
it is important that the indirect estimate is not biased and that there is no divergence
between the direct and indirect comparisons. If the AB and AC trials are comparable in effect
modifiers (and are thus similar), an indirect estimate (éBC) for the true difference effect
between B versus C can be obtained from the direct estimates of A versus B (8,5) and direct
estimates of A versus C (8,.). To perform NMA, it is indispensable that the following
consistency equation is satisfied

Bpc = Bac — Oap (2.1)
where the effectiveness of each treatment is measured on a scale symmetric to zero such as
log odds ratio, log-hazard ratio or difference in mean [33,36,37,66,67,68].

Consistency regards a loop (closed network) rather than individual comparisons. Indeed, to
verify presence of inconsistency, the treatments involved must belong to a loop in the
network configuration. Lu and Ades [43] propose a general method for assessing evidence
inconsistency in the framework of Bayesian hierarchical models. They suggest to represent
evidence consistency as a set of linear relations among basic parameters on the log odds
scale. Then, these relations will be complicated by introducing some random terms, called
inconsistency factors (ICF), and finally this model which incorporates ICF will be compared
with the standard one without ICF. Dias et al. [69] also propose an extension of Bucher
methods [31] to carry out tests for inconsistency in a network with multiple loops and with
only two-arm trials. In this work we compared the goodness of fit of the consistency model
(that obtains the indirect treatment effects by means of the consistency equation) with the
inconsistency model (which estimates all relative effects for all treatment contrasts).

Health decisions should be based on models that are internally coherent and if the data
cannot be fitted by a consistent model some adjustment must be made to correct for

possible causes of discrepancy. More details are provided in the following sections, but
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careful reading of the pioneering work of Lu and Ades [43], and Dias et al. [69] is also

recommended.

2.5 STATISTICAL DETAILS

2.5.1 CONTRAST-LEVEL AND ARM-LEVEL SUMMARY DATA

The input data in NMA are usually the summary statistics extracted from the published
literature (aggregate data or study-level data), rather than the original data directly collected
from trial authors (individual patient data or patient-level data). Besides, the aggregate input
data are available in two formats: as arm-level summaries, where effect measures are
reported for each arm (i.e. odds, absolute risk, hazard, or mean), or as contrast-level
summaries (i.e. odds ratio, risk ratio, hazard ratios, or mean difference), where results are
presented as the difference in effect between arms. One advantage of the arm-level
approach is that it is possible to adopt the exact likelihood for the data (i.e. binomial for
binary data) rather than its normal approximation, as for the contrast-level summary. Both
frequentist and Bayesian approaches can be used to specify models based on either two
format [70]. Hereafter, we discuss the analysis of data by means of arm-level summaries,

which enable more flexible and precise analyses.

2.5.2 FIXED AND RANDOM EFFECT MODELS FOR A BINARY OUTCOME

Suppose that N RCTs make mixed comparisons among K treatments. The number of events
on treatment k in the trial j is denoted with 75, and the number of total observations with
n;,. Then let pj, be the probability of event occurrence, then the number of events, rjy,

leads a Binomial distribution:

rix~Bi(pjro i), J = 1,2, ..N; k=12, ..K (2.2)
The probability of event occurrence p;; is modeled on the logit sale as:

logit(pjp) = log (f;’;) =u;,j=12,..N;k=b=12,..K (2.3)
logit(pjx) = 1og(1f;"jk) =pj+ 6o, j=12,..N; k=23,..K; b<k (2.4)
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where y; are the trial-specific baselines and represent the log odds of event in the referent
treatment (k=b), while §; . are the trial-specific log odds ratio of event occurrence of the
treatment group k compared with referent treatment.

The nature of effect §;,, depends of assumption underlying the fitted model: fixed or
random effect model. The difference consists in the way variability of the between-trial
results is treated [16]. The fixed effect model considers this variability as exclusively due to
random variation (assume between-trial variance equal to zero) and individual studies are
simply weighted by their precision. Therefore, if all the studies were infinitely large they
would give identical results. For fixed effect model the equation (2.4) will be replaced as
follow:

logit(pjr) = wj +djpk,j = 1,2,..N; b=1.2,..K; k=273,..K; b< k (2.5)
where p; are the trial-specific baselines and d; ;. are the fixed (aﬁbk = 01-2 = 0), trial-specific
log odds ratio of event occurrence of the treatment group k compares with referent
treatment.

The random effect model, instead, assumes a different underlying effect for each study and
takes this into consideration as an additional source of variation. This model has been
advocated if there is heterogeneity in between-trial results. For a random effect model the
trial-specific log odd ratio &; ,; is commonly generated from a Normal distribution

8 pk~N (dpk, 0%). (2.6)
We assumed equal within-trial variance between relative treatment effect (aﬁbk = ajz). For
more details, Lu and Ades [36] explain the heterogeneous within-trial variance models. The
Bayesian structure requires the prior specification for unknown parameter u;, 6; ,x and o.
Dias et al. [71] recommend to give independent weakly priors such as u;, §; ,x~N (0, 100%)
and a~Uniform(0,2).

From the consistency assumption, the indirect estimate J; is:

Ost = 0pt — Ops, b=1,2,..K; s=23,..K; t=34..K;s<t (2.7)
The K-1 direct treatment effects 6, (between k and baseline treatment groups) represent
the basic parameters of the model on which priors distributions of Bayesian approach are
placed [71], while the functional parameters &, are all the remaining contrasts that are

function of basic parameters.
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2.5.3 NETWORK META-REGRESSION

Network meta-regression represents a useful tool to explain the heterogeneity between the
different treatment effects in the studies by regression of aggregate (study-level) covariates
or on individual patient data, if available, exactly like head to head comparisons
[35,43,72,73]. Nixon et al. [74] develop methods to simultaneously compare several
treatments and to adjust for study-level covariates by combining ideas from MTC and meta-
regression. In general, the meta-regression model is fitted specifying fixed or random effect
models and adjusting the log odds ratio for study-level prognostic factors. The meta-
regression procedure can reduce bias and inconsistency when covariates are distributed
uniformly [75,76].

The meta-regression model with fixed treatment effect is:

logit(pjp) = wj + Bxi,j =1,2,..N; b=1.2,..K (2.8)
logit(pjx) = wj +djie +Bx,j=12,..N; k=23,..K; b<k (2.9)
where x; is the trial-level covariate for trial j, which can represent a subgroup or a continue

variable. In the meta-regression with random treatment effect, the equation (2.9) is replaced

with
logit(pjk) =W+ 6 pr + Bx;
j=12,..N; b=12,..K; k=23,..K; b<k (2.10)

where the trials-specific log odds ratios are generated from a common distribution
8; pk~N (dp, d?). In the Bayesian framework, the parameters Uj, dpk, B and o will be given
independent weakly priors such as u;, dpi, S~N (O, 100%) and o~Uniform(0,5) [73].

If the number of studies in a network is limited, the validity of incorporating study-level
covariates with meta-regression model may be questionable, given the limited statistical
power and risk of overfitting [51,77]. Besides, aggregate covariates adjustment might be
prone to ecological bias [27], that represents the failure of study-level associations to
properly reflect individual-level associations. Network meta-analyses of IPD are considered
the gold standard, as they provide the opportunity to explore differences in effects between

subgroups. When individual patient data are available, meta-regression usually have

sufficient power to evaluate heterogeneity and to identify effect-modifying factors [72,76].
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2.5.4 MULTI-ARM TRIALS
Let us suppose we include in a network, based on contrast-level summaries, one or more
multi-arm trials where the number of comparators is 3 or greater. A single multi-arm trial j

which compares a; treatments produces a vector §; of a; — 1 random treatment effect,

T
6 = (5]-,12,...,6]-,,,,1].) that are correlated. Over the between-trial variance, it needs to

include the random effect covariance [36,37,71]. The specification of the variance-
covariance matrix for the random effects vary from constant and equal structure to totally
unrestricted positive-definite matrix [37,43]. The assumption of homogeneous between-trial
variance means that all 62, are the same and equal to o2, and this implies that the
covariance between two contrasts in a multi-arm trial is ¢2/2 [58]. The univariate Normal
distribution (2.6) for multi-arm trial j which compares a; treatments will be a multivariate

Normal distribution

8j12 812 g? - 0?%)2
6 = : ~Ng,_1 : ( : : ) ) (2.11)
8jba; Sjba;) \a%/2 - g?
. . . . . K K!
Let us imagine we have K = 4 trials included in the network and (2) = kD 6

contrasts between A, B, C and D (figure 2.2.d). One study is a multi-arm trial that compares
A, B and C treatment and 2 studies are two-arm trials that produce AB and AD comparisons.
This network will estimate 3 basic parameters (dyp, dac, dap) and 3 functional parameters
(d gc, dgp, dcp) obtained from the consistence equation, in formulation (2.1). One can

specified the following random effect model:

P1p Hy 1000\ [%ras
[ Pic) [ 0100 || S1ac
logit P2 | | M2 + 0010 8248 (2.12)
P3p M3 0001 63‘AD/
with
61,AB\ / 51,AB\ g% 0 0 0 \
81,ac | S1ac 0 o> 0 0 !
’ ~N, ’ , 2.13
62,48 l 4| 62,48 I 0 0 o? 02/2/ l ( )
53AD/ \ 53AD/ 0 0 02/2 o? /

23



2.6 DISCUSSION

We have provided a comprehensive and detailed overview of the conceptual and practical
issues involved in performing a and interpreting NMA on binomial data while applying a
Bayesian hierarchical model. We have discussed the general topics related to NMA, including
how to collect study data, structure the network, and set assumptions about the network
that lead to different models and interpretations of model parameters. Many papers have
been published on these topics and other will follow suite, describing methods for NMA with
binary data in a concise way and in quite some detail [33-37,78,41-44,50,51,60,61,63,66,69-
76]. We have strived to put together the most important topics (making available the major
references) and we offer, for the first time, a thorough yet manageable guideline to conduct
(from literature search to results interpretation) a rigorous NMA on binomial data, applying

the Bayesian hierarchical model.
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CHAPTER 3
BAYESIAN NETWOK META-ANALYSIS

3.1 BAYESIAN FRAMEWORK AND WINBUGS

Here we focus our attention on data which can be analyzed with a binomial model applying
the Bayesian hierarchical approach proposed by Smith et al. [79] and using Markov Chain
Monte Carlo (MCMC) approaches.

There is a large literature base on Bayesian analysis, hierarchical modeling and
implementation of Markov Chain Monte Carlo (MCMC) methods to perform statistical
inference [58,65,80]. In contrast with the classical statistical theory, the Bayesian approach
can incorporate any available information about the parameters before we observe the
data, hence the parameters are considered as random variables that are characterized by a
prior distribution. Priors may be divided into four categories according to the analytical goal
and use: a) informative, based on existing evidence; b) weakly informative, that provide
enough information to avoid results that contradict the previous knowledge; c) least
informative, determined solely by the model and observed data to minimize the amount of
subjective acquaintance; d) non-informative [81]. Van Dongen et al. [82] stated that non-
informative priors, especially when derived from small sample sizes, lead to different results
from reference non-Bayesian models, and weak priors generate information closer to the
referral model. Consequently the priors should be looked as a distribution that should reflect
a biologically plausible parameter space [82]. With a large number of comparisons in a well-
defined network configuration and with a large number of trials included, a reasonable
choice of prior distributions will have minor effects on posterior inferences. If the data are
sparse or there are no events in one or more arms of contrast, the prior distribution
becomes more important. In general, if the information is strong the inference is based
primarily on prior beliefs; if it is weak the numerical estimation can be unstable. Various

weakly informative prior distributions have been suggested for scale parameters in
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hierarchical models. It has been suggested [71,83] to use vague priors for u; and dpy
parameters, such as N (0, c2) with variance equal to 0.001 or 0.0001. A Uniform distribution,
o~Uniform(0,A), can be used as prior for the standard deviation of a Binomial
distributions and logit link function. The upper limit of distribution, A, represents a huge
range of trial-specific treatment effect [71]. For a finite but sufficient large A, inferences are
not sensitive to the choice of A [83]. The approach to set a Gamma prior on precision,
1/o0~Gammal(g, €), produces a sharply peaked near zero distribution and further distorts
posterior inferences, because of the marginal likelihood that o? remains close to zero.
Where o is estimated to be near zero, the resulting inferences will be sensitive to €. On the
other hand, the use of an Inverse-Gamma distribution is suitable when data are sparse,
improving stability and convergence. Usually the hyperparameter ¢ is set to a low value such
as 0.001. As priors are part of the model specification, initial values are part of the
computing process. Initial values can be derived from the current dataset or may be
generated from prior distributions. The evaluation of posterior distributions is dependent on
the MCMC chains convergence. Most convergence checking, such as the Gelman and Rubin
approach, are graphical, and either compare the results from different chains or divide one
chain into sections and compare these sections. If the simulation has not yet converged, the
chains or part-chains will look different when plotted [80]. Finally, the Monte Carlo error (an
index that reflect the number of simulation and the autocorrelation degree) should be no
more than 5% of the posterior standard deviation of the parameters of interest to minimize

the bias inherent to the resampling method [71].

3.2 GOODNESS OF FIT

Statistical models, in addition to drive the inference process to provide prediction results,
allow to describe how well the model itself fits a set of observations and to discriminate
between alternative models. The likelihood ratio test (LRT) represents one of the classic
ways to compare two nested models [84,85]. Alternatives include the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC). The AIC [86] for a given model is

a function of its maximized log-likelihood and the number of estimable parameters p:
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AIC = —ZlogL(é |y) +2p (3.1)
For a non-hierarchical model with p parameters and n observations, the Bayes (or Schwarz)
Information Criterion [87] is given by

BIC = —2log L(é |y) + 2p - log (n) (3.2)
The advantage of the AIC and BIC statistics is that these can also be used for non-nested
models. To compare two competitive models, as the comparison between the fixed and the
random effect models, smaller values of these model assessment statistics are better,
efficiency remains paramount. Subsequently, Spiegelhalter et al. [88] developed a model
comparison criterion called the Deviance Information Criterion (DIC), that is a generalisation
and Bayesian version of AIC and is also related to the BIC, following the original suggestion of
Dempster [89] for model choice in the Bayesian framework. Indeed, the frequentist
approach to model assessment is based on deviance, which the difference in the log-
likelihoods between the fitted and the saturated model (the model with as many parameters
as observations, with perfect t to the data). Similarly, Dempster suggested to examine the
posterior distribution of the classical deviance defined by

D(8) = —2log f(y16) + 2log f(¥) (3.3)
for observations y and parameter vector 8. The DIC is thus based on the posterior
distribution of D(0) and it is defined as the sum of two components. The first component
measures the goodness of fit of a model by the posterior expectation of the overall residual
deviance:

Egy[D] = D. (3.4)
The second measures the complexity of the model by the effective number of parameters,
pp, defined as the difference between the posterior mean of the overall residual deviance
and the deviance evaluated at the posterior mean of the parameter of interest:

Pp = Egy[D] — D(Egy[6]) = D — D(B). (3.5)
Ultimately, models may be compared using a DIC [71,88,90-92] defined sum of expression
(3.4) and (3.5)

DIC =D + pp =2D —D(8) = D(8) + 2pp. (3.6)
The model with the smallest DIC is estimated to be the model that would best and most

efficiently predict the observed data. It is difficult to say what would constitutes an
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important difference in DIC, as both subjectivity and experience must be applied. As a rule of
thumb, a difference of more than 10 might definitely rule out the model with the higher DIC,
differences between 5 and 10 are considerable, but if the difference in DIC is less than 5 and
the models provide very different inferences, care should be taken when referring the model
with the lowest DIC [78]. The above mentioned statistics (AIC, BIC and DIC) are easily
calculated during an MCMC run by monitoring both 8 and D(0). The DIC tool of WinBUGS
system directly provides the posterior mean of the overall residual deviance (Dbar), the
deviance of the posterior means of interested parameter (Dhat), the pp and the DIC value.

Another promising method for comparing different models, nested or not, is to use only the
posterior distribution of the sum of residual deviance D of each competing model [43,81].

The sum of residual deviance for a binomial likelihood function is provided by:

D= 2?=1Devi = Z{V=1 ZIIS=1 2 [l09< _ ) + (njk - Tjk)log (Mﬂ (3.7)

NjkDjk Njk—MNjkDjk

where, as mentioned above, 77, denotes the number of events on treatment k in the trial j,
n;, represents the number of total observations and pj, is the probability of event
occurrence. The posterior distribution of the model deviance difference can be obtained as
D, , = D, — D, and it may be used to calculate the posterior probability

P[D,, > B(D)] (3.8)
as an analytic method for model selection. The choice of the value of 5 can vary for different
purposes.

In order to make an association with the frequentist approach, the difference between the
deviances of two nested models is approximately a chi-squared distribution with df degrees
of freedom, where df = p, — p; is the difference between the number of parameters
estimated. In this case one can choose f§ = )(f_a;df. The higher this probability the stronger
is the evidence in favour of model 2 against model 1. In addition it is possible to calculate the
value of S that gives:

P[D,, > B(D)] =05 (3.9)
and use, for example, the table of Kass and Raftery [93] (table 3.1) to quantify the evidence
against model 1. It is worth noting that these numbers are driven more from intuition, rather
than a scientific justification [81]. The posterior probability check is performed in WinBUGS

using the step function.
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Table 3.1: Scale of evidence proposed by Kass and Raftery (1995)

B Evidence in favour of model 2

0-2 | Not worth more than a bare mention
2-6 | Positive

6-10 | Strong

>10 | Very strong

3.3 RANK PROBABILITY ESTIMATE

An advantage of Bayesian approach is that the posterior distribution of estimate, with its
credible interval, can be interpreted in terms of probability which allows an intuitive and
direct interpretation of which treatment is the best or the subsequent. In each MCMC run,
every treatment is ranked according to its estimated magnitude. Then, the proportion of
MCMC cycles in which the treatment k ranks first gives the probability that such specific
treatment is the best among all K treatments. Other probabilities are calculated for being the
second best, the third best and so on for each treatment. Salanti et al. [94] propose some
graphical and numerical summaries of rank probabilities (rankograms). These authors also
suggest a simple method to show the cumulative rank probabilities for each treatment
estimating the surface under the cumulative rank curve (SUCRA). For each treatment k and
for each rank w (k,w=1,2,...K), it is possible to calculate the vector of cumulative probabilities

cumy,, and the SUCRA index will be:

K-1
SUCRA,, = Z=1UMiew (3.10)
K-1
The SUCRA index simplifies the entire information about treatment ranking into a single
number. SUCRA is equal to 1 if the treatment is surely the best, and equal to 0 if the

treatment is surely the worst.
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3.4 SENSITIVITY ANALYSIS

Various techniques may be used to check whether the assumptions of the model are valid
and whether the fit of the model is adequate. In the Bayesian setting, it is important to pay
attention to the robustness of the posterior distribution. One can assess how posterior
distribution changes over different prior distributions [80]. When prior information is
available, sensitivity analysis focuses on the structure of the prior distribution. When weakly
priors are used, it focuses on how different choices of prior parameters may influence the
posterior inference. Besides, sensitivity analysis can be performed discussing the different
findings from competing models (fixed or random effect models, consistency or
inconsistency model) or executing the NMA on a subgroup of RCTs (high quality RCTs only,

or specific stratification by other baseline covariates).

3.5 CASE STUDY ON ANAESTHETIC DRUGS
3.5.1 INTRODUCTION

To clarify the statistical features of the network meta-analysis on a binary endpoint we start
from a published Bayesian network meta-analysis [95] that compared the effect on mortality
of three different volatile agents (desflurane, isoflurane, sevoflurane), and total intravenous
anesthetics (TIVA).

Anesthetics have pharmacological properties that go beyond their effects on blood pressure
and heart rate and they might induce cardiac protection. These effects influence
perioperative [96-98] and long term clinically relevant outcomes [99,100]. An international,
web based consensus conference [101]recently included volatile anesthetics among the few
drugs that might reduce mortality in patients undergoing cardiac surgery. The scientific
community agrees that there is initial evidence suggesting that different anaesthetic drugs
could lead to apparent differences in survival rate in patients undergoing cardiac surgery
[101], with volatile agents having beneficial effects (or TIVA having detrimental effects). At
the same time there are few (if any) direct comparisons between different anaesthetic

agents to define which treatment is the best.
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We analyzed the data applying the Bayesian hierarchical approach proposed by Smith et al.
[79] and using Markov Chain Monte Carlo (MCMC) approach. The WinBUGS code to analyse
data on anaesthetic drugs is performed using the indications of Ades et al. [102] and Dias et

al. [69,71,73].

3.5.2 SEARCH STRATEGY AND NETWORK CONFIGURATION

Several databases (BioMedCentral, MEDLINE/PubMed, Embase, and the Cochrane Central
Register of clinical trials) were searched to identify articles comparing a TIVA or an
anesthesia plan including administration of isoflurane, desflurane or sevoflurane with no
restriction in dose and time of administration. Duplicate publications, nonhuman
experimental studies and studies with no mortality data were excluded. No language
restriction was enforced, and non-English articles were translated and included in the
analyses. The primary treatment strategies of interest in this Bayesian network meta-
analysis were 1) TIVA, 2) isoflurane, 3) desflurane and 4) sevoflurane.

The systematic and reproducible search together with additional hints identified 2,630 full
manuscripts that were screened by several authors at the title/abstract level. The 112
remaining papers were studied in details, excluding articles with no mortality data, those
which were not randomized or were nor performed in the cardiac surgery setting.
Thirty-eight randomized trials [103-140] were included in the final analyses and data (year of
publication, setting, number of patients in each group, comparators, length of follow up)
extracted by several authors.

To have a complete view of the distribution of the included studies, we build the network
configuration of the anesthetic agent (figure 3.1). The network diagram graphically
represents all the direct comparisons among drugs. This graph consists of a set of nodes
representing the interventions linked by lines that depict how many RCT have been included.
It is worthy to cautiously examine the network structure because the data pattern reveals
particular characteristics that may assist in the choice of the analytical method [141]. In this
case, figure 3.1 includes four nodes representing the four interventions and six edges

(arrows). This network has four closed loops and each contrast has both direct and indirect
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evidence. We have chosen to show in the picture the odds ratio estimates with
corresponding 95% confidence intervals and the number of studies for each pairwise

comparison. The most frequently treatment, TIVA was chosen as reference.

Figure 3.1: Network configuration [95]. This diagram represent all the direct comparisons
among drugs. This graph consists of a set of nodes representing the interventions linked by
lines that depict how many RCT have been included.

ISOFLURANE
OR=0.7 [0.3-1.8]
13 studies 1 study
OR=0.6 [0.4-1.2]
10 studies
TIVA DESFLURANE
OR=0.6 [0.4-1.2]
4 studies
OR=0.8 [0.5-1.4] OR=0.7 [0.3-1.4]
17 studies 3 studies
SEVOFLURANE

3.5.3 DATA PROCESSING

The 38 included trials [103-140] were published between 1991 and 2012 and randomized
3,996 patients. The median of randomized patients per trial was 60 (range 20-414). Volatile
agents were administered to 2,348 (59%) patients while TIVA was given to 1,648 (41%)
patients. Specifically 1,086 (27%) patients were randomized to propofol (the most commonly

used TIVA agent), 622 (16%) to isoflurane, 701 (17%) to desflurane and 1,025 (26%) to
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sevoflurane. Most studies (24/38 [63%]) were performed in coronary artery bypass graft
(CABG) surgery.

The data structure of mortality outcome for the four anesthetic agents is presented in the
appendix 1. The list command specifies nt treatments and ns studies. The number of arms in
each trial is reported into the vector na. The matrix t(38X3), ns X maximum number of arms
in a trial, identifies the code of treatment, r(38X3) the number of events, and n(38X3) the
total number of patients, for each included study. The hash symbol (#) permits to write a
comment text that will be ignored by WinBUGS. The NA code is required when the data is

not available.

3.5.4 FIXED OR RANDOM EFFECT MODELS

The treatment effect evaluation depends of hypothesis underlying the variability between
the included trials. The fixed effect model accounts this variability as completely due to
chance (assuming between-trial variance equal to zero). In this case the weight of each
individual study coincides with his precision. The random effect model has been advocated if
there is evidence of between-trial heterogeneity.

The forest plot of overall standard meta-analysis (figure 3.2) showed that the use of all
volatile agents (isoflurane, desflurane, or sevoflurane) was associated with a reduction in
mortality when compared to TIVA at the longest follow-up available (OR=0.51, 95% IC 0.33
to 0.81, p for effect =0.004) and the visual inspection of funnel plot (figure 3.3) did not

identify an important skewed or asymmetrical shape.
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Figure 3.2: Forest plot of volatile agents (isoflurane, desflurane, or sevoflurane) versus total
intravenous anaesthesia (TIVA) for the risk of mortality at the longest follow-up available.
Cl=confidence interval; OR=odds ratio. [95]
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Leung JM (1991) : ¢ 0.66 (0.07, 6.49) 3.86
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Tritapepe L (1) (2003) ¢ : 0.34 (0.03, 3.38) 3.82
Tritapepe L (2) (2007) T 1.00 (0.06, 16.29) 2.59
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Overall (I-squared = 0.0%, p = 1.000) <> 0.51(0.33, 0.81) 100.00
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Figure 3.3: Funnel plot of volatile agents (isoflurane, desflurane, or sevoflurane) versus total
intravenous anesthesia (TIVA) for the risk of mortality at the longest follow-up available.
SE=confidence interval; OR=o0dds ratio. [95]
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The WinBUGS code used to analyse data on anesthetic drugs by means of Bayesian network

meta-analysis is the following:

HMCT fixed effect model

model{

for(i in 1:ns){

mul[i]~dnorm(0, 0.0001)

for(k in 1:na[i]){

r[i,k]~dbin(p[i,k], n[i,k]) #binomial likelihood
logit(p[i,k])<-muli] + d[t[i,k]] - d[t[i,1]] #model
}

}
d[1]<-0
for(k in 2:nt){d[k]~dnorm(0,0.0001)}
!
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# MCT random effect model
model{

for(i in 1:ns){

wli,1]<-0

delta[i,1]<-0
mul[i]~dnorm(0, 0.0001)
for(k in 1:na[i]){

r[i,k]~dbin(p[i,k], n[i,k]) #binomial likelihood
logit(p[i,k])<-muli]+deltali,k] #model
}
for(k in 2:na[i]){
delta[i,k]~dnorm(mdl[i,k],taud[i,k]) #trial-specific LOR distribution
md[i,k]<-d[t[i,k]] - d[t[i,2]] + swl[i,k]
taud[i,k]<-tau *2*(k-1)/k #adjustament for multi-arm trial

w(i,k]<-(deltali,k] - d[t[i,k]] + d[t[i,1]])
sw(i,k]<-sum(wl[i,1:k-11)/(k-1)

}

}
d[1]<-0
for(k in 2:nt) {d[k]~dnorm(0,0.0001)}
tau~dgamma(0.001,0.001)
sd<-pow(tau,-0.5)
}

We carried out the two models running 3 chains (20,000 iterations after a burn-in of 20,000
and 100,000 interactions after a burn-in of 100,000 for the fixed and random effect model,
respectively), and monitoring the unknown parameter 6 and t (treatment difference effects
and variance in the random effect model only). We used vague priors to produce the
posterior distributions for the treatment effects: Normal distribution with mean equal to 0
and variance equal to 0.0001. Besides, we ran the random effect model with a more
informative prior (Inverse-Gamma distribution) on the variance parameter [80-83] to
overcome the zero-cell count problem.

The fixed or random effect model can be selected calculating the posterior mean of residual
deviance (Dres) and the DIC statistics, directly by WinBUGS software. The model with smaller
DIC is estimated to be the model that best and most parsimoniously predicts the data
observed. The DIC tool, directly implemented in WinBUGS, provides the posterior mean of
the overall residual deviance (Dbar), the deviance of the posterior means of interested

parameter (Dhat), theppp, which is a measure of the complexity of the model by the

36



effective number of parameters, and the DIC value. The DIC statistic is given by Dy, + pp or
directly from the WinBUGS tool: DIC=149.4 and DICre=150.1. The residual deviance is done
by Dpar = DIC — pp and is equal to Dresg=127.5 and Dresge=126.5. We can conclude that
the two models have the same goodness of fit. However, we choose the fixed model
because it leads to more precise estimates than random effect model (that is more
conservative), and because it is more parsimonious (table 3.1).

The consistency assumption (no discrepancy between direct and indirect comparisons) was
verified by the posterior distribution of residual deviance difference in order to compare the
consistency model (which estimates only the basic parameters [72]) with the inconsistency
model (which estimates both basic and functional parameters). The posterior probability

check is performed in WinBUGS using the step function [141]:

#Post probability check
diff<-sumresdevl - sumresdev2
p<-1-step(beta-diff)

for(b in 1:10){

probability[b] <- 1-step(b-diff)
}

In the case of halogenated agents study, the probability in favors of inconsistency model was
equal to 0.03; hence we calculated the indirect estimate as difference from the appropriate

direct estimates and the indirect 95% Crl by normal approximation.

3.5.5 MODEL RESULTS

The pooled odds ratio (OR) estimates were calculated exponentiating the corresponding
posterior mean of log odds ratio (InOR) obtained from Bayesian software (table 3.1). The
indirect estimates were calculated from the consistency equation (2.1), by taking the
difference between the corresponding direct estimates, while the 95% credible intervals
were calculated from the actual posterior distribution by means of the normal
approximation. For example, for the isoflurane-desflurane (2-3) indirect estimate we have:
InOR,3; = InOR,3 — InOR,; = —0.8505 + 0.8776 = 0.0271 where the treatment 1, TIVA,

is there reference. The standard error of the logarithm of indirect estimate SE(InOR,5) is
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obtained by \/SE(anRB)Z + SE(InOR,,)? = \/(0.3423)2 + (0.5018)2 = 0.6074 and
the 95% credible interval is equal to 0.0271 + 0.6074 - 1,96. The corresponding odds ratio

0.0271 0.0271+0.6074+1,96 Table 3.2

OR,3 is calculated ase and it 95% credible interval ase
reports the posterior distribution of means and 95% credible intervals, for the anesthetic
agents difference effects, derived by Bayesian hierarchical model with Markov Chain Monte
Carlo algorithm.

We found that the use of sevoflurane (posterior mean of OR =0.31, 95% Crl 0.14 to 0.64) and
desflurane (posterior mean of OR =0.43, 95% Crl 0.21 to 0.82) was associated with a
reduction in mortality when compared to TIVA at the longest follow-up. A sensitivity analysis
showed that when the largest study was removed only the use of desflurane resulted
associated with a significant reduction in mortality with respect to TIVA (posterior mean of
OR =0.30, 95% Crl 0.09 to 0.88). A network meta-regression was performed to evaluate the
association between log-risk of mortality and both the length of study follow-up and the
year of publication. Heterogeneity should also be taken into account by adjusted analysis or
planning appropriate subgroup analyses. Bayesian meta-regressions showed no significant
effect of average follow-up (regression coefficient =-0.0008, Crl -0.004 to 0.002)and of
average of publication’s years (regression coefficient =-0.058, Crl -0.048 to 0.185) against

log-risk of mortality.
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Table 3.1: WinBUGS output carring out both fixed- and random- effect model. Posterior distribution of mean, standard deviation (SD), median
and 95% confident interval limits for the estimated treatment difference effects, variability estimate and goodness of fit indices.

Fixed effect model Random effect model

Contrast Mean SD 2.5% | Median | 97.5% Mean SD 2.5% Median | 97.5%

Isoflurane vs TIVA | -0.8776 | 0.5018 | -1.892 | -0.8697 | 0.08594 | -0.9229 | 0.5729 | -2.102 | -0.9056 | 0.1644

Desflurane vs TIVA | -0.8505 | 0.3423 | -1.546 | -0.8415 | -0.1999 | -0.903 | 0.4295 | -1.814 | -0.8814 | -0.1397

Sevoflurane vs TIVA | -1.158 0.3814 | -1.936 | -1.146 | -0.4388 | -1.106 0.4541 | 2.008 |-1.107 | -0.191

Tau (1) 167.3 |383.0 |0.5407 | 26.33 | 1286.0
Dbar 127.473 126.526
Dhat 105.546 102.967
pD 21.928 23.559
DIC 149.401 150.085
Dres 127.473 126.5

TIVA: Total intravenous anesthesia

Table 3.2: Posterior distribution of means and 95% credible intervals [95].

Fixedeffect model
Contrast OR | 95% credibleinterval
Isoflurane vs TIVA 0.42 | 0.15-1.09
Desflurane vs TIVA 0.43 | 0.21-0.82
Sevoflurane vs TIVA 0.31 | 0.14-0.64
Desflurane vs isoflurane” 1.03 | 0.31-3.38
Sevoflurane vs isoflurane ~ 0.76 | 0.22-2.60
Sevoflurane vs desflurane - 0.74 | 0.27-2.01

" Indirect treatment difference effect calculated from consistency equation (2.1) - TIVA: Total intravenous anesthesia



3.5.6 POSTERIOR RANK PROBABILITIES

Table 3.3 reports, for each anesthetic agent, the posterior distribution of the probability to
be the best, the second, the third and the worst, showing a trend of TIVA to be the worst in
terms of long term survival after cardiac surgery. The code to ranking the treatment
calculating the posterior mean of the probability that each treatment is the best, the second,

the third and the fourth, is the following:

# Rank probabilities to be the best treatment, or the subsequent, to prevent an adverse
events

for (kin 1:nt) {

for (m in 1:nt) { best[k,m]<- equals(rank(d[],k), m) }

!

Table 3.3: Posterior distribution of mean and 95% credible interval, for the anesthetic agent
difference effects, derived by Bayesian hierarchical model with Markov Chain Monte Carlo
algorithm. [95]

Anesthetic agents Probability to | Probability to | Probability to | Probability to
be the best be the second | be the third be the worst
TIVA <0.001 <0.001 0.04 0.96
Isoflurane 0.26 0.31 0.40 0.04
Desflurane 0.18 0.38 0.44 0.005
Sevoflurane 0.57 0.32 0.12 <0.001

TIVA: Total intravenous anesthesia

3.5.7 SENSITIVITY ANALISIS

Sub-analyses were performed including studies which reported 30-day mortality and using
propofol as TIVA.

When we repeating the Bayesian network meta-analyses using short term mortality (less or
equal to 30-days after surgery) as an endpoint, we found only a trend towards a reduction in
mortality when comparing desflurane versus TIVA (posterior mean of OR =0.41, 95% Crl
0.15-1.04). For what concerns the analysis including all studies using propofol as TIVA, we
found a significant difference in the treatment effects between sevoflurane and propofol
(posterior mean of OR =0.37, 95% Crl 0.13 to 0.98). Moreover, the Bayesian meta-
regressions of average of publication’s years against mortality log-risk showed a significant

association when analyzing only those studies using propofol (regression coefficient =0.259,

40



Crl 0.007 to 0.545). Adjusting the analysis for the effect of year of publication, we observed a
more intense difference effect between sevoflurane and propofol (posterior mean of OR

=0.30, 95% Crl 0.10 to 0.86).

3.6 DISCUSSION

We have provided a comprehensive and detailed overview of the conceptual and practical
issues involved in performing a and interpreting NMA on binomial data while applying a
Bayesian hierarchical model. We have discussed the general topics related to NMA, including
how to collect study data, structure the network, and set assumptions about the network
that lead to different models and interpretations of model parameters. The presented case
study on the beneficial effects of anaesthetic agents and the practical guide with the actual
WinBUGS codes will allow transparency and ease of replication of all steps that are required
when carrying out such quantitative syntheses. Additionally, we propose and applied the
posterior probability check method [81] to compare the posterior distribution of the sum of
residual deviance of consistency and inconsistency models.

This Bayesian network meta-analysis had confirmed that isoflurane, desflurane and
sevoflurane reduce mortality after cardiac surgery when compared to TIVA. Unfortunately,
even the Bayesian network meta-analysis with direct and indirect comparisons was unable
to identify if one of the volatile agent was better or worse that the other ones in terms of
improved survival. Traditional limitations of meta-analyses due to variations in the
treatment regimens, in populations or major subgroups within trials, and in the conduct of
the trials also apply to this Bayesian network meta-analysis. Bayesian network meta-analysis
incorporates both the direct and indirect comparisons between treatments. However
indirect evidence is susceptible to confounding [32] and thus should be interpreted with
caution since it does not always agree with the corresponding direct estimates [4]. Although
the consistency hypothesis was not rejected in this Bayesian network meta-analyses,
additional methodological and empirical work needs to be done to evaluate the direct and

indirect comparisons across a number of types of interventions.
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CHAPTER 4
MULTILEVEL NETWORK META-ANALYSIS

4.1 BACKGROUND

The easiest way to compare two treatment arms is to look at the relative difference in the
effect size estimate (i.e. weighted mean difference, relative risk, odds ratio) between the
group of interest and the reference group, treating such effect size estimates as
independent. However this ability to cope with multiple treatments implies that NMA
provides naturally a more general framework to deal with correlated data
[37,39,41,70,142,143] where correlation can derive from multiple endpoints, time-varying
responses or from clustered observation. Multilevel modeling approaches [144-149] offer a
valuable framework for carrying out NMA taking advantage of an existing hierarchical data
structure.

In this chapter we propose an alternative frequentist approach to estimate the consistency
and inconsistency models in the context of NMA following Higgins at al. [41] definition in
using design to refer to the set of treatments compared in a trial. We discuss multilevel
modeling which also provides a unified analysis method to meta-analysis, and which may be
carried out within widely available statistical programs such as the SAS software (SAS
Institute Inc. Cary, NC, USA). Therefore, we present the multilevel network meta-analysis
which includes a three-level data structure: subject within studies at first level, studies
within study designs at second level and the design configuration at the third level. This
approach differs from an alternative two-stage modeling because it is a one-stage strategy
which works directly on an arm-based data structure, where the effect are measured for
each arm (i.e. odds, absolute risk, hazard, or mean), instead of on the contrast-level

summaries.
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4.2 MULTILEVEL NETWORK META-ANALYSIS

In the last 15-20 years, multilevel methodology has evolved from a specialty area of
statistical research into a standard analytical tool used by many applied researchers.
Multilevel modeling is now an accepted statistical tool to analyze nested sources of
heterogeneity derived from hierarchical data, taking into account the variability associated
with each level of the hierarchy. Discussions of methodological and statistical issues
including performing a meta-analysis using multilevel model are available from works
authored by Goldstein [146], van Houwelingen [150] and Hox [144,148]. These researchers
posed existing methods for meta-analysis of two-arm clinical trials into the general
framework of multilevel modeling. Flexibility is the major advantages of using these models
instead of classical meta-analysis approaches [144,148]: it is easier to include study
characteristics as explanatory variables in an attempt to explain existing heterogeneity, and
to add additional levels into the model to accommodate multiple treatment comparisons.

In general, multilevel analysis assumes a linear regression model on, both, individual level
that relates the outcome to the treatment-group variable and on a second level for each
study included in the analysis. Even without having the original data, it is often possible to
carry out a multilevel meta-analysis on the summary statistics [148]. Mean and variance of
the regression coefficients across the studies are properly estimated. In case of
heterogeneous results, if the variance of the regression slopes of the treatment-group
variable is large and significant, researchers can refer to the study characteristics as
explanatory variables at the second (study) level to predict the differences in the regression
coefficients [144].

In the present work, we have a three-level data structure: including the subjects nested
within studies, studies nested within designs and study designs. Consider a sample of the
first 10 hypothetical treatment arms (level 1) of the data frame (appendix 1) of the case
study on anesthetic agents, taken from 5 consecutive studies (level 2) which show two
different designs (level 3): isoflurane vs TIVA and sevoflurane vs TIVA. It is clearly observed
that the treatment and the sample size represent the variables at first and second level,
respectively. The unit diagram in figure 4.1 and the classification diagram in figure 4.2
highlight the relations underlying the data. The unit diagram conveys the three-level
structure of the hierarchical data in terms of actual units and exact relationships between
levels.
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Figure 4.1: Unit diagram for the three-level data structure of the case study on anesthetic
drugs.
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Nodes A; identify each of 10 arms, nodes S; each study and D; the two design configuration.
The data are strictly hierarchical, since each unit belongs to one and only one higher level
unit. The precision p; of each study is a second level covariate while each arm is linked at one
of four treatments at the first level.

The classification diagram in figure 4.2 provides a simple summary of the entire subset of
data: it has only one node for each classification in the model. The arrows indicates the

nested relationship.

Figure 4.2: Classification diagram for the three-level data structure of illustrative example on
anesthetic drugs.
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4.3 CLUSTER-SPECIFIC AND POPULATION-AVERAGED EFFECTS

Cluster-specific (also known as subject-specific or conditional) models and population-
averaged (also known as marginal or unconditional) models are two different approaches to
model covariate effects on outcomes in the presence of a clustering structure. Random
effect model, such as the multilevel ones, is typically used to estimate the cluster-specific
effects while the generalized estimating equations (GEE) model by Liang and Zeger (1986)
[151] specifies the marginal or population-averaged distribution of the treatments. The
major difference between them is whether the observations are analyzed and interpreted
within the same cluster, or across clusters.

In cluster-specific models, the regression coefficients have a cluster-specific interpretation
and significance of the between-cluster variance is crucial to assess the clinical relevance of
the corresponding hierarchical level. The regression coefficient of an explanatory variable X,
often referred to as the subject-specific effect, is a measure of the difference in the mean
response (depending on the nature of the link function) in the same cluster for a 1-unit
change in X, holding constant all the other covariates and the combination of unobserved
individual features represented by the random effect. The interpretation of results as a
population-average are frequently not of interest [152], indeed the cluster-specific model
may be the more used approach. However interpretation of the parameters is difficult as it
assumes the existence of latent (unobserved group-level) variables which are included
directly in the model through the random effect term.

A marginal model consists of (i) a generalized linear model explaining the response and
predictors association and (ii) a specification of the structure of the correlations among
individuals (in this case: arms) on the same group (in this case: study) [151,153]. An
advantage of the marginal model is that coefficient estimates and their standard errors are
robust to misspecification of the correlation structure. In marginal models, the coefficients
have a population-averaged interpretation and the coefficients of X describe differences in
the mean responses across all observations (and hence across all clusters). The clustering is
an individual characteristic that needs to be taken into account, but which is not the main
focus of the analysis. The model specifies no parameter representing the between-cluster
variance and the effect of the cluster cannot be obtained. Population-averaged comparisons
make no specific use of within-cluster comparisons varying covariates and substantially
underestimate the within-cluster effect.
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In the case of the present work, the choice between multilevel and marginal approaches
depends on the magnitude of the heterogeneity between-studies. If the treatment effect is
essentially the same in each study, the within-group dependencies will be treated as
nuisance and the model provides predictions for the entire population. If it is important to
allow for clustering structure, one can fit a multilevel model with the group-level random

effect.

4.4 THREE-LEVEL RANDOM INTERCEPT MODEL

Meta-analysis in medicine is meant to evaluate the significant effect size among treatments,
taking into account both the within-study (among patients evaluated in a same trial) and the
between-studies (which identify the magnitude of heterogeneity into the meta-analysis)
correlation structure.

We began by defining the structure of the two-level random intercept model [41,144-149].
Consider N arms (at level 1) nested within J studies (at level 2), with njarms in study j and K
treatments. We indicate with y;; the response for arm i in study j and with 7;;;, the usual
series of dummy variables used to parameterize the treatment effect (there are k-1 factor
levels plus 1 representing the reference treatment). The response y;; is usually the mean of
a continuous outcome but in the presence of binary data, as an approximation, may also be
the log odds of an event frequency.

The random intercept model for a response y;; is as follows:

Yij = Bo + BikTiji + U + € fori=12,..,N; j=12,..,]; k=2,..,K (4.1)
where [ is the mean of y;; (across all studies) in the reference treatment 1, 5y indicates
the difference in the effect between treatment k and the reference treatment 1, u; and e;;
are the first and second residual terms, respectively. The overall relationship between y;;
and 7 is represented by a straight line with intercept 8, and slope ;. The residual
component terms are assumed to be independent and identically distributed (iid) as s
normal distribution with zero mean: u;~N (0, ¢;}) iid and e;;~N (0, 6) iid for
i=12,..,N; j=12,..,].

The multilevel model consists of two parts: (i) a fixed part By + B1xT;jx (with fixed

parameters 8, and f;) which formalizes the link betweeny;; and 7, and (ii) a random part
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u; + e;; (with random parameters 02 and 62) which contains the first- and second- level
residuals. The total residual variance is the sum of the two residual components, 62 + 2.
The model in the equation (4.1) can be rewritten in terms of two equations to highlight the
random nature of the intercept:

Vij = ,80]- +,31krijk + ¢ fori=12,..,N; j=12,...;k=2,..,K

Boj = Bo + u; forj=1.2,..,] (4.2)
The intercept for a given study j is B, + u; and the study effect u; is given by the difference
between the study j’s mean (y;) and the overall mean f,. The slopes 1 are assumed to be
the same for each study so that the predicted study-specific regression lines are parallels.
To define the second level of the hierarchical structure (the study classification),we assume
that the trial effect is random, implicitly admitting that some existing studies or treatments
may not be included in the meta-analysis for any reason. However, the missed studies or
treatments are still assumed to be missing at random.

The model (1) can be made more complex by allowing for the presence of heterogeneity of
treatment effects between studies. Ignoring the heterogeneity of the treatment effect may
grossly underestimate the uncertainty. The model will include the cross-level term, namely a

random treatment effect at the study level, and becomes:

Yij = Bo + BikTijic + Uoj + UyjTiji + €y

fori=12,...,N; j=12,..,]; k=2,..,K (3)
with the second level residual term assumed to follow a bivariate normal distribution with
2
qu .. O-uo Up1 | . . .
zero mean: u = (ulj) ~N,(0, 2,) iid where 2,, = 52 is the covariance matrix of
Up1 ug

the random effects.

In the frequentist multilevel approach, it is easy to include and assess the effect of the study
design by adding this extra level to the hierarchy of the data structure. Furthermore, if the
outcome is continuous (therefore the response is reported as mean together with the
sample standard deviation) the model may adjust for its variability by incorporating the arm-
specific standard deviation as a first level covariate.

The three-level random intercept model including design is:

Yijit = Bo + BikTijik + Vi + Ugji + W jiTijie + €ijy

with v;~N (0, o) iid, u~N (0, (2,,) iid and e;;;~N (0, ) iid

fori=12,..,N; j=12,...;k=2,..,K; 1 =12 ..., L (4)
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where the overall intercept 5, measures the mean of y;;; in the reference treatment across
all designs and all studies, v; represents the residual component of the third level /, 5, + v,
is the mean of y;;; for design /, and By+v; + uyj; is the mean of y;;; for the study j. Now, the
random part of the model is given by v; + ugj; + uyj;7;j; + €;;; and the random
parameters are o2, {2, and 62, respectively.

For the purpose of the data analysis, it is a good practice to start from the most complicated
model (i.e. with a three-level structure and cross-level terms) and test the importance of the
variance components to choose whether or not to use an extra level in the hierarchical
structure.

Figure 4.3 provides a graphical interpretation of the intercept and random effects of a
hypothetical random intercept model based on a three-level data structure, by fixing a given

study j and a design /, with a continuous explanatory variable at first level.

Figure 4.3: Graphical illustation of the variance component of a random slope model of a
three-level data structure.
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4.5 PUBLICATION BIAS

Publication bias, the main cause of small study effects, is one of the major sources of type |

error (which increases the probability of false positive results). A meta-analysis is affected by
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publication bias when studies with statistically significant and positive results have a better
chance of being published, are published earlier or in journals with higher impact factors,
and/or are more likely to be cited by others. A graphical evaluation of this bias is provided by
the funnel plot, where the individual effect size is plotted versus a measure of its precision.
Asymmetry or gaps in the plot are suggestive of such bias. Conversely, if the effect size of
each included study is symmetrically distributed around the underlying true effect size, no
publication bias is present.

To assess publication bias we start from the random intercept model (4.3) and add to this
model a second level explanatory variable representing a measure of precision and the
treatment-by-precision interaction term to evaluate if the treatment effect varies with the
study precision.

Let P;; indicate the precision of each study included in the meta-analysis. The random
intercept model for a response y;; becomes:

Yij = Bo + BikTijk + B2Pij + BsTijPij + Uoj + Uy jTijik + €

fori=12,..,N; j=12,..,]; k=2,..K (4.5)
where, as before, we assume that the effect of publication bias on the response y;; is the
same for all studies.

The significance of the treatment-by-precision interaction is suggestive of publication bias,
although the non significance of the precision covariates (main and interaction terms)
cannot exclude the presence of this bias.

Other authors [154-156] suggest the use of different measures of study precision, including
the inverse of the sample size or the sampling variance, instead of the inverse of the squared
standard error. These are all, highly correlated, valid alternatives [148]. Publication bias may

be assessed as previously described for those measures too.

4.6 TESTING CONSISTENCY

According to its widest meaning [157] the presence of inconsistency, in a network structure,
implies that the treatment effects vary among different designs [39,157]. For example, there

may be an inconsistency network when the treatment effect difference between arms A and
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B is different in studies comparing A and B only (AB design) and in studies which evaluated
together the arms A, B and C (ABC design).

In the frequentist approach, the consistency assumption may be tested by looking at the
interaction treatment-by-design term. The corresponding inconsistency model may be fitted
by adding two fixed effects to the two-level random intercept model: (i) a fixed main effect
for the dth design factor, §;;4, and (i) a fixed effect for the interaction between the kth
treatment and the dth design factors, 7;;46; 4. The random intercept model in equation (4.3)
may be rewritten therefore as:

Yij = Bo + BikTijk + Baibija + BakaTijibija + Uoj + U1jTijk + €y

fori=12,..,N; j=12,...;k=2,..K;d=2,...,D (4.6)
Testing consistency implies testing for the significance of the interaction treatment-by-
design term. However, this may be onerous, with (K-1)x(D-1)factor levels, and the
convergence of the estimation algorithm may not be achieved. In this case, it is reasonable
to test for the significance of the main effects before and then to consider the interaction
terms.

The proposed three-level random intercept model (4.4) includes the design factor as a
random parameter to capture the heterogeneity of treatment effect due to the different
comparisons.

In the Bayesian inconsistency model the consistency assumption is tested implementing the
posterior probability check method [141], which allows comparison of the difference in the
residual deviance between the consistency and the inconsistency model (which assumes a

prior distributions for all independent treatment difference).

4.7 ESTIMATION PROCEDURE

In meta-analysis, the question of whether all studies report or not the same outcome is an
essential issue. Therefore, it is very important to have models which estimate the
contribution of each random effect to the variance of the dependent variable. Indeed, the
standard errors of the coefficients of higher level predictors may be underestimated when a

single-level model is used. The fact that multilevel models, also known as variance
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component models, estimate the variability accounted for each level of the hierarchy and
obtain correct standard error estimates is just one reason for using multilevel modeling.
Multilevel models for continuous responses are usually fitted using maximum likelihood
procedures. However, for binary responses these procedures are highly computer-intensive.
The main difficulty to fit a generalized linear mixed model is that the likelihood does not
have a closed form. Assuming that f(y|u) is the conditional distribution of the data and
p(u) is the distribution of the random effect, one would maximize the marginal likelihood to
obtain the maximum likelihood estimates:

L= [ flwp)du (4.6)
When the random effect enters in the model in a nonlinear form the integral cannot be
solved in a closed form. Two available solution methods to proceed are: methods based on
linearization and methods based on integral (or numerical) approximation [38,146,149,158].
Linearization methods use expansions to approximate the model with another one based on
pseudo-data with fewer nonlinear components. Pseudo-likelihood methods for generalized
linear mixed models involve Taylor series expansions (linearizations) creating pseudo-data
for each optimization. Those data are then transformed to have zero mean in a restricted
likelihood method. In the restricted (or residual) maximum likelihood estimate, the
covariance parameter estimates are the maximum likelihood estimates for the transformed
data but the fixed effect estimates are generalized least squares estimates. In other words,
the restricted method is a function of the variance component only. In non-restricted
procedures both the covariance parameters and the fixed effect estimates are maximum
likelihood estimates, but the former have greater bias.

Direct maximum likelihood via integral approximation essentially replaces the integration in
(4.6) with a summation. This occurs approximating the normal distribution for the random
effects by a discrete distribution with q points. Integral approximation procedures allow to
compare nested models with the true likelihood ratio tests. The most commonly used
method of numerical integration is Gauss-Hermite with numerical or adaptive quadrature.
The Gauss-Hermite quadrature approximates the original integral multiplying the integrand
by a function having a normal density distribution. This results in a finite weighted sum that
assesses the function at certain points, g. The approximation improves as g increases. It is a
good practice to sequentially increase g until changes in both estimates and standard errors

are negligible. The adaptive version of the Gauss-Hermite quadrature improves the
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efficiency reducing the number of quadrature points needed because it centers the g points
with respect to the mode of the function being integrated [159]. Numerical integration is
computationally intensive for models with more complex population structures, in large
datasets or with multiple random effects. Maximum likelihood simulation is an alternative to
numerical quadrature which is more efficient when there are a large number of random
parameters, although it is still highly computationally intensive [160].

Quasi-likelihood methods, including marginal and penalized quasi-likelihood, are other types
of numerical integration procedures to direct maximum likelihood using an exponential
family representation of each component of the joint distribution in equation (4.6). Hence,
the integrand of (4.6) is an exponential function of the random effect u. For example, the
Laplace approximation is done using the second-order of Taylor series expansion of this

exponent around the point & [159].

4.8 CASE STUDY ON ANESTHETIC AGENTS

In the following we present an application of multilevel NMA on the effect on mortality of
anesthetics drugs. We derive results of NMA from both fixed and random effect models. We
compare the obtained results with those of a previously published Bayesian NMA on a
binary endpoint which in detail examined the effect on mortality of desflurane, isoflurane,
sevoflurane, and total intravenous anaesthetics (TIVA) at the longest clinical follow-up
available [95,161]. Anaesthetic drugs have pharmacological properties which go beyond
their effects on blood pressure and heart rate and they might induce cardiac protection. An
international, web based consensus conference recently included volatile anaesthetics
among the few drugs that might reduce mortality in patients undergoing cardiac surgery
[101].

The data structure of included 38 randomized controlled trials published between 1991 and
2012, with data on 3,996 patients [95], is presented in the appendix 1. The analyses were
carried out in SAS 9.2.

4.8.1 FIXED EFFECT MODEL
Firstly, we implemented a fixed effect model following an approach based on the
population-averaged interpretation of the coefficients. We modeled data using GEE to
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consider correlating features within study. For simplicity, we assumed the same correlation
between any two elements of a cluster (exchangeable correlation matrix). The GENMOD
procedure in SAS extends the traditional linear model theory to generalized linear models by
allowing the mean of a population to depend on a linear predictor through a nonlinear link
function. The GEE implementation in the GENMOD procedure is a marginal method that
does not incorporate any random effects. We model the mean of the average response (i.e.
treatment effect differences in term of odds ratios) over the sub-populations (across all
studies).

The following is the code to perform the fixed effect model taking into account within-study

dependences:

proc genmod data=q.alog;

class treat study;

model M/N=treat /dist=binomial link=logit type3;
repeated subject=study /type=exch;

[smeans treat /diff cl or;

run;

quit;

GENMOD procedure refers to the method of moments for the effect estimations.

The CLASS statement allows to establish which are the categorical variables included and to
determine which variables in the model will define the classification levels. In this case, the
variable TREAT defines the treatment (TIVA, isoflurane, desflurane, or sevoflurane)
administrated in each arm and STUDY defines the identifier of each trial included in the
meta-analysis.

The MODEL statement names the response and explanatory variables, including main effects
of interest, covariates, interactions, and nested effects. The procedure allows the input of
binary response data that are grouped: M represents the number of events (death) and N
represents the sample size in each arm. A TYPE3 analysis is similar to the Type Illl sums of
squares calculated for the general linear model, except that likelihood ratios are used
instead of sums of squares. The TYPE3 command produces a table that contains the
likelihood ratio statistics, degrees of freedom, and p-values based on the limiting chi-square
distributions for each effect in the model. LINK=LOGIT and DIST=BINOMIAL identify the

appropriate transformation and distribution for binary data.
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The REPEATED statement specifies the within-groups variance and covariance structure of
multivariate responses for the GEE model and controls the iterative fitting algorithm.
SUBJECT=STUDY states which are the subjects in the input dataset which corresponded to
the studies in our case. SUBJECT option in GENMOD procedure does not allow to specify
more than one classification level and therefore is not possible to account for both study and
design (namely the type of treatment comparison used in each study) effects. However one
can test the significance of the design effect as a covariate including this variable in the
model. Moreover, fixed effect assumption in meta-analyses implies that responses from
different subjects are assumed to be statistically independent, and responses within subjects
are assumed to be correlated according to a working correlation matrix identified by the
TYPE command. In this case, the command EXCH refers to an exchangeable within-group
correlation which assumes non-zero but equal correlations between each pair of individuals
in the same group. This is equivalent to the within-group correlation structure assumed in
the random intercept multilevel model (TYPE=CS - compound symmetry).

The LSMEANS statement computes least-squares means corresponding to the basic
treatment effects (i.e. those involving the reference treatment). The DIFF, CL and OR options
allow to compute all the treatment effect differences (in this case study, expresses in term of
the natural logarithm of the odds ratio), the odds ratios and their 95% confident interval.
Results from GEE models are valid under the assumption that the distribution of missingness
(DOM) is completely at random (MCAR), which means that the probability of dropout is
unrelated to any characteristics of the included observations [162-164]. Accordingly, PROC
GENMOD ignores any observation with a missing value for any variable involved in the
model. Alternatively, PROC GLIMMIX can fit marginal models but the covariance parameters
are estimated by likelihood-based techniques and not by the method of moments as with
PROC GENMOD. For likelihood or Bayesian estimation procedures, we may generally ignore
the DOM when the missing data are missing at random (MAR), which means that the
probability of dropout may be related to covariates and to pre-dropout responses [162-164].
The following is the alternative code, using the GLIMMIX procedure, to perform the fixed

effect model using the generalized linear mixed model:

proc glimmix data=q.alog empirical=classical;
class treat study;
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model m/N=treat /dist=binomial link=logit ddfm=bw solution;
random _residual_ /type=cs subject=study;

Ismeans treat /diff or cl;

run;

The option EMPIRICAL=CLASSICAL requests that the covariance matrix of the fixed-effects
parameter estimates is computed by using one of the asymptotically consistent estimators,
known as sandwich or empirical estimators [159]. As before, the CLASS statement defines
the classification levels of the model and the MODEL specifies the association of interest.
The DDFM=BW (abbreviation of between) option in the MODEL statement defines the
degrees-of-freedom method and requires that the data are processed by subjects. The
SOLUTION option requests to print out the fixed effect parameter estimates.

The RANDOM statement is better explained into the next section (see the “4.8.2 Random

I”

effect model” paragraph). As before, the LSMEANS statement produces the estimates of the
average logits of the treatment groups. Since the indirect estimate can be calculated as the
difference of the corresponding direct estimates, the consistency equation (2.1) is satisfied.

Table 4.1 shows the results of fitting the different fixed effect consistency models to
estimate the anaesthetic agent difference effects. The left part of the table reports the mean
of the posterior distribution of the odds ratios, and the corresponding 95% credible
intervals, estimated from the Bayesian hierarchical model with a MCMC simulation. The
right part of the table reports the estimates of the odds ratio, the corresponding 95%
confidence intervals and p-values, from the multilevel NMA fitted by both GENMOD and

GLIMMIX procedures.
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Table 4.1: Fixed effect consistency models to estimate the anaesthetic agent difference effects. Comparison between the mean of the
posterior distribution of the odds ratios and the corresponding 95% credible intervals, derived by Bayesian hierarchical model with Markov
Chain Monte Carlo algorithm, and the estimate odds ratios, the corresponding 95% confidence intervals and p-values, derived from multilevel
network meta-analysis.

Bayesian approach Multilevel network meta-analysis (PROC GENMOD)
Contrast OR 95% credible interval OR 95% confidence | P-value
interval
Sevoflurane vs TIVA 0.31° 0.14-0.64 0.34° 0.15-0.78 0.0109
Desflurane vs TIVA 0.43% 0.21-0.82 0.49* 0.31-0.78 0.0028
Isoflurane vs TIVA 0.42 0.15-1.09 0.51 0.26-1.00 0.0504
Sevoflurane vs desflurane - 0.74 0.27-2.01 0.68 0.23-1.99 0.4807
Sevoflurane vs isoflurane - 0.76 0.22-2.60 0.66 0.22-1.93 0.4476
Desflurane vs isoflurane” 1.03 0.31-3.38 0.98 0.42-2.38 0.9408
Multilevel network meta-analysis (PROC GLIMMIX)
Contrast OR 95% confidence | P-value
interval
Sevoflurane vs TIVA 0.34% 0.15-0.78 0.0122
Desflurane vs TIVA 0.54* 0.35-0.85 0.0091
Isoflurane vs TIVA 0.50 0.24-1.06 0.0687
Sevoflurane vs desflurane - 0.63 0.23-1.72 0.3627
Sevoflurane vs isoflurane - 0.68 0.25-1.86 0.4471
Desflurane vs isoflurane” 1.08 0.42-2.78 0.8703

* Indirect treatment difference effect calculated from consistency equation (2.1)
# Significant treatment difference effect
TIVA: Total intravenous anesthesia




Results are not materially different, suggesting that the proposed frequentist multilevel
modeling approach is suited to NMA data.

Adding the design variable as fixed effect, the code begins:

proc genmod data=g.alog;

class treat study design;

model m/N=treat design /dist=binomial link=logit type3covb;
repeated subject=study /type=exch;

Ismeans treat /diff cl or;

run;

quit;

The fixed effect of the design variable was not associated at the response variable (p=0.3)
indicating the plausibility of the consistency model. Accordingly, the magnitude of treatment
estimates and the corresponding width of the confidence interval was not materially
changed with the introduction of the information of the design.

When we refitted the model adding the interaction treatment-by-design term, the SAS
software returns a message indicating convergence problems. This is probably due to the
scarce information available overall which does not allow to estimate a model including also

a interaction term.

4.8.2 RANDOM EFFECT MODEL

The GLIMMIX procedure in SAS software defines two types of random effects. The program
distinguishes between G-side and R-side random effects depending on whether the
parameters of the covariance structure, for random components, are contained in the G or
in R matrix. The GLIMMIX procedure can fit models that have none, one, or more of each
type of effects.

Suppose to define the general matrix structure of the generalized linear mixed model
[148,159] as Y = X + Zu + ewhere the random effect u is normally distributed with mean
0 and variance G and the residual effects e is normally distributed with mean 0 and variance
R [36,37]. Models with only R-side random effects, Y = X + e, are also known as marginal
(or population-averaged) models.

The variance-covariance matrix in a model with only a R-side random component is given by:

var(Y) = AY?RAY? where A is a diagonal matrix containing the variance function.
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The command to specify the R-side covariance structure in the GLIMMIX procedure is:
random _residual_ /type=cs subject=study(design);

which is equivalent to the covariance structure implied by the REPEATED command in the
GENMOD procedure:

repeated subject=study(design)/type=exch;

However, the GEE estimation in the GENMOD procedure allows for the estimation of only R-
side variance-covariance matrices. On the other hand, the GLIMMIX procedure allows for the
specification of both G-side and R-side variance-covariance matrix using the RANDOM
statement. The following code fits the random effect consistency model using the GLIMMIX

procedure:

proc glimmix data=q.alog;

class treat study design;

model m/N=treat /dist=binomial link=logit ddfm=bw solution;
random intercept treat /type=cs subject=study(design);
random intercept /type=cs subject=design;

Ismeans treat /diff or cl;

run;

We added the design level in the class statement to accommodate for the three-level data
structure.

In SAS GLIMMIX procedure, the default estimation method for generalized linear mixed
models is the restricted pseudo-likelihood with a subject-specific expansion [158]. One can
choose another estimation methods specifying the option METHOD in the DATA statement.
The RANDOM statements define the hierarchical multilevel structure. In this case, we
specified an intercept term that randomly varies at the level of the design effect and at the
level of study effect (within design). The TYPE option defines the covariance structure of G.
In this case, we specified a compound symmetry structure (TYPE=CS) because it is equivalent
to the exchangeable structure specified in the GENMOD procedure.

Table 4.2 shows the results of fitting different random effect consistency models to estimate

the treatment difference effects in the case study.
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Table 4.2. Random effect consistency models to estimate the anaesthetic agent difference effects. Comparison between the mean of the
posterior distribution of the odds ratios and the corresponding 95% credible intervals, derived by Bayesian hierarchical model with Markov
Chain Monte Carlo algorithm, and the estimate odds ratios, the corresponding 95% confidence intervals and p-values, derived from multilevel
network meta-analysis.

Bayesian approach Multilevel network meta-analysis (residual pseudo-
likelihood)
Contrast OR 95% credible interval OR 95% confidence interval
Sevoflurane vs TIVA 0.33° 0.13-0.83 0.35° 0.14-0.83
Desflurane vs TIVA 0.41° 0.16-0.87 0.53 0.24-1.17
Isoflurane vs TIVA 0.40 0.12-1.18 0.55 0.19-1.63
Sevoflurane vs desflurane * 0.82 0.24-2.78 0.66 0.23-1.88
Sevoflurane vs isoflurane ® 0.83 0.20-3.49 0.62 0.19-2.15
Desflurane vs isoflurane * 1.02 0.25-4.15 0.95 0.27-3.36
Variability Estimate 95% credible interval Estimate Standard error
Between trials standard deviation 0.34 0.03-1.37
- Study intercept variance 0.6412 0.3574
- Treatment slope variance 2,78E-17 .
- Design intercept variance 0.0046 0.2575

® Indirect treatment difference effect calculated from consistency equation
® Significant treatment difference effect
TIVA: Total intravenous anesthesia




As before, the left part of the table 4.2 reports the mean of posterior distribution of odds
ratios and the corresponding 95% credible intervals estimated with the Bayesian hierarchical
model. The right part of the table shows the estimates of odds ratio, with the corresponding
95% confidence intervals and p-values, fitting the multilevel NMA. Results are comparable,
although the multilevel model found only a trend towards a reduction in mortality when
comparing desflurane versus TIVA.

The multilevel models produce more conservative estimates than the Bayesian one.
Moreover, the variance estimate for the design classification variable is close to zero
indicating that the design does not influence the treatment effect on the response and this
may point to the consistency of model.

To formally test for this hypothesis, we specified the model as in (4.5) adding the design and

the interaction treatment-by-design terms. The SAS code used is the following:

proc glimmix data=g.alog method=quad(qpoints=2);

class treat study design;

model m/N=treat design treat*design /dist=binomial link=logit ddfm=bw solution;
random intercept treat /type=cs subject=study;

run;

Given the complexity of the model, we specified the maximum likelihood estimation method
with the adaptive Gauss-Hermite quadrature (METHOD=QUAD) and we chose to impute two
quadrature points (QPOINTS=2). The type Il test on fixed effects for both the design and the
interaction term were not significant (p=0.4 and p=0.3 respectively) suggesting a
homogeneous influence of the design type on the response.

The publication bias is examined adding the precision term as a fixed effect:

proc glimmix data=q.alog;

class treat study design;

model m/N=treat precision /dist=binomial link=logit ddfm=bw solution;
random intercept treat/ subject=study(design);

random intercept / subject=design;

Ismeans treat /diff or cl;

run;
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The non significant in the type Ill test on the precision term suggested the absence of

publication bias (p=0.3).

4.9 DISCUSSION

We propose multilevel modeling as an alternative approach to carry out a NMA generalizing
the multilevel analysis approach described by Hox [144,148], Raudenbush [145], Goldstein
[165] and Gage [166].

We suggest to consider the arm-based data, instead of contrast-based ones, as the first level
of the hierarchy. The use of arm-level summaries provides several important advantages in
terms of precision and flexibility when multi-arm trials are included in the NMA. Compared
to the contrast level approach, the arm-level one adopts the exact likelihood of the data (i.e.
the binomial distribution for binary data) rather than its normal approximation [70]. Indeed,
the inference for likelihood-based meta-analysis is the same, for an arm-level or contrast-
level data structures, only when two-arm studies are included. Moreover, multi-arm trials
force to take into account the within-study correlation structure as well. Indeed, when using
contrast-level data the researcher has to specify the variance-covariance matrix for each
multi-arm trial to reflect the data correlation structure. This implies an adjustment of the
likelihood. Furthermore, as discussed in Zhang [167] the arm-based method is more robust
to presence of missing data and is more accurate compared to the contrast-based one.
Model flexibility is another advantage of multilevel analysis, as compared to standard meta-
analysis. Indeed, a multilevel framework naturally allows to add extra levels to the model, to
include covariates at each level of the hierarchy, and to accommodate for multiple
outcomes. It is therefore easier to generalize the multilevel methodology to a network with
multiple treatments, defining the statistical implications and model parameterization to
perform a multilevel NMA.

Moreover, a NMA can be viewed as the analysis of experimental data when incomplete
block treatments are used [168]. Complete and balanced data are not required for a
multilevel analysis and the estimates are not affected if individuals may vary in their number

of measurements.
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Multilevel NMA is a relatively new approach with several issues that are still open to
discussion. These include an assessment of the minimum number of trials per design to
ensure an adequate statistical power, the definition and evaluation of the bias related to
network asymmetry, a more effective specification of the multivariate inconsistency model,

and the implementation of a bootstrap procedure to provide a ranking of the treatments.
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CHAPTER 5
COMPARISON BETWEEN BAYESIAN AND FREQUENTIST
MULTILEVEL NETWORK META-ANALYSES

5.1 INTRODUCTION

In the chapter 3 we highlighted the key steps to perform a valid network meta-analysis
(NMA), from literature search to sensitivity analysis, using the Bayesian approach [141], and
in chapter 4 we proposed an alternative frequentist method [169], which we called
multilevel NMA, for a three-level data structure (arms within studies, studies within study
designs and design configuration) that models directly the arm-level information [167].

In the present chapter, we compare the Bayesian and our frequentist-multilevel approach, in
performing NMA on publicly available data, and we investigate the descriptive
characteristics on either individual studies or NMAs that may contribute to
decrease/increase the potential difference between the estimates derived from the two
approaches. To do this, we selected a set of published NMAs on any outcomes from a
published systematic and narrative review [170] we collected the raw data used in the
original analyses and we re-fitted the Bayesian and multilevel models for NMA with both
fixed and random effects. The two approaches were compared in terms of the raw or
standardized (divided by its standard error (SE)) differences between the derived pooled

estimates, and of the Euclidean distance between the standardized estimates.

5.2 METHODS

5.2.1 SEARCH STRATEGY
We searched MEDLINE/PubMed for papers in which any possible approach to NMA was

applied, without any restriction on type of included studies (updated on April 15" 2014).

63



We excluded papers with the following characteristics: (i) not presenting an indirect
comparisons, (ii) methodological or descriptive reports, (iii)j commentaries, letters or
editorial style reviews, or (iv) protocols of NMAs. Furthermore, we selected NMAs with: (i) at
least four treatments, (ii) at least two closed loops, and (iii) at least one dichotomous
primary outcome. Authors of the original papers were contacted by email in case of missing

raw data.

5.2.2 DATA EXTRACTION

For each included paper (NMA level), the following data were extracted and collected in a
spreadsheet file: first author, year and journal of publication, type of intervention or
procedure, medical condition, outcome, number of treatments, number of studies included
in the analysis, number of multi-arm studies, number of pairwise comparisons, minimum
and maximum number of studies for pairwise comparison, total number of patients, total
number of events, statistical software and model used in the original paper for data analysis,
method to assess the publication bias and method to assess the consistency hypothesis,
respectively (table 5.1). Moreover, for each pairwise comparison (arm level) we extracted
the information on the number of patients, the number of events, and the number of

individual studies involved (table 5.2).

5.2.3 STATISTICAL ANALYSIS

We applied both the Bayesian and our frequentist-multilevel (fixed- and random- effect)
models to estimate the treatment effect of each comparison of each NMA, in terms of the
pooled logarithm (log) of the odd ratio (OR). We fitted the Bayesian hierarchical models for
NMA using the WinBUGS software (freely available in the BUGS project website [171]) and
the frequentist-multilevel NMA using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). When we
re-fitted our NMA models to the published data with the Bayesian and frequentist-multilevel
approaches, SAS and/or WinBUGS software (table 5.2) indicated an estimation issue (i.e.
large SEs of the pooled estimates) in the 2.3% of cases (5/216) and a convergence issue in
the 5.1% of cases (11/216). In 9 cases, we achieved convergence at the expense of a

different model specification. In detail, in case of “trap 66” error message from WinBUGS
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software [171], we reduced the variance from 0.0001 to 0.001 in all the prior distributions (2
cases). In case of non-convergence of models fitted by SAS software, we removed the
assumption of constant intra-study correlation (7 cases) in favours of a corresponding
unstructured correlation matrix. In the remaining 2 cases of unsolved convergence issues
[172,173] large SEs of the pooled estimates were present too.

We evaluated the difference between the two approaches (separately for fixed- and
random- effect models) using the Generalized Estimating Equation (GEE) models [151] taking
into account the intracorrelation within NMA by assuming the same correlation between any
two comparisons within each NMA. We considered as model outcomes: (i) the raw pooled
log(OR), (ii) the standardized pooled log(OR), calculated as the ratio between each pooled
estimate and its SE and (iii) the Euclidean distance calculated as \/[(xo-xl)z], where Xq is the
standardized log(OR) derived from the Bayesian NMA and x; is the standardized log(OR)
derived from the multilevel NMA. Models were fitted either on the 27 available NMAs and
on the 20 NMAs with no estimation or convergence issues.

Furthermore, we evaluated the possible effect of NMA-level covariates (one at time) on the
presence of estimation or convergence issues, separately for each approach, using the fixed-
effect logistic regression model.

Statistical significance was set at the two-tailed 0.05 level. For all levels of analysis, we
accounted for the problem of multiple testing by proposing adjusted p-values calculated
referring to the Benjamini-Hochberg method [174]. The corresponding unadjusted p-values

were reported in the Supplemental Material.
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Table 5.1: Descriptive characteristics of the 27 published network meta-analyses providing raw data for our analysis.

Author (year) Journal Treatments Condition Outcome

Baker WL (2009) Pharmacotherapy LABA (fornoterol, salmenterol), ICS (budesonide, futicasone, triamcinolone), COPD COPD exacerbation
LABA + ICS (futicasone plus salmenterol, budesonide plus fornoterol), tiotropium
and placebo.

Chatterjee S (2013) BMJ Beta blockers (atenolol, bisoprolol, bucindolol, carvedilol, metoprolol, enalapril, |Chronic heart failure |All cause mortality
and nebivolol) and placebo.

Cipriani A (2011) Lancet Antimanic drugs (aripiprazole, asenapine, carbamazepine, divalproex, Acute mania Dropout rate of the
gabapentin, haloperidol, lamotrigine, lithium, olanzapine, quetiapine, allocated treatment at 3
risperidone + paliperidone, topiramate, ziprasidone) and placebo. weeks

Cipriani A (2009) Lancet Antidepressant drugs (bupropion, citalopram, duloxetine, escitalopram, Unipolar major Response rate (efficacy
fluoxetine, fluvoxamine, milnacipran, mirtazapine, paroxetine, reboxetine, depression analysis)
sertraline, and venlafaxine).

Dias S (2010) Stat Med Thrombolytic drugs and angioplasty (streptokinase, alteplase, accelerated Acute myiocardial Death in 30 or 35 days
alteplase, streptokinase+ alteplase, reteplase, tenocteplase, urokinase, and infarction
anistreptilase, and percutaneous transluminal coronary angioplasty).

Dogliotti A (2014) Heart Oral antithrombotics (aspirin, aspirin + clopidogrel, vitamin K antagonists, Non-valvular atrial Stroke
dabigatran 110 mg, dabigatran 150 mg, rivaroxaban, apixaban) and fibrillation
placebo/control.

Dong YH (2013) Thorax Inhaled medications (tiotropium Soft Mist Inhaler, tiotropium HandiHaler, LABA, |COPD Overall death

ICS, LABA-ICS combination) and placebo.

Dunkley AJ (2012)

Diabetes Obes Metab

Interventions (lifestyle, pharmacological, lifestyle + pharmacological treatments),
no treatment.

Metabolic syndrom

Metabolic syndrome
reversed

Elliott WJ (2007)

Lancet

Antihypertensive drugs (ACE inhibitors, ARB, CCB, thiazide diuretic, B blocker)
and placebo.

Hypertension
(impaired glucose
tolerance, insulin
resistance, and
obesity)

Diabetes incidence

Filippini G (2003)

Cochrane Database
Syst Rev

Immunomodulators and immunosuppressants (IFNR-1b Betaseron, IFNR-1a
Rebif, IFNR-1a Avonex, glatiramer acetate, natalizumab, mitoxantrone,

methotrexate, azathioprine, immunoglobulins, and long-term corticosteroids)

Multiple sclerosis

Clinical relapse over 24
months




Author (year) Journal Treatments Condition Outcome
and placebo.
Fretheim A (2012) BMC Med Antihypertensive treatments (ACE inhibitor, ARB, a blocker, B blocker, diuretic, |Primary prevention of |All cause mortality

CCB, diuretic plus B blocker), placebo and conventional drug.

cardiovascular disease

Lam SK (2007)

British Medical
Journal

Combined resynchronisation and implantable cardioverter defibrillator therapy,
cardiac resynchronisation therapy, implantable cardioverter defibrillator therapy
and medical therapy.

Left ventricular
impairment and
symptomatic heart
failure

All cause mortality

Landoni G (2013)

Br J Anaesth

Anaesthetic drugs (desflurane, isoflurane, sevoflurane, total intravenous
anaesthesia).

Coronary artery
bypass grafting
patients with standard
cardiopulmonary
bypass

All cause mortality

Li LT (2014)

Colorectal Dis

Skin closure techniques (primary closure, primary closure with a drain, secondary
closure, delayed primary closure, loose primary closure, circular closure).

Enterostomy
(ileostomy or
colostomy) reversal in
adult patients

Surgical site infection

Owen A (2010) Int J Cardiol Antithrombotic treatments (warfarin, aspirin low dose <300mg daily, aspirin high |Non valvular atrial Stroke
dose aspirin >300mg daily) and control. fibrillation

Psaty BM (2003) JAMA Six most commonly used antihypertensive classes (diuretic, B-blocker, ACE Cardiovascular Coronary heart desease
inhibitors, ARB, CCB and a-blocker) and placebo. desease

Ramsberg J (2012) PLoS One Antidepressants (amitriptyline, citalopram, dothiepin, duloxetine, escitalopram, |Unipolar major Remission drug
fluoxetine, fluvoxamine, imipramine, lofepramine, maprotiline, milnacipran, depression

mirtazapine, nortriptyline, paroxetine, reboxetine, sertraline, venlafaxine).

Reich K (2012)

Br J Dermatol

Monoclonal antibodies (efalizumab, etanercept 25 mg, etanercept 50 mg,
adalimumab, ustekinumab 45 mg, ustekinumab 90 mg, infliximab) and placebo.

Moderate to severe
psoriasis

PASI 75 response rate

Reichenpfader U Drug Saf Second-generation antidepressants (bupropion, citalopram, desvenlafaxine, Major depressive Sexual dysfunction
(2014) duloxetine, escitalopram, fluoxetine, fluvoxamine, mirtazapine, nefazodone, disorder

paroxetine, sertraline, trazodone, venlafaxine) and placebo.
Ribeiro RA (2013) Int J Cardiol Statins intensity regimes (high, intermediate and low) and placebo/no treatment.|Major cardiovascular |All cause mortality

events

Sciarretta S (2011)

Arch Intern Med

Antihypertensive treatments (ACE inhibitor, ARB, diuretis, CCB, B-blocker,

Hypertension

Incidence of heart




Author (year)

Journal

Treatments

Condition

Outcome

conventional treatment, and a-blocker) and placebo.

failure

Tadrous M (2014)

Osteoporos Int

Bisphosphanates (alendronate, risedronate, etidronate, zoledronic-acid) and
placebo.

Primary osteoporosis

Gastrointestinal related
adverse event

Thijs V (2008) Eur Heart J Antiplatelet agents (aspirin, thienopyridines (ticlopidin or clopidogrel), aspirin Transient ischaemic  |Vascular event
and dipyridamole, combination of thienopyridines and aspirin, and placebo. attack or stroke
van Valkenhoef G J Clin Epidemiol Second-generation antidepressants (fluoxetine, paroxetine, sertraline, Depressive disorder |[Response rate

(2012)

venlafaxine) and placebo.

Wang H (2010)

J Hosp Infect

Central venous catheteres (standard, heparin-bonded, silver alloy-coated, silver-
impregnated, silver iontophoretic, chlorhexidine and silver sulfadiazine,
chlorhexidine and silver sulfadiazine catheter blue plus, minocyclinee-rifampicin,
benzalkonium chloride, miconazolee-rifampicin).

Nosocomial infection

Catheter-related
bloodstream infection
on number of central
venous catheteres
studied

Wu HY (2013) BMJ Antihypertensive treatments (ACE inhibitor, ARB, a blockers, 8 blockers, CCB, Diabetes All cause mortality
diuretics, ACE inhibitor + CCB, ACE inhibitor + diuretics, ARB + CCB, ARB +
diuretic, ACE inhibitor + ARB) and placebo.

Yang B (2014) PLoS One Sodium ozagrel, sodium ozagrel + edaravone, ozagrel + edaravone, edaravone, |Cerebral hemorrhage |Acute cerebral stroke

edaravone + kininogenase and placebo.

LABA: long-acting B2 agonists; ICS: inhaled corticosteroids; COPD: chronic obstructive pulmonary disease; ACE: angiotensin converting enzyme;
ARB angiotensin receptor blocker; CCB: calcium channel blockers; IFN: interferon; PASI: Psoriasis Area and Severity Index.




Table 5.2: Numeric characteristics extracted from the 27 published network meta-analyses providing raw data for our analysis. Information on
potential estimation or convergence issues emerged during our re-analysis of the corresponding network meta-analysis. Some descriptive statistics

are provided at the bottom of the table to summarize available information.

cosistency/

Author N.of N.of N.of multi- | N.of Mini/max N.of N.of Approach and | Evaluation of | Evaluation |Presence of Presence of
(year) treatm |studies |arm pairwise n.of studies | events |patients |software used | publication |of problems problems
ents studies compariso | per in the original | bias inconsisten | fitting the fitting the
ns comparison paper cy Bayesian model | multilevel
model
Baker WL 5 39 10 10 1/19 11864 |28235 Bayesian None None Convergence None
(2009) approach, problems. “trap
WinBUGS 66" error
message solved
reducing the
variance of all
prior
distributions
Chatterjee S |8 21 0 9 1/8 3871 23122 Bayesian None None None Convergence
(2013) approach, problems
WinBUGS solved with an
unstructured
correlation
matrix
Cipriani A 14 64 18 30 1/7 5712 15858 Bayesian None Difference |Large standard |None
(2011) approach, R between error of the
and WinBUGS indirect and | estimates
direct
estimates
and
evaluation
of




Author N.of N.of N.of multi- | N.of Mini/max | N.of N.of Approach and | Evaluation of | Evaluation |Presence of Presence of
(year) treatm |studies |arm pairwise | n.of studies |events |patients |software used | publication |of problems problems
ents studies compariso | per in the original | bias inconsisten | fitting the fitting the
ns comparison paper cy Bayesian model | multilevel
model
inconsistenc
y models fit
and
parsimony
Cipriani A 12 111 2 42 1/11 13951 |24595 Bayesian None Incoherenc | Large standard |None
(2009) approach, e defined as | error of the
WinBUGS the estimates
disagreeme
nt between
direct and
indirect
evidence
with a 95%
Cl excluding
1
Dias S 9 50 2 16 2/9 12484 |154201 Bayesian None Back- None None
(2010) approach, calculation
WinBUGS and node-
splitting
methods
DogliottiA |8 20 4 28 1/9 3004 79808 Bayesian None Node- None None
(2014) approch, R- splitting
GeMTC method
package
Dong YH 6 41 10 10 1/16 2408 52516 Bayesian None None Convergence
(2013) approach, problems. “trap
WinBUGS 66" error

message solved




Author N.of N.of N.of multi- | N.of Mini/max | N.of N.of Approach and | Evaluation of | Evaluation |Presence of Presence of
(year) treatm |studies |arm pairwise | n.of studies |events |patients |software used | publication |of problems problems
ents studies compariso | per in the original | bias inconsisten | fitting the fitting the
ns comparison paper cy Bayesian model | multilevel
model
reducing the
variance of all
prior
distributions
Dunkley AJ |4 12 3 6 1/8 1483 3907 Bayesian None None None None
(2012) approach,
WinBUGS
Elliott W) 6 22 3 31 1/5 10865 |152216 |Frequentist None Degree of None None
(2007) approach, R - incoherence
Lumley using the
program [35] Lumley’s
definition
Filippini G 11 25 1 16 1/5 5267 9152 Bayesian Reporting Bucher Large standard | None
(2003) approach, bias method error of the
WinBUGS evaluated by | (difference |estimates
means of an | between
adaptation of | direct and
the funnel indirect
plot for estimates in
pairwise MA | each closed
(comparison- | loop) and
adjusted comparison
funnel plot between
[200]) model's DIC
Fretheim A |9 25 4 15 1/7 14218 |164971 Bayesian None Node- None Convergence
(2012) approach, splitting problems
WinBUGS method and solved with an
calculation unstructured




Author N.of N.of N.of multi- | N.of Mini/max | N.of N.of Approach and | Evaluation of | Evaluation |Presence of Presence of
(year) treatm |studies |arm pairwise | n.of studies |events |patients |software used | publication |of problems problems
ents studies compariso | per in the original | bias inconsisten | fitting the fitting the
ns comparison paper cy Bayesian model | multilevel
model
of Bayesian correlation
p-values for matrix
effect to
check for
inconsistenc
y between
direct and
indirect
evidence
Lam SK 4 11 1 5 1/4 1363 7359 Bayesian None None None None
(2007) approach,
WinBUGS
Landoni G 4 38 5 6 1/17 76 3996 Bayesian None Residual None None
(2013) approach, deviance
WinBUGS difference
between
consistency
and
incosistency
models -
Post
probability
check
Li LT (2014) |6 15 6 11 1/5 235 2929 Bayesian None Comparison | None Convergence
approach, R - between problems
R20penBUGS direct and solved with an
package indirect unstructured
evidence correlation




Author N.of N.of N.of multi- | N.of Mini/max | N.of N.of Approach and | Evaluation of | Evaluation |Presence of Presence of
(year) treatm |studies |arm pairwise | n.of studies |events |patients |software used | publication |of problems problems
ents studies compariso | per in the original | bias inconsisten | fitting the fitting the
ns comparison paper cy Bayesian model | multilevel
model
matrix
Owen A 4 14 2 5 2/5 411 8250 Bayesian None None None None
(2010) approach,
WinBUGS
Psaty BM 7 36 3 12 1/17 8286 180291 Frequentist None Bucher None Convergence
(2003) approach, R - method problems
Lumley (difference solved with an
program [35] between unstructured
direct and correlation
indirect matrix
estimates in
each closed
loop)
Ramsberg) |17 87 0 35 1/19 8370 19878 Bayesian None Node- Large standard | None
(2012) approach, splitting error of the
WinBUGS method estimates
Reich K 8 20 5 11 1/5 3903 10108 Bayesian None None None None
(2012) approach,
WinBUGS
Reichenpfad | 12 37 12 29 1/5 2217 10417 Bayesian None None Large standard | Convergence
er U (2014) approach, error of the problems
WinBUGS estimates solved with an
unstructured
correlation
matrix
Ribeiro RA 4 44 2 5 3/19 12904 |173503 Bayesian None Inconsisten | None None
(2013) approach, cy test
WinBUGS proposed




Author N.of N.of N.of multi- | N.of Mini/max | N.of N.of Approach and | Evaluation of | Evaluation |Presence of Presence of
(year) treatm |studies |arm pairwise | n.of studies |events |patients |software used | publication |of problems problems
ents studies compariso | per in the original | bias inconsisten | fitting the fitting the
ns comparison paper cy Bayesian model | multilevel
model
by [63]
SciarrettaS |8 26 2 15 1/5 8554 223313 Bayesian None Inconsisten | None Convergence
(2011) approach, cy model. problems
WinBUGS solved with an
unstructured
correlation
matrix
TadrousM |5 46 1 7 2/27 8523 33471 Bayesian None Test of None None
(2014) approach, incosistency
WinBUGS .
Thijs V 5 25 3 7 2/11 7413 50886 Frequentist None “Ime" None None
(2008) approach - function in
SAS the package
R [35]
van 5 24 4 10 1/6 2924 5110 Bayesian None Node- None None
Valkenhoef approach, R- splitting
G (2012) GeMTC method and
package performing
incosistency
models
Wang H 10 45 1 14 1/18 467 12085 Bayesian None None Large standard | Convergence
(2010) approach, error of the problems not
WinBUGS estimates solved
Wu HY 11 62 12 24 1/28 2400 36810 Bayesian None Node- Large standard | Convergence
(2013) approach, splitting error of the problems not
WinBUGS method estimates solved
Yang B 5 145 0 6 3/57 10333 | 12983 Bayesian None Loop None Convergence
(2014) approach, incosistency problems




Author N.of N.of N.of multi- | N.of Mini/max | N.of N.of Approach and | Evaluation of | Evaluation |Presence of Presence of
(year) treatm |studies |arm pairwise | n.of studies |events |patients |software used | publication |of problems problems
ents studies compariso | per in the original | bias inconsisten | fitting the fitting the
ns comparison paper cy Bayesian model | multilevel
model
WinBUGS and and solved with an
R softwares Bayesian unstructured
model by correlation
using the of matrix
incosistence
factor [36]
MEDIAN 7 36 3 11 1/9 5267 23122 = = = - -
1st 5 215 1.5 7 1/5 2308.5 |9630 - - - - -
QUARTILE
3rd 9.5 45.5 5 20 1/17.5 9443.5 (66162 - - - - -
QUARTILE
MINIMUM |4 11 0 5 1/4 76 2929 - - - - -
MAXIMUM |17 145 18 42 3/57 14218 |223313 - - - - -




5.3 RESULTS

Twenty-seven out of the 71 NMAs potentially satisfying the inclusion criteria provided the
raw data for the current analysis [95,172,173,175-199]. Tables 5.1 and 5.2 show the
individual characteristics of the NMAs included in the analysis. The NMAs under
consideration were published between 2003 and 2014. As reported at the bottom of table
5.2, the median number of investigated treatments was 7 (iqr: 5-9.5; range: 4-17), whereas
the median number of individual studies included was 36 (igr: 21.5-45.5; range: 11-145). The
median number of multi-arm trials was 3 (igr: 1.5-5; range: 0-18). Only 6
[172,189,194,196,197,199] out of the 27 NMAs (22%) reported more than one study in each
comparison. Most of the included NMAs (89%) were carried out with a Bayesian approach in
the original analysis. Only the NMA of Filippini et al. [185] reported the use of a method to
investigate on the presence of publication bias, while there was heterogeneity in the
methods used to test the consistency hypothesis. In 7 NMAs [172,173,178,179,185,191,193]
the fitted Bayesian models (both fixed- and random- effect) estimated a very large SE for the
treatment effect, and this led to 95% credible intervals between <0.001 and >100. Two
NMAs [172,173] showed a convergence problem that remained even when we removed the
assumption of correlation matrix within each NMA.

Figures 1 shows the distribution of the pooled log(OR)s (top panel) and corresponding SEs
(lower panel) derived from the fixed- (left side) and the random- (right side) effect models,
respectively, fitted for each of the 20 NMAs not affected by estimation or convergence
issues. Each point of the graphs represents a study-specific estimate of each treatment
effect and corresponding SE (on logarithm scale) derived from the Bayesian or frequentist-

multilevel approach.
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Figure 5.1: Distributions of the pooled odd ratio and corresponding standard error (on a logarithmic scale) for each study-specific effect
difference, derived from the fitting of the fixed- and the random- effect models to each of the 20 network meta-analyses not affected by
estimation or convergence issues. Abbreviations. Log: logarithm; OR: odds ratio; s.e.: standard error; WB: WinBUGS software; SAS: SAS

software.
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No matter of the estimation method used, the distributions of the pooled log(OR) were fairly
comparable between the frequentist and Bayesian approaches. Three partial exceptions
were represented by the Chatterjee [176], Fretheim [186] and Psaty [190] NMAs. However,
these differences were attenuated in the random effect model.

Table 5.3 shows the results derived from the univariate analysis evaluating the presence of a
potential significant difference in the effects between the Bayesian and the frequentist-
multilevel approaches using several available GEE models specified in the table. No matter of
the estimation method used, the “approach” effect was not significantly different from zero,
when the raw or standardized log(OR)s were considered in the analysis. However, we
observed a significant effect of the intercepts included in the random effect regressions that
considered the Euclidean distance as the outcome variable (intercept=0.77 and p-value
<0.001; intercept=0.72 and p-value <0.001 for models including or excluding the NMAs
affected by estimation or convergence issues, respectively). Table Al of Appendix 2 reports
the corresponding unadjusted p-values with results in agreement with the previous ones.
Table 5.4 shows the corresponding results from the multiple analysis including one of the
available 14 predictive covariates at a time. Among the NMA-level covariates, the most
relevant ones were the percentage of events in each NMA and, marginally, the number of
studies included in the NMA. After including in the models any potentially relevant covariate
(defined as having a univariate p-value<0.25) at either levels, the differences in the raw or
standardized log(OR)s derived according to the Bayesian and frequentist-multilevel
approaches were still non-significant.

Table A2 of Appendix 2 reports the corresponding unadjusted p-values, showing consistent
results with the previous ones, except for the significant effect of the percentage of events

included in each arm, in 3 models.
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Table 5.3: Effect estimates, corresponding 95% confidence intervals, and adjusted p-values derived from the univariate analysis* to assess the

presence of a difference between the Bayesian and the frequentist multilevel approaches to network meta-analysis (NMA).

Model | Number | Number of pooled | Effects derived froma | Model** QIC | Parameter | Estimate Standard 95% confidence Adjusted
ID of NMAs | estimates analyzed | fixed/random model Error interval p-value
included
A.l 27 844 Fixed Log(OR) = By + 1646 | Intercept 0.075 0.116 -0.152 to 0301 0.864
approach approach -0.660 0.413 -1.470 to 0.150 0.551
A2 27 844 Random Log(OR) =By + 1627 | Intercept -0.024 0.086 -0.193 t0 0.145 0.869
approach approach*** 0.038 0.046 -0.052t0 0.128 0.749
B.1 20 330 Fixed Log(OR) = By + 679 | Intercept 0.035 0.113 -0.186 to 0.255 0.869
approach approach*** -0.145 0.087 -0.316 t0 0.025 0.551
B.2 20 330 Random Log(OR) = By + 680 | Intercept 0.003 0.115 -0.222 t0 0.229 0.976
approach approach | -0.005 0.017 -0.039 to 0.029 0.869
C1 27 844 Fixed Standardized log (OR) = | 1624 | Intercept 0.041 0.285 -0.519 t0 0.601 0.932
Bo + approach approach’ | -30.265 29.550 -88.183 t0 27.652 0.682
C.2 27 844 Random Standardized log (OR) = | 1634 | Intercept 0.121 0.358 -0.581 t0 0.823 0.869
Bo + approach approach” | 0.110 0.122 -0.130 to 0.349 0.738
D.1 20 330 Fixed Standardized log (OR) = | 662 | Intercept -3.561 3.487 -10.395 to0 3.273 0.682
Bo + approach approach™ | -77.288 70.083 -214.648 t0 60.072 | 0.682
D.2 20 330 Random Standardized log (OR) = | 678 | Intercept 0.239 0.504 -0.748 t0 1.226 0.869
Bo + approach approach” | 0.070 0.156 -0.235 to 0.374 0.869
E.1 27 844 Fixed Euclidean distance =B, | 779 | Intercept 36.133 32.001 -26.590 to 98.856 0.682
E.2 27 844 Random Euclidean distance =B, | 761 | Intercept 0.771 0.122 0.532 t0 1.009 <0.001
F.1 20 330 Fixed Euclidean distance =, | 332 | Intercept 91.173 77.177 -60.091 to 242.437 0.682
F.2 20 330 Random Euclidean distance =, | 337 | Intercept 0.724 0.147 0.436t0 1.013 <0.001

* This analysis included the main “approach” effect only.

** Generalized Estimating Equations models taking into account the within-NMA correlation

*** Variable “approach” was equal to 0 for the Bayesian approach and to 1 for the frequentist-multilevel one.

Bold style typeface: significant p-value.
Statistical significance was set at the two-tailed 0.05 level. Adjustment for multiple testing was provided by the Benjamini-Hochberg method [174].

Standardized log (OR)=log(OR)/SE[log(OR)]; Euclidean distance= V[(xo-X1)’], where xo= |0g(OR)gayesian and X1= 108(OR) myttilevel
QIC: Quasi-likelihood under the independence model criterion.

79




Table 4: Adjusted p-values from tests of significance of potential covariates of interest, as derived from the multiple analysis* to assess the
presence of a difference between the Bayesian and the frequentist multilevel approaches to network meta-analysis (NMA).

Model **
Parameter Level | A.1 A.2 B.1 B.2 C.1 C.2 D.1 D.2 E.1 E.2 F.1 F.2
n_treatment_nma NMA | 0.523 | 0.970 0.892 0.757 0.523 | 0.776 | 0.523 | 0.882 0.523 0.533 0.523 0.523
n_studies_nma NMA | 0.812 | 0.523 0.086 0.027 0.523 | 0.523 |0.523 | 0.086 0.523 0.731 0.523 0.523
n_multiarm_nma NMA | 0.591 | 0.523 0.523 0.523 0.676 | 0.523 | 0.640 |0.523 0.623 0.121 0.644 0.715
n_pairwise_nma NMA | 0.810 | 0.691 0.764 0.776 0.523 | 0.776 |0.776 | 0.916 0.523 0.523 0.731 0.810

min_n_studies_nma | NMA | 0.470 | 0.523 0.523 0.523 0.523 | 0.559 |0.523 | 0.591 0.523 0.125 0.523 0.344

max_n_studies_nma | NMA | 0.747 | 0.523 0.523 0.433 0.523 | 0.523 |0.523 | 0.523 0.523 0.523 0.523 | 0.523

n_events_nma NMA | 0.505 | 0.523 0.597 0.523 0.523 |0.776 | 0.523 | 0.812 0.523 0.850 0.523 0.776
n_patients_nma NMA | 0.594 | 0.946 0.849 0.967 0.523 |0.523 | 0.523 | 0.523 0.523 0.523 0.523 0.523
perc_nma NMA | 0.086 | 0.027 0.006 0.006 0.523 |0.194 | 0.523 | 0.006 0.523 0.523 0.523 0.523
n_effect_estimated | NMA | 0.596 | 0.916 0.916 0.757 0.523 | 0.757 |0.523 | 0.934 0.523 0.704 0.523 0.523
n_arms_arm Arm | 0.157 | 0.523 0.523 0.523 0.523 | 0.523 | 0.523 | 0.523 0.523 0.523 0.523 0.757
n_events_arm Arm | 0.523 | 0.776 0.574 0.965 0.523 |0.892 |0.523 | 0.970 0.523 0.626 0.523 0.523
n_patients_arm Arm | 0.523 | 0.591 0.523 0.523 0.776 | 0.776 | 0.554 | 0.523 0.791 0.523 0.554 | 0.757
perc_arm Arm | 0.554 | 0.975 0.344 0.289 0.523 | 0.626 | 0.523 | 0.099 0.523 0.523 0.523 0.523

* This multiple analysis included one extra covariate of interest, together with the “approach” effect (when applicable).

** Generalized Estimating Equations models taking into account the within-NMA correlation.

Bold style typeface: significant p-value. Statistical significance was set at the two-tailed 0.05 level. Adjustment for multiple testing was provided by the
Benjamini-Hochberg method [174].

NMA: network meta-analysis; n_treatment_nma: number of treatments included in the nma; n_studies_nma: number of studies included in the NMA;
n_multiarm_nma: number of multi-arm studies included in the NMA; n_pairwise_nma: number of pairwise comparisons taken into account in the NMA;
min_n_studies_nma: minimum number of studies included in each comparisons; max_n_studies_nma: maximum number of studies included in each
comparison; n_events_nma: total number of events analyzed in the NMA; n_patients_nma: total number of patients analyzed in the NMA; perc_nma:
percentage of events in the NMA; n_effect_estimated: number of effects estimated in the NMA; n_arms_arm: number of arms taken into account for each
comparisons; n_events_arm: total number of events analyzed in each arm; n_patients_arm: total number of patients analyzed in each arm; perc_arm:
percentage of events in each arm.
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Table 5.5 shows results from the univariate analysis assessing the potential effect of NMA
characteristics on the presence of estimation or convergence issues for each approach. The
presence of WinBUGS fitting problems is potentially associated with the number of pairwise
comparisons taken into account in the NMA (slope=0.178, 95% CI 0.051 to 0.304, p-
value=0.059) No significant effect was found to explain possible convergence issues in SAS
random-effect models. In agreement with previous results, table A3 of Appendix 2 reports
the corresponding unadjusted p-values.

Table 5.5: Adjusted p-values derived from univariate analyses to evaluate the predictors of
convergence problems using Bayesian or multivariate approach.

Parameter Problem with winBUGS | Problem with SAS

n_treatment_nma 0.599 0.679
n_studies_nma 0.390 0.679
n_multiarm_nma 0.407 0.679
n_pairwise_nma 0.059 0.679
min_n_studies_n 0.948 0.957
max_n_studies_n 0.948 0.679
n_events_nma 0.872 0.679
n_patients_nma 0.407 0.679
perc_nma 0.407 0.679
n_effect_estima 0.599 0.679

Bold style typeface: significant p-value. Statistical significance was set at the two-tailed 0.05 level.
Adjustment for multiple testing was provided by the Benjamini-Hochberg method [174].

nma: network meta-analysis; n_treatment_nma: number of treatments included in the nma;
n_studies_nma: number of studies included in the nma; n_multiarm_nma: number of multi-arm
studies included in the nma; n_pairwise_nma: number of pairwise comparisons taken into account in
the nma; min_n_studies_nma: minimum number of studies included in each comparisons;
max_n_studies_nma: maximum number of studies included in each comparisons; n_events_nma:
total number of events analyzed in the nma; n_patients_nma: total number of patients analyzed in
the nma; perc_nma: percentage of events in the nma; n_effect_estimated: number of effects
estimated in the nma.

5.4 DISCUSSION

With no intention to add arguments to any controversy between Bayesian and frequentist
approaches [201,202], the purpose of this chapter is to provide a comparison between the
frequentist (multilevel) and the Bayesian hierarchical approaches in the estimation of the
treatment effect differences in data on 27 previously published NMAs selected by a

systematic review on the attractiveness of NMA [167]. Our analysis revealed that there is no
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material difference in the pooled estimates obtained with the two approaches when the raw
or standardized differences are modelled. However, the Euclidean distance between the
standardized pooled estimates is significant in the random effect model.

The absence of a significant difference between the pooled estimates from the two
approaches in most of the examined scenarios may be explained in part by our decision to
re-fit the Bayesian hierarchical models for each NMA referring to non-informative priors.
This choice is motivated by the need to have a uniform criterion in the re-analysis of the
NMAs and by the absence of substantive a priori knowledge in such different fields of
applications of the included NMAs. Our decision is also in agreement with general
suggestions in the use of Bayesian approaches to NMA [36,71,141].

We identified a significant p-value for the difference between the two approaches only
modelling the Euclidean distance with the random-effect model. Between the two models
satisfying these criteria, the one with the best goodness of fit (QIC=337) showed an intercept
estimate of 0.72 (95% confidence interval 0.44-1.01). This may suggest that the estimates
derived from the Bayesian approach may be systematically greater than those derived from
the frequentist-multilevel approach, without knowing whether this affects the significance of
the corresponding estimate. It is equally true that the corresponding SE is not negligible
(0.15) and this may point to some caution in the interpretation of this result.

Furthermore, it is not surprising to us that this significant difference was found only in the
random effect model.

We were able to carry out our analysis on 27 NMAs out of the 71 potentially satisfying the
inclusion criteria. We derived the raw data for most of these cases from the original papers.
In a few cases, the authors replied to a general request of data we sent via email to the
corresponding author of the papers with missing information. Although we acknowledge
that the raw data provided by the authors in the original papers may be more reliable, we do
not believe that the few cases of information sent to us via email were different from the
previous ones in this respect. So, if a bias exists, it affects the entire sample of available
NMAs in the same direction. As to the direction of this bias, we may speculate that the
included studies have a higher quality, as compared to those which did not provide their

original data in any form. We also recognize that the number of NMAs included in our re-

82



analysis is limited. However, the analysis was actually based on more than 800 comparisons
available, and not just on the 27 original NMAs. This reassures against any power issue in
this case.

In addition, a main limit of our analysis is that we included all the available NMAs satisfying
sensible inclusion criteria, no matter of the specific field of research and outcome
considered. The immediate implication is that we cannot give any numeric interpretation to
a potential existing difference between the approaches. This is just a preliminary attempt to
assess if there are relevant differences between available NMA-approaches or not. Future
work may consider NMAs showing a similar outcome of interest to overcome this issue.

We based our comparison between the approaches on the explicit modelling of the
difference between the effect estimates and referred to the SE of these estimates to
standardize them. Future work may benefit from a parallel direct modelling of the SE of the
estimates, to provide an extra insight on the potential existing differences in the estimates’
precision.

With the fitting of a large amount of univariate and multiple models, adjustment of the p-
values for multiple testing problem was worth a try. An adjustment method like the one
from Benjamini and Hochberg provided a less stringent control of Type | Error, compared to
family-wise error rate controlling procedures, such as the Bonferroni correction, and this
represents a valid alternative to be used in this set-up. In our application, unadjusted and
adjusted p-values were in agreement for most of the analyses this reassuring against the
effect of chance, especially for the results presented in table 4.4. In this case, it is evident
that the percentage of events in the NMA is a significant explanatory variable for the pooled
estimate after adjusting for the “approach” variable. This is true for the raw and for the
standardized log(OR), although in a less consistent way. Finally, we acknowledge that the
proposed re-analysis is based on our frequentist version of NMA modelling. Future work may
consider to extend the comparison to include alternative frequentist approaches to NMA

[35].
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CONCLUSIONS

Meta-analysis is a powerful tool to cumulate and summarize the knowledge in a research
field. Nevertheless, the results of a meta-analysis should be interpreted in the light of the
various checks which can inform the readers of the likely reliability of the conclusions.

In this work we provided and discussed methods to cope with multiple treatments and to
deal with correlated data where correlation can derive from multiple endpoints, time-

varying responses or from clustered observation.

We have provided a comprehensive and detailed overview of the conceptual and practical
issues involved in performing a and interpreting network meta-analysis on binomial data.
We have discussed the general topics related to network meta-analysis, including how to
collect study data, structure the network, and set assumptions about the network that lead
to different models and interpretations of model parameters. We have strived to put
together the most important topics (making available the major references) and we offer,
for the first time, a thorough yet manageable guideline to conduct (from literature search to
results interpretation) a rigorous network meta-analysis on binomial data, applying both the
Bayesian and frequentist approaches. We presented a case study on the beneficial effects of
anaesthetic agents and the practical guide with the actual WinBUGS and SAS codes to allow
transparency and ease of replication of all steps that are required when carrying out such

guantitative syntheses.

We suggest to consider the arm-based data, instead of contrast-based ones, as input data
structure. In fact, the use of arm-level summaries allows to adopt the exact likelihood of the
data rather than its normal approximation [70] and to not specify the variance-covariance

matrix for each multi-arm trial to reflect the data correlation structure.

84



In the network meta-analysis framework, Bayesian and frequentist approaches are expected
to give approximately the same results because it is a common practice to use a non-
informative priors in the Bayesian strategy [36]. Indeed, our analyses revealed that there is
no material difference in the pooled estimates obtained with the Bayesian and frequentist-

multilevel approaches.

A drawback of the Bayesian approach is the complexity in model specification, which
requires familiarity with the WinBUGS software and the MCMC methods. On the other hand,
multilevel models essentially are suited for simpler regression structures where a single
outcome variable depends on a few covariates, and therefore they do not allow to inspect
the full range of relationships between variables. The multilevel approach, taking into
account the clustering structure, provides correct estimates for standard errors, confidence
intervals and tests [166] which are generally more conservative than those stemming from

the Bayesian approach and the traditional ones obtained by ignoring the presence of groups.
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Appendix 1

Data frame: Data structure of the 38 randomized controlled trials included in the preciously published Bayesian network meta-analysis [95].

Study Group |Author Year |Design Treatment N M | Follow_up Sample Size
1 1 Amr YM 2010 |lIsoflurane vs TIVA Isoflurane 15 1 |Hospital stay 30
1 2 Amr YM 2010 |lsoflurane vs TIVA TIVA 15 1 |Hospital stay 30
2 3 Ballester M 2011 |Sevoflurane vs TIVA Sevoflurane 21 1 |1year 40
2 4 Ballester M 2011 |Sevoflurane vs TIVA TIVA 19 0 |1vyear 40
3 5 Bein B 2005 |Sevoflurane vs TIVA Sevoflurane 26 0 | Hospital stay 52
3 6 Bein B 2005 |Sevoflurane vs TIVA TIVA 26 0 |Hospital stay 52
4 7 Belhomme D 1999 |lIsoflurane vs TIVA Isoflurane 10 0 |3days 20
4 8 Belhomme D 1999 |lIsoflurane vs TIVA TIVA 10 0 |3 days 20
5 9 Bignami E 2011 |Sevoflurane vs TIVA Sevoflurane 50 1 |1year 100
5 10 Bignami E 2011 |Sevoflurane vs TIVA TIVA 50 2 1 year 100
6 11 Cavalca Vv 2008 |Sevoflurane vs TIVA Sevoflurane 22 0 |24 hours 44
6 12 Cavalca V 2008 |Sevoflurane vs TIVA TIVA 22 0 |24 hours 44
7 13 Conzen PF 2003 |Sevoflurane vs TIVA Sevoflurane 12 0 |Hospital stay 23
7 14 Conzen PF 2003 |Sevoflurane vs TIVA TIVA 11 0 | Hospital stay 23
8 15 Cromheecke S 2006 |Sevoflurane vs TIVA Sevoflurane 15 0 |Hospital stay 30
8 16 Cromheecke S 2006 |Sevoflurane vs TIVA TIVA 15 0 |Hospital stay 30
9 17 De Hert SG (1) 2003 | Sevoflurane vs desflurane vs TIVA Sevoflurane 15 0 |36 hours 45
9 18 De Hert SG (1) 2003 |Sevoflurane vs desflurane vs TIVA Desflurane 15 0 |36 hours 45
9 19 De Hert SG (1) 2003 | Sevoflurane vs desflurane vs TIVA TIVA 15 1 |36 hours 45
10 20 De Hert SG (2) 2004 |Sevoflurane vs desflurane vs TIVA Sevoflurane 80 0 | Hospital stay 320
10 21 De Hert SG (2) 2004 |Sevoflurane vs desflurane vs TIVA Desflurane 80 0 |Hospital stay 320
10 22 De Hert SG (2) 2004 |Sevoflurane vs desflurane vs TIVA TIVA - TIVA 160 2 | Hospital stay 320
11 23 DE Hert SG (3) 2004 |Sevoflurane vs TIVA Sevoflurane 150 0 |30days 200
11 24 DE Hert SG (3) 2004 | Sevoflurane vs TIVA TIVA 50 0 |30days 200
12 25 De Hert SG (4) 2009 |Sevoflurane vs desflurane vs TIVA Sevoflurane 132 4 |1year 414

104




Study Group |Author Year |Design Treatment N M | Follow_up Sample Size
12 26 De Hert SG (4) 2009 | Sevoflurane vs desflurane vs TIVA Desflurane 137 9 |1lyear 414
12 27 De Hert SG (4) 2009 | Sevoflurane vs desflurane vs TIVA TIVA 145 18 |1 year 414
13 28 Flier S 2010 |lIsoflurane vs TIVA Isoflurane 51 0 |1vyear 100
13 29 Flier S 2010 |lsoflurane vs TIVA TIVA 49 2 |1lyear 100
14 30 Garcia C 2005 |Sevoflurane vs TIVA Sevoflurane 37 0 |1vyear 72
14 31 Garcia C 2005 |Sevoflurane vs TIVA TIVA 35 0 |1year 72
15 32 Gozdzik W 2012 |Sevoflurane vs TIVA Sevoflurane 40 0 |24 hours 60
15 33 Gozdzik W 2012 |Sevoflurane vs TIVA TIVA 20 0 |24 hours 60
16 34 Guarracino F 2006 |Desflurane vs TIVA Desflurane 57 0 |30days 112
16 35 Guarracino F 2006 |Desflurane vs TIVA TIVA 55 1 |30days 112
17 36 Hellstrom J 2012 |Sevoflurane vs TIVA Sevoflurane 50 1 |30days 100
17 37 Hellstrom J 2012 |Sevoflurane vs TIVA TIVA 50 0 |30days 100
18 38 Helman JD 1992 | Desflurane vs TIVA Desflurane 100 1 |3 postoperative days 200
18 39 Helman JD 1992 | Desflurane vs TIVA TIVA 100 3 | 3 postoperative days 200
19 40 Hemmerling T 2008 |Sevoflurane vs isoflurane Sevoflurane 20 0 |Hospital stay 40
19 41 Hemmerling T 2008 |Sevoflurane vs isoflurane Isoflurane 20 0 |Hospital stay 40
20 42 Howie MB 1996 |lIsoflurane vs TIVA Isoflurane 27 0 |4 hours after surgical ICU |50
20 43 Howie MB 1996 |lIsoflurane vs TIVA TIVA 23 0 |4 hours after surgical ICU |50
21 44 Huang Z 2011 |lsoflurane vs TIVA Isoflurane 60 0 | Hospital stay 120
21 45 Huang Z 2011 |lsoflurane vs TIVA TIVA - TIVA 60 0 |Hospital stay 120
22 46 JovicM 2012 |Sevoflurane vs TIVA Sevoflurane 11 0 | Hospital stay 22
22 47 JovicM 2012 |Sevoflurane vs TIVA TIVA 11 0 |Hospital stay 22
23 48 Kendal JB 2004 |lsoflurane vs TIVA Isoflurane 10 0 |48 hours 20
23 49 Kendal JB 2004 |lIsoflurane vs TIVA TIVA 10 0 |48 hours 20
24 50 Kottenber E 2012 |lIsoflurane vs TIVA Isoflurane 19 0 |72hours 38
24 51 Kottenber E 2012 |lIsoflurane vs TIVA TIVA 19 0 |72hours 38
25 52 Landoni G 2007 |Desflurane vs TIVA Desflurane 59 0 |30days 120
25 53 Landoni G 2007 |Desflurane vs TIVA TIVA 61 2 |30days 120
26 54 Lee MC 2006 |lsoflurane vs TIVA Isoflurane 20 1 |Hospital stay 40
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Study Group |Author Year |Design Treatment N M | Follow_up Sample Size
26 55 Lee MC 2006 |lsoflurane vs TIVA TIVA 20 1 |Hospital stay 40
27 56 Leung JM 1991 |lIsoflurane vs TIVA Isoflurane 62 1 |Surgical time 186
27 57 Leung JM 1991 |lIsoflurane vs TIVA TIVA 124 3 |Surgical time 186
28 58 Meco M 2007 | Desflurane vs TIVA Desflurane 14 0 |72hours 28
28 59 Meco M 2007 | Desflurane vs TIVA TIVA 14 0 |72hours 28
29 60 Musialowicz T 2007 |lsoflurane vs TIVA Isoflurane 12 0 |Surgical time 24
29 61 Musialowicz T 2007 |lsoflurane vs TIVA TIVA 12 0 |Surgical time 24
30 62 Royse CF 2011 |Desflurane vs TIVA Desflurane 91 0 |1year 182
30 63 Royse CF 2011 |Desflurane vs TIVA TIVA 91 0 1 year 182
31 64 Schoen J 2011 |Sevoflurane vs TIVA Sevoflurane 64 2 | Hospital stay 128
31 65 Schoen J 2011 |Sevoflurane vs TIVA TIVA 64 0 | Hospital stay 128
32 66 Searle NR 1996 |Sevoflurane vs isoflurane Sevoflurane 140 1 |Hospital stay 273
32 67 Searle NR 1996 |Sevoflurane vs isoflurane Isoflurane 133 4 | Hospital stay 273
33 68 Story DA 2001 |Sevoflurane vs isoflurane vs TIVA Sevoflurane 120 1 |Hospital stay 360
33 69 Story DA 2001 |Sevoflurane vs isoflurane vs TIVA Isoflurane 120 0 | Hospital stay 360
33 70 Story DA 2001 |Sevoflurane vs isoflurane vs TIVA TIVA 120 2 | Hospital stay 360
34 71 Tempe DK 2011 |lsoflurane vs TIVA Isoflurane 23 0 |72hours 45
34 72 Tempe DK 2011 |lsoflurane vs TIVA TIVA 22 1 |72hours 45
35 73 Thomson IR 1991 | Deslurane vsisoflurane Desflurane 21 2 | Hospital stay 41
35 74 Thomson IR 1991 | Deslurane vsisoflurane Isoflurane 20 1 |Hospital stay 41
36 75 Tritapepe L (1) 2003 |Desflurane vs TIVA Desflurane 52 1 |30days 107
36 76 Tritapepe L (1) 2003 |Desflurane vs TIVA TIVA 55 3 | 30days 107
37 77 Tritapepe L (2) 2007 |Desflurane vs TIVA Desflurane 75 1 |ICU stay 150
37 78 Tritapepe L (2) 2007 |Desflurane vs TIVA TIVA 75 1 ICU stay 150
38 79 Yildirim V 2009 |Sevoflurane vs Isoflurane vs TIVA Sevoflurane 20 0 |30days 60
38 80 Yildirim V 2009 |Sevoflurane vs Isoflurane vs TIVA Isoflurane 20 0 |30days 60
38 81 Yildirim V 2009 |Sevoflurane vs Isoflurane vs TIVA TIVA 20 0 |30days 60

M: number of deaths; N: number of total patients per arm; Sample size: number of total patients per study; TIVA: Total intravenous anaesthesia
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Appendix 2

Table Al: Effect estimates, corresponding 95% confidence intervals, and unadjusted p-values derived from the univariate analysis* to assess the
presence of a difference between the Bayesian and the frequentist multilevel approaches to network meta-analysis (NMA).

Model | Number Number of | Effects derived | Model** Qlc Parameter Estimate Standard 95% confidence Unadjusted
ID of NMAs | pooled froma Error interval p-values
included | estimates fixed/random
analyzed model
Al 27 844 Fixed Log(OR) = B, + approach 1646 Intercept 0.075 0.116 -0.152 to 0301 0.518
approach” | -0.660 0.413 -1.470 t0 0.150 0.110
A2 27 844 Random Log(OR) = B, + approach 1627 Intercept -0.024 0.086 -0.193 t0 0.145 0.782
approach’ | 0.038 0.046 -0.052 t0 0.128 0.412
B.1 20 330 Fixed Log(OR) = B, + approach 679 Intercept 0.035 0.113 -0.186 to 0.255 0.759
approach” | -0.145 0.087 -0.316 t0 0.025 0.095
B.2 20 330 Random Log(OR) = B, + approach 680 Intercept 0.003 0.115 -0.222 t0 0.229 0.976
approach’ | -0.005 0.017 -0.039 to 0.029 0.763
C1 27 844 Fixed Standardized log (OR) = By | 1624 Intercept 0.041 0.285 -0.519t0 0.601 0.886
+ approach approach | -30.265 29.550 -88.183 t0 27.652 0.306
C.2 27 844 Random Standardized log (OR) =B, | 1634 Intercept 0.121 0.358 -0.581 t0 0.823 0.736
+ approach approach” | 0.110 0.122 -0.130 to 0.349 0.369
D.1 20 330 Fixed Standardized log (OR) =B, | 662 Intercept -3.561 3.487 -10.395 t0 3.273 0.307
+ approach approach’ | -77.288 70.083 -214.648 to 60.072 0.270
D.2 20 330 Random Standardized log (OR) =B, | 678 Intercept 0.239 0.504 -0.748 to 1.226 0.635
+ approach approach” | 0.070 0.156 -0.235 to 0.374 0.655
E.1 27 844 Fixed Euclidean distance = B 779 Intercept 36.133 32.001 -26.590 to 98.856 0.259
E.2 27 844 Random Euclidean distance = B 761 Intercept 0.771 0.122 0.532 t0 1.009 <0.001
F.1 20 330 Fixed Euclidean distance = B 332 Intercept 91.173 77.177 -60.091 to 242.437 0.238
F.2 20 330 Random Euclidean distance = B 337 Intercept 0.724 0.147 0.436t0 1.013 <0.001

* This analysis included the main “approach” effect only.

** Generalized Estimating Equations models taking into account the within-NMA correlation

*** Variable “approach” is equal to 0 for the Bayesian approach and to 1 for the frequentist-multilevel one.

Bold style typeface: significant p-value. Statistical significance was set at the two-tailed 0.05 level. Adjustment for multiple comparison was provided by the
Benjamini-Hochberg method. Standardized log (OR)=log(OR)/SE[log(OR)]; Euclidean distance= V[(Xo-X;)*], where xo= l0g(OR)gayesian and X1= 108(OR) muttitevel
QIC: Quasi-likelihood under the independence model criterion.
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Table A2: Unadjusted p-values from tests of significance of potential covariates of interest, as derived from the multiple analysis* to assess the
presence of a difference between the Bayesian and the frequentist multilevel approaches to network meta-analysis (NMA).

Model **

Parameter Level | A.1 A.2 B.1 B.2 C.1 C.2 D.1 D.2 E.1 E.2 F.1 F.2

n_treatment_nma NMA | 0.309 | 0.959 0.835 0.613 0.302 | 0.679 0.206 0.819 0.278 0.349 0.194 0.300
n_studies_nma NMA | 0.739 | 0.185 0.0037 0.001 0.289 | 0.186 0.319 0.003 0.275 0.575 0.316 0.183
n_multiarm_nma NMA | 0.415 | 0.064 0.166 0.131 0.511| 0.251 0.476 0.149 0.452 0.007 0.483 0.553
n_pairwise_nma NMA | 0.728 | 0.527 0.6318 0.680 0.288 | 0.678 0.653 0.874 0.284 0.338 0.574 0.724
min_n_studies_nma | NMA | 0.050 | 0.231 0.241 0.238 0.300 | 0.379 0.260 | 0.4095 0.300 0.008 0.241 0.031
max_n_studies_nma | NMA | 0.592 | 0.259 0.0839 0.044 0.334 | 0.206 0.312 0.102 0.330 0.096 0.312 0.152
n_events_nma NMA | 0.057 | 0.194 0.425 0.207 0.234 | 0.676 0.086 0.738 0.209 0.784 0.095 0.660
n_patients_nma NMA | 0.421 | 0.918 0.7808 0.964 0.245 | 0.335 0.246 0.339 0.241 0.281 0.255 0.337
perc_nma NMA | 0.004 | 0.001 <0.001 <.0001 0.271 | 0.015 0.240 <0.001 0.280 0.207 0.269 0.268
n_effect_estimated | NMA | 0.429 | 0.878 0.868 0.622 0.294 | 0.607 0.192 0.901 0.267 0.541 0.184 0.225
n_arms_arm Arm | 0.011 | 0.223 0.108 0.141 0.314 | 0.199 0.325 0.152 0.321 0.232 0.330 0.622
n_events_arm Arm | 0.091 | 0.664 0.3929 0.942 0.296 | 0.839 0.298 0.962 0.294 0.462 0.286 0.243
n_patients_arm Arm | 0.086 | 0.414 0.2479 0.211 0.683 | 0.654 0.371 0.231 0.701 0.238 0.372 0.611
perc_arm Arm | 0.369 | 0.975 0.033 0.024 0.281 | 0.459 0.252 0.005 0.284 0.330 0.268 0.111

* This multiple analysis included one extra covariate of interest, together wirh the “approach” effect.
** Generalized Estimating Equations models taking into account the within-NMA correlation.

Bold style typeface: significant p-value. Statistical significance was set at the two-tailed 0.05 level.
NMA: network meta-analysis; n_treatment_nma: number of treatments included in the nma; n_studies_nma: number of studies included in the NMA;

n_multiarm_nma: number of multi-arm studies included in the NMA; n_pairwise_nma: number of pairwise comparisons taken into account in the NMA,;

min_n_studies_nma: minimum number of studies included in each comparisons; max_n_studies_nma: maximum number of studies included in each
comparison; n_events_nma: total number of events analyzed in the NMA; n_patients_nma: total number of patients analyzed in the NMA; perc_nma:

percentage of events in the NMA; n_effect_estimated: number of effects estimated in the NMA; n_arms_arm: number of arms token into account for each

comparisons; n_events_arm: total number of events analyzed in each arm; n_patients_arm: total number of patients analyzed in each arm; perc_arm:

percentage of events in each arm.
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Table A3: Unadjusted p -values derived from univariate analyses to evaluate the predictors of convergence problems using Bayesian or
multivariate approach.

Parameter Problem with winBUGS | Problem with SAS

n_treatment_nma 0.403 0.251
n_studies_nma 0.078 0.555
n_multiarm_nma 0.135 0.471
n_pairwise_nma 0.006 0.611
min_n_studies_n 0.948 0.957
max_n_studies_n 0.945 0.241
n_events_nma 0.698 0.260
n_patients_nma 0.199 0.540
perc_nma 0.204 0.400
n_effect_estima 0.420 0.386

Bold style typeface: significant p-value. Statistical significance was set at the two-tailed 0.05 level.

nma: network meta-analysis; n_treatment_nma: number of treatments included in the nma; n_studies_nma: number of studies included in the nma;
n_multiarm_nma: number of multi-arm studies included in the nma; n_pairwise_nma: number of pairwise comparisons taken into account in the nma;
min_n_studies_nma: minimum number of studies included in each comparisons; max_n_studies_nma: maximum number of studies included in each
comparisons; n_events_nma: total number of events analyzed in the nma; n_patients_nma: total number of patients analyzed in the nma; perc_nma:
percentage of events in the nma; n_effect_estimated: number of effects estimated in the nma.
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