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Abstract

The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA
accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging
yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High
Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a
correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6
mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer
nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage,
increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of
more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal
occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different
nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged
into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to
occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by
affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic
regulation.
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Introduction

In eukaryotic cells, genetic information is organized in

chromatin, a highly conserved structural polymer of DNA and

histones whose basic unit is the nucleosome [1]. Dynamic changes

in the local or global organization of chromatin are required in

order to perform most nuclear activities, including replication,

transcription, and DNA repair [2,3]. Maintenance of such a

dynamic structure, in terms of spatial distribution of nucleosomes

and proper reorganization during nuclear activities, is considered

crucial to preserve cellular identity and to protect cells from

genomic instabilities that are among the major causative factors in

aging and cancer. Until recently, no gross modifications of

nucleosome number in cells were described or even looked for,

even if differences in nucleosome linker length were observed

between different cell types [4]. However, recent work has showed

that aging yeast [5] and mammalian [6] cells contain fewer

nucleosomes. We show here that mammalian cells lacking High

Mobility Group Box 1 (HMGB1) protein contain a substantially

reduced amount of histones and nucleosomes. Yeast cells lacking

Nhp6a/Nhp6b proteins, which are functionally similar to

HMGB1 [7], have a very similar phenotype, suggesting that the
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involvement of HMG-box proteins in controlling nucleosome

number is conserved in evolution.

HMGB1 is an abundant non-histone chromatin protein that

binds to the minor groove of DNA without sequence specificity

and, to a large number of nuclear proteins, contributing to the

maintenance, retrieval, and expression of genetic information [8].

HMGB1 is composed by two DNA binding domains, called

HMG-boxes, followed by a long unstructured tail that appears to

modulate the interaction of the HMG-boxes with DNA [9].

HMGB1 binds to nucleosomes at the dyad axis and appears to

compete with histone H1, exerting opposite effects: HMGB1

facilitates nucleosome sliding and makes chromatin more

accessible, H1 restrains nucleosome sliding and makes chromatin

less accessible [10,11]. Hmgb12/2 mice die soon after birth with a

complex, pleiotropic phenotype [12]. Yeast cells contain two

abundant HMG-box proteins, called Nhp6a and Nhp6b, which

are composed of a single, non-sequence-specific HMG-box and

are functionally redundant, since the loss of only one of the two

Nhp6 proteins causes a very mild phenotype.

Both mammalian cells lacking HMGB1 and yeast cells lacking

both Nhp6a and -b are viable, although they display a number of

defects [12,13]. Specifically, the nhp6a/b double mutant (hence-

forth nhp6) yeast cells and Hmgb12/2 MEFs display genomic

instability and hypersensitivity to DNA-damaging agents; nhp6

cells have a shorter life span and increased levels of extrachromo-

somal rDNA circles (a hallmark of senescence) [14]. Curiously, in

both mammalian and yeast mutants, a given dose of UV

irradiation appeared to produce almost twice as many thymidine

dimers as in wild type cells [14]. We show here that these cells are

also more sensitive to ionizing radiation, which is due to a

genomewide reduction in DNA-binding proteins, notably histones.

Thus, both mammalian Hmgb12/2 cells and nhp6 yeast cells have

fewer nucleosomes. This raised the critical question of where

available nucleosomes are located when they are fewer. We found

that, at least in yeast (but most likely also in mammalian cells), the

reduction in nucleosome number does not alter nucleosome

spacing and location, but reduces nucleosomal occupancy in a

non-uniform way in different sites and is associated with an overall

increase in transcript abundance and a specific alteration in the

expression of a subset of genes.

Results

Mammalian Cells Lacking HMGB1 Are More Sensitive to
Ionizing Radiation

Previous results indicated that a given dose of UV irradiation

produced almost twice as many thymidine dimers in mammalian

cells lacking HMGB1 and yeast cells lacking Nhp6 proteins

compared to wild type cells [14]. We then asked whether ionizing

radiation also produced more DNA damage in Hmgb12/2 cells.

We irradiated primary wild type and Hmgb12/2 MEFs with

10 Gy of gamma rays; we measured the formation of single-

stranded and double-stranded DNA breaks in individual cells by

means of the comet assay [15], whereby in the presence of an

electrophoretic field short DNA fragments migrate out of the lysed

cell and into the agarose, whereas intact DNA remains confined

(Figure 1A, left). The tail moment, which is a measure of DNA

fragmentation, indicated that Hmgb12/2 MEFs contained more

DNA breaks before irradiation (Figure 1A, right). The number of

DNA breaks induced by irradiation was higher in Hmgb12/2

cells; this could not be ascribed to defective DNA repair since the

Author Summary

The accurate preservation and correct retrieval of genetic
information is crucial for all living organisms. In eukaryotes,
whether single-celled yeast or complex mammals, the DNA
containing the genetic information is wrapped around
beads of histone proteins to form structures called
nucleosomes along the length of the DNA; this packaging
arrangement helps protect the genome from damage and
may restrict access to the genetic information. Until
recently, the amount of histones and, consequently, the
number of nucleosomes in the cell were considered fixed.
Here, we show that in both mammalian and yeast cells
that lack a single protein—HMGB1 in mammals or Nhp6a/
b in yeast—the abundance of histones and nucleosomes
decreases by 20%–30%. Contrary to expectations, we
found that in yeast the nucleosomes do not redistribute
along DNA when they are fewer: they largely maintain
their positions, but the amount of time each specific DNA
site spends wrapped in a nucleosome (i.e., its occupancy)
decreases. Sequences that are already less frequently
occupied than others in normal yeast cells lose dispro-
portionally more nucleosomes in the mutant yeast that
lack Nhp6a/b. This gives rise to a global increase in
transcription and specific alterations in the expression of
certain genes. This study thus contributes to a deeper
understanding of how the DNA is packaged and orga-
nized. It also suggests that the cell’s histone content might
contribute in an important way to gene regulation.

Figure 1. Hmgb12/2 nuclei are more accessible to DNA
damage by ionizing radiation. (A) Left: visualization of DNA breaks
by alkaline Comet Assay in G1-synchronised wild type and Hmgb12/2
cells after 10 Gy c-ray irradiation. Bar: 10 mm. Right: quantification of
DNA fragmentation before and after irradiation. Box plots: top and
bottom mark the 25th and 75th percentiles; inner line, median; whiskers,
maximum and minimum values. Tail moment values of wild type and
Hmgb12/2 MEFs are statistically different both before and after
irradiation (p,1024, n = 50, t test). (B) Quantification of cH2AX in G1-
synchronised wild type and Hmgb12/2 MEFs. Cells were irradiated as
indicated in (A) and kept in culture for the indicated time before cell
lysis. Western blotting for HMGB1, cH2AX, and H2AX were performed
on equal amounts of total cell lysates. Data are expressed as cH2AX
band intensities, normalized to total H2AX band intensities; error bars,
SD of technical replicates in a representative experiment out of three
performed. Quantifications were performed on images with different
exposures within the linear part of the dynamic range. The histogram in
gray shows the ratio of H2AX phosphorylation between Hmgb12/2
and wild type cells.
doi:10.1371/journal.pbio.1001086.g001

Histone Reduction Modulates Nucleosomal Occupancy

PLoS Biology | www.plosbiology.org 2 June 2011 | Volume 9 | Issue 6 | e1001086



cells were subjected to the assay immediately after irradiation,

before DNA repair could deal with the breaks. We also

quantitated cH2AX levels after irradiation with gamma rays

(Figure 1B): substantially more H2AX is phosphorylated in

Hmgb12/2 cells relative to wild type cells after 1 h, but the

difference subsides after 6 h. This suggests that Hmgb12/2 cells

can repair effectively double strand breaks.

Ionizing radiation generates hydroxyl radicals, which in turn

react with DNA producing a large number of chemical modifica-

tions, including DNA breaks. Our results suggest that the DNA of

Hmgb12/2 MEFs is more accessible to hydroxyl radicals.

Cells Lacking HMGB1 Contain a Reduced Amount of
Histones

DNA-bound proteins protect DNA from the attack of hydroxyl

radicals; this property is exploited in protocols of hydroxyl radical

footprinting. Nucleosomes shield DNA from hydroxyl radicals,

and chromatin structure is a major factor determining DNA

radiosensitivity [16]. We then hypothesized that the DNA of

Hmgb12/2 cells is less protected by associated proteins, and in

particular by histones. We thus measured histone content in

Hmgb12/2 and wild type cells.

We accumulated by Coulter counting an equal number of

Hmgb12/2 and wild type MEFs, blocked in G0/G1 by serum

starvation, and measured their DNA content by PicoGreen

fluorescence and their histone content by quantitative immuno-

blotting (Figure 2A,B). While the amount of DNA was not

statistically different between wild type and mutant cells, the

amounts of core histones H2A, H2B, H3, and H4, linker histone

H1, and the variant histone H2AX were all reduced by about 20%

in Hmgb12/2 MEFs. On the contrary, beta-actin content (a

common control for protein loading) was about 50% higher in

Hmgb12/2 MEFs, whose cytoplasm appears larger than that of

wild type MEFs even at an early passage (unpublished data). The

abundance of other proteins, like peroxiredoxin-2, did not change in

Hmgb12/2 MEFs.

We confirmed these results in HeLa cells stably transfected with

a plasmid expressing HMGB1 shRNA (HeLa knockdown,

henceforth KD) or a control plasmid. HMGB1 expression was

almost abolished by the HMGB1 shRNA (Figure S1A), and

Figure 2. Hmgb12/2 cells contain a reduced amount of histones. (A) Western blot of serial 1:2 dilutions starting from 50,000 G0/G1
synchronized cells. (B) Ratios of band intensities from the blots in (A) and two other similar experiments. Histone and actin ratios are significantly
different from 1 (p,0.05, Wilcoxon test), while DNA and peroxiredoxin-2 ratios are not. Error bars represent SEM. (C) SILAC analysis of cellular histone
contents. The box-plots represent Light/Heavy ratios for the whole proteome (‘‘all,’’ all peptides) and non-modified peptides from histones. Left
panel: control experiment where light- and heavy-labelled control cells were mixed (number of peptides: all peptides = 34,691, H1 = 39, H2A = 97,
H2B = 70, H3 = 53, H4 = 147; mean values 6 SD: H1 = 0.88360.517, H2A = 0.88260.168, H2B = 0.85960.254, H3 = 0.94260.162, H4 = 0.91160.106).
Right panel: experiment where light HeLa KD cells were mixed with heavy control cells (number of peptides: all peptides = 26,823, H1 = 42, H2A = 66,
H2B = 48, H3 = 34, H4 = 81; mean values 6 SD: H1 = 0.74060.305, H2A = 0.76960.185, H2B = 0.71360.165, H3 = 0.76360.116, H4 = 0.78160.133).
Probabilities are calculated using Wilcoxon test. (D) Quantification of the indicated proteins in HeLa cells transiently transfected with HMGB1 siRNA
(left) or control firefly luciferase siRNA (right). Samples were collected at the indicated times after siRNA transfection and evaluated by western
blotting. Error bars, SD from a representative experiment out of three performed.
doi:10.1371/journal.pbio.1001086.g002

Histone Reduction Modulates Nucleosomal Occupancy

PLoS Biology | www.plosbiology.org 3 June 2011 | Volume 9 | Issue 6 | e1001086



cycling KD cells (Figure S1B) contained less core and linker

histones (about 80% compared to the control HeLa cells) and

more beta-actin (about 120%) (Figure S1C, upper panel).

We then compared the entire proteomes of control and KD

cells by stable isotope labeling with amino acids in cell culture

(SILAC) [17]. Control cells were grown for 8 passages in either

light medium (Arg0 Lys0) or medium containing C13,N15-

labelled arginine and lysine (Arg10 Lys8); KD cells were grown

in light medium only. Light and heavy cells were mixed 1:1

before lysis, subjected to SDS-PAGE and in-gel trypsin digestion;

peptides were quantitated by liquid chromatography coupled to

tandem mass spectrometry (LC-MS/MS) (Figure S2A).

HMGB1-derived tryptic peptides were absent in KD cells, as

expected (Figure S2B). In the control experiment (which

compared heavy and light HMGB1-containing control cells)

the ratios of light to heavy proteins had a narrow log-normal

distribution (standard deviation close to 0.13). In contrast, when

comparing light KD and heavy control cells these ratios showed

a much wider distribution (standard deviation close to 0.37)

(Figure S2C). The abundance of most proteins changed slightly

but significantly, albeit few proteins showed a change larger than

2-fold (MS tracings for a few representative peptides are shown,

Figure S2B). We then investigated the relative abundance of all

histone-derived peptides that do not bear post-translational

modifications; we excluded peptides known to bear modifications

because a difference in their abundance could be due to

variations in modification, rather than to a difference in the

quantity of the histone protein. Notably, peptides from core and

linker histones were reduced by about 25% in HMGB1-depleted

cells (p,1025 by two-sample Wilcoxon test) (Figures 2C, S2D).

Variant histones H2AX and H2AZ were also significantly

reduced (Figure S3). These experiments were repeated on wild

type and Hmgb12/2 MEFs, with comparable results (unpub-

lished data).

Taken together, SILAC and quantitative immunoblotting

indicated that cells lacking HMGB1 contain a coordinately

reduced amount of all histones.

The Histone Content of Mammalian Cells Can Be
Reduced Transiently and Reversibly

A lower histone content might be due to compensatory

mutations selected in response to the lack of HMGB1 in

Hmgb12/2 cells. In this case, rare mutant cells might be

selected during in vitro culture and expand into viable clones.

Alternatively, all cells might be able to modulate histone content

in response to their physiological state, including the available

level of HMGB1 protein. To distinguish between the possibilities,

we transfected HeLa cells with 21-mer double-stranded HMGB1

siRNA, verified the disappearance of HMGB1, and grew the

cells for 10 d until the amount of HMGB1 returned to normal

(Figure 2D). Notably, the amount of histone H3 decreased

concomitantly with the decrease in HMGB1, down to less than

80% of the starting level, and then recovered concomitantly with

the recovery in HMGB1 content. HeLa cells transfected with

control firefly luciferase siRNA showed no change in either

HMGB1 or histone H3 content. Since there was no gross cell

death after siRNA transfection, cells with a reduced histone

content are not rare clones selected from a large cell population;

rather, most cells in the population down-regulate histone

content in response to a lack of HMGB1, and this regulation is

reversible.

To further establish the physiological interdependence between

HMGB1 and histone content we examined MEFs derived from

Hmgb1+/2 heterozygous embryos; these have one half the

amount of HMGB1 protein and contain about 90% of the

normal amount of histones, which is intermediate between the

amount in wild type and in Hmgb12/2 MEFs (unpublished

data). Finally, we verified that Hmgb12/2 embryo livers contain

a 20% reduction in histone content (Figure S4), further excluding

that the observed histone reduction in cultured cells can be due to

culture conditions.

Cells Lacking HMGB1 Contain Fewer Nucleosomes
Histones are predominantly associated with DNA to form

nucleosomes. Thus, a severe reduction in histone content should

translate in a corresponding reduction in nucleosomally organized

DNA. To verify the hypothesis that the DNA of Hmgb12/2 cells

might be wrapped into fewer nucleosomes, cells were partially

lysed and chromatin was digested with increasing amounts of

micrococcal nuclease (MNase). At higher MNase concentrations,

the amount of remaining (nucleosome-protected) DNA was

reduced by about 30% in Hmgb12/2 MEFs (Figure 3A,

quantification with PicoGreen). Agarose electrophoresis indicated

that the total amount of MNase-resistant DNA is reduced in

Hmgb12/2 MEFs, at all concentrations of MNase (Figure 3B).

However, at low MNase concentration (0.5 U/ml, Figure 3B),

Hmgb12/2 samples contained more of higher molecular weight

DNA (Figure 3B). This result was repeated several times and

most likely indicates that a minor fraction of the chromatin of

Hmgb12/2 cells becomes more resistant to digestion, in contrast

to the major fraction which becomes more accessible.

The average spacing between nucleosomes was very similar in

Hmgb12/2 and wild type MEFs (Figure 3B), contrary to what is

expected if available nucleosomes were uniformly redistributed

over the genome. Similar results were obtained with KD cells

(Figure S1C,D).

The conclusion from these experiments is that mammalian cells

can survive and proliferate with substantially fewer nucleosomes.

Cells with Fewer Nucleosomes Contain More RNA
Transcripts

The availability of cells with fewer nucleosomes allowed us to

test the widely held opinion that nucleosomes limit transcription in

vivo, as they do in vitro by impeding the progress of RNA

polymerases [18,19]. We quantified total nucleic acids in KD and

control HeLa cells by FACS after acridine orange staining

(Figure 3C) [20]. Whereas the DNA content was similar in KD

and control cells, the RNA content is about 1.3 times higher in

KD cells. Both polyA+ mRNA and the 47S rRNA precursor are

similarly increased (Figure 3D).

Although global transcript abundance increases in cells lacking

HMGB1, so that most transcripts will be more abundant, the

expression of individual genes can also change relative to each

other. We thus measured the relative representation of each

transcript within an identical amount of RNA extracted from cells.

Relative representation in a fixed amount of RNA automatically

normalizes away the global increase of about 30% in total RNA

amount in HeLa KD cells. The comparison in relative amount is

instructive to identify which genes deviate the most from the

average effect. Our analysis indicates that about 13% of transcripts

(1,080 over 8,027 on the Illumina platform; p,0.01; Figure S5A)

are over-represented (577 genes) or under-represented (503 genes)

from the average 30% increase in KD HeLa cells. The Gene

Ontology categories significantly affected at the mRNA level

(p,0.05, Wilcoxon test) are indicated in Figure S6A. These

broadly correspond to the Gene Ontology categories significantly

affected at the protein level (Figure S6B).
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HMGB1 Promotes Histone Deposition In Vitro
Since the absence of HMGB1 leads to a decrease in nucleosome

number, we investigated whether HMGB1 was directly involved

in chromatin assembly, as suggested by early experiments [21].

We tested the effect of HMGB1 on histone deposition onto naked

DNA using a simple, commercially available assay (Chromatin

Assembly Kit by Active Motif). Linearized plasmid DNA was mixed

with soluble histones, the histone chaperone NAP, and the

remodeling factor ACF. After incubation for 15 min at 27uC, the

assembled chromatin was digested with micrococcal nuclease, and

an aliquot was run on an agarose gel (Figure 4A, upper panel). No

DNA remained after nuclease digestion if histones were absent from

the assembly reaction (lane 3–4), whereas a clear band of

mononucleosomal size was present in the presence of histones (lane

5). We then added to the reaction mix increasing concentrations of

HMGB1, and we noted a highly significant dose-dependent

increase in the mononucleosome band (lanes 6–9), reaching a

maximal yield at 1 mg/ml. At higher HMGB1 concentrations, the

efficiency of nucleosome deposition decreased (lanes 10–12). At the

optimal HMGB1 concentration, nucleosome formation was 3.5

times faster in the presence than in the absence of HMGB1

(Figure 4B, upper panel). Direct quantification of nuclease-resistant

DNA by PicoGreen confirmed the data obtained by gel

electrophoresis (Figure 4A and B, lower panels).

nhp6 Yeast Mutants Recapitulate the Phenotype of
Mammalian Cells Lacking HMGB1

Yeast Nhp6 proteins are functionally equivalent to HMGB1 in

mammalian cells, and nhp6 yeast mutants are more sensitive to UV

irradiation [14]. We therefore verified whether yeast nhp6 cells also

have reduced histone and nucleosome content. We synchronized

yeast cells in G1 by treatment with alpha factor pheromone,

collected an equal number of wild type and nhp6 cells, and

measured their DNA content with PicoGreen and their histone

content by quantitative immunoblotting. nhp6 cells contained

about 65% of the amount of histones compared to the wild type,

and their chromatin was more accessible to digestion by MNase

(Figure 5A,B). Moreover, 2D gel analysis indicated that the

supercoiling of the 7.0 kb yRp17 plasmid was reduced by about

three turns in nhp6 cells, equivalent to about three nucleosomes

fewer than in the wild type (Figure 5C). Finally, nhp6 cells contain

about 1.2 times more RNA than wild type cells (Figure 5D). We

conclude that the phenotypes of nhp6 and Hmgb1 mutants are

largely similar.

Figure 3. Cells lacking HMGB1 contain fewer nucleosomes and more RNA transcripts. (A) Residual (nucleosome-protected) DNA obtained
from Hmgb12/2 and wild type MEFs after digestion with increasing MNase concentrations. Error bars, SEM from three biological replicates.
(B) Electrophoretic separation and densitometric analysis of DNA samples from 250,000 wild type and Hmgb12/2 MEFs after digestion with 0, 0.5,
and 2 U/ml of MNase. MW: 100 bp ladder. (C) FACS analysis of HeLa control (upper panels) and KD cells (lower panels) stained with Acridine Orange
(AO), with or without prior RNase treatment (left and right, respectively). Fluorescence from AO bound to DNA (y-axis, 530/30 nm) and to RNA (x-axis,
610/20 nm). Black vertical lines (continuous and dashed) indicate the arithmetic means of RNA fluorescence in G1 cells. (D) Quantification of total
RNA content in control and KD HeLa cells by FACS (cycling and G1) and by 260 nm absorbance of RNA extracted from a defined number of cells.
Quantification of polyA+ mRNA and 47S rRNA precursor by RNA slot blot hybridization with specific probes (lower panel, details in Material and
Methods). Error bars, SEM of three biological replicates. RNA ratios are significantly different from 1 (p,0.05, Wilcoxon test).
doi:10.1371/journal.pbio.1001086.g003
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Yeast Cells with a Reduced Nucleosome Number Have a
Distinct Transcriptional Profile

A transient model of nucleosome depletion in yeast was

examined previously [22]. In the UKY403 yeast strain, the sole

copy of histone H4 is under the control of the GAL1 promoter. In

glucose medium, UKY403 cells lost around 50% of nucleosomes

by 6 h, relative to a control strain with a wild type H4 gene, and

the expression of 15% of genes increased and the expression of

10% of genes decreased more than 3-fold.

We then looked at the relative expression of genes in wild type

and nhp6 cells and compared them to those in the UKY403 strain.

By Affymetrix analysis we found that out of 5,447 genes, 219 are

up and 251 are down in nhp6 relative to wild type cells (1.5-fold

threshold and p,0.05) (Figure S5B). The Gene Ontology

categories that are significantly affected are shown in Figure S7.

The correlation between gene expression profiles in UKY403 and

nhp6 cells (Figure 5E) rises from r2,0, when nucleosomes are not

depleted in UKY403, to almost 0.16 after 2 h (p,10233), and

remains almost constant thereafter. Since about half of the genes

transcriptionally affected by nucleosome depletion in the UKY403

strain are also affected by slow growth, we asked whether our

results were influenced by the slow growth of the nhp6 mutant

relative to its wild type counterpart [13]. Indeed, the correlation

between the two strains is much stronger for the growth-related

gene subset; however, the correlation for the genes unresponsive to

changes in growth rate is only slightly smaller (r2 = 0.15, p,1025)

than the one for all genes. Taken together, these data suggest that

nucleosomal depletion affects transcription profiles in broadly

similar ways in strains where histone H4 is depleted or Nhp6a/b

proteins are lacking.

In Yeast Cells a Reduced Nucleosome Number Affects
Primarily Nucleosome Occupancy and Not Nucleosome
Position

Research in the last few years has highlighted the importance of

nucleosome positioning in the control of transcription; we

therefore asked how nucleosome depletion affects genomewide

nucleosome positioning.

The hypothesis of statistical positioning states that nucleosomes

space themselves between barriers [23]. In this case, the position of

nucleosomes should vary when their number is lower (Figure 6A,

hypothesis 1). According to the alternative hypothesis that DNA

sequence is the major determinant of nucleosome positioning,

nucleosome limitation could lead to the selective loss of a minority

of nucleosomes (hypothesis 2). Alternatively, nucleosomes might

occupy the same positions, but spend less time on each of them

(hypothesis 3; nucleosome ‘‘occupancy’’ of individual sequences is

reduced).

When we applied high throughput sequencing to MNase-

resistant DNA from nhp6 and wild type cells, we found that the

distribution of sequence reads was very similar. Representative

snapshots of the nucleosome maps are shown in Figure 6B; a

complete browsable form is available at the website indicated in

Materials and Methods.

The number of times a specific base pair appears in sequence

reads, divided by the total number of sequence reads, is the relative

occupancy of that base pair. Relative occupancies of all base pairs

can then be compared between strains; a density dot plot allows a

visual representation of such a comparison. The comparison

between biological replicates gives a density plot where most bases

cluster around the diagonal (Figure 6C, right). The comparison

Figure 4. HMGB1 promotes the assembly of chromatin in vitro. (A) Chromatin was assembled in vitro on linear DNA using purified histones,
hNAP1, ACF, and increasing amounts of HMGB1 protein; then it was digested with MNase. The residual DNA after digestion was electrophoresed on a
1.5% agarose gel (upper panel) and quantified with PicoGreen (normalized to the reaction containing BSA, lower panel). Error bars, SD of three
replicates. (B) Chromatin was assembled in the presence of a fixed amount of HMGB1 (1 mg/ml), or BSA as control, for the indicated time points.
Electrophoresis (upper panel) and quantification by PicoGreen (lower panel) of the residual DNA after digestion with MNase are shown. Error bars, SD
of three replicates. MW: 100 bp ladder.
doi:10.1371/journal.pbio.1001086.g004
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between nhp6 and wild type cells (Figure 6C, left) gives a density plot

which is more dispersed about the diagonal and has a characteristic

skew with more points below the diagonal at low occupancy and

more points above the diagonal at high occupancy. This result is

inconsistent with a global redistribution of nucleosomes over the

genome (hypothesis 1 in Figure 6A), which would give a smeared

density plot with a lot of points close to the axes (base pairs occupied

in one strain but not in the other). Our result is also inconsistent with

the disappearance of nucleosomes from a minority of sites

(hypothesis 2), which would give a density plot with two separate

sub-populations, as simulated in Figure S8A.

In fact, the similarity of the nhp6/wt density plot to that of

biological replicates indicates that most base pairs that are

occupied by nucleosomes in wild type cells are also occupied in

nhp6 cells. A complete identity between nucleosome positions in

the two strains (although with reduced occupancy in one strain)

would give the same density plot of biological replicates. Thus all

three hypotheses depicted schematically in Figure 6A do not

correspond to observation, but hypothesis 3 comes closest.

We next moved from coverage at individual base pairs to

examination of nucleosome positions. We used template filtering

[24] to call nucleosome positions and confirmed that they are

highly conserved (Figure 6B, ‘‘nuc calls’’). Almost half of the

nucleosomes are centered around the same position in both

strains, many are offset by about 10 base pairs and some by 20

pairs (Figure S8B); we note that 10-bp shifts correspond to those

expected from the rotational periodicity of DNA wrapped around

the nucleosome. Only about 30% of nucleosomes had shifted by

Figure 5. nhp6 cells contain fewer nucleosomes and more RNA transcripts. (A) Quantification of histone content (upper panel) from western
blots of wild type and nhp6 cells; the decreases in core histone contents are statistically significant (p,0.05, Wilcoxon test). Lower panel: residual
(nucleosome-protected) DNA obtained from nhp6 and wild type cells after digestion with increasing MNase concentrations. Error bars represent SEM
from three biological replicates. (B) Electrophoretic separation of DNA samples from 36108 wild type and nhp6 cells after MNase digestion (from
6.4 U/ml in 26 dilutions). The densitometric analysis of the central two lanes (asterisks) is shown on the right. (C) Topological analysis of yRp17
plasmid in wild type and nhp6 cells by 2D-electrophoresis in the presence of different amounts of chloroquine in orthogonal directions (arrows in the
left panel). Quantification of the different DNA topoisomers is shown in the right panel. (D) RNA quantification in wild type and nhp6 cells by Acridine
Orange staining. Error bars, SEM of three biological replicates. RNA ratio is significantly different from 1 (p,0.05 Wilcoxon test). (E) Correlation over
time between gene expression profiles of UKY403 and nhp6 cells. Time 0 corresponds to the galactose to glucose shift for the UKY403 strain.
doi:10.1371/journal.pbio.1001086.g005
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more than 20 base pairs. This confirms that most nucleosomes

occupy approximately the same location in the two strains.

However, in nhp6 cells fewer nucleosomes were unambiguously

called (45,441 versus 53,643), and the read peaks that identify

nucleosome edges were broadened in the nhp6 sequencing data

(Figure 6B). This suggests that some nucleosomes may shift from a

single favored position into a superposition of multiple overlapping

positions (‘‘fuzzy nucleosomes’’; [23]); beyond a certain degree of

fuzziness, nucleosomes would not be called by the algorithm. The

length of DNA predicted to be covered by nucleosomes was

reduced on average and had increased variability in nhp6 cells

(Figure S8C), consistent with increased fuzziness.

As observed at the single base pair level (Figure 6C), many

nucleosomal sites are either less or more relatively occupied in nhp6

cells. This is clearly visible in the snapshots in Figure 6B, showing

three different loci with decreased, unchanged, and increased

relative occupancy, respectively. Absolute occupancy is propor-

tional to the nucleosome number, and thus is reduced by about

30% in nhp6 cells. As a result, on some sites absolute occupancy in

nhp6 cells may be comparable to that in the wild type (but not

higher), whereas on the vast majority of sites it will be reduced or

very reduced. High-resolution primer extension analysis confirmed

a similar position of nucleosomes in the ars1 locus, but with higher

accessibility of nucleosome-covered sequences (and thus lower

absolute occupancy) in nhp6 cells (Figure S9A). Nucleosome ChIP

(using an antibody against histone H3) also was in agreement with

reduced nucleosome occupancy of the ars1 locus in nhp6 cells

(Figure S9B).

Figure 6. nhp6 cells have increased variability in nucleosome occupancy. (A) Schematic diagrams representing possible distributions of
nucleosomes in low-nucleosome conditions. Nucleosomes are depicted as red spheres, DNA as a blue line. In wild type cells five nucleosomes cover
,1 kb of DNA (first row). The schemes represent a 20% reduction in nucleosome content: 4 nucleosomes can redistribute over 1 kb (hypothesis 1), or
1 nucleosomal site is left vacant (hypothesis 2), or all 5 sites are occupied by nucleosomes but only 80% of the time relative to the wild type
(hypothesis 3). (B) High throughput sequencing of MNase-resistant DNA shown for three loci of the yeast genome; wild type (blue) and nhp6 cells
(red). Ovals represent nucleosomes called by template filtering; colour saturation is proportional to relative occupancy. F and R: Forward (sense) and
Reverse (anti-sense) reads. (C) Density dot plots showing the relative occupancy per bp. Left: wild type (x-axis) versus nhp6 cells (y-axis); right: two
biological replicates of nhp6 cells. The colour of each point represents the number of base pairs that map to that point in the plot. Pearson correlation
coefficients are shown in the right bottom corner of the plots.
doi:10.1371/journal.pbio.1001086.g006
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Overall, these results are in accordance with increased chromatin

accessibility in the nhp6 mutant and suggest that nucleosomes have

increased mobility on the sites they occupy (either intrinsic or

catalyzed by nucleosome remodelling complexes).

Nucleosome Position and Occupancy Over Gene Control
Regions in nhp6 Cells

Nucleosomal organization of the control regions of genes is

considered most important for gene expression. In yeast,

nucleosomes are regularly arranged on protein-coding genes,

starting from the transcriptional start site (TSS). A nucleosome-

depleted region (NDR, also called nucleosome-free region, NFR)

of about 140 bp is generally found just upstream of the TSS and is

surrounded by two well-positioned nucleosomes, called 21 and +1

nucleosome, respectively. We aligned genes by their TSS and

ranked them by the severity of nucleosome loss in nhp6 cells

relative to wild type (Figure 7A, heatmap in the center). All genes

had reduced occupancy of the 21 nucleosomes (green streak in the

heatmap), and genes with more severe nucleosome loss at the 59

end also had reduced nucleosome occupancy over the gene body.

Once again, we observed that the genes with more severe

nucleosome loss in nhp6 cells (Figure 7A, center) were the ones

already low in nucleosome occupancy in the wt (Figure 7A, right,

red line). A few genes appeared to have relatively increased

occupancy in nhp6 cells (red genes in the bottom of Figure 7A);

these genes belong primarily to the Gene Ontology categories

‘‘metabolism’’ and ‘‘cell wall’’. None of these genes, however,

appeared to have increased absolute nucleosome occupancy (i.e.,

after considering that nucleosome number is reduced by about

30% in nhp6 cells).

Nucleosome by nucleosome, median relative occupancy over the

promoter and the TSS of all genes (from the 21 to the +1

nucleosome) was lower in nhp6 cells, and median relative occupancy

for the +2, +3, and +4 nucleosomes was slightly higher (thick lines in

Figure 7B). Relative occupancy of all nucleosomal sites is more

variable in nhp6 cells (the thin lines in Figure 7B indicate the lower

and upper quartiles of occupancy). Lower nucleosome occupancy in

the control regions correlates with increased gene expression

(Figure 7A, left, blue line, and Figure S8D).

A Simple Model Predicts Nucleosome Occupancy in nhp6
Cells Starting from Nucleosome Occupancy in Wild Type
Cells

In all our analyses, from the correlation of base pair occupancy

to the distribution of nucleosomes over genes, a theme stands out:

the reduction in nucleosome number is associated with an increase

in the variability of relative occupancy. From the point of absolute

occupancy, we have already pointed out that some sites might be

similarly occupied in wild type and nhp6 strains, while sites that are

intermediately occupied in the wild type are less occupied in nhp6

cells, and weakly occupied sites in the wild type are much less

occupied in nhp6 cells. The skew in the density plot of Figure 6C

visually represents this pattern of more pronounced loss of

occupancy in nhp6 cells from sites that are already less occupied

in the wild type.

Unequal occupancy of nucleosomal sites in vivo is expected,

since (1) in vitro the probability of nucleosome occupancy on

different sites can vary by a factor of up to 5,000 [25] and (2)

histone octamers are insufficient to package all the genome [26].

Thus, in physiological conditions some sites will be occupied close

to 100% of the time (‘‘saturated’’) and some much less. Based on

these considerations, we designed a model to account for the

characteristic pattern of nucleosomal occupancy in nhp6 cells. We

assume that all sites compete for a finite pool of histones that is

insufficient for all of them, and that each site has a certain

probability of being occupied, that depends from histone

availability. We also posit that the probability of occupation

versus availability of histones is a hyperbolic function and is

different for each site (Figure 8A). This model recalls formally the

formation of a complex between two macromolecules, and we can

thus assign a dissociation constant ki to each nucleosome. The

Figure 7. Nucleosomal occupancy on yeast coding genes. (A)
Correlation between nucleosomal occupancy over genes and mRNA
levels. Left, smoothed moving average of the expression fold changes
for 4,945 genes. Center, genes aligned by their TSS were sorted by the
log2 nhp6/wild type ratio of nucleosome occupancy. Gray is used for
genes whose CDS is shorter than 3 kb. Right, wild type relative
nucleosomal occupancy averaged over the entire gene. (B) Nucleosome
coverage over 4,945 genes aligned by TSS. Thick blue and red lines
indicate the median occupancy for wild type and nhp6 cells,
respectively; the 0.25 and 0.75 quartiles are shown as blue and red
thin lines.
doi:10.1371/journal.pbio.1001086.g007
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occupancy O of site i is then Oi = x/(x+ki), where ki is the

dissociation constant and x is the concentration of available

histones. A decrease in the availability of histones will result in a

skewed desaturation, with heavy nucleosome loss at sites of high

dissociation constant and mild loss at sites of low dissociation

constant (Figure 8A,B). This will increase the variability of relative

occupancy.

Based on the relative occupancy of wild type sites, the model

should be able to predict the genomewide occupancy for a certain

decrease in available histones (details in Figure S8E). We then used

our model to simulate the relative occupancies in a population of

cells which have a 30% reduction in histone content (Figure 5A).

The density dot plot comparing simulated and observed occupancy in

nhp6 cells (Figure 8C, right) is almost symmetrical about the

diagonal and corrects the observed systematic skew in the density

dot plot of nph6/wt relative occupancies (Figure 8C, left), although

the dispersion of values is not decreased substantially. We also

plotted the distribution of the number of nucleosomes at each

occupancy value (Figure 8D); our model correctly predicts the

approximate shape of the distribution for nhp6 cells and the

Figure 8. Mathematical model describing nucleosomal occupancy. (A) Affinity model based on saturation of nucleosomal sites. Since there
are more DNA sites that can be assembled into nucleosomes than histone octamers, the occupancy of each site (y-axis) will be determined by the
availability of non-nucleosomal histones (x-axis) and the relative dissociation constant (ki) of histones at that site (blue, low ki; green, medium ki; red,
high ki). Upon decreasing the availability of histones (black vertical line on the left), the occupancy of sites with high dissociation constant decreases
more than the occupancy of sites with low dissociation constant. This simple model resembles a Michaelis-Menten association, described by
hyperbolic curves. (B) Absolute occupancies of hypothetical nucleosomal sites with high (blue), intermediate (green), and low (red) affinity in
conditions of normal (wild type) or low nucleosome content. (C) Density dot plots showing relative occupancy of ,50,000 nucleosomes in wild type
(x-axis) versus nhp6 cells (y-axis) (left panel) and observed nhp6 nucleosome occupancy versus the occupancy predicted by the model (right panel).
The colour of each point represents the number of nucleosomes that correspond to that point in the plot. Pearson correlation coefficients are shown
in the right bottom corner of the plots. (D) Distribution of relative nucleosome occupancy measured in wild type (blue) and nhp6 cells (red) and
predicted distribution in nhp6 cells by our model (black, dashed). (E) The scatterplot shows the comparison of changes in nucleosomal occupancy
between our nhp6/wild type datasets (y-axis) and the in vitro/in vivo datasets from Kaplan et al. (x-axis). Each dot is a nucleosome as in (C), axes are in
log2 scale. Correlation between the two pairs is r2 = 0.46 (p,1026).
doi:10.1371/journal.pbio.1001086.g008
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position of the mode. The fitting between the observed and

predicted nhp6 occupancies is optimal at the nucleosome content

actually observed for nhp6 cells. An alternative model based on

statistical positioning does not justify our observations, since it

predicts that both position and spacing of nucleosomes would be

changed when histone content is reduced (Figure S8F, red line),

contrary to what we observed.

Overall, our model justifies the disproportionate loss of

nucleosomes from weakly occupied sites, and the increase in

relative occupancy at the more occupied sites (Figure 8D, far tail of

the distribution). We then asked whether the sites with reduced

occupancy in nhp6 cells are the ones with lower intrinsic ability to

form nucleosomes. To this aim, we compared our dataset with the

dataset obtained by reconstituting yeast chromatin in vitro [27].

The comparison of changes in nucleosomal occupancy between

our nhp6/wt dataset and Kaplan’s in vitro/in vivo dataset is shown

in Figure 8E. The Pearson correlation coefficient between datasets

is r2 = 0.46 (p,1026), indicating that the sites that most lose

occupancy in nhp6 cells correspond to the ones with lower

occupancy in reconstituted chromatin; conversely, the sites that

lose less occupancy in nhp6 cells correspond to the ones that most

easily reform chromatin in vitro (Figure 8E).

Discussion

Nucleosome Number Is Not Fixed
We show here that the absence of HMGB1 or Nhp6a/b

proteins causes substantial histone and nucleosome depletion in

mammalian and yeast cells; surprisingly, nucleosome depletion is

compatible with cell survival.

While our work was in progress, a substantial reduction in the

histone content in chromatin was described in aging yeast cells [5];

forced expression of plasmid-borne histone genes was shown to

increase the lifespan of yeast cells. Our results independently

confirm that yeast cells can contain a variable amount of

chromatinized histones and that reduced histone content leads

to aging: nhp6 yeast mutants, which we show have a reduced

histone and nucleosome content, have a reduced lifespan and an

increased level of extrachromosomal ribosomal DNA circles,

which are a hallmark of aging [14]. Histone depletion has also

been demonstrated in aging mammalian cells [6].

We also confirm a correlation between nucleosome depletion

and an increase in DNA damage [6]. We suggest that a decrease in

nucleosome number increases DNA damage because DNA is

more exposed to DNA damaging agents, as indicated by in vitro

experiments showing that nucleosomes protect DNA from

hydroxyl radicals [16]. Reactive oxygen species, including

hydroxyl radicals, are produced also by basal metabolism

[28,29], which may explain an increase in DNA breaks in non-

irradiated Hmgb12/2 cells.

We also report that nucleosome depletion correlates with a

global increase in transcript abundance. Our observation in living

cells supports the current notion (based on experiments in vitro)

that nucleosomes limit the accessibility of DNA to the transcription

machinery.

We have asked what happens to the basic organization of

eukaryotic genomes when only a limited number of nucleosomes

can be formed. The prevailing view was that histones are

deposited until all DNA is packaged. Indeed, Kornberg and

Stryer [30] proposed that the fairly uniform spacing of

nucleosomes along DNA arises from the ‘‘statistical positioning’’

of nucleosomes between fixed barriers, so that when the DNA is

saturated with histones, each nucleosome finds itself within a

narrow distribution of distances from the preceding nucleosome.

As a consequence, when the number of nucleosomes is reduced,

the distance between nucleosomes should increase. This is not

what we find, neither in yeast nor in mammalian cells.

At least in yeast, nucleosomes largely occupy the same positions

also when nucleosome number is lower than usual; nucleosome

occupancy drops, but not uniformly. In general, sites that are

highly occupied in wild type cells remain highly occupied also in

nuclesosome-poor nhp6 cells, whereas nucleosomes are mostly lost

from sites that already had low occupancy in wild type. This

creates a ranking of sites for nucleosome occupancy, which can be

at least partially explained by a model that assumes formally that

each site has its own affinity for histones available for deposition.

This is certainly compatible with models that affirm that

nucleosome position is driven largely by DNA sequence. Indeed,

the comparison between Kaplan’s and our datasets indicates that

the sites that are more nucleosome-depleted in nhp6 cells are the

ones with lower intrinsic propensity to form nucleosomes. Anyway,

our model does not exclude strong contributions to nucleosomal

location by active processes such as nucleosome deposition, sliding,

eviction, or remodeling, as will be discussed in the following

sections.

Critical Issues in Determining Nucleosome Location and
Occupancy

Nucleosomal position is measured directly in yeast, by

identifying the borders of MNase-resistant DNA sequences, as is

relative nucleosomal occupancy, by dividing the number of reads

of a specific MNase-resistant sequence by the total number of

MNase-resistant sequence reads. However, absolute nucleosomal

occupancy is calculated by multiplying relative occupancy by the

amount of nucleosomally organized DNA. We consider that

DNA remaining after MNase digestion represents nucleosomally

organized DNA, but an alternative explanation is often favored:

chromatin may become more accessible to MNase not because of

a variation in nucleosome number but because of unspecified

changes in higher-order chromatin organization. This alternative

explanation is not compatible with the topological analysis of

plasmid supercoiling (Figure 5C), which does not depend on

MNase digestion nor in fact on any other type of chromatin

accessibility, but only on the number of nucleosomes residing on

the plasmid at the time of extraction. Most of all, the alternative

explanation does not fit with the reduced abundance of histones:

since only about 0.1% of histones are not engaged within

nucleosomes [31], a reduced amount of histones must be reflected

in a decreased number of nucleosomes.

Measuring histone content is therefore critical in interpreting

alterations in chromatin organization. Nucleosomes were also

recently mapped in nhp6 cells by Dowell et al. [32]; our results,

despite the different approach (high throughput sequencing versus

hybridization to tiled chips), broadly agree with theirs, but the

interpretations are different. Dowell et al. infer that Nhp6 proteins

stabilize nucleosomes directly, possibly by interacting with them;

we infer that nucleosome occupancy is substantially reduced in

most nucleosomal locations, due to decreased histone content.

Although they are different, the two interpretations are not

mutually exclusive, and indeed specific interaction with Nhp6

proteins might explain the preferential loss of nucleosome +1 at

the 59 end of genes (Figure 7A,B) [32].

Other yeast mutants (for example, spt10; [33]) show an

‘‘altered’’ organization of chromatin, with increased accessibility

to MNase digestion and altered plasmid topology. We speculate

that if histone abundances were measured in these mutants, they

might turn out to have reduced histone content and decreased
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global nucleosomal occupancy. This might be a fairly common

phenotype that was overlooked so far.

The same argument—that decreased histone content must

correspond to fewer nucleosomes—also applies to mammalian

cells. Genomewide nucleosomal location and occupancy are more

difficult to determine, however. The decrease in nucleosome

number does not cause an increase in internucleosomal distance

(Figures 3B and S1D), but we cannot show rigorously that

nucleosome position is conserved, both because of the significant

effort and cost of resequencing entire mammalian genomes and

because the majority of sequences in mammals are repeated and

cannot be assigned to a specific genome position. Thus, even if all

mappable nucleosome borders were conserved, non-mappable

nucleosome borders (which are the majority in the mammalian

genome) might be substantially altered.

HMG-Box Proteins Are Involved in Genome
Chromatinization in Yeast and Mammalian Cells

Despite remaining uncertainties on nucleosomal positions and

occupancy in mammalian cells lacking HMGB1, the similarity in

phenotype between mammalian and yeast mutants is striking. This

suggests that HMG-box proteins might have been involved in

determining the number of nucleosomes since the emergence of

eukaryotes.

HMGB1 and Nhp6 proteins are functionally similar, and both

bend DNA. Since DNA must be bent to wrap around histone

octamers and this entails a high energy of activation, DNA-

bending proteins might lower the activation energy and provide a

chaperone activity on DNA for nucleosome assembly. Expression

of a Nhp6 mutant protein unable to bend DNA does not revert the

phenotype of Dnhp6 cells [32], suggesting that DNA bending is

required for the correct chromatinization of the yeast genome. We

observed that there is a significant correlation in the yeast genome

between the intrinsic propensity to assemble nucleosomes in vitro

from high-salt solutions of histones [27] and the nucleosomal

occupancy in nhp6 cells (Figure 8E); this suggests that sites that

have an intrinsic difficulty in assembling nucleosomes most need

the presence of a DNA-bending protein.

Likewise, we argue that HMGB1 can provide a DNA

chaperone activity for nucleosome assembly in mammalian cells:

we show that in vitro HMGB1 accelerates nucleosome assembly

onto naked DNA.

A chaperone activity only changes the rate of the biological

reaction (by lowering the activation energy), and not the

equilibrium; thus, we suggest that nucleosome assembly is never

at equilibrium in living cells and that the absence of a DNA

chaperone will move nucleosome assembly further away from the

equilibrium level. This hypothesis has not been formally tested, but

we note that the high rate of nucleosome dynamics in living cells

makes it very unlikely that equilibrium is ever reached.

We also note that a delay or reduction in nucleosome assembly

would lead to a decrease in histone biosynthesis or an increase in

histone degradation, or both, via the activity of several feedback

control loops [31,34]. As a consequence, the steady state level of

histones in the cell would fall, which is what we observe.

HMG-box proteins can also affect nucleosome dynamics in

different ways. For example, we had previously shown that

HMGB1 enhances nucleosome remodeling in vitro [10], and the

group of Karen Vasquez had shown that histones are not

acetylated after DNA damage in the absence of HMGB1 [35].

In yeast, Nhp6 proteins are non-essential components of the

FACT complex (in contrast, the absence of the other components

Pob3 and Spt16 causes lethality) [7]; the absence of Nhp6 proteins

can thus affect nucleosome remodeling associated to transcription.

All these activities can affect nucleosomal occupancy directly or

indirectly.

Nucleosome Limitation Correlates with Increased Global
Gene Expression and with a Specific Transcriptomic
Profile

Nucleosomal occupancy over promoters is a powerful determi-

nant of gene expression. Since we show that genomewide

nucleosomal occupancy varies non-uniformly in response to

nucleosome depletion, specific transcriptional profiles are expected

to ensue. This is exactly what we observe. In both mammalian

Hmgb12/2 cells and yeast nhp6 cells, specific genes have increased

or decreased expression relative to the rest. These gene-specific

effects are distinct from the overall increase in transcription that

also takes place and might depend in part on the specific

interactions of HMGB1 and Nhp6 proteins with nucleosomes and

transcription factors [32]. In turn, changes in gene expression can

determine changes in the cell cycle and in cell metabolism, which

can lead to further changes in nucleosomal occupancy and gene

expression; this makes it difficult to disentangle cause from effect in

the phenotype of nhp6 yeast cells and Hmgb12/2 mammalian

cells. However, the correlation of transcriptomic profiles in nhp6

cells (Figure 5E) and in cells where transcription of histone H4 has

been shut off [22] suggests that histone depletion is by itself

partially responsible for the altered expression of a subset of

genes. We therefore propose that overall histone content and the

associated modulation of the genomewide and gene-specific

nucleosomal landscapes represents a novel layer of epigenetic

control of transcription.

Materials and Methods

Mouse Embryo Fibroblasts (MEFs)
Hmgb12/2 MEFs and their control wild type MEFs were

isolated from same-mother embryos deriving from Hmgb1+/2

crosses [12]. Since Hmgb12/2 MEFs accumulate chromosome

rearrangements with continuous culturing [14], only cells up to 8

population doublings from embryo isolation were used. MEFs

from different mothers gave consistent results in our experiments,

and batch-to-batch variation was minimal.

Quantification of DNA Damage ad DNA Repair
Wild type and Hmgb12/2 MEFs were synchronized in G0–G1

by serum starvation for 36 h and gamma-irradiated with 10 Gy by

using a 137Cs source (Biobeam 2000). The Alkaline Comet Assay

was performed as described [15] immediately after irradiation.

The extent of DNA damage was measured by calculating the tail

moment (Comet Assay II software, Perceptive Instruments).

Yeast Culture
Wild type and nhp6 cells [14] were grown in YPD medium at

30uC. For protein quantification cells were arrested in G1 by

synthetic alpha-factor pheromone (5 mg/ml) and checked for

synchronization by FACS analysis after Sytox staining [36].

Knockdown in HeLa Cells
Stable HMGB1 knockdown HeLa cells were prepared by

transfection with plasmid HMGB1shRNA-pSuperior.puro or, as a

mock control, with the empty vector pSuperior.puro (Invitrogen)

[37]. Transfected cells were selected with puromycin and single

resistant clones were picked, amplified, and analyzed for HMGB1

expression by western blot. Only clones with ,10% HMGB1 were

used. Transient gene silencing was carried out by performing at
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1-d intervals four consecutive transfections of small interfering

RNA duplexes (siRNA) against HMGB1 transcript using Lipo-

fectamine 2000 (Invitrogen). siRNA for HMGB1 and for firefly

luciferase, as a negative control, were purchased from Dharmacon.

DNA Quantification by PicoGreen
The Quant-iT PicoGreen dsDNA Kit was used as described by

the manufacturer (Invitrogen). Seventy-five ml of diluted Pico-

Green reagent were added to each well of a 96-well plate

containing either phage l DNA at known concentrations or the

sample (100 ml final volume). After incubation for 5 min at room

temperature, fluorescence was measured using a Victor3 plate

reader (Ex/Em filters: 485 nm/535 nm, exposure 1.0 s). DNA

concentration of the samples was determined by interpolation of

the fluorescence intensity values against the standard curve.

Quantification of Histones by Immunoblot
For western blot analysis, whole-cell extracts were prepared by

direct lysis of a defined number of cells in SDS-PAGE sample

buffer. DNA from 106 cells was extracted with the DNeasy tissue

Kit (Qiagen) and quantified by PicoGreen to confirm cell count.

Following electrophoresis, blots were probed with primary

antibodies mouse anti-cH2AX (Upstate), rabbit anti-total H2AX

(Upstate), rabbit anti-H3 (Abcam), rabbit anti-H2A (Abcam),

rabbit anti-H2B (Abcam), rabbit anti-H4 (Abcam), sheep anti-H1

(Abcam), mouse anti-peroxiredoxin-2 (AbFRONTIER), and mouse

or rabbit anti-b-actin (Sigma) for mammalian and yeast,

respectively, and visualised using the ECL detection kit (GE

Healthcare) or the ECL Plex fluorescent western blotting system

(GE Healthcare). Sixteen-bit images were acquired with FLA-9000

(Fuji Film); signals were within the linear part of the dynamic

range. Quantification of western blot signals was performed with

ImageQuant software (GE Healthcare).

SILAC-Based MS
SILAC-labelled cells were harvested and mixed 1:1. Proteins

were extracted in SDS-PAGE sample buffer and separated by one-

dimensional electrophoresis. Protocols for protein processing and

peptide desalting and concentration are described [38,39].

Peptides were analyzed by nanoflow liquid chromatography on

an Agilent 1100 LC system (Agilent Technologies Inc.) coupled to

LTQ-FT ultra (Thermo Fisher Scientific). Mass spectrometric

data were analyzed for protein identification and peptide

quantification with MaxQuant algorithm.

FACS Analysis of Acridine Orange Stained Cells
26105 cells resuspended in DMEM with 10% FCS were

permeabilized by gently adding 0.4 ml ice-cold permeabilizing

solution (0.1% Triton X-100, 80 mM HCl, 150 mM NaCl) and

stained with 1.2 ml ice-cold acridine orange staining solution

(37 mM citric acid, 126 mM Na2HPO4, 150 mM NaCl, 1 mM

EDTA, 6 mg/ml Acridine Orange). As control, cells were treated

with 100 mg/ml RNase A for 10 min after permeabilization. Using

the 488 nm laser for excitation, DNA and RNA fluorescence at

530/30 and 610/20 nm, respectively, was recorded with a LSRII

flow cytometer (BD Biosciences).

Slot-Blot Hybridization
Total RNA from 56106 control and KD HeLa cells was

extracted using RNeasy tissue kit (Qiagen). DNA from 106 cells

was extracted and quantified by PicoGreen to confirm cell count.

Slot blots of total RNA were prepared by denaturing total RNA at

68uC in 16 SSC, 50% formamide, and 5% formaldehyde for

15 min and cooled on ice. Serial 1:2 dilutions of RNA starting

from 400,000 cells were applied to a Nitrocellulose membrane

(Protran, Schleicher & Schuell) using a minifold apparatus

(Schleicher & Schuell). Total RNA was hybridized to 32P end-

labeled oligo-dT (25 mer) and to 47S leader sequence oligonucle-

otide (GGAGACGAGAACGCCTGACACGCACGGCACGGA-

GCCAGC), to detect polyA+ mRNA and 47S rRNA precursor,

respectively. The membranes were exposed to an imaging plate

(BAS-IP SR 2025, Fuji) and the radiograms were analyzed by BAS-

5000 imager (Fuji). Different exposure times were used to obtain

densitometric scans (16-bit) in the linear response range. Quanti-

fication of RNA slot blot signals was performed with ImageQuant

software (GE Healthcare).

Digestion of Mammalian Chromatin with MNase
Nuclei were isolated as described [40]. Briefly, 107 cells were

resuspended in 5 ml ice-cold resuspension buffer (10 mM Tris-Cl

pH 7.4, 15 mM NaCl, 60 mM KCl, 1 mM EDTA, 0.1 mM

EGTA, 0.15 mM spermine, 0.5 mM spermidine, 1 mM DTT,

0.5 mM PMSF) containing 5% sucrose and 0.1% NP-40. Nuclei

were pelletted by centrifugation in a swinging bucket rotor at 100–

120 g for 20 min at 4uC through a sucrose ‘‘pad’’ solution

(resuspension buffer containing 10% sucrose), washed in ice-cold

buffer, and digested with micrococcal nuclease (Sigma-Aldrich cat.

N5386) for 5 min at 25uC. DNA was purified with the DNeasy

Tissue Kit (Qiagen) and electrophoresed on 1.2% agarose gels.

Chromatin Assembly Assay
Chromatin was assembled on linear DNA with Chromatin

Assembly Kit according to the manufacturer’s instructions (Active

Motif), with two modifications: we used 0.8 mg histones per 1 mg

DNA, and we added either BSA or HMGB1 to a total amount of 10

or 1 mg protein/ml in the titration and time-course experiments,

respectively. pGEM-T vector DNA (Promega) was digested with

SacII, and the linearized plasmid was purified from gel with Gel

Extraction kit (Qiagen). Calf thymus HMGB1 was purified as

described [41]. Assembled chromatin was digested for 4 min with

the Enzymatic Shearing Cocktail provided in the kit. The residual

DNA after digestion was quantified by PicoGreen and electropho-

resed on a 1.5% agarose gel. The gel was stained with Syber Safe

(Molecular Probes) and scanned with FLA-9000 (Fuji Film).

Digestion of Yeast Chromatin with MNase
Cells were harvested from a 300 ml culture grown to OD = 0.5

and resupended in 10 ml of a buffer containing 1 M sorbitol,

50 mM Tris-HCl pH 7.5, and 10 mM ß-mercaptoethanol. Thirty

million cells were incubated for 10 min at 30uC in the presence of

0.05 mg Zymolyase 100T. The spheroplasts were harvested,

resuspended in 3.6 ml nystatin buffer (50 mM NaCl, 1.5 mM

CaCl2, 20 mM Tris-HCl pH 8.0, 1 M sorbitol, 100 mg/ml

nystatin), and divided into 0.4 ml aliquots. The samples were

incubated with MNase (from 6.4 units/ml in 26dilutions) at 25uC
for 15 min. The reaction was stopped with 1% SDS, 5 mM

EDTA (final concentrations). Samples were incubated with

Proteinase K (40 mg/sample) at 56uC for 2 h. DNA was then

purified by three phenol/chloroform extractions and ethanol

precipitation. RNase treatment (35 mg/sample) was also per-

formed. The DNA was then electrophoresed in 1.2% agarose gels

at 1.75 V/cm and visualized by EtBr staining [42].

Topological Analysis
Circular DNA from yeast cells was prepared by alkaline lysis of

spheroplasts [43]. Briefly, cells were treated with Zymolyase as
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reported for chromatin preparation. Spheroplasts were kept on ice

for 10 min with two volumes of 0.2 M NaOH, 1% SDS; 1.5

volumes of 3 M potassium acetate (pH 4.8) were then added and

the mixture kept on ice for 45 min. After centrifugation, two

volumes of ethanol were added to the supernatant in order to

precipitate the circular DNA forms.

2D topoisomer analysis was performed essentially as described

[44]. Plasmid DNA, prepared as above, was run on 1% agarose

gels in the first direction for 21 h at 60 V, in chloroquine buffer

(30 mM NaH2PO4, 36 mM Tris, 0.5 mM Na-EDTA, 10 mg/ml

chloroquine). The gel was then equilibrated in the same buffer

containing 30 mg/ml chloroquine for 2 h and run in the

perpendicular direction at 40 V in the same buffer with recircu-

lation for 16 h at room temperature. Finally, the gel was blotted

and hybridized with the specific probe (plasmid yRp17 digested

with EcoRI). The signal of each band in the topoisomer arch was

measured with a PhosphorImager.

High Throughput Sequencing of Mononucleosomal DNA
Chromatin from wild type and nhp6 yeast cells was prepared as

described and digested with MNase. The sample containing mostly

mononucleosome-sized DNA (12 units MNase/108 cells, 25uC,

15 min) was run on a 1.2% agarose gel. The mononucleosome band

was excised from the gel and used to prepare libraries suitable for

the Illumina GA IIx sequencer: the samples were end-repaired, A-

tailed, and adapter-ligated (following each step the reaction was

cleaned up using the Qiaquick PCR purification kit). Samples were

subjected to 12 cycles of PCR amplification before selection of the

250–300 bp fraction from a 2% agarose gel. The library was

extracted using the Qiaquick gel extraction kit, quantified using the

Quant-iT dsDNA HS Assay, and quality checked using the Agilent

bioanalyzer 2100 system. Two biological replicates for both wild

type and mutant were sequenced in independent experiments

producing 9.65–10.08 M reads at 51 bp. The reads were aligned to

the yeast genome using Novoalign producing around 76% unique

alignments.

Nucleosome Mapping and Modelling of Occupancy
High throughput sequence reads were mapped to the yeast

genome, and nucleosome positions were extracted using ‘‘Tem-

plate Filtering’’ [24]. A total of 53,643 positioned nucleosomes

were found in the wild type versus 45,441 nucleosomes in nhp6. To

compare and model the occupancy we considered only nucleo-

somes that were detected both in wild type and nhp6 cells. To

model occupancy, we assumed that the occupancy of each

nucleosome is a hyperbolic function of available histones. The

occupancy O of nucleosome i is defined by Oi = x/(x+ki), where x is

an unknown parameter of the concentration of available histones

and ki is the dissociation constant. In a simple interpretation, x can

be taken as the concentration of free histones before deposition on

DNA, for example during S phase. x was set to 1 for the wild type

sample and ki was extracted using the measured wild type

occupancy. Average occupancy in nhp6 cells is reduced to 70% of

the wild type (based on the measured amount of MNase-resistant

DNA); using this parameter, the model returns a concentration of

available histones of 0.5 and the occupancy of each single

nucleosome. We removed the top 1% highly occupied nucleo-

somes to avoid overdependence of the model on the extreme

values and overvaluation of correlations.

Gene Expression Profiling
Total RNAs from control and KD HeLa cells were extracted

using RNeasy tissue kit (Qiagen). Yeast RNA extraction was

performed using standard procedures [43]. RIN (RNA Integrity

Number) of each sample was determined with the 2100

Bioanalyzer (Agilent) to assess RNA quality; samples with

RIN,8 were discarded. We analyzed four technical replicates

for HeLa cells and three biological replicates for yeast cells.

For HeLa cells, total RNA was reverse transcribed with the

Illumina TotalPrep RNA Amplification kit (Ambion) and cRNA

was generated with a 14 h in vitro transcription reaction. cRNA

was then eluted and purified. Washing, staining, and hybridization

were performed according to the standard Illumina protocol.

RNAs were hybridized to Illumina HumanHT-12 V3.0 expression

beadchip; datasets were first quantile normalized (without

background subtraction) in BeadStudio v.3.0, then expression

data were rescaled by mean centering and standardization; the

differentially expressed genes were identified by t test, p,0.01.

For yeast, Affymetrix Yeast 2.0 chips were hybridized and

scanned according to the manufacturer’s recommendation. 7G

scanner data extracted as .cel files were then analyzed in

GeneSpring GX 11.0.1. We used quantile normalization using

RMA summarization algorithm with baseline transformation to

the median of all samples. We then identified genes with transcript

levels differing more than 1.5-fold (p,0.05 with Benjamini-

Hochberg correction for multiple testing).

Data from mammalian and yeast cells were visualized by

hierarchical clustering in TmeV (v. 4.5.1), choosing Euclidean

metric and average linkage.

Data Availability
The complete nucleosome map of wild type and nhp6

cells is available at http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_

doOtherUser=submit&hgS_otherUserName=Assafwe&hgS_

otherUserSessionName=NH6PA.

HeLa transcriptome is available on the GEO website with the

accession number GSE18721.

Yeast transcriptome is available on the GEO website with the

accession number GSE23711.

Supporting Information

Figure S1 HeLa cells KD for HMGB1 have a reduced amount

of histones and altered chromatin compaction. (A) Western blot of

HMGB1 and actin in control and KD HeLa cells. (B) Cell cycle

distribution of control and KD HeLa cells by propidium iodide

staining of DNA. (C) Upper panel: quantification by western blot

of histone content from three experiments expressed as KD:

control ratio. Error bars, SEM. The reduction of about 20% of

both core and linker histones is statistically significant (p,0.05,

Wilcoxon test). Lower panel: residual (nucleosome-protected)

DNA obtained from KD and control HeLa after digestion with

increasing MNase concentrations. Error bars, SEM from three

biological replicates. (D) Electrophoretic separation and densito-

metric analysis of DNA samples from 250,000 control and KD

HeLa cells after digestion with 0, 0.5, and 2 U/ml of MNase.

MW: 100 bp ladder.

(TIF)

Figure S2 SILAC-based quantitative proteomic analysis of

control and KD HeLa cells. (A) Scheme of the experimental

setup for SILAC, with examples of the MS readout: proteins not

responding to HMGB1 depletion show a peptide ratio equal to 1

(orange pairs), whereas peak ratios of protein up- or down-

regulated differ from 1 (green and blue pairs). (B) Representative

mass spectra for SILAC pairs from various proteins: left column,

peptide pairs from reference experiment (control (light) : control

(heavy)); right column, peptide pairs from the KD (light) : control

(heavy) experiment. Peptide KHPDASVNFSEFSK of HMGB1
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has ratio L/H (light/heavy) = 0.1, indicative of 90% depletion

efficiency; peptide DAVTYTEHAK from H4 exemplifies histone

down-regulation in the light KD sample (L/H = 0.64); peptide

LLLEYTDSSYEEK from Glutathione S-transferase Mu 1

exemplifies an up-regulated protein (L/H = 1.87); peptide

GLFIIDGK from peroxiredoxin-2 represents proteins with ratio

,1. (C) Left panel: histogram of log2 normalized protein L/H

ratios (n = 1,818) of the reference proteomes, fitting a normal

distribution with a standard deviation of 0.13. Right panel: the

wider distribution (SD = 0.37, n = 1,813) indicates that a large

number of proteins changed their expression level after HMGB1

knockdown. (D) Overlay of the log2 protein L/H ratio distribu-

tions from the KD : control and control : control experiments.

(TIF)

Figure S3 SILAC analysis of histone variants in control and KD

HeLa cells. The box plots represent KD-Light/control-Heavy ratios

for the whole proteome (‘‘all,’’ all peptides) and non-modifiable

peptides from histone variants and H4 for comparison (from

Figure 2C). Number of peptides: all peptides = 26,823, H2AX = 10,

H2AZ = 18, H4 = 81; mean values 6 SD: H2AX = 0.71860.114,

H2AZ = 0.70460.168, H4 = 0.78160.133). Probabilities are cal-

culated using Wilcoxon test.

(TIF)

Figure S4 Hmgb12/2 embryo livers contain a reduced amount

of histones. (A) Western blot of serial 1:2 dilutions starting from

25,000 cells. (B) Ratios of band intensities from the blots in (A) and

two other similar experiments. Histone ratios are significantly

different from 1 (p,0.05, Wilcoxon test), while DNA and actin

ratios are not. Error bars represent SEM.

(TIF)

Figure S5 Gene expression analyses in HeLa and yeast cells.

Cluster representation of the differentially expressed genes using

TmeV software. (A) Four technical replicates of control and KD

HeLa cells. (B) Three biological replicates of wild type and nhp6

cells.

(TIF)

Figure S6 Functional analysis of HeLa KD transcriptome and

proteome. Comprehensive Gene ontology (GO) analysis. (A)

Transcriptome of HeLa KD versus control. (B) Proteome analysis:

(upper panel) light-KD : heavy-control; (lower panel) reference

experiment with light-control : heavy-control. GO categories were

selected from Cellular Component, Biological Process and

Molecular Function GO domains. Significant-responder GO

categories, highlighted by an asterisk (*), were selected based on

ratio significance B (p,0.05). No significant-responder categories

were detected in the reference experiment (control versus control).

(TIF)

Figure S7 Functional analysis of transcriptome of nhp6 cells.

Comprehensive Gene ontology (GO) analysis of the transcriptome.

GO categories were selected from Cellular Component, Biological

Process, and Molecular Function GO domains. Significant-

responder GO categories, highlighted by an asterisk (*), were

selected based on ratio significance B (p,0.05).

(TIF)

Figure S8 Additional information on nucleosome position and

modelling of results. (A) Density dot plot showing the simulated

relative occupancy per bp of wild type (x-axis) versus nhp6 cells (y-

axis), assuming that 75% of nucleosomes have the same

occupancy, and 25% have very reduced occupancy in nhp6 cells

(not zero, otherwise they would all fall on the x-axis). Two

subpopulations are immediately apparent. (B) Left: histogram

showing the frequency distribution of variation in center positions

between nucleosomes from wild type and nhp6 cells. Right:

cumulative frequency distribution of variation in center positions.

(C) Distribution of the length of DNA covered by nucleosomes, as

identified by template filtering. (D) log2 ratios (nhp6/wt) of

nucleosome occupancy over the entire coding regions of genes

grouped in 5 classes (down-regulated to unchanged and up-

regulated in nhp6 cells). Blue dots represent the median log2 ratio

in the group and the black line shows the 0.25 and 0.75 quartiles.

The correlation of 20.07 is statistically significant (p,1026). (E) In

our model, the occupancy O of nucleosome i is defined by Oi =

x/(x+ki), where x is an unknown parameter of the concentration of

available histones and ki is the dissociation constant. x was set to 1

for the wild type sample and ki was extracted using the measured

wild type occupancies. Average occupancy in nhp6 cells is reduced

to 70% of the wild type (based on the measured amount of

MNase-resistant DNA); using this parameter, the model returns a

concentration of available histones of 0.5 and the occupancy of

each single nucleosome. (F) Representative results obtained from a

simple model of statistical positioning. We assume that one of

three events can occur at any given time: nucleosome loading

(Kon), nucleosome unloading (Koff), and nucleosome sliding (Kslide).

Reducing occupancy (lower Kon and/or increased Koff) changes

the spacing of nucleosomes (red line) as compared to a wild type

fitting (blue line).

(TIF)

Figure S9 The yeast ARS1 locus is more accessible to MNase in

nhp6 cells. (A) High resolution analysis of MNase accessibility of the

nucleosome in the ARS1 region (C-domain) in wild type and nhp6

cells. Ellipses indicate nucleosomes, the filled box the ABF1 binding

site. DNA was digested with 1.6 and 3.2 U of MNase when

packaged in chromatin, or after deproteinization (lane N), and

primer-extended [45] from the labelled oligo ARS1r (position 1024

to 1001, numbering as in [46]). M, molecular weight marker

(pBR322 cut with MspI); G, sequencing lane; S, vertical thick lines

represent protection from MNase digestion compared to naked

DNA; horizontal thin lines hypersensitivity. (B) ChIP of histone H3

in A, B, and C regions of ARS1, shown as nhp6/wt enrichment.

(TIF)
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