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BEST ESTIMATION OF FUNCTIONAL LINEAR MODELS

GIACOMO ALETTI, CATERINA MAY, AND CHIARA TOMMASI

Abstract. Observations which are realizations from some continuous process
are frequent in sciences, engineering, economics, and other fields. We consider
linear models, with possible random effects, where the responses are random
functions in a suitable Sobolev space. The processes can not be observed
directly. With smoothing procedures from the original data, both the response
curves and their derivatives can be reconstructed, even separately. From both
these samples of functions, just one sample of representatives is obtained to

estimate the vector of functional parameters. We hence get a strong functional
version of the Gauss-Markov theorem.

Keywords: functional data analysis; Sobolev spaces; linear models; repeated mea-
surements; Gauss-Markov theorem; Riesz representation theorem; best linear unbi-
ased estimator; experimental designs; optimal design.

1. Introduction

Observations which are realizations from some continuous process are ubiqui-
tous in many fields like sciences, engineering, economics and other fields. For this
reason, the interest for statistical modeling of functional data is increasing, with
applications in many areas. Reference monographs on functional data analysis are,
for instance, the books of [19] and [10], and the book of [8] for the non-parametric
approach. They cover topics like data representation, smoothing and registration;
regression models; classification, discrimination and principal component analysis;
derivatives and principal differential analysis; and more other.

Regression models with functional variables can cover different situations: it may
be the case of functional responses, or functional predictors, or both. In the present
paper linear models with functional response and multivariate (or univariate) re-
gressor are considered. We consider the case of repeated measurements, which may
be particularly useful in the context of experimental designs, but all the theoretical
results proved remain valid in the standard case. Focus of the work is the best
estimation of the functional coefficients of the regressors.

The use of derivatives is very important for exploratory analysis of functional
data as well as for inference and prediction methodologies. High quality derivative
information can be provided, for instance, by reconstructing the functions with
spline smoothing procedures. Recent developments on estimation of derivatives are
contained in the works of [20] and in [17]. See also [3], who have obtained derivatives
in the context of survival analysis, and [9] who have estimated derivatives in a non-
parametric model.

In the literature the usual space for functional data is L2, and the data are used
to reconstruct curve functions or derivatives. The novelty of the present work is
that the curves are random elements of a suitable Sobolev space. The heuristic
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justification for this choice is that the data may provide information on both curve
functions and their derivatives. Of course, if we take into consideration the whole
information, about curves and derivatives, we may improve our estimates. Curves
and derivatives are actually reconstructed from a set of observed values, because
the response processes cannot be observed directly. Two situations may occur: the
sample of functions are reconstructed by a smoothing procedure of the data, and
derivatives are then obtained by differentiation. At our knowledge, this is the most
common method adopted in functional data analysis.

However, the sample of functions and the sample of derivatives may be obtained
separately. For instance, different smoothing techniques may be used to obtain
the functions and the derivatives. Another possibility is when two sets of data are
available, which are suitable to estimate functions and derivatives, respectively. For
example, in the case of a motion process, data concerning positions and data about
velocities may be observed.

In this paper we propose a new method which incorporates the information
provided by both the sample of functions and the sample of derivatives. We show
that the full information of the sample of functions and the sample of derivatives
is not a weighted mean between, e.g., the functions and the integrated derivatives.
From the two samples of reconstructed functions and derivatives just one sample
of representatives is obtained. In addition, even if the sample of functions and
the sample of derivatives belong to L2, the information carried by them on the
regression parameters is a sample of function in H1, which implies that this new
sample cannot be obtained from a linear combination involving the original sample
of functions. We use this sample to estimate the functional parameters. Once this
method is found, the optimal results may appear as a straightforward extension of
the well-known classical case, althought the proof requires much technical effort.

A new version of the Gauss-Markov theorem is hence proved in the proper
infinite-dimensional space (H1), showing that our new sample carries all the rel-
evant information on the parameters. More precisely, we prove that any linear
operator on H1 applied to the OLS estimator on the reconstructed sample has
minimum variance. In this sense, the OLS estimator is H1-strong BLUE. As a par-
ticular case, the OLS estimator is also the best linear unbiased estimator in H1. In
practice this H1-BLUE cannot be computed explicitly, since the representative is
only implicitly defined in infinite dimensions. Nevertheless, practitioners are used
to represent functions in a basis expansion which is truncated at some order. This
means to work in a finite-dimensional subspace S of H1. We prove that the OLS
estimator in S is the projection of the H1-BLUE and it is itself the H1-BLUE in S.
Moreover, the OLS estimator in S can be practically computed, since the projection
of the representative depends explicitly on the sample of functions and derivatives.

As a consequence of the results proved, a rigorous generalization of the theory of
optimal design of experiments in infinite-dimensional spaces is presented (see also
[1]). An application to an ergonomic data-set shows the advantages of this theory
in the real world.

The paper is organized as follows. Section 2 contains the model description and
the new theoretical results offered in this work. Section 3 presents some considera-
tions which are fundamental from a practical point of view. Section 4 is focused on
the experimental context, and optimal designs for the model estimation are derived.
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Section 5 is a summary together with some final remarks. Some additional results
and proofs of theorems are deferred to Appendix A.

2. Strong H1-BLUE in functional linear models

Let us consider a regression model where the response y is a random function
which depends linearly on a vectorial (or scalar) known variable x through a func-
tional coefficient, which needs to be estimated. In particular, we assume that x is
an experimental condition and that n experiments are performed in batches at n
(not necessarily different) experimental conditions x1, . . . ,xn. The i-th experiment
is formed by r ≥ 1 trials (repetitions) at the same xi. Therefore, the following
random effect model is considered:

(1) yij(t) = f(xi)
Tβ(t) + αi(t) + εij(t) i = 1, . . . , n; j = 1, . . . , r,

where yij(t) denotes the response curve of the j-th observation at the i-th exper-
iment; f(xi) is a p-dimensional vector of known functions; β(t) is an unknown
p-dimensional functional vector; αi(t) is a zero-mean process which denotes the
random effect due to the i-th experiment and takes into account the correlation
among the r repetitions; εij(t) is a zero-mean error process.

An example for the model (1) is provided in Section 4.1; if r = 1 this model
reduces to the functional response model described, for instance, in [10].

In a real world setting, the functions yij(t) are not directly observed. By a
smoothing procedure from the original data, the investigator can reconstruct both

the functions and their derivatives, obtaining y
(f)
ij (t) and y

(d)
ij (t), respectively. Hence

we can assume that the model for the reconstructed functional data is

(2)

{
y
(f)
ij (t) = f(xi)

Tβ(t) + α
(f)
i (t) + ε

(f)
ij (t)

y
(d)
ij (t) = f(xi)

Tβ′(t) + α
(d)
i (t) + ε

(d)
ij (t)

i = 1, . . . , n; j = 1, . . . , r,

where

(i) the n bivariate vectors (α
(f)
i (t), α

(d)
i (t)) are zero-mean independent and

identically distributed couples of processes such that E(‖α(f)
i (t)‖2L2+‖α(d)

i (t)‖2L2) <
∞;

(ii) all the n× r couples (ε
(f)
ij (t), ε

(d)
ij (t)) are zero-mean identically distributed

processes, each process being independent of all the other processes, with

E(‖ε(f)ij (t)‖2L2 + ‖ε(d)ij (t)‖2L2) <∞.

Not that the investigator might reconstruct each function y
(f)
ij (t) and its derivative

y
(d)
ij (t) separately. In this case, the right-hand term of the second equation in (2)
is not the derivative of the right-hand term of the first equation. The particular

case when y
(d)
ij (t) is obtained by differentiation y

(f)
ij (t) is the most simple situation

in model (2).

Let us consider an estimator β̂(t) of β(t), formed by p random functions in the
Sobolev space H1 = H1(τ). Recall that a function g(t) is in H1 if g(t) and its
derivative g′(t) belong to L2. Moreover, H1 is an Hilbert space with inner product

(3)

〈g1(t), g2(t)〉H1 = 〈g1(t), g2(t)〉L2 + 〈g′1(t), g′2(t)〉L2

=

∫
g1(t)g2(t)dt+

∫
g′1(t)g

′
2(t)dt, g1(t), g2(t) ∈ H1.
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Definition 2.1. We define the H1-generalized covariance matrix Σ
β̂
of an unbiased

estimator β̂(t) as the p× p matrix whose (l1, l2)-th element is

(4) E〈β̂l1(t)− βl1(t), β̂l2(t)− βl2(t)〉H1 .

This global notion of covariance has been used also in [15, Definition 2], in the
context of predicting georeferenced functional data. These authors have found a
BLUE estimator for the drift of their underlying process, which can be seen as an
example of the results given in this paper.

Definition 2.2. In analogy with classical settings, we define the H1-functional
best linear unbiased estimator (H1-BLUE) as the estimator with minimal (in the
sense of Loewner Partial Order) H1-generalized covariance matrix (4), in the class
of the linear unbiased estimators of β(t).

It is simple to show that an equivalent definition of H1-BLUE. In fact a H1-
BLUE minimizes the quantity

E
(〈 p∑

i=1

αi

(
β̂i(t)− βi(t)

)
,

p∑

i=1

αi

(
β̂i(t)− βi(t)

)〉
H1

)

for any choice of (α1, . . . , αp), in the class of the linear unbiased estimators β̂(t)
of β(t). In other words, the H1-BLUE minimizes the H1-variance of any linear
combination of its components. A stronger request is the following.

Definition 2.3. We define the H1-strong functional best linear unbiased estimator
(H1-SBLUE) as the estimator with minimal variance,

E
(〈

O(β̂i(t)− βi(t)),O(β̂i(t)− βi(t))
〉
H1

)

for any choice of linear operator O : (H1)p → H1, in the class of the linear unbiased

estimators β̂(t) of β(t).

Given a couple (y(f)(t), y(d)(t)) ∈ L2×L2, it may be defined a linear continuous
operator on H1 as follows

φ(h) = 〈y(f), h〉L2 + 〈y(d), h′〉L2 , ∀h ∈ H1.

From the Riesz representation theorem, there exists a unique ỹ ∈ H1 such that

(5) 〈ỹ, h〉H1 = 〈y(f), h〉L2 + 〈y(d), h′〉L2 , ∀h ∈ H1.

Definition 2.4. The unique element ỹ ∈ H1 defined in (5) is called the Riesz

representative of the couple (y(f)(t), y(d)(t)) ∈ L2 × L2.

This definition will be useful to provide a nice expression for the functional OLS

estimator β̂(t). Actually the Riesz representative synthesizes, in some sense, in H1

the information of both y(f)(t) and y(d)(t).
The functional OLS estimator for the model (2) is

β̂(t) = argmin
β(t)

( r∑

j=1

n∑

i=1

‖y(f)ij (t)− f(xi)
Tβ(t)‖2L2 +

r∑

j=1

n∑

i=1

‖y(d)ij (t)− f(xi)
Tβ′(t)‖2L2

)

= argmin
β(t)

r∑

j=1

n∑

i=1

(
‖y(f)ij (t)− f(xi)

Tβ(t)‖2L2 + ‖y(d)ij (t)− f(xi)
Tβ′(t)‖2L2

)
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The quantity

‖y(f)ij (t)− f(xi)
Tβ(t)‖2L2 + ‖y(d)ij (t)− f(xi)

Tβ′(t)‖2L2

resembles

‖yij(t)− f(xi)
Tβ(t)‖2H1 ,

because y
(f)
ij (t) and y

(d)
ij (t) reconstruct yij(t) and its derivative function, respec-

tively. The functional OLS estimator β̂(t) minimizes, in this sense, the sum of the
H1-norm of the unobservable residuals yij(t)− f(xi)

Tβ(t).

Theorem 2.5. Given a model as in (2),

a) the functional OLS estimator β̂(t) can be computed by

(6) β̂(t) = (FTF )−1FT ȳ(t),

where ȳ(t) = (ȳ1(t), . . . , ȳn(t)) is a vector, whose component i-th is the

mean of the Riesz representatives of the replications:

ȳi(t) =

∑r
j=1 ỹij(t)

r
,

and F = [f(x1), . . . , f(xn)]
T is the n× p design matrix.

b) The estimator β̂(t) is unbiased and its generalized covariance matrix is

proportional to (FTF )−1.

Proof of Theorem 2.5. Part a). We consider the sum of square residuals:

S
(
β(t)

)
=

r∑

j=1

n∑

i=1

(
‖y(f)ij (t)− f(xi)

Tβ(t)‖2L2 + ‖y(d)ij (t)− f(xi)
Tβ′(t)‖2L2

)

=

r∑

j=1

n∑

i=1

(
〈y(f)ij (t)− f(xi)

Tβ(t), y
(f)
ij (t)− f(xi)

Tβ(t)〉L2

+ 〈y(d)ij (t)− f(xi)
Tβ′(t), y

(d)
ij (t)− f(xi)

Tβ′(t)〉L2

)

The Gâteaux derivative of S(·) at β(t) in the direction of g(t) ∈ (H1)p is

lim
h→0

S(β(t) + hg(t))− S(β(t))

h
=2

( r∑

j=1

n∑

i=1

(
〈y(f)ij (t)− f(xi)

Tβ(t), f(xi)
Tg(t)〉L2

+ 〈y(d)ij (t)− f(xi)
Tβ′(t), f(xi)

Tg′(t)〉L2

))

=2r
(
〈FT ȳ(f)(t)− FTFβ(t),g(t)〉(L2)p(7)

+ 〈FT ȳ(d)(t)− FTFβ′(t),g′(t)〉(L2)p

)
,

where ȳ(f)(t) and ȳ(d)(t) are two n× 1 vectors whose i-th elements are

ȳ
(f)
i (t) =

∑r
j=1 y

(f)
ij (t)

r
, ȳ

(d)
i (t) =

∑r
j=1 y

(d)
ij (t)

r
.
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Developing the right-hand side of (7), we have that the Gâteaux derivative is

=2r

((
〈FT ȳ(f)(t),g(t)〉(L2)p + 〈FT ȳ(d)(t),g′(t)〉(L2)p

)

−
(
〈FTFβ(t),g(t)〉(L2)p + 〈FTFβ′(t),g′(t)〉(L2)p

))

=2r
(
〈FT ȳ(t),g(t)〉(H1)p − 〈FTFβ(t),g(t)〉(H1)p

)
,(8)

where ȳ(t) is a n × 1 vector whose i-th element is the Riesz representative of(
ȳ
(f)
i (t), ȳ

(d)
i (t)

)
.

The Gâteaux derivative (8) is equal to 0 for any g(t) ∈ (H1)p if and only if β̂(t)
is given by the following equation:

FTF β̂(t) = FT ȳ(t),

which proves the first statement of the theorem.

Part b) Definition (2.4) and model (2) imply that, for any h(t) ∈ H1,
〈
E(ỹij(t)), h(t)

〉
H1

= E
(
〈y(f)ij (t), h(t)〉L2

)
+ E

(
〈y(d)ij (t), h′(t)〉L2

)

=
〈
f(xi)

Tβ(t), h(t)
〉
H1
,

then E(ȳ(t)) = Fβ(t), and hence β̂(t) is unbiased. Moreover,

(9) ȳi(t)− f(xi)
Tβ(t) = α̃i(t) +

∑r
j=1 ε̃ij(t)

r
, i = 1, . . . , n

where α̃i(t) and ε̃ij(t) denote the Riesz representatives of (α
(f)
i (t), α

(d)
i (t)) and

(ε
(f)
ij (t), ε

(d)
ij (t)), respectively. From the hypothesis (i) and (ii) in the model (2),

the left-hand side quantities in (9) are zero-mean i.i.d. processes, for i = 1, . . . , n.
Therefore, the generalized covariance matrix of ȳ(t) is σ2In, where σ

2 = E(‖ȳi(t)−
f(xi)

Tβ(t)‖2H1 ). Hence, the generalized covariance matrix of β̂(t) is Σ
β̂
= σ2(FTF )−1.

�

The functional OLS estimator obtained in Theorem 2.5 by means of the Riesz
representatives is also the best linear unbiased estimator in the Sobolev space, as
stated in the next theorem. The proof is deferred to Appendix A.

Theorem 2.6. The functional OLS estimator β̂(t) for the model (2) is a H1-

functional SBLUE.

Remark 2.7. The theory and the results presented in this work may be general-
ized to other Sobolev spaces. The extension to Hm, m ≥ 2, is straightforward.
Moreover, as in Bayesian context, the investigator might have a different a priori

consideration of y
(f)
ij (t) and y

(d)
ij (t). Thus, different weights p(f) and p(d) may be

used for curve functions and derivatives, respectively. Another interesting general-
ization might be to add positive weight functions w(f)(t) and w(d)(t) on τ , when, for
instance, distinct zones of τ are considered to have different relevance. Therefore,
the inner product given in (3) may be extended to

〈g1(t), g2(t)〉H = p(f)
∫

τ

g1(t)g2(t)w
(f)(t)dt+ p(d)

∫

τ

g1(t)g2(t)w
(d)(t)dt.
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When p(f) = p(d) = 1 and w(f)(t) = w(d)(t) = w(t), the Hilbert space is called
weighted Sobolev space, see [12]. These generalizations, which have different im-
pacts on applications, will be object of future works.

3. Practical considerations

In a real world context, we work with a finite dimensional subspace S of H1. Let
S = {w1(t), . . . , wN (t)} be a base of S. Without loss of generality, we may assume
that 〈wh(t), wk(t)〉H1 = δkh, where

δkh =

{
1 if h = k;

0 if h 6= k;

is the Kronecker delta symbol, since a Gram-Schmidt orthonormalization procedure
may be always applied. More precisely, given any base S̃ = {w̃1(t), . . . , w̃N (t)} in
H1, the corresponding orthonormal base is given by:

for k = 1, define w1(t) =
w̃1(t)

‖w̃1(t)‖H1

,

for k ≥ 2, let ŵk(t) = w̃k(t)−
∑n−1

h=1〈w̃k(t), wh(t)〉H1wh(t), and wk(t) =
ŵk(t)

‖ŵk(t)‖H1

.

With this orthonormalized base, the projection ỹ(t)S on S of the Riesz repre-
sentative ỹ(t) of the couple (y(f)(t), y(d)(t)) is given by

(10)

ỹ(t)S =

N∑

k=1

〈ỹ(t), wk(t)〉H1 · wk(t)

=
N∑

k=1

(
〈y(f)(t), wk(t)〉L2 + 〈y(d)(t), w′

k(t)〉L2

)
wk(t),

where the last equality comes from the definition (5) of the Riesz representative.
Now, if ml = (ml,1, . . . ,ml,n)

T is the l-th row of (FTF )−1FT , then

〈β̂l(t), wk(t)〉H1 =
n∑

i=1

〈ml,iȳi(t), wk(t)〉H1

=

n∑

i=1

ml,i〈ȳi(t), wk(t)〉H1 , for any k = 1, . . . , N,

β̂l(t)S = mT
l ȳ(t)S ,

hence β̂(t)S = (FTF )−1FT ȳ(t)S .

Let us note that, even if the Riesz representative (5) is implicitly defined, its
projection on S can be easily computed by (10). From a practical point of view,

the statistician can work with the data (y
(f)
ij (t), y

(d)
ij (t)) projected on a finite linear

subspace S and the corresponding OLS estimator β̂(t)S is the projection on S of

the H1-SBLUE estimator β̂(t) obtained in the Section 2. As a consequence of the

Theorem 2.6, β̂(t)S is H1-SBLUE in S, since it is unbiased and the projection is
linear. For the projection, it is crucial to take a base of S which is orthonormal in
H1.

It is straightforward to prove that the estimator (6) becomes

β̂(t) = (FTF )−1FTy(f)(t),
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in two cases: when we do not take into consideration y(d), or when y(d) = (y(f))′.

In both the cases, from the results obtained in the Section 2, β̂ is an L2-BLUE. Up
to our knowledge, this is the most common situation considered in the literature.

4. Optimal designs of experiments in functional models

In this section, we assume to work in an experimental setup. Therefore, xi,
with i = 1, . . . , n, are not observed auxiliary variables; they can be freely chosen
by an experimenter on the design space X . The set of experimental conditions
{x1,x2, . . . ,xn} is called an exact design. A more general definition is that of
continuous design, as a probability measure ξ with support on X (see, for instance,
[11]). The choice of ξ may be done with the aim of obtaining accurate estimates of
the model parameters.

From Theorem 2.6, β̂(t) given in (6) is the H1-BLUE for the model (2). This
optimal estimator can be further improved by a “clever” choice of the design. In
analogy with the criteria proposed in the finite-dimensional theory (see for instance,
[6, 18, 23]) we define a functional optimal design as a design which minimizes an
appropriate convex function of the generalized covariance matrix Σ

β̂
(see Defi-

nition 2.1). For instance, a functional D-optimum design is a design ξ∗D which
minimizes det(Σ

β̂
). Part b) of Theorem 2.5 proves that Σ

β̂
∝ (FTF )−1. From the

definition of continuous design

FTF ∝
∫

X

f(x)f(x)
T
dξ(x),

and hence ξ∗D maximizes ΦD(ξ) = det(
∫
X
f(x)f(x)

T
dξ(x)).

4.1. An example: the ergonomic data. Herein, we study the performance of
the design proposed in [21]. In detail, to forecast the motion of drivers, some data
are to be collected on the motion of a single subject to different locations within
a test car. An experimental design is given by the choice of these locations (the
different experimental conditions) and by the number of times that the experiment
has to be replicated at each location. The response curve y(t) is the angle formed
at the right elbow between the upper and the lower arm, which is measured by
a motion capture equipment. In the design used by [21], 3 motion curves were
observed at 20 different locations, spread around the glove compartment, gear shift,
the central instrument panel and an overhead panel. These data are available from
Faraway’s website. In [21], 3 different models are compared to predict the motion
given the coordinates x = (x, y, z). From this comparison, the following quadratic
model seems to be adequate:

yij(t) = f(xi)
T
β(t) + εij(t), i = 1, . . . , 20, j = 1, 2, 3,

where

f(xi)
T
= (1, xi, yi, zi, xiyi, xizi, yizi, x

2
i , y

2
i , z

2
i ).

Let us denote by ξO the exact design used in [21] to collect observations yij(t). This
design has 20 different locations at which three trials are repeated, therefore the
total number of observations is 60.

We standardize support points (coordinates) of ξO so that they belong to X =
[−1; 1]3. For this experimental domain, [2, Section 11.5] provides both the con-
tinuous D-optimum design, say ξ∗D, and exact D-optimum designs. Since ξ∗D has
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support on the points of the 3m factorial (with m = 3), [2] proposes to search an
exact D-optimum design (for a small n) over the points of the 3m factorial. To be
consistent with the design used in [21], we consider the exact design with n = 20
locations, some of which may be repeated. At each location, an experiment is per-
formed in batches of three trials. When a location is replicated more times, several
experiments (each one formed by three trials) is performed at this location. Thus,
again the total number of observation is 60. Let us call this design ξ1ED.

In addition, we search an exact D-optimum design over the whole experimental
domain X = [−1; 1]3. This exact design has 9 different locations which are not
points of the 3m factorial, 5 different points of the 3m factorial which are not
replicated and 3 different points of the 3m factorial which are replicated twice.
Three observations are taken at each location. Let this exact design be denoted by
ξ2ED.

Finally, in a grid of 51 equally spaced points in [−1, 1], an exact D-optimum
design over the 51m factorial has been find with Matlab 2014b routine rowexch,
finding ξ3ED.

In practice all designs are exact. Therefore, the continuous D-optimum design
ξ∗D is used only as a benchmark, in order to measure the goodness of a design ξ

with respect to it. As a measure of goodness the D-efficiency is used:

EffD(ξ) =

( |ΦD(ξ)|
|ΦD(ξ∗D)|

)1/p

,

where p = 10 is the dimension of the functional vector β(t). The D-efficiency
EffD(ξ) is proportional to the design size, thus a design ξ with D-efficiency equal to
0,5 needs the double of observations of ξ∗D to get the same precision in the estimates.

The following table lists the D-efficiencies of ξ1ED, ξ2ED, ξ3ED and ξO.

Design D-efficiency
ξO 0.3396
ξ1ED 0.9779
ξ2ED 0.9789
ξ3ED 0.9788

Table 1. D-efficiencies of the designs ξO, ξ
1
ED, ξ2ED and ξ3ED.

From Table 4.1 we have that the exact D-optimum designs ξ2ED and ξ3ED are
almost equivalent. The D-efficiency of ξO is instead very low, only equal to 0.3396.
This example clearly shows the importance of choosing the experimental design
according to an optimality criterion.

5. Summary

Functional data are suitably modeled in separable Hilbert spaces (see [10] and
[4]) and L2 is usually sufficient to handle the majority of the techniques proposed
in the literature of functional data analysis.

Differently, we consider proper Sobolev spaces, since we guess that the data may
provide information on both curve functions and their derivatives. The classical
theory for linear regression models is extended to this context by means of the the
sample of Riesz representatives. Roughly speaking, the Riesz representatives are
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“quantities” which incorporates both functions and derivatives information in a non
trivial way.

Using the sample of Riesz representatives, we provide a strong, generalized ver-
sion of the well known Gauss-Markov theorem for the functional linear regression
models considered. Despite the complexity of the problem we obtain an elegant and
simple solution, through the use of the Riesz representatives which always belong
to a Sobolev space.

Interesting studies on experimental design with functional observations are pre-
sented in the recent literature (see, for instance, [14], [13] and [24]). In the present
work a rigorous theoretical support is provided to apply D-optimal designs to linear
models with functional responses (similar models are considered, for instance, in
[5], [21], [22]). As a matter of future work, we will study also different optimality
criteria in the context of functional data models. In addition, we intend to develop
our theory also in the functional setting considered by [7], where the design region
is a subset of some functional space and the response is a scalar quantity.

Appendix A. Proof of Theorem 2.6

The OLS β̂(t) is a linear map which associates an element β̂(t) in (H1)p to any

nr-tuple (y
(f)
ij (t), y

(d)
ij (t)) in (L2 × L2)nr . In what follows, we show that it is the

“best” among all the linear unbiased operatorsC : Dom(C) ⊆ (L2×L2)nr → (H1)p.
The model (2) may be written in the following vectorial form:

(11)

{
y(f)(t) = (F ⊗ 1r)β(t) + (α(f)(t)⊗ 1r) + ε(f)(t)

y(d)(t) = (F ⊗ 1r)β
′(t) + (α(d)(t)⊗ 1r) + ε(d)(t)

where 1r is the column vector of length r with all components equal to 1. Let

ȳ(k)(t) =
(
y
(k)
11 (t), . . . , y

(k)
1r (t), y

(k)
21 (t), . . . , y

(k)
2r (t), . . . , y

(k)
n1 (t), . . . , y

(k)
nr (t)

)T

be a nr × 1 block vector, with k = 1, 2. Given any couple of nr × 1 block vectors(
y(1)(t),y(2)(t)

)
, we may define the following n dimensional vector

(12) ȳ(12)(t) =
(
ȳ
(12)
1 (t), . . . , ȳ(12)n (t)

)T

,

where

ȳ
(12)
i (t) =

∑r
j=1 ỹ

(12)
ij (t)

r

and ỹ
(12)
ij (t) is the Riesz representative of (y

(1)
ij (t), y

(2)
ij (t)) as in (5).

Now we can introduce the following linear operator

(13) D
(
y(1)(t),y(2)(t)

)
= C

(
y(1)(t),y(2)(t)

)
− (FTF )−1FT ȳ(12)(t).

Hence,

D(y(f)(t),y(d)(t)) = C(y(f)(t),y(d)(t))− (FTF )−1FT ȳ(t)(14)

= C(y(f)(t),y(d)(t))− β̂(t)

and

C(y(f)(t),y(d)(t)) = D(y(f)(t),y(d)(t)) + β̂(t).
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The thesis follows immediately if we prove that O(D(y(f)(t),y(d)(t))) and O(β̂(t))
are uncorrelated.

Since both C and β̂(t) are unbiased, E
(
D(y(f)(t),y(d)(t))

)
= 0, and thus we

have to prove that

(15) E
〈
O(D(y(f)(t),y(d)(t))) , O(β̂(t)− β(t))

〉
H1

= 0,

for any choice of linear operator O : (H1)p → H1.
The proof of equality (15) is developed in five steps.

First step. The goal of this step is to prove that D applied to the deterministic part

of the model
(
(F ⊗ 1r)β(t), (F ⊗ 1r)β

′(t)
)
is identically null. As a consequence,

(16) D
(
y(f)(t),y(d)(t)

)
= D

(
α(f)(t)⊗ 1r + ε(f)(t),α(d)(t)⊗ 1r + ε(d)(t)

)
.

Proof

From the linearity of C and the zero-mean hypothesis (i) and (ii), we have that

E
(
C
(
y(f)(t),y(d)(t)

))
= E

(
C
(
(F ⊗ 1r)β(t) + (α(f)(t)⊗ 1r) + ε(f)(t),

(F ⊗ 1r)β
′(t) + (α(d)(t)⊗ 1r) + ε(d)(t)

))

= C((F ⊗ 1r)β(t), (F ⊗ 1r)β
′(t)).

Since E
(
C
(
y(f)(t),y(d)(t)

))
= β(t) we have that

(17) C
(
(F ⊗ 1r)β(t), (F ⊗ 1r)β

′(t)
)
= β(t)

In addition, from the definition (12) if

y(1)(t) = Fβ(t)⊗ 1r and y(2)(t) = Fβ′(t)⊗ 1r

then

(18) ȳ(12)(t) = Fβ(t).

Combining (13), (17) and (18) gives

(19) D((F ⊗ 1r)β(t), (F ⊗ 1r)β
′(t)) = 0,

and hence (16).

Second step. Representation of the linear operator Dl.

For the linearity of the l-th component of D with respect to the bivariate obser-

vations
(
y
(1)
ij (t), y

(2)
ij (t)

)
:

(20) Dl

(
y(1)(t),y(2)(t)

)
=

∑

i,j

Dl,ij

(
y
(1)
ij (t), y

(2)
ij (t)

)
,

where, for any i = 1, . . . , n and j = 1, . . . , r, Dl,ij is linear. The domain of Dl,ij is
contained in L2(R2). Let (Ψk = (Ψk,1,Ψk,2))k a suitable base of L2(R2) that will
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be specified in the fourth step, and (φh)h be an orthonormal base of H1. With this
notation

(21) Dl,ij(y
(1)
ij (t), y

(2)
ij (t))

=
∑

k,h

[〈Ψk,1, y
(1)
ij (t)〉L2 + 〈Ψk,2, y

(2)
ij (t)〉L2 ] dk,hl,ij φh(t),

where

d
k,h
l,ij = 〈Dl,ij(Ψk)(t), φh(t)〉H1 .

Third step. Proof of

(22)

n∑

i=1

r∑

j=1

ml2,i d
k,h
l1,ij

= 0, k, h, l1, l2,

where ml2 = (ml2,1, . . . ,ml2,n)
T is the l2-th row of (FTF )−1FT .

Let g(l2)(t) ∈ (H1)p be the null vector except for the l2-th component which is
g ∈ H1, and let h(t) = (FTF )−1g(l2)(t) ∈ (H1)p. Setting β(t) = h(t) in (19),

0 = Dl1((F ⊗ 1r)h(t), (F ⊗ 1r)h
′(t))

= Dl1((Fh(t))⊗ 1r, (Fh
′(t)) ⊗ 1r)

= Dl1(F (F
TF )−1g(l2)(t)⊗ 1r, F (F

TF )−1g(l2)
′
(t)⊗ 1r)

= Dl1(g(t)ml2 ⊗ 1r, g
′(t)ml2 ⊗ 1r)

=

n∑

i=1

r∑

j=1

Dl1,ij(g(t)ml2,i, g
′(t)ml2,i)

=
∑

i,j

∑

k,h

(〈Ψk,1,ml2,ig〉L2 + 〈Ψk,2,ml2,ig
′〉L2) dk,hl1,ij

φh(t),(23)

where the last equality is due to (21).
From the Riesz representation theorem we have that, for anyΨk(t) = (Ψk,1(t),Ψk,2(t)),

there exists ψ̃k(t) ∈ H1 such that

(24) 〈ψ̃k, h〉H1 = 〈Ψk,1, h〉L2 + 〈Ψk,2, h
′〉L2 , h ∈ H1.

From (24), equality (23) becomes

0 =
∑

i,j

∑

k,h

(〈Ψk,1,ml2,ig〉L2 + 〈Ψk,2,ml2,ig
′〉L2) dk,hl1,ij

φh(t)

=
∑

i,j

∑

k,h

ml2,i 〈ψ̃k, g〉H1 d
k,h
l1,ij

φh(t)

=
∑

k,h

(∑

i,j

ml2,i d
k,h
l1,ij

)
〈g, ψ̃k〉H1 φh(t).

The arbitrary choice of g implies (22).

Fourth step. Karhunen–Loève representation of the noise process and definition

of of the base (Ψk)k.

For a given (i, j), the couple (α
(f)
i (t) + ε

(f)
ij (t), α

(d)
i (t) + ε

(d)
ij (t)) is a process in

L2(R2). Let R(s, t) =
∑

k λkΨk(s)Ψk(t)
T be the spectral representation of the
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covariance matrix, which implies λk ≥ 0, and we assume, without loss of generality,
that the sequence {Ψk(t), k = 1, 2, . . .} forms a orthonormal base (by completing
it, defining λk = 0 when needed). Note that R(s, t) does not depend on i and j,
since, from the hypothesis (i) and (ii) in the model (2)

(α
(f)
i (t) + ε

(f)
ij (t), α

(d)
i (t) + ε

(d)
ij (t)), i = 1, . . . , n; j = 1, . . . , r

are identically distributed. From Karhunen–Loève Theorem (see, e.g., [16]), there
exists an array of zero-mean unit variance random variables {Xij,k; i = 1, . . . , n; j =
1, . . . , r; k = 1, 2, . . .} such that

(25) (α
(f)
i (t) + ε

(f)
ij (t), α

(d)
i (t) + ε

(d)
ij (t)) =

∑

k

√
λkXij,kΨk(t).

From (24) the Riesz representative of the noise process (25) is
∑

k

√
λkXij,kψ̃k(t)

and we can define the following means of replications,

(26) ε̄i =

r∑

j=1

∑
k

√
λkXij,kψ̃k(t)

r
, i = 1, . . . , n,

which will be useful in the next fifth step.

Finally, from Karhunen–Loève Theorem, we may obtain the following relations
which will be useful in the fifth step of the proof. From (25) we have that for any
i, j and k,

(27) 〈Ψk,1, α
(f)
i + ε

(f)
ij 〉L2 + 〈Ψk,2, α

(d)
i + ε

(d)
ij 〉L2 =

√
λkXij,k.

In addition, the independence assumptions in the hypothesis (i) and (ii) ensure
that Xi1j1,k1

and Xi2j2,k2
are independent if i1 6= i2. For the same observation (i.e.

(i1, j1) = (i2, j2)), the Karhunen–Loève representation gives E(Xi1j1,k1
Xi1j1,k2

) =

δk2

k1
. Finally, for different replications of the same experiment (i.e. i1 = i2 but

j1 6= j2) the identically distributed bivariate process (α
(f)
i (t), α

(d)
i (t)) yields to a

correlation which does not depend on the experiment i1 = i2 neither on the repli-
cations j1 6= j2: E(Xi1j1,k1

Xi1j2,k2
) = ρ(k1, k2). Summing up, the independence

assumptions given in the hypothesis (i) and (ii) imply

E(Xi1j1,k1
Xi2j2,k2

) = δi2i1 (δ
j2
j1
δk2

k1
+ (1− δ

j2
j1
)ρ(k1, k2)),

and hence

(28) E(Xi1j1,k1

∑

j2

Xi2j2,k2
) = δi2i1 (δ

k2

k1
+ (r − 1)ρ(k1, k2)).

Fifth step. Proof of (15):

E
〈
O(D(y(f)(t),y(d)(t))) , O(β̂(t)− β(t))

〉
H1

= 0,

for any choice of linear operator O : (H1)p → H1.
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From the definitions given in the part a of Theorem 2.5 and from Equations (5),
(24) and (26) we have that, for any h ∈ H1

〈ȳi − f(xi)
Tβ, h〉H1 =

1

r

r∑

j=1

(
〈y(f)ij − f(xi)

Tβ, h〉L2 + 〈y(d)ij − f(xi)
Tβ′, h′〉L2

)

=
1

r

r∑

j=1

(
〈α(f)

i + ε
(f)
ij , h〉L2 + 〈α(d)

i + ε
(d)
ij , h

′〉L2

)

=
1

r

r∑

j=1

(
〈
∑

k

√
λkXij,kΨk,1, h〉L2 + 〈

∑

k

√
λkXij,kΨk,2, h

′〉L2

)

=
〈 r∑

j=1

∑
k

√
λkXij,kψ̃k

r
, h

〉
H1

= 〈ε̄i, h〉H1 ,

which proves that
ȳ(t) = Fβ(t) + ε̄(t),

where ε̄(t) = (ε̄1(t), . . . , ε̄n(t))
T .

From this last result and from (6), β̂(t)− β(t) = (FTF )−1FT ε̄, and hence

(29) E
〈
O(D(y(f)(t),y(d)(t))) , O(β̂(t)− β(t))

〉
H1

= E
〈
O(D(y(f)(t),y(d)(t))) , O((FTF )−1FT ε̄(t))

〉
H1

= E
〈
O(D(α(f)(t)⊗ 1r + ε(f)(t),α(d)(t)⊗ 1r + ε(d)(t))) ,

O((FTF )−1FT ε̄(t))
〉
H1

,

where the last equality is a consequence of (16).
From the linearity of the operator O : (H1)p → H1, we have that

O(b1(t), . . . , bp(t)) =

p∑

l=1

O(0, . . . , 0︸ ︷︷ ︸
l−1 times

, bl(t), 0, . . . , 0︸ ︷︷ ︸
p−l times

).

Since bl(t) =
∑

g〈bl(t), φg(t)〉H1 φg(t) =
∑

g b
g
l φg(t), where b

g
l = 〈bl(t), φg(t)〉H1 ,

we have
O(b1(t), . . . , bp(t)) =

∑

l,g

b
g
l O(0, . . . , 0︸ ︷︷ ︸

l−1 times

, φg(t), 0, . . . , 0︸ ︷︷ ︸
p−l times

).

Setting

O
g,h
l =

〈
O(0, . . . , 0︸ ︷︷ ︸

l−1 times

, φg(t), 0, . . . , 0︸ ︷︷ ︸
p−l times

), φh(t)
〉
H1
,

then
O(b1(t), . . . , bp(t)) =

∑

l,g,h

b
g
l O

g,h
l φh(t).

Hence, from Equations (29), (20) and (21), the thesis (15) becomes

E
〈 ∑

l,g,h

(∑

i,j,k

(〈Ψk,1, α
(f)
i (t)+ε

(f)
ij (t)〉L2+〈Ψk,2, α

(d)
i (t)+ε

(d)
ij (t)〉L2) dk,gl1,ij

)
O

g,h
l φh(t) ,

∑

l,g,h

(〈
ε̄(t)Tml, φg(t)

〉
H1

)
O

g,h
l φh(t)

〉
H1

= 0,
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From (26), (27) and (28), the left-hand side of the last equation becomes

E
〈 ∑

l,g,h

O
g,h
l φh(t)

(∑

i,j,k

(〈Ψk,1, α
(f)
i (t) + ε

(f)
ij (t)〉L2 + 〈Ψk,2, α

(d)
i (t) + ε

(d)
ij (t)〉L2) dk,gl,ij

)
,

∑

l,g,h

O
g,h
l φh(t)

〈
ε̄(t)Tml2 , φg(t)

〉
H1

〉
H1

= E
( ∑

l1,l2,g1,g2,h1,h2

O
g1,h1

l1
O

g2,h2

l2
〈φh1

(t), φh2
(t)〉H1

∑

i1,j1,k1

√
λk1

Xi1j1,k1
d
k1,g1
l1,i1j1

∑

i2,j2,k2

√
λk2

Xi2j2,k2
〈ψ̃k2

(t), φg2(t)〉H1

r
ml2,i2

)

=
∑

l1,l2,g1,g2,h1,h2

O
g1,h
l1

O
g2,h2

l2
〈φh1

(t), φh2
(t)〉H1

∑

i1,i2,j1

∑

k1,k2

√
λk1

√
λk2

d
k1,g1
l1,i1j1

ml2,i2 E
(
Xi1j1,k1

∑
j2
Xi2j2,k2

r

)
〈ψ̃k2

(t), φg2 (t)〉H1

=
∑

l1,l2,g1,g2,h1,h2

O
g1,h1

l1
O

g2,h2

l2
〈φh1

(t), φh2
(t)〉H1

∑

i1,i2,j1

∑

k1,k2

√
λk1

√
λk2

d
k1,g1
l1,i1j1

ml2,i2 δ
i2
i1

δk2

k1
+ (r − 1)ρ(k1, k2)

r
〈ψ̃k2

(t), φg2 (t)〉H1

=
∑

l1,l2,g1,g2,h1,h2

O
g1,h1

l1
O

g2,h2

l2
〈φh1

(t), φh2
(t)〉H1

∑

k1,k2

√
λk1

√
λk2

(∑

i,j

d
k1,g1
l1,ij

ml2,i

)δk2

k1
+ (r − 1)ρ(k1, k2)

r
〈ψ̃k2

(t), φg2 (t)〉H1

= 0,

the last equality being a consequence of (22).

References

[1] G. Aletti, C. May, and C. Tommasi. Optimal designs for linear models with functional re-
sponses. In E. G. Bongiorno, E. Salinelli, A. Goia, and P. Vieu, editors, Contributions in

Infinite-Dimensional Statistics and Related Topics, pages 19–24. Società Editrice Esculapio,
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