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Introduction

In this thesis we deal with two problems in additive combinatorics related to sumsets

in cyclic groups.

Carries and the arithmetic progression structure of sets

In the first part of the thesis we present a joint work with Imre Z. Ruzsa, containing

mainly results from [25], currently submitted to a journal.

Let m be a positive integer. If we want to represent integers in base m, we need a

set A of digits, which needs to be a complete set of residues modulo m. We call such a

set A a digital set.

When adding two integers with last digits a1, a2 ∈ A, we find the unique a ∈ A such

that

a1 + a2 ≡ a (mod m),

which will be the last digit of the sum, and (a1 + a2− a)/m will be the carry. There are

of course multiple choices for the set A of digits, the most popular being the integers in

[0,m− 1] and the integers in (−m/2,m/2].

Here we show the carry matrices for these two choices of digital sets when m = 5.

If A = {a1 < · · · < a5}, the entry at (i, j) of these matrices is the carry obtained from

ai + aj .

0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 1

3 0 0 1 1 1

4 0 1 1 1 1

−2 −1 0 1 2

−2 −1 −1 0 0 0

−1 −1 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 1

Among all the possible choices of digital sets A, it is natural to look for ones which

minimize either the number of different carries which can occur, or their frequency, thus

looking for an answer to the following two questions:
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4 Introduction

Q1: What is the minimal number of distinct carries that a digital set A induces,

i.e., can we bound from below the quantity

C1(A) :=

∣∣∣∣{a1 + a2 − a
m

: a1, a2, a ∈ A, a1 + a2 ≡ a mod m

}∣∣∣∣ ,
and what is the structure of digital sets inducing the minimal number of distinct carries?

Q2: What is the minimal frequency of carries, i.e., can we bound from below the

quantity

C2(A) :=
|{(a1, a2) ∈ A×A : a1 + a2 6∈ A}|

|A|2
,

and what is the structure of digital sets inducing the minimal frequency of carries?

The two sets described above give a first answer to these questions: as will be shown,

[0,m−1] minimizes the number of different carries, whereas (−m/2,m/2] minimizes the

frequency of carries, and both examples are unique up to certain linear transformations.

A similar problem can be studied for groups different from Z containing nontrivial

cosets: consider the group Zp2 for an odd prime p. In this setting, we call a set A ⊆ Zp2
a digital set if A forms a complete set of residues modulo p.

Once again, carries can occur when adding elements of Zp2 using A as a set of digits.

Diaconis, Shao and Soundararajan in [10] and Alon in [1] show that even in this

setting the popular choices of digital sets have the same extremal properties as in Z:

[−(p− 1)/2, (p− 1)/2] minimizes the number of pairs a1, a2 for which there is a nonzero

carry, while [0, p − 1] minimizes the number of distinct carries. Furthermore, we are

able to prove that any digital set A which minimizes C2(A) must be in fact a dilation of

[−(p− 1)/2, (p− 1)/2] by a factor d coprime with p.

The next step is extending the aforementioned results to the general composite

modulus case.

Let m, q be a nonnegative integers. We call a set A ⊂ Zq a digital set, if m = |A|
satisfies m|q, and A is a complete set of residues modulo m. In order to avoid dealing

with digital sets which are either contained in a nontrivial subgroup, or are unions of

cosets of a nontrivial subgroup, we need a stronger assumption on q and m, namely that

m and q are composed of the same primes, and the exponent of each prime in q is strictly

greater than in m.

Under this additional hypothesis, which does not exclude the cases of digital sets

A ⊆ Zm2 of cardinality m, we will show that any digital set inducing the minimal amount

of distinct carries is an arithmetic progression:

Theorem A. Let q and m be positive integers composed of the same primes such

that the exponent of each prime in q is strictly greater than in m. Let A ⊂ Zq be a

digital set with |A| = m > 15 such that 2A ⊆ {x, y} + A for some x, y ∈ Zq. Then
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there exist c ∈ (Zq)× and d ∈ mZq such that either cA + d = {0, 1, . . . ,m − 1} or

cA+ d = {1, 2, . . . ,m}.

In [10] the authors prove that every digital set in Zq satisfies C2(A) ≥ 2/9. We

improve this result with the following theorem.

Theorem B. Let q and m be positive integers composed of the same primes such that

the exponent of each prime in q is strictly greater than in m. Let A ⊆ Zq be a digital set

with |A| = m. Let pα = max{pαii : pi prime, pαii |m} and δm = 1 if m is odd and δm = 1

if m is even. Then

C2(A) ≥


1−1/p2α−2/pα+δm2/m

4 if p is odd,

1
4 if p = 2.

In particular,

lim
m→+∞

min
|A|=m

C2(A) =
1

4
.

A generalization of sumsets modulo a prime

In the second part of the thesis we deal with the problem of finding lower bounds

for generalized h-fold sumsets in Zp, p prime. These results are part of the paper [24],

published on Journal of Number Theory.

Given a finite set A ⊆ Z of cardinality |A| = k and an integer 2 ≤ h, lower bounds

for the cardinality of the h-fold sumset

hA = {a1 + · · ·+ ah : ai ∈ A for 1 ≤ i ≤ h}

and, for h ≤ k, restricted h-fold sumsets

hˆA = {a1 + · · ·+ ah : ai ∈ A for 1 ≤ i ≤ h, ai 6= aj}

are well known:

|hA| ≥ hk − h+ 1, |hˆA| ≥ hk − h2 + 1.

The standard proofs of these lower bounds are elementary and use the usual order of

the integers. Of course, this is not possible in Zp, for a prime p, and the problem of giving

similar bounds for sumsets and restricted sumsets in this setting has been historically

very harder.

Let A be a subset of cardinality k of Zp, p prime.

For h-fold sumsets we have the Cauchy-Davenport inequality:

|hA| ≥ min(hk − h+ 1, p),
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while the corresponding lower bound for the h-fold restricted sumset, if h ≤ k,

|hˆA| ≥ min(hk − h2 + 1, p),

was conjectured by Erdős and Heilbronn and proved first in [11] by Dias da Silva and

Hamidoune, and later in [2] by Alon, Nathanson and Ruzsa with the introduction of the

polynomial method.

In the recent paper [23] Mistri and Pandey give lower bounds for generalized sumsets

of subsets of Z.

Let A = {a1, . . . , ak} be a set of k elements in Z. Given integers h, r ≥ 1 we define

the generalized sumset as

h(r)A =

{
k∑
i=1

riai : 0 ≤ ri ≤ r for i = 1, . . . , k and
k∑
i=1

ri = h

}
.

Note that the usual sumsets and restricted sumsets can be recovered from this

notation, since hA = h(h)A and hˆA = h(1)A.

Then, for nonnegative integers h, r with h = mr + ε, 0 ≤ ε ≤ r − 1 such that

1 ≤ h ≤ rk, the authors prove that the following lower bound holds:

(1) |h(r)A| ≥ hk −m2r + 1− 2mε− ε.

Their proof relies on the natural order of the integers, and so cannot be adapted

to obtain lower bounds for generalized sumsets in different groups. In the same paper

the authors also prove an inverse theorem, which states that, with the exclusion of few

prescibed exceptions, any set A of integers satisfying the equality in (1) must be an

arithmetic progression.

We extended the results of Mistri and Pandey for sets A ⊆ Zp for a prime p, thus

proving the following lower bound:

Theorem C. Let h = mr + ε, 0 ≤ ε ≤ r − 1. Let A ⊆ Zp be a nonempty set with

|A| = k such that 1 ≤ r ≤ h ≤ rk. Then

|h(r)A| ≥ min(p, hk −m2r + 1− 2mε− ε).

Moreover, the method of our proof can be used to give much shorter proofs of the

already known direct and inverse problems of generalized sumsets in Z.

As already remarked, from the cases r = h and r = 1 of Theorem we recover the

bounds given by Cauchy-Davenport inequality and the Erdős-Heilbronn conjecture.
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Notation

Throughout this thesis, for a nonnegative integer q we will write Zq for the additive

group of residue classes modulo q.

For any abelian group G, nonnegative integer d and sets A,B ⊆ G, we let

A+B := {a+ b : a ∈ A, b ∈ B},

A+̂B := {a+ b : a ∈ A, b ∈ B, a 6= b},

d ·A := {da : a ∈ A}

For any element x ∈ G,

rA+B(x) := |{(a, b) ∈ A×B : a+ b = x}|.

An arithmetic progression P of length n ∈ N and difference d ∈ G \ {0}, starting

from x ∈ G, will be the set

P := {x+ id : i = 0, . . . , n− 1}.

In Z, the arithmetic progression of length n and difference 1 starting from 1 will be

denoted by [n] = [1, n] ∩ Z.

We will say that A ⊆ G is the proper union of k arithmetic progressions of difference

d Pi’s if A = ∪ki=1Pi and Pi∪Pj is not an arithmetic progression of difference d whenever

i 6= j.

Given integers a, b we let the interval [a, b] ⊆ Zq be the image of [a, b′] under the

natural projection ϕ : Z → Zq, where b′ is the minimal integer such that b′ ≡ b mod q

and a ≤ b′.
Let |x| = min{|x+ kq| : k ∈ Z} for x ∈ Zq be the seminorm measuring the distance

of an element in Zq from zero.

For integers a1, . . . ar, b1, . . . , bs and x ∈ Zq, we say that

a1 ≤ · · · ≤ ar ≤ x ≤ b1 ≤ · · · ≤ bs

9



10 Notation

if there exists k ∈ Z such that

a1 + kq ≤ · · · ≤ ar + kq ≤ x′ ≤ b1 + kq ≤ · · · ≤ bs + kq,

where x′ is any integer congruent to x mod q.



Part I

Carries and the arithmetic

progression structure of sets
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Chapter 1

Preliminaries

1.1 Carries in Z

As a warm up, in this section we study the problem of carries in the nicest abelian

group: Z.

Recall the definition of digital sets:

Definition 1.1.1. A set A ⊆ Z is a digital set if |A| = m and A is a complete set of

residues modulo m.

We will prove the following:

Theorem 1.1.2. Let A ⊆ Z be a digital set, |A| = m ≥ 2. Then A induces at least

two distinct carries. Moreover, if A induces precisely two distinct carries, then there

exist c ∈ mZ, d ∈ Z, (d,m) = 1, such that either A = {c, c + d, . . . , c + (m − 1)d} or

A = {c+ d, c+ 2d, . . . , c+md}.

Proof. Since for all sets A ⊆ Z, we have |A + A| ≥ 2|A| − 1, every digital set A with

|A| = m ≥ 2 induces at least two different carries.

If a digital set A induces two carries, then A + A ⊆ {x, y} + A for distinct integers

x, y ∈ Z, and so |A+A| ≤ 2m.

In m = 2, the claim is trivially true. For m > 2, the structure of sets in Z with small

sumset is described by Freiman’s 3k − 3 theorem, appearing in [12] :

Theorem 1.1.3 (Freiman). Let A be a finite set of integers, |A| > 2. If |2A| < 3|A|−3,

then A is contained in an arithmetic progression of length at most |2A| − |A|+ 1.

In our case, this implies that the digital set A is contained in an arithmetic progres-

sion of length at most m+ 1. Since we want our set to be a digital set, we have that the

difference d of this arithmetic progression must be coprime with m, and A is actually

13



14 Preliminaries

an aritmetic progression of lenght m, for otherwise its first and last elements would be

congruent modulo m.

Hence A = {c, c+ d, . . . , c+ (m− 1)d} for some c ∈ Z. However, such a set induces only

two carries if and only if 2c ≡ c modulo m or 2c ≡ c+ d modulo m, thus concluding the

proof.

Theorem 1.1.4 (Diaconis, Shao and Soundararajan). Let A ⊆ Z be a digital set, |A| =
m ≥ 2. Then A induces at least

⌊
m2/4

⌋
carries. Moreover, if A induces precisely⌊

m2/4
⌋

carries, then there exists x ∈ Z such that A = {xi : −bm/2c ≤ i < bm/2c} or

A = {xi : −bm/2c < i ≤ bm/2c}.

Proof. Suppose that 0 < x1 < x2 < · · · < xc are the c positive elements in A. Then,

for any i = 1, . . . , c, adding xi to {x1, . . . , xc} results in at least i carries, since all the

c elements xi + xj , j = 1, . . . , c are stricly greater than xi, and thus {xi + x1, . . . , xi +

xc} ∩A} ⊆ {xi+1, . . . , xc}, implying |{xi + x1, . . . , xi + xc} ∩Ac| ≥ i.
Summing all these contributions we have that the positive elements of A induce at least

c(c+ 1)/2 carries.

Similarly, the d negative elements of A induce at least d(d+1)/2 carries, where d = m−c
if 0 6∈ A or m− c− 1 if 0 ∈ A.

In both cases, A induces at least

(1.1.1)
1

2
[c(c+ 1) + (m− c− 1)(m− c)] =

m2 − 1

4
+

(
c− m− 1

2

)2

carries.

If m is odd, a set inducing exactly
⌊
m2/4

⌋
= (m2− 1)/4 carries must contain 0 and

has exactly c = (m− 1)/2 positive elements.

Moreover, using the notation above, adding x1 to the positive elements of A must result

in only one carry, which has to come from the addition x1 + xc. This forces x1 + x1 =

x2, x1 + x2 = x3, . . . , x1 + xc−1 = xc, and so the positive part of A is an arithmetic

progression of difference x1.

The same holds true for the negative part of A, which has to be an arithmetic progression

of difference |y1|, y1 being the negative element of A closer to 0.

Moreover, since we don’t want carries occurring when adding a positive element of A

with a negative one, we have y1 = −x1, thus proving the theorem for m odd.

If m is even and A induces exactly
⌊
m2/4

⌋
= m2/4 carries, then from equation

(1.1.1) we deduce that 0 belongs to A and c = m/2 or m/2− 1. Arguing as in the case

of odd m we get the desired conclusion.
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1.2 Carries in Zp2

We report here the known results about the carry problem in Zp2 for an odd prime

p.

Definition 1.2.1. A set A ⊆ Zp2 is a digital set if |A| = p and A is a complete set of

residues modulo p.

In [1] and [10] the authors prove that results similar to Theorems 1.1.2 and 1.1.4

also hold for digital sets modulo p2.

Theorem 1.2.2 (Diaconis, Shao and Soundararajan). Let A ⊆ Zp2 be a digital set.

Then A induces at least two distinct carries. Moreover, if A induces precisely two distinct

carries, then there exist c ∈ Z×
p2
, d ∈ pZp2 such that, after dilating A by c and translating

by d, we have either c ·A+ d = {0, 1, . . . , p− 1} or c ·A+ d = {1, 2, . . . , p}.

We don’t include the proof of this result, which can be found in [10], but we point

out that it is based on an adaptation of the rectification arguments of [5] and [14], and

strongly depends on the primality of p, thus making a direct generalization to the case

of general modulus q impossible.

As far as the frequency of carries is concerned, the following result holds.

Theorem 1.2.3 (Alon, Diaconis, Shao and Soundararajan). Let A ⊆ Zp2 be a digital

set, |A| = p ≥ 2. Then A induces at least
⌊
p2/4

⌋
carries.

The proof of Theorem 1.2.3 is a nice and short argument based on Pollard’s inequal-

ity (see [29, 30]) for sets with the Chowla property:

Definition 1.2.4. Let A ⊆ Zq. We say that A has the Chowla property if for any

a, a′ ∈ A, a 6= a′, we have

(a− a′, q) = 1.

Theorem 1.2.5 (Pollard). Let q be a nonnegative integer and A,B ⊆ Zq be nonempty

sets. Let

A+i B = {x ∈ A+B : rA+B(x) ≥ i}.

If either A or B has the Chowla property, then

t∑
i=1

|A+i B| ≥ tmin(q, |A|+ |B| − t).

Note that for t = 1 we get the classical Cauchy-Davenport theorem with a Chowla

type condition (see [6, 7, 8] and [9]).
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Proof of Theorem 1.2.3. As the case p = 2 is trivial, consider an odd prime p. For a

digital set A and elements x, y ∈ A, we always have (x−y, p2) = 1, since no two elements

of A are congruent modulo p.

Hence the hypotheses of Theorem 1.2.5 are satisfied for A + A and so for 1 ≤ t ≤ p we

have

tmin
(
p2, 2p− t

)
≤

t∑
i=1

|A+i A|

=
∑

x∈A+A

min (t, rA+A(x))

≤
∑

x∈(A+A)∩A

t+
∑

x∈(A+A)\A

rA+A(x).

Note that
∑

x∈(A+A)\A rA+A(x) counts the couples (a1, a2) ∈ A×A such that a1 + a2 6∈
A, i.e. the number of occurrences of carries induced by A.

Taking t = (p− 1)/2 from the inequality above we get

∑
x∈(A+A)\A

rA+A(x) ≥ p2 − 1

4

as required.



Chapter 2

Carries in Zq

2.1 Introduction

The goal of this chapter is to prove Theorems 2.1.3 and 2.8.9 presented in the

Introduction.

Fix nonnegative integers q and m, m|q.

Definition 2.1.1. A set A ⊆ Zq is a digital set if |A| = m and A is a complete set of

residues modulo m.

Digital sets of cardinality m exist in Zq whenever m|q. For our arguments we need a

stronger assumption, which is, however, more general than the case q = m2. Indeed we

assume that m and q are composed of the same primes, and the exponent of each prime

in q is strictly greater than in m. This is a natural restriction, as otherwise there are

digital sets that are either contained in a nontrivial subgroup, or are unions of cosets of

a nontrivial subgroup. Consider for example A = p2Zp2q ⊆ Zp2q for distinct primes p, q.

This is clearly a complete set of representatives modulo q, but, since it is a nontrivial

subgroup of Zp2q, we have A + A = A, and thus A induces only one carry, namely the

trivial one.

Under this additional hypothesis, we want to give a characterization of digital sets

inducing the minimal number of distinct carries. This extremal property is essentially

equivalent to the following statement:

Let A ⊂ Zm2 be a set which forms a complete set of residues modulo m. If A+A ⊂
A+ {x, y} with some x, y ∈ Zm2, then A is an arithmetic progression.

A reasonable more general claim is as follows:

Let A ⊂ Zm2 be a digital set with |A| = m. If |A+A| ≤ 2m, then A is an arithmetic

progression.

In [15] we find a complete description of finite sets in commutative groups satisfying

17



18 Carries in Zq

|A + A| ≤ 2|A|. This could be used to deduce the above claim. This deduction is not

immediate, however, as this description contains a lot of subcases.

The aim of this section is to provide a further generalization of the following form:

Let A ⊂ Zm2 be a digital set with |A| = m. For every set B such that 1 < |B| <
m2 −m we have |A+B| > m+ |B|, apart from certain exactly described exceptions.

As we are looking for estimates that depend only on the cardinality of the other set

B, it is comfortable to express this in terms of the impact function of the set A:

ξ(n) = ξA(n) = min
|B|=n

|A+B|,

defined for integers n that can serve as cardinality of a set; if we are in Zq, this means

n ≤ q.
The case n = 2 can be interpreted via the arithmetic progression structure of A.

Given any t ∈ Zq \{0}, A can be decomposed as the union of some cosets of the subgroup

generated by t and some arithmetic progressions of difference t. Let αt(A) be the number

of arithmetic progressions in this decomposition. We have clearly

|A+ {x, x+ t}| = m+ αt(A)

for every x, hence

ξ(2)−m = min
t
αt(A).

Thus, ξ(2) > m + 2 holds unless A is the union of at most two arithmetic progressions

(as we shall soon see, digital sets do not contain nontrivial cosets). Hence the strongest

result of this kind that may hold (save the bound 15) is as follows.

Theorem 2.1.2. Let q and m be positive integers composed of the same primes such

that the exponent of each prime in q is strictly greater than in m. Let A ⊂ Zq be a digital

set with |A| = m > 15. We have

ξA(n) > m+ n

for 1 < n < q −m, unless A is the union of at most two arithmetic progressions with a

common difference.

A description of sets satisfying |A + A| ≤ 2m can be then achieved by analyzing

unions of two arithmetic progressions, not a difficult task which will allow us to prove

Theorem A, restated here for the reader’s convenience.

Theorem 2.1.3. Let q and m be positive integers composed of the same primes such

that the exponent of each prime in q is strictly greater than in m. Let A ⊂ Zq be a
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digital set with |A| = m > 15 such that 2A ⊆ {x, y} + A for some x, y ∈ Zq. Then

there exist c ∈ (Zq)× and d ∈ mZq such that either cA + d = {0, 1, . . . ,m − 1} or

cA+ d = {1, 2, . . . ,m}.

It turns out that the key to prove Theorem 2.1.3 would be to understand (i) the

cases when ξ(2) = ξ(3), (ii) the cases when the decomposition of our set into the minimal

ξ(2) arithmetic progressions is not unique. The second part of the chapter is devoted to

these questions, including the proof of Theorem 2.1.2.

The third part of this chapter is dedicated to the question of the frequency of which

carries can occur modulo an integer q. Using an inductive argument with a classification

of the sets which satisfy equality in Pollard’s inequality, we will prove Theorem 2.8.9.

2.2 The impact function

As already mentioned in the introduction of this chapter, for a group G it is useful

to define the impact function of a set A ⊆ G as

ξA(n,G) = min
B⊆G,|B|=n

|A+B|,

whenever this makes sense, i.e. for 1 ≤ n ≤ |G| if G is finite and for all positive integers

if G is infinite.

We will often drop the subscript and the connection to the ambient group if the context

creates no ambiguities.

The name “impact function” is a direct translation of Plünnecke’s “Wirkungsfunktion”

from [28], where the author studied a similar concept for densities rather than for car-

dinalities.

When G = Z it is easy to control the growth of the impact function in terms of its

values at the first integers.

In this setting we can easily prove the following:

Lemma 2.2.1. Let A ⊆ Z, |A| = m and ξ = ξA its impact function. Then, for all

n ≥ 1, we have

(2.2.1) ξ(n+ 1) ≥ ξ(n) + 1.

In particular, if A is the proper union of αt(A) arithmetic progressions of difference t

for any t ∈ Z>0, if k = ξ(2)−m = mint αt(A), we have for all n ≥ 1

ξ(n) ≥ m+ n+ k − 2.
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Proof. Suppose A = {a1 < a2 < · · · < am}, ξ(n + 1) = |A + Bn+1|, and Bn+1 = {b1 <
b2 < · · · < bn+1}. Then

ξ(n+ 1) = |A+Bn+1| ≥ |A+ (Bn+1 \ {bn+1})|+ 1 ≥ min
B⊆Z,|B|=n

|A+B|+ 1 = ξ(n) + 1,

since am + bn = max (A+ (Bn+1 \ {bn+1})) < am + bn+1 ∈ A+Bn+1.

The second statement follows immediately, since ξ(n+ n′) ≥ ξ(n) + n′.

To prove Theorem 2.1.2 we need a result similar to Lemma 2.2.1 for Zq. We remark

that in [18] Hamidoune, Serra and Zémor unsing a different method prove a result

somehow similar to Theorem 2.2.2 below, albeit with a restriction on k and with different

hypotheses.

Theorem 2.2.2. Let q and m be positive integers composed of the same primes such

that the exponent of each prime in q is strictly greater than in m. Let A ⊂ Zq be a digital

set with |A| = m and ξ = ξA its impact function. Let h be a nonnegative integer. If the

inequality

(2.2.2) ξ(n) ≥ m+ n+ h

holds in the range

2 ≤ n ≤ 3 +
√

16h+ 1

2

and m > m0(h), then it holds in the range

2 ≤ n ≤ q −m− h− 1.

Once proven, this leads to the following two corollaries:

Corollary 2.2.3 (Case h = 0). Let q and m be positive integers composed of the same

primes such that the exponent of each prime in q is strictly greater than in m, and m ≥ 5.

Let A ⊂ Zq be a digital set with |A| = m. If A is not an arithmetic progression, then

ξ(n) ≥ n+m in the range

2 ≤ n ≤ q −m− 1.

Corollary 2.2.4 (Case h = 1). Let q and m be positive integers composed of the same

primes such that the exponent of each prime in q is strictly greater than in m, and

m ≥ 10. Let A ⊂ Zq be a digital set with |A| = m. If ξ(2) ≥ m+ 3 (that is, A is not a

union of at most two arithmetic progressions of a common difference) and ξ(3) ≥ m+ 4,

then ξ(n) ≥ n+m+ 1 in the range

2 ≤ n ≤ q −m− 2.
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As we will show later in the chapter, (2.2.1) cannot hold for all subsets of Zq. It is

an interesting question to study the sets where this happens for some nontrivial values

of n in this setting. We will deal with this question in Section 2.5.

Before proving Theorem 2.2.2 in the following section, we make some trivial consid-

erations on the impact function which will be used later.

Lemma 2.2.5. Let A ⊆ Zq, |A| = m and ξ = ξA its impact function. Then

(i) ξ(1) = m,

(ii) ξ(n) = q for all q −m < n ≤ q,

(iii) ξ(n) ≤ q − 1 for all 1 ≤ n ≤ q −m

Proof. (i) Trivial.

(ii) Let B = n, q −m < n ≤ q. Then for all x ∈ Zq by pigeonhole |A ∩ (x − B)| =
rA+B(x) ≥ 1, hence ξ(n) = q.

(iii) Let 1 ≤ n ≤ q − m. Taking any subset B of Ac of cardinality n leads to

|A ∩B| = rA−B(0) = 0, and so ξ(n) ≤ |A−B| ≤ q − 1.

2.3 Proof of Theorem 2.2.2.

We fix the following assumptions: q and m are positive integers composed of the

same primes such that the exponent of each prime in q is strictly greater than in m, p

is the smallest prime divisor of q, and A is our digital set with |A| = m.

First we consider adding a subgroup to A.

Lemma 2.3.1. Let H be a subgroup of Zq, H 6= {0}, H 6= Zq.

(i) For every t we have

(2.3.1) |A ∩ (H + t)| ≤ min(m, |H|)
p

≤ min(m, |H|)
2

.

(ii) For every nonempty subset A′ of A we have

(2.3.2) |A′ +H| ≥ p|A′| ≥ 2|A′|.

(iii) We have

(2.3.3) |A+H| ≥ (m|H|, q) ≥

p max(m, |H|) ≥ (p− 1)m+ |H|,

min
(
q, 4

3m+ |H|
)
.



22 Carries in Zq

Proof. Write |H| = n. We have n|q, 1 < n < q and

H =

{
0,
q

n
,
2q

n
, . . . ,

(n− 1)q

n

}
.

Some of these numbers are congruent modulo m, namely, if m|(jq/n), then after j steps

the residues modulo m are repeating. Clearly

m
∣∣∣ jq
n
⇐⇒ mn

∣∣∣ jq ⇐⇒ mn

(mn, q)

∣∣∣ j.
Hence

|A ∩ (H + t)| ≤ mn

(mn, q)
=

m

(m, q/n)
=

n

(n, q/m)
.

Since both m and q/m contain all prime divisors of q, both denominators are divisible

by at least one prime factor of q, hence both are ≥ p. This shows (2.3.1).

To show (2.3.2), let z be the number of cosets of H that intersect A′. In each

intersection we have

|A′ ∩ (H + t)| ≤ |A ∩ (H + t)| ≤ n/p,

so |A′| ≤ zn/p while |A′ +H| = zn.

To prove (2.3.3), observe that any coset of H contains at most m/(m, q/n) elements

of A, hence A must intersect at least (m, q/n) cosets, which together have n(m, q/n) =

(mn, q) elements. Since

(2.3.4) (mn, q) = n(m, q/n) ≥ pn

and

(2.3.5) (mn, q) = m(n, q/m) ≥ pm,

we immediately get the bound in the upper line. It is stonger than the lower line unless

p = 2.

If p = 2, then (2.3.4) becomes

(mn, q) = n(m, q/n) ≥ 2n,

and (2.3.5) can be strengthened to

(mn, q) = m(n, q/m) ≥ 3m,

unless (n, q/m) = 2. If both inequalities hold, then their arithmetic mean yields the

stronger bound (3/2)m+ n.

If the second inequality fails, then n is a power of 2, say n = 2j . If j = 1, then we have

(mn, q) = (2m, q) = 2m ≥ (4/3)m+ n =
4

3
m+ 2,
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as m ≥ 3.

If j ≥ 2, then q/m must contain 2 exactly in the first power, say q = 2sq′, m = 2s−1m′

with odd q′,m′. If q′ = m′ = 1, then q|mn and |A + H| = q. Otherwise m′ ≥ 3,

consequently m ≥ 3 · 2s−1 ≥ (3/2)n and

(mn, q) = 2m ≥ 4

3
m+ n.

Proof of Theorem 2.2.2. Let N be the least positive integer n such that ξ(n) ≥ q − 1.

In order to estimate ξ(n) in the range 2 ≤ n ≤ q − m − h − 1 we will first prove

(2.2.2) for 2 ≤ n ≤ N − 1.

Once we prove this we have m+N −1+h ≤ ξ(N −1) < q−1, and so N ≤ q−m−h−1.

For integers N ≤ n ≤ q−m−h− 1, we then have ξ(n) = q− 1 ≥ m+n+h as required.

Let 2 ≤ n ≤ N −1 be the number where ξ(n)−n assumes its minimum, and if there

are several such values, we take n to be the smallest of them. Write ξ(n)− n = m+ r.

If r ≥ h, we are done, so we suppose that r ≤ h− 1.

Let B be a set such that |B| = n, |A + B| = m + n + r. We shall bound n from

above in several stages.

The set D = Zq \ (A+B) satisfies |D| = q − (m+ n+ r) and

(A−D) ⊂ Zq \ (−B),

for otherwise we could find elements a ∈ A, b ∈ B and d ∈ D with a + b = d. Hence

|A−D| ≤ q − n = |D|+m+ r.

Since |A + B| < q − 1 as n < N , we have |D| ≥ 2. Then either n < N ≤ |D| or, if

|D| < N , we have n ≤ |D| by the minimality of |B|.
In both cases we have

n ≤ q − (m+ r)

2
.

Next we show that A + B is aperiodic. To this end we use Kneser’s theorem (see

[21]):

Theorem 2.3.2 (Kneser). For any finite sets A,B in a commutative group G we have

|A+B| ≥ |A+H|+ |B +H| − |H|,

where

H = {t ∈ G : A+B + t = A+B},

the group of periodes of A+B.
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If H = Zq, then we get |A+B| ≥ |A+H| = q and we are done. If H 6= {0}, H 6= Zq,
then we apply Lemma 2.3.1 to conclude

|A+H| ≥ 4

3
m+ |H|

and so

|A+B| ≥ 4

3
m+ |B +H| ≥ 4

3
m+ |B| ≥ m+ h+ n

as wanted (here we use the bound m ≥ 3h).

Next we show that B is a Sidon set, that is, for every t 6= 0 we have |B∩(B+t)| ≤ 1.

Suppose the contrary. Fix a t such that |B ∩ (B + t)| ≥ 2 and write

B1 = B ∩ (B + t), B2 = B ∪ (B + t).

These sets satisfy

|B1|+ |B2| = 2|B| = 2n,

A+B1 ⊂ (A+B) ∩ (A+B + t),

A+B2 = (A+B) ∪ (A+B + t),

and consequently

(2.3.6) |A+B1|+ |A+B2| ≤ 2|A+B| = 2(m+ n+ r).

B1 must be a proper subset of B, since otherwise B and a fortiori A + B would be

periodic. Consequently we have

(2.3.7) |A+B1| > m+ |B1|+ r

by the minimality of |B|. The set B2 satisfies

(2.3.8) |B2| = 2n− |B1| ≤ 2n− 2 ≤ q − (m+ r + 2).

If 2 ≤ |B2| < N , then |A+B2| ≥ m+ |B2|+ r.

If |B2| ≥ N , then |A+B2| ≥ q − 1 > m+ |B2|+ r by (2.3.8).

In both cases, we have

(2.3.9) |A+B2| ≥ m+ |B2|+ r.

By adding (2.3.7) and (2.3.9) we obtain

|A+B1|+ |A+B2| > 2m+ |B1|+ |B2|+ 2r = 2(m+ n+ r),

which contradicts (2.3.6).
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Since B is a Sidon set, we have

m2n2 =

( ∑
x∈A+B

rA+B(x)

)2

≤ |A+B|
∑

x∈A+B

r2
A+B(x)

= |A+B|
∑

x∈(A−A)∩(B−B)

rA−A(x)rB−B(x)

≤ |A+B|

mn+
∑

x∈(A−A)\{0}

rA−A(x)


= |A+B|m(m+ n− 1).

Hence

|A+B| ≥ mn2

m+ n− 1
.

This inequality holds for every set of m elements and it is nearly best in this generality;

to use the special properties of A we will need another approach.

Comparing this lower bound with the value m+ n+ r yields the inequality

mn2 ≤ (m+ n+ r)(m+ n− 1) ≤ (m+ n+ h− 1)(m+ n− 1).

This is a quadratic inequality in n and it gives the bound

n ≤ b+
√
b2 + 4ac

2a
, a = m− 1, b = 2m+ h− 2, c = (m− 1)(m+ h− 1).

For large m this is asymptotic to
√
m; in particular, there is an m0 depending on h such

that

β =
|A+B|
|A|

=
m+ n+ r

m
<
√

2

for m > m0. Such a bound is easily found in the particular cases h = 0, 1; if h = 0, it

holds for m ≥ 5, if h = 1, it holds for m ≥ 10.

To proceed further we need Plünnecke’s theorem (see [31]):

Theorem 2.3.3 (Plünnecke). For any finite sets A,B in a commutative group G with

|A + B| ≤ K|A|, and for any positive integer l there exists a subset A′ ⊆ A such that

|A′ + lB| ≤ K l|A′|.

For l = 2, this implies the existence of a nonempty subset A′ of A such that

(2.3.10) |A′ + 2B| ≤ β2|A′| < 2|A′|.
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We shall compare this to the Kneser bound

|A′ + 2B| ≥ |A′ +H|+ |2B +H| − |H|,

where H is the group of periodes of A′ + 2B. If H is a nontrivial subgroup, then

|A′ +H| ≥ 2|A′|

by (2.3.2); this also holds trivially if H = Zq, and this contradicts (2.3.10).

If H = {0}, then Kneser’s bound reduces to

|A′ + 2B| ≥ |A′|+ |2B| − 1 = |A′|+ n(n+ 1)

2
− 1,

as |2B| = n(n + 1)/2 by the Sidon property. A comparison with the upper estimate

(2.3.10) gives

|A′|+ n(n+ 1)

2
− 1 ≤

(
m+ n+ r

m

)2

|A′|,

n(n+ 1)

2
− 1 ≤ |A′|

((
m+ n+ r

m

)2

− 1

)

≤ m

((
m+ n+ r

m

)2

− 1

)
=

(2m+ n+ r)(n+ r)

m
≤ (2m+ n+ h− 1)(n+ h− 1)

m
.

This is again a quadratic inequality in n and it gives the bound

n ≤ b+
√
b2 + 4ac

2a
, a = m− 2, b = 3m+ 4h− 4, c = 2m+ 2(h− 1)(2m+ h− 1).

As m→∞, this bound tends to
(
3 +
√

16h+ 1
)
/2. The bound m0 after which we can

claim this bound for n depends on the fractional part of the square root inside, but it

is easily found in the particular cases h = 0, 1; if h = 0, it holds for m ≥ 4, if h = 1, it

holds for m ≥ 9.

Observe that in the proof of Theorem 2.2.2 we didn’t use the full hypothesis of A

being a digital set, but simply the properties of A contained in Lemma 2.3.1. This fact

will be used in the last sections of this chapter to deal with the problem of the frequency

of carries.

2.4 Arithmetic progression structure of sets

In order to deduce Theorem 2.1.2 from Theorem 2.2.2 and its Corollary 2.2.4, we

need to study the values at 2 and 3 of the impact function of a digital set A ⊆ Zq.
In fact, if we are able to exclude the possibility of the equality ξA(2) = ξA(3), Corollary
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2.2.4 tells us that any digital set A inducing the minimal amount of distinct carries is

the union of at most two arithmetic progression.

For any set A ⊆ Zq, the equality ξA(2) = ξA(3) is linked to the arithmetic progression

structure of A, and is thus interesting to study even outside the context of digital sets.

In the following, let A ⊆ Zq be a set containing no nontrivial cosets. This assumption

is needed to avoid pathological cases and is anyway always satisfied by digital sets, as

shown by Lemma 2.3.1. Moreover, let ξ = ξA be its impact function.

If equality ξA(2) = ξA(3) holds, then there exist nonzero elements d1 6= d2 such that

|A|+ k = ξA(3) = |A+ {0, d1, d2}| ≥ |A+ {0, d1}| ≥ ξA(2) = ξA(3),

so that |A + {0, d1, d2}| = |A + {0, d1}| = |A + {0, d2}| = |A + {d1, d2}|. In particular,

this tells us that the set A can be written as the union of k arithmetic progressions of

difference d1 or d2, and there exist three distinct elements x1, x2, x3 ∈ Zq such that

3⋃
i=1

(A+ xi) = (A+ xa) ∪ (A+ xb)

for any choice of distinct a, b ∈ {1, 2, 3}.
We are thus looking for an answer to the question: if ξA(2) = |A| + k, is the

decomposition of A as the union of k arithmetic progression unique up to a sign?

In other words, can there be two proper decomposition of A as

A = ∪ki=1Pi = ∪ki=1Qi,

Pi = {ai, ai + d1, . . . , ai + kid1}, Qi = {a′i, a′i + d2, . . . , a
′
i + k′id2}

with d1 6= ±d2, d1, d2 ∈ (−q/2, q/2]?

If A is an arithmetic progression of difference d itself, so that k = 1, since A does

not contain full cosets, the only possibility is clearly d1 = ±d2.

Suppose now k = 2. Very small (or, by taking their complement in the right cosets, very

large) sets A with |A| ≤ 4 may have multiple representation as union of two arithmetic

progressions, as happens for sets of the form A = {a, a+ d, b, b+ d}.
On the other hand, we can easily provide examples of different minimal arithmetic

progression decompositions if the ratio |d1/d2| or |d2/d1| is less or equal to 2, as happens

for sets of the form A = [a, b] ∪ {b+ 2} or A = {a− 2} ∪ [a, b].

The following theorem states that these are the only kinds of sets having multiple

decompositions as union of two arithmetic progressions.

Theorem 2.4.1. Let A ⊆ Zq, 4 < |A| < q − 4. Assume that q is odd, q > 100 and A is

not contained in a coset of any nontrivial subgroup of Zq. If ξA(2) = |A+{0, d}| = |A|+2,

then the only elements x ∈ Zq with |A+ {0, x}| = |A|+ 2 are ±d, unless A is a dilation

of sets of the form [a, b] ∪ {b+ 2} or {a− 2} ∪ [a, b] for suitable a, b ∈ Zq.
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Proof. Let d1, d2 be such that |A+ {0, di}| = |A|+ 2. We will prove that d1 = ±d2.

Case 1: (d1, q) = (d2, q) = 1.

Let A be a set with ξA(2) = |A|+2 having a double decomposition as the union of two

proper arithmetic progression of difference d1 or d2. Dilating A by d−1
2 we can assume

that A is the union of two disjoint intervals in Zq. Also, by taking the complementary of

A, we can assume |A| < q/2. (This may fail if the differences are not coprime to q; then

possibly the complement is the union of the same number of arithmetic progressions and

some cosets of the subgroup generated by the difference.)

Let A = I1 ∪ I2 = P1 ∪ P2 where Pi are arithmetic progressions with common

difference 1 < d < q/2, Ii = [ai, bi] and (d, 1) = 1.

Let d = q+1
2 − x for a positive integer x < q−1

2 . Either d−1 or −d−1 must be congruent

to q+1
2 − y for a positive integer y < q−1

2 . Then

±4 ≡ 2d(±2d−1) ≡ (2x− 1)(2y − 1) mod q,

which implies that either x or y must be greater than
√
q−4+1

2 ≥
√
q

2 .

Hence we can also assume 1 < d ≤ (q −√q)/2.

We say that a progression Pi = {a + kd : k = 0, . . . , N} jumps from I1 to I2 at

l ∈ [1, N ] if a+ (l − 1)d ∈ I1 ∩ Pi and a+ ld ∈ I2 ∩ Pi.
We now split the proof into two subcases.

Subcase 1: d = 2.

Since |A| < q/2, neither P1 nor P2 can jump from I1 to I2 or viceversa more than

once. Then it’s easy to see that the only possibility is that A behaves as in the statement

of the theorem.

Subcase 2: d > 2.

Since A < q/2 there must be a gap between the intervals I1 and I2 of length g > q/4.

Let |I1| ≤ |I2| and, considering −A instead of A if necessary, a1 − b2 − 1 ≡ g mod q, so

that |I2| > 2 and hence I2 contains three consecutive elements. Then at least one of the

Pi’s must jump from I2 to I1 and then to I2 again, implying that d > g > q/4 > |I1|,
and that at least one element x′ in I1 satisfies x′ ± d ∈ A.

There are at most four elements x ∈ A, the starting and ending points of the Pi’s, such

that {x + d, x − d} 6⊆ A. So we can find an element y ∈ [a1, a1 + 4] ∩ A ⊆ I1 such

that y ± d ∈ A, either by taking y = x′ if |I1| < 5 or y as a point in the middle of an

arithmetic progression if |I1| ≥ 5.

Since |I1| < d we have y± d ∈ I2, and so the interval [y+ d, y− d] must be contained in

I2.

Take now an element z ∈ [y−d−7, y−d−5] ⊆ [y+d, y−d] which is not the ending element

of P1 or P2, so that z + d ∈ A, to obtain a contradiction since z + d ∈ [y − 7, y − 5] ⊆
[a1− 7, a1− 1] ⊆ Ac. (Here we need that 2d+ 7 ≤ q, which follows from the assumption
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on the size of q and the above inequality for d.)

To proceed to the case of not coprime differences we need a simple lemma which

allows us to normalize the differences of the arithmetic progressions.

Lemma 2.4.2. Given integers a, q there exists an integer a′, a′ ≡ a mod q and a′ = a1a2,

with a1|q and (a2, q) = 1

Proof. Let I = {p : p prime, vp(a) = vp(q) > 0}, where vp(x) is the usual p-adic valuation

of x.

Define a′ := q
∏
p∈I p+ a, with the usual notation that if I = ∅, then

∏
p∈I p = 1. Then

a′ ≡ a mod q, vp(a
′) = vp(q) for all primes p ∈ I and vp(a

′) = min(vp(a), vp(q)) ≤ vp(q)

for all primes p 6∈ I, p|q.

Let q =
∏
prii be the decomposition of q as a product of powers of distinct primes.

Let A = P1 ∪ P2 = Q1 ∪Q2, with Pi’s arithmetic progressions of difference d1 and Qi’s

of difference d2, with Pi (Pi + d1) = αi for i = 1, 2.

Case 2: (d1, q) = 1 < (d2, q).

After a dilation we can assume d1 = 1, and so there are three consecutive elements

{γ, γ + 1, γ + 2} contained in A.

However, since 2 - q, we have that d = (d2, q) > 2 and so the union of Q1 and Q2 can

cover at most two of these three elements, which is a contradiction.

Case 3: (d1, q), (d2, q) > 1.

After a dilation, thanks to Lemma 2.4.2, we can assume d1|q.
If α1 ≡ α2 mod d1 then A is contained in a single coset of the subgroup generated by

d1, contrary to the assumption.

If α1 6≡ α2 mod d1 then Pi = {x ∈ A : x ≡ αi mod d1}.
If d1|d2 then we also get Qi = {x ∈ A : x ≡ αϕ(i) mod d1} for a permutation ϕ : {1, 2} →
{1, 2}, and the result follows immediately.

If d1 - d2 then, letting {q1, q2 = q1 + d2, q3 = q2 + d2} ⊆ Q1 be elements an arithmetic

progression with at least three elements, we have q1+d2 6≡ q1 mod d1 and so q1+2d2 ≡ q1

mod d1, which implies that 2|q, again a contradiction.

Trying to prove results similar to Theorem 2.4.1 for higher k is a harder task, since

new families of exceptions have to be considered.

For k > 2 we also still find the same families of sets having more than one decom-

position which we found for k = 2: sets A with |A| ≤ k2 or with |d1/d2| ≤ k.

In the former case, |A| ≤ k2, there exists an arithmetic progression of difference d in its

decomposition having cardinality less or equal than k, so after removing its points from

A we obtain a set Ã with |Ã| ≥ |A| − k and |(Ã+ d) \ Ã| ≤ k − 1.

In the latter case, |d1/d2| ≤ k, after multiplying the set A by ±d−1
2 , we have that
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A = I1 ∪ · · · ∪ Ik = P1 ∪ · · · ∪ Pk for intervals Ii’s and arithmetic progressions Pi’s of

difference d ≤ k. Since at least one of these arithmetic progressions must jump from

one interval to another there exists a gap between two intervals of length less or equal

than k, and so, by adding those points to A we obtain a set Ã with |Ã| ≤ |A| + k

and|(Ã+ d) \ Ã| ≤ k − 1.

The common point between these two kinds of sets and the multitude of other types of

examples one can produce as k grows, is that even though they both are the union of

k d-arithmetic progression, they are actually obtained by sets Ã which are the union of

k − 1 d-arithmetic progressions by removing or adding up to k elements.

To exclude these sets, we give the following definition.

Definition 2.4.3. A has k stable d-components if |A+ {0, d}| = |A|+ k, and any set Ã

obtained by A by removing or adding up to k elements satisfies |(Ã+ d) \ Ã| ≥ k.

Moreover, if we work in the composite number modulus case, new sets having mul-

tiple representation as union of a minimal number of arithmetic progressions can be

found, because of the presence of nontrivial cosets in this setting.

Of course, the union of k disjoint cosets has a lot of representations as the union of k

arithmetic progressions, but it is not hard to find other less trivial sets which satisfy this

property.

For example, for suitable k, q, k | q and d = q/k + 1,

(2.4.1) A = [0, 2k − 1]
k−1⋃
i=1

[
iq

k
+ i,

iq

k
+ (k + 1) + i

]
⊆ Zq

is a set of k 1- and d-stable components which is not the union of cosets but still is the

union of either k intervals or k arithmetic progressions of difference d.

Nevertheless, this set A has high density in some coset of Zq, namely 〈q/k〉.
In the following theorem we show that the essential uniqueness of the decomposition

of a set into k arithmetic progressions still holds for sets of k stable components and

with low density into any coset of Zq.

Theorem 2.4.4. Let A ⊆ Zq be the union of k arithmetic progressions of difference d1

and d2, |A∩ (H + t)| < |H|/2 for any nonzero coset H + t of Zq, and A has k stable d1-

and d2-components. Then d1 = ±d2.

Proof. Since we are going to prove d1 = ±d2, and since every arithmetic progression of

difference d is also an arithmetic progression of difference −d, during the course of the

proof we choose suitable signs for di in order to simplify the notations.

Let A = P1 ∪ · · · ∪ Pk = Q1 ∪ · · · ∪ Qk with Pi’s being arithmetic progressions of

difference d1 and Qi’s of difference d2.
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We denote by Si and Ei, i = 1, 2 the starting and ending points of the arithmetic

progressions of difference di forming A, i.e.,

Si = {x ∈ A : x− di 6∈ A}, Ei = {x ∈ A : x+ di 6∈ A},

with |Si| = |Ei| = k.

Given x, y, we will write x ∼i y for i = 1, 2 if x, y ∈ A and they both belong to the same

arithmetic progression of difference di.

Since A has k stable d1- and d2-components, the following properties hold:

(i) |Pi|, |Qi| ≥ k + 1 ∀i = 1, . . . , k, for if otherwise, by removing a short arithmetic

progression, we would obtain a contradiction with Definition 2.4.3.

(ii) If Pi = {a + ld1 : l = 0, . . . ,Mi − 1}, Pj = {a + (Mi + l)d1 : l = N, . . . , N + Mj −
1}, N > 0, are two different components contained in the same coset a+ 〈d1〉, then

N ≥ k+1, for otherwise, by adding the elements {a+ ld1 : l = Mi, . . . ,Mi+N−1}
to A we would obtain a contradiction with Definition 2.4.3. A similar statement

holds for Qi, Qj and d2 in place of Pi, Pj and d1.

(iii) ∀i ∃j : (Pi + d2) ∩ A ⊆ Pj . In fact, if Pi ⊆ a + 〈d1〉 and (Pi + d2) ∩ Pkl 6= ∅
for two different components Pk1 and Pk2 , then we have Pi + d2 ⊆ a + d2 + 〈d1〉,
which implies that both Pk1 and Pk2 are contained in the same coset of 〈d1〉. Then,

because of (ii), the set Pi + d2 contains at least k+ 1 elements not belonging to A,

and hence |E2| ≥ k + 1, a contradiction. A similar statement holds for Qi and d1

in place of Pi and d2.

(iv) ∀i ∃j : (Pi − d2) ∩A ⊆ Pj and ∀i ∃j : (Qi − d1) ∩A ⊆ Qj , by an argument similar

to (iii).

Thanks to Lemma 2.4.2 we can assume, after a dilation, that d1, d2 ∈ [0, q − 1], d2 | q.
Let d = (d1, d2), di = d′id for i = 1, 2, q = dq′ and Ai = {x ∈ A : x ≡ i mod d}.
Clearly, if Pj ∩Ai 6= ∅, then Pj ⊆ Ai, and the same holds for the Qj ’s, so that every Ai
is the union of r1,i d1-arithmetic progressions and r2,i d2-arithmetic progressions.

We are going to show that the ratio r1,i/r2,i is constant for every i such that Ai 6= ∅.
Let Ai = Ai−i

d ⊆ Zq′ .
Clearly every set Ai inherits from A the same stability properties (relative to k) and the

condition of density into cosets.

We use the same notation above for subsets of Zq′ , and fix i ∈ [0, d− 1].

Claim. r2,i ≥ d′2.
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Proof of claim. Since d′2|q′, x ∼2 y implies x ≡ y mod d′2.

Given s ∈ S′1, if by contradiction q′ > d′2 > r2,i then the set B = {s, s+d′1, . . . , s+r2,id
′
1},

which has cardinality r2,i + 1, is contained in Ai since r2,i ≤ k.

For j ∈ [0, r2,i] ⊆ [0, d′2−1], jd′1 ≡ 0 mod d′2 can only happen for j = 0 by the coprimality

of d′1 and d′2.

Hence B intersects r2,i + 1 distinct d′2-arithmetic progressions, which is a contradiction.

Let now X = {x ∈ [k] : xd′1 ≡ 0 mod d′2}.
From d′2 ≤ r2,i ≤ k we get d′2 ∈ X and hence X 6= ∅.

For every x ∈ X let β+(x) be the minimal positive integer such that xd′1 ≡ β+(x)d′2
mod q′, and β−(x) be the minimal positive integer such that −xd′1 ≡ β−(x)d′2 mod q′.

Let β(x) = min(β+(x), β−(x)) and minx∈X β(x) = β(α) for some α ∈ [k].

Since (d1, d2) = (q−d1, d2) if d2|q, replacing d1 with −d1 if necessary we can assume

β(α) = β+(α).

Let S′1 = {s1, . . . , sr2,i}. For every j ∈ [0, r2,i] define lj to be the minimal integer

such that sj + ljd
′
1 ∼2 sj . Clearly, by property (iv) and since ljd

′
1 ≡ 0 mod d′2, we have

lj ∈ X, and one of the following must happen

(i) sj + ld′2 ∈ Ai for l ∈ [0, β+(lj)]

(ii) sj − ld′2 ∈ Ai for l ∈ [0, β−(lj)]

Remark. Because of property (iii) all the elements x such that x ∼1,2 sj are of the

form sj + lljd
′
1 for some l ≥ 0. In particular, fr l > 0, β(llj) > β(lj), otherwise

|Ai ∩ (sj + 〈d′2〉)| >
|〈d′2〉|

2 .

Moreover, all those elements x belong to the same semicircle [sj , sj + m′/2) or (sj −
m′/2, sj ].

Suppose β(lj) > k for all j and β(l1) = β+(l1), β(l1) = minj=1,...,r2,i(β(lj)). Then

the set {s1, s1 + d′2, . . . , s1 + β(l1)d′2 = s1 + l1d
′
1} ⊆ Ai intersects at least k + 1 different

d′1-arithmetic progression, leading to a contradiction. A similar argument leads to a

contradiction if β(l1) = β−(l1).

Then, since β(l1), l1 ≤ k, we get that for every j, sj + l1d
′
1 = sj + β(l1)d′2 ∼1,2 sj .

Moreover, since this also implies β(α) ≤ k, Remark 2.4 tells us that l1 = lj = α for all j.

Split the set Ai into M equivalence classes under the relation Pj1 ∼ Pj2 if there are

p1 ∈ Pj1 , p2 ∈ Pj2 , with p1 ∼2 p2. This is well defined by (iii).

Each equivalence class is composed by α d′2-arithmetic progressions, so that r2,i = Mα.

If x, x + αd′1 ∈ Ai, there does not exist a y ∈ {x + ld′2, l ∈ (0, β(α))} with y ∼1 x, and

hence k ≥ r1,i ≥ Mβ(α). On the other hand, we already know that x ∼1 x + αd′1, and
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so r1,i = Mβ(α).

Hence the ratio r1,i/r2,i = β(α)/α, a constant not depending on i.

Since A is the union of k d1-arithmetic progressions and k d2-arithmetic progressions,

we must have β(α) = α.

We now show that this leads to d′1 = d′2, which concludes the proof since, after

dilating the set A so that d2 | q, we have already chosen between d1 and −d1 in order to

simplify the notation.

Going back to Ai we have αd′1 ≡ αd′2 mod q′, and so, for D = (α, q′) we get
q′

D |
α
D (d′1 − d′2) and so d′1 = d′2 + j q

′

D for some j ≥ 0.

Assume by contradiction that D > j > 0.

We already know that B = {s1, s1 + d′2, . . . , s1 + αd′2 = s1 + αd′1} ⊆ Ai.
Let D′ be the additive order of j q

′

D in Zq′ , D′ ≤ D ≤ α ≤ k.

Then s1 +D′d′1 = s1 +D′d′2 ∈ B and s1 +D′d′1 ∼2 s1, so that D′ = α.

Moreover, s1 + ld′1 ∈ Ai for 0 ≤ l ≤ α.

By property (i) and α ≤ k we have that at least one between

s1 + ld′1 − ld′2 = s1 + lj
q′

D
or s1 + ld′1 + (α− l)d′2 = s1 + αd′2 + lj

q

D

belongs to Ai, and so at least one of the two cosets s1 + 〈j q
′

D 〉 and s1 +αd′2 + 〈j q
′

D 〉, both

having cardinality D′ = α, intersects Ai in more than half of its elements, which leads

to a contradiction with our hypothesis of low density in cosets.

Hence j = 0 and d′1 = d′2.

2.5 Sets A with ξA(2) = ξA(3)

Let A ⊆ Zq be a set which does not contain any nontrivial coset, with |A| = m,

ξA(2) = ξA(3). Then there are d1 6= d2 such that

(2.5.1) A+ {0, d1, d2} = A+ {0, d1} = A+ {0, d2} = A+ {d1, d2},

After a dilation, applying Lemma 2.4.2, we can assume d1, d2 ∈ [0, q − 1] and d1|q. Let

H = 〈d1〉 be the subgroup generated by d1, so that |H| = q/d1.

As usual, write A = P1∪· · ·∪Pk = Q1∪· · ·∪Qk as the proper union of k d1-arithmetic

progressions Pi’s as well as k d2-arithmetic progressions Qi’s, with

Pi = {ai + jd1; j = 0, . . . , ji}, ai + jid1 = bi,
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Qi = {αi + ld2; l = 0, . . . , li}, αi + lid2 = βi

Since

A+ {0, d1} = Aq {bi + d1}i=1,...,k

A+ {0, d2} = Aq {βi + d2}i=1,...,k,

we have

(2.5.2) {bi + d1}i=1,...,k = {βi + d2}i=1,...,k.

Suppose that set A has nonempty intersection with z cosets of H.

Let {Gi}i=1,...,k be the set of maximal d1-arithmetic progressions contained in those

z cosets of H such that Gi ⊆ Ac. In particular, after a reordering, we can assume

Gi = {xi + hd1, h = 0, . . . , hi}, with xi = bi + d1 and xi + hid1 = aϕ(i) − d1 for a

permutation ϕ : [k]→ [k].

Note that ai ∈ (A+ {d1, d2}) \ (A+ d1), for otherwise A would contain a full coset of

H.

Hence

(2.5.3) ai − d2 ∈ A,

and from (2.5.2) and (2.5.3) we deduce that

(Gi − d2) ∩A = {βτ(i)}

for another permutation τ : [k]→ [k]. Moreover, either |Gi| = 1 or (Gi − d2) ∩Ac = Gj

for another Gj with |Gj | = |Gi| − 1.

We can define a partial order ≤ on the Gi’s by Ga ≤ Gb if and only if ∃i ≥ 0 such

that

Ga = (Gb − id2) ∩Gb − i(d2 − d1).

A Gi which is maximal for this partial order satisfies Gi + d2 ⊆ {αi}i=1,...,k ⊆ A, and so

|Gi| ≤ k, leading to

(2.5.4) |A| ≥ z|H| − k(k + 1)

2
.

We have then proved the following:

Theorem 2.5.1. Let A ⊆ Zq be a set not containing any nontrivial cosets and which

satisfies

ξA(2) = ξA(3).
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Then there exists a d1|q such that A intersects z cosets of H = 〈d1〉 and, after a dilation,

A is of the form

Zq \

∐
i

Gi
∐ d1−z∐

j=1

(tj +H)


for some tj ∈ Zq, where Gi are chains Gi = {{gi} = Gi,1 ≤ · · · ≤ Gi,ji} with

(i) |Gi,ji | ≤ ξA(3)− |A|,

(ii) |Gi,j−1| = |Gi,j | − 1,

(iii) gi − d2 ∈ A,

(iv) (Gx,y + {0, d1}) ∩ (Gw,z + {0, d1}) = ∅ for (x, y) 6= (w, z).

In the case q = p prime, it is an interesting question to study the minimal cardinality

of A in order to have ξA(2) = ξA(3).

A rectification argument (see [5] and [22]) shows that |A| > log4(p). Since every element

in A+{0, d1, d2} belongs to at least two sets A+x, x ∈ {0, d1, d2}, as long as |A| < 2/3p

we have

k = |A+ {0, d1, d2}| − |A| ≤
|A|
2
.

This, combined with the bound in (2.5.4), gives

|A| ≥
√

8p+ 25− 5.

Let µ(p) = min(|A| : A ⊆ Zp and A satisfies ξA(2) = ξA(3)). We conjecture the

following:

Conjecture 2.5.2.

lim inf
p→∞

µ(p)

p
> 0.

In the following we will show that lim infp→∞
µ(p)
p ≤

5
18 .

To do this we construct sets B ⊆ [0, 22m] of cardinality |B| = 13
1822m + o(22m) which is

the union of disjoint chains satisfying conditions (i)-(iv) in Theorem 2.5.1.

Since by [3] there exists a prime p in [22m, 22m + 221m/20], the complement of the image

of the canonical projection of B into Zp will have density asymptotic to 5/18 as required.

Let d = 2m, Gl = {{0} ≤ [d − 1, d] ≤ · · · ≤ [d(l − 1) − (l − 1), d(l − 1)]} for l ≤ d

and Hi = (id− d, id]. Let ϕ(Gl) = d+Gl−1 be the chain of intervals obtained from Gl by

removing the first element in each of its intervals.

If C = ∪i∈IGli + xi and Ga ∩ Gb = ∅ for all a, b ∈ I, then the set B = ∪i∈Iϕ(Gli) + xi
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satisfies the conditions of Theorem 2.5.1.

Let

C = C0

m−1∐
l=1

m−l∐
i=1

B
(l)
i ,

where

C0 = G2m ,

B
(l)
i = 2m(2m+1−l − 2m+2−l−i − 1) + 2m+1−l−i + G2m+1−l−i .

If we denote by B
(l)
i,k the k-th interval of the chain, 0 ≤ k ≤ 2m+1−l−i − 1, we have that

Bl
i,k = [2m(2m+1−l − 2m+2−l−i − 1 + k) + 2m+1−l−i − k,

2m(2m+1−l − 2m+2−l−i − 1 + k) + 2m+1−l−i]

Suppose now thatB
(l)
i,k∩B

(l′)
i′,k′ 6= ∅. Then, sinceB

(l)
i,k ⊆ H2m+1−l−2m+2−l−i+k, for α(l, i, k) =

2m+1−l − 2m+2−l−i + k, we must have α(l, i, k) = α(l′, i′, k′).

Case 1: i, i′ ≥ 2.

In this case we have α(l, i, k) ∈ [2m−l, 2m+1−l) and since any two of these intervals

are disjoint, we must have l = l′, which implies that

k − 2m+2−l−i = k′ − 2m+2−l′−i′ ∈ [−2m+2−l−i′ ,−2m+1−l−i′ ].

Again, since any two of these intervals are disjoint, we must have i = i′, which immedi-

ately gives k = k′.

Case 2: i = 1.

In this case from the equality α(l, i, k) = α(l′, i′, k′) we have

k = 2m+1−l′ − 2m+2−l′−i′ + k′.

If i′ ≥ 2, then the left hand side is in [0, 2m−l), while the right hand side belongs to

[2m−l
′
, 2m+1−l′). From this we get that m − l′ < m − l and so max(Bl

i,k) > maxBl′
i′,k′ .

Moreover, we have

2m−l − k = 2m−l − 2m+1−l′ + 2m+2−l′−i′ − k′ > 2m+1−l′−i′

since k′ < 2m+1−l′−i′ , so that maxBl′
i′,k′ < min(Bl

i,k) and B
(l)
i,k ∩B

(l′)
i,k = ∅.

If also i′ = 1, then k = k′ and, if l < l′, we have k ≤ 2m−l
′ − 1 ≤ 2m−l−1 − 1, so that

2m−l − k ≥ 2m−l−1 + 1 ≥ 2m−l
′
+ 1, and so B

(l)
i,k ∩B

(l′)
i,k = ∅.

Since |ϕ(Gl)| = l(l−1)
2 , for B = ϕ(C0)

∐m−1
l=1

∐m−l
i=1 ϕ(B

(l)
i ), we have

|B| =
2m(2m − 1)

2
+
m−1∑
l=1

m−l∑
i=1

2m+1−l−i(2m+1−l−i − 1)

2
=

13

18
22m + o(22m).
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as required.

Go back to the general case of composite modulus q. An analogue of Conjecture

2.5.2 cannot hold in this case, as we can just take a set A′ ⊆ Zq′ with ξA′(2) = ξA′(3)

and consider the set A = A′×{0} ⊆ Zq′ ×Zq′′ = Zq for any coprime q′, q′′ with q = q′q′′.

We can now finish the proof of Theorem 2.1.2 and Theorem 2.1.3.

Proof of Theorem 2.1.2. By Corollary 2.2.4 we are left to study the case of A digital set

with ξA(2) = m + 3 = ξA(3) = |A + {0, d1, d2}| as in Theorem 2.5.1. By Lemma 2.3.1

and (2.5.4) we have that that

|A| ≥ z|H| − 6,

with z ∈ {2, 3}, since A intersects at least (m, q/|H|) ≥ 2 cosets of H.

Therefore there exists a coset t+H of H = 〈d1〉 such that

|H|
2
≥ |A ∩ (t+H)| ≥ |H| − 3.

This means that q/d1 = |H| ≤ 6, and so ld1 ≡ 0 mod q for some 1 ≤ l ≤ 6, and any

arithmetic progression of difference d1 forming A cannot have more that five elements,

implying that m ≤ 15.

Proof of Theorem 2.1.3. Thanks to Theorem 2.1.2 we are left to consider the case of

A = P1 ∪P2, a proper union of two arithmetic progressions of common difference d, and

2A ⊆ {x, y}+A.

Once we establish that such a set cannot be a digital set, we are done since the only

possibilities for a single arithmetic progression to be a digital set with minimal number

of distinct carries are clearly the ones stated in the corollary.

Consider at first the case (d, q) > 1. After a dilation, thanks to Lemma 2.4.2, we

can assume d|q. Since A is a digital set, we must have d = 2 and hence 2|q.
Moreover, by 2.3.1 we have |P1| = |P2| = m/2, and Pi = αi + 2 · [0,m/2 − 1], i = 1, 2,

where α1 6≡ α2 mod 2.

Then

2A = (2α1 + 2 · [0,m− 2]) ∪ (α1 + α2 + 2 · [0,m− 2]) ∪ (2α2 + 2 · [0,m− 2]).

By the parity of α1 and α2, we must have

|(2α1 + 2 · [0,m− 2]) ∪ (2α2 + 2 · [0,m− 2])| ≤ m,

which implies without loss of generality, since 2m ≤ q, that 2α1 ∈ {2α2, 2α2 + 2}.
Once again, since α1 6≡ α2 mod 2, and A is not an arithmetic progression, this leaves us

with the only choice α1 = α2 + 1 + q/2, and so, up to translation,

A = 2 ·
[
0,
m

2
− 1
]
∪
(q

2
+ 1 + 2 ·

[
0,
m

2
− 1
])
,
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which is a single arithmetic progression of difference q/2 + 1.

Assume now (d, q) = 1, so that, after a dilation and a translation, we can assume

that A is of the form

A = [0, a− 1] ∪ [bm+ a, (b+ 1)m− 1],

with a ≥ m− a, 1 ≤ b ≤ q/m− 2.

Then 2A = B1 ∪B2 ∪B3, where

B1 = [0, 2a− 2], B2 = [bm+ a, (b+ 1)m+ a− 2], B3 = [2bm+ 2a, 2(b+ 1)m− 2]

A routine check shows that B1 ∩ B2 = ∅, and |B1| + |B2| = 2a + m − 2 ≤ 2m implies

m/2 ≤ a ≤ (m+ 2)/2 and |B3 ∩ (B1 ∪B2)c| ≤ 2.

For these possible values of a, we must have B3 ⊆ B1, so that m(2b+ 1) ≡ 0 mod q, and

since all primes dividing m must divide q/m, we have 2 - q and so

a =
m+ 1

2
, bm =

q −m
2

=⇒ A =

[
0,
m− 1

2

]
∪
[
q + 1

2
,
q +m− 2

2

]
.

Once again, this is a single arithmetic progression of difference (q + 1)/2.

2.6 Inverse problem for Pollard’s inequality

In this section we will use Theorem 2.2.2 to solve the inverse problem for Pollard’s

inequality for sets with the Chowla property.

As already anticipated, the proof of Theorem 2.2.2 works for every sets satisfying the

conclusions of lemma 2.3.1.

In particular, for a nontrivial subgroup H of Zq, any set A ⊆ Zq with the Chowla

property and with |A| ≥ 3 satisfies

|A+H| = |A||H| = 2

3
|A||H|+ 1

3
|A||H| ≥ 4

3
|A|+ |H|,

since for a, a′ ∈ A and h, h′ ∈ H, a+ h = a′ + h′ implies that a− a′ ∈ H, and so, by the

Chowla condition, we have a = a′.

We can then use Theorem 2.2.2 to obtain the classical generalization of the Cauchy-

Davenport inequality in general cyclic groups:

Corollary 2.6.1 (Chowla). Let A,B ⊆ Zq. Let B have the Chowla property. Then

(2.6.1) |A+B| ≥ min(q, |A|+ |B| − 1).
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Moreover, we also recover the inverse theorem, which is the analogue of Vosper’s

Theorem (see [32]) for Theorem 2.6.1, characterizing the pairs of sets (A,B) for which

equality in (2.6.1) holds.

Theorem 2.6.2. Let A,B ⊆ Zq, B with the Chowla property. If

|A+B| = min(|A|+ |B| − 1, q)

then one of the following holds:

1. min(|A|, |B|) = 1,

2. |A|+ |B| ≥ q + 1,

3. B = g −Ac for some g ∈ Zq,

4. A and B are arithmetic progressions of the same difference.

Proof. Suppose that (1) and (2) do not hold.

First we prove that if B is an arithmetic progression of difference d, the same can

be said about A. Up to a dilation and a translation, since B has the Chowla property,

we can assume B = {0, . . . , l − 1}. Let A = ∪si=1Pi, where Pi are intervals in Zq with

at least one element not from A between any two of them. Order the Pi’s so that they

are consecutive, i.e., for any a ∈ Pi, i = 1, . . . , s, let ϕ(a) be the minimal nonnegative

integer such that a+ ϕ(a) ∈ A \ Pi. Then a+ ϕ(a) ∈ Pi+1, where Ps+1 := P1.

We want to prove that s = 1, so suppose this does not hold, and let Gi, i = 1, . . . , s be

the gaps between Pi and Pi+1, so that
∑s

i=1 |Gi| = q − |A| ≥ |B|.
Then

|A+B| = |A|+
s∑
i=1

min(|Gi|, |B| − 1).

If |Gi| ≥ |B| for some i ∈ [1, s], then |A+B| ≥ |A|+ (|B| − 1) + (s− 1), a contradiction.

If |Gi| ≤ |B| − 1 for all i = 1, . . . , s, then |A + B| = |A| +
∑s

i=1 |Gi| ≥ |A| + |B|, a

contradiction once again.

Hence s = 1 and A is an arithmetic progression with the same difference as B as required.

Let now |B| ≥ 5, |A| ≥ 2.

Then, since B has the Chowla property, ifB is not an arithmetic progression, by Theorem

2.2.2 with h = 0 we have

ξB(n) ≥ |B|+ n

for all 2 ≤ n ≤ q − |B| − 1.

In particular, if |A| ≤ q − |B| − 1, then |A+B| ≥ |A|+ |B|, a contradiction.

If |A| = q−|B|, then for any x ∈ Zq we have rA+B(x) = |(x−A)∩B|, which is bigger than
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one by pigeonhole unless B = g −Ac for some g ∈ Zq. If this holds, then we are in case

(3) and |A+B| = q−1 = |A|+ |B|−1; if this does not hold, then |A+B| = q = |A|+ |B|,
a contradiction.

Hence B is an arithmetic progression, and by what proved above, condition (4) holds.

We are left to deal with the few extremal cases not covered by Theorem 2.2.2, i.e.

|B| ∈ [2, 4], |A|+ |B| ≤ q − 1, but it is an easy excercise to prove that the conclusion of

the Theorem holds also in these cases.

In the same spirit of Theorem 2.6.2, the study of pairs (A,B) for which equality in

Pollard’s inequality holds has been carried by Nazarewicz, O’Brien, O’Neill and Staples

in [27]. The authors study this inverse problem in Zp for a prime p, where the Chowla

condition is trivially satisfied by any set. We extend their result to the composite

modulus case, for sets having the Chowla property. We remark here that the proof of

our result is just a slight modification of the arguments used in [27]. In fact, the majority

of the following lemmas, as well as the general structure of the proof of Theorem 2.6.4,

are almost identical to the ones given in the original paper, with the exception of the use

of Theorems 2.2.2 and 2.6.2 instead of the Cauchy-Davenport inequality and Vosper’s

theorem. Here and there however new ideas are needed to carry on the proof and so,

for the sake of completeness and clearness of the exposition, we give the proof of all the

preliminary results needed in the proof of Theorem 2.6.4.

Definition 2.6.3. Let A,B ⊆ Zq and e ∈ Zq. The e-transform of the pair (A,B) is

(A(e), B(e)) = (A ∪ (B + e), B ∩ (A− e)).

It is an easy exercise to prove that it satisfies the following properties:

1. A(e) +B(e) ⊆ A+B,

2. A(e) \A = e+ (B \B(e)),

3. |A(e)|+ |B(e)| = |A|+ |B|.

Let Ni = Ni(A,B) = |A +i B|, S(A,B, t) = N1 + · · · + Nt. We can now state the

main result of this section.

Theorem 2.6.4. Let A,B ⊆ Zq, 2 ≤ t ≤ |B| ≤ |A|, B has the Chowla property and

(A,B) is t-critical. Then one of the following holds:

1. |B| = t,

2. |A|+ |B| ≥ q + t,

3. |A| = |B| = t+ 1, and B = g −A for some g ∈ Zq,
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4. A and B are arithmetic progression of the same common difference.

The proof of Theorem 2.6.4 will be delayed to Section 2.7; we conclude this sec-

tion with some preliminary lemmas, mainly dealing with some extremal cases for which

equality in Pollard’s inequality holds.

Lemma 2.6.5. 1. If t = min(|A|, |B|), then S(A,B, t) = |A||B|.

2. If |A|+ |B| ≥ q + t, then rA+B(x) ≥ t for all x ∈ Zq.

3. rA+B(x) + rAc+B(x) = |B| for every x ∈ Zq.

Proof. The conclusions follow from immediate computations. In fact:

1. S(A,B, t) =
∑

x∈Zq min(t, rA+B(x)) =
∑

x∈Zq rA+B(x) = |A||B|.

2. rA+B(x) = |A ∩ (x−B)| = |A|+ |x−B| − |A ∪ (x−B)| ≥ t.

3. rA+B(x) + rAc+B(x) = |A ∩ (x−B)|+ |Ac ∩ (x−B)| = |x−B| = |B|.

Lemma 2.6.5 allows us to consider only pairs (A,B) with |A| + |B| < q + t and

1 < t < min(A,B).

Lemma 2.6.6. Let (A,B) be a t-critical pair for Zq, B have the Chowla property, and

suppose |A|+ |B| < q+ t and 1 < t < min(A,B). If B is an arithmetic progression, then

A is an arithmetic progression with the same difference and viceversa.

Proof. Since B has the Chowla property, we can assume without loss of generality that

0 ∈ B ∩A and B = {0, 1, . . . , l − 1}, where |B| = l and |A| = k.

Choose integers

0 = r0 < r1 < · · · < rk−1 < q

so that, for aj = rj + qZ, we may write

A = {a0, a1, . . . , ak−1}.

For 0 ≤ i ≤ k − 1 let rk+i = q + ri. Then A + B is the union of the intervals

[rj , rj + (l − 1)] + qZ, and for any x ∈ Zq we have

rA+B(x) = |{j ∈ [0, k − 1] : rj ≤ x ≤ rj + (l − 1)}|

so that

(2.6.2) min(t, rA+B(x)) = |{j ∈ [0, k − 1] : rj ≤ x ≤ rj + min((l − 1), rj+t − rj − 1)}|.
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If rA+B(x) = 0 this is clear. Suppose 0 < rA+B(x) ≤ t. Then for any j ∈ [0, k − 1]

satisfying rj ≤ x ≤ rj + (l − 1), we have rj+t ≥ x + 1 ≥ rj + 1, for otherwise, if

rj+t ≤ x ≤ rj + (l − 1), for i = 0, . . . , t, we would have

rj+i ≤ rj+t ≤ x ≤ rj + (l − 1) ≤ rj+t + (l − 1),

and hence rA+B(x) > t.

This implies that

|{j ∈ [0, k − 1] : rj ≤ x ≤ rj + min((l − 1), rj+t − rj − 1)}|

= |{j ∈ [0, k − 1] : rj ≤ x ≤ rj + (l − 1)}| = rA+B(x)

and equality (2.6.2) holds.

If rA+B(x) ≥ t+1, then let rj0 be the closest rj to x with rj ≤ x ≤ rj+(l−1). Since

rA+B(x) > t, we have rj0+1 ≥ x+1 ≥ rj0 and rj0−i ≤ x ≤ rj0−i+(l−1) for i = 0, . . . , t−1.

Moreover, for these values of i we also have rj0−i ≤ x ≤ rj0+1 − 1 ≤ rj0−i+t − 1 and so

they all satisfy

rj0−i ≤ x ≤ rj0−i + min((l − 1), rj0−i+t − rj0−i − 1).

On the other hand, for i = 0, . . . , rA+B(x)− t− 1,

rj0−t−i ≤ x ≤ rj0−t−i + (l − 1),

but

rj0−i − 1 ≤ rj0 − 1 ≤ x− 1,

and so rj0−t−i does not satisfy

rj0−t−i ≤ x ≤ rj0−t−i + min((l − 1), rj0−i − rj0−t−i − 1),

and (2.6.2) holds also in this case.

Let sj,t = min(l, rj+t − rj). Then

S(A,B, t) =
∑
x∈Zq

min(t, rA+B(x))

=
∑
x∈Zq

|{j ∈ [0, k − 1] : rj ≤ x ≤ rj + sj,t − 1}|

=

k−1∑
j=0

rj+sj,t−1∑
x=rj

1

=

k−1∑
j=0

min(l, rj+t − rj).
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Since (A,B) is a t-critical pair, we have

t(k + l − t) =
k−1∑
j=0

min(l, rj+t − rj)

=
k−1∑
j=0

(rj+t − rj −max(0, rj+t − rj − l))

=
k−1∑
j=k−t

rj+t −
t−1∑
j=0

rj −
k−1∑
j=0

max(0, rj+t − rj − l)

= tq −
k−1∑
j=0

max(0, rj+t − rj − l).

Rearranging we get

(2.6.3) t(q + t− k − l) =
k−1∑
j=0

max(0, rj+t − rj − l).

Let

J0 = {j ∈ [0, k − 1] : rj+t − rj > l}, J1 = {j ∈ [0, k − 1] : rj+t − rj ≤ l}.

Observe that for each j ∈ [0, k− 1] we have {rj+t+1, . . . , rj+k−1} ⊆ [rj+t + 1, rj + q− 1],

and therefore rj+t − rj ≤ q + t− k for all such j.

Combined with (2.6.3), this gives

t(q + t− k − l) =
∑
j∈J0

(rj+t − rj − l) ≤ (q + t− k − l)|J0|

and so |J0| ≥ t. (Remember that we assume k + l < q + t.)

We have

t(k + l − t) = l|J0|+
∑
j∈J1

(rj+t − rj)

≥ l|J0|+ t(k − |J0|)

= tk + (l − t)|J0|

≥ t(k + l − t),

and so all the inequalities above must be actually equalities. In particular, |J0| =

t, |J1| = k− t and rj+t− rj = t for all j ∈ J1. This last fact tells us that for each j ∈ J1,

rj + i+ qZ ∈ A for all i = 0, . . . , t.
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Let now A1 = {rj + qZ : j ∈ J1}, and A = ∪si=1Pi where Pi’s are intervals in Zq,
and any two of these are separated by at least one element in Ac. We have |Pi ∩ A1| ≤
|Pi| −min(|Pi|, t) for all i = 1, . . . , s by the condition on J1, and hence

k − t = |A1| ≤
s∑
i=1

(|Pi| −min(|Pi|, t)) = k −
s∑
i=1

min(|Pi|, t),

implying
s∑
i=1

min(|Pi|, t) ≤ t.

Since
∑s

i=1 |Pi| = k > t we conclude that s = 1 as required.

For the second part, observe that if A is an arithmetic progression of difference d

coprime with q, the same argument as above can be used to show that B is an arithmetic

progression with the same difference.

On the other hand, if (d, q) > 1, then we have rA+B(x) = 1 for all x ∈ Zq, since, if

x = a1 + b1 = a2 + b2, with (a1, b1) 6= (a2, b2) and a1, a2 ∈ A, b1, b2 ∈ B, then

(b2 − b1, q) = (a1 − a2, q) = (Nd, q) > 1,

a contradiction with the fact that B has the Chowla property.

Then, if rA+B(x) = 1 for all x ∈ A+B, and (A,B) is a t-critical pair, we have

t(|A|+ |B| − t) = S(A,B, t) = |A||B|,

and so either t = |A| or t = |B|, both against the hypotheses.

Lemma 2.6.7. Let B ⊆ Zq with the Chowla property, with 2 < |B| = t + 1 < q. Then

(B, g −B) is a t-critical pair for any g ∈ Zq.

Proof. We have
|B|∑
i=1

|B +i (g −B)| = |B|2 < q2.

By Pollard’s inequality we have

|B|2 − |B +|B| (g −B)| =
|B|−1∑
i=1

|B +i (g −B)| ≥ tmin(2|B| − t, q) = |B|2 − 1.

Hence |B+|B| (g−B)| ≤ 1 and g has exactly |B| distinct representations in B+ (g−B),

so equality holds and (B, g −B) is t-critical.

Lemma 2.6.8. If (A,B) is a t-critical pair for Zq with |A| = |B| = t + 1 >≥ 3,

|A|+ |B| < q + t, and B has the Chowla property, then B = g −A for some g ∈ Zq.
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Proof. We have

N1 + · · ·+Nt+1 = |A||B| = t2 + 2t+ 1,

N1 + · · ·+Nt = t(|A|+ |B| − t) = t2 + 2t.

Hence Nt+1 = 1 and so B = g −A for some g ∈ Zq as required.

Lemma 2.6.9. If (A,B) is a t-critical pair for Zq with |A| > |B| = t+1 ≥ 3, |A|+|B| <
q + t, and B has the Chowla property, then A and B are arithmetic progressions with

the same common difference.

Proof. We have

N1 + · · ·+Nt+1 = |A||B| = (t+ 1)|A|,

N1 + · · ·+Nt = t(|A|+ |B| − t) = t(|A|+ 1).

Hence Nt+1 = |A| − t.
Let C = A+t+1B, so that |C| = |A|−t > 1. Then C−B ⊆ A, and so |C−B| ≤ |A| < q−1,

since |A|+ |B| = |A|+ t+ 1 < q + t. Then, by Theorem 2.6.1, we get

|C −B| ≥ |C|+ |B| − 1 = |A| − t+ |B| − 1 = |A|.

Hence equality must hold and by Theorem 2.6.2, since |B|+ |C| = |A|+ 1 < q, we have

that B must be an arithmetic progression. Lemma 2.6.6 tells us that A must be an

arithmetic progression too, as required.

Putting together Lemmas 2.6.8 and 2.6.9, we obtain the following:

Corollary 2.6.10. If (A,B) is a t-critical pair for Zq with |A| ≥ |B| = t + 1 ≥ 3,

|A| + |B| < q + t, and B has the Chowla property, then either B = g − A for some

g ∈ Zq, or A and B are arithmetic progressions with the same common difference.

Lemma 2.6.11. If (A,B) is a t-critical pair for Zq with 1 < t < min(|A|, |B|), B has

the Chowla property and |A|+ |B| = q+ t− 1, then A and B are arithmetic progressions

with the same common difference.

Proof. Since 1 < t < min(|A|, |B|) and |A|+|B| = q+t−1, it follows that max(|A|, |B|) ≤
q − 2. By Lemma 2.6.5, we get that rA+B(x) ≥ t− 1 > 0 for all x ∈ Zq, and so we have

N1 = · · · = Nt−1 = q.

Since (A,B) is t-critical, we have N1 + · · · + Nt = t(|A| + |B| − t) = t(q − 1), so that

Nt = q − t.
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Let C = Nt−1 \ Nt, i.e. the set of all elements in Zq which have exactly t − 1

representations in A+B. It follows that |C| = t > 0.

By equation (3) in Lemma 2.6.5, every x ∈ C has |B| − (t − 1) = |Ac| representations

as a sum of an element in Ac and one in B. Hence, x − Ac ⊆ B, and since B has the

Chowla property, the same can be said about Ac.

Moreover, again by equation (3) of Lemma 2.6.5, rAc+Bc(x) = |Ac| − rAc+B(x) = 0, and

so C is disjoint from Ac +Bc. Therefore, by Theorem 2.6.1, we have

q − t = |Cc| ≥ |Ac +Bc| ≥ |Ac|+ |Bc| − 1 = q − t.

Hence the inequality above must be an equality, and from Theorem 2.6.2 we conclude

that, since |B| > |Ac|, both Ac and Bc must be arithmetic progressions of the same

difference d.

Since Ac has the Chowla property, we have (d, q) = 1, and so also A and B are arithmetic

progressions of difference d, as required.

Lemma 2.6.12. Let (A,B) be a 2-critical pair for Zq with 3 ≤ |B| ≤ q− 3, and assume

B has the Chowla property. If A = g−Bc for some g ∈ Zq, then A and B are arithmetic

progressions of the same common difference.

Proof. From A = g − Bc we deduce that N1 = |A + B| = q − 1, since |A + B| ≥
|A|+ |B|−1 = q−1 and g 6∈ A+B. Since (A,B) is 2-critical, we have N1 +N2 = 2q−4,

so that N2 = q − 3 and there exist exactly two elements x, y ∈ A + B with rA+B(x) =

rA+B(y) = 1.

Let x = ax+ bx with ax ∈ A, bx ∈ B. Then (x−A)∩B = {bx} and so (x−g+Bc)∩B =

{bx}. This means that (x− g + B) ∩ B = B \ {bx} and so, since g 6∈ A+ B and B has

the Chowla property, B is an arithmetic progression of difference x− g 6= 0.

By Lemma 2.6.6, A is an arithmetic progression of difference x− g too.

Lemma 2.6.13. For any e ∈ Zq we have

|A(e) +t B(e)| ≤ |A+t B|

for all t.

Proof. It suffices to prove that rA(e)+B(e)(x) ≤ rA+B(x) for every x ∈ A(e) + B(e) ⊆
A+B. But this is true since, if x = ae + be, with ae ∈ A(e), be ∈ B(e) ⊆ B, then either

ae ∈ A or ae ∈ (B + e) \ A. In the first case ae + be is a representation of x in A + B,

whereas in the second case (be + e) + (ae − e) is a representation of x in A + B, which

is not of the first kind considered, since ae − e ∈ B \ (A− e).
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Lemma 2.6.14. A,B ⊆ Zq, B with the Chowla property, |A|, |B| > t + 1. Let I =

A ∩B, |I| = t ≥ 2. If ∣∣∣∣∣⋂
b∈I

b+A

∣∣∣∣∣ ≥ |A| − t+ 1,

then A is an arithmetic progression.

Proof. Since B has the Chowla property, then so does I.

We have ∣∣∣∣∣⋂
b∈I

b+A

∣∣∣∣∣ = q −

∣∣∣∣∣⋃
b∈I

b+Ac

∣∣∣∣∣ = q − |I +Ac| ≥ |A| − t+ 1 > 1,(2.6.4)

which implies that |I +Ac| < q − 1 and so, from Theorem 2.6.1, we get

|I +Ac| ≥ t+ |Ac| − 1.

Then we have

|A| − t+ 1 ≥

∣∣∣∣∣⋂
b∈I

b+A

∣∣∣∣∣ ≥ |A| − t+ 1,

implying that all inequalities in (2.6.4) are actually equalities, and so by Theorem 2.2.2,

since I has the Chowla property, I is an arithmetic progression of difference v with

(v, q) = 1.

Then

|Ac|+ t− 1 = |Ac + I|

= |{a, a+ v, . . . , a+ (t− 2)v}+ {0, v}+Ac|

≥ t− 1 + |Ac + {0, v}| − 1

and so |Ac| ≤ |Ac + {0, v}| ≤ |Ac| + 1. This means that Ac, and hence A too, is an

arithmetic progression of difference v coprime with q as required.

Lemma 2.6.15. Let B,E ⊆ Zq, B with the Chowla property, |B| = k = |E| + 1. If

rB+E(x) = k − 1 = rB+E(y) for some x 6= y, then B and E are arithmetic progressions

of the same common difference.

Proof. If k ≤ 2 the claim is trivially true.

Let k > 2, and z = x− y.

Take any e ∈ E. Then there exist bx, by ∈ B such that bx + e = x, by + e = y, and so

bx − by = z.

Since B has the Chowla property, from this we deduce that (z, q) = 1.

Let

Bx = {b ∈ B : ∃e ∈ E : b+ e = x}, By = {b ∈ B : ∃e ∈ E : b+ e = y},
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so that |Bx| = |By| = k − 1 and

(2.6.5) Bx = x− E By = y − E

Let B̃ = Bx ∩By = (x− E) ∩ (y − E), so that |B̃| ≥ k − 2.

If |B̃| = k − 1, then ∀e ∈ E ∃e′ ∈ E : e− e′ = z and so E = z + E, a contradiction.

If |B̃| = k − 2, then |E + z ∩ E| = k − 2 and so |E + {0, z}| = |E| + 1 and so E is an

arithmetic progression of difference z.

By (2.6.5) the same is true for Bx and By and hence for B too, since |Bx∩By| = k−2 >

0.

2.7 Proof of Theorem 2.6.4

Proof of Theorem 2.6.4. Let t ≥ 2 be the smallest integer such that the theorem does

not hold. By Lemmas 2.6.6 and 2.6.7 and Corollary 2.6.10, there exists a t-critical pair

(A,B), B with the Chowla property, such that

(i) |A| ≥ |B| > t+ 1,

(ii) |A|+ |B| ≤ q + t− 1,

(iii) neither A nor B is an arithmetic progression.

Because of this last property, thanks to Lemma 2.6.11 we have |A|+ |B| ≤ q + t− 2.

Choose (A,B) so that

(i) |A+B| is minimal,

(ii) |A|+ |B| is minimal subject to (i),

(iii) |B| is minimal subject to (ii)

We will prove the following facts:

1. there does not exist an element e ∈ Zq with t < |B(e)| < |B|.

2. there does not exist an element e ∈ Zq with 0 < |B(e)| < t.

3. There are many e ∈ Zq with |B(e)| = t.

4. Obtain a contradiction with the structure of (A,B) assumed at the beginning of

the proof.



2.7 Proof of Theorem 2.6.4 49

Step 1

If t > 2, because of the minimality of t and the inequalities |A|+ |B| ≤ q+ t− 2 and

|B| > t+ 1, we have that (A,B) is not a (t− 1)-critical pair, and so

N1 + · · ·+Nt−1 > (t− 1)(|A|+ |B| − (t− 1)).

The same inequality holds also for t = 2 by Theorem 2.6.2, as the condition B = g−Ac

cannot be satisfied for otherwise Lemma 2.6.12 would imply that A and B are arithmetic

progressions of the same common difference.

Suppose now by contradiction the existence of an element e ∈ Zq with t < |B(e)| <
|B|, and let N ′i = |A(e) +i B(e)|.
Observe that if B has the Chowla property, so does B(e) and so, by Pollard’s inequality,

we find that

S(A(e), B(e), t) ≥ t(|A(e)|+ |B(e)| − t) = t(|A|+ |B| − t) = S(A,B, t).

From Lemma 2.6.13, it follows that N ′i = Ni for 1 ≤ i ≤ t, so that (A(e), B(e)) is also a

t-critical pair and

N ′1 + · · ·+N ′t−1 > (t− 1)(|A|+ |B| − (t− 1)) = (t− 1)(|A(e)|+ |B(e)| − (t− 1)).

In particular, this means that neither A(e) nor B(e) is an arithmetic progression, for

otherwise Lemma 2.6.6 would imply that also the other set is an arithmetic progression.

This way we get a contradiction with the minimality conditions of the couple (A,B), in

particular with the minimality of |B|, thus proving the first claim.

Step 2

Let us assume now the existence of an e ∈ Zq with 0 < |B(e)| < t, and choose e

with this property which minimizes |B(e)|. Observe that

Ni(A(e), B(e)) = Ni((A− e) ∪B,B(e))

and

Ni(A− e,B) = Ni(A,B)

for each i.

Consider the pair (U, I) = (A(e)− e,B(e)) and let

Ae = A− e, A′e = (A− e) \B, B′ = B \ (A− e).

Let t′ = t− |I| > 0. For every x ∈ Zq we have

rAe+B(x) = rA′e+B′(x) + rA′e+I(x) + rI+B′(x) + rI+I(x) = rU+I(x) + rA′e+B′(x),
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so that

min(t, rAe+B(x)) ≥ min(|I|, rU+I(x)) + min(t′, rA′e+B′(x))

= rU+I(x) + min(t′, rA′e+B′(x)).

Moreover, we have

(2.7.1) 1 ≤ t′ = t− |I| < |B| − |I| − 1 = |B′| − 1,

and

|A′e|+ |B′| − t′ = (|Ae| − |I|) + (|B| − |I|)− (t− |I|) = |U | − t < |U | ≤ q,

and so

t(|Ae|+ |B| − t) =
∑
x∈Zq

min(t, rAe+B(x))

≥
∑
x∈Zq

rU+I(x) +
∑
x∈Zq

min(t′, rA′e+B′(x))

≥ |U ||I|+ t′(|A′e|+ |B′| − t′)

= |U ||I|+ (t− |I|)(|U | − t)

= t(|Ae|+ |B| − t).

Hence all inequalities must be in fact equalities and in particular∑
x∈Zq

min(t′, rA′e+B′(x)) = t′(|A′e|+ |B′| − t′),

so that (A′e, B
′) is a t′-critical pair.

Moreover, |A′e| ≥ |B′| > t′ + 1 by (2.7.1), and

|A′e|+ |B′| = |A(e)| − |I| = |A|+ |B| − |B(e)| − |I| ≤ q + t− 2− 2|I| ≤ q + t′ − 2− |I|,

so that, by the minimality of t if t′ ≥ 2, or by Theorem 2.6.2 if t′ = 1, we deduce that

A′e and B′ are arithmetic progressions with the same common difference d.

The next step is to show that this implies that also A and B must be arithmetic

progression, thus getting a contradiction.

To do this, observe that since B has the Chowla condition, so does B′ and so, after

a dilation, we can assume that d = 1. Moreover, after a translation, we can assume that

A′e = (A−e)\B = {0, 1, . . . ,m}, B′ = B\(A−e) = {m+j,m+j+1, . . . ,m+j+k}.

Let X = B(e) ∩ (m,m+ j) and Y = B(e) ∩ (m+ j + k, q), so that

A− e = X ∪ Y ∪ ((A− e) \B), B = X ∪ Y ∪ (B \ (A− e)).
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Assume at first that X and Y are both nonempty, and that |X|, |Y | > 1. Writing

X = {x1, . . . , xs} and Y = {y1, . . . , yr} with m < x1 < · · · < xs < m+j and m+j+k <

y1 < · · · < yr < q, let

d′ = min(x2 − x1, . . . , xs − xs−1, y2 − y1, . . . , yr − yr−1).

Since B has the Chowla property, we have (d′, q) = 1.

Then |(B+d′)∩ (A− e)| ≥ 1 and so, since we have chosen e in order to minimize |B(e)|,
we have

(2.7.2) |(B + d′) ∩ (A− e)| ≥ |B(e)| = |X|+ |Y |.

Moreover, we have

|X|+ |Y | ≤|(B + d′) ∩ (A− e)|

=|(B \ (A− e)) + d′ ∩ Y |+ |(Y \ {yr}) + d′ ∩ Y )|+ |{yr + d′} ∩ (A− e)|+

|(X \ {xs}) + d′ ∩X|+ |{xs + d′} ∩ Y |.

≤|X|+ |Y |,

since |(Y \ {yr}) + d′ ∩ Y )| ≤ |Y | − 1 and |(B \ (A− e)) + d′ ∩ Y |+ |{xs + d′} ∩ Y | ≤ 1.

This holds since by our definition of d′ we have (m + j + k) + d′ < y1 + (y2 − y1) = y2

and so both (B \ (A− e)) + d′ and {xs + d′} intersect Y at most in {y1}.
Therefore we conclude that all inequalities above must be equalities and in particular bot

X and Y must be arithmetic progressions of difference d′, and y1−d′ ∈ B, yr+d′ ∈ A−e.
If we consider (B− d′)∩ (A− e) instead of (B+ d′)∩ (A− e) we deduce in the same way

that x1 − d′ ∈ A− e and xs + d′ ∈ B.

Hence, if d′ = 1 we are done. Suppose that d′ > 1. First of all we observe that

y1 = m + j + k + d′. In fact, if this does not hold, since y1 − d′ ∈ B, we either have

y1 − d′ = xs or y1 − d′ ∈ B \ (A− e). In the first case we have

0 < |(B + (y1 − (m+ j + k))) ∩ (A− e)| < |B(e)|,

where the second inequality holds since y1 − (m+ j + k) < y1 − xs = d′ and so yr, xs 6∈
B + (y1 − (m + j + k)). This, however, is a contradiction with our assumption on the

minimality of |B(e)|.
In the second case, y1 − d′ ∈ B \ (A− e), we have

0 < |(B + d′ − 1) ∩ (A− e)| < |B(e)|,

where the first inequality holds since y1 − d′ + 1 ∈ B \ (A − e), and the second holds

since, once again, yr, xs 6∈ B + (d′ − 1).
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A similar argument can be used to show that yr = q−d′, x1 = m+d′ and xs = m+j−d′.
Moreover, assuming d′ > 1, we also have

0 < |(B + d′ + 1) ∩ (A− e)| < |B(e)|,

where the first inequality holds since |B \(A−e)| > 1 by (2.7.1) and so y1 = (m+j+k−
1)+(d′+1) ∈ (B+d′+1)∩(A−e) and the second one holds since (B+d′+1)∩(X∪Y ) ⊆
{y1} since X and Y are arithmetic progressions of difference d′.

Once again, this is a contradiction with the minimality of |B(e)|, and this concludes this

step of the proof if |X|, |Y | > 1.

If |Y | = 1 we just take d′ = y1− (m+ j+k) and arguing as above we get the desired

conclusion, which also holds for |X| = 1 with a symmetric argument.

Since at least one between X and Y must be nonempty, we are left to consider the

case X = ∅. Observe that in this case we must have |Y | > 1, for it is an easy exercise

to show that sets of the form ([0,m] ∪ {y1}, [m + j,m + j + k] ∪ {y1}) cannot form a

t-critical pair unless y1 = m+ j + k + 1 = q − 1. Let

d′′ = min(j, y2 − y1, . . . , yr − yr−1).

Arguing as above, we see that 0 < |(B−d′′)∩ (A−e)| < |B(e)| unless Y is an arithmetic

progression of difference d′′ = 1 with y1 = m+ j + k + 1 and yr = q − 1, thus getting a

contradiction with our assumption of A and B not being arithmetic progressions.

Steps 3 and 4

From the previous steps we know that the only possible values for |B(e)| are 0, t and

|B|.
Fix b ∈ B. Let E(b) be the set of e ∈ Zq with b ∈ B(e) ( B, so that |B(e)| = t.

It is easy to see that E(b) = {e ∈ A − b : B + e * A}. Let E′(b) = (A − b) \ E. If

e ∈ E′(b) = {e ∈ A − b : B + e ⊆ A}, then for every b′ ∈ B we have b′ + e ∈ A, i.e.,

e ∈ A − b′, and so E′(b) = E′, and consequentially |E(b)|, is actually independent of

the choice of b ∈ B. If |E′| ≥ 2, then, since B + E′ ⊆ A and B is not an arithmetic

progression, from Theorem 2.2.2 we have

|A| ≥ |B + E′| ≥ |B|+ |E′| = |B|+ (|A| − |E(b)|),

implying that |E(b)| ≥ |B|.
If E′ = ∅, then |E(b)| = |A| ≥ |B|.
If |E′| = 1, then |E(b)| = |A| − 1 ≥ |B| − 1.

We split the proof in two cases: |E(b)| ≥ |B| or |E′| = 1 and |E(b)| = |A|−1 = |B|−1.

Case 1: |E(b)| ≥ |B|.
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After translations we can assume that 0 ∈ A ∩B, |A ∩B| = t. Let U = A ∪B and

I = A ∩B. Since (A,B) is a t-critical pair, we have

S(U, I, t) = t(|A|+ |B| − t) = S(A,B, t)

and for every x ∈ Zq
rA+B(x) = rU+I(x) + rA′+B′(x),

where A′ = A \ I,B′ = B \ I.

From these two facts we get

t(|A|+ |B| − t) =
∑
x∈Zq

min(t, rA+B(x))

=
∑
x∈Zq

min(t, rU+I(x) + rA′+B′(x))

≥
∑
x∈Zq

min(t, rU+I(x))

= t(|A|+ |B| − t),

so that A′ + B′ is contained in the set of elements which have at least t = |I| distinct

representations in the sumset U + I. In other words,

A′ +B′ ⊆
⋂
b∈I

(b+ U) ⊆ {x : rA+B(x) ≥ t}.

Fix b∗ ∈ I and e ∈ E(b∗), so that b∗ ∈ (A − e) ∩ B = B(e). As |B(e)| = t, once

again we have

S(A(e), B(e), t) = t(|A|+ |B| − t) = S(A,B, t),

and for every x ∈ Zq

rA+B(x) = rA(e)+B(e)(x) + rA\(B+e)+B\(A−e)(x).

Arguing as above, we have

A \ (B + e) +B \ (A− e) ⊆
⋂

b∈B(e)

(b+A(e)) ⊆ {x : rA+B(x) ≥ t}.

Adding up all these informations we deduce that, whenever rA+B(x) < t we have

rA+B(x) = rU+I(x) = rA(e)+B(e)(x),

and

{x ∈ Zq : rA+B(x) ≥ t} = {x ∈ Zq : rU+I(x) = t}

= {x ∈ Zq : rA(e)+B(e)(x) = t}

=
⋂

b∈B(e)

b+A(e)
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Consequently,

A′ +B′ ⊆
⋂

b∈B(e)

b+A(e) ⊆ b∗ +A(e).

Since this holds for every e ∈ E(b∗), we have

A′ +B′ ⊆
⋂

e∈E(b∗)

b∗ +A(e)

and

(A′ +B′) \ (b∗ +A) ⊆ b∗ +
⋂

e∈E(b∗)

B + e.

If |B| < |E(b∗)|, by pigeonhole we have ∩e∈E(b∗)B + e = ∅ and so A′ +B′ ⊆ b∗ +A.

If |B| = |E(b∗)|, since ∩e∈E(b∗)B + e = {x ∈ Zq : rE(b∗)+B(x) = |B|}, by the

Pollard inequality, which can be applied since B has the Chowla property, we have that

|∩e∈E(b∗)B+e| ≤ 1. If ∩e∈E(b∗)B+e = ∅, then A′+B′ ⊆ b∗+A. If ∩e∈E(b∗)B+e = {g′}
for some g′ ∈ Zq, then E(b∗) = g′ − B. Since b∗ ∈ B(e) ⊆ A − e for every e ∈ E(b∗),

we have b∗ + E(b∗) ⊆ A and so g′ = b∗ + (g′ − b∗) ∈ A, implying once again that

A′ +B′ ⊆ b∗ +A.

Since the choice of b∗ ∈ I was arbitrary, we get

A′ +B′ ⊆
⋂
b∈I

b+A,

so that, since B′ inherits the Chowla property from B,∣∣∣∣∣⋂
b∈I

b+A

∣∣∣∣∣ ≥ |A′ +B′| ≥ |A′|+ |B′| − 1 = |A|+ |B| − 2t− 1 ≥ |A| − t+ 1

as |B| > t + 1. By Lemma 2.6.14 then we deduce that A is an arithmetic progression,

which is a contradiction.

Case 2: |E′| = 1 and |E(b)| = |A| − 1 = |B| − 1.

By our assumption we have A = g + B for some g ∈ Zq. Since B has the Chowla

property, if p is the smallest prime dividing q, so that p ≤ √q, we have by pigeonhole

|B| ≤ p ≤ √q < (q + 1)/2.

Since B is not an arithmetic progression and, for q > 5 (for q ≤ 5 the Theorem is true),

we cannot have A = g′ −Bc for some g′ ∈ Zq, by Theorem 2.6.2 we have

|B|2 = |A||B| =
∑
e∈Zq

rA−B(e) =
∑
e∈Zq

|B(e)|

= |{e ∈ Zq : |B(e)| = t}| · t+ |B|

= (|B −B| − 1) · t+ |B|

> (2|B| − 2) · t+ |B|,
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which holds since for all e 6= g ∈ Zq such that g − e ∈ B − B we have 0 < |B(e)| < |B|
and so |B(e)| = t. From this we deduce that |B| > 2t.

Using the same notation as in Case 1, we will prove that A′ and B′ cannot be

arithmetic progressions with the same difference. Suppose they are. Then from |B| > 2t

and |I| = t we get |A′| = |B′| > t. Take now g′ 6= 0 ∈ Zq such that g′ + B′ = A′. Then

|(A− g′) ∩ B| ≥ |B′| > t, and as the only possible values for |(A− g′) ∩ B| are 0, t and

|B|, we have g′ +B = A. Then,

A = (g′ +B′)
∐

(g′ + I) = A′
∐

(g′ + I)

implies that

g′ + I = A \ (g′ +B′) = A \A′ = I,

which cannot happen since I 6= Zq inherits the Chowla property from B and so can’t

contain nontrivial cosets.

Arguing as in the first case, we have

(A′ +B′) \ (b∗ +A) ⊆ b∗ +
⋂

e∈E(b∗)

B + e = b∗ + {x ∈ Zq : rE(b∗)+B(x) = |E(b∗)|}.

Lemma 2.6.15 tells us that, since B is not an arithmetic progression, |{x ∈ Zq :

rE(b∗)+B(x) = |E(b∗)|}| ≤ 1. Then we have

A′ +B′ ⊆

(⋂
b∈I

b+A

)⋃
F,

where

F =
⋃
b∈I

b+ {x ∈ Zq : rE(b)+B(x) = |E(b)|},

so that |F | ≤ t.
Then, since A′ and B′ are not arithmetic progressions of the same common difference,

we have∣∣∣∣∣⋂
b∈I

b+A

∣∣∣∣∣ ≥ |A′ +B′| − |F | ≥ |A′|+ |B′| − t = |A|+ |B| − 3t ≥ |A| − t+ 1,

since |B| > 2t. Lemma 2.6.14 gives the contradiction we were looking for, thus complet-

ing the proof of the Theorem.

We will use Theorem 2.6.4 to prove the bound for C2(A) in Theorem 2.8.9, but we

can already use it to observe that any digital set A ⊆ Zp2 for an odd prime p with the

minimal frequency of carries, i.e., inducing (p2 − 1)/2 carries, must be indeed a dilation
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of [−(p− 1)/2, (p− 1)/2] by a factor d coprime with p. In fact it is clear from the proof

of Theorem 1.2.3 that this happens precisely when we have the equality

S

(
A,A,

p− 1

2

)
=

3p2 − 2p− 1

4
,

and so A must be an arithmetic progression by Theorem 2.6.4. A simple analysis of

the frequency of carries for arithmetic progressions shows that any digital set inducing

exactly (p− 1)/2 carries must have the desired structure.

2.8 Frequency of carries

Since the proof of Theorem 1.2.3 relies on Pollard’s inequality, it is natural to try to

prove a similar inequality for generic modulus q in order to get a bound of the frequency

of carried induced by digital sets in this general setting. Such inequality however does

not hold in composite modulus for generic sets. Results which try to generalize Pollard’s

inequality in generic abelian group exist, due to Green and Ruzsa [13], Hamidoune and

Serra [17] and the most recent one, by Grynkiewicz [16]. Unfortunately, none of the

three mentioned results gives bounds sharp enough to be used in a proof similar to that

of Theorem 1.2.3.

We conjecture however that Pollard’s inequality,

(2.8.1)
t∑
i=1

|A+i A| ≥ t(2m− t)

actually holds for digital sets A ⊆ Zq, |A| = m and 1 ≤ t ≤ m, but we are only able to

prove some special cases.

Lemma 2.8.1. Let A ⊆ Zq, q odd, be a digital set with |A| = m. Then the following

hold

(i) |A+A| ≥ 2m− 1,

(ii) |A+A|+ |A+2 A| ≥ 4m− 4.

Proof. The first inequality is a special of Theorem 2.2.2, but nevertheless we give here

another simple proof of it. First of all we claim that there is at most one element

x ∈ A + A with rA+A(x) = m. By contradiction, suppose there are two such elements,

say x and y, with rA+A(x) = rA+A(y) = m. Then, for all a ∈ A, x−a ∈ A and y−a ∈ A.

In particular, given a ∈ A, we have

a ∈ A =⇒ x−a ∈ A =⇒ (y−x)+a ∈ A =⇒ . . . =⇒ k(y−x)+a ∈ A for any k ≥ 0.
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Thus we have {a+ k(y − x) : k ≥ 0} ⊆ A, a contradiction since A 6= Zq and A contains

no nontrivial cosets.

Let π : Zq → Zm be the usual projection. Since A is a digital set, we have π(A) = Zm,

and hence for all ã ∈ π(A)+π(A) = Zm we have rπ(A)+π(A)(ã) = m. This means that for

all x̃ ∈ Zm, with the possible exception of at most one element, |π−1(x̃) ∩ (A+A)| ≥ 2,

and so |A+A| ≥ 2m− 1 as required.

To prove the second inequality, corresponding to the case t = 2 in Pollard’s inequal-

ity, observe first of all that for all i ∈ Zq we have∑
x∈i+〈m〉

rA+A(x) = m,

since, being A a digital set, there are exactly m couples (a, a′) ∈ A× A with a+ a′ ≡ i

mod m.

Assume now that for every x ∈ A+ A we have rA+A(x) ≤ m− 2. This means that

for all i ∈ Zq ∑
x∈i+〈m〉

min(2, rA+A(x)) ≥ 4,

and thus, summing over all i ∈ [0,m− 1], we get

|A+A|+ |A+2 A| ≥ 4m ≥ 4m− 4,

as required.

We still need to consider cases when there exist elements x ∈ A+A with rA+A(x) ≥
m− 1.

Assume first that there exists x0 ∈ A+A with rA+A(x0) = m. Then, we claim that

there are at most two different nonzero elements x1, x2 with rA+A(x1) = rA+A(x2) =

m− 1. Suppose by contradiction there are three such elements, say x1, x2 and x3. Since

rA+A(x0) = m, we have A = x0 − A, and so rA+A(xi) = rx+A−A(xi) = rA−A(xi −
x0) = m − 1 for i = 1, 2, 3. This means that there exist two nonzero differences d1 and

d2, d1 6= ±d2, such that A is an arithmetic progression of difference d1 as well as an

arithmetic progression of difference d2, but this cannot happen since A is not a coset.

Assume now that the element x0 ∈ A+A with highest number of representations in

A+A satisfies rA+A(x0) = m− 1. If there are at most three other elements x1, x2, x3 ∈
A+A with rA+A(xi) ≤ m− 1, then we are done, since this would imply that in at most

four cosets xi + 〈m〉 we have

∑
x∈xi+〈m〉

min(2, rA+A(x)) = 3,
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whereas in all the remaining cosets j + 〈m〉, j ∈ [0,m− 1], j 6≡ xi mod m, we have∑
x∈j+〈m〉

min(2, rA+A(x)) ≥ 4,

and so

∑
x∈Zq

min(2, rA+A(x)) =
m−1∑
i=0

∑
x∈i+〈m〉

min(2, rA+A(x)) ≥ 12 + 4(m− 4) ≥ 4m− 4

as required.

Suppose now by contradiction that there are four elements x1, . . . , x4 not equal to

x0 with rA+A(xi) = m − 1. Then, since r(x0) = m − 1, there exists a subset A′ ⊆ A,

|A′| = m− 1, with A′ = x0 −A′, and so rA′+A′(xi) = rx0+A′−A′(xi) = rA′−A′(xi − x0) ≥
m − 3. This is true since for every xi, rA′+A′ = |A′ ∩ xi − A′| ≥ |A ∩ xi − A| − 2 =

rA+A(xi)− 2 = m− 3.

Then there are at least two nonzero differences d1 6= ±d2 such that rA′−A′(d1) =

rA′−A′(d2) = m − 3, and so A′ is the union of two arithmetic progressions of differ-

ence d1 as well as two arithmetic progressions of difference d2. Theorem 2.4.1, giving the

structure for sets union of two d1 and d2 arithmetic progressions, gives the contradiction

since this cannot happen for sets A′ with A′ = x0 −A′.

In the remaining part of this section we prove that, if q = pβ is a power of a prime,

digital sets A ⊆ Zq, |A| = pα, 0 < α < β satisfy Pollard’s inequality for t = bpα/2c:

(2.8.2) S (A,A, t) ≥ t(2pα − t).

This will allow us to prove that for such sets we have

C2(A) =
|{(a1, a2) ∈ A×A : a1 + a2 6∈ A}|

|A|2
≥

1
4 if p = 2,

p2α−1
4p2α

if p is odd.

For odd primes we will prove the following:

Theorem 2.8.2. Let A,B ⊆ Zpβ , p odd, be digital sets, |A| = |B| = pα, with 0 < α < β.

Then the following hold:

(i) S
(
A,B, p

α−1
2

)
≥ 3p2α−2pα−1

4 ,

(ii) S
(
A,B, p

α+1
2

)
≥ 3p2α+2pα−1

4 ,

(iii) S
(
A,B, p

α−1
2

)
= 3p2α−2pα−1

4 if and only if A and B are arithmetic progressions of

the same common difference,
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(iv) S
(
A,B, p

α+1
2

)
= 3p2α+2pα−1

4 if and only if A and B are arithmetic progressions of

the same common difference.

Before proving the theorem, observe that (ii) implies (i), and (iv) implies (iii). In

fact, if (ii) holds, then

S

(
A,B,

pα − 1

2

)
=
∑
x∈Z

pβ

min

(
pα − 1

2
, rA+B(x)

)

=
∑
x∈Z

pβ

min

(
pα + 1

2
, rA+B(x)

)
−N pα+1

2
(A,B)

≥ 3p2α + 2pα − 1

4
− pα

=
3p2α − 2pα − 1

4
,

where N pα+1
2

(A,B) ≤ pα since for every coset x+ 〈pα〉 ⊆ Zpβ we have∑
y∈x+〈pα〉

rA+B(y) = pα,

and so no more than one element in each coset can have more than (pα + 1)/(2) repre-

sentations in A+B. The same argument shows that (iv) implies (iii).

In the proof of Theorem 2.8.2 we will need some easily verified properties of the min

function, contained in the following lemma.

Lemma 2.8.3. Let ai, bi ≥ 0, i = 1, . . . , n and c ≥ 0. Then

min

(
n∑
i=1

ai,
n∑
i=1

bi

)
≥

n∑
i=1

min(ai, bi)(2.8.3)

n∑
i=1

min(c, ai) ≥ min

(
c,

n∑
i=1

ai

)
(2.8.4)

Proof. The first inequality is obvious, since the LHS is either
∑n

i=1 ai or
∑n

i=1 bi, and

both are clearly greater than
∑n

i=1 min(ai, bi).

For the second inequality, if c ≤ ai for some i, then

n∑
i=1

min(c, ai) ≥ c = min

(
c,

n∑
i=1

ai

)
,

whereas, if c ≥ ai for all i, then

n∑
i=1

min(c, ai) =

n∑
i=1

ai ≥ min

(
c,

n∑
i=1

ai

)
.



60 Carries in Zq

Proof of Theorem 2.8.2. The proof of Theorem 2.8.2 goes by induction on α, for all

β > α. For α = 1 the claims hold by Pollard’s theorem 1.2.5 and Theorem 2.6.4.

Suppose α ≥ 2 and let Ai = i + 〈p〉, Bi = i + 〈p〉 for i ∈ Zp, and A′i = Ai−i
p ⊆

Zpβ−1 , B′i = Bi−i
p ⊆ Zpβ−1 . Then for all i ∈ Zp, |A′i| = pα−1, and A′i is a digital set in

Zpβ−1 , for, if two elements a′1, a
′
2 ∈ A′i satisfy a′1 ≡ a′2 modulo pα−1, then a1 = i+ pa′1 ≡

i + pa′2 = a2 modulo pα, a1, a2 ∈ A, a contradiction with the hypothesis of A being a

digital set. The same also holds the B′j ’s, and so we can apply the induction hypotheses

for A′i and B′j , i, j ∈ Zp.
Let

δ = P (A′i, B
′
j are arithmetic progressions of the same common difference)

and, for i, j ∈ Zp, let

δi,j =

1 if A′i, B
′
j are arithmetic progressions of the same common difference,

0 otherwise,

so that δp2 =
∑

i,j∈Zp δi,j .

Define the map

ϕ : Zp × Zp →
{
pα−1 − 1

2
,
pα−1 + 1

2

}
such that, given k ∈ Zp, for exactly (p−1)/2 couples (i, j) ∈ Zp×Zp with i+ j ≡ k mod

p we have ϕ(i, j) = (pα−1− 1)/2 and for the remaining (p+ 1)/2 couples (i, j) ∈ Zp×Zp
with i+ j ≡ k mod p we have ϕ(i, j) = (pα−1 +1)/2. Then, using Lemma Theorem 2.6.4

and 2.8.3, we have

∑
x∈Z

pβ

min

(
pα + 1

2
, rA+B(x)

)
≥
∑
k∈Zp

∑
x∈k+〈p〉

∑
i+j≡k
mod p

min
(
ϕ(i, j), rAi+Bj (x)

)
≥
∑
k∈Zp

∑
i+j≡k
mod p

∑
x∈k+〈p〉

min
(
ϕ(i, j), rAi+Bj (x)

)

≥
∑
k∈Zp

[
p− 1

2

pα−1 − 1

2

(
2pα−1 − pα−1 − 1

2

)

+
p+ 1

2

pα−1 + 1

2

(
2pα−1 − pα−1 + 1

2

)
+
∑
i+j≡k
mod p

(1− δi,j)
]

=
3p2α + 2pα − p2

4
+ (1− δ)p2,

so that if δ ≤ 3p2+1
4p2

we are done.
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For 1 ≤ d ≤ pβ−1−1
2 , let PA,d = {A′i : A′i is an arithmetic progression of difference d}.

Clearly
∑

d |PA,d| ≤ p, and the same holds for PB,d. Then by Cauchy-Schwarz we have

δp2 =
∑
i∈Zp

∑
j∈Zp

∑
d

χ((A′i, B
′
j) ∈ PA,d × PB,d)

=
∑
d

∑
i∈Zp

∑
j∈Zp

χ((A′i, B
′
j) ∈ PA,d × PB,d)

=
∑
d

|PA,d||PB,d|

≤ max
d

(|PA,d||PB,d|)
1
2

(∑
d

|PA,d|
∑
d

|PB,d|

) 1
2

≤ max
d

(|PA,d||PB,d|)
1
2 p.

Without loss of generality, after a dilation if necessary we can assume that maxd(|PA,d||PB,d|)
1
2 =

(|PA,1||PB,1|)
1
2 , since if A′i is an arithmetic progression of difference d not coprime with p,

then we would find two elements in A′i congruent modulo pα−1, but this cannot happen

in a digital set.

Let εA = |PA,1|/p and εB = |PB,1|/p, P̃A = {Ai : A′i ∈ PA,1}, P̃B = {Bj : B′j ∈ PB,1}.
Hence

δ ≤
√
εAεB.

So, if
√
εAεB ≤ 3p2+1

4p2
we are done.

Suppose this does not hold, so that 3p2+1
4p2

<
√
εAεB ≤ εA+εB

2 . For A′i ∈ PA,1, B′j ∈
PB,1 let

Ai = ui + p ·
[
−p

α−1 − 1

2
,
pα−1 − 1

2

]
, Bj = vj + p ·

[
−p

α−1 − 1

2
,
pα−1 − 1

2

]
for some ui ∈ i+ 〈p〉, vj ∈ j + 〈p〉. Let

U = {ui : A′i ∈ PA,1}, V = {vj : B′j ∈ PB,1},

and IA, IB be the images respectively of U and V under the canonical projection π :

Zpβ → Zp. For k ∈ Zp, let rk = rIA+IB (k). Since |IA|+ |IB| = p(εA + εB) ≥ p+ p+1
2 , we

have p+1
2 ≤ rk ≤ p for all k.

Let

f(k) =
p+ 1

2

pα−1 + 1

2
+

(
rk −

p+ 1

2

)
pα−1 − 1

2
= rk

pα−1 − 1

2
+
p+ 1

2
.
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Then we can split∑
x∈Z

pβ

min

(
pα + 1

2
, rA+B(x)

)
≥
∑
k∈Zp

∑
x∈k+〈p〉

[
min

(
f(k), rPÃ+PB̃

(x)
)

(2.8.5)

+ min

(
pα + 1

2
− f(k), r̃(x)

)]
,

where r̃(x) = r(A\PÃ)+PB̃
(x) + rPÃ+(B\PB̃)(x) + r(A\PÃ)+(B\PB̃)(x).

Lemmas 2.8.4 and 2.8.5 below give bounds for the first part of the summation in

(2.8.5), while Lemma 2.8.6 provides a bound for the second part.

Using the fact that the representation function of the sum of two intervals A′i, B
′
j is

triangular-shaped, we can indeed prove the following.

Lemma 2.8.4. Let k ∈ Zp and, with the notation above, let xk be the element in

k + 〈p〉 ⊆ Zpβ which maximizes rU+V (xk). Then

∑
x∈k+〈p〉

min(f(k), rPA+PB (x)) ≥rk
(

3p2α−2 − 2pα−1 − 1

4

)
+
pα + pα−1

2

+ min

(
rk −

p+ 1

2
, rk − rU+V (xk)

)
.

Proof. Fix k. After a translation we can assume xk = 0 and let R = rU+V (0). Recall

that for A′i ∈ PA,1 and B′j ∈ PB,1 the representation functions of A′i + B′j is triangular-

shaped, i.e., it is a translation of the function ψ(x) = max(0, pα−1− |x|). For yi ∈ Zpβ−1

let ψyi(x) = ψ(x− yi). Then

(2.8.6)
∑

x∈k+〈p〉

min(f(k), rPÃ+PB̃
(x)) =

∑
x∈Z

pβ−1

min

f(k),
∑

i∈IA,j∈IB
i+j≡k
mod p

rA′i+B′j (x)

 .

To get the desired bound for (2.8.6) we minimize

(2.8.7) S(Pk) =
∑

x∈Z
pβ−1

min

(
f(k),

rk∑
i=1

ψyi(x)

)
,

where Pk ranges over all possible multisets of rk elements y1, . . . , yrk ∈ Zpβ−1 with the

condition that R yi’s are equal. Without loss of generality, up to a translation, we can

assume that those R points are equal to 0.

First of all, we compute S(P̄k,a,b) for

P̄k,a,b = {−1, . . . ,−1︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
R

, 1, . . . , 1︸ ︷︷ ︸
b

},
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with the conditions that a + R + b = rk and a + R, b + R ≥ rk/2, which imply that

a, b ≤ rk/2. In this case, we have

rk∑
i=1

ψyi(x) =



a if x = −pα−1,

a(pα−1 + x+ 1) +R(pα−1 + x) + b(pα−1 + x− 1) if x ∈ [−pα−1 + 1,−1],

a(pα−1 − 1) +Rpα−1 + b(pα−1 − 1) if x = 0,

a(pα−1 − x− 1) +R(pα−1 − x) + b(pα−1 − x+ 1) if x ∈ [1, pα−1 − 1],

b if x = pα−1.

For x ∈ [1, pα−1 − 1] we have
∑rk

i=1 ψyi(x) ≥ f(k) if and only if

1 ≤ x ≤ pα−1 + 1

2
+

2(b− a)− p− 1

2rk
.

We have 2(b−a)−p−1
2rk

∈ (−2, 0), since b− a ≤ b ≤ rk/2 ≤ p−1
2 < p

2 and rk ≥ p+1
2 .

Case 1: 2(b−a)−p−1
2rk

∈ (−2,−1).

Since −p+1
2rk
∈ [−1, 0), this can happen only if a > b. In this case, for x ∈ [1, pα−1−1],

we have
∑rk

i=1 ψyi(x) ≥ f(k) if and only if x ≤ pα−1−3
2 . Hence

∑
x∈[1,pα−1]

min

(
f(k),

rk∑
i=1

ψyi(x)

)
=f(k)

pα−1 − 3

2
+

pα−1−1∑
x= pα−1−1

2

(−rkx+ pα−1rk + b− a) + b

=f(k)
pα−1 − 3

2
+
pα−1 + 1

2
(b− a+ pα−1rk)

− rk
2

3p2α−2 − 3

4
+ b.

Case 2: 2(b−a)−p−1
2rk

∈ [−1, 0).

In this case, for x ∈ [1, pα−1 − 1], we have
∑rk

i=1 ψyi(x) ≥ f(k) if and only if x ≤
pα−1−1

2 . Hence

∑
x∈[1,pα−1]

min

(
f(k),

rk∑
i=1

ψyi(x)

)
=f(k)

pα−1 − 1

2
+

pα−1−1∑
x= pα−1+1

2

(−rkx+ pα−1rk + b− a) + b

=f(k)
pα−1 − 1

2
+
pα−1 − 1

2
(b− a+ pα−1rk)

− rk
2

3p2α−2 − 4pα−1 + 1

4
+ b.

The same argument gives a similar computation for
∑

x∈[−pα−1,−1]

∑rk
i=1 ψyi(x),

where the roles of a and b are exchanged.
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Since we cannot fall into Case 1 both for [−pα−1,−1] and [1, pα−1], a simple com-

putation shows that, if we fall into Case 1 for [1, pα−1] and Case 2 for [−pα−1,−1], we

have ∑
x∈[−pα−1,pα−1]

min

(
f(k),

rk∑
i=1

ψyi(x)

)
=rk

(
3p2α−2 − 2pα−1 − 1

4

)
+
pα + pα−1

2

+ rk −
p+ 1

2
+ 2b

≥rk
(

3p2α−2 − 2pα−1 − 1

4

)
+
pα + pα−1

2

+ rk −
p+ 1

2
,

whereas, if we fall in Case 2 both for [1, pα−1] and [−pα−1,−1], then

∑
x∈[−pα−1,pα−1]

min

(
f(k),

rk∑
i=1

ψyi(x)

)
=rk

(
3p2α−2 − 2pα−1 − 1

4

)
+
pα + pα−1

2

+ a+ b

=rk

(
3p2α−2 − 2pα−1 − 1

4

)
+
pα + pα−1

2

+ rk −R,

thus proving the lemma in this particular case.

We now show not that for any multiset Pk = {y1, . . . , yrk} with R equal elements,

we have S(Pk) ≥ S(P̄k,a,b) for some choices of a, b.

Observe first of all that if x̄ ∈ Zpβ−1 satisfies
∑rk

i=1 ψyi(x̄) > f(k), then

f(k) = rk
pα−1 − 1

2
+
p+ 1

2
<

∑
y∈Pk:

x̄∈suppψy

ψy(x̄)

≤ pα−1 · |{y ∈ Pk : x̄ ∈ supp(ψy)}|,

so that

|{y ∈ Pk : x̄ ∈ supp(ψy)}| ≥
rk
2

+
p+ 1− rk

2pα−1
>
⌊rk

2

⌋
.

Since {y ∈ Pk : x̄ ∈ supp(ψy)} ⊆ [x̄ − (pα−1 − 1), x̄ + (pα−1 − 1)], this implies that if

x ∈ Zpβ−1 satisfies
∑rk

i=1 ψyi(x) > f(k), then x ∈ [x̄ − 2(pα−1 − 1), x̄ + 2(pα−1 − 1)].

Hence, if Pk = {y1, . . . , yrk} is such that S(Pk) is minimal, then we can assume that

supp (
∑rk

i=1 ψyi) ⊆ [x̄ − 4(pα−1 − 1), x̄ + 4(pα−1 − 1)], since if this does not happen, we

can take any y 6∈ [x̄ − 3(pα−1 − 1), x̄ + 3(pα−1 − 1)] and replace it with an element in

[x̄− 3(pα−1 − 1), x̄+ 3(pα−1 − 1)] to obtain a multiset P ′k with S(P ′k) ≤ S(Pk).
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Note that [x̄ − 4(pα−1 − 1), x̄ + 4(pα−1 − 1)] ( Zpβ−1 with the exception of a finite

number of choices of (p, α, β), where the conclusions of the lemma can be easily checked,

and hence we have that either there exists no element x ∈ Zpβ−1 with
∑rk

i=1 ψyi(x) > f(k),

and so we get the trivial bound rkp
2α−2 in (2.8.6) and the lemma is trivially true, or we

can assume supp (
∑rk

i=1 ψyi) ( Zpβ−1 .

Suppose we are in the latter case, so that we can assume supp (
∑rk

i=1 ψyi) ⊆ I, where

I is an interval different from the whole Zpβ−1 , and so for x1, x2 ∈ I, x1 < x2 has the

obvious meaning.

Let σ(x) =
∑rk

i=1 ψyi(x). Consider the minimal element y1 ∈ Pk, say with multeplic-

ity m1, and consider the multiset P ′k obtained from Pk by translating y1 to y1 + 1, i.e.,

P ′k = {y′i}, with

y′i =

yi + 1 if yi = y1,

yi otherwise.

We will show that S(P ′k) ≤ S(Pk), which is equivalent, for σ′(x) =
∑rk

i=1 ψy′i(x), to

∑
x∈Z

pβ−1

max(σ′(x)− f(k), 0)−max(σ(x)− f(k), 0) ≥ 0.

If σ(x) < f(k) for all x ≤ y1 the claim holds, since then for all x ∈ Zpβ−1 σ(x) < f(k) or

σ′(x) ≥ σ(x).

Let t̄ be the largest nonnegative integer such that σ(y1 − t̄) > f(k). If t̄ = 0, the

claim holds since σ(y1 + 1) +m1 ≥ σ(y1).

Let t̄ > 0 and M = |{y ∈ Pk : y 6= y1, y1 − t̄ ∈ supp(ψy)}|. Then the following hold:

1. σ(y1 + t) ≥ σ(y1 − t) + 2M for t ∈ [1, t̄+ 1],

2. σ(y1 − t) ≥ σ(y1 − t− 1) +m1 +M for t ∈ [0, t̄],

3. σ(y1 − t̄) = σ(y1 − t̄− 1) +M +m1.

Case 1: σ′(y1 − t̄) = σ(y1 − t̄)−m1 ≥ f(k).

In this case we have σ(y1 + t̄+1) ≥ σ(y1− t̄−1)+2M = σ(y1− t̄)−m1 +M ≥ f(k).

Hence for all x ∈ [y1 − t̄, y1 + t̄+ 1] we have σ(x), σ′(x) ≥ f(k) and so

∑
x∈[y1−t̄,y1+t̄+1]

max(0, σ′(x)−f(k))−max(0, σ(x)−f(k)) =
∑

x∈[y1−t̄,y1]

−m1+
∑

x∈(y1,y1+t̄+1]

m1 = 0.

Case 2: σ′(y1 − t̄) = σ(y1 − t̄)−m1 < f(k).
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Since, arguing as above, σ(y1 + t̄+ 1) +m1 ≥ σ(y1 − t̄) ≥ f(k), we have∑
x∈[y1−t̄,y1+t̄+1]

max(0, σ′(x)− f(k))−max(0, σ(x)− f(k)) = −σ(y1 − t̄) + f(k)

+
∑

x∈[y1−t̄+1,y1]

−m1 +
∑

x∈(y1,y1+t̄]

m1

+ σ(y1 + t̄+ 1) +m1 − f(k)− τ ≥ 0,

where

τ =

0 if σ(y1 + t̄+ 1) < f(k),

σ(y1 + t̄+ 1)− f(k) otherwise.

In both cases we have S(P ′k) ≤ S(Pk) since for all x 6∈ [y1− t̄, y1 + t̄+ 1] σ(x) < f(k)

or σ′(x) ≥ σ(x).

Suppose that R > rk/2.

Say we have a elements y ∈ Pk, y < 0 and b elements y ∈ Pk, y > 0. Then, iterating

the shifting procedure explained above, which has an obvious equivalent for the maximal

element of Pk, if we replace those a elements with y′ = −1 and those b elements with

y′ = 1, we recover a translate of the multiset P̄k,a,b with a + b = rk − R and we have

S(P̄k,a,b) ≤ S(Pk), so that the conclusion of the lemma holds.

Suppose that R ≤ rk/2. Then all y ∈ Pk have multiplicity ≤ rk/2, and, with the

shifting procedure explained above, we iteratively shift the minimal element y1 of Pk,
and we stop when y1 + 1 = y2, y1 < y2 with multiplicity respectively m1 and m2 and

m1 + m2 ≤ rk/2. We do the same thing for the maximal element of Pk, and we end

up with a new multiset P ′k with S(P ′k) ≤ S(Pk) having at most three distinct elements,

each with multiplicity ≤ rk/2. Indeed, since the sum of the first two consecutive distinct

elements in P ′k is > rk/2, the sum of the multiplicities of the remaining elements must

be ≤ rk/2, and so, if there is more than one of these elements, we could certainly shift

the maximal element at least one more time to the left.

This new multiset P ′k is equal, up to a translation, to P̄k,a,b for some a, b satisfying

a, b ≤ rk/2 and R′ = rk − a− b ≤ rk/2.

Since

min

(
rk −

p+ 1

2
, rk −R′

)
= rk −

p+ 1

2
= min

(
rk −

p+ 1

2
, rk −R

)
,

the conclusion follows from the computation at the beginning of the proof.

To sum the contributions given by Lemma 2.8.4, we need the following:

Lemma 2.8.5.

(2.8.8)
∑
k∈Zp

min

(
rk −

p+ 1

2
, rk − rU+V (xk)

)
≥ p+ 1

2

(
(εA + εB)p− 3p+ 1

2

)
.
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Proof. Let {R1, . . . , Rl} = {rU+V (xk) : rU+V (xk) > (p+ 1)/2}.
Since rU+V (x) ≤ p for all x, we have that R1, . . . , Rl are the l highest values among

{rU+V (x) : x ∈ Zpβ}.
Since U and V have the Chowla property, we have

|U ||V | − p+ 1

2

(
|U |+ |V | − p+ 1

2

)
≥ |U ||V | −

p+1
2∑
i=1

|U +i V |

=

min(|U |,|V |)∑
i= p+3

2

|U +i V |

=
∑
x∈Z

pβ

max

(
rU+V (x)− p+ 1

2
, 0

)

= −l p+ 1

2
+

l∑
k=1

Rk

Recalling that
∑

k∈Zp rk = |U ||V | = εAεBp
2, we have

∑
k∈Zp

min

(
rk −

p+ 1

2
, rk − rU+V (xk)

)
=

∑
k:rU+V (xk)≤ p+1

2

(
rk −

p+ 1

2

)
+

∑
k:rU+V (xk)> p+1

2

(rk − rU+V (xk))

≥
∑
k∈Zp

rk − (p− l)p+ 1

2
− l p+ 1

2
− εAεBp2

+
p+ 1

2

(
(εA + εB)p− p+ 1

2

)
=
p+ 1

2

(
(εA + εB)p− 3p+ 1

2

)
as required.

Lemma 2.8.6.

∑
k∈Zp

∑
x∈k+〈p〉

min

(
pα + 1

2
− f(k), r̃(x)

)
≥ εA(1− εB)p2

(
3p2α−2 − 2pα−1 − 1

4
+ 1

)

+ (1− εA)εBp
2

(
3p2α−2 − 2pα−1 − 1

4
+ 1

)
+ (1− εA)(1− εB)p2

(
3p2α−2 − 2pα−1 − 1

4

)
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Proof. Since for every k we have pα+1
2 − f(k) = (p− rk)

(
pα−1−1

2

)
, we can compute∑

k∈Zp

∑
x∈k+〈p〉

min

(
pα + 1

2
− f(k), r̃(x)

)
≥
∑
k∈Zp

∑
i 6∈IA,j∈IB
i+j≡k
mod p

min

(
pα−1 − 1

2
, rA′i+B′j (x)

)

+
∑

i∈IA,j 6∈IB
i+j≡k
mod p

min

(
pα−1 − 1

2
, rA′i+B′j (x)

)

+
∑

i 6∈IA,j 6∈IB
i+j≡k
mod p

min

(
pα−1 − 1

2
, rA′i+B′j (x)

)
.

Using the inductive hypothesis to get a bound better then the one coming from Pollard’s

inequality whenever we consider the sumset A′i +B′j with i 6∈ IA, j ∈ IB or viceversa, we

get the desired bound.

Using Lemmas 2.8.5 and 2.8.6 we can finish the proof of the Theorem 2.8.2:

(2.8.9)∑
x∈Z

pβ

min

(
pα + 1

2
, rA+B(x)

)
≥
∑
k∈Zp

∑
x∈k+〈p〉

[
min

(
f(k), rPÃ+PB̃

(x)
)

+ min

(
pα + 1

2
− f(k), r̃(x)

)]

≥εAεBp2

(
3p2α−2 − 2pα−1 − 1

4

)
+ p

pα + pα−1

2

+
p+ 1

2

(
(εA + εB)p− 3p+ 1

2

)
+ εA(1− εB)p2

(
3p2α−2 − 2pα−1 − 1

4
+ 1

)
+ (1− εA)εBp

2

(
3p2α−2 − 2pα−1 − 1

4
+ 1

)
+ (1− εA)(1− εB)p2

(
3p2α−2 − 2pα−1 − 1

4

)
≥
(

3p2α + 2pα − 1

4

)
+ p2

(
εA + εB

2
+ εA(1− εB) + εB(1− εA)− 1

)
+ p

(
εA + εB

2
− 1

)
.

Since

p2

(
εA + εB

2
+ εA(1− εB) + εB(1− εA)− 1

)
+ p

(
εA + εB

2
− 1

)
≥ p2

(
− 2εAεB + 3

√
εAεB)− 1

)
+ p

(
√
εAεB − 1

)
,



2.8 Frequency of carries 69

and x2(−2p2) + x(3p2 + p) − p2 − p ≥ 0 for 1 ≥ x ≥ (p + 1)/2p, the conclusion holds

since we assumed
√
εAεB > (3p2 + 1)/4p2 ≥ (p+ 1)/2p.

This concludes the proof of (ii).

To prove (iv), notice that, in order to have equality in (iv), from (2.8.9) we must

have εAεB = 1, so that every A′i and B′j is an arithmetic progression of the same common

difference d, (d, p) = 1, and after a dilation if necessary we can assume d = 1. Moreover,

by Theorem 2.6.4, since we must also have equality in (2.8.8), we have that both U

and V are arithmetic progressions of the same common difference d′, (d′, p) = 1, say

U = {u0, u1 = u0 + d′, . . . , up−1 = u0 + (p− 1)d′} and V = {v0, v1 = v0 + d′, . . . , vp−1 =

v0 + (p− 1)d′}.
From the proof of part (ii), since u0 + v0 ≡ u1 + vp−1 modulo p, we deduce that

pd′ ≡ ±p modulo pβ, so that d′ ≡ ±1 modulo pβ−1, and A is an arithmetic progressions

of difference d′, starting either from u0 − pα−p
2 or u0 + pα−p

2 , and the same holds for B,

thus completing the proof of the theorem.

We are left to study the case of p = 2, which is way easier and forms the following

theorem:

Theorem 2.8.7. Let A,B ⊆ Z2β be digital sets, |A| = |B| = 2α, with 0 < α < β. Then

(i) S
(
A,B, 2α−1

)
≥ 22α − 22α−2,

(ii) S
(
A,B, 2α−1

)
= 22α− 22α−2 if and only if A and B are arithmetic progressions of

the same common difference.

Proof. The proof goes by induction of α, for all β > α. For α = 1 the claim holds.

Suppose α ≥ 2.

Let

A0 = A ∩ 〈2〉, A1 = A ∩ (1 + 〈2〉),

B0 = B ∩ 〈2〉, B1 = B ∩ (1 + 〈2〉).

Then, A′i = Ai−i
2 ⊆ Z2β−1 , B′j =

Bj−i
2 ⊆ Z2β−1 are digital sets of cardinality 2α−1 in

Z2β−1 , and thanks to the induction hypothesis we have∑
x∈Z

2β

min
(
2α−1, rA+B(x)

)
≥
∑
x∈〈2〉

min
(
2α−2, rA0+B0(x)

)
+ min

(
2α−2, rA1+B1(x)

)
+

∑
x∈1+〈2〉

min
(
2α−2, rA0+B1(x)

)
+ min

(
2α−2, rA1+B0(x)

)
≥4 · 2α−2(2α − 2α−2)

=22α − 22α−2
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as required.

Moreover, by the induction hypothesis, equality holds in the chain of inequalities

above if and only if A′0, A
′
1, B

′
0, B

′
1 are arithmetic progressions of the same common

difference. A simple analysis shows that the only possibility for A and B to achieve the

equality S
(
A,B, 2α−1

)
= 22α−22α−2 under this additional condition is that both A and

B are arithmetic progression of the same common difference as claimed.

Arguing as in the proof of Theorem 1.2.3, Theorems 2.8.2 and 2.8.7 allow us to

generalize such result to the case of digital sets A ⊆ Zpβ of cardinality pα, proving that

such sets induce at least bpα/4c carries, with equality holding if and only if A is a dilation

of [−(pα−1− 1)/2, (pα−1− 1)/2] by a factor d coprime with p if p is odd, or a dilation of

[−2α−1, 2α−1) or (−2α−1, 2α−1] by an odd factor d if p = 2.

As far as the general problem of bounding C2(A) for digital sets A ⊆ Zq, |A| = m,

is concerned, in [10] we can find a first bound of this type in the form of the following

theorem, valid for generic groups.

Theorem 2.8.8 (Diaconis, Shao and Soundararajan). Let X be coset representatives

for a normal, finite index subgroup H in a group G. If

C2(X) ≤ 2

9

then there is a subgroup K with HK = G and H ∩K = {1}.

The constant 2/9 here is the best one can obtain without any specification of the

cardinality of X, as can be seen by taking balanced coset representatives for 3Z ⊆ Z (or

3Z9 ⊆ Z9).

Their proof is based on the use of approximate homomorphisms, and in particular

on a result of Ben-Or, Coppersmith, Luby and Rubinfeld in [4], which states, roughly

speaking, that any map between groups which, in some sense, behaves like a true ho-

momorphism, actually coincides with a genuine homomorphism on a large subset of the

starting group. However, the aforementioned result is tight and thus cannot be improved

to get a bound better than 2/9 in Theorem 2.8.8.

Anyway, thanks to Theorem 2.8.2 we can improve this result, obtaining an asymp-

totically optimal bound for C2(A) in the general case, which is the statement in Theorem

B, presented here once more for the reader’s convenience.

Theorem 2.8.9. Let q and m be positive integers composed of the same primes such

that the exponent of each prime in q is strictly greater than in m. Let A ⊆ Zq be a

digital set with |A| = m. Let pα = max{pαii : pi prime, pαii |m} and δm = 1 if m is odd

and δm = 1 if m is even. Then

C2(A) ≥ µ(m),
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where

µ(m) =


1−1/p2α−2/pα+δm2/m

4 if p is odd,

1
4 if p = 2.

In particular,

lim
m→+∞

min
|A|=m

C2(A) =
1

4
.

Proof. Let m = m′pα for pα = max{pαii : pi prime, pαii |m}, and Ai = A ∩ i + 〈m′〉
for i = 0, . . . ,m′ − 1. Writing A = {aj}j=0,...m−1, where aj ≡ j mod m for all j =

0, . . . ,m − 1, then for all i, Ai = {ai, ai+m′ , . . . , ai+(pα−1)m′}, and so |Ai| = pα. Then

A′i := Ai−i
m′ ⊆ Zq/m′ , since Ai−i ⊆ m′Zq ' Zq/m′ . Moreover, for x, y ∈ A′i, we have x 6≡ y

modulo pα, for otherwise we would have i + m′x, i + m′y ∈ A with i + m′x ≡ i + m′y

mod m, which contradicts the fact that A is a digital set. Hence A′i ⊆ Zq/m′ is a digital

set for every i.

Consider the projection π : Zq/m′ → Zpβ , where pβ is the highest power of p dividing

q/m′, β > α.

We have that |A′i| = pα = |π(A′i)|, and still for x, y ∈ A′i, we have π(x) 6≡ π(y)

modulo pα, so that π(A′i) is, once again, a digital set for every i.

Case 1: p odd.

Using Theorem 2.8.2 and Lemma 2.8.3, we have

∑
x∈Zq

min

(
pα − 1

2
, rAi+Aj (x)

)
=

∑
x∈Zq/m′

min

(
pα − 1

2
, rA′i+A′j (x)

)

=
∑
y∈Z

pβ

∑
x∈π−1(y)

min

(
pα − 1

2
, rA′i+A′j (x)

)

≥
∑
y∈Z

pβ

min

pα − 1

2
,
∑

x∈π−1(y)

rA′i+A′j (x)


=
∑
y∈Z

pβ

min

(
pα − 1

2
, rπ(A′i)+π(A′j)

(y)

)

≥ 3p2α − 2pα − 1

4
.



72 Carries in Zq

Using this inequality and Lemma 2.8.3, we have

∑
x∈Zq

min
(⌊m

2

⌋
, rA+A(x)

)
=

m′−1∑
k=0

∑
x∈k+〈m′〉

min
(⌊m

2

⌋
, rA+A(x)

)

=
m′−1∑
k=0

∑
x∈k+〈m′〉

min

⌊m2 ⌋ , ∑
i+j≡k
modm′

rAi+Aj (x)


≥

m′−1∑
k=0

∑
x∈k+〈m′〉

∑
i+j≡k
modm′

min

(
pα − 1

2
, rAi+Aj (x)

)

≥ m′2 3p2α − 2pα − 1

4
=

3m2 − 2m2/pα −m′2

4
,

so that

3m2 − 2m2/pα −m2/p2α

4
≤

∑
x∈A+A

min
(⌊m

2

⌋
, rA+A(x)

)
≤

∑
x∈(A+A)∩A

⌊m
2

⌋
+

∑
x∈(A+A)\A

rA+A(x)

and thus ∑
x∈(A+A)\A

rA+A(x) ≥ m2 1− 1/p2α − 2/pα + δm2/m

4
,

where δm = 1 if m is odd and δm = 0 if m is even.

Case 2: p = 2.

Using Theorem 2.8.7, we have

∑
x∈Zq

min
(
2α−1, rAi+Aj (x)

)
=

∑
x∈Zq/m′

min
(

2α−1, rA′i+A′j (x)
)

=
∑

y∈Z2α+1

∑
x∈π−1(y)

min
(

2α−1, rA′i+A′j (x)
)

≥
∑
y∈Z

2β

min

2α−1,
∑

x∈π−1(y)

rA′i+A′j (x)


=
∑
y∈Z

2β

min
(

2α−1, rπ(A′i)+π(A′j)
(y)
)

≥ 22α − 22α−2.
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Using this inequality and Lemma 2.8.3, we get∑
x∈Zq

min
(m

2
, rA+A(x)

)
=

m′−1∑
k=0

∑
x∈k+〈m′〉

min
(m

2
, rA+A(x)

)

=

m′−1∑
k=0

∑
x∈k+〈m′〉

min

m2 , ∑
i+j≡k
modm′

rAi+Aj (x)


≥

m′−1∑
k=0

∑
x∈k+〈m′〉

∑
i+j≡k
modm′

min
(
2α−1, rAi+Aj (x)

)

m′2(22α − 22α−2) =
3m2

4
.

Then we get

3m2

4
≤

m
2∑
i=1

|A+i A|

=
∑

x∈A+A

min
(m

2
, rA+A(x)

)
≤

∑
x∈(A+A)∩A

m

2
+

∑
x∈(A+A)\A

rA+A(x)

and so ∑
x∈(A+A)\A

rA+A(x) ≥ m2

4
.

Since
∑

x∈(A+A)\A rA+A(x) counts the couples (a1, a2) ∈ A×A such that a1+a2 6∈ A,

i.e. the number of occurrences of carries induced by A, we get the desired conclusion.

For an integer m let ϕ(m) = max{pαii : pi prime, pαii |m} be the largest prime power

dividing m, ψ(m) be the largest prime dividing m and ω(m) be the function counting the

number of distinct prime factors in m. It’s easy to see that ϕ(m) → ∞ as m → ∞. In

fact, suppose this does not hold, and let {mi} be an increasing sequence of integers with

ϕ(mi) ≤ L for all i. Then, if ω(mi) → ∞, so does ψ(mi), and consequently the same

holds for ϕ(mi), a contradiction. On the other hand, if, up to subsequences, ω(mi) ≤M
for all mi, then clearly mi ≤ ω(mi)ϕ(mi) ≤ LM , which does not go to infinity, thus

leading to a contradiction.

Then, since balanced digital sets of cardinality m induce
⌊
m2/4

⌋
carries and the

function µ(m) tends to 1/4 as m goes to infinity, we have⌊
m2

4

⌋
1

m2
≥ min
|A|=m

C2(A) ≥ µ(m) −→ 1

4
for m −→∞,

thus completing the proof of the theorem.





Part II

A generalization of sumsets

modulo a prime
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Chapter 3

Preliminaries

In this part of the thesis we present a work on generalized sumsets in cyclic groups,

published on Journal of Number Theory [24].

Let A = {a1, . . . , ak} be a set of k elements in an abelian group G.

Given integers h, r ≥ 1 define

h(r)A =

{
k∑
i=1

riai : 0 ≤ ri ≤ r for i = 1, . . . , k and
k∑
i=1

ri = h

}
.

Note that the usual sumsets

hA = {aj1 + · · ·+ ajh : aji ∈ A ∀i = 1, . . . , h}

and the restricted sumsets

hˆA = {aj1 + · · ·+ ajh : aji ∈ A ∀i = 1, . . . , h, ajx 6= ajy for x 6= y}

can be recovered from this notation, since hA = h(h)A and hˆA = h(1)A.

In this chapter we present the direct and inverse problems related to generalized

sumsets in Z and Zp.
Observe that the set h(r)A is empty if h > rk, so we will always assume h ≤ rk.

Moreover, we have a natural bijection

(3.0.1) Φ : h(r)A→ (rk − h)(r)A,

defined by
k∑
i=1

riai 7→
k∑
i=1

(r − ri)ai.

Hence we have the equality

(3.0.2) |h(r)A| = |(rk − h)(r)A|.
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When G = Z lower bounds for the cardinality of sumsets and restricted sumsets

are well-known. In this setting, the problem of giving lower bounds for the cardinality

of h(r)A for nontrivial values of h, r and k has been studied in [23], where the authors

proved the following theorem holding for subsets of the integers.

Theorem 3.0.10 (Mistri-Pandey). Let h, r be nonnegative integers, h = mr + ε, 0 ≤
ε ≤ r− 1. Let A be a nonempty finite set of integers with |A| = k such that 1 ≤ h ≤ rk.

Then

(3.0.3) |h(r)A| ≥ hk −m2r + 1− 2mε− ε.

In the first section of this part of the thesis we give a different proof of Theorem

3.0.10.

The lower bound in Theorem 3.0.10 is the best one possible, since any arithmetic

progression satisfies equality in (3.0.3): the problem is clearly invariant by translation

and dilation, so without loss of generality we can take A = {0, 1, . . . , k − 1}. Then we

have

min(h(r)A) =
m−1∑
i=0

ri+ εm = r
m(m− 1)

2
+ εm,

max(h(r)A) =

k−1∑
i=k−m

ri+ ε(k −m− 1) = r
m(2k −m− 1)

2
+ ε(k −m− 1),

so that

h(r)A ⊆ [r
m(m− 1)

2
+ εm, r

m(2k −m− 1)

2
+ ε(k −m− 1)],

and so

|h(r)A| ≤ hk −m2r + 1− 2mε− ε.

On the other hand, since A satifies (3.0.3), the inequality above is actually an equality.

It turns out that, after excuding some particular cases, this is the only case when

equality in (3.0.3) holds, as shown by the authors in [23], who proved the following

inverse problem related to h(r)A:

Theorem 3.0.11 (Mistri-Pandey). Let k ≥ 5. Let r and h = mr + ε, 0 ≤ ε ≤ r − 1 be

integers with 2 ≤ r ≤ h ≤ rk − 2. Then any set of k integers A such that

(3.0.4) |h(r)A| = hk −m2r + 1− 2mε− ε

is a k-term arithmetic progression.

A generalization of these results for Z can be found in [33], where Yang and Chen

fix a k-tuple of nonnegative integers r = (r1, r2, . . . , rk) and, defining

h(r)A =

{
k∑
i=1

riai : 0 ≤ ri ≤ r for i = 1, . . . , k and

k∑
i=1

ri = h

}
,
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they prove direct and inverse theorems for h(r)A.

Let
∑b

x=a f(x) = 0 whenever a > b, and let Ir(h) be the largest integer and Mr be

the least integer such that

Ir(h)∑
i=1

ri ≤ h,
k∑

i=Mr(h)+2

ri ≤ h,

and let

δr(h) = h−
Ir(h)∑
i=1

ri, θr(h) = h−
k∑

i=Mr(h)+2

ri.

For the values defined above, let

L(r, h) =

k∑
i=Mr(h)+2

(i− 1)ri −
Ir(h)∑
i=1

(i− 1)ri +Mr(h)θr(h)− Ir(h)δr(h) + 1.

Theorem 3.0.12 (Yang-Chen). Let A = {a1 < a2 < · · · < ak} be a set of integers,

r = (r1, r2, . . . , rk) be an ordered k-tuple of nonnegative integers and h be an integer

with

2 ≤ h ≤
k∑
i=1

ri.

Then

(3.0.5) |hrA| ≥ L(r, h).

Observe that when r = (r, r, . . . , r), we recover the lower bound (3.0.3) of Theorem

3.0.10.

Moreover, this lower bound is the best possible since, once again, equality holds

whenever A is an arithmetic progression. Up to a few prescribed exceptions, arithmetic

progression are the only sets satisfying equality in (3.0.5):

Theorem 3.0.13 (Yang-Chen). Let k ≥ 5 be an integer, r = (r1, r2, . . . , rk) be an

ordered k-tuple of nonnegative integers and h be an integer with

2 ≤ h ≤
k∑
i=1

ri − 2.

If A is a set of k integers, then

|hrA| = L(r, h)

if and only if A is an arithmetic progression.

In the following sections we prove that a lower bound similar to (3.0.3) also holds

when G = Zp for a prime p:
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Theorem 3.0.14. Let h = mr + ε, 0 ≤ ε ≤ r − 1. Let A ⊆ Zp be a nonempty set with

|A| = k such that 1 ≤ r ≤ h ≤ rk. Then

|h(r)A| ≥ min(p, hk −m2r + 1− 2mε− ε).

In the last section we show how we can deduce Theorem 3.0.11 from the results in

the first sections and discuss the analogous problem in groups of prime order.



Chapter 4

Direct problem

4.1 A special case

Before proving Theorems 3.0.10 and 3.0.14 we deal with the case r|h. In this case, for

any group G, generalized sumsets can be build just using sumsets an restricted sumsets,

as shown by the following lemma.

Lemma 4.1.1. If h = mr, A ⊆ G, |A| = k and rk ≥ h ≥ 1 , then

h(r)A = r(mˆA).

Proof. Clearly r(mˆA) ⊆ h(r)A, since no element in A can be summed more than r times

in order to get an element of r(mˆA).

To prove the converse inclusion, take x ∈ h(r)A so that, after reordering the elements

of A if necessary, x =
∑l

i=1 r
(0)
i ai with 1 ≤ l ≤ k, 1 ≤ r

(0)
i ≤ r and

∑l
i=1 r

(0)
i = h. Let

also r
(0)
i = 0 for l + 1 ≤ i ≤ k.

We now describe an algorithm which shows how we can write x as an element in

r(mˆA).

If possible, for every j = 1, . . . , r take distinct elements r
(j−1)
j1

, . . . , r
(j−1)
jm

which are

greater or equal to the remaining r
(j−1)
s and define

xj =

m∑
i=1

aji ,

(4.1.1) r(j)
s =

r
(j−1)
s − 1 if s = ji for some i = 1, . . . ,m

r
(j−1)
s otherwise.

If we can apply this pocedure for every j = 1, . . . , r, then we can write x = x1 +

· · ·+ xr with xi ∈ mˆA, thus proving h(r)A ⊆ r(mˆA). To do this we need to prove that

at every step j = 1, . . . , r the following two conditions are satisfied:
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1. |{r(j−1)
i ≥ 1}i| ≥ m,

2. max1≤i≤k(r
(j)
i ) ≤ r − j.

Since
∑k

i=1 r
(0)
i = h = mr, the first condition holds for j = 1, and so we can define r

(1)
i as

in (4.1.1). Clearly maxi(r
(1)
i ) ≤ r− 1, for otherwise we could find m+ 1 distinct indexes

s such that r
(0)
s = r, which would imply

∑k
i=1 r

(0)
i ≥ (m+ 1)r > h, a contradiction.

Suppose now that condition (1) does not hold for every j ∈ [1, r], and let j′ be the

minimal j such that

|{r(j′−1)
i ≥ 1}| = N < m.

By what observed above we must have 2 ≤ j′ ≤ r. We have

r
(j′−2)
i


> 1 for a indexes, a ≤ N < m

= 1 for b indexes

= 0 for all the remaining k − a− b indexes,

so that N = a + b − (m − a) = 2a + b −m. By the minimality of j′ we also have that

a+ b ≥ m.

Next we show that condition (2) holds for all 0 ≤ j′′ ≤ j′− 2 ≤ r− 2. In fact, if this

does not happen, take the minimal j′′ ≤ j′ − 2 which fails to satisfy condition (2), i.e.

max
1≤i≤k

(r
(j′′)
i ) ≥ r − j′′ + 1.

By the minimality of j′′ we must have that r
(j′′−1)
i = r − (j′′ − 1) for at least m + 1

values of i, because of how the r
(j)
i are recursively defined in (4.1.1).

This implies that

h−m(j′′ − 1) =

k∑
i=1

r
(j′′−1)
i ≥ (m+ 1)(r − j′′ + 1) = h−m(j′′ − 1) + r − j′′ + 1,

a contradiction since r ≥ j′′.
Hence we have that for all 0 ≤ j′′ ≤ j′ − 2 condition (2) is satisfied, which means

maxi(r
(j′′)
i ) ≤ r − j′′.

In particular, since 2a+ b = N +m < 2m and a < m, we get

h−m(j′ − 2) =

k∑
i=1

r
(j′−2)
i

≤ a(r − (j′ − 2)) + b

< m(r − j′) + 2m

= h−m(j′ − 2),

a contradiction. Hence conditions (1) and (2) are satisfied for all j = 1, . . . , r.
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Clearly, Lemma 4.1.1 allows us to prove direct and inverse theorems for h(r)A if r|h,

in any group G where direct and inverse theorems for sumsets and restricted sumsets

are know. Moreover, from it we do not only get informations of the cardinality of h(r)A,

but also on its structure.

4.2 Direct problem in Z

Before proving Theorem 3.0.10, recall the following well-known results on the car-

dinality of sumsets and restricted sumsets.

Theorem 4.2.1. [26, Theorem 1.3] Let h ≥ 2. Let A be a nonempty finite set of integers

with |A| = k. Then

|hA| ≥ hk − h+ 1.

Theorem 4.2.2. [26, Theorem 1.9] Let 2 ≤ h ≤ k. Let A be a nonempty finite set of

integers with |A| = k. Then

|hˆA| ≥ hk − h2 + 1

Proof of Theorem 3.0.10. Let A = {a1 < a2 < · · · < ak}.
If ε = 0, it is enough to notice that r(mˆA) ⊆ h(r)A, which holds since no element in

A can be summed more than r times in order to get an element of r(mˆA). By Theorems

4.2.1 and 4.2.2, we then have

|h(r)A| ≥ |r(mˆA)| ≥ r|mˆA| − r + 1 ≥ hk −m2r + 1.

From now on, assume ε ≥ 1. From the condition rk ≥ h = mr+ ε we get k ≥ m+ 1.

We split the proof in two cases.

Case 1. m+ ε ≤ k.

In this case it is easy to see the inclusion

B := (r − 1)(mˆA) + (m+ ε)̂ A ⊆ h(r)A,

where both the summands are nonempty and h = (r−1)m+m+ ε. Then, by Theorems

4.2.1 and 4.2.2 we have

|h(r)A| = |B ∪ (h(r)A \B)|

≥ hk −m2r + 1− 2mε− ε2 + |h(r)A \B|.(4.2.1)

We can now estimate the cardinality of the remaining set observing that

min(h(r)A) = r
m∑
i=1

ai + εam+1,

minB = r

m∑
i=1

ai +

m+ε∑
i=m+1

ai.
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If we let

Sx,y = r

m∑
i=1

ai +

x∑
i=1

am+i + yam+x + (ε− x− y)am+x+1,

with x ∈ [1, ε− 1], y ∈ [0, ε− x], we have Sx,y ∈ h(r)A, and

S1,ε−1 < S1,ε−2 < S1,ε−3 < . . . < S1,0

< S2,ε−3 < S2,ε−4 < . . . < S2,0

. . .

< Sε−2,1 < Sε−2,0

< Sε−1,0.

All these elements, except for Sε−1,0, are in [min(h(r)A),minB − 1], thus

|(h(r)A \B) ∩ [min(h(r)A),minB − 1]| ≥
ε−1∑
i=1

i =
ε2 − ε

2
.

A symmetric argument gives

|(h(r)A \B) ∩ [maxB + 1,max(h(r)A)]| ≥
ε−1∑
i=1

i =
ε2 − ε

2
.

This, combined with Equation (4.2.1), gives the desired lower bound for |h(r)A|.
Case 2: m+ ε > k.

As already observed in [23], we have |h(r)A| = |(rk−h)(r)A|. Then, if r−1 ≤ m+ ε,

|h(r)A| = |(r(k −m− 1) + (r − ε))(r)A|,

and hence we can argue as in the first case to obtain the desired lower bound.

Suppose now r − 1 > m+ ε > k. Then

B = (m+ ε)((m+ 1)̂ A) + (r − 1−m− ε)(mˆA) ⊆ h(r)A

and again

|h(r)A| = |B ∪ (h(r)A \B)|

≥ hk −m2r + 1− 2mε− ε− (m2 +m) + |h(r)A \B|.(4.2.2)

Observe that

minB = (m+ ε)
m+1∑
i=1

ai + (r − 1−m− ε)
m∑
i=1

ai

= (r − 1)

m∑
i=1

ai + (m+ ε)am+1,

min(h(r)A) = r
m∑
i=1

ai + εam+1.
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If we let

Tx,y = (r − 1)
m∑
i=1

ai + εam+1 +
m∑

i=x,i 6=y
ai + xam+1,

with x ∈ [1,m], y ∈ [x,m], we have Tx,y ∈ h(r)A, and

min(h(r)A) < T1,m < T1,m−1 < . . . < T1,1

< T2,m < T2,m−1 < . . . < T2,2

. . .

< Tm−1,m < Tm−1,m−1

< Tm,m.

All these elements but Tm,m belong to [min(h(r)A),minB − 1], thus

|(h(r)A \B) ∩ [min(h(r)A),minB − 1]| ≥
m∑
i=1

i =
m2 +m

2
.

A symmetric argument gives

|(h(r)A \B) ∩ [maxB + 1,max(h(r)A)]| ≥
m∑
i=1

i =
m2 +m

2
,

thus leading, combined with (4.2.2), to the desired lower bound.

4.3 Direct problem in Zp

In order to prove Theorem 3.0.14, we apply the following analogues of Theorems

4.2.1 and 4.2.2 in Zp.

Theorem 4.3.1 (Cauchy-Davenport). Let h ≥ 1. Let A ⊆ Zp be a nonempty set of

residues modulo a prime p with |A| = k. Then

|hA| ≥ min(p, hk − h+ 1).

Theorem 4.3.2 (Erdős-Heilbronn). Let h ≥ 1. Let A ⊆ Zp be a nonempty set of

residues modulo a prime p with |A| = k. Then

|hˆA| ≥ min(p, hk − h2 + 1).

Theorem 4.3.2 was conjectured by Erdős and Heilbronn and proved in [11] by Da

Silva and Hamidoune and later, using the polynomial method, by Alon, Nathanson and

Ruzsa [2] .
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Proof of Theorem 3.0.14. The proof goes by induction on ε.

As in the proof of Theorem 3.0.10, the case ε = 0 follows from the inclusion r(mˆA) ⊆
h(r)A, since, thanks to Theorems 4.3.1 and 4.3.2, we have:

|h(r)A| ≥ |r(mˆA)| ≥ min(p, r|mˆA| − r + 1)

≥ min(p, rmin(p,mk −m2 + 1)− r + 1)

= min(p, hk − rm2 + 1),

where the last equality follows since if p ≤ mk−m2 +1 then, for r ≥ 1, p ≤ hk−rm2 +1.

Let now ε ∈ [1, r− 1]. From rk ≥ h = mr+ ε, we get k ≥ m+ 1, and so h−m− 1 =

m(r − 1) + ε− 1 = m(r − 1) + ε′ ≤ (m+ 1)(r − 1) ≤ k(r − 1).

We then have the following inclusion

(4.3.1) (m+ 1)̂ A+ (h−m− 1)(r−1)A ⊆ h(r)A,

where both summands are nonempty because of the inequalities above. Moreover, ε′ ∈
[0, r − 2], ε′ < ε and so, by the inductive hypothesis and Theorems 4.3.1 and 4.3.2, we

have

|h(r)A| ≥ |(m+ 1)̂ A+ (h−m− 1)(r−1)A|

≥ min(p, |(m+ 1)̂ A|+ |(h−m− 1)(r−1)A| − 1)

= min(p, hk −m2r − 2mε− ε+ 1).(4.3.2)

Since the inclusion (4.3.1) holds in any group, our proof, with the obvious modifica-

tions, still holds in any abelian group in which theorems similar to 4.3.1 and 4.3.2 hold.

See [20] for an extensive treatment of the subject. In particular, when adapted to Z,

this leads to yet another proof of Theorem 3.0.10.



Chapter 5

Inverse problem

From our proof of Theorem 3.0.10 it is easy to deduce the inverse theorem based on

the well-known results for sumsets and restricted sumsets:

Theorem 5.0.3. [26, Theorem 1.5] Let h ≥ 2. Let A1, A2, . . . , Ah be h nonempty finite

sets of integers. Then

|A1 + · · ·+Ah| = |A1|+ · · ·+ |Ah| − h+ 1

if and only if the sets A1, . . . , Ah are arithmetic progressions with the same common

difference.

Theorem 5.0.4. [26, Theorem 1.10] Let h ≥ 2. Let A be a nonempty finite set of

integers with |A| = k ≥ 5, 2 ≤ h ≤ k − 2. Then

|hˆA| = hk − h2 + 1

if and only if A is a k-term arithmetic progression.

Proof of Theorem 3.0.11. First of all observe that the hypotheses on h, r and k imply

that m ≤ k − 1.

Consider first the case r|h.

If m = 1, then h(r)A = r(r)A = rA, and Theorem 5.0.3 can be applied to obtain the

thesis.

Let m ≥ 2. Since ε = 0 and r(mˆA) ⊆ h(r)A, we have

h(k −m) + 1 = |h(r)A| ≥ |r(mˆA)| ≥ r|mˆA| − r + 1 ≥ h(k −m) + 1.

Hence all inequalities above are actually equalities. In particular, by Theorem 5.0.3,

mˆA must be an arithmetic progression.
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If m = k − 1, then

(5.0.1) (k − 1)̂ A =

{(
k∑
i=1

ai

)
− ak <

(
k∑
i=1

ai

)
− ak−1 < . . .

(
k∑
i=1

ai

)
− a1

}
,

and clearly this set is an arithmetic progression if and only if A is an arithmetic pro-

gression.

If 2 ≤ m ≤ k − 2 we can apply Theorem 5.0.4 to get the thesis.

Let now h = mr + ε, ε ∈ [1, r − 1].

For m = 0, we have h(r)A = ε(r)A = εA, and Theorem 5.0.3 is enough to finish the

proof. Recalling that (m+ 1)̂ A+ (h−m− 1)(r−1)A ⊆ h(r)A, from equation (3.0.4) and

Theorem 3.0.10 we have that

hk −m2r + 1− 2mε− ε = |h(r)A|

≥ |(m+ 1)̂ A+ (h−m− 1)(r−1)A|

≥ |(m+ 1)̂ A|+ |(h−m− 1)(r−1)A| − 1

≥ hk −m2r + 1− 2mε− ε.

Hence all inequalities above are actually equalities, and in particular we deduce that

|(m+ 1)̂ A| = (m+ 1)k − (m+ 1)2 + 1(5.0.2)

|(h−m− 1)(r−1)A| = (h−m− 1)k −m2(r − 1) + 1− 2m(ε− 1)− (ε− 1).(5.0.3)

Moreover, to deal with the case m = k − 2, we need to observe that by Theorem 5.0.3

both (m+1)̂ A and (h−m−1)(r−1)A are arithmetic progressions of the same difference.

By Theorem 5.0.4 we get the desired conclusion from (5.0.2) if 2 ≤ m + 1 ≤ k − 2.

Since we already know that m+ 1 ≤ k, only the cases m = k− 2 and m = k− 1 are left

to study.

If m = k − 2, as already observed, we have that (k − 1)̂ A = (m+ 1)̂ A must be an

arithmetic progression and, since (5.0.1) holds, we get the thesis.

If m = k − 1, then (h−m− 1)(r−1)A = (h− k)(r−1)A, and

|(h− k)(r−1)A| = |[(r − 1)k − h+ k](r−1)A| = |(r − ε)(r−1)A| = |(r − ε)A|

since r − ε ∈ [1, r − 1]. This, combined with Equation (5.0.3) and Theorem 5.0.3, gives

the desired conclusion.

As far as the inverse problem modulo a prime is concerned, in [19] the inverse

theorem of the Erdős-Heilbronn conjecture is proved.
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Theorem 5.0.5 (Károlyi). Let A be a set of residue classes modulo a prime p with

|A| = k ≥ 5, p > 2k − 3. Then

|2ˆA| = 2k − 3

if and only if A is a k-term arithmetic progression.

The proof however works only when adding two copies of A and, to the best of the

author’s knowledge, an inverse theorem for hˆA, h > 2, does not exist yet.

Clearly, an inverse theorem for h(r)A would imply such a result. However, the inclu-

sion (4.3.1) shows that the converse also holds, showing that the two inverse problems

are actually equivalent.
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