
Bernoulli 17(2), 2011, 562–591
DOI: 10.3150/10-BEJ284

The AEP algorithm for the fast computation
of the distribution of the sum of dependent
random variables
PHILIPP ARBENZ1,* , PAUL EMBRECHTS1,** and GIOVANNI PUCCETTI2

1Department of Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland.
E-mail: *philipp.arbenz@math.ethz.ch; **embrechts@math.ethz.ch
2Dipartimento di Matematica per le Decisioni, via Lombroso 6/17, 50134 Firenze, Italy.
E-mail: giovanni.puccetti@unifi.it

We propose a new algorithm to compute numerically the distribution function of the sum of d dependent,
non-negative random variables with given joint distribution.

Keywords: convolution; distribution functions

1. Motivations and preliminaries

In probability theory, the exact calculation of the distribution function of the sum of d dependent
random variables X1, . . . ,Xd is a rather onerous task. Even assuming the knowledge of the joint
distribution H of the vector (X1, . . . ,Xd), one often has to rely on tools like Monte Carlo and
quasi-Monte Carlo methods. All of these techniques warrant considerable expertise and, more
importantly, need to be tailored to the specific problem under consideration. In this paper, we
introduce a numerical procedure, called the AEP algorithm (from the names of the authors),
which accurately calculates

P[X1 + · · · + Xd ≤ s] (1.1)

at a fixed real threshold s and only uses the joint distribution H without the need for any specific
adaptation.

Problems like the computation of (1.1) arise especially in insurance or finance when one has
to calculate an overall capital charge in order to offset the risk position Sd = X1 + · · · + Xd

deriving from a portfolio of d random losses with known joint distribution H . The minimum
capital requirement associated to Sd is typically calculated as the value-at-risk (i.e., quantile) for
the distribution of Sd at some high level of probability. Therefore, the calculation of a VaR-based
capital requirement is equivalent to the computation of the distribution of Sd (see (1.1)). For an
internationally active bank, this latter task is required, for example, under the terms of the New
Basel Capital Accord (Basel II); see [4].

An area of application in quantitative risk management where our algorithm may be particu-
larly useful is stress-testing. In this context, one often has information on the marginal distrib-
utions of the underlying risks, but wants to stress-test the interdependence between these risks;

1350-7265 © 2011 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/10-BEJ284
mailto:philipp.arbenz@math.ethz.ch
mailto:embrechts@math.ethz.ch
mailto:giovanni.puccetti@unifi.it

The AEP algorithm 563

a concept that enters here is that of the copula. Especially in the context of the current (credit)
crisis, flexibility of the copula used when linking marginal distributions to a joint distribution has
no doubt gained importance; see, for instance, [8].

Although the examples treated in this paper are mainly illustrative, the dimension d (≤5),
the marginal assumptions and the dependence structure (Clayton and Gumbel copula) used are
typical for risk management applications in insurance and finance. For more information on this
type of question, see, for instance, [1,5,20].

In the following, we will denote (row) vectors in boldface, for example, 1 = (1, . . . ,1) ∈ R
d ,

d > 1. ek represents the kth vector of the canonical basis of R
d and D = {1, . . . , d}. Given a

vector b = (b1, . . . , bd) ∈ R
d and a real number h, Q(b, h) ⊂ R

d denotes the hypercube defined
as

Q(b, h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d×
k=1

(bk, bk + h], if h > 0,

d×
k=1

(bk + h,bk], if h < 0.

(1.2)

For notational purposes, we set Q(b,0) = ∅. On some probability space (�,A,P), let the ran-
dom variables X1, . . . ,Xd have joint d-variate distribution H ; H induces the probability measure
VH on R

d via

VH

[
d×

i=1
(−∞, xi]

]
= H(x1, . . . , xd).

We denote by i0, . . . , iN all the 2d vectors in {0,1}d , that is, i0 = (0, . . . ,0), ik = ek, k ∈ D, and
so on, iN = 1 = (1, . . . ,1), where N = 2d − 1. By #i = ∑d

k=1 ik , we denote the number of 1’s in
the vector i, for example, #i0 = 0,#iN = d . The VH -measure of a hypercube Q(b, h), h > 0, can
also be expressed as

VH [Q(b, h)] = P
[
Xk ∈ (bk, bk + h], k ∈ D

] =
N∑

j=0

(−1)d−#ij H(b + hij). (1.3)

The case h < 0 is analogous. If necessary, (1.3) can also be expressed in terms of the survival
function H = 1 − H . Moreover, S(b, h) ⊂ R

d denotes the d-dimensional simplex defined as

S(b, h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
x ∈ R

d :xk − bk > 0, k ∈ D and
d∑

k=1

(xk − bk) ≤ h

}
, if h > 0,

{
x ∈ R

d :xk − bk ≤ 0, k ∈ D and
d∑

k=1

(xk − bk) > h

}
, if h < 0.

(1.4)

564 P. Arbenz, P. Embrechts and G. Puccetti

Again, S(b,0) = ∅. Finally, we denote by λd the Lebesgue measure on R
d . For instance, the

Lebesgue measure of the simplex S(b, h) is given by

λd [S(b, h)] = |h|d
d! . (1.5)

2. Description of the AEP algorithm for d = 2

Throughout the paper, we assume the random variables X1, . . . ,Xd to be non-negative, that is,
P[Xk ≤ 0] = 0, k ∈ D. The extension to random variables bounded from below is straightforward
and will be illustrated below. We assume that we know the joint distribution H of the vector
(X1, . . . ,Xd) and define Sd = X1 + · · · + Xd . Our aim is then to numerically calculate

P[Sd ≤ s] = VH [S(0, s)]
for a fixed positive threshold s.

Due to (1.3), it is very easy to compute the VH -measure of hypercubes in R
d . The idea behind

the AEP algorithm is then to approximate the simplex S(0, s) by hypercubes. Before proceeding
to the general case, we first illustrate our method for dimension d = 2.

As illustrated in Figure 1, the VH -measure of the simplex S 1
1 = S(0, s) can be proxied by the

VH -measure of the hypercube Q1
1 = Q(0, αs) with α ∈ [1/2,1). The error committed by using

this approximation can be expressed in terms of the measure of the three simplexes

S 1
2 = S

(
(0, αs), (1 − α)s

)
, S 2

2 = S
(
(αs,0), (1 − α)s

)
and

S 3
2 = S

(
(αs,αs), (1 − 2α)s

)
.

Formally, we have

S(0, s) = (Q1
1 ∪ S 1

2 ∪ S 2
2) \ S 3

2 for all α ∈ [1/2,1). (2.1)

Figure 1. Decomposition (2.1) of the two-dimensional simplex S(0, s).

The AEP algorithm 565

Since α ∈ [1/2,1), the sets S 1
2 , S 2

2 and Q1
1 are pairwise disjoint. Also, note that S 3

2 ⊂ Q1
1. The

VH -measure of S(0, s) can thus be written as

VH [S(0, s)] = VH [Q1
1] + VH [S 1

2] + VH [S 2
2] − VH [S 3

2].
With the notation s1

2 = s2
2 = 1 and s3

2 = −1, we translate the equation above into

VH [S(0, s)] = VH [Q1
1] +

3∑
k=1

sk
2VH [S k

2]. (2.2)

Using (1.3), a first approximation of VH [S(0, s)] is given by the value

P1(s) = VH [Q1
1] = H(αs,αs) − H(0, αs) − H(αs,0) + H(0,0).

Using (2.2), the error committed by considering P1(s) instead of VH [S(0, s)] can be expressed
in terms of the VH -measure of the three simplexes S k

2 defined above, that is,

VH [S(0, s)] − P1(s) =
3∑

k=1

sk
2VH [S k

2]. (2.3)

At this point, we can apply to each of the S k
2 ’s a decomposition analogous to the one given

in (2.2) for S 1
1 = S(0, s), in order to obtain a better approximation of their measures and hence

of the measure of S 1
1 . The only difference between the first and the following step is that we have

to keep track of whether the measure of a simplex has to be added to or subtracted from the next
approximation, P2(s), of VH [S(0, s)]. The value sk

2 , associated to each simplex S k
2 , indicates

whether the corresponding measure is to be added (sk
2 = 1) or subtracted (sk

2 = −1). The next
approximation, P2(s), will be defined such that the difference VH [S(0, s)] − P2(s) is the sum of
the VH -measures of a total of nine simplexes produced by the decompositions of the three S k

2 ’s.
The nine simplexes are then passed as input to the third iteration and so on.

Before formally defining the algorithm in arbitrary dimension d , it is important to make the
following points.

• We will prove that the set decomposition (2.1) holds analogously in arbitrary dimension d

for every choice of α ∈ [1/d,1). Unfortunately, the simplexes S k
n+1 generated at the nth

iteration of the algorithm are, in general, not disjoint for d > 2. This will imply a more
complicated formula for the general VH -measure decomposition.

• Equation (2.2) depends on the choice of α. In Section 4, we will study an optimal choice
for α.

3. Description of the AEP algorithm for arbitrary d

Recall that in Section 1, we denoted by i0, . . . , iN all of the 2d vectors in {0,1}d , where
N = 2d − 1. Also, let α ∈ [1/d,1). At the beginning of the nth iteration (n ∈ N), the algorithm

566 P. Arbenz, P. Embrechts and G. Puccetti

receives as input Nn−1 simplexes which we denote by S k
n = S(bk

n, h
k
n), for k = 1, . . . ,Nn−1. To

each simplex, we associate the value sk
n ∈ {−1,1}, which indicates whether the measure of the

simplex has to be added (sk
n = 1) or subtracted (sk

n = −1) in order to compute an approximation
of VH [S(0, s)].

Each simplex S k
n is then decomposed via one hypercube Qk

n = Q(bk
n,αhk

n) and N simplexes
S k

n+1 = S(bk
n+1, h

k
n+1). In Appendix 8, we prove the rather technical result that the VH -measure

of each simplex S k
n can be calculated as

VH [S k
n] = VH [Qk

n] +
N∑

j=1

mjVH [S Nk−N+j

n+1], (3.1)

where the sequences bk
n, h

k
n and mj are defined by their initial values b1

1 = 0, h1
1 = s and

bNk−N+j

n+1 = bk
n + αhk

nij , h
Nk−N+j

n+1 = (1 − #ijα)hk
n,

(3.2)

mj =
⎧⎨
⎩

(−1)1+#ij , if #ij < 1/α,
0, if #ij = 1/α,
(−1)d+1−#ij , if #ij > 1/α

for all j = 1, . . . ,N and k = 1, . . . ,Nn−1. At this point, we note that by changing the value b1
1,

one can apply the algorithm to the case in which the random vector (X1, . . . ,Xd) also assumes
negative values, but is still bounded from below by b1

1.
We define the sequence Pn(s) as the sum of the VH -measures of the Qk

n, multiplied by the
corresponding sk

n ,

Pn(s) = Pn−1(s) +
Nn−1∑
k=1

sk
nVH [Qk

n] =
n∑

i=1

Ni−1∑
k=1

sk
i VH [Qk

i], (3.3)

where P0(s) = 0 and the sk
n are defined by s1

1 = 1 and

s
Nk−N+j

n+1 = sk
nmj for all j = 1, . . . ,N and k = 1, . . . ,Nn−1. (3.4)

We will show that, under weak assumptions on H , the sequence Pn(s) converges to
VH [S(0, s)]. Moreover, from (1.3), Pn(s) can be calculated in a straightforward way. The
(Nn−1) × N = Nn simplexes S k

n+1 generated by (3.1) are then passed to the (n + 1)th itera-
tion in order to approximate their VH -measures with the measures of the hypercubes Qk

n+1.
As a first step to show that Pn(s) tends to VH [S(0, s)], we calculate the error by using Pn(s)

instead of VH [S(0, s)].

Theorem 3.1. With the notation introduced above, we have that

VH [S(0, s)] − Pn(s) =
Nn∑
k=1

sk
n+1VH [S k

n+1] for all n ∈ N. (3.5)

The AEP algorithm 567

Proof. We prove the theorem by induction on n. Note that for n = 1, (3.5) corresponds to (3.1).
Now, assume by induction that

VH [S(0, s)] = Pn−1(s) +
Nn−1∑
k=1

sk
nVH [S k

n],

which, recalling (3.1), (3.3) and (3.4), yields

VH [S(0, s)] = Pn−1(s) +
Nn−1∑
k=1

sk
nVH [Qk

n] +
Nn−1∑
k=1

sk
n

(
N∑

j=1

mjVH [S Nk−N+j

n+1]
)

= Pn(s) +
Nn−1∑
k=1

N∑
j=1

sk
nmjVH [S Nk−N+j

n+1]

= Pn(s) +
Nn−1∑
k=1

N∑
j=1

s
Nk−N+j

n+1 VH [S Nk−N+j

n+1] = Pn(s) +
Nn∑
k=1

sk
n+1VH [S k

n+1].
�

We are now ready to give a sufficient condition for the convergence of the sequence Pn(s) to
VH [S(0, s)]. The idea of the proof is that if the total Lebesgue measure of the new N simplexes

S Nk−N+j

n+1 , j = 1, . . . ,N, generated by the simplex S k
n , is smaller than the Lebesgue measure of

S k
n itself, then, by assuming continuity of H , the error (3.5) will go to zero. Let us define en =∑Nn

k=1 λd [S k
n+1] to be the sum of the Lebesgue measure of the simplexes passed to iteration n+1.

We define the volume factor f (α) to be the ratio between the sum of the Lebesgue measure of
the simplexes in two subsequent iterations, that is, f (α) = en/en−1. Recalling the formula (1.5)
for the λd -measure of a simplex, we have that

N∑
j=1

λd [S Nk−N+j

n+1] =
N∑

j=1

|(1 − #ijα)hk
n|d

d! =
d∑

j=1

(
d

j

) |1 − jα|d |hk
n|d

d! .

Observing that the N simplexes S Nk−N+j

n+1 , j = 1, . . . ,N ,
(
d
j

)
are generated by the simplex S k

n ,
we use the above equation to conclude that

f (α) = en

en−1
=

∑Nn

k=1 λd [S k
n+1]∑Nn−1

k=1 λd [S k
n]

=
∑Nn−1

k=1
∑N

j=1 λd [S Nk−N+j

n+1]∑Nn−1

k=1 λd [S k
n]

=
∑Nn−1

k=1
∑d

j=1

(
d
j

)
(|1 − jα|d |hk

n|d/d!)∑Nn−1

k=1 λd [S k
n]

=
(1/d!)∑Nn−1

k=1 |hk
n|d

∑d
j=1

(
d
j

)
|1 − jα|d

(1/d!)∑Nn−1

k=1 |hk
n|d

=
d∑

j=1

(
d

j

)
|1 − jα|d .

568 P. Arbenz, P. Embrechts and G. Puccetti

A sufficient condition for the convergence of the AEP algorithm can then be expressed in
terms of the volume factor f (α). We first assume H to be absolutely continuous with a bounded
density.

Theorem 3.2. Assume that VH has a bounded density vH . If the volume factor satisfies
f (α) < 1, then

lim
n→∞Pn(s) = VH [S(0, s)]. (3.6)

Proof. Since VH has a density vH bounded by a constant c > 0, using (3.5), we have that

|VH [S(0, s)] − Pn(s)| =
∣∣∣∣∣

Nn∑
k=1

sk
n+1VH [S k

n+1]
∣∣∣∣∣ =

∣∣∣∣∣
Nn∑
k=1

∫
S k

n+1

sk
n+1 dH

∣∣∣∣∣
≤

Nn∑
k=1

∣∣∣∣
∫

S k
n+1

sk
n+1c dλd

∣∣∣∣ ≤ c

Nn∑
k=1

∫
S k

n+1

|sk
n+1|dλd

= c

Nn∑
k=1

∫
S k

n+1

dλd = c

Nn∑
k=1

λd [S k
n+1] = cen.

We conclude by noting that since en > 0 and en/en−1 = f (α) < 1 by assumption, en goes to zero
exponentially in n. �

In order for (3.6) to hold, it is sufficient that vH is bounded on
⋃Nn

k=1 S k
n+1 for n large enough.

Define the curve �s as

�s =
{

(x1, . . . , xd) ∈ R
d :

d∑
k=1

xk = s

}
. (3.7)

The following theorem states that the L1-distance from the curve �s to each point in
⋃Nn

k=1 S k
n+1

is bounded by a factor γ ns, where γ = max{1 −α, |1 − dα|}. When α ∈ (0,2/d), we have γ < 1
and that this distance goes to zero as n → ∞. For Theorem 3.2 to hold when α ∈ (0,2/d), it is
then sufficient to require that H has a bounded density only in a neighborhood of �s . We will
discuss this assumption further in Section 8.

Theorem 3.3. If x ∈ ⋃Nn

k=1 S k
n+1, then its L1-distance from the curve �s is bounded by γ ns, with

γ = max{1 − α, |1 − dα|}.

Proof. We denote by b
k,r
n (resp., irj) for r ∈ D the d components of the vectors bk

n (resp., ij). We
prove by induction on n that

d∑
r=1

bk,r
n + hk

n = s for all k = 1, . . . ,Nn−1 and n ≥ 1. (3.8)

The AEP algorithm 569

For n = 1, the statement is true since there is only one simplex with b1
1 = 0 and h1

1 = s. Now,
assume the statement holds for n > 1. By (3.2), we have that, for all j = 1, . . . ,N and k =
1, . . . ,Nn−1,

d∑
r=1

b
Nk−N+j,r

n+1 + h
Nk−N+j

n+1

=
d∑

r=1

(bk,r
n + αhk

ni
r
j) + (1 − #ijα)hk

n =
d∑

r=1

bk,r
n + αhk

n

d∑
r=1

irj + hk
n − αhk

n#ij

=
d∑

r=1

bk,r
n + αhk

n#ij + hk
n − αhk

n#ij =
d∑

r=1

bk,r
n + hk

n = s,

where the last equality is the induction assumption. Due to (3.8), every simplex S k
n+1 generated

by the AEP algorithm has its diagonal face lying on the curve �s . As a consequence, the L1-
distance from �s of each point in S k

n+1 is strictly smaller than the distance of the vector bk
n+1,

which is |hk
n+1|. For a fixed n and k = 1, . . .Nn−1, we have that |hNk−N+j

n+1 | ≤ γ |hk
n| for all

j = 1, . . . ,N . Hence,

max
k=1,...,Nn

|hk
n+1| = γ nh1

1 = γ ns, (3.9)

where, for every n ≥ 1, equality holds since we have |hNk−N+j

n+1 | = γ |hk
n| for j = 1 or j = N . �

4. Choice of α

As already remarked, the AEP algorithm depends on the choice of the parameter α. It is important
to note that, in general, an optimal choice of α would depend on the measure VH . In the proof of
Theorem 3.2, we have shown that

|Pn(s) − VH [S(0, s)]| ≤ Cf (α)n,

where C is a positive constant. Since we want to keep our algorithm independent of the choice
of the distribution H , we suggest using the α∗ which minimizes f (α), that is,

α∗ = argmin
α∈[1/d,1)

f (α) = 2

d + 1
.

For dimensions d ≤ 7, some values of α∗ and the corresponding optimal volume factors f (α∗)
are given in Table 1.

We will show that using α∗ has several desirable consequences. First, when α = α∗ and the di-
mension d is odd, in the measure decomposition (3.1), a number of

(
d

(d + 1)/2

)
simplexes have the

corresponding coefficient mj equal to zero and can therefore be neglected, increasing the com-
putational efficiency of the algorithm. For example, in the decomposition of a three-dimensional

570 P. Arbenz, P. Embrechts and G. Puccetti

Table 1. Values for α∗ and f (α∗) for dimensions d ≤ 7

d α∗ f (α∗) d α∗ f (α∗)

2 2
3

1
3 5 1

3
23
27

3 1
2

1
2 6 2

7 >1

4 2
5

83
125 7 1

4 >1

simplex, the algorithm generates only 4 new simplexes at every iteration with α = α∗, instead of
the 2d − 1 = 7 generated with any other feasible value of α. Hence, for α = α∗, the number of
new simplexes generated at each step is given by the function

fS(d) =
⎧⎨
⎩

2d − 1, if d is even,

2d − 1 −
(

d

(d + 1)/2

)
, if d is odd;

(4.1)

see Section 5 for further details on this.
Since we have that (proof of Theorem 3.3)

(0,+∞)d ∩
(

Nn−1⋃
k=1

S k
n

)
⊂ S

(
0, (1 + γ n)s

)∖
S

(
0, (1 − γ n)s

)
, (4.2)

the choice of α = α∗ will be convenient. Note that, when α = α∗ ∈ (0,2/d), we have that γ < 1
and γ ns goes to zero as n → ∞. In order to guarantee the convergence of the sequence Pn, it is
then sufficient to require that the distribution H has a bounded density only in a neighborhood
of �s . Moreover, it is straightforward to see that α∗ also minimizes γ .

As illustrated in Table 1, Theorem 3.2 states the convergence of the sequence Pn(s) when
d ≤ 5. Various elements affect the speed at which Pn(s) converges. First, in order to seriously
affect the convergence rate of Pn(s), it is, in general, always possible to put probability mass in
a smooth way in a neighborhood of the curve �s . For the distributions of financial and actuar-
ial interest used in Section 6, the algorithm performs very well; slow convergence is typically
restricted to more pathological cases, such as those illustrated in Section 8. We also have to con-
sider that, for the same distribution H , it is, in general, required to compute the distribution of
Sd at different thresholds s. Problems such as those described in Section 8 may then occur only
at a few points s.

A more relevant issue is the fact that the memory required by the algorithm to run the nth
iteration increases exponentially in n. At each iteration of the algorithm, every simplex S k

n pro-
duces one hypercube and a number fS(d) of new simplexes to be passed to the following it-
eration; see (4.1). The computational effort in the (n − 1)th step thus increases as O(fS(d)n).
While the dimensions d ≤ 5 are manageable, as reported in Section 6, the numerical com-
plexity for d ≥ 6 increases considerably and quickly exhausts the memory of a standard com-
puter.

The AEP algorithm 571

Figure 2. The decomposition of a simplex by the AEP algorithm in the case d = 2.

Finally, choosing α = α∗ also allows the accuracy of the AEP algorithm to be increased and,
under slightly stronger assumptions on H , will lead to convergence of AEP in higher dimensions;
see Section 5.

We now give some examples of the first step (n = 1) of the measure decomposition (3.1)
obtained by choosing b = 0, s = 1, α = α∗, for d = 2,3:

• in the case d = 2, with α = 2/3, we obtain (see Figure 2)

VH [S((0,0),1)] = VH

[
Q

(
(0,0),2/3

)] + VH

[
S

(
(0,2/3),1/3

)]
+ VH

[
S

(
(2/3,0),1/3

)] − VH

[
S

(
(2/3,2/3),−1/3

)];
• in the case d = 3, with α = 1/2, we obtain (see Figure 3)

VH

[
S

(
(0,0,0),1

)] = VH

[
Q

(
(0,0,0),1/2

)] + VH

[
S

(
(1/2,0,0),1/2

)]
+ VH

[
S

(
(0,1/2,0),1/2

)] + VH

[
S

(
(0,0,1/2),1/2

)]
− VH

[
S

(
(1/2,1/2,1/2),−1/2

)]
.

Figure 3. The decomposition of a simplex by the AEP algorithm in the case d = 3.

572 P. Arbenz, P. Embrechts and G. Puccetti

5. An improvement of the numerical accuracy of the algorithm
via extrapolation

In this section, we introduce a method to increase the accuracy of the AEP algorithm. This
method is based on the choice α = α∗, as discussed in Section 4. To this end, we will make the
stronger assumption that the joint distribution H has a twice continuously differentiable density
vH , with bounded derivatives. This will allow us to approximate the density vH by its linear
Taylor expansion, providing a good estimate of the approximation error of AEP after a number
of iterations.

We first need two simple integration results. Denoting by Sd−1 a simplex in dimension (d −1),
for all s > 0, we have

∫
S(0,s)

xd dx =
∫ s

0

∫ s−xd

0
. . .

∫ s−∑d
k=3 xk

0

∫ s−∑d
k=2 xk

0
xd dx

=
∫ s

0
xd

∫ s−xd

0
. . .

∫ s−∑d
k=3 xk

0

∫ s−∑d
k=2 xk

0
dx

=
∫ s

0
xdλd−1[Sd−1(0, s − xd)]dxd =

∫ s

0
xd

(s − xd)d−1

(d − 1)! dxd = sd+1

(d + 1)! .

Analogously, for all s > 0, we have∫
Q(0,αs)

xd dx =
∫ αs

0

∫ αs

0
. . .

∫ αs

0
xd dx

=
∫ αs

0
xd

∫ αs

0
. . .

∫ αs

0
dx = (αs)d−1

∫ αs

0
xd dxd = 1/2(αs)d+1.

We now compute the VH -measures of a hypercube and a simplex in the basic case in which the
distribution H has a linear density, that is, vH (b+x) = a+∑d

k=1 ckxk for x ∈ S(0, s)∪ Q(0, αs).
For all s > 0, we obtain

VH [S(b, s)] = a

∫
S(0,s)

dx +
d∑

k=1

ck

∫
S(0,s)

xk dx

(5.1)

= a
sd

d! + sd+1

(d + 1)!

(
d∑

k=1

ck

)
= sd

d!

(
a + s

d + 1

d∑
k=1

ck

)
,

VH (Q(b, αs)) = a

∫
Q(0,αs)

dx +
d∑

k=1

ck

∫
Q(0,αs)

xk dx

(5.2)

= a(αs)d + 1

2

(
d∑

k=1

ck

)
(αs)d+1 = (αs)d

(
a + 1

2
αs

d∑
k=1

ck

)
.

The AEP algorithm 573

Thus, for a linear density vH , the ratio VH [S(b, s)]/VH [Q(b, αs)] can be made independent
of the parameters b, s, a and of the ck’s, by choosing α = α∗ = 2

d+1 , for which we have

VH [S(b, s)] = (d + 1)d

2dd! VH [Q(b, α∗s)]. (5.3)

With similar computations, we obtain the same result for s < 0. The following theorem shows
that (5.3) analogously holds for any sufficiently smooth density, in the limit as the number n of
iterations of the AEP algorithm goes to infinity.

Theorem 5.1. Assume that H has a twice continuously differentiable density vH with all partial
derivatives of first and second-order bounded by some constant D. We then have that

sup
n∈N

max
k=1,...,Nn−1

1

|hk
n|d+2

∣∣∣∣VH [S(bk
n, h

k
n)] − (d + 1)d

2dd! VH [Q(bk
n,α

∗hk
n)]

∣∣∣∣ ≤ A < ∞ (5.4)

for some positive constant A depending only on the dimension d and the distribution H .

Proof. For a given bk
n, we can use a Taylor expansion to find some coefficients a and ck , k =

1, . . . , d , depending on bk
n, such that

vH (bk
n + x) = a +

d∑
k=1

ckxk +
∑
|β|=2

Rβ(x)xβ for all x ∈ B(bk
n), (5.5)

where B(bk
n) is a ball in R

d centered at bk
n such that B(bk

n) ⊃ S(bk
n, h

k
n) ∪ Q(bk

n,α
∗hk

n). Note
that in equation (5.5), we used multi-index notation to indicate that the sum in the last equation
extends over multi-indices β ∈ N

d . Using the assumption on the partial derivatives of vH , the
remainder term Rβ(x) satisfies the inequality

|Rβ(x)| ≤ sup
x∈B(bk

n)

∣∣∣∣ 1

β!
∂βvH (x)

∂xβ

∣∣∣∣ ≤ D (5.6)

for all β with |β| = 2. Using (5.5) and recalling the expressions (5.1) and (5.2) for a linear density
and a positive hk

n, we obtain

∣∣∣∣VH [S(bk
n, h

k
n)] − (d + 1)d

2dd! VH [Q(bk
n,αhk

n)]
∣∣∣∣

=
∣∣∣∣∣ (h

k
n)

d

d!

(
a + hk

n

d + 1

d∑
k=1

ck

)
+

∫
S(0,hk

n)

∑
|β|=2

Rβ(x)xβ dx

− (d + 1)d

2dd!

(
(αhk

n)
d

(
a + 1

2
αhk

n

d∑
k=1

ck

)
+

∫
Q(0,αhk

n)

∑
|β|=2

Rβ(x)xβ dx

)∣∣∣∣∣.

574 P. Arbenz, P. Embrechts and G. Puccetti

Choosing α = α∗, the previous expression simplifies to

∣∣∣∣VH [S(bk
n, h

k
n)] − (d + 1)d

2dd! VH [Q(bk
n,α

∗hk
n)]

∣∣∣∣
=

∣∣∣∣
∫

S(0,hk
n)

∑
|β|=2

Rβ(x)xβ dx − (d + 1)d

2dd!
∫

Q(0,α∗hk
n)

∑
|β|=2

Rβ(x)xβ dx

∣∣∣∣
≤

∣∣∣∣ ∑
|β|=2

∫
S(0,hk

n)

Rβ(x)xβ dx

∣∣∣∣ + (d + 1)d

2dd!
∣∣∣∣ ∑
|β|=2

∫
Q(0,α∗hk

n)

Rβ(x)xβ dx

∣∣∣∣
≤ D

(∣∣∣∣ ∑
|β|=2

∫
S(0,hk

n)

xβ dx

∣∣∣∣ + (d + 1)d

2dd!
∣∣∣∣ ∑
|β|=2

∫
Q(0,α∗hk

n)

xβ dx

∣∣∣∣
)

,

where the last inequality follows from (5.6). Using the facts that

∑
|β|=2

∫
S(0,s)

xβ dx =
d∑

i=1

∫
S(0,s)

x2
i dx + 2

∑
1≤i<j≤d

∫
S(0,s)

xixj dx

= 2dsd+2

(d + 2)! + 2d(d − 1)sd+2

(d + 2)!

= 2d2sd+2

(d + 2)!

and

∑
|β|=2

∫
Q(0,αs)

xβ dx =
d∑

i=1

∫
Q(0,αs)

x2
i dx + 2

∑
1≤i<j≤d

∫
Q(0,αs)

xixj dx

= d(αs)d+2

3
+ 2d(d − 1)(αs)d+2

4
= d(3d − 1)(αs)d+2

6
,

we finally obtain

∣∣∣∣VH [S(bk
n, h

k
n)] − (d + 1)d

2dd! VH [Q(bk
n,α

∗hk
n)]

∣∣∣∣ ≤ A|hk
n|d+2, (5.7)

where A is a positive constant depending only on the dimension d and the distribution H . Note
that in (5.7), we write hk

n in absolute value in order to consider the completely analogous case in
which hk

n is negative. Thus, the theorem easily follows from (5.7). �

The AEP algorithm 575

Equation (5.4) gives a local estimator of the mass of the simplex S(bk
n, h

k
n) in terms of the

volume of the corresponding hypercube Q(bk
n, h

k
n), which is straightforward to compute:

VH [S(bk
n, h

k
n)] ≈ (d + 1)d

2dd! VH

[
Q

(
bk

n,
2hk

n

d + 1

)]
. (5.8)

In the case where the density vH is sufficiently smooth, it is then possible, after a number of
iterations of AEP, to estimate the right-hand side of (3.5) by using the approximation (5.8). This
procedure defines the estimator P ∗

n (s) as

P ∗
n (s) = Pn−1(s) + (d + 1)d

2dd!
Nn−1∑
k=1

sk
nVH [Qk

n]. (5.9)

In what follows, the use of P ∗
n (s) as an approximation of VH [S(0, s)] will be referred to as

the extrapolation technique. The following theorem shows that P ∗
n (s) converges to VH [S(0, s)]

faster, and in higher dimensions, than Pn(s).

Theorem 5.2. Under the assumptions of Theorem 5.1, we have, for d ≤ 8, that

lim
n→+∞P ∗

n (s) = VH [S(0, s)].

Proof. Using (3.5) and (5.7) in the definition (5.9) of P ∗
n (s), we obtain

E∗(n) = |VH [S(0, s)] − P ∗
n (s)|

=
∣∣∣∣∣VH [S(0, s)] − Pn−1(s) − (d + 1)d

2dd!
Nn−1∑
k=1

sk
nVH [Qk

n]
∣∣∣∣∣

(5.10)

=
∣∣∣∣∣
Nn−1∑
k=1

sk
nVH [S k

n] − (d + 1)d

2dd!
Nn−1∑
k=1

sk
nVH [Qk

n]
∣∣∣∣∣

≤
Nn−1∑
k=1

∣∣∣∣VH [S k
n] − (d + 1)d

2dd! VH [Qk
n]

∣∣∣∣ ≤ A

Nn−1∑
k=1

|hk
n|d+2 = Ae∗

n−1,

where, for the positive sequence e∗
n = ∑Nn

k=1 |hk
n+1|d+2, we have that

e∗
n

e∗
n−1

=
∑Nn−1

k=1
∑N

j=1 |hNk−N+j

n+1 |d+2∑Nn−1

k=1 |hk
n|d+2

=
∑Nn−1

k=1
∑d

j=1

(
d
j

)
|1 − jα∗|d+2|hk

n|d+2

∑Nn−1

k=1 |hk
n|d+2

=
∑Nn−1

k=1 |hk
n|d+2 ∑d

j=1

(
d
j

)
|1 − jα∗|d+2

∑Nn−1

k=1 |hk
n|d+2

=
d∑

j=1

(
d

j

)
|1 − jα∗|d+2.

576 P. Arbenz, P. Embrechts and G. Puccetti

Table 2. Extrapolation error ratio f∗(d) as defined in (5.11), number fS(d) of new simplexes produced
at each iteration and convergence rates of the AEP extrapolation error as a function of the number of
evaluations performed by the algorithm; for d = 9, convergence of AEP is not assured (na)

d 2 3 4 5 6 7 8 9

f∗(d) 0.0370 0.1250 0.2339 0.3580 0.4982 0.6556 0.8314 >1

fS(d) 3 4 15 21 63 92 255 385
lnf∗(d)
lnfS(d)

−3 −1.5 −0.54 −0.34 −0.17 −0.09 −0.033 na

The theorem follows by noting that the factor f∗(d), defined as

f∗(d) =
d∑

j=1

(
d

j

)
|1 − jα∗|d+2 (5.11)

is less than 1 for d ≤ 8; see Table 2. In these dimensions, e∗
n, and hence E∗(n), converge to

zero. �

We should point out that, due to Theorem 3.3, Theorem 5.2 also remains valid in the case
where H satisfies the extra smoothness conditions on its first and second derivatives only in a
neighborhood of �s . Moreover, under the assumptions of Theorem 5.1, it is possible to calculate
an upper bound for the error E∗(n) as a function of the number of evaluations performed by AEP.
Indeed, (5.10) can be rewritten as

E∗(n) ≤ Af∗(d)n. (5.12)

We now denote by M(n) the total number of evaluations of the joint distribution H performed by
AEP after the nth iteration. Then, M(n) (as well as the computational time used) is proportional
to the number of simplexes fS(d)n−1 passed to the nth iteration. For all n ≥ 2, we have that

M(n) =
n−1∑
k=0

2dfS(d)k = 2d

fS(d) − 1

(
fS(d)n − 1

)
(5.13)

≥
(

2d

fS(d) − 1
− 1

)
fS(d)n = BfS(d)n.

Here, B is a positive constant depending only on the dimension d . Combining (5.12) and (5.13)
gives

E∗(n) ≤ A

(
M(n)

B

)lnf∗(d)/ lnfS(d)

. (5.14)

Then, (5.14) provides an upper bound on the AEP approximation error E∗(n) as a function
of the number of evaluations performed. The polynomial rate of convergence lnf∗(d)

lnfS(d)
of this

bound depends only on the dimensionality d . In Table 2, we calculate this bound for dimensions

The AEP algorithm 577

d ≤ 8. These numbers can be useful in order to compare the efficiency of AEP with that of other
algorithms, such as Monte Carlo methods (see Section 7 and Table 11).

6. Applications

In this section, we test the AEP algorithm on some risk vectors (X1, . . . ,Xd) of financial and
actuarial interest. For illustrative reasons, we will provide the joint distribution function H in
terms of the marginal distributions FXi

and a copula C. For the theory of copulas, we refer the
reader to [17].

In Table 3, we consider a two-dimensional portfolio (d = 2) with Pareto marginals, that is,

FXi
(x) = P[Xi ≤ x] = 1 − (1 + x)−θi , x ≥ 0, i = 1,2,

with tail parameters θ1 = 0.9 and θ2 = 1.8. We couple these Pareto marginals via a Clayton
copula C = CCl

δ with

CCl
δ (u1, . . . , ud) = (u−δ

1 + u−δ
2 + · · · + u−δ

d − d + 1)−1/δ, uk ∈ [0,1], k = 1, . . . , d.

The parameter δ is set to 1.2. For the portfolio described above, we compute the approximation
Pn(s) (see (3.3)) at some given thresholds s and for different numbers of iterations n of the al-
gorithm. The thresholds s are chosen in order to have estimates in the center as well as in the
(heavy) tail of the distribution. For each n, we provide the computational time needed to obtain
the estimate on an Apple MacBook (2.4 GHz Intel Core 2 Duo, 2 GB RAM). Of course, compu-
tational times may vary depending on the hardware used for computations. We also provide the
estimates obtained by using the estimator P ∗

n (s), as defined in (5.9).
For all iterations n and thresholds s, in Table 3, we provide the differences Pn(s) − P16(s) or

P ∗
n (s) − P16(s). This has been done in order to show the speed of convergence of the algorithm

and the increase in accuracy due to extrapolation. The choice of n = 16 as the reference value
in Table 3 represents the maximum number of iterations allowed by the memory (2 GB RAM)
of our laptop. However, for a two-dimensional vector, we see that all iterations after the seventh
leave the first eight decimal digits of the probability estimate unaltered for all the thresholds.
Thus, the estimate P7(s) (0.01 seconds) could already be considered reasonably accurate. We
also note that, on average, extrapolation allows the accuracy of the estimates to be increased by
two decimal digits without increasing computational time.

In Tables 4 (d = 3) to 6 (d = 5) we perform the same analysis for different Clayton–Pareto
models in which we progressively increase the number of random variables used. In Tables 4–6,
the numbers n = 13 for d = 3, n = 7 for d = 4 and n = 6 for d = 5 again represent the maximum
number of iterations allowed by the memory (2 GB RAM) of our laptop.

AEP shows good convergence results for all dimensions d and thresholds s under study. In
higher dimensions d , the extrapolation technique still seems to provide some relevant extra ac-
curacy. Memory constraints made estimates for d ≥ 6 prohibitive. For dimensions 2 ≤ d ≤ 5,
Figure 4 shows that the average computational time needed by AEP to provide a single estimate
increases exponentially in the number of iterations n. These average computational times have
been computed based on several portfolios of Pareto marginals coupled by a Clayton copula.

578
P.A

rbenz,P.E
m

brechts
and

G
.P

uccetti

Table 3. Values for Pn(s) and P ∗
n (s) (starred columns) for the sum of two Pareto distributions with parameters θ1 = 0.9 and θ2 = 1.8, coupled by

a Clayton copula with parameter δ = 1.2; for all n < 16, we give the difference from the reference value P16(s)

n = 16 n = 7 n = 7∗ n = 10 n = 10∗ n = 13 n = 13∗
(reference value, 49.25 s) (0.01 s) (0.01 s) (0.06 s) (0.06 s) (1.61 s) (1.61 s)

s = 100 0.315835041363441 −4.46e−09 −1.46e−11 −6.16e−12 −3.70e−14 −3.97e−14 −2.95e−14
s = 102 0.983690398913354 −3.10e−10 +1.83e−09 −1.85e−12 −5.68e−13 −6.64e−13 −6.96e−13
s = 104 0.999748719229367 −6.62e−08 −4.13e−08 −6.41e−12 +6.38e−11 −1.24e−12 −1.26e−12
s = 106 0.999996018908404 −1.63e−09 −1.22e−09 −5.40e−11 −3.89e−11 −7.80e−13 −5.07e−13

Table 4. This is the same as Table 3, but for the sum of three Pareto distributions with parameters θ1 = 0.9, θ2 = 1.8 and θ3 = 2.6, coupled by a
Clayton copula with parameter δ = 0.4

n = 13 n = 7 n = 7∗ n = 9 n = 9∗ n = 11 n = 11∗
(reference value, 118.50 s) (0.02 s) (0.02 s) (0.41 s) (0.41 s) (6.65 s) (6.65 s)

s = 100 0.190859309689430 −2.28e−06 +8.80e−07 −8.53e−08 +3.31e−08 −3.15e−09 +1.32e−09
s = 102 0.983659549676444 −1.76e−05 +1.13e−06 −6.55e−07 +3.01e−07 −2.17e−08 +1.11e−08
s = 104 0.999748708770280 −1.72e−06 −1.12e−06 −3.86e−07 −2.39e−07 −6.43e−08 −2.95e−08
s = 106 0.999996018515584 −2.78e−08 −1.83e−08 −6.61e−09 −4.26e−09 −1.35e−09 −7.66e−10

Table 5. This is the same as Table 3, but for the sum of four Pareto distributions with parameters θ1 = 0.9, θ2 = 1.8, θ3 = 2.6 and θ4 = 3.3,
coupled by a Clayton copula with parameter δ = 0.2

n = 7 n = 4 n = 4∗ n = 5 n = 5∗ n = 6 n = 6∗
(reference value, 107.70 s) (0.03 s) (0.03 s) (0.47 s) (0.47 s) (7.15 s) (7.15 s)

s = 101 0.833447516734442 −6.31e−03 +9.42e−05 −2.21e−03 +3.71e−04 −6.04e−04 +4.00e−04
s = 102 0.983412214152579 −1.61e−03 −4.95e−04 −7.14e−04 −1.54e−04 −2.45e−04 +5.01e−05
s = 103 0.997950264030106 −2.14e−04 −7.37e−05 −9.91e−05 −2.70e−05 −3.60e−05 +3.68e−06
s = 104 0.999742266243751 −2.69e−05 −9.30e−06 −1.25e−05 −3.42e−06 −4.54e−06 +4.52e−07

The AEP algorithm 579

Figure 4. AEP computation time (on a log-scale) as a function of the number of iterations n, for dimensions
2 ≤ d ≤ 5.

Note that Tables 3–6 provide information about the convergence of the algorithm to a certain
value, but do not say anything about the correctness of the limit. Indeed, we do not have analyt-
ical methods to compute VH [S(0, s)] when the vector (X1, . . . ,Xd) has a general dependence
structure (copula) C.

In practice, it is possible to test the accuracy of AEP in particular cases when the Xi are
independent or comonotonic. Some test cases are analyzed in Tables 7 (d = 2) to 9 (d = 4),
where we still assume that we have Pareto marginals, but coupled by a Gumbel copula C = CGu

γ ,
in which the parameter γ ≥ 1 is allowed to vary. Formally, for uk ∈ (0,1], k = 1, . . . , d , we have

CGu
γ (u1, . . . , ud) = exp

(−[(− lnu1)
γ + (− lnu2)

γ + · · · + (− lnud)γ]1/γ
)
.

In the tables mentioned above, the multivariate model varies from independence (γ = 1) to
comonotonicity (γ = +∞). In these two extreme (with respect to the dependence parameter γ)
cases, we compare the analytical values for VH [S(0, s)] with their AEP estimates. Tables 3–6
show that the extrapolated estimator P ∗

n (s) provides accurate estimates within a very reasonable
computational time. A comparison with alternative methods is discussed in Section 7.

The possibility of computing the value VH [S(0, s)] independently from AEP also allows us to
test more specifically the effect of extrapolation. For this, we consider two- and three-dimensional
vectors of independent Pareto marginals. Figure 5 shows the increase of accuracy due to extrap-
olation. Therefore, under a smooth model for H (see Theorem 5.1), the extrapolated estimator
P ∗

n (s) is to be preferred over Pn(s).
Of course, the AEP algorithm can be used to find estimates for the quantile function, that is,

for the inverse of the distribution of the sum Sd . Such quantiles are especially useful in finance
and insurance, where they are generally referred to as value-at-risk (VaR) or return periods.
In Table 10, we calculate, by numerical inversion, VaR at different quantile levels α for two
different three-dimensional portfolios of risks. In order to calculate VaR values, we use root-
finding algorithms like the bisection method.

580
P.A

rbenz,P.E
m

brechts
and

G
.P

uccetti

Table 6. This is the same as Table 3, but for the sum of five Pareto distributions with parameters θ1 = 0.9, θ2 = 1.8, θ3 = 2.6, θ4 = 3.3 and θ5 = 4,
coupled by a Clayton copula with parameter δ = 0.3

n = 6 n = 3 n = 3∗ n = 4 n = 4∗ n = 5 n = 5∗
(reference value, 92.91 s) (0.01 s) (0.01 s) (0.20 s) (0.20 s) (4.37 s) (4.37 s)

s = 101 0.824132635126808 −3.12e−02 +3.89e−03 −1.55e−02 +5.66e−04 −7.77e−03 +1.46e−04
s = 102 0.983253494805448 −5.30e−03 +5.07e−05 −2.86e−03 −3.57e−04 −1.54e−03 −1.90e−04
s = 103 0.997930730055234 −6.72e−04 −5.23e−06 −3.66e−04 −5.29e−05 −1.99e−04 −2.83e−05
s = 104 0.999739803851201 −8.45e−05 −7.22e−07 −4.61e−05 −6.67e−06 −2.51e−05 −3.57e−06

Table 7. Values for P ∗
n (s) for the sum of two Pareto distributions with parameters θi = i, i = 1,2, coupled by a Gumbel copula with parameter γ ;

the values in the first and last columns are calculated analytically; the computational time for each estimate in this table is 0.53 seconds with n = 12

γ = 1 (exact) γ = 1 γ = 1.25 γ = 1.5 γ = 1.75 γ = +∞ γ = +∞ (exact)

s = 100 0.2862004 0.2862004 0.3280000 0.3527174 0.3682522 0.4108029 0.4108027
s = 102 0.9898913 0.9898913 0.9895957 0.9894472 0.9893640 0.9891761 0.9891761
s = 103 0.9989990 0.9989990 0.9989857 0.9989798 0.9989766 0.9989700 0.9989700
s = 104 0.9999000 0.9999000 0.9998995 0.9998993 0.9998992 0.9998990 0.9998990

Table 8. This is the same as Table 7, but for the sum of three Pareto distributions with parameters θi = i, i = 1,2,3, coupled by a Gumbel copula
with parameter γ ; the computational time for each estimate in this table is 6.65 seconds with n = 11

γ = 1 (exact) γ = 1 γ = 1.25 γ = 1.5 γ = 1.75 γ = +∞ γ = +∞ (exact)

s = 101 0.1709337 0.1709337 0.2348582 0.2743918 0.2994054 0.3667285 0.3666755
s = 102 0.9898380 0.9898380 0.9893953 0.9891754 0.9890526 0.9887811 0.9887760
s = 103 0.9989985 0.9989985 0.9989812 0.9989734 0.9989692 0.9989604 0.9989606
s = 104 0.9999000 0.9999000 0.9998994 0.9998992 0.9998991 0.9998988 0.9998988

The AEP algorithm 581

Table 9. This is the same as Table 7, but for the sum of four Pareto distributions with parameters θi = i,
i = 1,2,3,4 coupled by a Gumbel copula with parameter γ ; the computational time for each estimate in
this table is 7.15 seconds with n = 6

γ = 1 (exact) γ = 1 γ = 1.25 γ = 1.5 γ = 1.75 γ = +∞ γ = +∞ (exact)

s = 100 0.1040880 0.1040713 0.1762643 0.2244387 0.2555301 0.3387648 0.3390320
s = 102 0.9898032 0.9896608 0.9892592 0.9890502 0.9889268 0.9886415 0.9885287
s = 103 0.9989981 0.9989732 0.9989652 0.9989616 0.9989595 0.9989743 0.9989558
s = 104 0.9999000 0.9998973 0.9998973 0.9998973 0.9998973 0.9998973 0.9998987

We finally note that the choices of copula families (Clayton, Gumbel) and marginal distribu-
tions used in this section are purely illustrative and do not in any way affect the functioning of the
AEP algorithm. The same performances were reached for vectors showing negative dependence,
as in the case of d Pareto marginals coupled by a Frank copula with negative parameter.

The accuracy of AEP is not sufficient to estimate high level quantiles in dimensions d = 4,5,

as done in Table 10 for some three-dimensional portfolios. The algorithm can, however, be used
to compute a numerical range for the quantiles of the sum of four and five random variables. The
error resulting from AEP in these higher dimensions turns out to be extremely small if compared
to the error due to statistical inference. As a comparison to statistical methods, we estimate the
VaR of the sum of the five Pareto marginals described in Table 6 via extreme value theory (EVT)
methodology in its “peaks over threshold” (POT) form; see [15], Section 7.2. We set the quantile
level α = 0.999, a value not uncommon in several risk management applications in insurance
and finance. The POT method is widely used for calculating quantiles in the presence of heavy-
tailed risks and is known to perform very well in the case of exact Pareto models, such as the
one studied here. In order to focus on the statistical error produced by the POT method, we use,
as data, a sample of M realizations from the portfolio described in Table 6. It is well known

Figure 5. Error from the AEP algorithm with and without the use of the extrapolation technique for two
test portfolios: two (left) and three (right) independent Pareto marginals with parameters θi = i, i = 1,2,3.

582 P. Arbenz, P. Embrechts and G. Puccetti

Table 10. Value-at-risk for: (a) a three-dimensional portfolio with marginals F1 = Exp(0.2), F2 =
Logn(μ = −0.5, σ 2 = 9/2), F3 = Pareto(1.2) and a Gumbel copula with γ = 1.3; (b) a three-dimensional
portfolio with Pareto marginals with parameters θ1 = 0.8, θ2 = 1, θ3 = 2 and a Clayton copula with δ = 0.4;
the computation of all VaR estimates needs approximately 49 seconds with n = 10

α VaR(a)
α VaR(b)

α

0.9 24.76 32.87
0.99 137.67 445.36
0.999 700.20 6864.58
0.9999 3394.78 112442.31
0.99999 17962.78 1903698.40
0.999999 108190.96 32889360.00

that the statistical reliability of the POT approach is very sensitive to the choice of the threshold
u beyond which a GPD distribution is fitted. In Figure 6, we plot the VaR estimates obtained
by choosing different thresholds u. The picture on the left is obtained by generating M = 5000
data, while the one on the right uses M = 106 simulations. It is remarkable that, even in an
ideal 106 data world, the statistical range of variation of the VaR estimates obtained via POT is
broader than the numerical VaR range calculated via AEP. Moreover, the POT range of values
depends on the specific sample used for estimation, while the AEP range is deterministic. In the
next section, we will compare AEP with more competitive numerical techniques such as Monte
Carlo, quasi-Monte Carlo and quadrature methods.

Figure 6. Estimates of VaR0.999 for the sum of the five Pareto marginals described in Table 6, as a
function of the threshold used for estimation. Estimates are obtained via POT from M = 5e−03 (left)
and M = 1e−06 (right) simulated data. Along with POT estimates, we give the numerical range for the
0.999-quantile obtained via AEP.

The AEP algorithm 583

7. A comparison with Monte Carlo, quasi-Monte Carlo and
quadrature methods

For the estimation of VH [S(0, s)], the main competitors of the AEP algorithm are probably
Monte Carlo and quasi-Monte Carlo methods. Given M points x1, . . . ,xM in S(0, s), it is pos-
sible to approximate VH [S(0, s)] by the average of the density function vH evaluated at those
points, that is,

VH [S(0, s)] =
∫

S(0,s)

dH(x) sd

d!
1

M

M∑
i=1

vH (xi). (7.1)

If the xi ’s are chosen to be (pseudo-)randomly distributed, this is the Monte Carlo (MC) method.
If the xi ’s are chosen as elements of a low-discrepancy sequence, this is the quasi-Monte Carlo
(QMC) method. A low-discrepancy sequence is a totally deterministic sequence of vectors that
generates representative samples from a uniform distribution on a given set. With respect to
Monte Carlo methods, the advantage of using quasi-random sequences is that points cannot clus-
ter coincidentally on some region of the set. However, randomization of a low-discrepancy se-
quence often improves performance; see [12].

In recent years, various methods and algorithms have been developed in order to reduce the
variance of MC and QMC estimators and to obtain probabilities of (rare) events with reasonable
precision and effort. For details on the theory of rare event simulation within MC methods, we
refer the reader to [2,10,13,14]. For an introduction to quasi-Monte Carlo methods and recent im-
provements, we refer to, for instance, [18] and [12]. A comprehensive overview of both methods
is given in [21].

Using central limit theorem arguments, it is possible to show that traditional MC, using
(pseudo-)random numbers, has a convergence rate of O(M−1/2), independently of the number
of dimensions d . QMC can be much faster than MC with errors approaching O(M−1) in opti-
mal cases (see [16]), but the worst theoretic rate of convergence decreases with the dimension
d as O((logM)dM−1); see [18]. In applications to finance and insurance, it is more common
to get results closer to the best rate of convergence if the density vH is smooth, that is, has a
Lipschitz-continuous second derivative. In this case, it is possible to show that the convergence
rate is at least O((logM)dM−3/2); see [6]. In Table 11, we compare convergence rates of MC
and QMC methods with respect to the AEP rates (depending on d), as provided in Section 5. We
thus expect a well-designed QMC algorithm to perform better, asymptotically, than AEP under
a smooth probability model and for dimensions d ≥ 4. Because of the computational issues for
AEP in higher dimensions, we restrict our attention to d ≤ 5 in Table 11.

Don McLeish kindly adapted an algorithm using a randomized Korobov low-discrepancy
sequence to the portfolio leading to Table 3. The parameters for the sequence are those rec-
ommended in [9]. The standard errors (s.e.’s) are obtained by independently randomizing ten
(part (a) of the table) and fifty (part (b) of the table) sequences with 1 million terms each, cor-
responding to M = 1e−07 (a) and M = 5e−07 (b). The average CPU times are, of course, on
a different machine (IBM Thinkpad 2.5 GHz Intel Core 2 Dual, 4 GB RAM). In Table 12a,
we provide the comparison between QMC and AEP extrapolated estimates. The results seem
to be coherent with Table 11 above. For the same precision, AEP is much faster than QMC in

584 P. Arbenz, P. Embrechts and G. Puccetti

Table 11. Asymptotic convergence rates of the AEP, standard MC and QMC methods

d 2 3 4 5

AEP (upper bound) M−3 M−1.5 M−0.54 M−0.34

MC M−0.5 M−0.5 M−0.5 M−0.5

QMC (best) M−1 M−1 M−1 M−1

QMC (worst) M−1(logM)2 M−1(logM)3 M−1(logM)4 M−1(logM)5

the two-dimensional example and slightly slower for d = 4. Recall that, in higher dimensions,
programming a randomized Korobov rule is much more demanding than using AEP.

What is important to stress here is that in MC and randomized QMC methods similar to the
one applied in Table 12a, the final estimates contain a source of randomness. Contrary to this,
the AEP algorithm is deterministic, being solely based on geometric properties of a certain do-
main. Moreover, the accuracy of MC and QMC methods is generally lost for problems in which
the density vH is not smooth or cannot be given in closed form, and comes at the price of an
adaptation of the sampling algorithm to the specific example under study. Recall that the AEP
algorithm does not require the density of the distribution H in analytic form, nor does it have to
assume overall smoothness. Finally, the precision of MC methods depends on the threshold s at
which VH [S(0, s)] is evaluated: estimates in the (far) tail of the distribution will be less accurate.

The re-tailoring, from example to example, of the rule to be iterated is also common to other
numerical techniques for the estimation of VH [S(0, s)] such as quadrature methods; see [7]

Table 12a. AEP and QMC (using Korobov sequence) estimates for VH [S(0, s)] for the sum of Two Pareto
distributions with parameters θ1 = 0.9 and θ2 = 1.8, coupled by a Clayton copula with parameter δ = 1.2

s AEP estimate (n = 14, 4.87 s) QMC estimate (M =1e−07, 6.6 s) QMC s.e.

100 0.315835041363413 0.3158345 +2.7e−06
102 0.983690398912470 0.98369106 +1.0e−06
104 0.999748719228038 0.99974872 +1.5e−07
106 0.999996018907752 0.999996 +4.0e−08

Table 12b. AEP and QMC (using Korobov sequence) estimates for VH [S(0, s)] for the sum of four Pareto
distributions with parameters θ1 = 0.9, θ2 = 1.8, θ3 = 2.6, θ4 = 3.3, coupled by a Clayton copula with
parameter δ = 0.2; computational times are also provided

s AEP estimate (n = 7, 107.70 s) QMC estimate (M =5e−07, 95 s) QMC s.e.

101 0.833826902853978 0.83380176 +3.6e−06
102 0.983565803484355 0.98362452 +9.0e−07
103 0.997972831330699 0.997997715 +2.3e−07
104 0.999745113409911 0.999748680 +5.0e−08

The AEP algorithm 585

and [19] for a review. However, in the computation of multi-dimensional integrals, as in (7.1),
numerical quadrature rules are typically less efficient than MC and QMC.

When the random variables X1, . . . ,Xd are exchangeable and heavy-tailed, some asymptotic
approximations of VH [S(0, s)] for large s can be found in [3,11] and references therein. It is im-
portant to remark that the behavior of AEP is not affected by the threshold s at which VH [S(0, s)]
is computed, nor by the tail properties of the marginal distributions FXi

. This is particularly in-
teresting as, under heavy-tailedness, the relative error of MC and QMC methods increases in the
tail of the distribution function of Sd .

We are, of course, aware that a well-designed quadrature rule or a specific quasi-random se-
quence might perform better than AEP in a specific example, with respect to both accuracy and
computational effort. However, AEP provides very accurate estimates of the distribution of sums
up to five dimensions in a reasonable time without the need to adapt to the probabilistic model
under study. AEP can handle, in a uniform way, any joint distribution H , possibly in the form of
its copula and marginal distributions. Because of its ease of use and the very weak assumptions
upon which it is based, AEP offers a competitive tool for the computation of the distribution
function of a sum of up to five random variables. A Web-based, user-friendly version has been
programmed and will eventually be made available.

8. Final remarks

In this paper, we have introduced the AEP algorithm in order to compute numerically the dis-
tribution function of the sum of d random variables X1, . . . ,Xd with given joint distribution H .
The algorithm is mainly based on two assumptions: the random variables Xi are bounded from
below and the distribution H has a bounded density in a neighborhood of the curve �s de-
fined in (3.7). Under this last assumption, the sum Sd has to be continuous at the threshold
s where the distribution is calculated, that is, P[Sd = s] = 0. When, instead, VH [�s] > 0, the
algorithm may fail to converge. As an example, take two random variables X1 and X2 with
P[X1 = 1/2] = P[X2 = 1/2] = 1. Then, VH [S(0,1)] = 1, but the sequence Pn(1) alternates
between 0 and 1. Similar examples for arbitrary dimension d can easily be constructed.

If H has at least a bounded density near �s , then the convergence of the sequence Pn(s) to
the value VH [S(0, s)] is guaranteed. As already remarked, the speed of convergence may vary,
depending on the probability mass of a neighborhood of �s . Tools to increase the efficiency of
the algorithm are therefore much needed in these latter cases.

The AEP algorithm has been shown to converge when d ≤ 5 if the joint distribution H of the
vector (X1, . . . ,Xd) has a bounded density vH . Under some extra smoothness assumptions on
vH , convergence holds when d ≤ 8. All of these conditions can be weakened to hold only in a
neighborhood of the curve �s and are satisfied by most examples which are relevant in practice.

We were not able to prove convergence of AEP in arbitrary dimensions, although we conjec-
ture this to hold. The main problem in higher dimensions is the non-monotonicity of Pn(s) and
P ∗

n (s). This results from the fact that the sk
n’s, as defined in (3.4), may be positive as well as

negative. From a geometric point of view, the main problem is the fact that the simplexes S k
n+1,

k = 1, . . . ,Nn, passed to the (n + 1)th iteration of the algorithm, are generally not disjoint for
d > 2. As illustrated in Table 1, the sum of the Lebesgue measures of the S k

n+1’s is increasing

586 P. Arbenz, P. Embrechts and G. Puccetti

in the number n of iterations when d > 6, while their union always lies in some neighborhood
of the curve �s . A general convergence theorem may need a volume decomposition different
from (3.1) and using only a family of disjoint simplexes, or else an extension of the extrapolation
technique.

We also remark that the statement of a general convergence theorem will not entail any prac-
tical improvement of AEP, since memory constraints limit the use of the algorithm to dimension
d ≤ 5. However, in these manageable dimensions, we expect the AEP convergence rates to be
better than their upper bounds given in Table 2.

Apart from the study of convergence of AEP in higher dimensions, in future research, we will
also address an extension of the algorithm to more general aggregating functions ψ(X1, . . . ,Xd)

and the study of an adaptive (i.e., depending on H) and more efficient (in terms of new simplexes
produced at each iteration) decomposition of the simplexes.

Appendix: Proof of (3.1)

Recall that, in Section 1, we denoted by i0, . . . , iN all of the 2d vectors in {0,1}d , with i0 =
(0, . . . ,0), ik = ek , k = 1, . . . , d , and iN = 1 = (1, . . . ,1), where N = 2d − 1. Also, recall that #i
denotes the number of 1’s in the vector i, for instance, #i0 = 0, #iN = d .

Theorem A.1. For any b ∈ R
d , h ∈ R and α ∈ [1/d,1), we have that

VH [S(b, h)] = VH [Q(b, αh)] +
N∑

j=1

mjVH [S(bj , hj)],

where, for all j = 1, . . . ,N ,

bj = b + αhij , hj = (1 − #ijα)h,
(A.1)

mj =
⎧⎨
⎩

(−1)1+#ij , if #ij < 1/α,
0, if #ij = 1/α,
(−1)d+1−#ij , if #ij > 1/α.

Note that (A.1) is equivalent to (3.1) under the notation introduced in Section 3. In order to
prove the above theorem, we need some lemmas. In the following, δij denotes the Kronecker
delta, that is,

δij =
{

0, if i �= j,

1, if i = j .

Lemma A.2. Fix i, j ∈ D with i �= j . Then, for any h, s ∈ R with hs ≥ 0 and b ∈ R
d , we have

that

S(b + hei , s) ∩ S(b + hej , s) =
{

S(b + hej + hei , s − h), if |h| < |s|,
∅, if |h| ≥ |s|.

The AEP algorithm 587

Proof.
Proof of ⊂. First, assume 0 < s ≤ h. By definition (1.4), for a vector x ∈ S(b +hei , s), we have
that

xk > bk + δikh, k ∈ D and
d∑

k=1

(xk − bk − δikh) ≤ s,

from which it follows that

xj ≤ bj + s −
∑
k �=j

(xk − bk − δikh) < bj + s ≤ bj + h,

that is, x /∈ S(b + hej , s). Now, assume that 0 < h < s. For a vector x ∈ S(b + hei , s) ∩ S(b +
hej , s), we have that

xk − bk > 0, k ∈ D with xi > bi + h and xj > bj + h. (A.2)

Again, x ∈ S(b + hei , s), therefore
∑d

k=1(xk − (bk + hδik)) ≤ s. Subtracting h from both sides
of the last inequality, we obtain

d∑
k=1

(
xk − (bk + hδik + hδjk)

) ≤ s − h. (A.3)

Equations (A.2) and (A.3) show that x ∈ S(b+hej +hei , s −h). The case h, s < 0 is analogous.

Proof of ⊃. If 0 < s ≤ h, there is nothing to show. Suppose, then, that 0 < h < s. For any fixed
x ∈ S(b + hej + hei , s − h), (A.3) holds with xk − (bk + hδik + hδjk) > 0, k ∈ D. By adding
hδjk in the sum on the left-hand side and h to the right-hand side of (A.3), we find that

d∑
k=1

(
xk − (bk + hδik)

) ≤ s. (A.4)

Since (xk − (bk + hδik)) is still positive for all k ∈ D, (A.4) shows that x ∈ S(b + hei , s). By
similar reasoning, we also have that x ∈ S(b + hej , s). The case h, s < 0 is analogous; the case
hs = 0 is trivial. �

Lemma A.3. For any b ∈ R
d , h ∈ R and α ∈ (0,1), we have that

S(b, h) \ Q(b, αh) =
d⋃

k=1

S(b + αhek, h − αh).

Proof.
Proof of ⊂. First, assume that h > 0. If x ∈ S(b, h) \ Q(b, αh), then xk > bk , k ∈ D and∑d

k=1(xk − bk) ≤ h, while, by definition (1.2), there exists a j ∈ D such that xj − bj > αh.

588 P. Arbenz, P. Embrechts and G. Puccetti

For this j , it is then possible to write

d∑
k=1

(
xk − (bk + δjkαh)

) ≤ h − αh with xk − (bk + δjkαh) > 0, k ∈ D, (A.5)

which yields x ∈ S(b + αhej , h − αh) ⊂ ⋃d
k=1 S(b + αhek, h − αh).

Proof of ⊃. Let x ∈ ⋃d
k=1 S(b + αhek, h − αh), meaning that there exists j ∈ D for which x

satisfies (A.5). It follows that xj > bj + αh (hence x /∈ Q(b, αh)) and
∑d

k=1(xk − bk) ≤ h −
αh + αh = h. Noting that (A.5) also implies xk > bk , k ∈ D, we finally obtain that x ∈ S(b, h) \

Q(b, αh). The case h < 0 is analogous, while the case h = 0 is trivial. �

Lemma A.4. For any b ∈ R
d , h ∈ R and α ∈ [1/d,1), we have that

Q(b, αh) \ S(b, h) = S(b + αh1, h − αdh) ∩ Q(b, αh).

Proof.
Proof of ⊂. If α = 1/d , then the lemma is straightforward. So, choose α ∈ (1/d,1) and assume
h > 0. If x ∈ Q(b, αh) \ S(b, h), then xk > bk for all k ∈ D. Since x /∈ S(b, h), it follows that∑d

i=1(xi − bi) > h. Since xk ≤ bk + αh for all k ∈ D, we can write

d∑
k=1

(xk − bk − αh) > h − αdh with xk − (bk + αh) ≤ 0 for all k ∈ D. (A.6)

As h − dαh = h(1 − dα) < 0, we conclude that x ∈ S(b + αh1, h − αdh) and, hence, by as-
sumption, x ∈ S(b + αh1, h − αdh) ∩ Q(b, αh). �

Proof of ⊃. Let x ∈ S(b +αh1, h−αdh)∩ Q(b, αh). Due to h−αdh < 0, it follows that (A.6)
holds, implying that

∑d
k=1(xk −bk) > h, that is, x /∈ S(b, h). The case h < 0 is analogous, while

the case h = 0 is trivial. �

We are now ready to prove the main result in this appendix.

Proof of Theorem A.1. The case h = 0 is trivial. Suppose, then, that h �= 0. From the general
property of two sets A,B that B = (A∪ (B \A)) \ (A \B), (A \B) ⊂ A∪ (B \A) and A∩ (B \
A) = ∅, it follows that

VH [S(b, h)] = VH [Q(b, αh)] + VH [S(b, h) \ Q(b, αh)] − VH [Q(b, αh) \ S(b, h)]. (A.7)

Using the notation S k = S(b + αhek, h − αh), Lemma A.3 implies, for the second summand
in (A.7), that

VH [S(b, h) \ Q(b, αh)] = VH

[
d⋃

k=1

S k

]
=

d∑
k=1

(−1)k+1
∑

I⊂D,|I |=k

VH

[⋂
i∈I

S i

]
. (A.8)

The AEP algorithm 589

Fixing I ⊂ D with I = {n1, . . . , nk}, iteratively using Lemma A.2 yields

⋂
i∈I

S(b + αheni
, h − αh) =

⎧⎪⎨
⎪⎩ S

(
b + αh

k∑
j=1

enj
, h(1 − kα)

)
, if kα < 1,

∅, if kα ≥ 1.

Substituting this last expression into (A.8) implies that

VH [S(b, h) \ Q(b, αh)] =
∑
k∈D,

kα<1

(−1)k+1
∑

ir∈{0,1}d ,

#ir=k

VH

[
S

(
b + αhir , h(1 − kα)

)]

(A.9)
=

∑
i∈{0,1}d ,

0<#i<1/α

(−1)#i+1VH

[
S

(
b + αhi, h(1 − #iα)

)]
.

Using Lemma A.4 for the third summand in (A.7), we can also write that

VH [Q(b, αh) \ S(b, h)]
= VH [S(b + αh1, h − αdh) ∩ Q(b, αh)] (A.10)

= VH [S(b + αh1, h − αdh)] − VH [S(b + αh1, h − αdh) \ Q(b, αh)].
Note that if α = 1/d , then the quantity in (A.10) is zero. We can hence assume that α �= 1/d .
Observing that Q(b, αh) = Q(b + αh1,−αh) and defining b̂ = b + αh1, α̂ = −α/(1 − αd) >

1/d and ĥ = h(1 − αd), we can write

VH [S(b + αh1, h − αdh) \ Q(b, αh)] = VH [S(b̂, ĥ) \ Q(b̂, α̂ĥ)].
Note that the right-hand side of the previous equation is empty if α̂ ≥ 1, that is, α ∈ (1/d,1/(d −
1)]. At this point, equation (A.9) yields

VH [S(b + αh1, h − αdh) \ Q(b, αh)]
=

∑
i∈{0,1}d ,

0<#i<1/α̂

(−1)#i+1VH

[
S

(
b̂ + α̂ĥi, ĥ(1 − #iα̂)

)]

=
∑

i∈{0,1}d ,

0<#i<d−1/α

(−1)#i+1VH

[
S

(
b + αh(1 − i), h

(
1 − α(d − #i)

))]
.

Substituting î = 1 − i (#î = d − #i) into the previous equation, we can equivalently write

VH [S(b + αh1, h − αdh) \ Q(b, αh)]
(A.11)

=
∑

î∈{0,1}d ,

1/α<#î<d

(−1)d−#î+1VH

[
S

(
b + αhî, h(1 − #îα)

)]
.

590 P. Arbenz, P. Embrechts and G. Puccetti

In keeping with what was noted above, this last equation is null in the aforementioned case in
which α̂ ≥ 1. Recalling (A.10) and noting that

S(b + αh1, h − αdh) = S
(
b + αhiN,h(1 − #iNα)

)
,

we obtain

VH [Q(b, h) \ S(b, αh)]
= VH

[
S

(
b + αhiN,h(1 − #iNα)

)]
(A.12)

−
∑

î∈{0,1}d ,

1/α<#î<d

(−1)d−#î+1VH

[
S

(
b + αhî, h(1 − #îα)

)]

=
∑

î∈{0,1}d ,

1/α<#î≤d

(−1)d−#îVH

[
S

(
b + αhî, h(1 − #îα)

)]
.

Finally, recalling the definitions in (A.1), we substitute equations (A.9) and (A.12) into (A.7) to
obtain

VH [S(b, h)] = VH [Q(b, αh)] +
∑

i∈{0,1}d ,

0<#i<1/α

(−1)#i+1VH

[
S

(
b + αhi, h(1 − #iα)

)]

−
∑

î∈{0,1}d ,

1/α<#î≤d

(−1)d−#îVH

[
S

(
b + αhî, h(1 − #îα)

)]

= VH [Q(b, αh)] +
N∑

j=1

mjVH [S(bj , hj)].
�

Acknowledgements

The authors are grateful to Don McLeish for providing relevant comments on the paper and
the example illustrated in Table 11. Giovanni Puccetti would like to thank RiskLab and the
Forschungsinstitut für Mathematik (FIM) of the Department of Mathematics, ETH Zürich, for
its financial support and kind hospitality. Philipp Arbenz would like to thank SCOR for financial
support toward the final stages of writing this paper. The final version of the paper was written
while Paul Embrechts was visiting the Institute for Mathematical Sciences at the National Uni-
versity of Singapore. Finally, the authors would like to thank two anonymous referees and an
Associate Editor for several valuable comments which significantly improved the paper.

The AEP algorithm 591

References

[1] Aas, K., Dimakos, X.K. and Øksendal, A. (2007). Risk capital aggregation. Risk Management 9 82–
107.

[2] Asmussen, S. and Glynn, P.W. (2007). Stochastic Simulation: Algorithms and Analysis 57. New York:
Springer. MR2331321

[3] Barbe, P., Fougères, A.-L. and Genest, C. (2006). On the tail behavior of sums of dependent risks.
Astin Bull. 36 361–373. MR2312671

[4] Basel Committee on Banking Supervision (2006). International Convergence of Capital Measurement
and Capital Standards. Basel: Bank for International Settlements.

[5] Bürgi, R., Dacorogna, M. and Iles, R. (2008). Risk aggregation, dependence structure and diversifi-
cation benefit. In Stress-Testing for Financial Institutions. Applications, Regulations and Techniques
(D. Rösch and H. Scheule, eds.). London: Risk Books.

[6] Caflisch, R.E., Morokoff, W. and Owen, A. (1997). Valuation of mortgage-backed securities using
Brownian bridges to reduce effective dimension. J. Comput. Finance 1 27–46.

[7] Davis, P.J. and Rabinowitz, P. (1984). Methods of Numerical Integration, 2nd ed. Orlando, FL: Acad-
emic Press. MR0760629

[8] Embrechts, P. (2009). Copulas: A personal view. J. Risk Insurance 76 639–650.
[9] Gill, H.S. and Lemieux, C. (2007). Searching for extensible Korobov rules. J. Complexity 23 603–613.

MR2372017
[10] Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. New York: Springer.

MR1999614
[11] Laeven, R.J., Goovaerts, M.J. and Hoedemakers, T. (2005). Some asymptotic results for sums of

dependent random variables, with actuarial applications. Insurance Math. Econom. 37 154–172.
MR2172096

[12] L’Ecuyer, P. and Lemieux, C. (2000). Variance reduction via lattice rules. Management Science 46
1214–1235.

[13] McLeish, D.L. (2005). Monte Carlo Simulation and Finance. Hoboken, NJ: Wiley. MR2263887
[14] McLeish, D.L. (2008). Bounded relative error importance sampling and rare event simulation. Astin

Bull. 40 377–398.
[15] McNeil, A.J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Tech-

niques and Tools. Princeton, NJ: Princeton Univ. Press. MR2175089
[16] Morokoff, W.J. (1998). Generating quasi-random paths for stochastic processes. SIAM Rev. 40 765–

788. MR1659693
[17] Nelsen, R.B. (2006). An Introduction to Copulas, 2nd ed. New York: Springer. MR2197664
[18] Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF

Regional Conference Series in Applied Mathematics 63. Philadelphia: SIAM. MR1172997
[19] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (2007). Numerical Recipes: The Art

of Scientific Computing, 3rd ed. Cambridge: Cambridge Univ. Press. MR0833288
[20] SCOR (2008). From Principle Based Risk Management to Solvency Requirements. Switzerland: Swiss

Solvency Test Documentation, SCOR.
[21] Weinzierl, S. (2000). Introduction to Monte Carlo methods. Available at arXiv:hep-ph/0006269.

Received May 2009 and revised January 2010

http://www.ams.org/mathscinet-getitem?mr=2331321
http://www.ams.org/mathscinet-getitem?mr=2312671
http://www.ams.org/mathscinet-getitem?mr=0760629
http://www.ams.org/mathscinet-getitem?mr=2372017
http://www.ams.org/mathscinet-getitem?mr=1999614
http://www.ams.org/mathscinet-getitem?mr=2172096
http://www.ams.org/mathscinet-getitem?mr=2263887
http://www.ams.org/mathscinet-getitem?mr=2175089
http://www.ams.org/mathscinet-getitem?mr=1659693
http://www.ams.org/mathscinet-getitem?mr=2197664
http://www.ams.org/mathscinet-getitem?mr=1172997
http://www.ams.org/mathscinet-getitem?mr=0833288
http://arxiv.org/abs/arXiv:hep-ph/0006269

	Motivations and preliminaries
	Description of the AEP algorithm for d=2
	Description of the AEP algorithm for arbitrary d
	Choice of alpha
	An improvement of the numerical accuracy of the algorithm via extrapolation
	Applications
	A comparison with Monte Carlo, quasi-Monte Carlo and quadrature methods
	Final remarks
	Appendix: Proof of (3.1)
	Acknowledgements
	References

