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Motivated by recent experiments on the finite temperature Mott transition in VO2 films, we propose a

classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin

which transitions from insulator to metal with increasing temperature and voltage at random thresholds

due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator

transition and explain the universal characteristics of the resistance jump distribution. We predict that by

tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from

percolationlike ones.
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Vanadium dioxide (VO2), when heated or strained, dis-
plays an insulator to metal transition with intriguing non-
equilibrium collective behavior, portrayed in a remarkable
series of recent experiments [1–5]. Strong electron corre-
lations drive the microscopics of this metal-insulator tran-
sition, where a delicate interplay among structural,
electronic and spin degrees of freedom takes place [6].
However, as we argue in this Letter, the universal features
of the observed resistance jumps can be understood via
appropriate generalizations of previously studied models
of dielectric breakdown [7,8]. By tuning two natural con-
trol parameters, the applied voltage V and the contrast h
(the ratio of conductances of the insulating and metallic
domains), we show that the existing experiments are in the
small h regime, where a crossover, in small samples,
between a low-V percolating phase and a high-V bolt phase
takes place. As h becomes larger, this crossover evolves
into a sharp transition with novel critical properties.

The VO2 films studied in Ref. [1] had a thickness of
90 nm, widths ranging from 2 �m to 15 �m, and lengths
ranging from 200 nm to 4 �m. X-ray diffraction studies of
films near criticality revealed that stable insulating grains
have an average linear size of 20 nm [2,9]. With the sample
put under an external voltage V, multiple resistance jumps
were observed near the bulk transition temperature [1]. The
statistics of these jumps revealed a power law probability
distribution Pð�RÞ ��R��, with an exponent � ’ 2:45.
The resistance jump distribution depended strongly on the
magnitude of the external voltage, with the largest jump
scaling linearly with the voltage. Further, in the presence of
external voltage, elongated conducting clusters have been
observed through x-ray diffraction [2], whereas in the
absence of voltage, percolationlike isotropic clusters have
been recorded with near-field infrared spectroscopy [3,10].

Even though VO2’s transition properties are dominated
by electron correlations, we argue that the observed col-
lective phenomena can be explained in a purely classical

way, consistent with experimental observations [1–5].
The large length scales of the domains (� 15–20 nm)
and the small electron mean-free path near the transition
(� 0:26 nm) suggest that coherence effects are unimpor-
tant and electron transport is predominantly classical
(Ohm’s law) [11]. This high-temperature transition
(� 340 K) cannot be interpreted as a quantum phase tran-
sition, since the observed �1% lattice distortion sup-
presses any electronic coherence [12]. The thermal
loading must be considered quasistatic because the loading
rate of the experiments (< 3 K=min, [1]) is much slower
than the intrinsic dynamics of the domains (� 10�3 s, [9]).
Also, some experiments at high voltage show a large event
that repeats in space [13] and time [4] over repeated cycles
of thermal loading, while others [1], for smaller voltages
do not exhibit this repetition. In our model, we consider a
quasistatic model of classical resistors in two dimensions
with deterministic dynamics, and with classical, quenched
disorder, hence leading to reproducible avalanche sequen-
ces. The strongly correlated quantum and statistical phys-
ics underlying the Mott transition is absorbed into
temperature and voltage dependencies of our domain
dynamics, which could be estimated by using dynamic
mean field theory [14,15].
Motivated by previous successful studies of strongly

correlated electronic systems at finite temperatures
[16–18], we propose an extended dielectric breakdown
network model of coarse-grained regions transforming
from insulator to conductor with random critical tempera-
ture thresholds. We study the resistance jump distribution
and make predictions about the exponent �. In addition,
we study the probability distribution of avalanche sizes
PðsÞ � s��, where s is the number of resistors transformed
in a single avalanche burst. We explain the observed quali-
tative behavior at different voltages, and predict the exis-
tence of two distinct regimes: (a) a percolation-dominated
regime [19] where scaling appears only in resistance jumps

PRL 107, 276401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

30 DECEMBER 2011

0031-9007=11=107(27)=276401(5) 276401-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.276401


and avalanches are isotropic and small, and, (b) a bolt
dominated regime, where avalanches are highly aniso-
tropic, almost linelike. Finally, we make a number of
experimentally verifiable predictions regarding the behav-
ior of the system in the different regimes.

In our model each link i of the network, labeled by a
variable Si, is thought of as a microscopic ‘‘grain’’ of linear
size at least of the order of the dephasing length l�. It can

be conducting (Si � þ1) with conductance �C, or insulat-
ing (Si � �1) with conductance �I ¼ h�C. The variable
0 � h � 1 is the inverse contrast between conducting and
insulating regions. We enforce biperiodic boundary con-
ditions on a diamond lattice (a square grid rotated by 45�)
and subject it to an external voltage V per link.
Experimental observations show that the threshold tem-
perature in the insulator to metal transition decreases with
voltage [5,13,14]. We account for this in the model by
transforming the resistor at link i from insulator to metal
when the following condition is satisfied,

T � Tc
i � bVi (1)

where T is the temperature of the sample, Vi is the voltage
drop across the ith link, and Tc

i is the random zero-voltage
critical temperature threshold which models the disorder
[20]. Equation (1) is a linear approximation to the observed
voltage dependence of the critical temperature threshold
[5,13,14]; the exact functional form should be irrelevant
for the universal behavior.

In this model there are two cases which have been
studied previously: V ¼ 0 and the limit h ! 1. At V¼0,
resistors are not coupled and transform sequentially one at
a time as in percolation. The resistance jump distribution
for percolation, originally studied in Ref. [19], displays a
multifractal structure with a power law tail at large jumps
decreasing with an exponent � ’ 2:7 [the power law tail is
shown in Fig. 1(b)]. As h ! 1, the model can be studied by
an explicit perturbation expansion in powers of ð1� hÞ=h
[21]. The voltage Vi across the ith link satisfies the recur-
sive equation Vi ¼ V � 1

2 ½ð1� hÞ=h�Pj�ijðSj þ 1ÞVj,

where �ij are the lattice Green functions with dipolar

form at long distances. Their general form for an
n-dimensional hypercubic lattice is �ij ¼

R
dnk=ð2�Þn �

sin12 ki sin
1
2 kj cosðk:rijÞ=ð

P
n
l¼1 sin

2 1
2 klÞ, where ki, kj are

the directional wave vector components, and rij is the

vector from the center of link i to center of link j. Taking
� � ð1� hÞ=h 	 1 we obtain [21],

Vi � V ¼ �ð�V=2Þ�j�ijðSj þ 1Þ þOð�2Þ: (2)

Thus, in the singular limit of h ! 1, the model maps to a
disordered, long-range, frustrated Ising model. This map-
ping is intriguing, because it maps a dielectric breakdown
model with nonadditive multibody interactions, to a dipo-
lar Ising model with additive two-body interactions. The
dipolar interaction in this singular limit is shared with a

model [22] of interface depinning in magnetic hysteresis,
where their fingerlike structures resemble our bolts.
We perform numerical simulations, where a random

temperature threshold Tc
i , drawn from the standard

Gaussian distribution, is assigned to each link. The simu-
lation starts with every resistor in the insulating state (Si ¼
�1 8 i). The voltage at individual nodes is found by
numerically solving the Kirchoff equations [23]. At each
step the resistor for which the condition T ¼ Tc

i � bjVij
[Eq. (1)] is satisfied at the lowest possible value of T, is
transformed into metal, and voltages are recomputed for
the entire network. The process is repeated until every
resistor is in the conducting state (Si ¼ 1 8 i).
In the experiments of Refs. [1,2,10] on VO2, h is small

(about 10�3) and the voltage appears to be low compared to
the disorder threshold. In this limit, for large resistance
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FIG. 1 (color online). Universal scaling and avalanches in the
high-contrast, percolation-dominated regime. (a) The resistance-
temperature curve shows a multiple-step structure similar to the
experimentally observed one [1]. (b) The resistance jump distri-
bution acquires a universal form, for different contrast parame-
ters and voltages for L ¼ 128. The exponent � ¼ 2:7 agrees
qualitatively with the experimentally observed exponent 2.45.
Additionally, the distributions show finite-size scaling, demon-
strating the presence of a nearby critical point. Insets: The largest
resistance jump is observed to scale linearly with 1=L at fixed
V ¼ 0:1 (inset in (b), as observed experimentally [1]), and
linearly with V at fixed L ¼ 128 [inset in (a)].
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jumps, shown in Fig. 1(a), the distribution has an exponent
� ’ 2:7 which is very similar to the experimental findings
reported in Ref. [1]. The structure of the resistance-
temperature curve shown in Fig. 1(b) is also similar to
ones reported experimentally. The size of the largest re-
sistance jump scales linearly with the applied voltage, as
reported in Ref. [1]. This dependence on the applied volt-
age stems from the nonadditive multibody interactions of
our model, and cannot be achieved by previously suggested
bond-percolation type models [1] where the size of the
largest resistance jump vanishes in the large system size
limit. A more explicit signature of percolation would be
the observation of the multifractal scaling [19] expected at
low resistance jumps, possibly below the experimental
resolution.

When the contrast is smaller (h * 1=2), we find that the
insulator to metal transition occurs in avalanches, with
several bonds transforming simultaneously at the same
temperature. For fixed h (near 1), avalanches and resist-
ance jumps are linearly related (�R� sð1� hÞ=ð2L2Þ for
the diamond lattice) and both show power laws and uni-
versal scaling (sizes shown in Fig. 2). As the external

voltage V is varied, the avalanche size distribution evolves
from trivial (at V ¼ 0, where resistors transform one by
one) to a power law at a critical voltage VcrðhÞ, to again
trivial (one giant avalanche) at V 
 Vcr. This behavior is
suggestive of a continuous phase transition; we analyze the
probability distribution of our sizes PðsÞ with the scaling
form PðsÞ � s���ðs=��; L=�Þ, where �� jV � Vcrj�	

is the correlation length. The nth moment of the avalanche

size distribution scales as hsni � L�ð1þn��Þ�ððV �
VcrÞL1=	Þ. These scaling forms fit the data with good
accuracy as shown in Fig. 2. Figure 2(a) shows the univer-
sal size distribution and Fig. 2(b) shows the distribution of
the mean avalanche size, and a fit to the predicted scaling
form. From these fits we get 1=	 ¼ 0:25� 0:24, � ¼
0:8� 0:4, � ¼ � ¼ 1� 0:2. We have also studied other
disorder distributions (e.g., Tc

i taken from a uniform or
exponential distribution) and explored other analytical
methods (e.g., changing the critical range in the fits and
analyzing the size distribution of spatially connected
pieces of the avalanches) all of which confirm the presence
of critical fluctuations.
The phase transition identified above separates a perco-

lative phase from a ‘‘bolt’’ phase as shown in Fig. 3. We
estimate the phase boundary by a mean-field theory that
becomes exact in the limit of h ! 1, V ! 0. In this limit
the local voltage concentrations are unimportant and the
interactions are additive. The avalanches can be modeled
as a branching process—a grain (bond) turning metallic
induces a long-ranged perturbation in the voltage field,
which can result in a few more grains turning metallic,
ad infinitum. The voltage change, �V, due to a single

metallic bond at a distance r, goes as �VðrÞ / Vð1�hÞ
r2ð1þhÞ
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FIG. 2 (color online). Novel universality at the percolation-
bolt transition. (a) The probability distribution of avalanche sizes
shows universal scaling near h ¼ 1; In this limit, �R� S. (b) As
shown in the inset, the mean avalanche size at the critical voltage
diverges as L ! 1, suggesting a continuous phase transition.
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FIG. 3 (color online). Fractal-looking clusters and phase dia-
gram. The colors in the insets reflect avalanches; the first span-
ning cluster is shown in black. The phase boundary and the error
bars are obtained by treating the critical voltage, Vcr, as a free
parameter in data collapses (see Fig. 2). The percolation fixed
point at h ¼ 0, V ¼ 0 is likely unstable under coarse-graining,
and we anticipate that there will be a crossover to the critical
point (h ! 1) behavior for very large avalanches even for high
contrast.
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[24]. Let 
 be the average number of grains that turn
metallic due the perturbation caused by one grain, then

 / V logLð1� hÞ=ð1þ hÞ. The mean size of the resulting
avalanche is given by 1þ 
þ 
2 þ . . . . Thus, setting

 ¼ 1 yields a phase boundary between a phase with small
avalanches (percolative phase, 
 < 1), and a phase with
large avalanches (bolt phase, 
 � 1).

Figure 3 shows the phase boundary V ¼ 7:26ð1þ hÞ=
ð1� hÞ, where the prefactor 7.26 is obtained by fitting the
simulation data. It is difficult to notice the logarithmic drift
in the phase boundary due to limited simulation size;
however, the mean-field analysis suggests that the phase
boundary is at V ¼ 0 in the limit of L ! 1. Even though
the voltage per bond, V, goes to zero, the externally applied
voltage diverges as L= logL. This is analogous to fracture
where the stress at failure goes to zero, and yet the net
applied force at failure diverges in the limit of large length
scales [25]. The mean-field theory yields a avalanche size
exponent of � ¼ 3=2, which is different from the numeri-
cally observed value [Fig. 2(a)], possibly due to the effect
of fluctuations. Finally, we have checked that the mean-
field theory can also be collapsed by using scaling forms
consistent with the scaling analysis discussed previously
[Fig. 2(b)].

Even though we believe that the phase diagram shown in
Fig. 3 is qualitatively accurate, there are other possible
scenarios that cannot be entirely ruled out. It is possible
that V is finite at the transition, as suggested by the scaling
analysis. It is also possible that this is an avoided critical
point [26], i.e., large avalanches reflecting a crossover
to the critical point at h ! 1, V ! 1. However, the ava-
lanche size distribution displays a scaling collapse (cf.
Fig. 2) and a power law in a large range. Also, the behavior
is fairly independent of h for 0:5< h< 1, rendering a
crossover unlikely.

Our minimal model can be verified experimentally in the
following ways. (a) For high voltages boltlike avalanches
should appear, leading to boltlike conducting clusters. This
property has already been observed in Ref. [2], where
elongated clusters appear in the presence of finite gate
voltage, whereas such anisotropy is absent when V ¼ 0
[10]. (b) At low contrast (h * 1=2), mean resistance jump
and avalanche size should diverge only at a critical voltage,
with power law distributions � ¼ � ’ 1. An approach to
this regime should be easier in hydrostatic pressure-
controlled systems like organic materials in the �-ET
family.

In conclusion, we presented a novel model of avalanches
for the metal-insulator transition in VO2, bringing together
recent experimental findings, and also making concrete
experimental predictions as the relevant parameters are
altered. We have identified a novel continuous transition
controlled by long-range interactions which could be ob-
served in particular classes of materials that have evidently
smaller contrast, like organic materials under hydrostatic

pressure [27,28] or bulk V2O3 [29]. Another possibility for
achieving low contrast is by tuning hydrostatic pressure,
approaching the metal-insulator Ising critical point [18].
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