

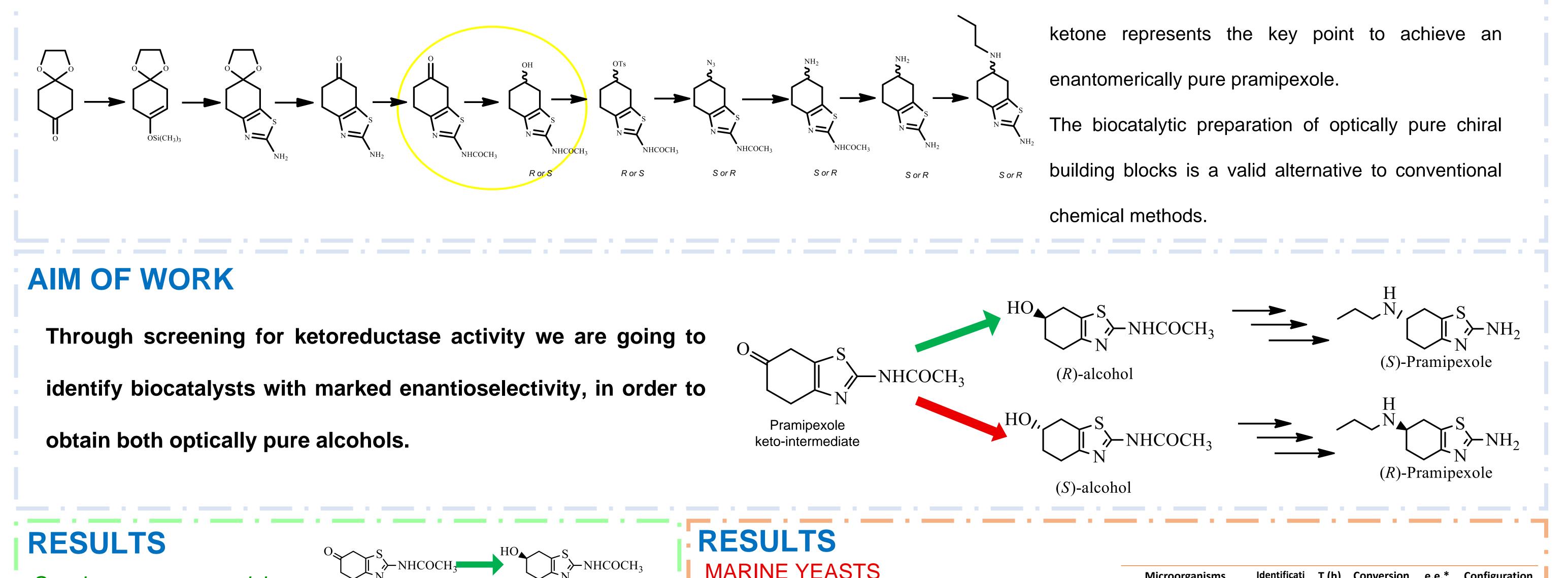
The biocatalytic approach to the preparation of Pramipexole

Benedetta Guidi^{a*}, Patrizia Ferraboschi^a, Samuele Ciceri^a, Martina Letizia Contente^b, Valerio De Vitis^b and Francesco Molinari^b.

^a Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy. ^b Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy.

(R) - pramipexole

(S)-Pramipexole is the most prescribed dopamine agonist in the ANTI-PARKINSON THERAPY.


(*R*)-Pramipexole is currently in clinical development for the treatment

of AMYOTROPHIC LATERAL SCLEROSIS (ALS).

Two enantiomers of the same molecule show a different biological activity.

CHEMICAL SYNTHESIS DEVELOPED

In this new synthetic way reduction of the prochiral

Saccharomyces cerevisiae Keto-intermediate **BEST BIOTRANSFORMATION CONDITIONS** • Phosphate buffer 100 mM, pH 7 S. cerevisiae liophilized whole cells 14 g/L

Saccarose 50 g/L Experimental conditions Substrate: keto-intermediate 2,5 g/L buffer pH 7 eptane/water phase 1:1

Under stirring at 30°C, 180 rpm.

→NHCOCH₃

18

18

16

[•] Determinated by HPLC on chiral stationary phase.

buffer pH 7/*n*-

heptane 1:1

buffer pH 7/*n*-

heptane 1:1

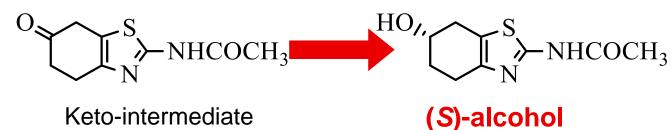
(R)-alcohol

Time (h) Conversion (%) (R) e.e.

100

100

87


(%)

92

94

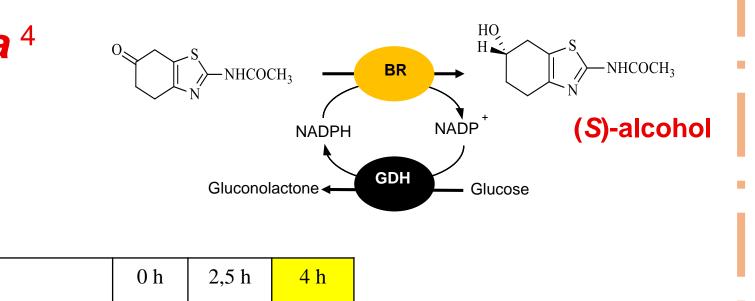
>98

MARINE YEASTS

Screening on twenty marine yeast strains, from MaCuMBA¹ European project collection²

PRELIMINARY BIOTRANSFORMATION CONDITION

- Growing cells after 48h in YPD+3% NaCl
- Glucose 50 g/L
- Substrate: keto-intermediate 1 g/L (isopropa


Under stirring at 30°C,180 rpm.

	Microorganisms	Identificati on number	Т (h)	Conversion *	e.e.*	Configuration
	Meyerozyma guilliermondii strain	1	24	100%	7,5%	R
	Meyerozyma guilliermondii strain	2	24	100%	5%	R
	Meyerozyma guilliermondii strain	3	24	100%	1,3%	R
	Rhodotorula mucilaginosa strain	4	24	100%	40%	S
	Meyerozyma guilliermondii strain	5	24	100%	2%	R
) ² .	Meyerozyma guilliermondii strain	6	24	100%	1%	R
	Not sequenced	7	24	84%	26%	R
	Rhodotorula mucilaginosa strain	8	24	100%	45%	S
	Rhodotorula mucilaginosa strain	9	24	100%	0,15%	S
NS	Rhodotorula mucilaginosa strain	10	24	100%	42%	S
	Rhodotorula mucilaginosa strain	13	24	100%	62%	S
	Rhodotorula mucilaginosa strain	14	24	98%	50%	S
	Rhodotorula mucilaginosa strain	15	24	100%	56%	S
	Rhodotorula mucilaginosa strain	16	24	100%	64%	S
anol)	Rhodotorula mucilaginosa strain	17	24	100%	48%	S
	Rhodotorula mucilaginosa strain	18	24	100%	38%	S
	Rhodotorula mucilaginosa strain	19	24	100%	48%	S
	Rhodotorula mucilaginosa strain	20	24	100%	50%	S
	Rhodotorula mucilaginosa strain	21	24	100%	50%	S

* Determinated by HPLC on chiral stationary phase.

22

Rhodotorula mucilaginosa strain

100%

49%

CONCLUSIONS

- The common baker yeast Saccharomyces cerevisiae afforded with yields of 80% optically pure (R)-alcohol precursor of the anti-Parkinson (S)-pramipexole. The optically pure (S)-alcohol, required for the synthesis of (R)-pramipexole, under investigation for the treatment of ALS, has been isolated with low yields by inversion of configuration from (R)-alcohol.
- Twenty marine yeast strains were screened for ketoreductase activity

BENZIL REDUCTASE³ from *Pichia glucozyma*⁴ **BIOTRANSFORMATION CONDITION**

- Benzil reductase
- Glucose dehydrogenase
- Substrate: keto-intermediate 1 g/L
- Glucose

with the aim of reducing the ketone with a stereochemical outcome opposite than S.cerevisiae, affording (S)-alcohol. In particular, *Rhodotorula mucillaginosa* strains gave (S)-alcohol with an e.e. ranging from 38% to 64%.

Application of a novel benzil reductase from *Pichia glucozyma*, thanks

to co-factor recycling system, showed that isolated enzyme is able to produce (S)-alcohol with e.e. 86%.

REFERENCES

1- MaCuMBA Marine Culturable Microorganism for Biotechnological Applications is an ongoing FP7 Project (http://www.macumbaproject.eu/)

2- Burgaud, G., Arzur, D., Durand, L., Cambon-Bonavita M., Barbier, G. (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol. 73, 121–133.

3- Contente, M. L., Molinari, F., Zambelli, P., De Vitis, V., Gandolfi, R., Pinto, A., Romano, D. (2014) Biotransformation of aromatic ketones and I with the non-conventional yeast *Pichia glucozyma*. Tetrahedron Letters, Volume 55, Issue 51, 7051–7053.

4- Contente, M. L., Serra, I., Brambilla, M., Eberini, I., Giannazza, E., De Vitis, V., Molinari, F., Zambelli, P., Romano, D. (2015) Stereoselective reduction of aromatic ketones by a new ketoreductase from Pichia glucozyma. Applied Microbiology and Biotechnology- accepted for pubblication.

- Tris HCI buffer 50 mM, pH8

- NADP+

Under stirring at 30°C for 24h, 150 rpm.

Conversion*	15%	67%	75%	
(<i>S</i>) e.e.*	43%	53%	86%	

* Determinated by HPLC on chiral stationary phase

FUTURE DEVELOPMENTS

- Optimisation of marine yeasts biotransformation conditions.
- Screening of new microorganisms.
- Isolation, cloning and expression of the best performing proteins from microorganism screened

active on the suitable ketone.

Setting up a continuous baker yeast catalysed biotransformation based on Flow Chemistry

technique.

Ferraboschi, P., Ciceri, S., Ciuffreda, P., De Mieri, M., Romano, D. Grisenti, P. (2014) Tetrahedron: Asymmetry 25, 1239-1245.

* benedetta.guidi@unimi.it

