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Abstract

Since the seminal contribution by Rigobon (2003, The Review of Economics and

Statistics 85, 777-792) some authors have proposed identification conditions in hetero-

skedastic bivariate systems of equations. None of them, however, can be generalized lo

larger systems and, especially for macroeconomic applications, this represents a strong

limitation. This paper shows how the analysis of identification of simultaneous equa-

tions systems with different volatility regimes can be reconciled with the conventional

likelihood-based setup. We propose a new specification that explicitly models the het-

eroskedasticity in the residuals, and study the conditions for identification when both

heteroskedasticity and traditional restrictions on the parameters are jointly considered.

A Full Information Maximum Likelihood (FIML) algorithm is discussed and the small

sample performances of estimators and tests on the parameters are studied through

Monte Carlo simulations. Finally, this methodology is used to investigate the relation-

ships between sovereign bond yields for some highly indebted EU countries.
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I Introduction

The issue of identification of statistical and econometric models has been thoroughly de-

bated in the literature. The seminal contributions by Haavelmo (1947), Koopmans, Rubin

and Leipnik (1950), and Rothenberg (1971) represent milestones in the field1. Rothenberg

(1971), in particular, summarized, in a single framework based on the information matrix,

different approaches to identification, and proposed, as a particular case, necessary and

∗DEMM, University of Milan, Via Conservatorio 7, 20122 Milan (Italy), tel +39 02 50321504, fax +39
02 50321450. Email: emanuele.bacchiocchi@unimi.it

1Important references for detailed surveys of identification methods in simultaneous systems of equations
are Hsiao (1983), Hausman (1983), and Fuller (1987).
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sufficient conditions for global and local identification of simultaneous equation systems.

The main idea, that nowadays has become the traditional approach, is to restrict the para-

metric space by imposing restrictions on the parameters. In particular, in the simultaneous

equation models, the problem of identification arises because of a non univocal correspond-

ence between the identified parameters of the reduced form, and those of the structural

form. Economic knowledge, thus, helps in considering different kinds of constraints on the

parameters of the structural form that allow to draw inference based on the information

contained in a sample2. In some cases, however, the economic knowledge of the problem

might not be sufficient to impose such restrictions.

An alternative approach is to substitute the idea of restricting the parametric space

with those of finding further information in the data to be included in the identification

strategies. In a recent paper, Rigobon (2003) exploits the intuition in Wright (1928) to

propose a solution of the identification problem based on the heteroskedasticity in the data.

In particular, he provides necessary and sufficient conditions for identification of a bivariate

system of simultaneous equations with two or more regimes of volatility, while a neces-

sary condition only for more general systems. Recently, Klein and Vella (2010), Lewbel

(2011), and Prono (2008) also use heteroskedasticity to identify simultaneous and mismeas-

ured bivariate equation models. In all these papers the inspiration for identification and

estimation of the parameters comes from the instrumental variable approach or generalized

method of moments (GMM).

Sentana and Fiorentini (2001), instead, provide conditions for identification in a con-

text of conditional heteroskedastic factor models. The authors discuss how the existence

of time-varying heteroskedasticity in the factors has important implications for the identi-

fication of simultaneous equations systems, Markov-switching models, and structural VAR

autoregressions. In the structural VAR context Lanne and Lütkepohl (2008) and Lanne et

al. (2010), provide rather general conditions for identification using heteroskedasticity of

the structural shocks.

In the present paper we concentrate on a particular specification for the heteroskedasti-

city of the structural shocks in simultaneous equation systems that enables to derive and

manage the likelihood function. The identification conditions, thus, are studied following

the Rothenberg (1971) approach, and the estimation of the parameters is performed through

a Full Information Maximum Likelihood (FIML) procedure.

Although our definition of heteroskedasticity appears as a special case of the one dis-

cussed in Sentana and Fiorentini (2001) and Klein and Vella (2010), the novelty of the

present paper is to study the identification of the structural parameters when the traditional

approach, consisting in the restriction of the parametric space by means of constraints on

the parameters, is enriched with the information concerning some form of heteroskedasticity

contained in the data. The idea thus, is to mix the information coming from the economic

theory (the restrictions of the parameters) with particular features observed in the data

(heteroskedasticity) and provide necessary and sufficient conditions for the identification of

the structural parameters in the case of general systems of equations.

This strategy a) allows us to obtain identification conditions for systems characterized by

more than two equations (Rigobon, 2003, Klein and Vella, 2010, Lewbel, 2011, and Prono,

2An important stream of literature, particularly relevant for the aims of the present paper, relies on
the LISREL models (Joreskog and Sorbom, 1984) where identification in multiple equation simultaneous
systems is obtained via equality restrictions on the covariance matrix, sometimes joint with restrictions on
structural parameters.
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2008, consider bivariate systems only), b) does not require that all the variables feature

heteroskedasticity, and c) does not require to restrict the covariance matrix of the structural

shocks to be diagonal (or to resort to unobservable common shocks to diagonalize the

residuals). In particular, point a) reveals to be an important improvement in macroeconomic

applications where more than two equations generally characterize theoretical models.

The model presented and discussed in the paper reveals to be extremely useful for

detecting whether, in particular periods of time, some structural shocks are transmitted

to the other variables through more complicated channels than those generally used in

traditional systems of equations. Such ‘particular periods of time’ might be represented by

higher volatility of the shocks that, when appropriately considered, provides useful insights

for the identification of the structural parameters, and enriches the structure of the model

by proposing further channels for the propagation of the shocks.

As an example, in periods of high instability of the financial markets, a shock hitting

one particular market might propagate in a different way than in relatively tranquil periods.

The effects of the same shock, in different periods of time, might be completely different.

The turbulences of the markets could either amplify the effects of the shocks in the same

market in which it originates, or allow for a propagation to the other financial markets, or

both the effects. All these aspects of the model will be thoroughly discussed in the empirical

application.

The rest of the paper is organized as follows. In Section II we first present the statistical

model and then derive the conditions for identification of the structural parameters, with a

discussion on the relationships between this approach and the existing literature. Section

III describes the statistical inference while Section IV uses this methodology to investigate

about the transmission of financial shocks among some highly indebted EU countries over

the last years. Section V provides some concluding remarks. All technical proofs, a gener-

alization for the case of more than two levels of volatility for each dependent variable, and

some simulation exercises are left in the Appendix.

II Identification in a simultaneous equation model with het-

eroskedasticity

II.1 A simultaneous equation model with heteroskedastic errors

The idea, that takes directly inspiration from Rigobon (2003), is to increase the number of

relations that link the parameters in the reduced form to those in the structural form. In this

section we present a new specification for simultaneous equations systems that explicitly

models the heteroskedasticity of the structural shocks. As in the previous case, we first

discuss the simplest case of two regimes of volatility only, while a generalization will be

provided in the next sections. A simplified simultaneous equation model with different

regimes of volatility can be written as:

Byt = (Ig +ADt) εt (1)

where yt is the vector of g endogenous variables, εt is the vector of structural shocks, B is

the (g × g) invertible matrix of simultaneous relationships among the endogenous variables.

A is a (g × g) matrix capturing further transmission channels of propagation of structural

shocks, while Dt is a diagonal matrix assuming only 0 − 1 values, indicating whether, at
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time t, the i-th endogenous variable is in a state of high (1) or low (0) volatility. In the

simplest case of only two equations, the system becomes3:(
1 β12

β21 1

)(
y1t

y2t

)
=

(
I2 +

(
a11 a12

a21 a22

)(
d1 0

0 d2

))(
ε1t

ε2t

)
. (2)

In this simple case, there are four possible volatility regimes, given by the possible combin-

ations of d1 and d2.

The structural shocks εt are assumed to be uncorrelated (this assumption will be relaxed

in the following sections) with a constant covariance matrix E (εtε
′
t) = Λ. When both

variables are in a state of low volatility, i.e. Dt = 0, the model appears as a standard

system of equations, without restrictions on the B parameters. When one or both variables

are in a state of high volatility, instead, the aii parameters act as multiplicative factors for

the structural shocks, while the off diagonal values aij allow for the propagation of shocks

to other variables. These interpretations, of course, apply to the more general model in Eq.

(1).

Based on the invertibility of the B matrix, the reduced form of the model simply be-

comes:

yt = B−1 (Ig +ADt) εt (3)

or equivalently

yt = B−1Ctεt (4)

where Ct = (Ig +ADt). The covariance matrix of the endogenous variables is E (yty
′
t) =

B−1CtΛC
′
tB
−1′, and changes over time because of Ct.

Example 1 Let consider the bivariate simultaneous equations model in Eq. (2), charac-

terized by two regimes of volatility. In particular, in the first regime only the first

endogenous variable y1t is in a state of high volatility while, after a certain time TB,

both (y1t, y2t)
′ move to a state of high volatility. The model thus can be written as(

1 β12

β21 1

)(
y1t

y2t

)
=

(
I2 +

(
a11 a12

a21 a22

)(
1 0

0 0

))(
ε1t

ε2t

)
, for t < TB

and(
1 β12

β21 1

)(
y1t

y2t

)
=

(
I2 +

(
a11 a12

a21 a22

)(
1 0

0 1

))(
ε1t

ε2t

)
, for t ≥ TB,

where D1 and D2, the matrices describing the regimes of volatility before and after

the break, are defined as

D1 =

(
1 0

0 0

)
, for t < TB

D2 =

(
1 0

0 1

)
, for t ≥ TB.

3A similar specification has been proposed by Favero and Giavazzi (2002) in which, however, the dit are
simple intervention dummies, and the identification problem has been solved with exclusion restrictions in
the dynamic part of the model.
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Actually, in terms of the identification of the model, as we will discuss in the next

sections, it doesn’t matter whether the two regimes come one after the other (they can

be mixed in a more complicated way), what is important is to know the description

of the two regimes of volatility D1 and D2. �

Example 2 Suppose now that there are three regimes of volatility. In the first the two

endogenous variables are in a state of low volatility, then the first moves to a state of

high volatility (while the second remains in the state of low volatility), and finally, the

second achieves the high volatility state too. The model will be equivalent to the one

described in Eq.(2), but now there are three matrices describing the different regimes

of volatility:

D1 =

(
0 0

0 0

)
, D2 =

(
1 0

0 0

)
, D3 =

(
1 0

0 1

)
�

The heteroskedasticity, thus, is intended as different regimes of volatility that might

apply to one or more variables in the system. As in Rigobon (2003), in this approach it

is only required that some form of heteroskedasticity is present in the data, such as crisis,

policy shifts, changes in collecting the data, or cross-sectional peculiarities. As we will

discuss in the next section, alternative approaches use ARCH-based model for the residuals

of the reduced form in order to obtain identification.

II.2 Specification and identification of a model with two regimes

In this section we study the identification of the simultaneous equation system in Eq. (1)

in the simplest case of s = 2 regimes of volatility. The generalization is not straightforward

and will be the argument of the next sections. In the case of two regimes of volatility we

will have only two distinct matrices D1 and D2 that, at each instant t, show the state of

volatility the system is. The model, thus, can be rewritten with two separate equations,

one for each regime:

Byt = (Ig +AD1) εt (5)

Byt = (Ig +AD2) εt (6)

where Eq. (5) is for the observations in the first state of volatility, and Eq. (6) for those in

the second. The associated covariance matrices for the error terms are:

E
(
Ctεtε

′
tC
′
t

)
= (Ig +AD1) Λ (Ig +AD1)′

E
(
Ctεtε

′
tC
′
t

)
= (Ig +AD2) Λ (Ig +AD2)′ .

The reduced form of the model can be written as

yt = B−1 (Ig +AD1) εt

yt = B−1 (Ig +AD2) εt
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with the two covariance matrices for the dependent variables in the two regimes:

E
(
yty
′
t

)
= B−1 (Ig +AD1) Λ (Ig +AD1)′B−1′ = Ω1

E
(
yty
′
t

)
= B−1 (Ig +AD2) Λ (Ig +AD2)′B−1′ = Ω2.

If we assume that the structural shocks εt behave as a multivariate normal variable,

the identification can be studied as in the traditional simultaneous equation models, i.e.

concentrating on the relationships between the parameters in the structural and reduced

forms. The normality is required to impose that the distribution of yt depends only on the

parameters of the reduced form4. Following Rothenberg (1971), the identifiability of the

structure depends on the uniqueness of the solution of the following system

(Ig +AD1)−1BΩ1B
′ (Ig +AD1)−1′ − Λ = 0 (7)

(Ig +AD2)−1BΩ2B
′ (Ig +AD2)−1′ − Λ = 0 (8)

RAvecA− rA = 0 (9)

RBvecB − rB = 0 (10)

RΛv (Λ)− rΛ = 0 (11)

where Eqs. (9)-(11) are a set of qA, qB, and qΛ linear restrictions on the parameters A, B

and Λ (respectively), that can also be written in the equivalent explicit form

vecA = SAγA + sA (12)

vecB = SBγB + sB (13)

vΛ = SΛγΛ + sΛ (14)

where
RASA = 0 RAsA = rA
RBSB = 0 RBsB = rB
RΛSΛ = 0 RΛsΛ = rΛ.

The vector v (Λ) denotes the 1
2g (g + 1) elements that is obtained from vecΛ by eliminating

the supra diagonal elements of Λ or, equivalently, Dgv (Λ) = vecΛ, with Dg the duplication

matrix 5.

Throughout, use is made of the following notation: Kgs is the g2s2× g2s2 commutation

matrix as defined in Magnus and Neudecker (2007), Ngs = 1/2 (Igs +Kgs), while D̃g,

defined in Magnus (1988), is a g2 × g(g − 1)/2 full-column rank matrix such that for any

g(g − 1)/2-dimensional vector v, it holds D̃gv := vec(H), with H a g × g skew-symmetric

matrix (H = −H ′).
Suppose to consider the simple and realistic case that in the first regime all variables are

in a state of high volatility (D1 = Ig), and in the second all are in a state of low volatility

(D2 = 0g), which is the case investigated in Rigobon (2003). The following proposition

presents the necessary and sufficient condition for identification of the structural parameters.

Proposition 1 Consider the simultaneous equations model with s = 2 regimes of volatility

described in Eqs. (5)-(6), with D1 = Ig and D2 = 0g. Then (A0, B0,Λ0) are locally identified

4Any other stochastic variable univocally defined by the first two moments will provide the same results
in terms of identification.

5See Magnus and Neudecker (2007), pag 57.
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if and only if the following
(
2g2 × 2g2 + g (g + 1) /2− q

)
matrix(

−2NgD
∗
1SA 2NgE

∗
1SB −DgSΛ

2NgE
∗
2SB −DgSΛ

)
(15)

has full column rank. The three non-singular matrices D∗1, E∗1 and E∗2 are defined as follows

D∗1 =
[
C−1

1 BΩ1B
′C−1′

1 ⊗ C−1
1

]
E∗1 =

[
C−1

1 BΩ1 ⊗ C−1
1

]
E∗2 = [IgBΩ2 ⊗ Ig] .

(16)

A necessary condition for identification is that q ≥ g2 +g (g − 1) /2, where q = qA+ qB + qΛ

represents the number of restrictions in the A, B, and Λ matrices.

Proof. The proof of Proposition 1 is discussed in the Appendix A.1.

The necessary and sufficient condition reported in Eq. (15) is specific to the case of

s = 2 states of volatility described by the D1 = Ig and D0 = 0g matrices. However,

it provides necessary and sufficient conditions for identification of simultaneous equations

models where the presence of heteroskedasticity in the data is mixed with the traditional

information coming from the economic theory and expressed in the form of linear restrictions

on the parameters of the model6.

The necessary and sufficient condition in Proposition 1 generalizes those in Rigobon

(2003) in different directions. First, when there are two regimes of volatility only, the rank

condition in Eq. (15) is more general than the corresponding condition in Proposition 1 of

Rigobon (2003), in that it presents a sufficient condition for a system of g ≥ 2 equations,

and not simply a bivariate system. Second, we don’t need the covariance matrix Λ to be

diagonal. This problem has been discussed in Rigobon (2003) and solved by introducing

common shocks in the model, which is equivalent to relaxing the assumption on the correl-

ation of the structural shocks. This alternative strategy, however, makes it more difficult

to consider possible restrictions on the covariance matrix of the structural shocks Λ, as

instead considered in our Proposition 1. Third, as already said, the necessary and sufficient

condition in Eq. (15) allows to discuss identification when heteroskedasticity and linear

restrictions on the parameters are jointly considered.

The price to pay, given the more complicated specification of the model, is to study

the identification of the parameters only locally, and not globally as instead considered by

Rigobon (2003), Lewbel (2011), Prono (2003), and Klein and Vella (2010) for (triangular

or full) bivariate systems of equations.

The following corollary concentrates on the particular case in which the covariance mat-

rix of the structural shocks is restricted to be the identity matrix, as commonly considered

in the SVAR literature.

6If one is not interested in imposing restrictions on the parameters of the predetermined variables, the
identification analysis can be restricted to the concentrated likelihood, as commonly done in the traditional
SVAR literature.
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Corollary 1 Consider the simultaneous equations model with s = 2 regimes of volatility

described in Eqs. (5)-(6), with D1 = Ig and D2 = 0g. When Λ = Ig, then the necessary

and sufficient condition for (A0, B0) to be locally identified is that the
(
g2 + qB

)
× g2− qA+

g (g − 1) matrix (
NgD

∗
1SA NgE

∗
1E
∗−1
2 D̃g

0 RBE
∗−1
2 D̃g

)
(17)

has full column rank. The three non-singular matrices D∗1, E∗1 and E∗2 are defined as in Eq.

(16).

A necessary condition for identification is that qA + qB ≥ g (g − 1), where qA and qB
represent the number of restrictions in the A and B matrices, respectively.

Proof. The proof of Corollary 1 is discussed in the Appendix A.2.

The results of our Corollary 1 define identification rules for the A and B matrices

when the presence of two regimes of volatility is mixed with traditional restrictions on the

parameters. Interestingly, if one interprets the particular specification of our model as a

heteroskedastic version of the AB-SVAR formulation, as described in Amisano and Giannini

(1997) and Lütkepohl (2005), the necessary order condition indicates a minimum of g2 − g
restrictions, against a minimum of g2 +g (g − 1) /2 restrictions in the traditional AB-model

without accounting for the heteroskedasticity in the data.

In two recent papers, Lanne and Lütkepohl (2008) and Lanne et al. (2010), using a more

traditional specification, consider the identification of SVAR models (C-model or K-model

in the terminology of Amisano and Giannini, 1997) with different levels of volatility. Using

a well known result of matrix algebra in which symmetric and positive definite matrices can

be simultaneously diagonalized by means of common squared matrices and specific diagonal

matrices, they show that simply exploiting the presence of two or more levels of volatility

is sufficient for the structural parameters (the B matrix) to be identified (without the need

of parameters restrictions, like the standard Cholesky triangularization).

The following remark reconciles these results with those obtained in our Corollary 1,

although with a different parametrization of the SVAR model.

Remark 1. When there are no theoretical reasons to impose restrictions on the B

matrix, and thus RB = 0, the necessary and sufficient condition in Corollary 1 reduces to[
NgD

∗
1SA NgE

∗
1E
∗−1
2 D̃g

]
(18)

and will be of full column rank only when the number of restrictions on the A matrix is at

least equal to g (g − 1), as suggested by the previous necessary condition. However, as all

endogenous variables show a period of high volatility, the only possibility to capture such

increase in all the variances is when A is diagonal. This condition respects the necessary

condition and, in a heteroskedastic SVAR framework, is equivalent to the results in Lanne

and Lütkepohl (2008) and Lanne et al. (2010), although obtained from a different specific-

ation of the model. The specification adopted in the present paper, instead, is much more
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general in that does not require the A matrix to be diagonal.

Remark 2. Looking at the necessary and sufficient condition in Eq. (17), the lower-

right block (RBE
∗−1
2 D̃g) is clearly equivalent to the necessary and sufficient condition for

the standard K-model developed by Amisano and Giannini (1997). When the restrictions

on the B matrix, RB, are sufficient to satisfy the well known sufficient condition for the

K-model (or the C-model) to be identified, i.e. RBE
∗−1
2 D̃g is of full column rank, then

the parameters of the A matrix will be identified if and only if the RAD
∗−1
1 D̃g matrix is

of full column rank g (g − 1) /2, which is equivalent to the identification of the structural

parameters in the traditional C-model.

In practical applications, the necessary and sufficient conditions in Eq. (15) and Eq.

(17) can be numerically checked, as suggested in Giannini (1992), using random values for

A and B that satisfy the restrictions in Eqs. (9)-(11), or better, as discussed later on, using

random numbers for the three vectors γA, γB, and γΛ such that the restrictions in Eqs.

(12)-(14) hold7.

The case treated in this section, however, is limited in two directions: a) it considers

two states of volatility only, b) the sufficient condition has been calculated based on the

particular specifications of D1 and D2. In the next sections we provide a generalization

that fills these two shortcomings.

II.3 Related literature

Over the last years other authors have proposed approaches to obtain identification using

heteroskedasticity in the residuals. This paper is directly inspired and aims at generalizing

the idea in Rigobon (2003) but, in order to relate our approach to the existing literature, it

is worth discussing the main characteristics of those alternative approaches. The proposal

of Rigobon (2003), originally introduced by Wright (1928), consists in using the second

moments to increase the number of relations between the parameters in the reduced and

structural forms. Lanne and Lütkepohl (2008) and Lanne et al. (2010) use the same idea

to identify the structural parameters in structural VAR models.

Klein and Vella (2010) use the heteroskedasticity of the residuals to identify the struc-

tural parameters in bivariate triangular systems. The idea is that when the distribution

(or, simply, the second moments) of the errors in the two equations does depend on the

vector of exogenous variables, identification of the parameters of the controlled regression

is guaranteed when it is possible to consistently estimate the non-constant conditional re-

lations among the two residuals. The estimation approach is then based on estimating a

semiparametric model of heteroskedasticity in each equation. Prono (2008) also discusses

identification in linear bivariate triangular models where structural errors follow a bivariate

and diagonal GARCH(1, 1) process.

Lewbel (2010), instead, considers bivariate models with mismeasured or endogenous

regressors. Identification in triangular and fully simultaneous systems can be obtained by

imposing restrictions on particular second moments involving regressors and heteroskedastic

7A Gauss 8.0 package for checking for identification and estimating the unknown parameters of the
heteroskedastic simultaneous equations model developed in this paper can be obtained from the author
under request.
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residuals. The estimation strategy takes the form of modified two stage least squares or

generalized method of moments. Rigobon’s identification result can be interpreted as a spe-

cial case of Lewbel’s approach, in which the variable used for heteroskedastic identification

is simply a dummy variable indicating a high versus low volatility regime.

Sentana and Fiorentini (2001), in a context of conditionally heteroskedastic factor mod-

els, provide identification conditions that can be applied in a large number of cases, like

residuals following GARCH specifications8, regime switching processes9, or structural VAR

models10.

The first difference with respect to the existing literature lies on the specification of the

model used to treat heteroskedasticity. Rigobon (2003) requires only that something has

happened to justify a shift in the covariance matrix, without modeling directly the source

of heteroskedasticity. In our approach, instead, we propose a specification that models

such heteroskedasticity, and enables us to treat cases in which only some variables show

clusters of different volatility. Clearly, the results in Rigobon (2003) are a special case of

our specification when the A matrix is simply diagonal. When some dependent variables,

over the investigated period, do not show evident shifts in volatility, it would be useful, in

order to gain degrees of freedom for testing the stability of the structural parameters, to

directly impose constant variances (simply by imposing zero values in the A matrix).

Moreover, as we will see later on, if the model is already (exactly-)identified our spe-

cification allows to test for such constant variances in the standard inference setup. The

general condition for identification in Sentana and Fiorentini (2001), which are valid for a

very general class of processes for the dynamics of conditional heteroskedasticity including

our formulation of the model, requires that no more than one variance is constant over time.

Obviously, this result remains valid in our model too, but our strategy allows for a joint

analysis of identification, that involves both the parameters governing heteroskedasticity

and the structural ones. In other words, restrictions in the structural parameters can be

sufficient to identify the model even when more than one variance remains constant over

time. In fact, although our specification for the heteroskedasticity in the residuals is a par-

ticular case of the general definition provided in Sentana and Fiorentini (2001), the effort

in our strategy is to study identification when the traditional approach of restricting the

parametric space is enriched with the characteristics of heteroskedasticity contained in the

data.

As already mentioned, a second difference with respect to Rigobon (2003), Klein and

Vella (2010), and Lewbel (2011) refers to the strategy used for estimating the parameters.

The particular specification we propose in the paper allows to define the likelihood function,

and derive analytically the score vector and the information matrix, that will be used in

a recursive algorithm to maximize the likelihood. This full information approach, other

than providing more efficient estimators than those based on the instrumental variables

ones generally used in the literature, allows us to use likelihood ratio tests in order to

test for overidentifying restrictions. An argument for future research, instead, is to lighten

the hypothesis that the structural parameters remain constant over time, and connecting

this stream of research based on heteroskedastic error terms with the traditional models

accounting for structural breaks.

8See Caporale, Cipollini and Demetriades (2005), Dungey and Martin (2001), King et al. (1994), Rigobon
(2002).

9See Caporale, Cipollini and Spagnolo (2005) and Rigobon and Sack (2003, 2004).
10See Normandin and Phaneuf (2004).
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II.4 Specification and identification: The general case

In order to generalize the results of the previous section we need to write the model in a

different way. Once we have information on the different states of volatility, we can easily

build a (T × s) matrix P indicating, at each instant t, the state of volatility characterizing

the yt. As an example, let define

P =


1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

 (19)

indicating that the system is characterized by s = 3 states of volatility, and that for the

first two periods the active state is state 1, then state 2, and when t = 5, state three. Thus,

using the Hadamard product11 �, we can reorganize the data as

Y ∗ =
(
i′s ⊗ Y

)
�
(
P ⊗ i′g

)
(20)

where is and ig are two unit vectors of dimension (s× 1) and (g × 1), respectively, while Y

is the (T × g) matrix containing the data on the dependent variables. As an example where

P is defined as in Eq. (19), and where yt =
(
y1t y2t

)′
, the Y ∗ matrix, becomes

Y ∗ =


y11 y21 0 0 0 0

y12 y22 0 0 0 0

0 0 y13 y23 0 0

0 0 y14 y24 0 0

0 0 0 0 y15 y25

 . (21)

In the same way, we can define the (T × gs) ε∗ matrix containing the error terms

ε∗ =


ε11 ε21 0 0 0 0

ε12t ε22 0 0 0 0

0 0 ε13 ε23 0 0

0 0 ε14 ε24 0 0

0 0 0 0 ε15 ε25

 (22)

which allows us to rewrite the model as:

(Is ⊗B) y∗t = A∗ε∗t (23)

where y∗t and ε∗t are vectors obtained from the t-th row of the Y ∗ and ε∗ matrices, respect-

ively. Furthermore, if we allow for k predetermined variables, the structural form of the

model can be written as

(Is ⊗B) y∗t + (Is ⊗ Γ)x∗t = A∗ε∗t , (24)

in which x∗t is the (ks× 1) vector of predetermined variables expressed as in Eq. (21) and Γ

is the related (g × k) matrix of coefficients. The (gs× gs) A∗ and D block diagonal matrices

11For a general discussion on the Hadamard product, see Magnus and Neudecker (2007), pp 53-54 and 71.
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are defined as

A∗ = (Igs + (Is ⊗A)D) (25)

D =

 D1

. . .

Ds

 (26)

where Di is the diagonal (g × g) matrix describing the i-th state of volatility. More precisely,

for the i-th state of volatility, it presents Dijj = 1 whether the j-th endogenous variable is

in a state of high volatility and 0 if it is in a state of low volatility. The covariance matrix of

the structural shocks is, as before, E (εtε
′
t) = Λ, but using the new notation that highlights

the state of volatility, we obtain, for example

Λt = E
(
ε∗t ε
∗′
t

)
=


Λ

0
. . .

0

 (27)

in the case the system is in the first state of volatility at time t. The dependence on t of

this matrix, however, is only apparent in that in all volatility states we impose the same

covariance matrix for the structural shocks, that instead hit the endogenous variables in a

different way via the particular combination of A∗ and D. The particular specification for

the data and the model allows us to select, at each t, the way the structural shocks are

amplified and propagated to the different endogenous variables in the system.

The reduced form of the model can be easily obtained as

y∗t = (Is ⊗Π)x∗t + u∗t
= − (Is ⊗B)−1 (Is ⊗ Γ)x∗t + (Is ⊗B)−1A∗ε∗t

(28)

where

(Is ⊗Π) = − (Is ⊗B)−1 (Is ⊗ Γ) (29)

and, using the same example as before,

Ωt = E
(
u∗tu

∗′
t

)
= (Is ⊗B)−1A∗E

(
ε∗t ε
∗′
t

)
A∗′
(
Is ⊗B−1

)′
=


Ω1

0
. . .

0

 . (30)

When we consider all the states of volatility, the covariance matrix of the reduced form

error terms can consequently be defined as

Ω = (Is ⊗B)−1A∗E
(
ε∗t ε
∗′
t

)
A∗′
(
Is ⊗B−1

)′
=


Ω1

Ω2

. . .

Ωs

 . (31)

Assumption 1 The vectors {εt, t = 1 . . . , T} are independent and identically distributed as

N (0,Λ) with Λ a positive definite (g × g) matrix of unknown parameters.
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Assumption 2 The (T × k) matrix of predetermined variables has full column rank.

Assumption 3 The parameters B0 and Γ0 do not change among the different states of

volatility.

Given the three assumptions here above, and a set of linear restrictions on the coefficients

of the structural form, the next proposition generalizes the results obtained in Section II.2

for models with s ≥ 2 distinct regimes of volatility. Moreover, following Magnus and

Neudecker (2007) p. 56, let define the matrix H such that, given two matrices A (m× n)

and B (p× q) then vec (A⊗B) = (H ⊗ Ip) vecB, with H = (In ⊗Kqm) (vecA⊗ Iq).

Proposition 2 Consider the simultaneous equations model in Eqs. (23)-(28) under the

Assumptions 1-3 previously expressed. Assume further that prior information is available

in the form of linear restrictions on A,B, Γ, and Λ (in implicit or, equivalently, in explicit

form):

RAvecA = rA vecA = SAγA + sA
RBvecB = rB vecB = SBγB + sB
RΓvecΓ = rΓ vecΓ = SΓγΓ + sΓ

RΛvΛ = rΛ vΛ = SΛγΛ + sΛ.

Then (A0, B0,Γ0,Λ0) are locally identified if and only if the matrix(
0 (Π′ ⊗ Ig)SB SΓ 0

−2NgsJ21SA 2NgsJ22SB 0 −J23DgSΛ

)
(32)

has full column rank, where the three matrices J21, J22, and J23 are defined as follows

J21 =
[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′D ⊗A∗−1

]
(H ⊗ Ig) (33)

J22 =
[
A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1

]
(H ⊗ Ig) (34)

J23 = (H ⊗ Ig) (35)

and Dg is the duplication matrix. A necessary condition for identification is that

gs (gs+ 1) /2 + q ≥ 2g2 + g (g + 1) /2 (36)

where q = qA + qB + qΓ + qΛ is the total number of restrictions on the unknown parameters

A, B, Γ, and Λ, and H = (Is ⊗Kgs) (vec Is ⊗ Ig).

Proof. The proof of Proposition 2 is discussed in the Appendix A.3.

The following corollary, instead, proposes a necessary and sufficient condition for the

identification of the parameters when no linear restrictions on the parameters are imposed.

Corollary 2 Consider the simultaneous equations model in Eqs. (23)-(28) under the As-

sumptions 1-3 previously expressed. Then (A0, B0,Γ0,Λ0) are locally identified if and only

13



if the matrix(
−2NgsJ21 2NgsJ22

[
Ig2 − (Π′ ⊗ Ig)+ (Π′ ⊗ Ig)

]
−J23Dg

)
(37)

has full column rank, with J21, J22, and J23 defined as in Eqs. (33)-(35).

Proof. The proof of Corollary 2 is discussed in the Appendix A.4.

Remark 3. Interestingly, if rank (Π′) = k ≥ g, then (Π′ ⊗ Ig)+ (Π′ ⊗ Ig) = Ig2 and the

necessary and sufficient condition in Corollary 2 reduces to check whether(
−2NgsJ21 −J23Dg

)
(38)

has full column rank.

The approach we follow for studying the identification is based on Rothenberg (1971) and

considers, as in the specific case analyzed in the previous section, the system of homogeneous

equations that links the parameters in the structural and reduced forms. The necessary

condition, thus, refers to the number of equations of this system, that needs to be larger

than the number of unknowns.

Including different levels of volatility can be an alternative strategy to increase the

number of equations in the system of homogeneous equations. The price to pay, in our

model, is to include more parameters than in standard systems of equations, due to the

A matrix capturing the multiplicative (and eventually, the propagation) of the structural

shocks. This, however, does not prevent the possibility of identifying the parameters without

introducing restrictions as highlighted in Corollary 2.

Corollary 3 Without any further restriction on the parameters, a necessary condition for

identification is that there are at least s = 3 different states of volatility.

Proof. The proof of Corollary 3 is discussed in the Appendix A.5.

The equivalent order condition for systems with different levels of volatility concerns

the minimum number of states in order to have, at least, as many distinct equations as

unknowns in the system. Corollary 3 states that a minimum of three different states of

volatility is necessary for making the parameters identifiable. The main result of this co-

rollary thus, is that, differently from the standard simultaneous equations models, when

allowing for clusters of heteroskedasticity in the residuals, we do not need any restriction

on the parameters to reach local identification. The first two assumptions are necessary in

order to assume that (i) the joint distribution of the endogenous variables yt depends on

(A0, B0,Γ0,Λ0) only through the reduced form parameters (Π0,Ω0); and (ii) Π0 and Ω0 are

globally identified. Assumption 3, instead, is necessary to identify the (B0,Γ0) structural

parameters. When some variances remain constant over time, in order to identify the para-

meters in A0 it is necessary to restrict with zero values the parameters on the corresponding

columns of the A0 matrix.
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The necessary and sufficient condition, which can be interpreted as the rank condition

in the traditional systems of equations, is much more complicated in that it depends on the

combinations of low-high volatility states as described in the D matrix. All the technical

details are discussed in the Appendix A.3-A.5.

III Estimation and Inference

In this section we turn to the problem of estimating simultaneous equations models with

different levels of volatility, assuming that some sufficient conditions for identification are

satisfied. We propose a Full-Information Maximum Likelihood (FIML) estimator that is

based on the maximization of the likelihood function of the structural form of the model.

To simplify the notation let define the following matrices

B∗ = (Is ⊗B) , Γ∗ = (Is ⊗ Γ) , Λ∗ = (Is ⊗ Λ) , C =
[
Is ⊗B−1′ 0

]
(39)

and

T ∗ = (T ∗∗ ⊗ Ig) with T ∗∗ =

 T1

. . .

Ts

 (40)

indicating the number of elements in the sample for each state of volatility and,

Q∗ = E
(
z∗t z
∗′
t

)
= E

[ (
y∗t
x∗t

) (
y∗′t x∗′t

) ]
(41)

=

[
(Is ⊗Π)Q∗x (Is ⊗Π) + Ω (Is ⊗Π)Q∗x

Q∗′x (Is ⊗Π)′ Q∗x

]
(42)

with Q∗x = E (x∗tx
∗′
t ). Finally, let define the following H matrix as

H =


(
D ⊗A∗−1

)
(HA ⊗ Ig) 0 0

0 −

( (
A∗′B∗−1′ ⊗A∗−1

)
(HB ⊗ Ig) 0

0 (HΓ ⊗ Ik)

)
0

0 0 (HΛ ⊗ Ig)Dg


(43)

where, as before, the generic matrix HM is defined such that, given two matrices Q (m× n)

and M (p× q), then vec (Q⊗M) = (HM ⊗ Ip) vecM , with H = (In ⊗Kqm) (vecA⊗ Iq).
The following proposition defines the likelihood function and finds the score vector and

the information matrix for the simultaneous equations model proposed in Eq. (24).

Proposition 3 Consider a random sample of size T from the process defined by the sim-

ultaneous equations model in Eq. (24) under the Assumptions 1-3. Let θ be an unknown

vector of parameters and define θ0 the true value of θ, such that A0 = A (θ0), B0 = B (θ0),

Γ0 = Γ (θ0), and Λ0 = Λ (θ0). The log-likelihood function is

l (θ) = − (Tg/2) log 2π − 1

2

T∑
t=1

log
(
|Ig +ADt|2

)
+
T

2
log
(
|B|2

)
− T

2
log |Λ|

− 1

2

T∑
t=1

tr
[
(B∗y∗t + Γ∗x∗t ) (B∗y∗t + Γ∗x∗t )

′A∗−1′Λ∗−1A∗−1
]
. (44)
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The information matrix FT (θ0), defined as

−E
(
d2l (θ0)

)
= (dθ)′FT (θ0) dθ,

is given by

FT (θ0) = H ′

 FAA FAΨ FAΛ

FΨA FΨΨ FΨΛ

FΛA FΛΨ FΛΛ

H (45)

where

FAA = 2
(
Igs ⊗ Λ∗−1

)
Ngs (T ∗Λ∗ ⊗ Igs)

FAΨ = 2
[ (

Igs ⊗ Λ∗−1
)
Ngs (T ∗Λ∗ ⊗ Igs) 0

]
FAΛ =

(
T ∗ ⊗ Λ∗−1

)

FΨΨ =

( (
A∗−1B∗ ⊗A∗′

)
0

0 Igk

)[(
C ′ ⊗ C

)
K(g+k)s +

(
Q∗ ⊗A∗−1′Λ∗−1A∗−1

)]
( (

B∗′A∗−1′ ⊗A∗
)

0

0 Igk

)

FΨΛ =

(
T ∗ ⊗ Λ∗−1

0

)
FΛΛ = (Λ∗ ⊗ Igs)

(
T ∗ ⊗ Λ∗−1

)
FΛA = F ′AΛ FΛΨ = F ′ΨΛ FΨA = F ′AΨ

and H defined as in Eq. (43).

The score vector, instead, is defined as (in row form)

f ′ (θ) =
dl (θ)

dvec θ
=
(
fA (θ) , fΨ (θ) , fΛ (θ)

)
(46)

where

fA (θ) =
T∑
t=1

([
vec

(
DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′Λ∗−1A∗−1′)]′Kgs (HA ⊗ Ig)−

[
vec

(
(Ig +ADt)

′Dt

)]′)
fΨ (θ) = −

T∑
t=1

[
vec

(
A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t

)]′ (
HΨ ⊗ I(g+k)

)
+ T

(
vec

[
B−1′ 0

])′
fΛ (θ) =

1

2

T∑
t=1

[
vec

(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′)]′ (HΛ ⊗ Ig)Dg −

T

2
(vec (Λ))′Dg

where Ψ∗ =
(
Is ⊗B Is ⊗ Γ

)
.

Proof. The proof of Proposition 3 is discussed in the Appendix A.6.
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Using the results of Proposition 3 it becomes natural to implement the score algorithm

to find FIML estimates of the parameters. In fact, once calculated the information matrix

FT (θ) and the score vector f (θ), the score algorithm is based on the following updating

formula (see for example Harvey, 1990, p. 134):

θn+1 = θn + λ [FT (θn)]−1 f (θn) . (47)

where λ is a real number determining the step-size in the given direction. If the local

identification does not require any restriction on the parameters, choosing accurately the

starting values for θ, the recursive algorithm in Eq. (47) provides consistent estimates θ̂

for the true values θ0. Once obtained, we can insert such consistent estimates into the

information matrix and obtain the estimated asymptotic covariance matrix of θ̂:

Σ̂θ = F
(
θ̂
)−1

=

[
p lim
T→∞

1

T
FT
(
θ̂
)]−1

. (48)

Under the assumptions previously introduced, we obviously obtain

θ̂
L→ N

(
θ0, Σ̂θ

)
(49)

allowing us to make inference on the parameters in the standard way.

In the more general case, in which we have both a priori knowledge on the parameters

and different levels of volatility, and we use a combination of the two for obtaining the local

identification, the FIML approach is a bit more complicated. In particular, introducing

some restrictions on the parameters, both the score vector and the information matrix

need to account for such restrictions. The solution, however, becomes straightforward if we

consider the restrictions in the explicit form
vecA

vecB

vecΓ

vecΛ

 =


SA 0 0 0

0 SB 0 0

0 0 SΓ 0

0 0 0 SΛ




γA
γB
γΓ

γΛ

+


sA
sB
sΓ

sΛ

 =⇒ θ = Sγ + s. (50)

Using the standard chain of differentiation, thus, the score vector and the information

matrix for the new set of parameters γ can be defined as

f (γ) = S′f (θ) (51)

FT (γ) = S′FT (θ)S. (52)

The score algorithm, at this stage, can be implemented for γ in order to obtain the FIML

estimates γ̂. Consistent estimates for θ and for the covariance matrix Σθ directly follows

from the Cramer’s linear transformation theorem by substituting the estimated γ̂ in Eq.

(50). The standard asymptotic result

θ̂
L→ N

(
θ0,

1

T
SFT (γ̂)S′

)
(53)

thus applies.
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IV The European Debt Crisis

This section presents an empirical analysis in which we highlight the potentiality of our

methodology in relation with the existing literature on multivariate simultaneous equation

systems. The analysis aims to shed light on the relationships between sovereign bond

yields for some highly indebted EU countries. The data refer to 10-year bond maturity

yield spreads between the so called ‘PIGS’ countries (Portugal, Ireland, Greece, and Spain)

versus Germany, used as benchmark. We consider weekly observations over the period

January 2005 - March 2011, and all the series come from Datastream.

The investigated period covers many interesting events characterizing the recent European

and world-wide history, such as the global financial crises in 2007 and 2008, the 2008-2009

Spanish financial crisis, the great fear for the Greece default in 2010. All these events have

led instabilities and tensions on the financial markets, which raised the problem of high pub-

lic deficits and debt sustainability for the EU member states. Furthermore, given the strong

interconnections between the markets, financial shocks in one country are likely propagated

to other markets. Moreover, following Forbes and Rigobon (2002), Favero and Giavazzi

(2002) and Bacchiocchi and Bevilacqua (2009), such mechanisms of propagation are dif-

ferent during tranquil or turbulent periods. It becomes fundamental, thus, to distinguish

between a) the “natural” interconnections between financial markets, that we indicate as

interdependences, from b) the propagation of financial crises hitting one or more countries,

that constitutes the pure contagion phenomenon.

Such distinction, from an econometric point of view, leads to two serious problems

of identification. The former, as already mentioned, consists in the detection of these two

sources of interconnections; one which is always valid, the other which is valid during periods

of crisis only. The latter, instead, is more familiar with the identification of simultaneous

equation systems. If the trend of market A is important in explaining the trend of market B,

it could be possible that also the contrary holds. This clearly conflicts with the traditional

theory of identification in simultaneous equation systems12. The model we have developed

in this paper, instead, starts from the idea of Rigobon (2003) to use heteroskedasticity to

study and solve the problem of identification. On the other hand, as we will discuss here

below, the presence of different clusters of volatility cannot be excluded, given the financial

pressures characterizing the markets in the investigated sample.

The model in Eqs. (20)-(27), and all the related results for identification, estimation and

inference, reveals to be perfect for distinguishing among interdependences and contagion,

measured by the B and A matrices respectively, without imposing any kind of a priori

restrictions on the parameters, that, in this specific case, could be hardly justifiable without

any economic theoretical framework.

In Figure 1 we show the interest rates (left panel) and spreads (right panel) series for

the sample period. From both graphs it emerges that the first years of the sample, at least

up to the first signals of the global financial crisis such as the collapse of the U.S. housing

bubble and the consequent rise in interest rates in the second half of 2007, the interest rates

for all EU countries followed practically the same almost constant trend. Since that period,

and up to the almost overall recognized end of the global financial crises in the late 2008,

the EU interest rates started to rise and highlighted positive spreads with respect to their

benchmark, the German Bund.

12The problem has been circumvented by Favero and Giavazzi (2002) by imposing restrictions on the
dynamic part of the model, leading the contemporaneous relationships unrestricted
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At the end of the global crisis, such differentials are in the order of 3 percent for Greece

and Ireland, and 1.5 percent for Spain and Portugal. During the 2009 a moderate realign-

ment appeared, but the situation became critical since the beginning of 2010, when the

financial crisis turned into an even more dangerous debt crisis. Such debt crisis was mostly

centered on events in Greece, where there was concern about the rising cost of financing

government debt.

The global financial crisis, however, had contributed to transform other EU countries

into fertile ground for financial, economic and social instabilities to occur. As an example,

the Irish government officially announced it was in recession in September 2008, with a

sharp rise in unemployment occurring in the following months. Ireland was the first state

in the Eurozone to enter recession as declared by the Central Statistics Office. Although for

different reasons, the situation was not so different for the Spanish economy, in which the

collapse of the real estate boom, that included the bankruptcy of major companies, leads

to a contraction of the GDP and a severe increase in the unemployment rate, that reached

13.9 percent in February 2009.

Such weak economic and financial conditions acted as a trigger for the rise in interest

rates differentials realized in the markets since the beginning of 2010. Idiosyncratic policy

interventions pursued by the National Governments, associated to wider rescue remedies

proposed by the EU and IMF, seem to have only moderate and transitory effects on the

situation of the financial markets, that up to now continue to register incredibly high spreads

with respect to Germany, leading to serious problems of sustainability of the public debt

for those countries.

The objectives of this sections are twofold: First, we want to estimate the simultaneous

relationships between the interest rates of these countries measured by the B matrix in

our general model specification. The complicated economic and financial interconnections

between all these countries do not allow to follow any economic theoretical framework,

imposing thus to estimate such matrix unrestrictedly. Second, the global and idiosyncratic

financial crises suggest to estimate different mechanisms of propagation of shocks in periods

of high volatility regimes as described by the A matrix in our formulation. Moreover, as

for the case of the contemporaneous relationships, imposing restrictions on such further

channel of propagation of shocks could be unrealistic, suggesting to estimate this matrix

unrestrictedly too.

In Table 1 we report the different covariance and correlation matrices among the spreads

over different horizons in the sample. Among the different sub periods described above, very

different values for the variances and covariances among the spreads clearly emerge. Apart

for the first period, characterized by stable interest rates and spreads, for all the other

periods the correlations between the spreads are high and generally above 0.9.

IV.1 Interdependences, contagion, or something more

Suppose that the Data Generating Process is represented by the following model

B


ir − get
pt− get
gr − get
sp− get

 = c+Φ (L)


ir − get
pt− get
gr − get
sp− get

+Θ (L)

(
V ixt

Baa−Aaat

)
+(I4 +ADt)


εirt
εptt
εgrt
εspt


(54)
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where ir − get, pt − get, gr − get, and sp − get are the interest rate spreads for Ireland,

Portugal, Greece, and Spain, respectively. Baa−Aaat is the spread between BAA and AAA

corporate bonds and V ixt measures market expectations of near term volatility conveyed by

stock index option prices. Both indicators represent exogenous variables that could play a

relevant role in the explanation of EU spreads. Φ (L) and Θ (L) are two matrix polynomials

in the lag operator L, while c is a vector of constant terms. B and A are the two matrices

of interest and represent the interdependences and contagion relationships, respectively. Dt

is the (4× 4) diagonal matrix indicating which variable is in a state of high volatility at

time t, while the ε’s are the idiosyncratic shocks, and are assumed to be uncorrelated and

with constant standard deviation equal to 0.0113.

The reduced form of the model is trivially obtained by premultiplying both sides of Eq.

(54) by the invertible matrix B


ir − get
pt− get
gr − get
sp− get

 = B−1c+B−1Φ (L)


ir − get
pt− get
gr − get
sp− get

+B−1Θ (L)

(
V ixt

Baa−Aaat

)
+ ut (55)

where the reduced-form residuals ut satisfy

B


uirt
uptt
ugrt
uspt

 = (I4 +ADt)


εirt
εptt
εgrt
εspt

 (56)

that continue to share the same interdependence-contagion relationships as the original

model in Eq. (54). Without any constraint on the parameters of the predetermined vari-

ables, maximizing the likelihood for Eq. (54) is equivalent to maximizing the concentrated

likelihood in Eq. (56).

The reduced form in Eq. (55) can be seen as a standard VAR model that can be easily

estimated by OLS. The residuals ut depend on the structural matrices A and B, but also

on the regimes of volatility described by Dt. In Figure 2 we report the residuals of the

estimated reduced form, as well as the fitted and actual series of the spreads14. In Figure 3,

instead, we report the absolute values for the reduced form residuals, which clearly highlight

the presence of different clusters of volatility.

The recent events concerning the global financial crisis and the UE debt crisis provide a

natural framework to define the regimes. As mentioned before, these events have been as-

sociated with large and persistent increases in volatility. Since June 2007 the four countries

experienced global and idiosyncratic shocks that allow us to distinguish, country by coun-

try, tranquil from turbulent periods. Table 2 summarizes, for each country, the windows

characterizing the high volatility regimes.

In Spain, the first and strong signals of instabilities appeared even before the ‘official’

start of the global financial crisis. The residential real estate bubble saw real estate prices

13A one standard deviation shock corresponds to one basic point change in the corresponding spread.
14The standard steps for the correct specification of the VAR models, based on the joint investigation of

information criteria and specification tests on the residuals, suggest to include 5 lags for both the Θ and Φ
polynomials.
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rise 201% from 1985 to 2007. During the second half of 2007, when the real estate bubble

burst, the crises immediately overcome the whole banking system that, althought credited

as one of the most solid and best equipped among all Western economies to cope with the

worldwide liquidity crisis, strongly relaxed his strict requirements from intending borrowers

during the housing bubble, offering up to 50-year mortgages. The building market crash

(included the bankruptcy of major companies), thus, rapidly resulted in a dramatic increase

in unemployment and, during the third quarter of 2008, the national GDP contracted

for the first time in 15 years and, in February 2009, it was confirmed that Spain had

officially entered recession. Although Spain has a camparatively small debt/GDP ratio

among advanced economies (60% only in 2010), tensions on both the banking and real

sectors of the economy attracted speculators insofar as the Prime Minister Zapatero had to

directly intervene to dismiss the rumors about a possible Spanish bail-out. Nevertheless,

after few months, in May 2010, the Spanish Government had to announce extraordinary

austerity measures to reduce the countrie’s budget deficit, in order to dampen the financial

markets and convince foreign investors about the solidity of the Spanish economy. As for

many other EU countries, the Spanish real and financial economy will be under pressure

until the end of the sample period used in our empirical analysis.

As for the Spanish case, the Irish crises was triggered by the ‘terrible’ mix of a real

estate bubble from one side, and over-exposure of many large banks that financed the

property market, from the other side. The situation for the banking sector became critical

in September 2007, with the explosion of the global financial crises. The Irish Government,

in April 2009, proposed a National Asset Management Agency (NAMA) to take over large

loans from the banks, enabling them to return to normal liquidity to assist in the economic

recovery. Such policy intervention had the effect to reassure the financial markets but,

in September 2010, a new government help to refinance the banking sector had a negative

impact on Irish sovereign bonds, leading the government to start negotiations with the ECB

and IMF.

The recent historical events were substantially different for Greek and Portugal. Given

the limited exposure of these countries with respect to international financial markets, they

were only marginally touched by the global financial crisis. The Portuguese financial crisis

was mainly an economic and political crisis and started during the first weeks of 2010. In

fact, it is largely recognized that Portugal fell victim to successive waves of speculation by

pressure from bond traders, rating agencies and speculators.

In Greece, instead, in only few days the situation became completely out of control.

Facing the growing increase of the public debt, on April 23 the Greek government asks an

initial loan of 45 billion euro to the EU and IMF to cover its financial needs for the remaining

part of 2010. Only few days later Standard & Poor’s decided to relegate the sovereign debt

rating to ‘junk’. This announcement did slump all EU and worldwide financial markets.

The Greek government announced a series of austerity measures to reduce the country’s

deficit, which however lead to massive protests, riots and social unrest throughout Greece.

The combination of these events indicates 5 different regimes of volatility, as the result

of the combination of Low-High volatility regimes for each country involved in the analysis.

The windows of turbulent periods in each country are shown in Figure 4 (left panel), while

the volatility regimes are shown in Figure 4 (right panel). Table 3 (column 1) summarizes

the number of observations falling in each state of volatility.

The estimation of the Dt matrices allows to find the FIML estimation of the concentrated

likelihood parameters A and B in Eq. (56). Before that, however, it is important to
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highlight that the s = 5 different levels of volatility, associated with the diagonal (with

constant variance) structure of the structural residuals εt guarantee the sufficient rank and

necessary order conditions for local identification as described in Proposition 2.

The estimated parameters, with associated standard errors, are reported in Table 4.

Column (1) reports the estimates (and related standard errors) of A and B when no further

restrictions have been imposed. Interestingly, this new procedure allows to consistently

estimate the parameters of the contemporaneous relationships among the endogenous vari-

ables (the B matrix) without imposing exclusion restrictions as generally required in the

traditional approach for the simultaneous equation models. Completely new in the literat-

ure, is the identification and estimation, even in this case without any kind of restrictions, of

the elements in the A matrix, accounting for amplification and propagation of the structural

shocks. Interestingly, a LR test for the presence of heteroskedastic residuals based on the

coefficients of the A matrix, strongly rejects the null hypothesis H0 : A = 0 with a p-value,

obtained from a χ2
16 distribution, practically equal to zero.

In Table 4, column (2), we report the estimated coefficients when imposing restrictions

on non-significant coefficients in the A matrix. The likelihood ratio test statistic, with

associated p-values for such overidentifying restrictions, is reported in the last row of the

table. The test suggests to not reject the null hypotheses for all standard significant levels.

For a more comprehensible reading of the results we show, in the following equation, the

estimated A and B parameters in a matrix notation, as reported in Table 4:
1 −0.232 −0.184 −1.060

−0.132 1 −0.364 −0.239

−0.191 −0.408 1 −0.739

0.267 0.390 −0.849 1




uirt
uptt
ugrt
uspt

 =

I4 +


3.550 0 0 1.040

0 4.070 0 1.520

0 −5.090 10.600 −5.870

0 4.240 −7.530 4.740

Dt




εirt
εptt
εgrt
εspt

 .

The interpretation of the results is straightforward. The first equation, for example, can be

read as an equation for the Irish spread, that depends on the other contemporaneous spreads

and, during periods of instability, on possible combinations of domestic and internationals

structural shocks. The same applies for the other equations.

The first comment highlights that there are bi-directional contemporaneous relations

among all the spreads. In particular, the Irish spread is positively correlated with all other

spreads, with a remarkable high coefficient related to the Spanish spread. The Portuguese

spread, instead, is positively related, and with similar magnitude, to all the other markets.

The Greek spread positively depends on all other spreads and, as for Ireland, particularly

with the Spanish one. The Spanish spread is contemporaneously and positively related with

Greek one, while negatively with the Portuguese and Irish ones. Such structure would be

clearly not identified in the standard simultaneous equation models. This problem is solved

by dealing with the heteroskedasticity present in the data.

The second comment refers to the amplification and propagation of shocks, that we

identify as the pure contagion effect. The estimated A matrix shows that all the structural

shocks are significantly amplified when the market is in a situation of high instability. The

highest value is represented by the Greek shock that is amplified by more than 10 times with
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respect to the tranquil periods. Positive and highly significant values have been found for

all the diagonal elements of the A matrix, denoting that the Irish, Portuguese and Spanish

shocks are also amplified in periods of high volatility.

The transmission or propagation of the structural shocks from one market to another

are described by the off diagonal estimated elements of the A matrix. As an example,

Spanish structural shocks are positively transmitted to the Irish and Portuguese spreads,

while negatively to the Greek one. In other words, a positive structural shock that increases

the Spanish spread by one basis point15, also contribute to widen the Irish spread, by 1.040

basis points. Favero and Giavazzi (2002) interpret as “flight-to-quality” effects the negative

propagation of shocks from one market to another. Given that we consider only highly

indebted and critical countries, a similar interpretation would be questionable.

In general, the estimated results denote strong interconnections between the financial

markets but, at the same time, strong evidence of non-linearities in the transmission of

shocks when one or more countries exhibit periods of high instabilities. Such non-linearities

can be interpreted as contagion in the case of positive coefficients of the off diagonal elements

of A. In the case of negative coefficients, instead, a similar interpretation is more complicate.

In order to help to comment on these empirical findings, in Table 5 (column 1 - ‘Historical

Events’) we report the simultaneous relations among the spreads over the different regimes

of volatility16. In particular, in the upper panel, we report the coefficients of the B matrix,

related to the situation of low volatility regime for all variables. The following four panels,

instead, show the simultaneous relations when some or all (last) spreads are in a state of

high volatility.

As an example, when the Spanish spread faces a period of high turbulences (second

panel - LLLH), the impact of the Spanish spread in the first two equations (ir-ge and pt-ge)

increases, while in the Greek spread equation there is a drop in the coefficient, indicating a

strong negative relation about the Greek spread and the Spanish one. In a similar manner

we can interpret all the other coefficients of the table. Interestingly, apart few exceptions,

when one or more countries experience periods of instability, there is a clear evidence of

a change in the relationships among the markets. In some cases, this is in line with the

literature of contagion. However, our results prove that the mechanism of propagation of

the recent financial and debt crises is much more complicated than the findings in Forbes

and Rigobon (2002), who attribute to what we (and they) have defined as interdependences

the high levels of market comovements over the whole sample for the Asian and Mexican

crises during the ’90s.

IV.2 Robustness

In this section we report a robustness check. As already discussed in the previous sections,

the way the crises are detected might have an influence on the estimation of the parameters.

In the empirical analysis reported above, the Dt matrices have been determined by consid-

ering the historical events characterizing turbulences on local and global financial markets.

In this sensitivity analysis, instead, we determine the high volatility periods as in Sack and

Rigobon (2003), i.e. when the 9-weeks rolling variance of the residuals of the reduced form

15Corresponding to one standard deviation.

16These coefficients are simply obtained by calculating the matrix

[
(Ig +ADt)

−1B

]
, for the different

regimes of volatility described by Dt. The case of all spreads in a state of low volatility trivially corresponds
to the B matrix, given that Dt = 0.
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is more than one standard deviation above its average.

Table 3 (column 2 - Rolling Variances) reports a description of the volatility regimes

in these sensitivity analyses. Differently with the previous case, the combination of the

Low-High variances for each country leeds to s = 13 different volatility regimes. Moreover,

the number of periods of high volatility is enormously reduced for all spreads, providing

only 52 observations for estimating the amplification and propagation effects collected in

the A matrix.

Table 4 (column 3 - Rolling Variances) shows the estimated coefficients and related

standard errors obtained with this alternative description of the volatility regimes, that

can be compared with the original results reported in the first two columns. The point

estimates are rather similar to those obtained in the analysis discussed in the previous

section. The main difference is that all coefficients are significantly different from zero.

Concerning the coefficients on the main diagonal of the A matrix, the general result is

that, apart from Spain, the amplification effects increase as the number of high volatility

regimes reduces. This is clearly expected since we retain only the most pronounced cases of

instabilities. About the interdependences, almost all coefficients are very similar to those

obtained in the previous analysis. However, in this sensitivity analysis, the Greek spread is

more related to the Irish and Portuguese spreads, while less to the Spanish one. In terms of

the propagation of shocks, the consequences of such stronger interdependences are of higher

negative coefficients in the A matrix that, in a certain sense, must mitigate the augmented

amplification effects and the propagation of the shocks through the higher coefficients in

the B matrix.

In Table 5 (column 2 - Rolling Variances) we report the contemporaneous relations

among the spreads as for the previous case. The new results highlight very similar contem-

poraneous relations for the different regimes of volatility, with respect to those obtained in

the previous analysis..

V Conclusion

In this paper we have presented a theoretical framework for identifying and estimating the

parameters of heteroskedastic simultaneous equations models. In particular, we proposed

a specification of the system that explicitly allows for different states of volatility. We

suppose that the structural shocks hitting the economy present a constant covariance matrix,

but in particular periods, such shocks might have amplified, generating thus clusters of

higher volatility. The knowledge of such periods of high instability can represent a useful

source of information for identifying the system, especially when a priori restrictions on the

parameters of the model cannot be justified.

Under the assumption that the parameters remain constant over different states of volat-

ility, we provide an order and a rank condition for solving the problem of local identification,

both in the cases with and without restrictions on the parameters. The order condition, in

particular, states that without any constraint, it is necessary to have at least three differ-

ent levels of heteroskedasticity to reach local identification. The rank condition, instead,

depends on the combination of high and low levels of volatility present in the data.

Concerning the estimation framework, we have developed a Full Information Maximum

Likelihood approach that directly estimates the parameters of the structural form. We have

also provided an analytical formulation for both the score function and the information
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matrix that allow us to implement an iterative procedure, the score algorithm, to maximize

the likelihood. The classical inference, based on the ML estimators, can thus be applied.

Given the particular specification of the model, a fertile ground for possible empirical

applications can be found in the literature of contagion, where, as highlighted in Forbes and

Rigobon (2002), the distinction between interdependences (relations between endogenous

variables) and pure contagion (transmission of structural shocks) is crucial. In this context,

we have proposed an empirical analysis focusing on the transmission of financial shocks

within four highly indebted EU countries; Ireland, Portugal, Greece and Spain. The par-

ticular specification of the model provides a useful tool for modeling the higher volatility of

the interest rates on sovereign bonds observed during the recent turbulences on the financial

markets all over the world. The results highlight that there are strong bilateral interde-

pendences between the markets. Moreover, during periods of high volatility, the effect of a

financial shock on one market is amplified and propagated to the other markets, regardless

the standard interconnections among the markets, that remain unchanged. These findings

are robust to different detections of the instability periods, and highlight that the mech-

anism of propagation of shocks is much more complicated than those usually detected by

standard systems of equations or structural VAR modeling.
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A Appendix: Proofs

A.1 Proof of Proposition 1

Equations (7)-(11) form a system of non-linear equations (because of Eq. (7) and Eq. (8))

in A, B and v (Λ), whose solutions provide a fundamental indication for the identifiability

of the parameters. Differentiating Eqs. (7)-(11) gives

−C−1
1 dAD1C

−1
1 BΩ1B

′C−1′
1 + C−1

1 dBΩ1B
′C−1′

1 + C−1
1 BΩ1dB′C−1

1

−C−1
1 BΩ1B

′C−1′
1 D1dA′C−1′

1 − dΛ = 0

−C−1
2 dAD2C

−1
2 BΩ2B

′C−1′
2 + C−1

2 dBΩ2B
′C−1′

2 + C−1
2 BΩ2dB′C−1

2

−C−1
2 BΩ2B

′C−1′
2 D2dA′C−1′

2 − dΛ = 0

RAvecdA = 0

RBvecdB = 0

RΛdv (Λ) = 0

Using the property vec (ABC) = (C ′ ⊗A) vecB, the system of equations can be written

−
[
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
dvecA+

[
C−1

1 BΩ1 ⊗ C−1
1

]
dvecB +

[
C−1

1 ⊗ C−1
1 BΩ1

]
KgdvecB

−
[
C−1

1 ⊗ C−1
1 BΩ1B

′C−1′
1 D1

]
KgdvecA− dvecΛ = 0

−
[
C−1

2 BΩ2B
′C−1′

2 D2 ⊗ C−1
2

]
dvecA+

[
C−1

2 BΩ2 ⊗ C−1
2

]
dvecB +

[
C−1

2 ⊗ C−1
2 BΩ2

]
KgdvecB

−
[
C−1

2 ⊗ C−1
2 BΩ2B

′C−1′
2 D2

]
KgdvecA− dvecΛ = 0

RAvecdA = 0

RBvecdB = 0

RΛdv (Λ) = 0

where Kmn is the commutation matrix previously defined. Using the property of the com-

mutation matrix and duplication matrix, we rewrite the system as

−
(
Ig2 +Kg

) [
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
dvecA+

(
Ig2 +Kg

) [
C−1

1 BΩ1 ⊗ C−1
1

]
dvecB

−Dgdv (Λ) = 0

−
(
Ig2 +Kg

) [
C−1

2 BΩ2B
′C−1′

2 D2 ⊗ C−1
2

]
dvecA+

(
Ig2 +Kg

) [
C−1

2 BΩ2 ⊗ C−1
2

]
dvecB

−Dgdv (Λ) = 0

RAvecdA = 0

RBvecdB = 0

RΛdv (Λ) = 0

The Jacobian matrix, thus, can be written as

J =


−2Ng

[
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
2Ng

[
C−1

1 BΩ1 ⊗ C−1
1

]
−Dg

−2Ng

[
C−1

2 BΩ2B
′C−1′

2 D2 ⊗ C−1
2

]
2Ng

[
C−1

2 BΩ2 ⊗ C−1
2

]
−Dg

RA 0 0

0 RB 0

0 0 RΛ

 . (57)
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with Ng = 1
2

(
Ig2 −Kg

)
, a
(
g2 × g2

)
matrix with reduced rank g (g + 1) /2. We note that

the Jacobian matrix only depends on A and B, and not on Λ (since the non-linearity in Eqs.

(7)-(9) are on A and B). Following Rothenberg (1971), a necessary and sufficient condition

for (A0, B0,Λ0) to be locally identifiable is that J , evaluated at Λ0 has full column rank. A

necessary only condition, however, is that the number of rows needs to be, at least, as large

as the number of columns. In the present case, the sub matrix composed by the first two rows

in Eq. (57) is of dimension
(
2g2 ×

[
2g2 + 1

2g (g + 1)
])

, even if, as can be easily seen from

Eqs. (7)-(8), the number of independent rows is equal to g (g + 1) /2+g (g + 1) /2. In other

words, the necessary condition for identification indicates that g (g + 1) + qA + qB + qΛ ≥
2g2 + g (g + 1) /2, that, after some simple algebra, leads to qA + qB + qΛ ≥ g2 + g (g − 1) /2,

which is the necessary condition reported in Proposition 1.

Concerning the rank condition, using the definitions of the D∗1, E∗1 , and E∗2 as described

in Eqs. (16), and substituting D1 = Ig and D2 = 0g, the Jacobian matrix in Eq. (57)

becomes

J =


−2NgD

∗
1 2NgE

∗
1 −Dg

0 2NgE
∗
2 −Dg

RA 0 0

0 RB 0

0 0 RΛ

 . (58)

The condition of full column rank of this matrix is equivalent to the condition that the

following homogeneous system of
(
2g2 + q

)
equations in 2g2 + g (g + 1) /2 unknowns

−2NgD
∗
1 2NgE

∗
1 −Dg

0 2N∗g −Dg

RA 0 0

0 RB 0

0 0 RΛ

x = [0] (59)

has only one admissible solution x = [0]. The system can be split into five systems of

equations that are connected because they share the same unknowns

−2NgD
∗
1x1 + 2NgE

∗
1x2 −Dgx3 = 0

2NgE
∗
2x2 −Dgx3 = 0

RAx1 = 0

RBx2 = 0

RΛx3 = 0

(60)

Using the explicit notation for the restrictions as described in Eqs. (12)-(14), allows to solve

the last three equations as 
x1 = SAq1

x2 = SBq2

x3 = SΛq3

(61)

for q1, q2, q3 vectors of appropriate dimensions. Substituting in the first two equations leads

to {
−2NgD

∗
1SAq1 + 2NgE

∗
1SBq2 −DgSΛq3 = 0

2NgE
∗
2SBq2 −DgSΛq3 = 0

(62)
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which admits the unique solution (q′1, q
′
2, q
′
3)′ = [0] if the matrix(

−2NgD
∗
1SA 2NgE

∗
1SB −DgSΛ

0 2NgE
∗
2SB −DgSΛ

)
(63)

has full column rank.�

A.2 Proof of Corollary 1

When the covariance matrix of the structural shocks Λ is completely constrained, i.e. RΛ =

Ig(g+1)/2, the attention will be paid to the first two block columns of the Jacobian in Eq.

(58), i.e.

J =


−2NgD

∗
1 2NgE

∗
1

0 2NgE
∗
2

RA 0

0 RB

 (64)

whose rank does not change if we post-multiply by a non-singular matrix as follows

J∗ =


−2NgD

∗
1 2NgE

∗
1

0 2NgE
∗
2

RA 0

0 RB


(
−D∗−1

1 0

0 E∗−1
2

)
=


2Ng 2NgE

∗
1E
∗−1
2

0 2Ng

−RAD∗−1
1 0

0 RBE
∗−1
2

 . (65)

The condition of full column rank of this matrix is equivalent to the condition that the

following homogeneous system of
(
2g2 + qA + qB

)
equations in 2g2 unknowns

Ng 2NgE
∗
1E
∗−1
2

0 2Ng

−RAD∗−1
1 0

0 RBE
∗−1
2

x = [0] (66)

has only one admissible solution x = [0]. The system can be split into four systems of

equations that are connected because they share the same unknowns
Ngx1 +NgE

∗
1E
∗−1
2 x2 = 0

Ngx2 = 0

−RAD∗−1
1 x1 = 0

RBE
∗−1
2 x2 = 0.

(67)

Following Magnus (1988), the second matrix equation can be solved as

x2 = D̃gv2

where D̃g, as defined above, is a g2 × g (g − 1) /2 full column rank matrix and v2 is a

g (g − 1) /2 vector of free elements. The third equation , instead, using the restrictions in

the A matrix in its explicit notation SA, can be solved as x1 = D∗1SAv1 for any
(
g2 − qA × 1

)
vector v1. Substituting the second and third matrix equations into the first, the system
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becomes 
NgD

∗
1SAv1 +NgE

∗
1E
∗−1
2 D̃gv2 = 0

D̃gv2 = x2

D∗1SAv1 = x1

RBE
∗−1
2 x2 = 0.

(68)

The solution of the system reduces to verify whether the
(
g2 + qB

)
× g2 − qA + g (g − 1) /2

matrix related to the first and forth equations, i.e.(
NgD

∗
1SA NgE

∗
1E
∗−1
2 D̃g

0 RBE
∗−1
2 D̃g

)
(69)

has full column rank.

This matrix will have full column rank only if the number of rows is at least equal to

the number of columns. More precisely, given that the Ng matrix, by construction, when

premultiplies another matrix generates only g (g + 1) /2 distinct rows (instead of the original

g2), the upper part of the matrix in Eq. (69), i.e.
(
NgD

∗
1SA NgE

∗
1E
∗−1
2 D̃g

)
, will be made

of only g (g + 1) /2 distinct rows.

The necessary condition, thus, requires that

g (g + 1) /2 + qB ≥ g2 − qA + g (g − 1) /2 =⇒ qA + qB ≥ g (g − 1) (70)

which proves the result.�

A.3 Proof of Proposition 2

Following Rotenberg (1971), the identifiability of the parameters of the structural form

depends on the uniqueness of solutions of the system linking the parameters of the structural

and reduced forms. This system of matrix equations can be written as

(Is ⊗B) (Is ⊗Π) + (Is ⊗ Γ) = 0 (71)

A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′ − (Is ⊗ Λ) = 0 (72)

RAvecdA = 0 (73)

RBvecdB = 0 (74)

RΓvecdΓ = 0 (75)

RΛdv (Λ) = 0. (76)
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where Eqs. (73)-(76) indicate possible restrictions on the parameters (A,B,Γ,Λ). The first

differential is

(Is ⊗ dB) (Is ⊗Π) + (Is ⊗ dΓ) = 0

−A∗−1 (Is ⊗ dA)DA∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′ +

A∗−1 (Is ⊗ dB) (Is ⊗ Ω) (Is ⊗B)′A∗−1′ +

A∗−1 (Is ⊗B) (Is ⊗ Ω)
(
Is ⊗ dB′

)
A∗−1′ +

−A∗−1 (Is ⊗B) (Is ⊗ Ω)
(
Is ⊗ dB′

)
A∗−1′D (Is ⊗ dA)A∗−1′ − (Is ⊗ dΛ) = 0

RAvecdA = 0

RBvecdB = 0

RΓvecdΓ = 0

RΛdv (Λ) = 0.

Simple algebra allows us to rewrite the system as[(
Is ⊗Π′

)
⊗ Igs

]
vec (Is ⊗ dB) + vec (Is ⊗ dΓ) = 0

−
[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1 ⊗A∗−1

]
vec (Is ⊗ dA) +[

A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1
]
vec (Is ⊗ dB) +[

A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)
]
vec

(
Is ⊗ dB′

)
+[

A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)
(
Is ⊗B′

)
A∗−1′D

]
vec

(
Is ⊗ dA′

)
− vec (Is ⊗ dΛ) = 0

RAvecdA = 0

RBvecdB = 0

RΓvecdΓ = 0

RΛdv (Λ) = 0.

Using the properties of the Kronecker product, the system becomes[(
Is ⊗Π′

)
⊗ Igs

]
(HB ⊗ Ig) vecdB + (HΓ ⊗ Ig) vecdΓ = 0(77)

−
[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1 ⊗A∗−1

]
(HA ⊗ Ig) vecdA+[

A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1
]

(HB ⊗ Ig) vecdB +[
A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)

]
Kgs (HB ⊗ Ig) vecdB +

−
[
A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)

(
Is ⊗B′

)
A∗−1′D

]
Kgs (HA ⊗ Ig) vecdA+

− (HΛ ⊗ Ig) vecdΛ = 0(78)

RAvecdA = 0(79)

RBvecdB = 0(80)

RΓvecdΓ = 0(81)

RΛdv (Λ) = 0.(82)

where, following Magnus and Neudecker (2007) p. 56, the matrix H is defined such that,

given two matrices A (m× n) and B (p× q) then vec (A⊗B) = (H ⊗ Ip) vecB, with H =

(In ⊗Kqm) (vecA⊗ Iq). Using the properties of the commutation matrix Kgs, the matrix
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equation in (78) can be simplified as:

−2Ngs

[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1 ⊗A∗−1

]
(HA ⊗ Ig) vecdA+

2Ngs

[
A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1

]
(HB ⊗ Ig) vecdB − (HΛ ⊗ Ig)Dgv dΛ = 0(83)

with Ngs = 1/2 (Igs +Kgs), as before. From Eqs. (77)-(82) we obtain the Jacobian matrix

J =



0 [(Is ⊗Π′)⊗ Igs] (HB ⊗ Ig) (HΓ ⊗ Ig) 0

−2NgsJ21 2NgsJ22 0 −J23Dg

RA 0 0 0

0 RB 0 0

0 0 RΓ 0

0 0 0 RΛ


. (84)

However, the non-zero blocks in the first row do not change for the different regimes of

volatility. The Jacobian matrix thus, simplifies to

J =



0 Π′ ⊗ Ig Igk 0

−2NgsJ21 2NgsJ22 0 −J23Dg

RA 0 0 0

0 RB 0 0

0 0 RΓ 0

0 0 0 RΛ


(85)

where

J21 =
[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′D ⊗A∗−1

]
(HA ⊗ Ig) (86)

J22 =
[
A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1

]
(HB ⊗ Ig) . (87)

J23 = (HΛ ⊗ Ig) . (88)

The necessary and sufficient condition depends thus on the kind of combinations of high

volatility states as highlighted in the D matrix. The necessary and sufficient condition in

Proposition 2 is simply obtained by referring to the solution of the system of equations asso-

ciated to the Jacobian in Eq. (85), where the restrictions on the parameters are substituted

with their explicit form. This completes the proof. �

A.4 Proof of Corollary 2

If we do not want to include restrictions as in Eq. (73), we can concentrate on the following

partitioned matrix

J =

(
0 Π′ ⊗ Ig Igk 0

−2NgsJ21 2NgsJ22 0 −J23Dg

)
(89)

and verify for the full column rank condition. However, when no restrictions are imposed on

the parameters, the analysis of identification can be carried out on the concentrated model

with respect to Γ, as in the standard SVAR literature on identification (when unrestricted,

the parameters related to the predetermined variables, Γ, do not influence the identification
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of the structural form). The Jacobian for the concentrated model becomes

J∗ =

(
0 Π′ ⊗ Ig 0

−2NgsJ21 2NgsJ22 −J23Dg

)
(90)

where J21 and J22 are defined as before. The related system of equations is(
Π′ ⊗ Ig

)
x2 = 0 (91)

−2NgsJ21x1 + 2NgsJ22x2 − J23Dgx3 = 0. (92)

However, the first matrix equation is an homogeneous equation that admits solutions as

x2 =
[
Ig2 −

(
Π′ ⊗ Ig

)+ (
Π′ ⊗ Ig

)]
q2 (93)

for a general vector q2 of appropriate dimension. Substituting the first into the second

equation, it becomes [
Ig2 −

(
Π′ ⊗ Ig

)+ (
Π′ ⊗ Ig

)]
q2 = x2 (94)

−2NgsJ21x1 + 2NgsJ22

[
Ig2 −

(
Π′ ⊗ Ig

)+ (
Π′ ⊗ Ig

)]
q2 − J23Dgx3 = 0. (95)

which admits the null vector as the unique possible solution if and only if the matrix(
−2NgsJ21 2NgsJ22

[
Ig2 − (Π′ ⊗ Ig)+ (Π′ ⊗ Ig)

]
−J23Dg

)
(96)

has full column rank. This condition, of course, can be easily verified numerically and

represents a necessary and sufficient condition for the identifiability of the parameters of

the structural form.

A sufficient condition for (A0, B0,Γ0,Λ0) to be locally identifiable is that the J matrix

in Eq. (89), that depends only on A and B, when evaluated at A0 and B0 has full column

rank. A necessary condition, thus, is clearly that rows (J) ≥ cols (J). Considering that

the set of g2s2 equations obtained from Eq. (72) refers to symmetric matrices, the number

of effectively distinct rows in the necessary and sufficient condition in Eq. (32) is equal to

gk + gs (gs+ 1) /2. The number of columns instead, is equal to the number of parameters

to be estimated under the linear restrictions described in Proposition 2, i.e.
(
g2 − qA

)
+(

g2 − qB
)

+ (gk − qΓ) + [g (g + 1) /2− qΛ].

The necessary condition, thus, states that

gs (gs+ 1) /2 + q ≥ 2g2 + g (g + 1) /2 (97)

where q = qA + qB + qΓ + qΛ is the total number of restrictions on the unknown parameters

A, B, Γ, and Λ. �

A.5 Proof of Corollary 3

Including different levels of volatility is a way to increase the number of rows in the Jacobian

matrix in Eq. (89). The order condition for systems with different levels of volatility

concerns the minimum number of states in order to have, at least, as many rows as columns

in the J matrix.

34



When there are no restrictions on the parameters, the necessary condition corresponds to

Eq. (97) with q = 0. After some simple algebra it can be shown that for s ≥ 3 the inequality

is always verified, indicating that a minimum of three states of volatility is necessary for

making the parameters identifiable. �

A.6 Proof of Proposition 3

The log-likelihood function in Eq. (44) can also be written as

l (θ) = const −1

2

T∑
t=1

|Ig +ADt|2 +
T

2
log |B|2 − T

2
|Λ| (98)

− 1

2

T∑
t=1

tr
[
Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′ (Is ⊗ Λ−1

)
A∗−1

]
where

z∗t =

(
y∗t
x∗t

)
, Ψ∗ =

(
Is ⊗B Is ⊗ Γ

)
. (99)

The first differential is

dl (θ) = −
T∑
t=1

tr
(

(Ig +ADt)
−1 dADt

)
+ T tr

(
B−1dB

)
− T

2
tr
(
Λ−1dΛ

)
+

+

T∑
t=1

tr
[(

Λ∗−1A∗−1Ψ∗z∗t z
∗′
t Ψ∗′

)
A∗−1′D

(
Is ⊗ dA′

)
A∗−1′]+

+
1

2

T∑
t=1

tr
(
A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

−
T∑
t=1

tr
(
z∗t z
∗′
t Ψ∗′A∗−1′Λ∗−1A∗−1dΨ∗

)
(100)
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and the second differential is

d2l (θ) = +
T∑
t=1

tr
(

(Ig +ADt)
−1 dADt (Ig +ADt)

−1 dADt

)
+

− Ttr
(
B−1dBB−1dB

)
+
T

2
tr
(
Λ−1dΛΛ−1dΛ

)
+

−
T∑
t=1

tr
(
Λ∗−1 (Is ⊗ dΛ) Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

−
T∑
t=1

tr
(
Λ∗−1A∗−1 (Is ⊗ dA)DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

+
T∑
t=1

tr
(
Λ∗−1A∗−1dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

+
T∑
t=1

tr
(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

− 2
T∑
t=1

tr
(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

− 1

2

T∑
t=1

tr
(
A∗−1 (Is ⊗ dA)DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

+
1

2

T∑
t=1

tr
(
A∗−1dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

+
1

2

T∑
t=1

tr
(
A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

− 1

2

T∑
t=1

tr
(
A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

−
T∑
t=1

tr
(
A∗−1Ψ∗z∗t z

∗′
t Psi

∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1Λ∗−1 (Is ⊗ dΛ) Λ∗−1
)

+

−
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t dΨ∗′A∗−1′Λ∗−1A∗−1

)
+

+
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′Λ∗−1A∗−1

)
+

+
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1A∗−1

)
+

+
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1A∗−1 (Is ⊗ dA)DA∗−1

)
+

(101)
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After some algebra, it becomes

d2l (θ) = vec (Is ⊗ dA)′
[
DA∗−1 ⊗A∗−1′T ∗D

]
Kgsvec (Is ⊗ dA)− Tvec (dB)′

[
B−1 ⊗B−1′]KgvecdB

+
1

2
(dv (Λ))′D′g

[
Λ−1 ⊗ Λ−1

]
Dgdv (Λ)

−
T∑
t=1

vec (dA)′ (HA ⊗ Ig)′
[
D′A∗−1Ψ∗z∗t z

∗′
t Psi

∗′A∗−1′Λ∗−1 ⊗A∗−1′Λ∗−1
]

(HΛ ⊗ Ig)Dgdv (Λ)

−
T∑
t=1

vec (dA)′ (HA ⊗ Ig)′
[
D′A∗−1Ψ∗z∗t z

∗′
t Psi

∗′A∗−1′D ⊗A∗−1′Λ∗−1A∗−1
]

(HA ⊗ Ig) vecdA

+
T∑
t=1

vecdA′ (HA ⊗ Ig)′
[
D′A∗−1Ψ∗z∗t z

∗′
t ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vecdΨ

+
T∑
t=1

vecdA′ (HA ⊗ Ig)′
[
D′A∗−1 ⊗A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t

]
K(g+k)s

(
HΨ ⊗ I(g+k)

)
vecdΨ

− 2
T∑
t=1

vecdA′ (HA ⊗ Ig)′
[
D′A∗−1 ⊗A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′D

]
Kgs (HA ⊗ Ig) vecdA

+
T∑
t=1

vecdΨ′
(
HΨ ⊗ I(g+k)

)′ [
z∗t z
∗′
t Ψ∗′A∗−1′Λ∗−1 ⊗ Λ∗−1

]
(HΛ ⊗ Ig)Dgdv (Λ)

−
T∑
t=1

dv (Λ)′D′g (HΛ ⊗ Ig)′
[
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 ⊗ Λ∗−1

]
(HΛ ⊗ Ig)Dgdv (Λ)

−
T∑
t=1

vecdΨ′
(
HΨ ⊗ I(g+k)

)′ [
z∗t z
∗′
t ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vecdΨ.

The Hessian matrix HT (θ0), defined as

d2l (θ0) = (dθ)′HT (θ0) dθ,

can be then easily obtained.

As already introduced in Eq. (40), the diagonal T ∗ matrix, of dimension (gs× gs), is

defined as

T ∗ =



g


T1

T1

T1

. . .

g


Ts

Ts
Ts


(102)

where T1, . . . Ts indicate the number of observations in each state of volatility.

Given the particular definition of y∗t , x
∗
t , and as a consequence z∗t , the following expected

values take the form

E (Ψ∗z∗t z
∗′
t Ψ∗′) = A∗E (ε∗t ε

∗′
t )A∗′ = A∗Λ∗tA

∗′

⇒
∑T

t=1E (Ψ∗z∗t z
∗′
t Ψ∗′) = A∗

∑T
t=1E (ε∗t ε

∗′
t )A∗′ = A∗T ∗ (I∗ ⊗ Λ)A∗′ = A∗T ∗Λ∗A∗′(103)
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and, with some algebra

E (Ψ∗z∗t z
∗′
t ) = A∗Λ∗tA

∗′
[
Is ⊗B−1′ 0

]
= A∗Λ∗tA

∗′C

⇒
∑T

t=1E (Ψ∗z∗t z
∗′
t ) = A∗T ∗ (I∗ ⊗ Λ)A∗′C = A∗T ∗Λ∗A∗′C (104)

The expected value of the second differential thus becomes

−E
(
d2l (θ)

)
= vec (Is ⊗ dA)′

[
DA∗−1 ⊗A∗−1′T ∗D

]
Kgsvec (Is ⊗ dA)

+ T vec (dB)′
[
B−1 ⊗B−1′]Kgvec (dB)

− T

2
(dv (Λ))′D′g

[
Λ−1 ⊗ Λ−1

]
Dg (dv (Λ))

+ vec (dA)′ (HA ⊗ Ig)′
[
DT ∗ ⊗A∗−1′Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

+ vec (dA)′ (HA ⊗ Ig)′
[
DT ∗Λ∗−1D ⊗A∗−1′Λ∗−1A∗−1

]
(HA ⊗ Ig) vec (dA)

− vec (dA)′ (HA ⊗ Ig)′
[
DT ∗Λ∗−1A∗C ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vec (dΨ)

− vec (dA)′ (HA ⊗ Ig)′
[
DA∗−1 ⊗A∗−1′Λ∗−1T ∗Λ∗A∗C

]
K(g+k)s

(
HΨ ⊗ I(g+k)

)
vec (dΨ)

+ 2 (dA)′ (HA ⊗ Ig)′
[
DA∗−1 ⊗A∗−1′Λ∗−1T ∗Λ∗D

]
Kgs (HA ⊗ Ig) vec (dA)

− vec (dΨ)′
(
HΨ ⊗ I(g+k)

)′ [
C ′A∗Λ∗T ∗ ⊗A∗−1′Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

+ (dv (Λ))′D′g (HΛ ⊗ Ig)′
[
Λ∗−1T ∗ ⊗ Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

+ vec (dΨ)′
(
HΨ ⊗ I(g+k)

)′ [
Q∗ ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vec (dΨ)

(105)

Finally, since d (θ) =
(
dvecA′, dvecB′, dvecΓ′,dv (Λ)′

)′
, with some algebra the result fol-

lows.

The score vector, instead, can be derived using the properties of the vec and trace

operators in the first differential in Eq. (100) as follows

dl (θ) = −
T∑
t=1

vec
(
(Ig +ADt)

′Dt

)′
vecdA+ T vec

(
B−1′)′ vecdB − 1

2
vec

(
Λ−1

)′
Dgdv (Λ)

−
T∑
t=1

vec
(
DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′Λ∗−1A∗−1′)′Kgs (HA ⊗ Ig) vecdA

+
1

2

T∑
t=1

vec
(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′)′ (HΛ ⊗ Ig)Dgdv (Λ)

−
T∑
t=1

vec
(
A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t

)′ (
HΨ ⊗ I(g+k)

)
vecdΨ (106)

and, since the score vector, in row form, is defined as

f ′ (θ) =
dl (θ)

dvec θ
(107)

with simple algebra the result follows. �
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B Appendix: Tables and Figures

Table 1: Covariances and Correlations among different sub periods
ir-ge pt-ge gr-ge sp-ge ir-ge pt-ge gr-ge sp-ge

0.006 -0.002 -0.006 -0.001 1 -0.128 -0.324 -0.166
Jan 2005 - Sept 2007 -0.002 0.016 0.026 0.004 -0.128 1 0.886 0.744
t = 143 -0.006 0.026 0.056 0.007 -0.324 0.886 1 0.661

-0.001 0.004 0.007 0.002 -0.166 0.744 0.661 1

0.232 0.222 0.410 0.178 1 0.963 0.990 0.978
Oct 2007 - Dec 2008 0.222 0.230 0.405 0.179 0.963 1 0.982 0.985
t = 66 0.410 0.405 0.739 0.320 0.990 0.982 1 0.986

0.178 0.179 0.320 0.143 0.978 0.985 0.986 1

3.380 1.730 3.530 1.300 1 0.985 0.983 0.987
Jan 2009 - Dec 2009 1.730 0.916 1.830 0.680 0.985 1 0.982 0.989
t = 52 3.530 1.830 3.810 1.380 0.983 0.982 1 0.987

1.300 0.680 1.380 0.516 0.987 0.989 0.987 1

14.40 11.20 26.30 6.420 1 0.985 0.971 0.979
Jan 2010 - Mar 2011 11.20 8.980 21.10 5.110 0.985 1 0.990 0.987
t = 62 26.30 21.10 50.70 12.20 0.971 0.990 1 0.988

6.420 5.110 12.20 2.990 0.979 0.987 0.988 1

Table 2: Tranquil and crises windows
Definition of the windows Start End

Tranquil Periods 2005-01-05 2007-05-30

Irish Turbulences 2008-09-17 2009-08-26
2010-04-07 2011-03-09

Portuguese Turbulences 2010-02-03 2011-03-09

Greek Turbulences 2010-04-21 2011-03-09

Spanish Turbulences 2007-06-01 2011-03-09
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Table 3: Number of observation for each volatility regimes
Ireland Portugal Greece Spain Historical Events Rolling Variances

(1) (2)

L L L L 118 258
H L L L 0 4
L H L L 0 2
L L H L 0 0
L L L H 39 11
H H L L 0 2
H L L H 103 7
H L H L 0 1
L H H L 0 3
L L H H 0 1
L H L H 9 0
L H H H 0 1
H L H H 0 0
H H L H 0 9
H H H L 0 2
H H H H 49 9

Table 4: FIML estimates of A and B.
Historical events Historical events Rolling Variances

Unrestricted Restricted
(1) (2) (3)

param. SE param. SE param. SE

A11 3.320 0.333 3.550 0.286 4.030 0.622
A21 -0.352 0.359 0 - -1.490 0.332
A31 -0.491 0.741 0 - 5.890 0.775
A41 -0.456 0.638 0 - -3.510 0.475
A12 0.401 0.566 0 - 1.660 0.443
A22 3.950 0.539 4.070 0.542 4.400 0.763
A32 -5.140 1.270 -5.090 1.210 -9.490 1.370
A42 4.230 1.120 4.240 1.100 1.890 0.432
A13 -1.200 1.080 0 - -2.340 0.840
A23 0.674 1.210 0 - 3.120 0.837
A33 10.500 1.910 10.600 1.540 14.700 3.100
A43 -7.680 1.640 -7.530 1.360 -4.000 1.170
A14 1.730 0.476 1.040 0.318 2.350 0.408
A24 1.260 0.456 1.520 0.348 0.750 0.301
A34 -5.940 0.499 -5.870 0.459 -7.750 0.956
A44 4.700 0.558 4.740 0.520 3.940 0.590
B11 1 - 1 - 1 -
B21 -0.182 0.068 -0.132 0.041 -0.294 0.027
B31 -0.300 0.081 -0.191 0.067 -0.558 0.030
B41 0.211 0.068 0.267 0.062 0.217 0.025
B12 -0.220 0.097 -0.232 0.061 -0.526 0.033
B22 1 - 1 - 1 -
B32 -0.377 0.101 -0.408 0.094 -0.615 0.036
B42 0.366 0.103 0.390 0.093 -0.077 0.032
B13 -0.255 0.065 -0.184 0.038 -0.052 0.015
B23 -0.323 0.060 -0.364 0.044 -0.176 0.015
B33 1 - 1 - 1 -
B43 -0.837 0.056 -0.849 0.055 -0.306 0.013
B14 -0.931 0.123 -1.060 0.110 -0.504 0.045
B24 -0.210 0.104 -0.239 0.081 -0.200 0.046
B34 -0.476 0.129 -0.739 0.095 -0.478 0.047
B44 1 - 1 - 1 -

LR test for over-identified restrictions

LR χ2
6 = 10.125

p-value (0.119)

40



Table 5: Simultaneous relations over different volatility regimes
ir-ge pt-ge gr-ge sp-ge ir-ge pt-ge gr-ge sp-ge

Historical Events Rolling Variances

LLLLa LLLL

ir-ge 1 -0.232 -0.184 -1.060 1 -0.526 -0.052 -0.504
pt-ge -0.132 1 -0.364 -0.239 -0.294 1 -0.176 -0.2
gr-ge -0.191 -0.408 1 -0.739 -0.558 -0.615 1 -0.478
sp-ge 0.267 0.390 -0.849 1 0.217 -0.077 -0.306 1

LLLH LLLH

ir-ge 1 -0.318 -0.032 -1.300 1 -0.545 0.104 -1.090
pt-ge -0.226 1 -0.155 -0.562 -0.323 1 -0.128 -0.348
gr-ge 0.623 -0.067 1 2.150 -0.418 -1.420 1 2.100
sp-ge 0.267 0.390 -0.849 1 0.217 -0.077 -0.306 1

HLLH HLLH

ir-ge 1 -0.318 -0.032 -1.300 1 -0.545 0.104 -1.090
pt-ge -0.226 1 -0.155 -0.562 -0.211 1 -0.123 -0.522
gr-ge 0.623 -0.070 1 2.150 -0.523 -1.380 1 2.230
sp-ge 0.267 0.390 -0.849 1 1.410 -0.686 -0.528 1

LHLH LHLH

ir-ge 1 -0.140 -0.063 -1.470 1 -0.677 0.119 -0.981
pt-ge -0.226 1 -0.155 -0.562 -0.323 1 -0.128 -0.348
gr-ge 0.412 1.540 1 1.780 -1.790 1.560 1 1.810
sp-ge 0.315 -0.372 -0.454 1 0.299 -0.399 -0.228 1

HHHH HHHH

ir-ge 1 -0.217 -0.112 -1.580 1 -0.667 0.153 -0.979
pt-ge -0.271 1 -0.229 -0.720 -0.078 1 -0.260 -0.770
gr-ge 0.412 1.540 1 1.780 -1.410 1.290 1 1.430
sp-ge 0.297 -0.105 -0.235 1 0.606 -0.596 -0.058 1

a: LLLL indicates (Ir = Low, Pt = Low, Gr = Low, Sp = Low), and so forth for all other regimes.

Figure 1: Interest rates (left panel) and spreads (right panel), January 2005 - March 2011.
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Figure 2: Actual and fitted spreads (left panel), and residuals (right panel), January 2005
- March 2011.
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Figure 3: Absolute value of the residuals, January 2005 - March 2011.

2005 2006 2007 2008 2009 2010 2011

0.25

0.50

0.75 ir-ge 

2005 2006 2007 2008 2009 2010 2011

0.25

0.50

0.75
pt-ge 

2005 2006 2007 2008 2009 2010 2011

0.5

1.0

1.5

2.0 gr-ge 

2005 2006 2007 2008 2009 2010 2011

0.1

0.2

0.3

sp-ge 

42



Figure 4: High-low volatility regimes for each country (left panel), and combination of the
5 different regimes (right panel).
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C Appendix: Low, Mid or High volatility for each endogen-

ous variable

Suppose that there are two different regimes of volatility governed by the two 0−1 diagonal

matrices D1 and D2, as considered in Section II.2. Moreover, let consider the more general

case in which, when there is an increase in the volatility, this can happen either in a state

of mid volatility, or in a state of high volatility17.

Furthermore, as in the specification considered in Proposition 1, let the two diagonal

matrices describing the volatility regimes be defined as D1 = 0g and D2 = Ig. Under these

further assumptions, the structural representation of the model (for simplicity, without

considering the predetermined variables) becomes

Byt = εt

Byt = (Ig +A) εt (108)

Byt =
(
Ig +A+ Ā

)
εt

and the system of equations connecting the parameters of the reduced and structural forms

can be written as

BΩ1B
′ − Λ = 0

(Ig +A)−1BΩ2B
′ (Ig +A)−1′ − Λ = 0 (109)(

Ig +A+ Ā
)−1

BΩ3B
′ (Ig +A+ Ā

)−1′ − Λ = 0.

Using the standard derivation rules, and some properties of the vec operator, the Jacobian

17Actually, the possible combinations of low-medium-high volatility regimes can be mixed in a much more
complicated way. The strategy followed in this appendix is an illustrative example on how to generalize the
results obtained in the previous sections of the paper.
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is

J =



2NgD
∗
1 0 0 −Dg

2NgD
∗
2 −2NgE

∗
1 0 −Dg

2NgD
∗
3 −2NgE

∗
2 −2NgĒ

∗
1 −Dg

RB 0 0 0

0 RA 0 0

0 0 RĀ 0

0 0 0 RΛ


(110)

where Ng and Dg are defined as before, and the matrices D∗1, D∗2, D∗3, E∗1 , E∗2 , Ē∗1 are

defined as follows

D∗1 = BΩ1 ⊗ Ig
D∗2 = (Ig +A)−1BΩ2 ⊗ (Ig +A)−1

D∗3 =
(
Ig +A+ Ā

)−1
BΩ3 ⊗

(
Ig +A+ Ā

)−1′

E∗1 = (Ig +A)−1BΩ2B
′ (Ig +A)−1′ ⊗ (Ig +A)−1

E∗2 =
(
Ig +A+ Ā

)−1
BΩ2B

′ (Ig +A+ Ā
)−1′ ⊗ (Ig +A)−1

Ē∗1 =
(
Ig +A+ Ā

)−1
BΩ2B

′ (Ig +A+ Ā
)−1′ ⊗ (Ig +A)−1

The matrices RA, RB, RĀ and RΛ describe the restrictions on the parameters in the implicit

form, with associated explicit form defined by SA, SB, SĀ and SΛ. Following Rothenberg

(1971), the model is identified when the Jacobian matrix in Eq. (110) has full column

rank. After some simple algebra, the identification condition refers to the following 3g2 ×(
3g2 + g (g + 1) /2− q

)
matrix 2NgD

∗
1SB 0 0 −DgSΛ

2NgD
∗
2SB −2NgE

∗
1SA 0 −DgSΛ

2NgD
∗
3SB −2NgE

∗
2SA −2NgĒ

∗
1SĀ −DgSΛ

 (111)

where q = qA + qB + qĀ + qΛ indicates the total number of restrictions. The rank condition

for identification, thus, is satisfied if and only if the matrix in Eq. (111) has full column

rank 3g2 + g (g + 1) /2− q.
The necessary condition can be obtained by counting the number of distinct rows in Eq.

(111), which must be at least as large as the number of columns. This easily leads to the

following necessary condition

3

2
g (g + 1) ≥ 3g2 +

1

2
g (g + 1)− q =⇒ q ≥ g2 − g. (112)

Remark 4. Under the conditions of Corollary 1 of a unit diagonal covariance matrix

for the structural shocks, i.e. Λ = Ig, and the further assumption that RB = 0, then the

necessary condition becomes

qA + qĀ ≥ 2g2 − g − g (g + 1)

2
=⇒ qA + qĀ ≥

3

2
g2 − 3

2
g. (113)

This result can be compared with the identification strategy found in Lanne and Lütkepohl
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(2008) and Lanne et al. (2010) where, for three levels of volatility for each endogenous

variable, is based on imposing a total of
(
g2 − g

)
+g (g + 1) /2 restrictions, i.e. the diagonal

structure of the Λ1 and Λ2 matrices in the relations Ω1 = WΛ1W
′ and Ω2 = WΛ2W

′,

plus the unit diagonal structure for the covariance matrix of the structural shocks in the

low volatility regime. This structure is clearly not necessary for the identification of the

parameters and provides 3
2g (g + 1)− g2− 2g = g (g − 1) /2 degrees of freedom in a LR test

of hypothesis with asymptotic χ2 distribution18.

Equivalent results can be easily re-obtained in our specification by imposing both A and

Ā to be diagonal. Our framework, however, is much more flexible, being not constrained

on the diagonal structure for the A and Ā matrices.

As an example, in the case of a three-dimensional system of equations the following

structure

A =

 a11 0 0

a21 a22 0

a31 a32 a33

 and Ā =

 ā11 0 0

0 ā22 0

0 0 ā33

 (114)

imposes a set of g (g − 1) /2 + g2 − g = 3
2g

2 − 3
2g restrictions, that corresponds to the

necessary condition reported in Eq. (113).

18See discussion on identification conditions in Lanne et al. (2010), pag. 124.
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D Monte Carlo Evidence

In this section we provide some Monte Carlo simulations to evaluate the performances of

the FIML estimator in estimating the unknown parameters of the model and the associated

asymptotic covariance matrix. We shall also analyze the finite-sample properties of hypo-

thesis testing procedures for evaluating the significance of the estimated coefficients and the

presence of high volatility regimes.

In all Monte Carlo simulations we refer to a three-equation system for yt = (y1t, y2t, y3t)
′

with one common regressor xt. The Data Generating Process (DGP) is

Byt = Γxt +

[
Igs + (Is ⊗A)D

]
εt

where g = 3 and εt = (ε1t, ε2t, ε3t)
′ is the vector of structural uncorrelated shocks with

common variances σ2
i = 1, i = 1, 2, 3. The system is governed by s = 4 different regimes of

volatility described by the (12× 12) matrix D = diag (D1, D2, D3, D4) where

D1 =

 0

0

0

 D2 =

 0

0

1

 D3 =

 1

0

0

 D4 =

 1

1

1

 .

The first regime is characterized by low volatility for all endogenous variables. In the second

and third only one variable is in a state of high volatility, y3t and y1t respectively. In the

fourth regime, instead, all the variables are in a state of high volatility. The matrices of

parameters have been fixed as

A =

 1.5 0 0

0.5 3 0

0.5 0 2

 B =

 1 0.6 0.5

0 1 −0.3

−0.4 0 1

 Γ =

 0.7

0.5

0.5


while the exogenous variable xt is randomly generated (differently for each replication)

from a standard normal variable. All the different states of volatility are represented in

the sample by an equivalent number of observations Ti = 0.25T , i = 1, 2, 3, 4. We consider

three different values for the number of observations, T = 100, 250, 1500, that correspond

roughly to twenty five years of quarterly data as in hypothetical macroeconomic analyses

for the first, six years weekly or daily data as in financial applications for the second and

third. The estimation of the parameters has been performed by considering the reduced

form parameters first, and then by maximizing the concentrated likelihood with respect to

the structural parameters in A and B. Without any constraint in the parameters of the

reduced form, this two steps procedure is completely equivalent to the maximization of the

general likelihood function19. Experiments are based on 5,000 replications of the Monte

Carlo process for T = 100 and T = 250, while 2,000 replications for T = 1500.

19Given that the estimation of the model is computationally rather intensive, the likelihood function has
been maximized through the OPTMUM Gauss procedure, that provides exactly the same results as the
scoring algorithm discussed in Eq. (47), but reaching the maximum much more quickly.
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D.1 Parameters and Covariance Matrix Estimators

Although the general asymptotic theory for the FIML estimator, as the one reported in

Section III, focuses on the primary role of the Fisher information matrix, in practical works

alternative methods have been proposed to estimate the covariance matrix of the maximum

likelihood estimates, generally based on numerical or analytical first and second order dif-

ferentiation. A first alternative is the matrix of outer products (OP) of the first order

derivatives of the log-likelihood that, in the context of simultaneous systems of equations,

is generally referred to as the BHHH method (Berndt et al., 1974). Another possibility,

instead, is represented by the Hessian matrix (H), obtained from the second order derivat-

ives of the log-likelihood function. Two more alternatives, that represent two forms of the

(robust) quasi-maximum likelihood covariance estimator are worth mentioning. The first,

proposed in a very general framework by White (1982, 1983) and Gourieroux et al. (1984),

is defined as

QMLH =
(
H−1

)
(OP )

(
H−1

)
(115)

while the second substitutes the Hessian matrix with the estimated information matrix F
as

QMLF =
(
F−1

)
(OP )

(
F−1

)
. (116)

Given the results obtained in Proposition 3 concerning analytical formulation for the Gradi-

ent, the Hessian matrix, and the Information matrix, it becomes straightforward to compare

the behavior of these matrices as estimator of the asymptotic covariance matrix.

In Table 6 we report the true value of the parameters, the mean of their estimates, the

mean squared error, and the estimated standard errors provided from the five alternatives

mentioned above. For each parameter we report the results for the different sample length

T . As expected, the bias of the estimated coefficients reduces as the dimension of the sample

increases. However, even for relatively small samples (T = 100), the approximation seems

to be extremely good. The Monte Carlo results indicate that the five covariance matrix

estimators are, indeed, asymptotically similar, but some of them exhibit some systematic

inequalities in small samples. In general, the H and F covariance estimates are very similar,

for both the A and B parameters, and for the different sample sizes. Concerning the

parameters of the A matrix, instead, the different estimators behave differently according

to whether they are on or off the main diagonal. For the parameters on the main diagonal,

the OP provides the smallest values, while those obtained with the two quasi-maximum

likelihood estimators QMLH and QMLF tend to be the largest ones. For the off diagonal

elements of the A matrix exactly the opposite happens. Such differences are much less

pronounced for the parameters in the B matrix.

D.2 Tests for Volatility Regimes

The present section, and the next one, are dedicated to investigate the behavior of likelihood

ratio-type tests (LR) on the coefficients of the A matrix. In particular, in this section we

discuss a test for detecting whether one or more structural shocks, in particular periods

of time, are amplified by the system and originate clusters of higher volatility. This kind

of tests refers to the coefficients on the main diagonal of the A matrix. In fact, if the ajj
element of the A matrix is not significantly different from zero, the εj never contributes to

generate different regimes of volatility.

The Monte Carlo experiment is based on the same structure of the previous one, but
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with different values for the A matrix, defined as

A =

 2 0 0

0 0 0

0 0 0

 , (117)

and with only s = 2 regimes governed by the following D1 and D2 matrices

D1 =

 0 0 0

0 0 0

0 0 0

 and D2 =

 1 0 0

0 0 0

0 0 0

 . (118)

The DGP indicates that only the first structural shock, for the second half of the sample,

is amplified, thus generating heteroskedasticity. Using the results of Proposition 2, the zero

restrictions on the A and B matrices, together with the two regimes of volatility described

by D1 and D2, satisfy the necessary and sufficient conditions for the local identification of

the parameters.

Given this DGP we study the performances of a LR test whose null hypothesis is of no

multiplicative effect for the second and third structural shock in periods of high volatility,

i.e. a22 = 0 and a33 = 0. In other words, under the null hypothesis, the two structural

shocks ε2t and ε3t don’t contribute to generate high volatility periods. The size properties of

the LR test are evaluated through the P-value plots proposed by Davidson and MacKinnon

(1998), which are plots of empirical versus nominal size for all possible test sizes. If the

asymptotic distribution is correct, the P-value plot should be close to the 45◦ line. Figure

5 (left panel) reports such plots for the three different dimensions of the sample, T = 100,

250 and 1500. It is clearly shown that the actual size of the LR test behaves correctly for

all values of T .

In order to check for the power of the test we employ the size-power curve defined in

Davidson and MacKinnon (1998), that is constructed using two empirical distributions of

the test statistic, one for an experiment in which the null hypothesis is true, and one for an

experiment in which it is false, possibly using the same sequence of random numbers. The

distribution of the test statistics under the alternative hypothesis is obtained using a DGP

in which the A matrix is defined as

A =

 2 0 0

0 0.2 0

0 0 0.2

 , (119)

which is very close to the DGP for obtaining the distribution under the null hypothesis20.

The difference, of course, is that under the alternative, the second and third structural

shocks, during periods of high instability, are amplified through a multiplicative effect of

magnitude equal to 1.2. Although this is rather close to the situation of absence of an

amplification of the shock, we want to verify that the LR test rejects the null hypothesis a

correct number of times. The size-power curves for the LR test on the amplification effects

are reported in Figure 5 (right panel), for different dimensions of the sample. The power of

the test appears to be practically perfect for very large samples (T = 1500), highly reliable

20In this new DGP, the matrix describing the behavior of the structural shocks in periods of high instability
is represented by the identity matrix, i.e. D2 = I3, while D1 = 03
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for medium samples (T = 250), while becomes marginally satisfactory for small samples

(T = 100). In this last case, however, the power always remains higher than the actual size

of the test.

D.3 Tests for the Propagation of Shocks

As already introduced in the previous section, the following Monte Carlo exercise uses a

slightly different DGP to investigate the performances of a LR test that aims to detect the

propagation of shocks through the off diagonal elements of the A matrix. The only change

in the DGP is represented by the A matrix used to generate the distribution of the test

statistic under the null, which is defined as

A =

 2 0 0

0 1 0

0 0 1

 , (120)

in which all the shocks, in periods of high volatility, are amplified but not transmitted

to the other variables of the system21. Suppose to have a priori information for the A

matrix to be at most lower triangular. The null hypothesis we want to test is that there

is not at all propagation of shocks, i.e. a21 = a31 = a32 = 0. In this case, the LR test

statistic is asymptotically distributed as a χ2 distribution with three degrees of freedom.

The performances of the test, in terms of size, are described by the P-value plot reported in

Figure 6 (left panel), for different dimensions of the sample. As for the previous case, the

empirical size of the test strongly corresponds to the nominal size, even in small samples.

In the right panel of Figure 6 we report the size-power curves, for different dimensions

of the sample, obtained by considering the DGP in which the A matrix is defined as:

A =

 2 0 0

0.5 1 0

0.5 0.5 1

 . (121)

The size-power curves highlight that the power is extremely good in large samples, while

reduces for medium and small samples.

Figure 5: P-value plots (left panel) and size-power curve (right panel): Amplification effects
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21As before, D1 = 03 and D2 = I3.
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Table 6: Mean estimated parameters and variances
Par. True T Mean MSE OP H F QMLH QMLF

100 1.465 0.224 0.269 0.271 0.269 0.299 0.298
A11 1.5 250 1.492 0.155 0.160 0.171 0.171 0.192 0.192

1500 1.498 0.060 0.063 0.070 0.070 0.080 0.080
100 0.484 0.226 0.271 0.231 0.227 0.227 0.219

A21 0.5 250 0.486 0.145 0.152 0.143 0.142 0.142 0.141
1500 0.499 0.057 0.059 0.059 0.058 0.060 0.059
100 0.505 0.372 0.312 0.281 0.276 0.294 0.276

A31 0.5 250 0.538 0.442 0.181 0.175 0.174 0.181 0.179
1500 0.501 0.136 0.071 0.072 0.072 0.075 0.075
100 2.939 0.505 0.565 0.567 0.565 0.637 0.631

A22 3 250 2.983 0.321 0.337 0.363 0.363 0.419 0.417
1500 2.995 0.129 0.131 0.148 0.148 0.174 0.173
100 1.975 0.363 0.351 0.371 0.367 0.437 0.424

A33 2 250 1.988 0.230 0.210 0.235 0.234 0.276 0.275
1500 2.002 0.093 0.083 0.096 0.096 0.113 0.113
100 -0.386 0.205 0.149 0.142 0.140 0.154 0.147

B31 -0.4 250 -0.373 0.255 0.088 0.088 0.088 0.094 0.094
1500 -0.399 0.076 0.034 0.036 0.036 0.039 0.039
100 0.594 0.077 0.110 0.099 0.098 0.100 0.098

B12 0.6 250 0.594 0.058 0.065 0.063 0.062 0.063 0.062
1500 0.600 0.021 0.025 0.026 0.025 0.026 0.026
100 0.500 0.079 0.092 0.082 0.081 0.082 0.080

B13 0.5 250 0.506 0.075 0.053 0.051 0.051 0.051 0.051
1500 0.501 0.023 0.020 0.021 0.020 0.021 0.021
100 -0.299 0.060 0.090 0.080 0.079 0.079 0.077

B23 -0.3 250 -0.302 0.040 0.052 0.050 0.049 0.050 0.049
1500 -0.300 0.015 0.020 0.020 0.020 0.021 0.020

Figure 6: P-value plots (left panel) and size-power curve (right panel): Propagation effects
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