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In [5], the authors introduce a technique to compute finite coproducts of finite
Gödel algebras, i.e. Heyting algebras satisfying the prelinearity axiom (α →
β)∨ (β → α). To do so, they investigate the product in the category opposite to
finite Gödel algebras: the category of forests and open order-preserving maps,
alias p-morphisms, which we denote by F. (A forest is a partially ordered set F
such that, for every x ∈ F , the set of lower bounds of x forms a chain, when
endowed with the order inherited from F .) To achieve their result, the authors
make use of ordered partitions of finite sets and of a specific operation — called
merged-shuffle — on ordered partitions. In [1, Section 4.2], the authors present
an alternative, recursive construction of finite products in the category of forests
and open order-preserving maps.

In the present work we introduce a further construction of the same finite
products, based on products of posets along with a generalization of the com-
binatorial notion of Delannoy path. The new and most interesting aspect of
our construction is that, dually, it uncovers a key relationship between the co-
products of finite Gödel algebras and the coproducts in the category of finite
distributive lattices. Our main result explains the former coproducts in terms of
a construction on the latter; the construction itself is currently best understood
via duality using a generalisation of the Delannoy paths.

Classically, a Delannoy path (see [4, p.80]) is a path on the first integer
quadrant N2 ⊆ Z2 that starts from the origin and only uses northward, eastward,
and north-eastward steps. We begin by generalizing the notion of Delannoy path
to Cartesian products of finite posets. A (finite) path on a poset P is a sequence
< p1, p2, . . . , ph > of elements of P such that pi < pj whenever i < j. (A path
on P is therefore the same thing as a chain of P .) For each i ∈ {1, . . . , n − 1},
the pair pi, pi+1 is called a step of the path. Given a poset P , and two elements
p, q ∈ P , we write p C q to indicate that q covers p in P , that is, p < q and for
every s ∈ P , if p ≤ s ≤ q, then either s = p or s = q.

In [3], the notion of Delannoy path has been extended to finite products of
chains. The following generalization is perhaps less obvious.



Definition 1. Let P1, P2, . . . , Pn be posets, and let P = P1 × P2 × · · · × Pn
be their (Cartesian) product. Let < p1, p2, . . . , ph > be a path on P . The step
from pi = (pi,1, pi,2, . . . , pi,n) to pi+1 = (pi+1,1, pi+1,2, . . . , pi+1,n) is a Delannoy
step, written pi ≺ pi+1, if and only if there exists k ∈ {1, . . . , n} such that
pi,k 6= pi+1,k, and for each j ∈ {1, . . . , n}, pi,j = pi+1,j, or pi,j C pi+1,j. The
path < p1, p2, . . . , ph > on P is a Delannoy path if and only if p1 is a minimal
element of P , and for each i ∈ {1, . . . , n− 1}, pi ≺ pi+1.

A Delannoy path on P is thus a sequence of Delannoy steps starting from
a minimal element of P . Delannoy paths on a poset P = P1 × · · · × Pn can be
partially ordered by < q1, . . . , qm >≤ < p1, . . . , ph > if and only if m ≤ h and
qi = pi for each i ∈ {1, . . . ,m}. We denote by D(P1, . . . , Pn) the poset of all
Delannoy paths on P . Clearly, D(P1, . . . , Pn) is a forest.

Definition 2 (Product). Let F and G be forests. We call F ×F G = D(F,G)
the product of F and G.

Definition 3 (Projections). Let F and G be forests, let {f1, . . . , fm} and
{g1, . . . , gn} be the underlying sets of F and G, respectively, and let D = F ×FG.
We define a function πF : D → F such that for each Delannoy path d ∈ D, with
d =< (fi, gj), . . . , (fh, gk) >, πF (d) = fh. Analogously, we define a function
πG : D → G such that πG(d) = gk.

Our main result follows.

Theorem 1. Let F and G be forests. Then

F
πF←− F ×F G

πG−→ G

is the product of F and G in the category F.

Remark. We point out the parallel with [2], where the authors use the forest of
all paths on a finite poset to construct the Gödel algebra freely generated by a
finite distributive lattice.
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