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Abstract

The estimation of the mean density of random closed sets in Rd with integer Hausdorff
dimension n < d is a problem of interest from both a theoretical and an applicative point
of view. In literature different kinds of estimators are available, mostly for the homogeneous
case. Recently the non homogeneous case has been faced by the authors; more precisely,
two different kinds of estimators, asymptotically unbiased and weakly consistent, have been
proposed: in [9] a kernel-type estimator generalizing the well-known kernel density estimator
for random variables, and in [29] an estimator based on the notion of Minkowski content of a
set. The study of the optimal bandwidth of the “Minkowski content”-based estimator has been
left as an open problem in [29, Section 6] and in [30, Remark 14], and only partially solved
in [9, Section 4], where a formula is available in the particular case of homogeneous Boolean
models. We give here a solution of such an open problem, by providing explicit formulas
for the optimal bandwidth for quite general random closed sets (i.e. not necessarily Boolean
models or homogeneous germ-grain models). We also discuss a series of relevant examples and
corresponding numerical experiments to validate our theoretical results.

Keywords: density estimator, random closed set, stochastic geometry, Hausdorff dimension, Minkowski
content
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1 Introduction

The problem of the evaluation and estimation of the mean density of random closed sets in Rd

with integer Hausdorff dimension n less than d, such as fiber processes, boundaries of germ-grain
models, n-facets of random tessellations, and surfaces of full dimensional random sets, has been of
great interest in many different scientific and technological fields over the last decades (see [9] and
references therein). We remind that, given a probability space (Ω,F,P), a random closed set Θ in
Rd is a measurable map

Θ : (Ω,F,P) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ-algebra generated by the so
called Fell topology, or hit-or-miss topology, that is the topology generated by the set system

{FG : G ∈ G} ∪ {FC : C ∈ C}
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where G and C are the system of the open and compact subsets of Rd, respectively (e.g., see [22]).
Throughout the paper we shall denote by Θn any random closed set in Rd with Hausdorff dimension
n; we mean that a random closed set satisfies a certain property if it satisfies that property P-a.s.

Recently, in [9], [29] and [30], two different kinds of estimators, asymptotically unbiased and
weakly consistent, have been proposed by the authors: in [9] a kernel-type estimator generalizing
the well-known kernel density estimator for random variables; in [29] and [30] (for Boolean models
and more general germ-grain processes, respectively) an estimator based on the notion of Minkowski
content. (See also [10] for a survey containing also some numerical experiments validating the
theoretical results available so far).

In particular, although the “Minkowski content”-based estimator reveals its benefits in applica-
tions in the non-stationary cases, so far general optimal bandwidths have been identified only for
the kernel-type estimator. Indeed the study of the optimal bandwidth of the “Minkowski content”-
based estimator has been left as an open problem in [29, Section 6] and in [30, Remark 14], and
partially solved in [9, Section 4], where a formula is available only in the particular case in which
the random set Θn is a homogeneous Boolean model.
So, this is the main goal of the present paper: to provide optimal bandwidths for the “Minkowski
content”-based estimator for more general random closed sets, not necessarily homogeneous or
Boolean models. In view of possible applications this might be of great importance for two main
reasons: the first one is that Boolean models are characterized by independence of the grains and
it is quite intuitive that such an assumption is often not fulfilled in real applications; the second
one is that the “Minkowski content”-based estimator turns out to be much more feasible than the
kernel-type estimator. Once we solve the open problem regarding the optimal bandwidth for the
“Minkowski content”-based estimator, we provide here a series of numerical experiments for some
relevant situations, in order to both validate the theoretical results and compare all the proposed
estimators.

More precisely, the paper is organized as follows: in Section 2 basics and notation on germ-
grain representation of random closed sets in Rd are provided; the definition of the “Minkwoski-
content”-based estimator and the related known results on its statistical properties are also recalled.
Moreover, all the additional assumptions useful throughout the paper are listed at the end of the
section for the reader’s convenience. In Section 3 the main theorems of the paper are stated,
giving an asymptotical expression of the bias of the “Minkwoski-content”-based estimator; as a
byproduct general formulas for the optimal bandwidth of the estimator are obtained. In Section 4
some relevant particular cases are discussed; we point out that already known results for the
cases in which the random set Θ is actually a random variable, or a stationary Boolean models
are reobtained here as particular case. In Section 5 a series of examples and related numerical
experiments and remarks are given; in particular it will be evident how much easier is to apply
the “Minkowski content”-based estimator with respect to other kinds of estimators of the mean
densities. This is due to the fact that, as it is clear from its definition, the estimate of the mean
density of Θn in any point x ∈ Rd does not require any particular calculation, except for counting
how many elements of the random sample of Θn have at least one point in the ball centered in x;
this can be generally easily done by checking whether the pixel corresponding to x belongs to Θn

or not in its digital image. This is the reason why in the example discussed in Section 5.2.2 we are
not able to compute the estimate of the mean density by the other proposed estimators, but only
for the “Minkowski content”-based estimator.
To make the paper more readable we collected all the proofs of the main results in Section 6, and
useful definitions on sets with positive reach and related properties and curvature measures in the
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Appendix.

2 Basics and notation

To lighten the presentation we shall use similar notation to previous works [9], [29], [30]; in par-
ticular, for the reader’s convenience, we refer to [30, Section 2] (and references therein) for the
mathematical background and more details on the Minkowski content notion and marked point
process theory, while we refer to [9, Appendix] (and references therein) for the classical density
estimation theory for random variables.

Here Hn is the n-dimensional Hausdorff measure, dx stands for Hd(dx), and BX is the Borel
σ-algebra of any topological space X . Br(x) and bn will denote the closed ball with centre x and
radius r > 0 and the volume of the unit ball in Rn, respectively. By means of marked point
processes in Rd with marks in the class of compact subsets of Rd, every random closed set Θ in
Rd can be represented as a germ-grain model as follows

Θ(ω) =
⋃

(xi,si)∈Ψ(ω)

xi + Z(si), ω ∈ Ω, (1)

where Ψ = {(ξi, Si)}i∈N is a marked point processes in Rd with marks in a suitable mark space
K so that Zi = Z(Si), i ∈ N, is a random set containing the origin (i.e., Z : K → F). Note that
even if it would be possible to directly consider marked point processes with mark space F, we
prefer to use the same approach and notation of previous works by the authors on this subject,
both for the reader’s convenience and because many applications can be handled in a simpler way
by considering a suitable parametrization of the grains Zi.
Throughout the paper we assume that Ψ has intensity measure Λ(d(x, s)) = f(x, s)dxQ(ds) and
second factorial moment measure ν[2](d(x, s, y, t)) = g(x, s, y, t)dxdy Q[2](d(s, t)) [14, for general
theory of point processes],[20], [11]. We also recall that whenever Ψ is a marked Poisson point
process, Θ is said to be a Boolean model; in such a case ν[2] = Λ ⊗ Λ, so that g(x, s, y, t) =
f(x, s)f(y, t).
For any function f , discf will denote the set of its discontinuity points.
Let Θn be a set of locally finiteHn-measure, as in (1); then it induces a random measure µΘn(A) :=
Hn(Θn∩A), A ∈ BRd , and the corresponding expected measure E[µΘn ](A) := E[Hn(Θn∩A)], A ∈
BRd . (For a discussion of the measurability of the random variables µΘn(A), we refer to [5, 31].)
Whenever the measure E[µΘn ] is absolutely continuous with respect to the measure Hd, its density
(i.e. its Radon-Nikodym derivative) with respect to Hd has been called mean density of Θn, and
denoted by λΘn . It has been proved that ([30, Proposition 5])

λΘn(x) =
∫

K

∫

x−Z(s)

f(y, s)Hn(dy)Q(ds), (2)

for Hd-a.e x ∈ Rd, where −Z(s) is the reflection of Z(s) at the origin.
In the sequel we will assume that an i.i.d. random sample Θ1

n, . . . , ΘN
n is available for the ran-

dom closed set Θn, with mean density λΘn . The issue of estimation of λΘn(x) may be solved by
(2) via the estimation of f and Q, which unfortunately is in general a difficult task in applica-
tions. Therefore, being the Lebesgue measure much more robust and computable than Hn, an
approximation of the mean density based on the Hd-measure of the Minkowski enlargement of the
random set in question has been provided in [30]. More precisely, we recall that the parallel set

3



(or, equivalently, the Minkowski enlargement) of A ⊂ Rd at distance r > 0, is the set so defined
A⊕r := {x ∈ Rd : dist(x,A) ≤ r}; we also remind that a compact set A ⊂ Rd is called countably
Hn-rectifiable if there exist countably many n-dimensional Lipschitz graphs Γi ⊂ Rd such that
A\∪iΓi is Hn-negligible (e.g., see [3] and references therein for a more exhaustive treatment). The
following approximation holds:

Theorem 1 [30, Theorem 7] Let Θn be as in (1) such that the following assumptions are satisfied:

(A1) for any (y, s) ∈ Rd ×K, y + Z(s) is a countably Hn-rectifiable and compact subset of Rd,
such that there exists a closed set Ξ(s) ⊇ Z(s) such that∫
K
Hn(Ξ(s))Q(ds) < ∞ and

Hn(Ξ(s) ∩Br(x)) ≥ γrn ∀x ∈ Z(s), ∀r ∈ (0, 1)

for some γ > 0 independent of s;

(A2) for any s ∈ K, Hn(disc(f(·, s))) = 0 and f(·, s) is locally bounded such that for any compact
K ⊂ Rd

sup
x∈K⊕diam(Z(s))

f(x, s) ≤ ξ̃K(s)

for some ξ̃K(s) with
∫
K
Hn(Ξ(s))ξ̃K(s)Q(ds) < ∞;

(A3) for any (s, y, t) ∈ K × Rd ×K, Hn(disc(g(·, s, y, t))) = 0 and g(·, s, y, t) is locally bounded
such that for any compact K ⊂ Rd and a ∈ Rd,

1(a−Z(t))⊕1(y) sup
x∈K⊕diam(Z(s))

g(x, s, y, t) ≤ ξa,K(s, y, t)

for some ξa,K(s, y, t) with
∫

Rd×K2
Hn(Ξ(s))ξa,K(s, y, t)dyQ[2](ds, dt) < ∞

Then

λΘn(x) = lim
r↓0

P(x ∈ Θn⊕r )
bd−nrd−n

, Hd-a.e. x ∈ Rd.

As a byproduct, given an i.i.d. random sample {Θi
n}i∈N of Θn, the following “Minkowski content”-

based estimator of λΘn(x) was proposed in [30]:

λ̂µ,N
Θn

(x) :=

∑N
i=1 1Θi

n∩BrN (x) 6=∅

Nbd−nrd−n
N

.

For a discussion on the above assumptions we refer to [30, Sec. 3.1]. Here we only point out that

• whenever Θn is a Boolean model, (A3) is an immediate consequence of (A1) and (A2).

• Given a subset A of Rd and an integer n with 0 ≤ n ≤ d, the n-dimensional Minkowski
content of A is defined as

Mn(A) := lim
r↓0

Hd(A⊕r)
bd−nrd−n

,
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whenever the limit exists and is finite; assumption (A1) can be seen as the stochastic version
of the assumption in [3, Theorem 2.104] which guarantees Mn(A) = Hn(A). We say that
Θn admits mean local n-dimensional Minkowski content if

lim
r↓0

E[Hd(Θn⊕r ∩A)]
bd−nrd−n

= E[Hn(Θn ∩A)]

for all A ∈ BRd such that E[µΘn
](∂A) = 0. By noticing that the above equality can be

written equivalently in this way

lim
r↓0

∫

A

P(x ∈ Θn⊕r
)

bd−nrd−n
dx =

∫

A

λΘn
(x)dx, (3)

(A1)− (A3) imply the exchange between limit and integral in (3). This is the reason why we
named λ̂µ,N

Θn
(x) as “Minkowski content”-based estimator.

We recall that the mean square error MSE(λ̂µ,N
Θn

(x)) of λ̂µ,N
Θn

(x), defined as usual by

MSE(λ̂µ,N
Θn

(x)) := E[(λ̂µ,N
Θn

(x)− λΘn(x))2],

can be equivalently written as

MSE(λ̂µ,N
Θn

(x)) = Bias(λ̂µ,N
Θn

(x))2 + V ar(λ̂µ,N
Θn

(x)). (4)

If rN is such that
lim

N→∞
rN = 0 and lim

N→∞
Nrd−n

N = ∞,

it follows that λ̂µ,N
Θn

(x) is asymptotically unbiased and weakly consistent, for Hd-a.e. x ∈ Rd: in
fact it is easy to check (see [9], [29, Proposition 6.1]) that, for Hd-a.e. x ∈ Rd,

Bias(λ̂µ,N
Θn

(x)) =
P(x ∈ Θn⊕rN

)

bd−nrd−n
N

− λΘn(x) (5)

V ar(λ̂µ,N
Θn

(x)) =
P(x ∈ Θn⊕rN )(1− P(x ∈ Θn⊕rN

))

N(bd−nrd−n
N )2

=
λΘn(x)

Nrd−n
N bd−n

+ o
( 1

Nrd−n
N

)
. (6)

By the classical kernel density estimation theory (for the reader’s convenience we refer to [9,
Appendix A1] and references therein), we define the optimal bandwidth ro,AMSE

N (x) of λ̂µ,N
Θn

(x)
associated to a point x ∈ Rd as

ro,AMSE
N (x) := arg min

rN

AMSE(λ̂µ,N
Θn

(x)), (7)

where AMSE(λ̂µ,N
Θn

(x)) is the asymptotic approximation of the mean square error. In order to do
this, a Taylor series expansion for Bias(λ̂µ,N

Θn
(x)) (equivalently for P(x ∈ Θn⊕rN

)) is required and
left as open problem in Section 4 and Section 6 of [9]. We provide here sufficient conditions which
give a solution to this problem.
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To fix the notation, in the sequel α := (α1, ..., αd) will be a multi-index of Nd
0; we will denote

|α| := α1 + · · ·+ αd

α! := α1! · · ·αd!
yα := yα1

1 · · · yαd

d

Dα
y f(y, s) :=

∂|α|f(y, s)
∂yα1

1 · · · ∂yαd

d

;

D(α)(s) := disc(Dα
y f(y, s))

Note that Dα
y f(y, s) = f if |α| = 0.

Here and in the following we denote by reach(A) the reach of a compact set A ⊂ Rd, and by
Φi(A · ), i = 0, . . . , n its curvature measures. To make the paper more readable we list here the
assumptions which we shall use in the following, and refer to the Appendix for basics definitions
and results on sets with positive reach and on curvature measures which we shall use in the sequel:

(R) For any s ∈ K, reachZ(s) > R, for some R > 0, such that there exists a closed set Ξ(s) ⊇ Z(s)
such that

∫
K
Hn(Ξ(s))Q(ds) < ∞ and

Hn(Ξ(s) ∩Br(x)) ≥ γrn ∀x ∈ Z(s), ∀r ∈ (0, 1)

for some γ > 0 independent of s;

(M2) For any s ∈ K, f(·, s) is of class C1 and, for any α with |α| ∈ {0, 1}, Dα
x f(·, s) is locally

bounded such that for any compact K ⊂ Rd

sup
x∈K⊕diam(Z(s))

|Dα
x f(x, s)| ≤ ξ̃

(α)
K (s)

for some ξ̃
(α)
K (s) with

∫

K

|Φi|(Ξ(s))ξ̃(α)
K (s)Q(ds) < ∞ ∀i = 0, ..., n.

(A3) For any (s, t) ∈ K2, the function g(·, s, ·, t) is continuous and locally bounded such that for
any compact sets K, K ⊂ Rd:

sup
y∈K⊕diamZ(t)

sup
x∈K⊕diamZ(s)

g(x, s, y, t) ≤ ξK,K(s, t)

for some ξK,K(s, t) with
∫

K2
Hn(Ξ(s))Hn(Ξ(t))ξK,K(s, t)Q[2](d(s, t)) < +∞.

Let us notice that

• the above assumption (R) will play here the role of assumption (A1) of Theorem 1; namely,
it is known that a lower dimensional set with positive reach is locally the graph of a function
of class C1 (e.g., see [6, p. 204]), and so the rectifiability condition in (A1) is fulfilled. With
regard to the existence of Ξ(s) and γ as in (R), we remind that if a deterministic lower
dimensional set is the image of some one-to-one Lipschitz function g, then the constant γ can
be written in terms of Lip(g−1) and Lip(g) (see [3, p. 111]). So condition (R) is generally
satisfied; we only point out that, when dealing with random sets, the choice of Ξ(s) and of
γ (which has to be independent of s) may depend also on the probability law of the grains
(see for instance Example 4 in [1]).
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• The assumption reachZ(s) > R (which appears also in [9] in the case of homogenous Boolean
models), will play a central role in the application of a Steiner type formula (Eq.(45)) in the
proof of the two main theorems.

• (M2) implies (A2), while (A3) together with (R) imply (A3).

• (A3) is the same assumption which appears in [9] where the authors provide an optimal
bandwidth for the so called kernel estimator introduced there.

3 Optimal bandwidth: the general case

In this section we state the main result of the paper: a general formula for the optimal bandwidth of
λ̂µ,N

Θn
(x) by providing a Taylor series expansion of the bias. To this aim we shall have to distinguish

two cases: the case in which the dimension n of Θn equals d−1, and that one in which 0 < n < d−1,
whereas the particular case n = 0 will be discussed in Section 4.2. In both cases the following
lemma, which might be considered the generalization of Theorem 3.5 in [29] to product spaces,
will be useful.

Lemma 2 Let A,B ⊂ Rd be two countably Hn-rectifiable compact sets, and assume that

ηA(Br(x)) ≥ γArn, ∀x ∈ A, ∀r ∈ (0, 1)

ηB(Br(x)) ≥ γBrn, ∀x ∈ B, ∀r ∈ (0, 1)

holds for some constants γA, γB > 0 and some finite measures ηA, ηB ¿ Hn in Rd. Then

lim
r↓0

1
b2
d−nr2(d−n)

∫

A⊕r

∫

B⊕r

f(y1, y2)Hd(dy1)Hd(dy2)

=
∫

A

∫

B

f(y1, y2)Hn(dy1)Hn(dy2) (8)

for any non negative and continuous function f : Rd × Rd → R.

Proof. See Section 6. ¤

(For definitions and related results of the curvature measures Φi and the support measures µi

which appear in the statements of the next theorem, see the Appendix.)

3.1 Case d− n > 1

Theorem 3 Let Θn be as in (1) satisfying the assumptions (R), (M2) and (A3), with 0 < n <

d− 1. Then
Bias(λ̂µ,N

Θn
(x)) =

(A1(x)−A2(x)
)
rN + o(rN ),

where

A1(x) :=
bd−n+1

bd−n

∫

K

∫

Z(s)

f(x− y, s)Φn−1(Z(s); dy)Q(ds) (9)

A2(x) :=
d− n

d− n + 1

∑

|α|=1

∫

K

∫

N(Z(s))

Dα
x f(x− y, s)uαµn(Z(s); d(y, u))Q(ds)
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Proof. See Section 6. ¤

As a corollary, together with equations (4) and (6), we have the following approximation of
MSE(λ̂µ,N

Θn
(x)):

MSE(λ̂µ,N
Θn

(x)) = Bias(λ̂µ,N
Θn

(x))2 + V ar(λ̂µ,N
Θn

(x))

=
(A1(x)−A2(x)

)2
r2
N +

λΘn
(x)

Nbd−nrd−n
N︸ ︷︷ ︸

=:AMSE(λ̂µ,N
Θn

(x))

+ o(r2
N ) + o

( 1
Nrd−n

N

)
as N →∞,

from which it is easy to get the optimal bandwidth

ro,AMSE
N (x)

(7)
=

( (d− n)λΘn(x)
2Nbd−n(A1(x)−A2(x))2

) 1
d−n+2

. (10)

3.2 Case d− n = 1

We are going to proceed along the same lines as in the previous case. In order to do this, referring
to the proof of the previous theorem, let us observe that Eq. (29) does not hold whenever d−n = 1,
and that the role of

∑
k≥2 P(Yr ≥ k) in (32) will be now played by

∑
k≥3(2k − 1)P(Yr ≥ k). This

is the reason why the introduction of a condition on the third factorial moment measure ν[3] of Ψ,
similar to those one on ν[2] in (A3), seems to be needed in this case.

Theorem 4 Let the assumptions of Theorem 3 be satisfied, with 0 < n = d− 1 . Moreover let us
assume that Ψ has third factorial moment measure

ν[3](d(y1, s1, y2, s2, y3, s3))

= h(y1, s1, y2, s2, y3, s3)dy1dy2dy3Q[3](d(s1, s2, s3))

such that:

(M4) for any (y1,s1, s2, s3) ∈ Rd ×K3, the function
h(y1, s1, ·, s2, ·, s3) is continuous and locally bounded such that for any compact sets K, K ⊂
Rd and a ∈ Rd:

1(a−Z(s1))⊕1(y1) sup
y2∈K⊕diam(Z(s2))

sup
y3∈K⊕diam(Z(s3))

h(y1, s1, y2, s2, y3, s3) ≤ ξa,K,K(s1, y1, s2, s3)

for some ξa,K,K(s1, y1, s2, s3) with:

∫

Rd×K3
Hn(Ξ(s2))Hn(Ξ(s3))ξa,K,K(s1, y1, s2, s3)

dy1Q[3](d(s1, s2, s3)) < +∞. (11)
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Then
Bias(λ̂µ,N

Θn
(x)) =

(A1(x)−A3(x)
)
rN + o(rN ),

where
A1(x)

(9)
=

π

2

∫

K

∫

Z(s)

f(x− y, s)Φd−2(Z(s); dy)Q(ds),

A3(x) :=
∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hd−1(dy2)Hd−1(dy1)Q[2](d(s1, s2)).

Proof. See Section 6. ¤

Analogously to the case d − n > 1, as a corollary we have the following approximation of
MSE(λ̂µ,N

Θd−1
(x)):

MSE(λ̂µ,N
Θd−1

(x)) = Bias(λ̂µ,N
Θd−1

(x))2 + V ar(λ̂µ,N
Θd−1

(x))

=
(A1(x)−A3(x)

)2
r2
N +

λΘd−1(x)
2NrN︸ ︷︷ ︸

=:AMSE(λ̂µ,N
Θd−1

(x))

+ o(r2
N ) + o

( 1
NrN

)
as N →∞,

from which it is easy to get the optimal bandwidth

ro,AMSE
N (x) =

( λΘd−1(x)

4N
(A1(x)−A3(x)

)2

) 1
3
, (12)

Remark 5 Even if the assumption (M4) may seem quite technical, it is generally satisfied in
applications. Indeed it is easily checked for inhomogeneous Boolean models (see Section 4.3), and
it is not difficult to show that it is fulfilled, for instance, when Ψ is an independent marking of a
Matèrn cluster process in R2. We give here a sketch of the proof.
Let Ψ̃be Matèrn cluster process in R2 (e.g., see [4, p. 19]) with parent Poisson point process Υ having
intensity α, and whose clusters consist of M ∼ Poisson(m) points independently and uniformly
distributed in the ball BR(x), where x is the center of the cluster; then it is well known that its
intensity function fΨ̃ and its second moment density gΨ̃ are given by fΨ̃ = mα and gΨ̃(x, y) =
α2m2 + αm2H2(BR(x) ∩BR(y))/(π2R4) (e.g., see [4, p. 35]). By arguing similarly to the proof of
the expression for gΨ̃ it is possible to prove that the third moment density hΨ̃ of Ψ̃ is given by

hΨ̃(x1, x2, x3) =

(mα)3 +
αm3

π3R6
H2(BR(x1) ∩BR(x2) ∩BR(x3))

+
α2m3

π2R4

(
H2(BR(x1) ∩BR(x2)) +H2(BR(x1) ∩BR(x3))

+H2(BR(x2) ∩BR(x3))
)
. (13)
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Indeed, by definition, the third moment factorial measure ν̃[3] of Ψ̃ can be written as follows
∀A,B,C ∈ BR2 :

ν̃[3](A×B × C)

= E
[ ∑

x1, x2, x3 ∈ Ψ̃
x1 6= x2, x1 6= x3, x2 6= x3

1A(x1)1B(x2)1C(x3)
]

= E
[
E

[ ∑

x1, x2, x3 ∈ Ψ̃
x1 6= x2, x1 6= x3, x2 6= x3

1A(x1)1B(x2)1C(x3)
∣∣∣Υ

]]
.

The expectation above can be handled by dividing the sum in five cases: x1, x2, x3 belong to the
same cluster; only two points among x1, x2, x3 belong to the same cluster and the other point to a
different one; x1, x2, x3 belong to different clusters. Finally, simple applications of the Campbell
theorem and the independence between clusters yield the following final expression for ν̃[3]:

ν̃[3](A×B × C) =
∫

A×B×C

[
(mα)3 +

αm3

π3R6
H2(BR(x1) ∩BR(x2) ∩BR(x3))

+
α2m3

π2R4

(
H2(BR(x1) ∩BR(x2))+

H2(BR(x1) ∩BR(x3)) +H2(BR(x2) ∩BR(x3))
)]

dx1dx2dx3,

and so (13).
Being Ψ an independent marking of Ψ̃, Q[3](d(s1, s2, s3)) = Q(ds1)Q(ds2)Q(ds3), and its third

factorial moment density h does not depend on (s1, s2, s3) and coincides with hΨ̃. By noticing that

h(x1, x2, x3) ≤ (mα)3 +
αm3

π2R4
+

3α2m3

πR2
=: c ∈ R+,

we can choose ξa,K,K(s1, y1, s2, s3) = c1(a−Z(s1))⊕1(y1) in (M4); then condition (11) is directly
implied by the assumption (R).

We refer to [30, Example 2, 3] as hint for the construction of other examples satisfying (M4).

4 Optimal bandwidth: particular cases

In this section we show how the general formulas for the optimal bandwidth of λ̂µ,N
Θn

(x) obtained
in the previous section specialize in some particular cases of interest.

4.1 Θn stationary

The case in which Θn is stationary has been extensively studied in literature, and so some other
different methods may be used in such a case; for instance by making use of sufficiently large
observation windows, or estimating one or more characteristic quantities of the model by means of
stereological methods. We refer to [7, 11] and references therein, for more exhaustive discussions
about this; here we just want to observe how the general expressions for λ̂µ,N

Θn
(x) and its optimal

bandwidth simplify in the stationary case.
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Let us assume that Λ(d(x, s)) = cdxQ(ds); i.e. f(x, s) ≡ c for any (x, s) ∈ Rd × K; then
Ψ = {(xi, si)}i∈N is an independent marking of the marginal process {xi}i∈N, which is stationary,
and so Θn is a stationary random closed set as well. Then as a corollary of Theorem 3 and
Theorem 4, the following statement is easily proved.

Corollary 6 Let Θn be a germ-grain model as in (1), with intensity measure Λ(d(y, s)) = cdyQ(ds),
and second factorial moment measure ν[2](d(x, s, y, t)) =
g(x, s, y, t)dxdyQ[2](d(s, t)), satisfying (R), (A3), and such that E[Φi(Z)] < ∞ for all i = 0, . . . , n−
1.

a) If d− n > 1, then, for any x ∈ Rd, the optimal bandwidth is given by

ro,AMSE
N =

( bd−n(d− n)EQ[Hn(Z)]
2Nb2

d−n+1cEQ[Φn−1(Z)]2
) 1

d−n+2
. (14)

b) If d− n = 1, and moreover Ψ has third factorial moment measure

ν[3](d(y1, s1, y2, s2, y3, s3))

= h(y1, s1, y2, s2, y3, s3)dy1dy2dy3Q[3](d(s1, s2, s3))

satisfying the assumption (M4), then, for any x ∈ Rd, the optimal bandwidth is given by

ro,AMSE
N =

(cE[Hd−1(Z)]
D

)1/3

with

D := N
(
πcE[Φd−2(Z)]− 2

∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hd−1(dy2)Hd−1(dy1)Q[2](d(s1, s2)
)2

Proof. See Section 6. ¤

Remark 7 (Boolean model) Corollary 6 applied to the Boolean case coincides with Proposi-
tion 18 in [9].

4.2 Case n = 0

In this section we specialize the “Minkowski content”-based estimator for the case n = 0, which
includes relevant situations already treated in literature, namely: random vectors [23, 24] (for a
general treatment see e.g. [26, 27, 8]), point processes, cluster point processes (see e.g. [16], [13,
page 629]), and the recent paper [28]). We point out that the case n = 0 requires further expansion
in the asymptotic approximation of the bias of λ̂µ,N

Θ0
(x).

In Theorem 3 and Theorem 4, the grains Z(s) of the germ-grain model Θn as in (1) were assumed
to be Hn-rectifiable and compact, with positive reach. By observing that countably H0-rectifiable
sets correspond to countable sets, and that a compact countable set with positive reach is a finite
union of points, throughout this section Θ0 will be a locally finite union of points, and so a point
process, say Ψ̃.

11



In order to proceed as in the previous sections, let us remind (see, e.g. [9, Corollary 13]) that
any point process Ψ̃ in Rd with intensity fΨ̃ and second factorial moment density g, may be seen
as a trivial germ-grain model Θ0 as in (1), with Ψ marked point process in Rd with mark space
K = Rd (Z(s) ≡ s) having intensity measure Λ(d(y, s)) = fΨ̃(y)dyδ0(s)ds, and second factorial
moment measure ν[2](d(x, s, y, t)) = g(x, y)dxdyδ0(s)δ0(t)dsdt, where δ0 is the usual Dirac-delta
in 0. Analogously for the third factorial moment measure. We also recall that, in such a case,
λΘ0 ≡ fΨ̃, and

f̂µ,N

Ψ̃
(x) = λ̂µ,N

Θ0
(x) :=

∑N
i=1 1Θi

0∩BrN (x) 6=∅

Nbd−nrd−n
N

=

∑N
i=1 1Ψ̃(BrN (x))>0

Nbd−nrd−n
N

.

Throughout this section let us assume that Ψ̃ is a point process in Rd with intensity fΨ̃(y), second
factorial moment density g, and third factorial moment density h.
In order to provide an optimal bandwidth ro,AMSE

N (x) for f̂µ,N

Ψ̃
(x), we have to distinguish three

cases: d = 1, d = 2, and d > 2.

4.2.1 Case d = 1

In order to proceed along the same lines of Theorem 4, let us further assume that Ψ̃ has third
factorial moment density h continuous. Then the third moment measure associate to the marked
point process Ψ is of the type

ν[3](d(y1, s1, y2, s2, y3, s3)) =

h(y1, y2, y3)dy1d2dy3δ0(s1)δ0(s2)δ0(s3)ds1ds2ds3.

It is easy to see that the assumptions of Theorem 4 are trivially satisfied (take Ξ(s) ≡ Z(s));
by proceeding along the same lines of its proof it is easy to check that now Bias(f̂µ,N

Ψ̃
(x)) =

−g(x, x)rN + o(rN ), while V ar(f̂µ,N

Ψ̃
(x)) = fΨ̃(x)/2NrN + o(1/NrN ). It follows then

ro,AMSE
N (x) = 3

√
fΨ̃(x)

4Ng(x, x)2
. (15)

(which is just Eq. (12) with d = 1 and A1(x) = 0).

4.2.2 Case d ≥ 2

Throughout this section assume that fΨ̃ ∈ C2 and that g is continuous.
By the proof of Theorem 3 we have:

P(x ∈ Ψ̃0⊕r) = P(x ∈ Θ0⊕r)
(32)
= E[Yr]−

∑

k≥2

P(Yr ≥ k),

where Yr is the random variable defined in (30), and

∑

k≥2

P(Yr ≥ k)
(31)

≤
∫

Br(x)

∫

Br(x)

g(y1, y2)dy1dy2
(29)
= O(r2d).
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Therefore,

P(x ∈ Ψ̃0⊕r) =
∫

Br(x)

fΨ̃(y)dy + O(r2d)

= rd

∫

B1(0)

fΨ̃(x + rz)dz + O(r2d). (16)

Whereas in the general case with n > 0 a first order Taylor expansion is enough, here a second
order one is needed, being

∫
B1(0)

zk = 0 for every k = 1, ..., d; in fact:

∫

B1(0)

fΨ̃(x + rz)dz =
∫

B1(0)

(
fΨ̃(x)+

∑

|α|=1

1
α!

Dα
x fΨ̃(x)zαr +

∑

|α|=2

1
α!

Dα
x fΨ̃(x + θrz)zαr2

)
dz

with θ ∈ (0, 1). Since fΨ̃ ∈ C2, it is easily observed that

lim
r↓0

∫

B1(0)

∑

|α|=2

1
α!

Dα
x fΨ̃(x + θrz)zαdz

=
∑

|α|=2

1
α!

Dα
x fΨ̃(x)

∫

B1(0)

zαdz := A4(x); (17)

therefore we get

P(x ∈ Ψ̃0⊕r)
(16)
= bdr

dfΨ̃(x)+

rd+2A4(x) + o(rd+2) + O(r2d). (18)

Thus we have to distinguish two cases:

1) Case d > 2
Then O(r2d) = o(rd+2), and so

Bias(f̂µ,N

Ψ̃
(x))

(5)
=
P(x ∈ Ψ̃0⊕rN

)

bdrd
N

− fΨ̃(x)

=
1
bd
A4(x)r2

N + o(r2
N ) as N →∞,

and

MSE(f̂µ,N

Ψ̃
(x))

(4)
=

1
b2
d

A4(x)2r4
N +

fΨ̃(x)
bdNrd

N

+ o
( 1

Nrd
N

)
+ o(r4

N ) as N →∞.

Finally we get following expression for the optimal bandwidth of f̂µ,N

Ψ̃
(x) at the point x ∈ Rd:

ro,AMSE
N (x) = 4+d

√
dbdfΨ̃(x)
4NA2

4(x)
. (19)
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2) Case d = 2
Then O(r2d) 6= o(rd+2), and so a further Taylor expansion of P(x ∈ Ψ̃0⊕r) is needed in (18).
Under the assumption fΨ̃ ∈ C2, g and h continuous, by mimicking the proof of Theorem 4, it is
easy to observe

P(x ∈ Ψ̃0⊕r)
(38)
=

3
2
E[Yr]− 1

2
E[Y 2

r ] +
∑

k≥3

(k − 2)P(Yr ≥ k),

with
• ∑

k≥3(k − 2)P(Yr ≥ k) = o(r4),

• E[Yr] = r2

∫

B1(0)

fΨ̃(x + rz)dz
(18)
= πr2fΨ̃(x) + r4A4(x) + o(r4

N ),

• E[Y 2
r ] = E[Yr] + π2r4g(x, x) + o(r4). Therefore

Bias(f̂µ,N

Ψ̃
(x)) =

P(x ∈ Ψ̃0⊕rN
)

πr2
N

− fΨ̃(x)

=
(A4(x)

π
− π

2
g(x, x)

)
r2
N + o(r4), as N →∞,

and

MSE(f̂µ,N

Ψ̃
(x)) =

(A4(x)
π

− π

2
g(x, x)

)2
r4
N +

fΨ̃(x)
πNr2

N

+ o
( 1

Nr2
N

)
+ o(r4

N ) as N →∞.

Finally we get following expression for the optimal bandwidth of f̂µ,N

Ψ̃
(x) at the point x ∈ Rd:

ro,AMSE
N (x) = 6

√
2πfΨ̃(x)

N
(
2A4(x)− π2g(x, x)

)2 . (20)

4.2.3 Random Variables

An absolutely continuous random vector X in Rd admits a probability density function fX(x),
x ∈ Rd. So, as a random closed set, its mean density λX coincides with fX . The random
vector has also a germ-grain representation, which is characterized by the marked point process
Ψ = {(X, s)} in Rd with mark space K = Rd and intensity measure Λ(d(y, s)) = fX(y)dyδ0(s)ds.
Assuming fX ∈ C2 all the required assumptions are trivially satisfied and, if d ≥ 2, the expressions
of the optimal bandwidth (19) and (20) coincide, since g ≡ 0, and we have

ro,AMSE
N (x) = 4+d

√
dbdfX(x)

4N(
∑
|α|=2

1
α!

∫
B1(0)

zαdzDαfX(x))2
. (21)

Note that if d = 1 formula (15) does not apply, because the denominator equals zero. By finding
additional terms in the bias expansion (as for the case d ≥ 2), it can be easily checked that (21) is
true also if d = 1, and it yields:

ro,AMSE
N (x) = 5

√
9fX(x)

2N(f ′′X(x))2
.
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The above expression coincides with the well known expression for the optimal bandwidth of the
kernel density estimator with kernel k(y) = 1

21[−1,1](y) (see Eq. (A.2) in [9]); this is in accordance
with the fact that these two estimators coincide in this case.

4.3 Inhomogeneous Boolean models

(For the homogeneous case see Remark 7.)
Boolean models are germ-grain processes as in (1) characterized by Ψ being a Poisson point

process; this implies the independence of the grains, and, as a consequence, they are computation-
ally much easier to handle. This is the reason why there is a lot of literature on Boolean models, in
particular on homogeneous Boolean models. The inhomogeneous case is of course of major interest,
but results on this direction are available only in the most recent literature. It is worth noting
that the generalization from the homogeneous case to the inhomogeneous one is often anything
but trivial, as discussed (and left as open problem which we try to solve here) in [9, Section 4].

Let Θn be a Boolean model with integer Hausdorff dimension 0 < n < d, where the associated
Poisson marked point process Ψ has intensity measure Λ(d(x, s)) = f(x, s)dxQ(ds), satisfying the
assumptions (R) and (M2)
By remembering that in such a case ν[2] = Λ⊗ Λ, and ν[3] = Λ⊗ Λ⊗ Λ, and so as a consequence,
g(x1, s1, x2, s2)
= f(x1, s1)f(x2, s2), Q[2](d(s1, s2)) = Q(ds1)Q(ds2), h(x1, s1, x2, s2, x3, s3) = f(x1, s1)f(x2, s2)f(x3, s3),
and Q[3](d(s1, s2, s3)) = Q(ds1)Q(ds2)Q(ds3), it is easy to check that the assumptions (A3) and
(M4) are trivially implied by (M2); therefore Eqs. (10) and (12) hold. In particular note that the
quantity A3(x) defined in Theorem 4 simplifies now as follows:

A3(x) =
∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

f(x1, s1)f(x2, s2)Hn(dy2)Hn(dy1)Q(ds1)Q(ds2)
(2)
=

(
λΘd−1(x)

)2
.

This answers to the problem risen in [9, Sect. 4], providing a general formula for the optimal
bandwidth in the inhomogeneous case.

As a simple example of applicability of such formulas, let us consider the inhomogeneous
Boolean model of segments discussed in [9, Sect. 5]:

Example 1 Let Θ1 be an inhomogeneous Boolean model of segments in R2 with random length L

and uniform orientation, so that the mark space is K = R+ × [0, 2π]; for all s = (l, α) ∈ K, let
Z(s) := {(u, v) ∈ R2 : u = τ cosα, v = τ sin α, τ ∈ [0, l]} be the segment with length l ∈ R+,

and orientation α ∈ [0, 2π]. Denoted by PL(dl) the probability law of the random length L, we
assume that

∫
R+

l3PL(dl) < ∞. Finally we assume that the segment process Θ1, represented as in
(1), is driven by the marked Poisson process Ψ in R2 ×K having intensity measure Λ(dy × ds) =
f(y)dyQ(ds), with f(y) = f(y1, y2) = c(y2

1 +y2
2), where c > 0, and Q(ds) = 1

2π dαPL(dl). It is easy
to check that

λΘ1(x1, x2) = c(x2
1 + x2

2)E[L] +
1
3
cE[L3],

for H2-a.e. x = (x1, x2) ∈ R2.
Since d− n = 1 the optimal bandwidth is given by (12).
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By denoting O = (0, 0) and P (s) = P ((l, α)) = (l cos α, l sin α) the endpoints of the segment Z(s),
we may observe that

Φ0(Z(s); dy)
(50)
=

1
2
(
δO(y) + δP (s)(y)

)
dy,

and so we get

A1(x) =
π

2

∫

K

∫

Z(s)

f(x− y, s)Φ0(Z(s); dy)Q(ds)

=
π

4

∫

K

(
f(x) + f(x− P (s)

)
Q(ds)

=
cπ

4

∫ ∞

0

∫ 2π

0

(
2(x2

1 + x2
2) + l2 − 2lx1 cosα− 2lx2 sin α

)
dα

1
2π
PL(dl) =

cπ

2
(x2

1 + x2
2) +

cπ

4
E[L2].

Thus,

ro,AMSE
N (x)

(12)
=

(
c(x2

1 + x2
2)E[L] + 1

3cE[L3]
D

)1/3

,

with

D :=

4N
(cπ

2
(x2

1 + x2
2) +

cπ

4
E[L2]− (

c(x2
1 + x2

2)E[L] +
1
3
cE[L3]

)2
)2

in accordance with the result showed in [9, Sect. 5].

5 Concluding remarks and numerical experiments in com-
parison with other estimators

As mentioned in the Introduction, a kernel-type estimator for the mean density λΘn(x) has been
introduced in [9], so defined:

λ̂κ,N
Θn

(x) :=
1

Nrd
N

N∑

i=1

∫

Θi
n

k
(x− y

rN

)
Hn(dy),

where k : Rd → R is a multivariate kernel. Under suitable regularity assumptions on Θn, analogous
to those ones introduced here, explicit formulas for the associated optimal bandwidth have been
provided. In particular, by choosing the kernel function

k(y) =
1
bd

1B1(0)(y),

the above kernel-type estimator coincides with the so-called natural estimator λ̂ν,N
Θn

(x) (also this
introduced in [9], and arising as a “natural” consequence of Besicovitch derivation theorem), so
defined:

λ̂ν,N
Θn

(x) :=
1

Nbdrd
N

N∑

i=1

Hn(Θi
n ∩BrN (x)).
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In [10] some numerical experiments comparing these estimators are provided. Of course the
“Minkowski content”-based estimator was not completely discussed there, because of the lack
of general formulas for the optimal bandwidth proved here.
So, in this section, we want to investigate mainly similarity and/or dissimilarity of these three
estimators (λ̂µ,N

Θn
(x), λ̂κ,N

Θn
(x) and λ̂ν,N

Θn
(x)). First of all it is worth noting that, by their definition,

it is much more difficult to compute λ̂κ,N
Θn

(x) and λ̂ν,N
Θn

(x) than λ̂µ,N
Θn

(x). Indeed it is easily observed
that, given an i.i.d. random sample {Θi

n}i∈N of Θn, in order to compute λ̂µ,N
Θn

(x) it is enough to
count how many Θi

n of the sample have not void intersection with Br(x); since usually in applica-
tions {Θi

n} is a sequence of digital images given in terms of pixels, λ̂µ,N
Θn

(x) is easily computed by
checking if any pixel of Θi

n belongs also to Br(x), however complicated Θi
n is. On the other hand,

the computation of the integral in the definition of λ̂κ,N
Θn

(x) and of the measure Hn(Θi
n ∩BrN (x))

in the definition of λ̂ν,N
Θn

(x) might be computationally difficult.

In this section we will discuss some simple relevant examples of random sets in R2: the esti-
mation of the intensity of an inhomogeneous and of a homogeneous point process (Section 5.1),
and the estimation of the mean density of a homogenous and of an inhomogeneous segment pro-
cess (Section 5.2). We point out that the intensity function of a point process will be estimated
through λ̂κ,N

Θn
(x), λ̂ν,N

Θn
(x) and λ̂µ,N

Θn
(x), without much effort because a point process is a random

closed set with Hausdorff dimension n = 0 and so H0 in the definition of λ̂κ,N
Θn

(x) and λ̂ν,N
Θn

(x) is
easily computed. This is not the case of the examples regarding segment processes, that is random
sets with Hausdorff dimension n = 1. Even if in the inhomogeneous case discussed in Section 5.2.1
we consider the simpler case of random segments with horizontal orientation, we do not provide
estimates of the mean density by the kernel-type estimator because they would require non trivial
computation. Instead, due to the fact that we choose segments parallel to the x-axis, the length
of their intersection with the ball BrN

(x) in the definition of λ̂ν,N
Θn

(x) may be easily obtained by
multiplying the number of the pixels corresponding to each segment in the ball by the length of a
single pixel (in all the examples discussed here 1pixel = 0.0029). We can not state the same in the
case of segments with random orientation discussed in Section 5.2.2, where we estimate the mean
density of the random closed set only by means of λ̂µ,N

Θn
(x). Thus, even if the natural estimator

results to be more stable than the “Minkowski content”-based estimator (it provides a quite good
estimation only near to the optimal bandwidth), it is evident that this last estimator is the most
feasible.
Therefore, possible open problems of interest for future work could be to find upper and lower
bounds for rN in terms of the estimation error. We are also aware that, as in the classical kernel
density estimation theory for random variables (e.g., see [26]), the optimal bandwidths of all the
proposed estimators depend on the unknown quantities f , g and Q of the marked point process Ψ
describing Θn; their estimation could be investigated for example by means of plug-in methods as
discussed in [18].

5.1 Point processes

We apply here the results shown in Section 4.2 to two different types of point processes Ψ̃ in R2,
comparing the three different estimators mentioned above. First we consider an inhomogeneous
Poisson point process (Section 5.1.1), then a homogeneous Matèrn cluster process (Section 5.1.2).
An i.i.d. random sample Ψ̃1, . . . , Ψ̃N of size N for Ψ̃ is assumed to be available. Both the Poisson
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and the Matèrn cluster point process have been simulated in the square [−3, 3]2, while the estimates
of their intensities have been evaluated in the points of a grid with step size 0.2 in the compact
window W := [−2, 2]2 in order to avoid edge effects.

5.1.1 The inhomogeneous case

Let Ψ̃ be an inhomogeneous Poisson point process in R2 with intensity function fΨ̃(x) = x2
1 + x2

2.
Such a process has been discussed in [9], where the optimal bandwidth associated to λ̂ν,N

Ψ̃
and λ̂κ,N

Ψ̃
is provided. Figure 1 and Figure 2 shows the estimates of fΨ̃ by means of the three estimators
λ̂µ,N

Ψ̃
, λ̂ν,N

Ψ̃
and λ̂κ,N

Ψ̃
, in the case of a sample with size N = 1000 and N = 10000, respectively. We

used the Epanechnikov kernel, i.e.

k(t) =
{

2
π (1− x2

1 − x2
2) if (x1, x2) ∈ B1(0)

0 otherwise,

for the kernel-type estimator λ̂κ,N

Ψ̃
. At each point of the grid the theoretical optimal bandwidth

associated to each estimator has been evaluated (by (20) and [9, Eq. (21)]):

ro,AMSE
N (x) =





6

√
2(x2

1 + x2
2)

Nπ(1− π(x2
1 + x2

2)2)2
for λ̂µ,N

Ψ̃
(x)

6

√
6(x2

1 + x2
2)

Nπ
for λ̂κ,N

Ψ̃
(x)

6

√
2(x2

1 + x2
2)

Nπ
for λ̂ν,N

Ψ̃
(x)

Figure 1, Figure 2 and Table 1 show that the rate of convergence of λ̂ν,N

Ψ̃
and λ̂κ,N

Ψ̃
is higher

than λ̂µ,N

Ψ̃
, and that the estimation error decreases as N increases, as expected, for all the three

estimators.

N maxx∈W |λ̂µ,N

Ψ̃
(x)− fΨ̃(x)| maxx∈W |λ̂ν,N

Ψ̃
(x)− fΨ̃(x)| maxx∈W |λ̂κ,N

Ψ̃
(x)− fΨ̃(x)|

1000 1.820291 0.324669 0.293807
10000 0.760128 0.169820 0.161852

Table 1: Maximum distance between the intensity of the process and its estimates at the grid
points in W = [−2, 2]2

5.1.2 The homogeneous case

As an example of a non Poisson point process, let us consider the Matèrn cluster process Ψ̃ in R2

introduced in Remark 5; then the optimal bandwidth associated to λ̂µ,N

Ψ̃
(x) is given by

ro,AMSE
N

(20)
= 6

√
2R4mα

Nπ(πR2α2m2 + αm2)2
; (22)
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of course it does not depend on x, since the process is stationary. We recall that ro,AMSE
N = +∞

for λ̂ν,N

Ψ̃
(x) and λ̂κ,N

Ψ̃
(x) (see [9]). Figures 3 and 4 compare the estimation of the intensity of Ψ̃

with α = 5, m = 5 and R = 0.1, in the compact window W = [−2, 2]2, based on a sample with size
N = 1000 and N = 10000, respectively. With regard to λ̂µ,N

Ψ̃
(x), the theoretical optimal value of

ro,AMSE
N given in (22) has been employed, whereas ro,AMSE

N = 1 has been chosen for λ̂ν,N

Ψ̃
(x) and

λ̂κ,N

Ψ̃
(x) in order to avoid edge effects.

As for the previous example, from the figures and from Table 2 we may conclude that the rate of
convergence of kernel-type estimators is higher than that one of the “Minkowski content”-based
estimator. But as we previously observed, this last one estimator is easier to compute, as we will
emerge in the next examples.

N maxx∈W |λ̂µ,N

Ψ̃
(x)− fΨ̃(x)| maxx∈W |λ̂ν,N

Ψ̃
(x)− fΨ̃(x)| maxx∈W |λ̂κ,N

Ψ̃
(x)− fΨ̃(x)|

1000 13.731913 0.582247 0.603758
10000 6.226284 0.183946 0.192639

Table 2: Maximum distance between the intensity of the process and its estimates at the grid
points in W = [−2, 2]2.

5.2 Segment processes

We consider now segment processes Θ1 in R2: in Section 5.2.1 a non Boolean germ-grain model
of horizontal segments, and in Section 5.2.2 the segment Boolean model introduced in Example 1.
In this last case we provide estimates of λΘ1(x) only by the “Minkowski content”-based estimator,
because, as already mentioned before, the other kinds of estimators would require non-trivial
calculations. The observation window W := [0, 1]2 has been chosen in all the proposed simulations.

5.2.1 Horizontal segments

As an example of a stationary non Boolean germ-grain model, let us consider a random closed
set Θ1 in R2 driven by Ψ which is an independent marking of a Matèrn cluster process Ψ̃, as
introduced in Remark 5; the grains Z(s) are assumed to be segments parallel to the x-axis, with
random length L. Therefore Ψ is a marked point process in R2 with marks in R+, and with
intensity measure Λ(d(x, l)) = mαdxQ(dl) and second factorial moment measure ν[2](d(x, s, y, t)) =(
α2m2 + αm2H2(BR(x)∩BR(y))

π2R4

)
dxdyQ(ds)Q(dt), where Q(dl) is the probability law of L.

In our numerical experiments we assumed α = 20, m = 5, R = 0.2 and L ∼ U(0, R) (see Figure 5
for a realization of Θ1). By applying the general formula in Corollary 6 (b), it follows

ro,AMSE
N =

( mαR

N(4πmα− 2α2m2R2 − 2αm2

9π2 (2π − 27
√

3 + 64))2

) 1
3
. (23)

Estimates of λΘ1((0.5, 0.5)) = αmE[L] = 10, based on samples with size N = 10 and N = 100,
by the “Minkowski content”- based estimator and by the natural estimator for different values
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of the bandwidth r are depicted in Figure 6 and Figure 7, respectively. The distances between
the theoretical value of λΘ1((0.5, 0.5)) and its estimate by these two estimators, evaluated in the
corresponding optimal bandwidth, are shown in Table 3. We point out that, since in this case the
optimal bandwidth associated to the natural estimator is +∞ (see [9]), we have chosen r = 105
pixels to avoid edge effects.
We may notice that the “Minkowski content”- based estimator decreases as the function 1

2r , when
r → +∞, in accordance with its definition; furthermore it is more sensitive to the choice of the
bandwidth; so the importance of having general theoretical formulas for this is evident. Further-
more, even if the natural estimator is more stable, and in this case it has been of easy computation,
it might be difficult to apply in general, for instance in the next example where the segments have
random orientation.

N |λ̂µ,N
Θ1

(0.5, 0.5)− λΘ1(0.5, 0.5)| |λ̂ν,N
Θ1

(0.5, 0.5)− λΘ1(0.5, 0.5)|
10 1.769231 0.797556
100 0.545000 0.206940

Table 3: Distances between the theoretical mean density at the point (0.5, 0.5) and its estimate,
evaluated with r = ro,AMSE

N for the “Minkowski content”- based estimator, and r = 105 pixels for
the natural estimator.

5.2.2 Segments with random orientation

Let Θ1 be the Boolean model of segments described in Example 1, with f(y) ≡ 700(y2
1 + y2

2) and
L ∼ U(0, 0.2) (see Figure 8 for a realization of Θ1 in the observation window [0, 1]2). In this
section we provide estimates of its mean density only by means of the “Minkowski content”-based
estimator, because the two other estimators would require non-trivial calculations, due to the
random orientation of the segments.

In Figure 9, estimates of λΘ1(x) at x = (0.5, 0.5) based on samples with size N = 10 (a) and
N = 100 (b) are depicted for different values of the bandwidth. We may notice that the numer-
ical experiments and the theoretical results are in accordance, by observing that there is a good
approximation around the theoretical optimal bandwidth ro,AMSE

N .

6 Proofs of the main results

Proof of Lemma 2
In Theorem 3.5 in [29] is proved that, for any set A as in the hypotheses,

lim
r↓0

∫
A⊕r

g(y)Hd(dy)

bd−nrd−n
=

∫

A

g(y)Hn(dy) (24)

for any non-negative and locally bounded function g : Rd → R with Hn(discg) = 0. Therefore, if
f is of the type f(y1, y2) = f1(y1)f2(y2), then (8) trivially follows by (24). Otherwise we proceed
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as follows.
Since r ↓ 0, we can assume r ≤ 1; then f is bounded on A⊕1×B⊕1, and by the Stone-Weierstrass ap-
proximation theorem it follows (e.g., see [12, p. 148]) that, for each ε > 0, there exist f

(1)
1 , ..., f

(N(ε))
1 ,

continuous functions on A⊕1, and f
(1)
2 , ..., f

(N(ε))
2 , continuous functions on B⊕1, such that

sup
(y1,y2)∈A⊕1×B⊕1

|f(y1, y2)−
N(ε)∑

i=1

f
(i)
1 (y1)f

(i)
2 (y2)| ≤ ε. (25)

Moreover, by (24), for each ε̃ > 0 there exists r(ε̃) > 0 such that

∣∣∣ 1
b2
d−nr2(d−n)

∫

A⊕r

∫

B⊕r

N(ε)∑

i=1

f
(i)
1 (y1)f

(i)
2 (y2)Hd(dy1)Hd(dy2)

−
∫

A

∫

B

N(ε)∑

i=1

f
(i)
1 (y1)f

(i)
2 (y2)Hn(dy1)Hn(dy2)

∣∣∣ < ε̃ ∀r < r(ε̃). (26)

Then for any ε > 0, we have that for all r < min{r(ε), rN}, with rN such that N(ε) = [1/rN ],

∣∣∣ 1
b2
d−nr2(d−n)

∫

A⊕r

∫

B⊕r

f(y1, y2)Hd(dy1)Hd(dy2)−
∫

A

∫

B

f(y1, y2)Hn(dy1)Hn(dy2)
∣∣∣ ≤

≤ 1
b2
d−nr2(d−n)

∣∣∣
∫

A⊕r

∫

B⊕r

f(y1, y2)Hd(dy1)Hd(dy2)−
∫

A⊕r

∫

B⊕r

N(ε)∑

i=1

f
(i)
1 (y1)f

(i)
2 (y2)Hd(dy1)Hd(dy2)

∣∣∣ +

+
∣∣∣ 1
b2
d−nr2(d−n)

∫

A⊕r

∫

B⊕r

N(ε)∑

i=1

f
(i)
1 (y1)f

(i)
2 (y2)Hd(dy1)Hd(dy2)−

∫

A

∫

B

N(ε)∑

i=1

f
(i)
1 (y1)f

(i)
2 (y2)Hn(dy1)Hn(dy2)

∣∣∣ +

+
∣∣∣
∫

A

∫

B

N(ε)∑

i=1

f
(i)
1 (y1)f

(i)
2 (y2)Hn(dy1)Hn(dy2)−

∫

A

∫

B

f(y1, y2)Hn(dy1)Hn(dy2)
∣∣∣ ≤

(25),(26)

≤ ε
Hd(A⊕r)
bd−nrd−n

Hd(B⊕r)
bd−nrd−n

+ ε + εHn(A)Hn(B)

≤ ε
(22n42db2

dηA(Rd)ηB(Rd)
γAγBb2

d−n

+ 1 +Hn(A)Hn(B)
)
,

where the last inequality follows by recalling (from the proof of Lemma 7 in [1]) that

Hd(A⊕r)
bd−nrd−n

≤ 2n4dbdηA(Rd)
γAbd−n

holds for any r < 2 (and the same for B). ¤

Proof of Theorem 3
By [30, Remark 4] we know that (R) guarantees that

Hd(Z(s)⊕R) ≤
{ Hn(Ξ(s))γ−12n4dbdR

d−n if R < 2
Hn(Ξ(s))γ−12n4dbdR

n if R ≥ 2 . (27)
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Let us observe that the Dominated Convergence Theorem implies

lim
r↓0

1
b2
d−nr2(d−n)

∫

K2

∫

(x−Z(s1))⊕r

∫

(x−Z(s2))⊕r

g(y1, s1, y2, s2)dy2dy1Q[2](d(s1, s2)) =
∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2)), (28)

being

lim
r↓0

1
b2
d−nr2(d−n)

∫

(x−Z(s1))⊕r

∫

(x−Z(s2))⊕r

g(y1, s1, y2, s2)dy2dy1 =
∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1) ∀(s1, s2) ∈ K×K,

by Lemma 2, and for any r < 2

1
b2
d−nr2(d−n)

∫

(x−Z(s1))⊕r

∫

(x−Z(s2))⊕r

g(y1, s1, y2, s2)dy2dy1 ≤

≤ 1
b2
d−nr2(d−n)

sup
(x−Z(s1))⊕r

sup
(x−Z(s2))⊕r

g(y1, s1, y2, s2)Hd((x− Z(s1))⊕r)Hd((x− Z(s2))⊕r) ≤

(27)

≤ 22n42db2
d

γ2b2
d−n

Hn(Ξ(s1))Hn(Ξ(s2)) sup
(x−Z(s1))⊕2

sup
(x−Z(s2))⊕2

g(y1, s1, y2, s2) ≤

(A3)

≤ 22n42db2
d

γ2b2
d−n

Hn(Ξ(s1))Hn(Ξ(s2))ξB2(x),B2(x)(s1, s2) ∀(s1, s2) ∈ K×K,

with ∫

K2

22n42db2
d

γ2b2
d−n

Hn(Ξ(s1))Hn(Ξ(s2))ξB2(x),B2(x)(s1, s2)Q[2](d(s1, s2))
(A3)
< +∞.

Therefore we may claim that
∫

K2

∫

(x−Z(s1))⊕r

∫

(x−Z(s2))⊕r

g(y1, s1, y2, s2)dy2dy1Q[2](d(s1, s2)) = O(r2(d−n)) = o(rd−n+1).

(29)
Let Yr be the random variable counting the number of enlarged grains (i.e. the parallel grains

at distance r) which cover the point x:

Yr :=
∑

(yi,si)∈Ψ

1(yi+Z(si))⊕r
(x), (30)

and Wr be the random variable counting the number of pairs of different enlarged grains which
cover the point x, i.e.

Wr =
{

0 if Yr = 0, 1
Yr(Yr−1)

2 if Yr ≥ 2
.
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Note that

E[Wr] =
∑

w∈Range(Wr)

wP(Wr = w) =
∞∑

k=2

k(k − 1)
2

P(Yr = k) =
∞∑

k=1

k(k + 1)
2

P(Wr =
k(k + 1)

2
)

=
∞∑

k=1

k∑
n=1

nP(Wr =
k(k + 1)

2
) =

∞∑
n=1

n

∞∑

k=n+1

P(Wr =
k(k − 1)

2
)

≥
∞∑

n=1

P(Wr ≥ n(n + 1)
2

) =
∑

k≥2

P(Wr ≥ k(k − 1)
2

);

since Wr ≥ k(k−1)
2 if and only if Yr ≥ k, when k ≥ 2, we may conclude that

E[Wr] ≥
∑

k≥2

P(Yr ≥ k).

Thus the following holds:
∑

k≥2

P(Yr ≥ k) ≤ E[Wr] ≤ E
[ ∑

(yi, si), (yj , sj) ∈ Ψ,
yi 6= yj

1(yi+Z(si))⊕r∩(yj+Z(sj))⊕r
(x)

]
=

=
∫

K2

∫

(x−Z(s1))⊕r

∫

(x−Z(s2))⊕r

g(y1, s1, y2, s2)dy2dy1Q[2](d(s1, s2))
(29)
= o(rd−n+1). (31)

We are now ready to consider:

P(x ∈ Θn⊕r) = P(Yr ≥ 1) =
∑

k≥1

P(Yr ≥ k)−
∑

k≥2

P(Yr ≥ k) = E[Yr]−
∑

k≥2

P(Yr ≥ k)

=
∫

K

∫

(x−Z(s))⊕r

f(y, s)dyQ(ds) + o(rd−n+1). (32)

Let us observe that for any rN ≤ R
∫

Z(s)⊕rN

f(x− y, s)dy =
∫

Rd\Z(s)

1Z(s)⊕rN
(y)f(x− y, s)dy

(45)
=

d−1∑

i=0

bd−i(d−i)
∫ ∞

0

∫

N(Z(s))

td−1−i1[0,δ(Z(s),y,u))(t)1Z(s)⊕rN
(y+tu)f(x−(y+tu), s)µi(Z(s); d(y, u))dt

=
d−1∑

i=0

bd−i(d− i)
∫ rN

0

∫

N(Z(s))

td−1−if(x− (y + tu), s)µi(Z(s); d(y, u))dt

=
d−1∑

i=0

bd−i(d− i)rd−i
N

∫ 1

0

∫

N(Z(s))

td−1−if(x− y − rN tu, s)µi(Z(s); d(y, u))dt

=
n∑

i=0

bd−i(d− i)rd−i
N

∫ 1

0

∫

N(Z(s))

td−1−if(x− y − rN tu, s)µi(Z(s); d(y, u))dt, (33)

having Z(s) Hausdorff dimension n < d.
To simplify the notation let us define

cd−i(rN ) :=
∫

K

∫ 1

0

∫

N(Z(s))

td−1−if(x− y − rN tu, s)µi(Z(s); d(y, u))dtQ(ds) ∀i = 0, ..., n. (34)
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By noticing that

|bd−i(d− i)rd−i
N cd−i(rN )| ≤ bd−i(d− i)rd−i

N

∫

K

∫ 1

0

sup
ξ∈x−Z(s)−rN tB1(0)

f(ξ, s)|Φi|(Z(s))dtQ(ds)

≤ bd−i(d− i)rd−i
N

∫

K

ξ̃BR(x)(s)|Φi|(Ξ(s))Q(ds)
(M2)
< ∞ ∀i = 0, ..., n,

and putting (33) in (32), it follows then

P(x ∈ Θn⊕rN
) =

n∑

i=0

bd−i(d− i)rd−i
N cd−i(rN ) + o(rd−n+1

N )

= (d− n)bd−nrd−n
N cd−n(rN ) + (d− n + 1)bd−n+1r

d−n+1
N cd−n+1(rN ) + o(rd−n+1

N ) (35)

Furthermore, the following Taylor expansion for cd−n(rN ) holds (with θ ∈ (0, 1)):

cd−n(rN ) =
∫

K

∫ 1

0

∫

N(Z(s))

td−n−1f(x− y − rN tu, s)µn(Z(s); d(y, u))dtQ(ds) (36)

=
∫

K

∫ 1

0

∫

N(Z(s))

td−n−1
[
f(x− y, s)−

∑

|α|=1

1
α!

Dα
x f(x− y − θrN tu, s)uαtrN

]

µn(Z(s); d(y, u))dtQ(ds)

=
∫

K

∫ 1

0

td−n−1

∫

Z(s)

f(x− y, s)Hn(dy)dtQ(ds)−
∫

K

∫ 1

0

td−n

∫

N(Z(s))

∑

|α|=1

1
α!

Dα
x f(x− y − θrN tu, s)uαrNµn(Z(s); d(y, u))dtQ(ds)

(2)
=

λΘn(x)
(d− n)

−
∫

K

∫ 1

0

td−n

∫

N(Z(s))

∑

|α|=1

1
α!

Dα
x f(x− y − θrN tu, s)uαrNµn(Z(s); d(y, u))dtQ(ds)

where we used (46), Φn(Z(s); ·) = Hn
|Z(s)

(·) (see [17]), and

∫

N(Z(s))

f(x− y, s)µi(Z(s); d(y, u)) =
∫

∂Z(s)

f(x− y, s)Φi(Z(s); dy) ∀i = 0, ..., n.

Thus the bias of λ̂µ,N
Θn

(x) is given by

Bias(λ̂µ,N
Θn

(x)) =
P(x ∈ Θn⊕rN

)

bd−nrd−n
N

− λΘn(x)

(35)
= −(d− n)rN

∫

K

∫ 1

0

td−n

∫

N(Z(s))

∑

|α|=1

1
α!

Dα
x f(x− y − θrN tu, s)uαµn(Z(s); d(y, u))dtQ(ds)

+(d−n+1)
bd−n+1

bd−n
rN

∫

K

∫ 1

0

∫

N(Z(s))

td−nf(x−y−rN tu, s)µn−1(Z(s); d(y, u))dtQ(ds)+o(rN ).

Thanks to the assumption (M2), it easy to check that

|td−nf(x− y − rN tu, s)| ≤ ξ̃
(0)
BR(x)(s)
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and ∣∣∣
∑

|α|=1

1
α!

Dα
x f(x− y − θrN tu, s)uαtd−n

∣∣∣ ≤
∑

|α|=1

1
α!

ξ̃
(α)
BR(x)(s)

with t ∈ (0, 1), (y, u) ∈ N(Z(s)), besides we have
∫

K

∫ 1

0

∫

N(Z(s))

ξ̃
(0)
BR(x)(s)|µn−1|(Z(s); d(y, u))dtQ(ds) =

∫

K

ξ̃
(0)
BR(x)(s)|Φn−1|(Ξ(s))Q(ds) < ∞,

and
∫

K

∫ 1

0

∫

N(Z(s))

∑

|α|=1

1
α!

ξ̃
(α)
BR(x)(s)|µn|(Z(s); d(y, u))dtQ(ds) =

∑

|α|=1

1
α!

∫

K

ξ̃
(α)
BR(x)(s)|Φn|(Ξ(s))Q(ds) < ∞,

respectively. By remembering that f(·, s) ∈ C1, the Dominated Convergence Theorem (for signed
measures) allows us to claim that

lim
N→∞

Bias(λ̂µ,N
Θn

(x))
rN

=
bd−n+1

bd−n

∫

K

∫

Z(s)

f(x− y, s)Φn−1(Z(s); dy)Q(ds)

− d− n

d− n + 1

∑

|α|=1

∫

K

∫

N(Z(s))

Dα
x f(x− y, s)uαµn(Z(s); d(y, u))Q(ds) := A1(x)−A2(x), (37)

and so the assertion. ¤

Proof of Theorem 4
Let Yr be as in (30). First, we want to obtain a kind of second order expansion of the probability
P(x ∈ Θn⊕r). It is worth noticing that

E(Y 2
r ) =

∑

k≥1

P(Y 2
r ≥ k) = P(Yr ≥ 1) +

∑

k≥2

P(Y 2
r ≥ k) = P(Yr ≥ 1) +

∑

k≥2

P(Yr ≥
√

k)

= P(Yr ≥ 1) +
∑

k≥2

(k2 − (k − 1)2)P(Yr ≥ k) = P(Yr ≥ 1) +
∑

k≥2

(2k − 1)P(Yr ≥ k),

which yields

P(x ∈ Θn⊕r) = P(Yr ≥ 1) = E(Y 2
r )−

∑

k≥2

(2k − 1)P(Yr ≥ k). (38)

Solving the previous equation with respect to P(Yr ≥ 2), we get

P(Yr ≥ 2) =
1
3
(EY 2

r −
∑

k≥3

(2k − 1)P(Yr ≥ k)− P(x ∈ Θn⊕r)). (39)

Substituting the above expression for P(Yr ≥ 2) in (32), and then solving with respect to P(x ∈
Θn⊕r), we finally obtain

P(x ∈ Θn⊕r) =
3
2
EYr − 1

2
EY 2

r +
∑

k≥3

(k − 2)P(Yr ≥ k). (40)
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Let us introduce the random variable Tr, which counts the number of triples of different enlarged
grains which cover the point x, in order to estimate

∑
k≥3(k − 2)P(Yr ≥ k):

Tr := #{(i, j, k); : i < j < k and x ∈ (yi+Z(si))⊕r∩(yj+Z(sj))⊕r∩(yk+Z(sk))⊕r} =





0 if Yr = 0, 1, 2(
Yr

3

)
if Yr ≥ 3

By observing that Tr can assume only values of the type k(k−1)(k−2)
6 , with k ∈ N, we have that

E[Tr] =
∞∑

k=3

k(k − 1)(k − 2)
6

P(Tr =
k(k − 1)(k − 2)

6
) =

∞∑

k=1

k∑
n=1

n(n + 1)
2

P(Tr =
k(k + 1)(k + 2)

6
)

=
∞∑

n=1

n(n + 1)
2

∞∑

k=n+2

P(Tr =
k(k − 1)(k − 2)

6
) =

∞∑
n=1

n(n + 1)
2

P(Tr ≥ n(n + 1)(n + 2)
6

)

=
∞∑

k=3

(k − 2)(k − 1)
2

P(Tr ≥ k(k − 1)(k − 2)
6

) ≥
∑

k≥3

(k − 2)P(Yr ≥ k). (41)

being Tr ≥ k(k−1)(k−2)
6 if and only if Yr ≥ k when k ≥ 3.

Note that

lim
r↓0

E[Tr]
4r2

≤ lim
r↓0

1
b2
d−nr2(d−n)

E
[ ∑

(yi, si), (yj , sj), (yk, sk) ∈ Ψ,
yi 6= yj , yi 6= yk, yk 6= yj

1(yi+Z(si))⊕r∩(yj+Z(sj))⊕r∩(yk+Z(sk))⊕r
(x)

]

= lim
r↓0

1
b2
d−nr2(d−n)

∫

Rd×K3
1(x−Z(s1))⊕r

(y1)
[ ∫

(x−Z(s2))⊕r×(x−Z(s3))⊕r

h(y1, s1, y2, s2, y3, s3)dy2dy3

]

dy1Q[3](d(s1, s2, s3)) = 0, (42)

where the last equation follows as an application of the Dominated Convergence Theorem, after
having observed that

• by Lemma 2, for all (s1, s2, s3) ∈ K3 and y1 ∈ Rd,

lim
r→0

1
b2
d−nr2(d−n)

∫

(x−Z(s2))⊕r×(x−Z(s3))⊕r

h(y1, s1, y2, s2, y3, s3)dy2dy3 =
∫

(x−Z(s2))×(x−Z(s3))

h(y1, s1, y2, s2, y3, s3)Hn(dy2)Hn(dy3);

• being the dimension of Z(s) less than d, ∀s1 ∈ K,

lim
r→0

1(x−Z(s1))⊕r
(y1) = 0 Hd−a.e. y1 ∈ Rd;

• for any r ≤ 1

1
b2
d−nr2(d−n)

1(x−Z(s1))⊕r
(y1)

∫

(x−Z(s2))⊕r×(x−Z(s3))⊕r

h(y1, s1, y2, s2, y3, s3)dy2dy3

≤ 1(x−Z(s1))⊕r
(y1)

b2
d−nr2(d−n)

sup
y2∈(x−Z(s2))⊕r

sup
y3∈(x−Z(s3))⊕r

h(y1, s1, y2, s2, y3, s3)Hd((x−Z(s2))⊕r)Hd((x−Z(s3))⊕r)

(27),(M4)

≤ 42d+nb2
d

b2
d−nγ2

Hn(Ξ(s2))Hn(Ξ(s3))ξx,B1(x),B1(x)(s1, y1, s2, s3),
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whose integral on Rd ×K with respect to Hd ⊗Q[3] is finite by (11).

Thus, by (41) and (42), P(x ∈ Θn⊕r)
(40)
= 3

2EYr − 1
2EY 2

r + o(r2). By observing that

E[Y 2
r ] = E

[( ∑

(yi,si)∈Ψ

1(yi+Z(si))⊕r
(x)

)2]
= EYr+E

[ ∑

(yi, si), (yj , sj) ∈ Ψ,
yi 6= yj

1(yi+Z(si))⊕r∩(yj+Z(sj))⊕r
(x)

]
,

it follows that

P(x ∈ Θn⊕r) =
∫

K

∫

(x−Z(s))⊕r

f(y, s)dyQ(ds)−1
2

∫

K2

∫

(x−Z(s1))⊕r

∫

(x−Z(s2))⊕r

g(y1, s1, y2, s2)dy2dy1Q[2](d(s1, s2))+o(r2)

(33),(28)
= 2rc1(r)+2π r2c2(r)−2r2

∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2))+o(r2),

(43)

with ci defined as in (34).
Therefore we have that

Bias(λ̂µ,N
Θd−1

(x))
(5)
= c1(rN )+πrNc2(rN )−rN

∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2))

+o(rN )−λΘd−1(x)

(36),(34)
= −rN

∫

K

∫ 1

0

∫

N(Z(s))

∑

|α|=1

1
α!

Dα
x f(x− y − θrN tu, s)uαtµd−1(Z(s); d(y, u))dtQ(ds)

+ πrN

∫

K

∫ 1

0

∫

N(Z(s))

tf(x− y − rN tu, s)µd−2(Z(s); d(y, u))dtQ(ds)

− rN

∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2)) + o(rN ),

where θ ∈ (0, 1).
By the same argument used in the proof of Theorem 3 to obtain (37), we get

Bias(λ̂µ,N
Θd−1

(x)) =
(π

2

∫

K

∫

Z(s)

f(x−y, s)Φd−2(Z(s); dy)Q(ds)−1
2

∑

|α|=1

∫

K

∫

N(Z(s))

Dα
x f(x−y, s)uαµd−1(Z(s); d(y, u))Q(ds)

−
∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2))
)
rN + o(rN ) (44)

Let us now observe thatHd−1(Z(s)) = Hd−1(∂2Z(s)), being Z(s) a compact set with positive reach
with dimension d− 1 (e.g., see [2, Sect. 4]); therefore N(Z(s), x) = {ν((Z(s), x),−ν((Z(s), x)} for
Hd−1-a.e. x ∈ Z(s) (see the Appendix). Let us denote by α(j) the multi-index with αi = δij ; then
Dα(j)

x f(x− y, s) = ∂f(x− y, s)/∂xj , and uα(j)
= uj . It follows

∑

|α|=1

∫

N(Z(s))

Dα
x f(x− y, s)uαµd−1(Z(s); d(y, u)) =

d∑

j=1

∫

N(Z(s))

∂f(x− y, s)
∂xj

ujµd−1(Z(s); d(y, u)),
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but, by (49), we have that

∫

N(Z(s))

∂f(x− y, s)
∂xj

ujµd−1(Z(s); d(y, u)) =
1
2

∫

∂2Z(s)

∑

u∈N(Z(s),y)

∂f(x− y, s)
∂xj

ujHd−1(dy)

=
1
2

∫

∂2Z(s)

∂f(x− y, s)
∂xj

(
ν((Z(s), y)j − ν((Z(s), y)j

)
= 0 ∀j = 1, . . . , d.

This implies ∑

|α|=1

∫

K

∫

N(Z(s))

Dα
x f(x− y, s)uαµd−1(Z(s); d(y, u))Q(ds) = 0,

and so the assertion:

Bias(λ̂µ,N
Θd−1

(x)) =
(π

2

∫

K

∫

Z(s)

f(x− y, s)Φd−2(Z(s); dy)Q(ds)

−
∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2))
)
rN + o(rN ).

¤

Proof of Corollary 6
a) It is easy to check that the hypotheses of Theorem 3 are satisfied, and that (32) simplifies here:

P(x ∈ Θn⊕r) = cEQ[Hd(Z⊕r)]+o(rd−n+1)
(47)
= crd−nbd−nEQ[Hn(Z)]+crd−n+1bd−n+1EQ[Φn−1(Z)]+o(rd−n+1)

By remembering that in this case λΘn(x) ≡ cEQ[Hn(Z)] for any x ∈ Rd, it follows then

Bias(λ̂µ,N
Θn

(x)) =
cbd−n+1EQ[Φn−1(Z)]

bd−n
rN + o(rN ) ∀x ∈ Rd,

and so the asymptotic approximation of the mean square error reduces to

AMSE(λ̂µ,N
Θn

(x)) =
(cbd−n+1

bd−n
EQ[Φn−1(Z)]

)2

r2
N +

cEQ[Hn(Z)]
Nbd−nrd−n

N

.

Finally, by ro,AMSE
N (x) := arg min

rN

AMSE(λ̂µ,N
Θn

(x)) we get (14).

b) It is easy to check that the hypotheses of Theorem 4 are satisfied, and that (43) simplifies here:

P(x ∈ Θn⊕r) = 2crEQ[Hd−1(Z)] + cr2πEQ[Φd−2(Z)]

− 2r2

∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2)) + o(r2).

Then it follows

Bias(λ̂µ,N
Θd−1

(x)) =
π

2
crNEQ[Φd−2(Z)]

− rN

∫

K2

∫

(x−Z(s1))

∫

(x−Z(s2))

g(y1, s1, y2, s2)Hn(dy2)Hn(dy1)Q[2](d(s1, s2)) + o(r2
N );
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Being V ar(λ̂µ,N
Θd−1

(x)) = cEQ[Hd−1(Z)]/(2NrN ) + o(1/(NrN )), the assertion directly follows by

ro,AMSE
N (x) := arg min

rN

AMSE(λ̂µ,N
Θd−1

(x). ¤
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APPENDIX

Positive reach, curvature measures and related results

We summarize here some basic definitions and results on sets with positive reach and associated
curvature measures, which might be useful for the non-expert reader for a more readability of the
paper. We refer to the existent literature for a more exhaustive treatment of this subejct.

Let A ⊂ Rd be a non-empty closed set and z ∈ Rd, set dist(A, z) := inf{||a− z|| : a ∈ A}.
Denote by Unp(A) := {x ∈ Rd : ∃! a ∈ A such that dist(x,A) = ||a − x||} the set of points
having a unique projection on A. The definition of Unp(A) implies the existence of a projection
mapping ξA : Unp(A) → A which assigns to x ∈ Unp(A) the unique point ξA(x) ∈ A such
that dist(z, A) = ||ξA(x) − x||. Then for all x ∈ Unp(A) with dist(x,A) > 0 we may define
uA(x) := (x− ξA(x))/dist(x, A). The set of all x ∈ Rd \A for which ξA(x) is not defined is called
the exoskeleton of A and it is denoted by exo(A). The exoskeleton is a measurable subset of Rd

and Hd(exo(A)) = 0. Denoted by Sd−1 := ∂B1(0) the unit sphere in Rd, the normal bundle of A

is the subset of ∂A× Sd−1:

N(A) := {(ξA(x), uA(x)) : x 6∈ A ∪ exo(A)}

The reach function δ(A, ·) : Rd × Sd−1 → [0,∞] is defined by δ(A, x, u) := inf{t ≥ 0 : x + tu ∈
exo(A)} if (x, u) ∈ N(A), δ(A, x, u) := 0 otherwise; then the reach of A is defined by

reach(A) := inf{δ(A, x, u) : (x, u) ∈ N(A)}.

If reach(A) > 0 the set is said to be a set with positive reach.
For any non-empty closed set A ⊂ Rd there exist uniquely determined signed measures µ0(A; · ), . . . , µd−1(A; · )
on N(A), said support measures of A, which arise as coefficient measures of a local Steiner formula;
namely, in [19, Theorem 2.1] it is proved that

∫

Rd\A
f(x)Hd(dx) =

d−1∑

i=0

bd−i(d− i)
∫ ∞

0

∫

N(A)

td−1−i

1[0,δ(A,x,u))(t)f(x + tu)µi(A; d(x, u))dt, (45)

for any measurable bounded function f : Rd → R with compact support.
Furthermore, if Hk(∂A) = 0 for some k ∈ {1, ..., d− 1}, µk(A; ·) ≡ 0 (see [21, Proposition 2.4]).
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We also remind that if the closed set A has positive reach, the following relationship between
the support measure µi(A; · ) and the curvature measure Φi(A; · ) associated with A introduced in
[17] holds:

µi(A; · × Sd−1) = Φi(A; ·) ∀i = 0, ..., d− 1; (46)

by using Federer’s notation, Φi(A) := Φi(A;A) is the total curvature measure of A. Morover, if
reach(A) > 0, the following global Steiner formula holds

Hd(A⊕r) =
d∑

i=0

rd−ibd−iΦi(A), ∀r < reach(A); (47)

note that Φi(A) = 0, for any i > n, if dim(A) = n.

Let A be a closed subset of Rd, define

∂+A = {x ∈ ∂A : (x, u) ∈ N(A) for some u ∈ Sd−1},

it is also well-known that ∂A = ∂+A if reach(A) > 0. For each x ∈ ∂+A, we can define

N(A, x) := {u ∈ Sd−1 : (x, u) ∈ N(A)};

the normal cone of A at x is defined by n(A, x) := {λu : λ ≥ 0 , u ∈ N(A, x)}.
Let

∂++A := {x ∈ ∂+A : dimn(A, x) = 1}, (48)

where dimB denotes the dimension of the affine hull of B ⊂ Rd; then it follows that ∂++A is the
disjoint union of the sets ∂1A and ∂2A, defined by

∂iA := {x ∈ ∂++A : cardN(A, x) = i} i = 1, 2.

For x ∈ ∂1A, the unique element of N(A, x), say ν(A, x), is the outer normal to A at x; for x ∈ ∂2A

there exist two outer normal (ν(A, x) and −ν(A, x) by (48)) to A at x. In particular we recall the
following representation for µd−1(A; ·) (see [19, Proposition 4.1]):

µd−1(A; ·) =
1
2

∫

∂1A

1 {(x,ν(A,x))∈·}Hd−1(dx)+

1
2

∫

∂2A

1 {(x,ν(A,x))∈·} + 1 {(x,−ν(A,x))∈·}Hd−1(dx) (49)

Finally, we also recall that explicit description of the curvature measures of order zero are given in
[19, Proposition 4.10]; in particular for any convex set A it holds (see [25, Secton 4.4]) ∀B ∈ BRd

Φ0(A,B) =
1

dbd

∫

Sd−1

∑

x∈B

1N(A)(x, u)Hd−1(du). (50)
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Figure 1: Estimation of the intensity of an inhomogeneous Poisson process based on a sample with
size N = 1000, by the “Minkowski content”-based estimator (a), by the natural estimator (b), and
by the kernel (Epanechnikov) estimator (c).
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Figure 2: Estimation of the intensity of an inhomogeneous Poisson process based on a sample with
size N = 10000, by the “Minkowski content”-based estimator (a), by the natural estimator (b),
and by the kernel (Epanechnikov) estimator (c).
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Figure 3: Estimation of the intensity of a Matèrn cluster point process based on a sample with size
N = 1000, by the “Minkowski content”-based estimator (a), by the natural estimator (b), and by
the kernel (Epanechnikov) estimator (c).
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Figure 4: Estimation of the intensity of a Matèrn cluster point process based on a sample with
size N = 10000, by the “Minkowski content”-based estimator (a), by the natural estimator (b),
and by the kernel (Epanechnikov) estimator (c).
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Figure 5: A realization of Θ1 in the observation window W = [0, 1]2
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Figure 6: Estimation of the mean density of the homogeneous segment process Θ1 at x = (0.5, 0.5)
by means of the “Minkowski content”-based estimator for different values of the bandwidth, based
on a sample with size N = 10 (a), and N = 100 (b). For ro,AMSE

10 ≈ 13pixels(0.037873) the corre-
spondig estimate is λ̂µ,N

Θ1
(0.5, 0.5) = 11.769231; for ro,AMSE

100 ≈ 6pixels(0.017579) the corresponding
estimate is λ̂µ,N

Θ1
(0.5, 0.5) = 10.545.
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Figure 7: Estimation of the mean density of the homogeneous segment process Θ1 at x = (0.5, 0.5)
by means of the natural estimator for different values of the bandwidth, based on a sample with
size N = 10 (a), and N = 100 (b). For r = 105 pixels (≈ 0.3), the corresponding estimate is
λ̂ν,N

Θ1
(0.5, 0.5) = 9.202444 when N = 10, and λ̂ν,N

Θ1
(0.5, 0.5) = 10.206940 when N = 100.

Figure 8: A realization of Θ1 in the observation window W = [0, 1]2.
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Figure 9: Estimation of the λΘ1((0.5, 0.5)) = 35.4667 by means of the “Minkowski content”-based
estimator for different values of the bandwidth, based on a sample with size N = 10 (a), and
N = 100 (b). For ro,AMSE

10 ≈ 4pixels(0.0122) the corresponding estimate is λ̂µ,N
Θ1

(0.5, 0.5) = 34.2;
for ro,AMSE

100 ≈ 2pixels(0.0057) the corresponding estimate is λ̂µ,N
Θ1

(0.5, 0.5) = 35.0550.
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