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Abstract

Thrombotic risk is increased in eosinophil-mediated disorders, and several hypotheses have been proposed to link
eosinophilia and thrombosis. In particular, eosinophils have been described as source of tissue factor (TF), the main initiator
of blood coagulation; however, this aspect is still controversial. This study was aimed to evaluate whether TF expression
varies in eosinophils isolated from normal subjects and patients with different hypereosinophilic conditions. Eosinophils
were immunologically purified from peripheral blood samples of 9 patients with different hypereosinophilic conditions and
9 normal subjects. Western blot analysis and real-time polymerase chain reaction (RT-PCR) were performed to test
eosinophil TF expression. For comparison, TF expression was evaluated in monocytes from blood donors and in human
endothelial (ECV304) and fibroblast (IMR90) cell lines. Western blot analysis revealed a major band of 47,000 corresponding
to native TF in homogenates of purified eosinophils with a higher intensity in the 9 patients than in the 9 controls (p,
0.0001). According to RT-PCR cycle threshold (Ct), TF gene expression was higher in eosinophils from patients than in those
from controls, median (range) 35.10 (19.45–36.50) vs 37.17 (35.33–37.87) (p = 0.002), and was particularly abundant in one
patient with idiopathic hypereosinophilic syndrome and ischemic heart attacks (Ct: 19.45). TF gene expression was
moderate in monocytes, Ct: 31.32 (29.82–33.49) and abundant in endothelial cells, Ct: 28.70 (27.79–29.57) and fibroblasts, Ct:
22.77 (19.22–25.05). Our results indicate that human blood eosinophils contain variable amounts of TF. The higher TF
expression in patients with hypereosinophilic disorders may contribute to increase the thrombotic risk.
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Introduction

Eosinophils are leukocytes involved in host protection against

parasite infection and in allergic reactions [1]. During T-helper 2-

type immune response, they are recruited at sites of inflammation

where they produce an array of cytokines and lipid mediators, and

release toxic granule proteins [2,3]. Thus, they induce and amplify

inflammatory changes and contribute to tissue damage. Besides

these well known functions, several lines of evidence now indicate

eosinophils as multifunctional leukocytes involved in tissue

homeostasis, adaptive immune responses, innate immunity [2–4]

and coagulation [5]. An increase in blood eosinophil number can

occur in several disorders [6] presenting with a wide spectrum of

manifestations, ranging from asymptomatic conditions to multi-

organ involvement [7,8]. In particular, it has been observed that in

eosinophil-mediated disorders there is an increased risk of

thrombosis [9–13], and several hypotheses have been proposed

to link eosinophilia and thrombosis, involving endothelium

damage, platelet activation and coagulation. Endothelial cells

may be damaged by eosinophil peroxidase products. Moreover,

peroxidase and several additional proteins contained in eosinophil

granules, such as eosinophil cationic protein and major basic

protein, can stimulate platelet activation and aggregation [14–18].

Eosinophils express CD40 ligand, which is involved in initiation

and progression of thrombosis through amplification of the

inflammatory network [16]. Finally, it has been shown that

eosinophils store tissue factor (TF), which is mainly embodied

within their specific granules and is exposed upon activation [5].

However, some of these aspects remain controversial because

Sovershaev et al. did not confirm tissue factor expression in highly

purified preparations of human eosinophils [19].

With this background, we evaluated TF expression by

eosinophils isolated from blood samples of normal subjects and

patients with different hypereosinophilic conditions. For this

purpose, western blot analysis and real-time polymerase chain

reaction (RT PCR) for TF were performed. For comparison, TF

expression was also evaluated in cells commonly recognized as

source of TF, i.e. monocytes from blood donors and human

endothelial and fibroblast cell lines.
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Subjects and Methods

Subjects
Nine normal subjects (6 men and 3 women, age range 40–72

years) and 9 patients with different hypereosinophilic conditions (2

with idiopathic hypereosinophilic syndrome, 2 with bullous

pemphigoid, 1 with Churg Strauss syndrome, 2 with eosinophilic

asthma, and 2 with nematodes infestation; 7 men and 2 women,

age range 40–78 years) were studied (Table 1). All the patients

were evaluated in an active phase of their disease, before starting

any systemic treatment aimed at reducing eosinophil number.

Their blood pressure and cholesterol levels were within the normal

range. The two patients with idiopathic hypereosinophilic

syndrome (patients n. 5 and 6 in Table 1) also suffered from

ischemic heart attacks that disappeared after the normalization of

eosinophil count obtained with corticosteroid treatment. Eosino-

phils were isolated from peripheral blood of both patients and

controls. Proteins and RNA from eosinophils were used for

western blot and real-time PCR, respectively.

The study was approved by the local Review Board of Internal

Medicine, Dermatology, Allergy and Clinical Immunology of the

University of Milan, Italy, and all of the subjects gave their written

informed consent.

Eosinophil isolation
Leukocyte suspensions were obtained by dextran sedimentation

of peripheral blood anticoagulated with 3.75% Na2EDTA (Sigma-

Aldrich St Louis, Mo, USA) diluted 1:2 in 0.9% sodium chloride.

Dextran sedimentation (3 g D-Glucose, Sigma-Aldrich St Louis,

Mo, USA; 3 g Dextran T500, Carl Roth Gmbh, Karlsruhe,

Germany) lasted 90 minutes at room temperature. Twenty ml of

leukocyte-enriched plasma were layered over 12 ml of a density

gradient medium (sodium diatrizoate 9.1%; polysaccharide 5.7%;

r= 1.077 g/ml, Fresenius Kabi, Oslo, Norway) in 50 ml conical

tube and centrifuged at 6006g for 20 minutes at 20uC. The cell

pellet containing eosinophils and neutrophils was collected and the

contaminating red cells were eliminated by hypotonic ammonium

chloride lysis solution (155 mM NH4Cl4, 10 mM KHCO3 and

0,1 mM Na2EDTA, Sigma-Aldrich St Louis, Mo, USA) for 10

minutes at 4uC. Contaminating neutrophils were removed using a

magnetic-activated cell sorting system (Miltenyi Biotec Gmbh,

Bergish Gladbach, Germany), containing a cocktail of biotin-

conjugated monoclonal antibodies against CD2, CD14, CD16,

CD19, CD56, CD123 and CD235a (Glycophorin A). Percentage

purification of eosinophils recovered ranged from 95 to 99%, as

assessed by differential count of 500 cells on May Grunwald

Giemsa-stained cytocentrifuge smears (Figure 1). For protein

extraction and western-blot analysis, 107 cells were used in each

experiment. For RNA extraction, 36106 cells were used in each

experiment.

Monocyte isolation
Monocytes were isolated from peripheral blood mononuclear

cells using a monocyte isolation kit from Miltenyi Biotec Gmbh

(Bergish Gladbach, Germany), an indirect magnetic labeling

system. Non-monocytes, such as T cells, NK cells, B cells,

dendritic cells, and basophils, are indirectly magnetically labeled

using a cocktail of biotin-conjugated antibodies and anti-biotin

microbeads. Highly pure unlabeled monocytes are obtained by

depletion of the magnetically labeled cells. For protein extraction

and western-blot analysis, 107 cells were used in each experiment.

For RNA extraction, 106 cells were used for each experiment.

Endothelial cell culture
Human ECV304 endothelial cells, European Collection of Cell

Cultures (ECACC) No. 92091712, were grown in M199 supple-

mented with 10% fetal bovine serum, penicillin 50 U/mL and

Table 1. Demographic and clinical characteristics of patients with hypereosinophilia.

N Age (years) Sex Diagnosis Blood eosinophils (n/ml)

1 71 F Bullous pemphigoid 1680

2 40 M Asthma with eosinophilia 3080

3 78 M Bullous pemphigoid 1620

4 77 F Churg-Strauss syndrome 2140

5 44 M Asthma with eosinophilia 1600

6 55 M Strongyloidiasis 3100

7 48 M Ascariasis 3260

8 69 M Idiopathic hypereosinophilic syndrome 6210

9 63 M Idiopathic hypereosinophilic syndrome 2870

doi:10.1371/journal.pone.0111862.t001

Figure 1. Representative cytocentrifuge smears of two high
purity eosinophil preparations obtained from peripheral blood
samples. May-Grünwald-Giemsa staining, original magnification: X 400
in the upper panels and X 1000 (immersion) in the lower panels.
doi:10.1371/journal.pone.0111862.g001
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streptomycin 100 mg/ml at 37uC in humidified air with 5% CO2.

When endothelial cells reached over 90% of the flask, 2 ml of

trypsin 0.02% with EDTA 0.02% (Sigma-Aldrich, St Louis, Mo,

USA) was instilled and left in humidified incubator for 10 minutes.

Five ml of culture medium, supplemented with 10% fetal bovine

serum, were added to cells to neutralize the enzymatic action of

trypsin. For protein extraction and western-blot analysis, 107 cells

were used in each experiment. For RNA extraction, 106 cells were

used for each experiment.

Fibroblast culture
Human IMR-90 fibroblast cells, American Type Culture

Collection (ATCC) No. CCL-186, were grown in 10 ml of

Dulbecco’s Modified Eagle’s medium (DMEM) with 10% fetal

bovine serum (Sigma-Aldrich, St Louis, Mo, USA), penicillin

(100 UI/ml) and streptomycin (100 mg/ml) (Sigma-Aldrich, St

Louis, Mo, USA) at 37uC. Cell cultures were maintained in

humidified incubator at 37uC with 5% CO2, until fibroblasts

reached over 95% of confluence. Then, 2 ml of 0.25% trypsin

with 0.02% EDTA (Sigma-Aldrich, St Louis, Mo, USA) was

instilled in the Petri dish and left in humidified incubator for 10

minutes. Five ml of culture medium, supplemented with 10% fetal

bovine serum, were added to cells to neutralize the enzymatic

action of trypsin. For protein extraction and western-blot analysis,

107 cells were used in each experiment. For RNA extraction, 106

cells were used for each experiment.

Western blot analysis of Tissue Factor
Western blot analysis for TF was performed on cell lysates. Cells

(107) were lysed with 0.5 ml ice cold RIPA (radio-immunoprecip-

itation assay) buffer (Thermo Scientific, Rockford, IL, USA) with

freshly added protease and phosphatase inhibitors. After lysis, total

protein levels were measured using the bicinchoninic acid assay

(Pierce Biotechnology, Thermo Scientific, Rockford, IL, USA).

Equal protein amounts (20 mg) were warmed at 95–98uC with 2-

bmercaptoethanol bromophenol blue buffer (Bio-Rad Laborato-

ries, Hercules, CA, USA), subjected to 11% sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), trans-

ferred by electroblotting onto nitrocellulose membranes (What-

mann, Dassel, Germany) and incubated with blocking buffer (free

protein blocking buffer T20, Pierce Biotechnology, Thermo

Scientific, Rockford, IL, USA). As control, recombinant human

TF purified from SF9 cells (Haematologic Technologies Inc,

Essex, VT, USA) was also loaded. Western blotting was performed

with 1:1000 mouse monoclonal anti-TF antibody (2K1 Abcam,

Cambridge, UK) corresponding to the concentration of 1000

ng/ml. Protein loading was controlled by probing the membranes

with 1:10000 monoclonal antibodies against b-actin (AC-74

Sigma-Aldrich, St Louis, MO, USA). Bands were visualized by

incubation of membranes with horseradish peroxidase–conjugated

rabbit anti-mouse secondary antibody (Sigma-Aldrich, St Louis,

MO, USA) and a chemiluminescence-based detection system

(ECL WB GE Healthcare, Amersham, Little Chalfont, UK).

Density of the bands was evaluated by computerized image

analysis (Image Master; Pharmacia, Uppsala, Sweden) and

expressed as the ratio to the density of the band corresponding

to standard recombinant TF. The choice of 2K1 as anti-TF

primary antibody derived from a comparative evaluation with two

other monoclonal antibodies (GMA-320, Upstate, Lake Placid,

NY, USA and 4G4 Abnova, Taipei, Taiwan), as shown below.

Western blot analysis to test the binding of anti-TF
antibodies to TF

Ten microliters of recombinant human TF purified from SF9

cells (Haematologic Technologies Inc, Essex, VT, USA), at the

concentration of 140 ng/ml, were sujected to 11% SDS-PAGE in

three different lanes and transferred by electroblotting onto

nitrocellulose membranes. TF was identified in each lane with

one of the three monoclonal anti-TF antibodies (2K1, 4G4 and

GMA320) and revealed with horseradish peroxidase–conjugated

rabbit anti-mouse secondary antibody.

Immunoassay to test the binding of anti-TF antibodies to
TF

Recombinant human TF purified from SF9 cells (Haematologic

Technologies Inc, Essex, VT, USA) was adsorbed to microtitration

plates by overnight incubation of protein diluted 10 mg/ml in PBS

(phosphate buffered saline) pH 7.4 at 4uC. After block with BSA

(bovine serum albumin) and washing, scalar dilutions of the tested

antibody (from 1000 ng/ml to 10 ng/ml) were incubated 1 hour

at room temperature, and then detected by a peroxidase-

conjugated goat anti-mouse antibody (Sigma-Aldrich, St Louis,

MO, USA).

Real-Time PCR System
For total RNA extraction, isolated cells (106) were treated using

a high pure RNA isolation kit (Roche Diagnostics GmbH,

Mannheim, Germany) according to the manufacturer’s instruc-

tions.

For cDNA construction, 300 ng of total RNA were processed

using a high capacity RNA-to-cDNA kit (Life Technologies,

Carlsbad, CA, USA) for 60 minutes at 37uC and stopping the

reaction at 95uC for 5 minutes.

Real-time amplification was performed as follows: cDNA (1 to

9 ml) was amplified using TaqMan Gene Expression Master Mix

with primers and probes of beta-actin and TF genes (Life

Technologies, Carlsbad, CA, USA), respectively housekeeping

and target. The sequence detection systems consisted in an

Figure 2. Binding of human recombinant tissue factor (TF) by
three commercial anti-TF antibodies (2K1, 4G4 and GMA)
evaluated by western blot (upper panel) and enzyme immu-
noassay (lower panel) methods. Only 2K1 efficiently recognizes TF
with both methods. The last lane of western blotting refers to the size
markers (SM). In enzyme immunoassay experiments, data represent the
mean of three different measurements.
doi:10.1371/journal.pone.0111862.g002
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activation of 2 minutes at 50uC, UNG (Uracil N-Glycosylase) -

UDG (uracil-DNA glycosylase) incubation, 10 minutes at 95uC, 40

cycles at 95uC for 10 seconds each, 1 minute at 60uC (anneal/

extend). The accumulation of fluorescent signal was detected. The

number of cycles required for the fluorescent signal to exceed the

threshold over the background level is defined cycle threshold

[20]. Levels of cycle threshold are inversely proportional to the

amount of target nucleic acid in the sample (i.e. the lower the cycle

threshold level the greater the amount of target nucleic acid in the

sample). A strong positive reaction, indicative of abundant target

nucleic acid in the sample, corresponds to cycle thresholds lower

than 29. Cycle thresholds of 30–37 are positive reactions indicative

of moderate amounts of target nucleic acid. Cycle thresholds of

38–40 are weak reactions indicative of minimal amounts of target

nucleic acid which could represent an environmental contamina-

tion. Moreover, we analysed PCR data of TF considering for each

individual value its beta actin control, and the results were

calculated with the equation: 2DCt = 2(Ct TF- Ct Actin) according to

Zhu et al. [21].

Statistical analysis
Results were expressed as median and [range]. Mann-Whitney

U test for unpaired values was used to assess the statistical

significance of the differences between groups. A P value of ,0.05

was considered statistically significant. Differences in frequencies

of TF expression were evaluated by Chi-square test. All analyses

were performed by the SPSS PC statistical package, version 20.00

(IBM SPSS, Armonk, NY, USA).

Results

Detection of tissue factor in isolated eosinophils
We tested the ability to detect native TF of 3 commercial anti

TF antibodies by both western blot (Figure 2, upper panel) and

enzyme immunoassay (Figure 2, lower panel) methods. On the

basis of the results of these experiments, we chose the antibody

2K1 which efficiently recognizes TF with both methods.

As demonstrated by western blot analysis, TF was present in

homogenates of purified eosinophils from patients with hyper-

osinophilic disorders (Figure 3, panel A). A major band with Mr of

47,000 corresponding to the native TF was found in the eosinophil

homogenates from the 9 patients and the 9 controls. The intensity

of the bands, expressed as the ratio to the band of standard

recombinant TF, was significantly higher in patients with

hypereosinophilic disorders than in normal subjects, median

(range) 1.77 (0.82–2.63) vs 0.49 (0.25–0.75) (p,0.0001) (Figure 3,

panel A and B). As positive control we evaluated TF by western

blot in 2 homogenate samples of purified monocytes, in 2

homogenate samples of purified endothelial cells from line

ECV304 and in 4 homogenate samples of purified fibroblasts

from cell line IMR90 (Figure 3, panel A, bottom).

Figure 3. Panel A shows the western blot analysis of tissue factor (TF) in homogenate samples of purified eosinophils from 9
patients with hyperosinophilic conditions (HE) (top), purified eosinophils from 9 normal controls (N) (middle), and purified
monocytes from 2 normal controls (M), purified endothelial cells from 2 samples of cell line ECV304 and purified fibroblasts from 4
samples of cell line IMR90 (bottom). A major band with Mr of 47,000 corresponding to the native TF was found in the eosinophil homogenates
from the 9 patients and the 9 controls, with a higher intensity in the former than in the latter. The intensity of the TF band was weaker in monocytes
(M1, M2) than in endothelial cells (ECV304) and in fibroblasts (IMR90). Panel B shows the western blot analysis of the ubiquitary protein beta-actin,
which was well represented in all patients, normal subjects and positive controls.
doi:10.1371/journal.pone.0111862.g003
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To rule out the possibility that low levels of TF found in some

samples were due to the reduction of total proteins; in the same

samples, we evaluated by western blot the ubiquitary protein actin,

which was well represented in all patients, normal subjects and

positive controls (Figure 3, panel B).

Evaluation of tissue factor mRNA in isolated eosinophils
Real-time polymerase chain reaction (RT-PCR) analysis

revealed different amplifications in 9 patients with hypereosino-

philia using TF specific sets of primers and probes (Figure 4). As

shown in table 2 and in figure 4, TF cycle threshold was

significantly lower in patients with hypereosinophilia than in

healthy subjects, median (range) 35.10 (19.45–36.50) vs 37.17

(35.33–37.87) (p = 0.002), indicating that TF gene expression was

higher in hypereosinophilic disorders. Interestingly, the two

patients with idiopathic hypereosinophilic syndrome and ischemic

heart attacks, showed the lowest TF cycle threshold (19.45 and

33.68) indicating an enhanced TF gene expression. The cycle

thresholds of the housekeeping gene beta actin in patients and

controls ranged between 27.79 and 36.31, without any significant

differences between the two groups (Table 2). Considering the

beta-actin controls, the relative quantification of PCR data

confirmed a significantly higher expression of TF mRNA in

patients with hypereosinophilia than in normal subjects (Table 2).

We also analyzed TF expression in 4 samples of monocytes,

cycle threshold: median (range) 31.32 (29.82–33.49), correspond-

ing to moderate amount, in 4 samples of endothelial cell line

ECV304, cycle threshold: 28.70 (27.79–29.57), corresponding to

abundant amount, and in 8 samples of fibroblast cell line IMR90,

cycle threshold: 22.77 (19.22–25.05), corresponding to abundant

amount.

Discussion

The results of the present study show that TF is detectable in

high-purity preparations of immunologically isolated eosinophils

from healthy subjects and patients with different hypereosinophilic

conditions. TF gene expression was higher in eosinophils from

patients with hypereosinophilic disorders than in those from

normal subjects (on the basis of RT-PCR cycle threshold). Western

blot analysis revealed that a strong expression of TF by eosinophils

was significantly more frequent in patients with hyperosinophilia.

Figure 4. Panel A shows real-time polymerase chain reaction (RT-PCR) analysis of tissue factor (TF) in purified eosinophils from 9
patients with hyperesinophilia (HE, red lines) and 9 normal controls (N, blue lines). Panel B shows RT-PCR analysis of beta-actin in purified
eosinophils from 9 patients with hyperesinophilia (HE, red lines) and 9 normal controls (N, blue lines). Panel C shows RT-PCR analysis of TF in purified
monocytes from 4 normal controls (green lines), in 4 samples of endothelial cell line ECV304 (blue lines) and in 8 samples of fibroblast cell line IMR90
(red lines). Panel D shows RT-PCR analysis of beta-actin in purified monocytes from 4 normal controls (green lines), in 4 samples of endothelial cell line
ECV304 (blue lines) and in 8 samples of fibroblast cell line IMR90 (red lines).
doi:10.1371/journal.pone.0111862.g004
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Although eosinophil immunoreactivity with antibodies to TF

could be due, at least in part, to internalization and storage of TF

produced by other cells, namely monocytes [22], our data indicate

that eosinophils themselves are able to produce TF in variable

amounts, and TF content seems to be increased in hypereosino-

philic conditions. These observations are in keeping with studies

showing that eosinophils produce, store and rapidly transfer TF to

the cell membrane during activation [5]. However, Sovershaev et

al. [19] have failed to find TF expression by purified blood

eosinophils. Different reasons have been advocated to explain

these discrepancies. Firstly, antibodies used in the immunoassays

may have different sensitivity and specificity in TF detection, as

demonstrated by our results (Figure 2) and by those of Basavaraj et

al. [23]. Secondly, immunochemical detection of TF in eosinophils

may be due to attachment and uptake of monocyte-derived TF, as

demonstrated in granulocytes by Egorina et al. [22]. Finally, the

detection of TF mRNA in purified eosinophils could be due to

non-specific amplification during the late cycles of PCR or

contamination of the eosinophil fraction with monocytes, as

hypothesized by Sovershaev et al. [19]. However, in the present

study this last possibility is unlikely given the high purity of our

eosinophil preparations (Figure 1). In our experiments, we have

compared three different antibodies to TF and we have chosen the

most efficient in TF binding to test blood eosinophils. The

observation that immunoreactivity for TF in purified eosinophils

was variable in different subjects being almost absent in 2 out of 9

normal controls renders unlikely a non-specific binding of the

antibody and supports interindividual differences in TF expres-

sion. In contrast, a strong reactivity was observed in 8 out of 9

patients with hypereosinophilic conditions. We cannot exclude

that part of the TF detected in purified eosinophils is the result of

uptake of monocyte-derived TF; however, the detection of TF

mRNA in purified eosinophils suggests that it is, at least in part,

produced by eosinophils themselves. The very high level of TF

mRNA detected in eosinophils from one patient with idiopathic

hypereosinophilic syndrome indicates that TF production by

eosinophils is variable and can be markedly increased in

pathological conditions. The reasons of the enhanced TF

expression by blood eosinophils from patients with hypereosino-

philia are as yet unknown; however, a candidate effector molecule

may be interleukin-5 (IL-5) due to its pivotal role in promoting

survival and activation of eosinophils [24]. Future studies are

needed to investigate whether stimulation of eosinophils with IL-5

upregulates TF expression.

Previously, we demonstrated by immunohistochemical methods

that TF is expressed by inflammatory cells present in the infiltrate

of chronic urticaria skin lesions [25]. The nature of the TF-

expressing cell was revealed by performing double-staining studies

Table 2. Expression of target (tissue factor) and housekeeping (beta-actin) genes in purified eosinophils obtained from 9 patients
with hypereosinophilia and 9 normal controls.

N Condition Tissue factor Ct Beta-actin Ct 2DCt

Patients with hypereosinophilia

1 Bullous pemphigoid 36.50 31.27 0.43

2 Asthma with eosinophilia 35.20 36.31 2.16

3 Bullous pemphigoid 33.72 31.56 0.45

4 Churg-Strauss syndrome 35.10 31.04 0.51

5 Asthma with eosinophilia 34.91 28.98 0.52

6 Strongyloidiasis 35.67 33.12 0.37

7 Ascariasis 35.54 30.10 0.49

8 Idiopathic hypereosinophilic syndrome 19.45 27.79 20.25

9 Idiopathic hypereosinophilic syndrome 33.68 32.25 0.56

Median 35.10 * 31.27 0.51**

Range 19.45–36.50 27.79–36.31

Normal controls

1 Healthy 37.18 31.66 0.02

2 Healthy 36.04 33.65 0.19

3 Healthy 35.33 33.23 0.23

4 Healthy 37.87 30.47 0.01

5 Healthy 37.25 33.89 0.10

6 Healthy 36.62 31.76 0.03

7 Healthy 37.17 29.57 0.01

8 Healthy 37.23 31.95 0.03

9 Healthy 36.12 30.28 0.02

Median 37.17 31.76 0.03

Range 35.33–37.87 29.57–33.89 0.01–0.23

Gene expression was analysed by real-time polymerase chain reaction and reported as cycle threshold (Ct) and as corrected Ct (2DCt = 2Ct tissue factor - Ct beta actin).
* Median value of tissue factor cycle threshold (Ct) was significantly lower in patients with hypereosinophilia than in healthy subjects (p = 0.002). **Median value of
tissue factor Ct corrected for beta actin Ct (using the equation 2DCt = 2Ct tissue factor - Ct beta actin) was significantly higher in patients with hypereosinophilia than in healthy
subjects (p = 0.0001). Both analyses indicate an increased mRNA espression of tissue factor in patients with hypereosinophilia.
doi:10.1371/journal.pone.0111862.t002
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that showed co-localization of TF and eosinophil cationic protein,

a classic cell marker of the eosinophil [26]. The strong expression

of TF in chronic urticaria lesional skin may be due to eosinophil

activation, even if patients with chronic urticaria virtually never

show peripheral eosinophilia, probably because TF specifically

facilitates the early transendothelial migration of the eosinophils

[5]. Further immunohistochemical studies, carried out in patients

with bullous pemphigoid, an autoimmune blistering disease

characterized by skin and peripheral blood eosinophilia, showed

a strong TF expression in lesional skin [27]. Immunofluorescence

studies using laser scanning confocal microscopy showed that, in

patients with bullous pemphigoid, most of the cells making up the

inflammatory infiltrate co-expressed TF and the eosinophil marker

CD125, thus indicating that they were eosinophils [27,28].

Considering that TF is the main activator of blood coagulation,

the demonstration that eosinophils produce and store TF raises the

possibility that they are involved in coagulation activation. Thus,

they may contribute to induce thrombosis, even if other

eosinophil-related pathophysiologic mechanisms may be operat-

ing, including endothelium damage and platelet activation.

Eosinophils may damage endothelial cells by releasing peroxidase,

and stimulate platelet activation and aggregation through several

additional proteins contained in their granules, such as eosinophil

cationic protein and major basic protein [14,15]. Furthermore,

eosinophils express CD40 ligand, which is involved in initiation

and progression of thrombosis through amplification of the

inflammatory network [16,17]. Finally, platelet activating factor

(PAF), a lipid mediator generated after eosinophil stimulation [18],

induces the activation of platelets, leukocytes and endothelial cells.

It would be interesting to determine if the increase of TF observed

in eosinophils of patients with hypereosinophilia occurs primarily

inside the cell or at transmembrane level. The latter possibility

could be relevant to the increase of thrombotic risk due to the

interaction of transmembrane TF with the other blood compo-

nents. Our results do not allow to distinguish between intracellular

and transmembrane TF since the antibody used recognizes the

extracellular domain of TF which is shared by the two forms.

Thus, to define the subcellular localization of TF in hypereosino-

philic conditions further methods are needed using the approach

of Moosbauer et al. with electronic microscopy [5] or that of

Mandal et al. and Peña et al. with confocal microscopy [29,30].

Some hypereosinophilic conditions such as idiopathic hyper-

eosinophilic syndrome, Churg-Strauss syndrome and bullous

pemphigoid are characterized by an increased incidence of

thrombotic events [9,10,31,32]. It is conceivable that TF

expression by eosinophils has an important role in increasing the

thrombotic risk of patients with hypereosinophilic conditions.

Although the amount of TF generated by and stored in peripheral

blood eosinophils is variable and may be small or moderate

compared to other cell types (i.e. monocytes and endothelial cells),

the presence of large numbers of eosinophils in hypereosinophilic

conditions may markedly amplify the TF effect on coagulation.

The observation that two of our patients with idiopathic

hypereosinophilic syndrome experienced ischemic heart attacks,

healed after steroid-induced normalization of the eosinophil count,

further supports a link between eosinophils and cardiovascular

events.
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