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In the present review we summarize observations to date supporting the concept that neuroactive
steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves
and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed
as therapies for different types of peripheral neuropathy, like for instance those occurring during aging,
chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the
synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in
case of peripheral neuropathy.

� 2015 Published by Elsevier Inc.
1. Introduction physiological roles in the PNS acting on the glial [8–16] and neu-
Neuroactive steroids are molecules acting in the nervous
system including steroids produced by the nervous system (i.e.,
neurosteroids) and hormonal steroids coming from classical
steroidogenic tissues (i.e., gonads and adrenal glands) [1]. Several
reviews have extensively considered and discussed this topic in
the central nervous system (CNS), because the first observations
were obtained in the brain [2–7]. However, more recent results
have indicated that the peripheral nervous system (PNS) also
synthesizes and metabolizes neuroactive steroids and is a target
for these molecules. Indeed, neuroactive steroids exert key
ronal compartments [17–19]. On this basis, new therapeutic
strategies based on neuroactive steroids have been recently pro-
posed for peripheral neuropathy [10,20]. Here, we review the state
of the art on the synthesis, actions and therapeutic implications of
neuroactive steroids in the PNS.

2. Synthesis of neuroactive steroids

The first step of steroidogenesis is the transport of cholesterol
from intracellular stores to the inner mitochondrial membrane,
where cytochrome P450 side chain cleavage (P450scc), the enzyme
that converts cholesterol to pregnenolone (PREG), is located
(Fig. 1). This transport is facilitated by translocator protein-18 kDa
(TSPO) and steroidogenic acute regulatory protein (StAR). The
machinery of this first step of steroidogenesis (i.e., P450scc, TSPO
and StAR) is present in Schwann cells [21,22]. Moreover, Schwann
cells as well as neurons in dorsal root ganglia (DRG) are capable of
converting PREG further to neuroactive steroids (Fig. 1). Indeed,
Schwann cells and DRG neurons express steroidogenic enzymes
such as (i) 3b-hydroxysteroid dehydrogenase, which converts PREG
into progesterone (PROG) [18,19,23–27]; (ii) 5a-reductase (5a-R)
type 1, which converts PROG and testosterone (T) into dihydropro-
gesterone (DHP) and dihydrotestosterone (DHT) respectively and
(iii) 3a-hydroxysteroid dehydrogenase, which converts DHP and
DHT into tetrahydroprogesterone (THP) and 5a-androstane-3a,
17b-diol (3a-diol) respectively [1,24,28–31].
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Fig. 1. Synthesis and metabolism of neuroactive steroids in the PNS. Further details are provided in the text. DRG, dorsal root ganglia; StAR, steroidogenic acute regulatory
protein; TSPO, translocator protein-18 kDa; PREG, pregnenolone; PROG, progesterone; T, testosterone; DHP, dihydroprogesterone; DHT, dihydrotestosterone; THP,
tetrahydroprogesterone; 3a-diol, 5a-androstane-3a, 17b-diol; P450scc, cytochrome P450 side chain cleavage; 5a-R, 5a-reductase; 3b-HSD, 3b-hydroxysteroid
dehydrogenase.
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Further evidence of the steroidogenic activity of the PNS is
provided by the analysis of neuroactive steroid levels by liquid
chromatography tandem mass spectrometry. Indeed, PREG, PROG
and its derivatives (i.e., DHP, THP and isopregnanolone),
dehydroepiandrosterone (DHEA), T and its derivatives (i.e., DHT
and 3a-diol) and 17b-estradiol (17b-E) are measurable in the sci-
atic nerve of rats [32–35]. Interestingly, the levels of neuroactive
steroids are different in males and females (Fig. 2), with females
having higher PREG, DHP, THP, DHEA and 17b-E levels, and males
having higher levels of isopregnanolone, T, DHT and 3a-diol
[36–39].

Thus, PNS express steroidogenic capability as well as the
presence of consistent in situ amounts of neuroactive steroids.
3. The PNS as a physiological target of neuroactive steroids

PNS is not only able to synthesize and metabolize neuroactive
steroids but it is also a target for their effects. Neuroactive steroids
may exert their effects by classical steroid receptors as well as
Fig. 2. Neuroactive steroid levels in rat sciatic nerve show sexual dimorphism.
Further details are provided in the text. PREG, pregnenolone; DHP, dihydroproges-
terone; THP, tetrahydroprogesterone; DHEA, dehydroepiandrosterone; 17b-E, 17b-
estradiol; T, testosterone; DHT, dihydrotestosterone; 3a-diol, 5a-androstane-3a,
17b-diol.
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non-classical steroid receptors. Indeed, classical intracellular ster-
oid receptors, such as PROG (PR), androgen (AR), estrogen, gluco-
corticoid and mineralocorticoid receptors, which bind PROG,
DHP, T, DHT, DHEA, estrogens and corticosteroids, have been
detected in the glial (i.e., Schwann cells) and neuronal (i.e., DRG)
compartments of the PNS [40–47]. Moreover, non-classical steroid
receptors, such as progesterone receptor membrane component 1
(PGRMC1), GABA-A, GABA-B, NMDA, AMPA and kainate subunits,
as well as sigma 1 receptor are also expressed by the different cel-
lular components of the PNS [42,48–52]. Therefore, neuroactive
steroids may regulate PNS physiology through different signaling
pathways. Among the physiological effects of neuroactive steroids
in the PNS, the regulation of the myelination program has been
investigated extensively. For example, an important myelin pro-
tein, such as glycoprotein zero (P0) is a target of the action of
PROG and its derivatives (i.e., DHP and THP) as well as of T deriva-
tives (i.e., DHT and 3a-diol) [11,16,53,54]. Another myelin protein,
the peripheral myelin protein 22 (PMP22) is under the control of
THP and 3a-diol [11,16,53,54]. These physiological effects are
mediated by activation of classical or non-classical steroid recep-
tors. Observations to date indicate that the expression of P0 is
under the control of classical steroid receptors, such as PR and
AR, while that of PMP22, is under the control of a non-classical
steroid receptor, such as GABA-A receptor [11]. A classical steroid
genomic effect on P0 is supported by the presence of putative pro-
gesterone responsive elements on the P0 gene [53]. In further sup-
port of a classic genomic mechanism, steroid receptor coactivator
(SRC)-1, a member of the p160 family of nuclear receptor coactiva-
tors [55], is involved in the control of P0 expression [56]. In further
support of PR functioning with nuclear receptor coactivators, cells
of the sciatic nerve of female rats co-express PR and SRC-2, another
member of the p160 family (Fig. 3).

P0 and PMP22 play an important role for the maintenance of
the multilamellar structure of PNS myelin [57]. Therefore, consis-
tent with the effects exerted on the proteins of peripheral myelin,
PROG stimulates the synthesis of myelin membranes accelerating
the time of initiation and enhancing the rate of myelin synthesis
in Schwann cells co-cultured with DRG neurons [19,58].
Moreover, neuroactive steroids, such as PROG or its metabolites,
DHP and THP, stimulate the gene expression of transcription fac-
tors with key role in Schwann cells physiology and their myelinat-
ing program, such as Krox-20, Krox-24, Egr-3, FosB, and Sox-10
[9,13,59].

PROG also exerts effects on the neuronal compartment. Indeed,
in co-cultures of Schwann cells and DRG neurons this neuroactive
steroid stimulates the expression of a small Ras-like GTP-binding
protein (Rap 1b) and of phosphoribosyl diphosphate synthase-
associated protein, that are two neuronal molecules involved in
peripheral nervous system: An update. Steroids (2015), http://dx.doi.org/
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Fig. 3. Sciatic nerve cells coexpress progesterone receptor (PR) and steroid receptor
coactivator-2 (SRC-2) in female rats. Sciatic nerve from ovariectomized rats treated
with estradiol benzoate (10 lg, sc) were immunostained for (A) nucleic acids
(DAPI), (B) PR, (C) SRC-2 and (D) merged. White arrows in D point to nuclei of cells
that coexpress PR and SRC-2.
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the myelination process [18,19]. Moreover, PROG also affects
axonal outgrowth in DRG neurons. For instance, this neuroactive
steroid is able to induce morphological changes, especially in the
neuronal growth cones, associated with a rapid reorganization of
actin filaments [42]. In agreement, the blockade of PR with the
antagonist mifepristone, during development results in axonal
impairment in the sciatic nerve of male rats [17].

4. Levels of neuroactive steroids are affected in peripheral
neuropathy

Peripheral neuropathy is one of the most common disorders
with a prevalence of about 2.4% that rises with aging to 8% in the
general population [60]. Different types of peripheral neuropathy
have been described. They may be inherited (e.g., Charcot–
Marie–Tooth disease including demyelinating and axonal variants)
or acquired, such as those occurring during aging process, after
physical injury, in diabetes mellitus, vitamin deficiencies, alcohol-
ism, kidney failure, cancer, in infections and autoimmune disorders
(e.g., AIDS, hepatitis, Guillain–Barré syndrome, Lyme disease,
rheumatoid arthritis, leprosy, sarcoidosis, syphilis, systemic lupus
erythematosus, etc.), after exposure to toxic compounds and
during drug treatment (e.g., chemotherapeutic, antiretroviral,
anti-tuberculosis medications, antimicrobial drugs, lithium, etc.).

Data so far obtained indicate that the levels of several neuroac-
tive steroids are affected in peripheral neuropathy. For instance, in
an experimental model of crush injury, the levels of PREG, DHP and
THP present in the distal portion of injured sciatic nerve were low-
ered [61]. Changes in the levels of neuroactive steroids have also
been reported in an experimental model of Charcot–Marie–Tooth
type 1 (CMT1A) [33] and in experimental diabetic neuropathy
[35,36]. Interestingly, in these experimental models the levels of
neuroactive steroids were changed in a sex-dimorphic manner by
the pathology. Indeed, as demonstrated in the sciatic nerve of male
and female PMP22 transgenic rats (i.e., an experimental model of
CMT1A), the levels of 3a-diol were strongly decreased in males
and those of isopregnanolone were strongly decreased in females
Please cite this article in press as: Giatti S et al. Neuroactive steroids and the
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[33]. In the sciatic nerve of streptozotocin (STZ)-treated animals
(i.e., an experimental model of diabetes inducing peripheral neu-
ropathy), the levels of PREG, T, DHT and 3a-diol were significantly
decreased in males but not in females, while those of PROG, THP
and isopregnanolone were decreased only in females [36].

Taken together these results, indicating that neurodegeneration
in PNS changes the levels of neuroactive steroids, suggest that
these molecules may represent promising neuroprotective agents.
Further support of this idea is provided by the relationship
between hormonal environment and peripheral neuropathy.
Indeed, ovariectomy, but not orchidectomy, significantly counter-
act STZ-induced alterations on different parameters of the periph-
eral nerves, such as nerve conduction velocity (NCV), Na+,
K+-ATPase activity, and expression of P0 and PMP22 [37]. These
effects of ovariectomy were associated with an increase in the
levels of DHEA, T and DHT in the sciatic nerve of diabetic rats
[37]. Thus, as also demonstrated in non-pathological animals, the
PNS adapts its local levels of neuroactive steroids in response to
castration with sex specificity and depending on the duration of
the peripheral modifications [34].

A therapy based on neuroactive steroids could be extremely
important because the therapeutic agents available so far for
peripheral neuropathies are very limited. Indeed, as discussed
below, neuroactive steroids act as protective agents in different
experimental models of peripheral neuropathy.

5. Neuroactive steroids as protective agents in the PNS

5.1. Aging

Decrease in the synthesis of P0 and PMP22 and morphological
changes in peripheral nerves have been reported during aging
[15,20]. Treatment with PROG or its derivatives counteract these
alterations [15,20,62,63]. These effects of PROG and its derivatives
seem to be a peculiarity of this class of neuroactive steroids
because neither T nor its derivatives were able to influence the
morphological parameters analyzed in these experiments [15,20].

5.2. Physical injury

As previously mentioned, neuroactive steroids such as PROG
and DHP, increase gene expression of P0 after nerve transection
[64]. Moreover, PREG and PROG counteract the decrease in the
amount of myelin membranes induced by a cryolesion in the sci-
atic nerve of mice [25]. Furthermore, in guided regeneration of
the rabbit facial nerve, PROG treatment increases the number of
Schwann cell nuclei, of nonmyelinated and myelinated nerve fibers
(also with an increase in their diameters), as well as of the g-ratio
of myelinated nerve fibers [65]. Finally, PROG or DHP treatments
counteract alterations in myelin proteins and Na+,K+-ATPase pump,
stimulate reelin gene expression and also counteract nociception
impairment in a crush injury model [61].

Interesting results have been also obtained with other neuroac-
tive steroids. Indeed, T and DHT, accelerate regeneration and func-
tional recovery of injured nerves [66–70]. After rat sciatic nerve
transection, DHEA reduces the extent of denervation atrophy and
induces an earlier onset of axonal regeneration [71]. This neuroac-
tive steroid and also 17b-estradiol promote a faster return to nor-
mal values of sciatic function index and increase the number of
myelinated fibers and fiber diameters after nerve crush injury in
rats [72] and mice [73].

5.3. Chemotherapy-induced peripheral neurotoxicity

DHP or P treatments counteract the effects of docetaxel (i.e., a
semisynthetic taxane widely employed as antineoplastic agent
peripheral nervous system: An update. Steroids (2015), http://dx.doi.org/
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for the treatment of breast, ovarian, and non-small cell lung can-
cer). Thus, neuroactive steroid treatment prevents NCV and ther-
mal threshold changes, degeneration of skin nerves in the
footpad as well as changes in gene expression of P0, PMP22, myelin
and lymphocyte-associated protein and myelin basic protein [74].
5.4. Diabetic peripheral neuropathy

In STZ-treated rats, treatment with PROG or its derivatives
improves alterations in NCV, P0 and PMP22, Na+,K+-ATPase activ-
ity, thermal threshold and skin innervation density [75] and coun-
teracts the increase in the number of fibers with myelin infoldings
[76]. Similar neuroprotective effects are also exerted by treatment
with T or its derivatives [77] as well as by DHEA [38]. Interestingly,
DHEA exerts sex-depending neuroprotective actions, with more
potent effects in female animals [38]. Moreover, DHEA prevents
not only neuronal but also vascular dysfunction in this experimen-
tal model [78].

Recently, it has been reported that altered levels of neuroactive
steroids and morphological changes in peripheral nerves are asso-
ciated not only with changes in myelin proteins but also in the
lipid components. Indeed, we demonstrated that diabetes in
peripheral myelin alters phospholipids, fatty acids and cholesterol
content in a pattern that can modify membrane fluidity [79,80].
Interestingly, neuroactive steroids, such as DHP or 3a-diol are able
to counteract these effects. In particular, these neuroactive steroids
reduce myelin structural alterations, decrease the accumulation
of myelin saturated fatty acids and promote desaturation [81].
Therefore these results suggest that the myelin lipid compartment
can also be considered a target for the action of neuroactive
steroids.
5.5. Neuropathic pain

Neuropathic pain, an important consequence of peripheral
nerve damage, is also a target for the action of neuroactive steroids
[82,83]. Indeed, as reported in different experimental models, T-
type calcium channels, GABA-A channels, P2X3 receptors,
Fig. 4. Protective effects of neuroactive steroids in healthy aging and different pathol
peripheral myelin protein 22; NCV, nerve conduction velocity.
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voltage-gated sodium channels and bradykinin signaling, which
exert a role in neuropathic pain, are also affected by different kinds
of neuroactive steroids [84–89]. In particular, metabolites of PROG
(i.e., DHP and THP) suppress neuropathic symptoms (allodynia/hy-
peralgesia) evoked by antineoplastic drugs such as vincristine [90]
or oxaliplatin [91]. Moreover, metabolites of T have been recently
demonstrated as potential agents for the treatment of diabetic
neuropathic pain [92]. Indeed, DHT counteracts the effect of dia-
betes on mechanical nociceptive threshold, pre- and post-synaptic
components, glutamate release, astrocyte immunoreactivity and
expression of interleukin-1b, while its metabolite, 3a-diol, was
effective on tactile allodynia threshold, glutamate release, astro-
cyte immunoreactivity and the expression of substance P, toll-like
receptor 4, tumor necrosis factor-a, transforming growth factor b-
1, interleukin-1b and TSPO [92].
6. The induction of the synthesis of neuroactive steroids as a
therapeutic tool

Because a therapeutic strategy that uses exogenous neuroactive
steroids could evoke endocrine side effects, an alternative strategy
could be the use of pharmacological agents that increase the syn-
thesis of endogenous neuroactive steroids directly in the periph-
eral nervous system. As reported in the CNS, activation of TSPO
or liver X receptor (LXR) may be considered the basis for therapeu-
tic strategy in the neurodegenerative and psychiatric field. Indeed,
TSPO ligands, like for instance XBD 173 or etifoxine, increase neu-
rosteroidogenesis and exert anxiolytic effects without causing the
classical side effects (i.e., sedation or tolerance) of benzodiazepines
[7]. Beneficial effects by midazolam on behavior deficits have been
also reported in an experimental model of post-traumatic stress
disorder [93]. Moreover, protective effects have been also reported
in experimental model of multiple sclerosis [94] or Alzheimer’s
disease [95]. Similarly, activation of LXR exerts protective effects
in global [96] or focal cerebral ischemia [97] as well as in neurode-
generative diseases, such multiple sclerosis, Alzheimer and
Parkinson diseases [98]. On this basis, similar therapeutic strate-
gies have been also applied in the PNS. For instance, treatment of
ogical conditions. Details are provided in the text. P0, glycoprotein zero; PMP22,
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Fig. 5. Pharmacological tools, able to increase neuroactive steroid levels, are able to
exert protective effects in sciatic nerve of diabetic animals. LXR, liver X receptor;
RXR, retinoic X receptor; TSPO, translocator protein-18 kDa; NCV, nerve conduction
velocity.
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STZ-induced diabetic neuropathy in rats with the TSPO ligand, Ro5-
4864, increased the levels of PREG, PROG and DHT, and counter-
acted the impairment of NCV and thermal threshold, restored skin
innervation density and P0 gene expression, and improved Na+,K+-
ATPase activity [99]. This TSPO ligand was also able to exert a ben-
eficial effect on morphological parameters of the sciatic nerve of
aged male rats by increasing the total number of myelinated fibers
and decreasing the percentage of fibers with myelin decompaction
[100]. Moreover, another TSPO ligand, SSR180575, has been
reported to increase the survival of facial nerve motoneurons after
axotomy and the regeneration of peripheral nerves [101].
Furthermore, a TSPO ligand used for the treatment of anxiety dis-
orders, etifoxine, enhances peripheral nerve regeneration and
functional recovery, increases axonal growth, causes a marked
reduction in the number of macrophages and improves recovery
of locomotion, motor coordination and sensory functions in experi-
mental models of peripheral nerve lesion [102,103]. As reported in
an experimental model, this ligand is also able to exert a beneficial
effect on neurophatic pain evoked by an antitumoral agent, such as
vincristine sulphate [104].

Treatment with a synthetic ligand of LXR, such as GW3965,
increases the levels of PREG, PROG, DHP and 3a-diol and of mole-
cules and enzymes involved in their synthesis, such as StAR,
P450scc and 5a-R in the sciatic levels of STZ-treated animals
[105]. These changes are associated with neuroprotective effects
on thermal nociceptive activity, NCV and Na+,K+-ATPase activity
[105]. Interestingly, LXR knock-out mice have an altered pheno-
type of the myelin sheaths surrounding axons (i.e., thinner myelin
sheaths), with no change in the diameter or number of axons [106],
suggesting that the myelin compartment is also a target for this
pharmacological tool.

On the other hand, even if these two pharmacological tools
may be considered extremely promising it is also important to
recall that they may also induce side-effects. For instance, it has
been recently proposed that TSPO may play a role in
Please cite this article in press as: Giatti S et al. Neuroactive steroids and the
10.1016/j.steroids.2015.03.014
schizophrenia susceptibility and antipsychotic-induced weight
gain [107]. Moreover, an association of TSPO activation with the
advancing of breast cancer has been also reported [108]. LXR
activation increases triglycerides biosynthesis, an undesirable side
effect for a candidate therapeutic drug. Indeed, it has been
reported that in db/db mice, a model of type 2 diabetes, the syn-
thetic LXR agonist T0901317 induced severe hepatic lipogenesis
and increased plasma triglycerides [109]. In addition, studies with
GW3965 and its analog SB742881 in hamster and monkey
showed, unexpectedly, that these compounds increased LDL-c-
holesterol in the species expressing CETP. In addition Hong and
colleagues demonstrated that LXR activation in monkeys induces
hepatic expression of the E3 ubiquitin ligase IDOL a negative reg-
ulator of the LDL receptor thus raising plasma LDL levels [110].
This negative effect together with the hypertriglyceridemic prop-
erties are detrimental issues associated with drug discovery tar-
geting LXR [111]. However, new ligands avoiding these side
effects may represent a promising strategy for the development
of novel interventions targeting LXR. In this context, it is also
important to highlight that it is possible to maintain the LXR ben-
eficial properties and avoid hepatic steatosis by changing the
administration protocol of GW3965, instead of daily administra-
tion we dosed STZ-animals once a week for 4 weeks [105].
Moreover, at least in diabetic animals, activation of LXR [105]
seems to be particularly interesting, because at variance to that
of TSPO [99], did not induce significant changes of neuroactive
steroid levels in plasma.

7. Concluding remarks

The concept that the CNS is able to produce neurosteroids and is
a target for neuroactive steroids is well established and discussed
in several reviews [1,5,112–115]. Here we have recapitulated this
concept in the PNS, highlighting the potential efficacy of a thera-
peutic strategy based on administration of neuroactive steroids
(Fig. 4) or pharmacological strategy that induce the synthesis of
endogenous neuroactive steroids (Fig. 5) in different forms of
peripheral neuropathies. Indeed, these therapeutic strategies are
extremely intriguing given the many situations in which there
are no effective treatments that can prevent, arrest or reverse
peripheral nerve damage.
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