
TRAP: TRAnsient Presence detection exploiting Continuous Brightness
Estimation (CoBE)

G. Presti1, D.A. Mauro2, and G. Haus1
1Laboratorio di Informatica Musicale (LIM), Dipartimento di Informatica (DI), Universitá degli Studi di Milano
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ABSTRACT

A descriptor of features’ modulation, useful in classifica-
tion tasks and real time analysis, is proposed. This descrip-
tor is computed in the time domain, ensuring fast compu-
tation speed and optimal temporal resolution.

In this work we take into account amplitude envelope as
inspected feature, so the outcome of this process can be
useful to gain information about the input’ energy modu-
lation and can be exploited to detect transients presence in
audio segments.

The proposed algorithm relays on an adaptation of Con-
tinuous Brightness Estimation (CoBE).

1. INTRODUCTION

In the context of Music Information Retrieval (MIR) a naive
approach for tracking the amount and nature of modula-
tions can be achieved measuring the standard deviation in-
side a window of the underlying modulated feature, but
this method can only quantify the amount of the modu-
lation, with no information about the shape or frequency.
For example, the envelope of a rhythmic pattern may have
the same standard deviation of a sustained signal with lot
of amplitude modulation, while the pitch of an arpeggio
may have the same standard deviation of the pitch of a fre-
quency modulated tone.

A possible alternative to this tracking technique might be
to estimate the high frequency content of the time series of
the feature under consideration. In such a way the outcome
is a measure that only depends on the shape, frequency, and
amount of the modulation (i.e. how rich, crispy, or jagged
is the feature).

Techniques which can promptly respond to this needs
providing good approximations with fast computing time
are welcome in real-time applications or when analysing
very large datasets. This approach is then motivated by
its implementation in the temporal domain, low computa-
tional cost and parametrizable temporal resolution.
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In this paper we present a case study where we approach
this issues using CoBE [1] as main algorithm to measure
the presence of transients in audio segments. The rationale
for this technique came from trying to automatically clas-
sify sonification examples (to appear in [2]), where a fea-
ture useful to distinguish between continuous sounds and
discrete events can be exploited.

2. THE COBE BEHAVIOUR

CoBE can be interpreted as the ratio of high frequencies
in a signal. It is computed comparing the energy of a fil-
tered version of the input with the original one. This ap-
proach matches in some way the definitions of Brightness
given by [3], [4], [5] and [6] but instead of being com-
puted in frequency domain, it is computed in the time do-
main, enabling some interesting properties, besides perfor-
mance improvements. For example, exploiting the inverse
transfer function of the magnitude of the filter used, it is
possible to infer the frequency of a sine wave having the
same CoBE value of the input signal, namely the Equiv-
alent Brightness Frequency (EBF), shown in Eqn. 1 (for
further details see [1]).

f = (
fs
π
) arcsin(

B

2
) (1)

Where fs is the sampling frequency and B is the CoBE
Brightness value.

2.1 Implementation

With respect to the implementation previously described
in [1], a slightly different implementation is proposed here
and detailed in Fig. 1. It presents some advantages in terms
of stability and it is more readable while preserving the
same output. The source code written in Matlab language
is the following:

function [B,EBF] = CoBE(X,fs,EnvFun,
varargin)

% Amplitude envelope E
E = EnvFun(X, varargin{:});
% Filtered version dX
dX = diff( [0; X] );
% dX amplitude envelope Ed
Ed = EnvFun(dX, varargin{:});
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Figure 1. Diagram of the CoBE algorithm, intended as the
ratio of high frequencies that constitutes the signal.

% Brightness as Ed / E
B = Ed./E;
% Equivalent Brightness Freq.

EBF = (fs/pi).*asin(B./2);
end;

In contrast to the High Frequency Content feature de-
scribed in [7], the behaviour of CoBE is independent from
the signal level, and for monophonic sine waves it is also
independent from signal filtering 1 . However, as can be
clearly pointed out from both Fig. 1 and source code, it
strongly depends on the envelope follower algorithm.

2.2 Behaviour with different envelope followers

Four different envelope followers has been analysed:

• VU-meter style follower, with zero attack and slow
release (Vu);

• RMS of a moving window, lowpass filtered in order
to remove residual ripples (RMS);

• Local maxima inside a moving window (Max);

• Classic Rectify and Filter approach (RF) 2 .

As can be seen in Fig. 2, the very-low frequency band
may cause issues with the first three algorithms, while high
frequencies may be tracked incorrectly by Vu and, less sig-
nificantly, by Max and RF. In Fig. 3 it is possible to notice

1 In such a case filtering can be considered as a simple delay and scale
function

2 Used in MIRToolbox and implemented according to [8].
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Figure 2. EBF Sweep response using different envelope
followers. Differences in the top and bottom ends of the
spectrum are magnified.
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Figure 3. CoBE of a drum sample estimated with different
envelope followers.



that the different followers are characterized by an increas-
ing level of smoothness, with Vu which behaves in a pe-
culiar way, holding previous CoBE values during release
phase. This behaviour may be useful for percussive sounds
analysis or transient detection, since it holds the brightness
of the attack phase and ignores the release phase. Nev-
ertheless, for all other purposes, the use of Vu as enve-
lope follower for CoBE is discouraged. As regards Max, it
shows a very sharp function, which may be ideal for some
application, but non for general purpose. The same can be
stated for RF for its extreme smoothness.

In conclusion, RMS and RF seems to be the best choices
for general purpose CoBE. In this context RMS is used,
since it is easy to implement both in analogue and digi-
tal domain and, most important, it is related to a physical
property (the effective value 3 ) which applies to any signal.

3. TRANSIENT PRESENCE DETECTION BY
ENERGY-ENVELOPE BRIGHTNESS (TRAP)

The main idea is to measure the brightness of the ampli-
tude envelope using the CoBE algorithm. Applying CoBE
to the signal envelope, instead of the signal itself, should
reveal that continuous amplitude envelopes (where sound
is likely to be a smooth modulation of features) will pro-
duce a low CoBE value, while crispy amplitude envelopes
(corresponding to strong amplitude modulations or numer-
ous transients) will present a high CoBE value. Two ex-
amples of TRAP signal behaviour are shown in Fig. 4 and
Fig. 5.
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Figure 4. TRAP signal for an input created using a low
frequency sweep as modulation for a 1kHz sine wave.

3.1 Implementation and tuning

We choose RMS also as the follower that will produce the
main envelope signal, basically for the same reason we
choose RMS as follower inside CoBE. To avoid confusion
we will refer to the signal envelope as the feature, and to

3 RMS. The value of the direct current that would produce the same
power dissipation in a resistive load.
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Figure 5. Output of the TRAP algorithm. The input file
has been created to show different behaviours.

the algorithm used inside CoBE as the kernel. The window
size of the feature follower (called minTime in the code)
basically defines what is the minimum distance between
sound events or, in other words, how smooth has to be
the envelope that will be fed to the CoBE algorithm. This
feature is then down-sampled to spare computing power
and then fed into CoBE. The window size of the kernel
(called maxTime) defines the overall smoothness of the out-
put: smaller windows accentuates short therm variations of
the envelope, while larger windows will generate smooth
outputs. Finally, to make the algorithm independent from
sampling rate, we consider EBF instead of the mere CoBE
value.

The following code is an example of how this can be im-
plemented in Matlab, the algorithm is also represented in
Fig. 6.

function G =TRAP(X,maxTime,minTime,fs)
% Kernel and Feature functions
Feature = @RMSEnvelope;
Kernel = @RMSEnvelope;
% Time to samples conversion
minTime = floor(minTime*sr);
k = 100; sre = fs/k;
maxTime = floor(maxTime*sre);
% Feature extraction
E = Feature(X,minTime);
E = downsample(E,k);
% Feature EBF extraction
[˜,G] = CoBE(E,fs,Kernel,

maxTime);
end

Lowering minTime too much makes the algorithm fitting
the waveform instead of the envelope, thus introducing noise.
This noise increase considerably the envelope brightness
and EBF. On the other hand, higher values of minTime may
ends in ignoring transients or short burst of signal. We em-
pirically found that a value between 0.0125 and 0.0250 sec-
onds may be suitable for most situation. Best results were



Figure 6. Diagram of the TRAP algorithm.

obtained with minTime = 0.02. This window size can
detect variations up to 50 Hz, while higher frequencies will
be smoothed out and considered as a continue envelope.

Please note that only those results obtained with the same
minTime are fully comparable, for this reason we suggest
to set minTime = 0.02 as conventional starting point 4 .
For comparison different values of minTime are shown in
Fig. 7.

For what concerns maxTime, high values average out the
whole signal, while low values (maxTime<0.5) fit the sig-
nal more precisely, magnifying the sharp amplitude modu-
lations of the signal. In this case, a default value of 1 sec-
ond may fit most of the scenarios. The behaviour obtained
with different maxTime values is shown in Fig. 8.
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Figure 7. Same signal of Fig. 4 analysed with different
minTime values.

4. EVALUATION AND TESTING

To inspect the information redundancy carried by the TRAP
signal, correlation analysis with other features is performed.

Since the richness of the envelope may depends on the
presence of transients, we took into account spectral de-
scriptors normally used in onset detection tasks 5 ( [9],

4 This value is the same default value provided by MIRToolbox as time
constant for mirenvelope.

5 Please note that even if correlated onsets and transients are not ex-
actly the same.
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Figure 8. Same signal of Fig. 5 analysed with different
maxTime values.

[10], [11]), besides common time domain energy descrip-
tors (listed below).

Chosen features can be grouped in two main categories:
Monodimensional time-varying features, each represented
by a single time series, and general descriptors, where
each feature is represented with a scalar value. Time se-
ries are then collapsed to scalar values by taking the me-
dian value and interquartile range (IQR); as pointed out
by [12]. Those measures are more stable and resilient to
silence segments and outliers than mean and standard de-
viation.

Chosen features are shown in Table. 1.

Type Name Reference

General

Pulse clarity [13]
Event density [3]
Low energy [3]
Modulation frequency [12]
Modulation amount [12]

Time varying

TRAP
CoBE EBF [1]
RMS
Peak
Crest factor
Attack leap [3]
Spectral Flux [3]
Centroid [3]
Flatness [3]
Hi-Frequency Content
(HFC)

[7], [15]

Table 1. Extracted features

The sound samples are divided into 5 groups:

• 10 monophonic instruments taken from the MUMS
database [16], characterized by a pizzicato or per-
cussive excitation;

• 10 monophonic bowed or wind instruments taken
from the MUMS database;



• 10 segments of orchestral music;

• 10 segments of POP music taken randomly within
POP sub-genres;

• 10 voice recordings containing various examples (singing
and spoken, males and females).

Samples from the MUMS database are made of single notes
interleaved with silence. This files were manually edited to
make silence between notes constant to 100 ms. To obtain
a robust correlation analysis we decided to use Spearman
rank correlation, instead of the typical linear Pearson cor-
relation as proposed in [12]. For the feature extraction we
used MIRToolbox [3] and TimbreToolbox [12]. Results are
shown in Table 2 and Table 3. Fig. 9 shows a dendrogram
built using 1 - ABS(correlation) as distance to try to reveal
a hierarchy of the extracted features.

Feature Correlation p-value
Modulation amount 0,76 <0,05
Event density 0,60 <0,05
Centroid (IQR) 0,55 <0,05
CoBE EBF (IQR) 0,54 <0,05
TRAP (IQR) 0,52 <0,05
Flatness (IQR) 0,50 <0,05
Attack leap (med) 0,45 <0,05
Flatness (med) 0,45 <0,05
HFC (med) -0,43 <0,05
Spectral flux (med) 0,41 <0,05
Centroid (med) 0,37 <0,05
Peak (IQR) 0,34 <0,05
Crest factor (IQR) 0,34 <0,05
RMS (IQR) 0,33 <0,05
Low energy 0,31 <0,05
Decay -0,31 <0,05

Table 2. TRAP median, correlation with other features and
p-value (sorted by decreasing absolute correlation, only
significative values are reported.)

Feature Correlation p-value
Modulation amount 0,55 <0,05
TRAP (med) 0,52 <0,05
Low energy 0,40 <0,05
Flatness (IQR) 0,40 <0,05
HFC (med) -0,38 <0,05
HFC (IQR) -0,34 <0,05
Centroid (IQR) 0,32 <0,05
RMS (med) -0,29 <0,05

Table 3. TRAP IQR correlation with other features and p-
value (sorted by decreasing absolute correlation, only sig-
nificative values are reported.)

As shown by the dendrogram in Fig. 9, the “distance”
between TRAP and other time varying features is low thus
implying that it provides different information. Table 2 and
Table 3 show that correlation, when present, is significant,
in particular the features that seems to be more related to
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Mod frequency
Pulse Clarity
Event density
Spectral flux (iqr)
Spectral flux (med)
Flatness (med)
Centroid (iqr)
Flatness (iqr)
TRAP (iqr)
TRAP (med)
Mod amount
Attack Leap (med)
Attack Leap (iqr)
HFC (med)
HFC (iqr)
Low energy
RMS (med)
Peak (med)
Peak (iqr)
RMS (iqr)
CoBE EBF (iqr)
Centroid (med)
CoBE EBF (med)
Crest Factor (med)
Crest Factor (iqr)

Features dependency dendrogram

Figure 9. The dendrogram extracted from the correlation
data shows the hierarchy of the investigated features.

TRAP are: Energy Modulation Amount, Event Density and
Centroid IQR.

Energy Modulation Amount and Event Density are ex-
actly the features we expected to see as the most corre-
lated, since they affect the energy envelope (the former
more explicitly than the latter). Also the Spectral Cen-
troid interquartile range, with other spectrum-dependent
interquartiles, are correlated with TRAP median. This can
be explained by the fact that changes in timbre may cor-
respond to different sound events and variations in the en-
ergy envelope, and during transients variations of spectral
features are commonly found.

Time consumption analysis has been made comparing
TRAP computing time with some of the most correlated
features: Energy Modulation Amount, Event Density, Flat-
ness, Centroid and Low Energy.

The results are shown in Fig. 10 and Table 4 and prove
the implementation to be useful in terms of computational
time, especially in the case of Event Density and Energy
Modulation Amount.

Feature Processing time Ratio
Event density 48,89 ms 5,88
Energy Modulation 22,05 ms 2,65
Flatness 15,74 ms 1,89
Centroid 14,26 ms 1,72
TRAP 08,31 ms 1,00 (ref)

Table 4. Median time necessary to compute one second
of audio and ratio with TRAP time. Data computed from
those in Fig. 10

Finally, in Fig. 11, we scattered the sound samples to
show the distribution of TRAP.
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5. CONCLUSIONS & FUTURE WORKS

A descriptor for features’ shape has been proposed. In par-
ticular this method has been applied to energy envelope
and has been proved as an indicator for transient presence
and energy modulations.

TRAP has been used to distinguish between continuous
signals and discrete acoustic events in [2]. With appro-
priate thresholding, it is useful to describe the presence of
transient in segments of sounds.

It might also serve to create automatic dynamics proces-
sors that change their behaviour according to the content of
the signal. Another possibility is to apply this very same
method not to energy envelope but to other features (e.g.
the pitch contour).

In order to better explain results an experimental set-up
for testing perceptual correlations is advised: simple sig-
nals (amplitude modulated noise/sine waves) clustered by
this feature and by humans can be compared. Finally, to
overcome the possible limitation of the envelope follower
method as presented in Section 2.2 a comparison of differ-
ent approach can be taken into consideration.
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