
Submitted to:
LFMTP 2015

c© A. Felty, A. Momigliano & B. Pientka
This work is licensed under the
Creative Commons Attribution License.

An Open Challenge Problem Repository for Systems
Supporting Binders

Amy Felty
School of Electrical Engineering and

Computer Science
University of Ottawa

Ottawa, Canada
afelty@eecs.uottawa.ca

Alberto Momigliano
Dipartimento di Informatica

Università degli Studi di Milano
Milano, Italy

momigliano@di.unimi.it

Brigitte Pientka
School of Computer Science

McGill University
Montreal, Canada

bpientka@cs.mcgill.ca

A variety of logical frameworks supports the use of higher-order abstract syntax in representing
formal systems; however, each system has its own set of benchmarks. Even worse, general proof
assistants that provide special libraries for dealing with binders offer a very limited evaluation of
such libraries, and the examples given often do not exercise and stress-test key aspects that arise in
the presence of binders. In this paper we design an open repository ORBI (Open challenge problem
Repository for systems supporting reasoning with BInders). We believe the field of reasoning about
languages with binders has matured, and a common set of benchmarks provides an important basis
for evaluation and qualitative comparison of different systems and libraries that support binders, and
it will help to advance the field.

1 Introduction

A variety of logical frameworks supports the use of higher-order abstract syntax (HOAS) in representing
formal systems; however, each system has its own set of benchmarks, often encoding the same object
logics with minor differences. Even worse, general proof assistants that provide special libraries for
dealing with binders often offer only a very limited evaluation of such libraries, and the examples given
often do not exercise and stress-test key aspects that arise in the presence of binders.

The POPLMARK challenge [2] was an important milestone in surveying the state of the art in mech-
anizing the meta-theory of programming languages. We ourselves proposed several specific bench-
marks [8] that are crafted to highlight the differences between the designs of various meta-languages
with respect to reasoning with and within a context of assumptions, and we compared their implemen-
tation in four systems: the logical framework Twelf [23], the dependently-typed functional language
Beluga [18, 17], the two-level Hybrid system [15, 6] as implemented on top of Coq and Isabelle/HOL,
and the Abella system [10]. Finally, several systems that support reasoning with binders, in particular
systems concentrating on modeling binders using HOAS, also provide a large collection of examples and
case studies. For example, Twelf’s wiki (http://twelf.org/wiki/Case_studies), Abella’s library
(http://abella-prover.org/examples), Beluga’s distribution, and the Coq implementation of Hy-
brid (http://www.site.uottawa.ca/~afelty/HybridCoq/) contain sets of examples that highlight
the many issues surrounding binders.

As the field matures, we believe it is important to be able to systematically and qualitatively evaluate
approaches that support reasoning with binders. Having benchmarks is a first step in this direction.
In this paper, we propose a common infrastructure for representing challenge problems and a central,
Open challenge problem Repository for systems supporting reasoning with BInders (ORBI) for sharing
benchmark problems based on the notation we have developed.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://twelf.org/wiki/Case_studies
http://abella-prover.org/examples
http://www.site.uottawa.ca/~afelty/HybridCoq/

2 ORBI

ORBI is designed to be a human-readable, easily machine-parsable, uniform, yet flexible and exten-
sible language for writing specifications of formal systems including grammar, inference rules, contexts
and theorems. The language directly upholds HOAS representations and is oriented to support the mech-
anization of benchmark problems in Twelf, Beluga, Abella, and Hybrid, without hopefully precluding
other existing or future HOAS systems. At the same time, we hope it also is amenable to translations to
systems using other representation techniques such as nominal ones.

We structure the language in two parts:

1. the problem description, which includes the grammar of the object language syntax, inference
rules, context schemas, and context relations

2. the logic language, which includes syntax for expressing theorems and directives to ORBI2X1

tools.

We begin in Sect. 2 with a running example. We consider the untyped lambda-calculus as an object
logic (OL), and present the syntax, some judgments, and sample theorems. In Sect. 3, we present ORBI
by giving its grammar and explaining how it is used to encode our running example; Sect. 3.1 and
Sect. 3.2 present the two parts of this specification as discussed above. We discuss related work in
Sect. 4.

We consider the notation that we present here as a first attempt at defining ORBI (Version 0.1), where
the goal is to cover the benchmarks considered in [8]. As new benchmarks are added, we are well aware
that we will need to improve the syntax and increase the expressive power—we discuss limitations and
some possible extensions in Sect. 5.

2 A Running Example

The first question that we face when defining an OL is how to describe well-formed objects. Consider
the untyped lambda-calculus, defined by the following grammar:

M ::= x | lamx.M | app M1 M2.

To capture additional information that is often useful in proofs, such as when a given term is closed,
it is customary to give inference rules in natural deduction style for well-formed terms using hypothet-
ical and parametric judgments. However, it is often convenient to present hypothetical judgments in a
localized form, reducing some of the ambiguity of the two-dimensional natural deduction notation, and
providing more structure. We therefore introduce an explicit context for bookkeeping, since when estab-
lishing properties about a given system, it allows us to consider the variable case(s) separately and to state
clearly when considering closed objects, i.e., an object in the empty context. More importantly, while
structural properties of contexts are implicitly present in the natural deduction presentation of inference
rules (where assumptions are managed informally), the explicit context presentation makes them more
apparent and highlights their use in reasoning about contexts.

is tm x ∈ Γ

Γ ` is tm x
tmv

Γ, is tm x ` is tm M
Γ ` is tm (lamx.M)

tml
Γ ` is tm M1 Γ ` is tm M2

Γ ` is tm (app M1 M2)
tma

1Following TPTP’s nomenclature [25], we call “ORBI2X” any tool taking an ORBI specification as input; for example,
the translator for Hybrid described in [13] turns syntax, inference rules, and context definitions of ORBI into input to the Coq
version of Hybrid, and it is designed so that it can be adapted fairly directly to output Abella scripts.

A. Felty, A. Momigliano & B. Pientka 3

Traditionally, a context of assumptions is characterized as a sequence of formulas A1,A2, . . . ,An

listing its elements separated by commas [19, 12]. In [7], we argue that this is not expressive enough
to capture the structure present in contexts, especially when mechanizing object logics, and we define
context schemas to introduce the required extra structure:

Atom A
Block of declarations D ::= A | D;A

Context Γ ::= · | Γ,D
Schema S ::= Ds | Ds+S

A context is a sequence of declarations D where a declaration is a block of individual atomic assumptions
separated by ’;’.2 The ’;’ binds tighter than ’,’. We treat contexts as ordered, i.e., later assumptions in the
context may depend on earlier ones, but not vice versa—this in contrast to viewing contexts as multi-sets.
Just as types classify terms, a schema will classify meaningful structured sequences. A schema consists
of declarations Ds, where we use the subscript s to indicate that the declaration occurring in a concrete
context having schema S may be an instance of Ds. We use + to denote the alternatives in a context
schema. For well-formed terms, contexts have a simple structure where each block contains a single
atom, expressed as the following schema declaration:

Sx := is tm x.

We write Φx to represent a context satisfying schema Sx (and similarly for other context schemas appear-
ing in this paper). Informally, this means that Φx has the form is tm x1, . . . , is tm xn where n ≥ 0 and
x1, . . . ,xn are distinct variables. (See [7] for a more formal account.)

For our running example, we consider two more simple judgments. The first is algorithmic equality
for the untyped lambda-calculus, written (aeq M N). We say that two terms are algorithmically equal
provided they have the same structure with respect to the constructors.

aeq x x ∈ Γ

Γ ` aeq x x
aev

Γ, is tm x;aeq x x ` aeq M N
Γ ` aeq (lamx.M) (lamx.N)

ael
Γ ` aeq M1 N1 Γ ` aeq M2 N2

Γ ` aeq (app M1 M2) (app N1 N2)
aea

The second is declarative equality written (deq M N), which includes versions of the above three rules
called dev, del , and dea, where aeq is replaced by deq everywhere, plus reflexivity, symmetry and tran-
sitivity shown below.3

Γ ` deq M M
der

Γ ` deq N M
Γ ` deq M N

des
Γ ` deq M L Γ ` deq L N

Γ ` deq M N
det

These judgments give rise to the following schema declarations:

Sxa := is tm x;aeq x x
Sxd := is tm x;deq x x
Sda := is tm x;deq x x;aeq x x

2This is an oversimplification, since there are well-known specifications where contexts have more structure, see the solution
to the POPLMARK challenge in [16] and the examples in [26]. In fact, those are already legal ORBI specs.

3We acknowledge that this definition of declarative equality has a degree of redundancy: the assumption deq x x in rule del
is not needed, since rule der plays the variable role. However, this formulation exhibits issues, such as context subsumption,
that would otherwise require more complex benchmarks.

4 ORBI

The first two come directly from the ael and del rules where declaration blocks come in pairs. The third
combines the two, and is used below in stating one of the example theorems.

When stating properties, we often need to relate two judgments to each other, where each one has
its own context. For example, we may want to prove statements such as “if Φx ` J1 then Φxa ` J2.” The
proofs in [8] use two approaches.4 In the first, the statement is reinterpreted in the smallest context that
collects all relevant assumptions; we call this the generalized context approach (G). The above statement
becomes “if Φxa ` J1 then Φxa ` J2.” As an example theorem, we consider the completeness of declarative
equality with respect to algorithmic equality, of which we only show the interesting left-to-right direction.

Theorem 2.1 (Completeness, G Version)

Admissibility of Reflexivity If Φxa ` is tm M then Φxa ` aeq M M.

Admissibility of Symmetry If Φxa ` aeq M N then Φxa ` aeq N M.

Admissibility of Transitivity If Φxa ` aeq M N and Φxa ` aeq N L then Φxa ` aeq M L.

Main Theorem If Φda ` deq M N then Φda ` aeq M N.

In the second approach, we state how two (or more) contexts are related via context relations. For
example, the following relation captures the fact that is tm x will occur in Φx in sync with an assumption
block containing is tm x;aeq x x in Φxa.

. ∼ .
Φx ∼Φxa

Φx, is tm x∼Φxa, is tm x;aeq x x

Similarly, we can define Φxa ∼Φxd .

. ∼ .

Φxa ∼Φxd

Φxa, is tm x;aeq x x∼Φxd , is tm x;deq x x

We call this the context relations approach (R). The theorems are then typically stated as: “if Φx ` J1 and
Φx ∼Φxa then Φxa ` J2.” We can then revisit the completeness theorem for algorithmic equality together
with the necessary lemmas as follows.

Theorem 2.2 (Completeness, R Version)

Admissibility of Reflexivity Assume Φx ∼Φxa. If Φx ` is tm M then Φxa ` aeq M M.

Admissibility of Symmetry If Φxa ` aeq M N then Φxa ` aeq N M.

Admissibility of Transitivity If Φxa ` aeq M N and Φxa ` aeq N L then Φxa ` aeq M L.

Main Theorem Assume Φxa ∼Φxd . If Φxd ` deq M N then Φxa ` aeq M N.

3 ORBI

ORBI aims to provide a common framework for systems that support reasoning with binders. Cur-
rently, our design is geared towards systems supporting HOAS, where there are (currently) two main
approaches. On one side of the spectrum we have systems that implement various dependently-typed

4In proofs on paper, the differences between the two approaches usually does not appear; they are present in the details that
are left implicit, but must be made explicit when mechanizing proofs. For example, on-paper versions of the admissibility of
reflexivity that make these distinctions explicit appear in [7] as proofs of Theorems 7 and 8.

A. Felty, A. Momigliano & B. Pientka 5

calculi. Such systems include Twelf, Beluga, and Delphin [20]. All these systems also provide, to var-
ious degrees, built-in support for reasoning modulo structural properties of a context of assumptions.
These systems support inductive reasoning over terms as well as rules. Often it is more elegant in these
systems to state theorems using the G-version [8].

On the other side there are systems based on a proof-theoretic foundation, which typically follow a
two-level approach: they implement a specification logic (SL) inside a higher-order logic or type the-
ory. Hypothetical judgments of object languages are modeled using implication in the SL and parametric
judgments are handled via (generic) universal quantification. Contexts are commonly represented explic-
itly as lists or sets in the SL, and structural properties are established separately as lemmas. For example
substituting for an assumption is justified by appealing to the cut-admissibility lemma of the SL. These
lemmas are not directly and intrinsically supported through the SL, but may be integrated into a system’s
automated proving procedures, usually via tactics. Induction is usually only supported on derivations,
but not on terms. Systems following this philosophy include Hybrid and Abella. Often these systems are
better suited to proving R-versions of theorems.

The desire for ORBI to cater to both type and proof theoretic frameworks requires an almost impossi-
ble balancing act between the two views. For example, contexts are first-class and part of the specification
language in Beluga; in Twelf, schemas for contexts are part of the specification language, which is an
extension of LF, but users cannot explicitly quantify over contexts and manipulate them as first-class ob-
jects; in Abella and Hybrid, contexts are (pre)defined using inductive definitions on the reasoning level.
We will describe next our common infrastructure design, directives, and guidelines that allow us to cater
to existing systems supporting HOAS.

3.1 Problem Description in ORBI

ORBI’s language for defining the grammar of an object language together with inference rules is based
on the logical framework LF; pragmatically, we have adopted the concrete syntax of LF specifications
in Beluga, which is almost identical to Twelf’s. The advantage is that specifications can be directly
parsed and more importantly type checked by Beluga, thereby eliminating many syntactically correct but
meaningless expressions.

Object languages are written according to the EBNF grammar in Fig. 1, which uses certain standard
conventions: {a} means repeat a production zero or more times, and comments in the grammar are
enclosed between (* and *). The token id refers to identifiers starting with a lower or upper case letter.
These grammar rules are basically the standard ones used both in Twelf and Beluga and we do not discuss
them in detail here. We only note that while the presented grammar permits general dependent types up
to level n, ORBI specifications will only use level 0 and level 1. Intuitively, specifications at level 0
define the syntax of a given object language, while specifications at level 1 (i.e., type families that are
indexed by terms of level 0) describe the judgments and rules for a given OL. We exemplify the grammar
relative to the example of algorithmic vs. declarative equality. For more example specifications, we refer
the reader to our survey paper [8] or to https://github.com/pientka/ORBI.5

Syntax An ORBI file starts in the Syntax section with the declaration of the constants used to encode
the syntax of the OL in question, here untyped lambda-terms, which are introduced with the declarations:

5The observant reader will have noticed that ORBI’s concrete syntax for schemas differs from the one that we have presented
in Section 2, in so much that blocks are separated by commas and not by semi-colons. This is forced on us by our choice to
re-use Beluga’s parsing and checking tools.

https://github.com/pientka/ORBI

6 ORBI

sig ::= {decl (* declaration *)

| s_decl} (* schema declaration *)

decl ::= id ":" tp "." (* constant declaration *)

| id ":" kind "." (* type declaration *)

op_arrow ::= "->" | "<-" (* A <- B same as B -> A *)

kind ::= type

| tp op_arrow kind (* A -> K *)

| "{" id ":" tp "}" kind (* Pi x:A.K *)

tp ::= id {term} (* a M1 ... M2 *)

| tp op_arrow tp

| "{" id ":" tp "}" tp (* Pi x:A.B *)

term ::= id (* constants, variables *)

| "\" id "." term (* lambda x. M *)

| term term (* M N *)

s_decl ::= schema s_id "=" alt_blk ";"

s_id ::= id

alt_blk ::= blk {"+" blk}

blk ::= block id ":" tp {"," id ":" tp}

Figure 1: ORBI grammar for syntax, judgments, inference rules, and context schemas

%% Syntax

tm: type.

app: tm -> tm -> tm.

lam: (tm -> tm) -> tm.

The declaration introducing type tm along with those of the constructors app and lam fully specify the
syntax of OL terms. We represent binders in the OL using binders in the HOAS meta-language. Hence
the constructor lam takes in a function of type tm -> tm. For example, the OL term (lamx. lamy.app x y)
is represented as lam (\x. lam (\y. app x y)), where “\” is the binder of the metalanguage. Bound
variables found in the object language are not explicitly represented in the meta-language.

Judgments and Rules These are introduced as LF type families (predicates) in the Judgments sec-
tion followed by object-level inference rules for these judgments in the Rules section. In our running
example, we have two judgments:

%% Judgments

aeq: tm -> tm -> type.

A. Felty, A. Momigliano & B. Pientka 7

deq: tm -> tm -> type.

Consider first the inference rule for algorithmic equality for application, where the ORBI text is a straight-
forward encoding of the rule:

ae_a: aeq M1 N1 -> aeq M2 N2

-> aeq (app M1 M2) (app N1 N2).

Γ ` aeq M1 N1 Γ ` aeq M2 N2

Γ ` aeq (app M1 M2) (app N1 N2)
aea

Uppercase letters such as M1 denote schematic variables, which are implicitly quantified at the outermost
level, namely {M1:tm}, as is commonly done for readability purposes in Twelf and Beluga.
The binder case is more interesting:

ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).

Γ, is tm x;aeq x x ` aeq M N
Γ ` aeq (lamx.M) (lamx.N)

ael

We view the is tm x assumption as the parametric assumption x:tm, while the hypothesis aeq x x (and
its scoping) is encoded within the embedded implication aeq x x -> aeq (M x) (N x) in the cur-
rent (informal) signature augmented with the dynamic declaration for x. As is well known, parametric
assumptions and embedded implication are unified in the type-theoretic view. Note that the “variable”
case, namely rule aev, is folded inside the binder case. We list here the rest of the Rules section:

%% Rules

de_a: deq M1 N1 -> deq M2 N2 -> deq (app M1 M2) (app N1 N2).

de_l: ({x:tm} deq x x -> deq (M x) (N x))

-> deq (lam (\x. M x)) (lam (\x. N x)).

de_r: deq M M.

de_s: deq N M -> deq M N.

de_t: deq M L -> deq L N -> deq M N.

Schemas A schema declaration s_decl is introduced using the keyword schema. A blk consists of
one or more declarations and alt_blk describes alternating schemas. For example, schemas mentioned
in Sect. 2 appear in the Schemas section as:

%% Schemas

schema xG = block (x:tm);

schema xaG = block (x:tm, u:aeq x x);

schema xdG = block (x:tm, u:deq x x);

schema daG = block (x:tm, u:deq x x, v:aeq x x);

To illustrate alternatives in contexts, consider extending our OL to the polymorphically typed lambda-
calculus, which includes a new type tp in the Syntax section, and a new judgment:

atp: tp -> tp -> type.

representing equality of types in the Judgments section (as well as type constructors and rules for well-
formed types and type equality, omitted here). With this extension, the following two examples replace
the first two schemas in the Schemas section.

schema xG = block (x:tm) + block (a:tp);

schema xaG = block (x:tm, u:aeq x x) + block (a:tp, v:atp a a);

8 ORBI

While we type-check the schema definitions using an extension of the LF type checker (as imple-
mented in Beluga), we do not verify that the given schema definition is meaningful with respect to the
specification of the syntax and inference rules; in other words, we do not perform “world checking” in
Twelf lingo.

Definitions So far we have considered the specification language for encoding formal systems. ORBI
also supports declaring inductive definitions for specifying context relations. We start with the gram-
mar for inductive definitions (Fig. 2). Although we plan to provide syntax for specifying more general
inductive definitions, in this version of ORBI we only define context relations inductively, that is n-ary
predicates between contexts of some given schemas. Hence the base predicate is of the form id {ctx}

relating different contexts. For example, the Definitions section defines the relations Φx ∼ Φxa and

def_dec ::= "inductive" id ":" r_kind "=" def_body ";"

r_kind ::= "prop"

| "{" id ":" s_id "}" r_kind

def_body ::= "|" id ":" def_prp {def_body}

def_prp ::= id {ctx}

| def_prp "->" def_prp

ctx ::= [] | [id] | ctx "," id ":" blk

Figure 2: ORBI grammar for inductive definitions describing context relations

Φxa ∼Φxd . To illustrate, only the former is shown below.

%% Definitions

inductive Rxa : {g:xG} {h:xaG} prop =

| Rxa_nl: Rxa [] []

| Rxa_cs: Rxa [g] [h]

-> Rxa [g, b:block (x:tm)] [h, b: block (x:tm, u:aeq x x)];

This kind of relation can be translated fairly directly to inductive n-ary predicates in systems support-
ing the proof-theoretic view. In the type-theoretic framework underlying Beluga, inductive predicates
relating contexts correspond to recursive data types indexed by contexts; in fact ORBI adopts Beluga’s
concrete syntax, so as to directly type-check those definitions as well. Twelf’s type theoretic framework,
however, is not rich enough to support inductive definitions.

3.2 Theorems and Directives in ORBI

While the elements of an ORBI specification detailed in the previous subsection were relatively easy to
define in a manner that is well understood by all the different systems we are targeting, we illustrate in
this subsection those elements that are harder to describe uniformly due to the different treatment and
meaning of contexts in the different systems.

A. Felty, A. Momigliano & B. Pientka 9

Theorems We list the grammar for theorems in Fig. 3. Our reasoning language includes a category prp
that specifies the logical formulas we support. The base predicates include false,true, term equality,
atomic predicates of the form id {ctx}, which are used to express context relations, and predicates of
the form [ctx |- J], which represent judgments of an object language within a given context. Connec-
tives and quantifiers include implication, conjunction, disjunction, universal and existential quantification
over terms, and universal quantification over context variables.

thm ::= "theorem" id ":" prp ";"

prp ::= id {ctx} (* Context relation *)

| "[" ctx "|-" id {term} "]" (* Judgment in a context *)

| term "=" term (* Term equality *)

| false (* Falsehood *)

| true (* Truth *)

| prp "&" prp (* Conjunction *)

| prp "||" prp (* Disjunction *)

| prp "->" prp (* Implication *)

| quantif prp (* Quantification *)

quantif ::= "{" id ":" s_id "}" (* universal over contexts *)

| "{" id ":" tp "}" (* universal over terms *)

| "<" id ":" tp ">" (* existential over terms *)

Figure 3: ORBI grammar for theorems

To illustrate, the reflexivity lemmas and completeness theorems for both the G and R versions as
they appear in the Theorems section are shown below. These theorems are a straightforward encoding
of those stated in Sect. 2.

%% Theorems

theorem reflG: {h:xaG}{M:tm} [h |- aeq M M];

theorem ceqG: {g:daG}{M:tm}{N:tm} [g |- deq M N] -> [g |- aeq M N];

theorem reflR: {g:xG}{h:xaG}{M:tm} Rxa [g] [h] -> [h |- aeq M M];

theorem ceqR: {g:xdG}{h:xaG}{M:tm}{N:tm} Rda [g] [h] ->

[g |- deq M N] -> [h |- aeq M N];

As mentioned, we do not type-check theorems; in particular, we do not define the meaning of
[ctx |- J], since several interpretations are possible. In Beluga, every judgment J must be mean-
ingful within the given context ctx; in particular, terms occurring in the judgment J must be meaningful
in ctx. As a consequence, both parametric and hypothetical assumptions relevant for establishing the
proof of J must be contained in ctx. Instead of the local context view adopted in Beluga, Twelf has
one global ambient context containing all relevant parametric and hypothetical assumptions. Systems
based on proof-theory such as Hybrid and Abella distinguish between assumptions denoting eigenvari-
ables (i.e., parametric assumptions), which live in a global ambient context and proof assumptions (i.e.,
hypothetical assumptions), which live in the context ctx. While users of different systems understand
how to interpret [ctx |- J], reconciling these different perspectives in ORBI is beyond the scope of

10 ORBI

this paper. Thus for the time being, we view theorem statements in ORBI as a kind of comment, where it
is up to the user of a particular system to determine how to translate them.

Directives In ORBI, directives are comments that help the ORBI2X tools to generate target represen-
tations of the ORBI specifications. The idea is reminiscent of what Ott [24] does to customize certain
declarations, e.g., the representation of variables, to the different programming languages/proof assis-
tants it supports. The grammar for directives is listed in Fig. 4.

dir ::= ’%’ sy_set what decl {"," decl} {dest} ’.’

| ’%%’ sepr ’.’

sy_id ::= hy | ab | bel | tw

sy_set ::= ’[’ sy_id {’,’ sy_id} ’]’

what ::= wf | explicit | implicit

dest ::= ’in’ ctx | ’in’ s_id | ’in’ id

sepr ::= Syntax | Judgments | Rules | Schemas | Definitions

| Directives | Theorems

Figure 4: ORBI grammar for directives

The sepr directives, such as Syntax, are simply means to structure ORBI specifications. Most
of the other directives that we consider in this version of ORBI are dedicated to help the translations
into proof-theoretical systems, although we also include some to facilitate the translation of theorems to
Beluga. The set of directives is not intended to be complete and the meaning of directives is system-
specific. The directives wf and explicit are concerned with the asymmetry in the proof-theoretic view
between declarations that give typing information, e.g., tm:type, and those expressing judgments, e.g.,
aeq:tm -> tm -> type. In Abella and Hybrid, the former may need to be reified in a judgment, in
order to show that judgments preserve the well-formedness of their constituents, as well as to provide
induction on the structure of terms; yet, in order to keep proofs compact and modular, we want to
minimize this reification and only include them where necessary. The Directives section of our sample
specification includes, for example,
% [hy,ab] wf tm.

which refers to the first line of the Syntax section where tm is introduced, and indicates that we need
a predicate (e.g., is_tm) to express well-formedness of terms of type tm. Formulas expressing the
definition of this predicate are automatically generated from the declarations of the constructors app and
lam with their types.

The keyword explicit indicates when such well-formedness predicates should be included in the
translation of the declarations in the Rules section. For example, the following formulas both represent
possible translations of the ae_l rule to proof-theoretic systems. We use Abella’s concrete syntax to
exemplify:
aeq (lam M) (lam N) :- pi x\ is_tm x => aeq x x => aeq (M x) (N x).

aeq (lam M) (lam N) :- pi x\ aeq x x => aeq (M x) (N x).

A. Felty, A. Momigliano & B. Pientka 11

where the typing information is explicit in the first and implicit in the second. By default, we choose
the latter, that is well-formed judgments are assumed to be implicit, and require a directive if the former
is desired. Consider, for example, that we want to to conclude that whenever a judgment is provable,
the terms in it are well-formed, e.g., if aeq M N is provable, then so are is_tm M and is_tm N. Such
a lemma is indeed provable in Abella and Hybrid from the implicit translation of the rules for aeq.
Proving a similar lemma for the deq judgment, on the other hand, requires some strategically placed
explicit well-formedness information. In particular, the two directives:

% [hy,ab] explicit (x : tm) in de_l.

% [hy,ab] explicit (M : tm) in de_r.

require the clauses de_l and de_r to be translated to the following formulas:

deq (lam M) (lam N) :- pi x\ is_tm x => deq x x => deq (M x) (N x).

deq M M :- is_tm M.

The case for schemas is analogous. In the systems based on proof-theoretic approaches, contexts
are typically represented using lists and schemas are translated to unary inductive predicates that verify
that these lists have a particular regular structure. We again leave typing information implicit in the
translation unless a directive is included. For example, the xaG schema with no associated directive will
be translated to the following Abella’s inductive definition:

Define aG : olist -> prop by

xaG nil;

nabla x, xaG (aeq x x :: As) := xaG As.

The directive % [hy,ab] explicit (x : tm) in daG will yield this Hybrid definition:

Inductive daG : list atm -> Prop :=

| nil_da : daG nil

| cns_da : forall (Gamma:list atm) (x:uexp),

proper x -> daG Gamma -> daG (is_tm x :: deq x x :: aeq x x :: Gamma).

Similarly, directives in context relations, such as:

% [hy,ab] explicit (x : tm) in g in Rxa.

also state which well-formedness annotations to make explicit in the translated version. In this case,
when translating the definition of Rxa in the Definitions section, they are to be kept in g, but skipped
in h.

Keeping in mind that we consider the notion of directive open to cover other benchmarks and differ-
ent systems, we offer some speculation about directives that we may need to translate theorems for the
examples and systems that we are considering. For example, theorem reflG is proven by induction over
M. As a consequence, M must be explicit.

% [hy,ab,bel] explicit (M : tm) in h in reflG.

The ORBI2Hybrid and ORBI2Abella tools will interpret the directive by adding an explicit assumption,
as illustrated by the result of the ORBI2Abella translation:

forall H M, xaG H -> {H |- is_tm M} -> {H |- aeq M M}.

In Beluga, the directive is interpreted as:

{h:xaG} {M:[h |- tm]} [h |- aeq M M].

12 ORBI

where M will have type tm in the context h. Moreover, since the term M is used in the judgment aeq
within the context h, we associate M with an identity substitution, which is not displayed. In short, the
directive allows us to lift the type specified in ORBI to a contextual type that is meaningful in Beluga. In
fact, Beluga always needs additional information on how to interpret terms—are they closed or can they
depend on a given context? For translating symG for example, we use the following directive to indicate
the dependence on the context:

% [bel] implicit (M : tm), (N : tm) in h in symG.

3.3 Guidelines

In addition, we introduce a set of guidelines for ORBI specification writers, with the goal of helping
translators generate output that is more likely to be accepted by a specific system. ORBI 0.1 includes
four such guidelines, which are motivated by the desire to avoid putting too many constraints in the
grammar rules. First, as we have seen in our examples, we use as a convention that free variables which
denote schematic variables in rules are written using upper case identifiers; we use lower case identifiers
for eigenvariables in rules and for context variables. Second, while the grammar does not restrict what
types we can quantify over, the intention is that we quantify over types of level-0, i.e., objects of the
syntax level, only. Third, in order to more easily accommodate systems without dependent types, Pi
should not be used when writing non-dependent types and an arrow used instead. (In LF, for example,
A -> B is an abbreviation for Pi x:A.B for the case when x does not occur in B. Following this guideline
means favoring this abbreviation whenever it applies.) Fourth, when writing a context (grammar ctx),
distinct variable names should be used in different blocks.

4 Related Work

Our approach to structuring contexts of assumptions takes its inspiration from Martin-Löf’s theory of
judgments, especially in the way it has been realized in Edinburgh LF. However, our formulation owes
more to Beluga’s type theory, where contexts are first-class citizens, than to the notion of regular world
in Twelf.

The creation and sharing of a library of benchmarks has proven to be very beneficial to the field
it represents. The brightest example is TPTP [25], whose influence on the development, testing and
evaluation of automated theorem provers cannot be underestimated. Clearly our ambitions are much
more limited. We have also taken some inspiration from its higher-order extension THF0 [3], in particular
in its construction in stages.

The success of TPTP has spurred other benchmark suites in related subjects, see for example SATLIB
[14]; however, the only one concerned with induction is the Induction Challenge Problems (http:
//www.cs.nott.ac.uk/~lad/research/challenges), a collection of examples geared to the au-
tomation of inductive proof. The benchmarks are taken from arithmetic, puzzles, functional program-
ming specifications, etc. and as such have little connection with our endeavor. On the other hand, the
examples mentioned earlier coming from Twelf’s wiki, Abella’s library, Beluga’s distribution, and Hy-
brid’s web page contain a set of examples that highlight the issues around binders. As such they are
prime candidates to be included in ORBI.

Other projects have put forward LF as a common ground: the goal of Logosphere’s (http://www.
logosphere.org) was the design of a representation language for logical formalisms, individual theo-
ries, and proofs, with an interface to other theorem proving systems that were somewhat connected, but

http://www.cs.nott.ac.uk/~lad/research/challenges
http://www.cs.nott.ac.uk/~lad/research/challenges
http://www.logosphere.org
http://www.logosphere.org

A. Felty, A. Momigliano & B. Pientka 13

the project never materialized. SASyLF [1] originated as a tool to teach programming language theory:
the user specifies the syntax, judgments, theorems and proofs thereof (albeit limited to closed objects)
in a paper-and-pencil HOAS-friendly way and the system converts them to totality-checked Twelf code.
The capability to express and share proofs is of obvious interest to us, although such proofs, being a lit-
eral proof verbalization of the corresponding Twelf type family, are irremediably verbose. Finally, work
on modularity in LF specifications [21] is of critical interest to give more structure to ORBI files.

Why3 (http://why3.lri.fr) is a software verification platform that intends to provide a front-
end to third-party theorem provers, from proof assistants such as Coq to SMT-solvers. To this end
Why3 provides a first-order logic with rank-1 polymorphism, recursive definitions, algebraic data types
and inductive predicates [9], whose specifications are then translated to the several systems that Why3
supports. Typically, those translations are forgetful, but sometimes, e.g., with respect to Coq, they add
some annotations, for example to ensure non-emptiness of types. Although we are really not in the same
business as Why3, there are several ideas that are relevant; to name one, the notion of a driver, that is,
a configuration file to drive transformations specific to a system. Moreover, Why3 provides an API for
users to write and implement their own drivers and transformations.

Ott [24] is a highly engineered tool for “working semanticists,” allowing them to write programming
language definitions in a style very close to paper-and-pen specifications; then those are compiled into
LATEX and, more interestingly, into proof assistant code, currently supporting Coq, Isabelle/HOL, and
HOL. Ott’s metalanguage is endowed with a rich theory of binders, but at the moment it favors the
“concrete” (non α-quotiented) representation, while providing support for the nameless representation
for a single binder. Conceptually, it would be natural to extend Ott to generate ORBI code, as a bridge
for Ott to support HOAS-based systems. Conversely, an ORBI user would benefit from having Ott as a
front-end, since the latter view of grammar and judgment seems at first sight general enough to support
the notion of schema and context relation.

In the category of environments for programming language descriptions, we mention PLT-Redex [5]
and also the K framework [22]. In both, several large-scale language descriptions have been specified
and tested. However, none of those systems has any support for binders, let alone context specifications,
nor can any meta-theory be formally verified.

Finally, there is a whole research area dedicated to the handling and sharing of mathematical con-
tent (MMK http://www.mkm-ig.org) and its representation (OMDoc https://trac.omdoc.org/

OMDoc), which is only very loosely connected to our project.

5 Conclusion

We have presented the preliminary design of a language, and more generally, of a common infrastructure
for representing challenge problems for HOAS-based logical frameworks. The common notation allows
us to express the syntax of object languages that we wish to reason about, as well as the context schemas,
the judgments and inference rules, and the statements of benchmark theorems.

We strongly believe that the field has matured enough to benefit from the availability of a set of
benchmarks on which qualitative and hopefully quantitative comparison can be carried out. We hope
that ORBI will foster sharing of examples in the community and provide a common set of examples. We
also see our benchmark repository as a place to collect and propose “open” challenge problems to push
the development of meta-reasoning systems.

The challenge problems also play a role in allowing us, as designers and developers of logical frame-
works, to highlight and explain how the design decisions for each individual system lead to differences

http://why3.lri.fr
http://www.mkm-ig.org
https://trac.omdoc.org/OMDoc
https://trac.omdoc.org/OMDoc

14 ORBI

in using them in practice. Additionally, our benchmarks aim to provide a better understanding of what
practitioners should be looking for, as well as help them foresee what kind of problems can be solved el-
egantly and easily in a given system, and more importantly, why this is the case. Therefore the challenge
problems provide guidance for users and developers in better comprehending differences and limitations.
Finally, they serve as an excellent regression suite.

The description of ORBI presented here is best thought of as a stepping stone towards a more compre-
hensive specification language, much as THF0 [3] has been extended to the more expressive formalism
T HFi, adding for instance, rank-1 polymorphism. Many are the features that we plan to provide in the
near future, starting from general (monotone) (co)inductive definitions; currently we only relate contexts,
while it is clearly desirable to relate arbitrary well-typed terms, as shown for example in [4] and [11] with
respect to normalization proofs. Further, it is only natural to support infinite objects and behavior. How-
ever, full support for (co)induction is a complex matter, as it essentially entails fully understanding the
relationship between the proof-theory behind Abella and Hybrid and the type theory of Beluga. Once
this is in place, we can “rescue” ORBI theorems from their current status as comments and even include
proof sketches in ORBI.

Clearly, there is a significant amount of implementation work ahead, mainly on the ORBI2X tools
side, but also on the practicalities of the benchmark suite. Finally, we would like to open up the repository
to other styles of formalization such as nominal, locally nameless, etc.

References

[1] Jonathan Aldrich, Robert J. Simmons & Key Shin (2008): SASyLF: An Educational Proof Assistant for
Language Theory. In: International Workshop on Functional and Declarative Programming in Education,
ACM Press, pp. 31–40, doi:10.1145/1411260.1411266.

[2] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter
Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich & Steve Zdancewic (2005): Mecha-
nized Metatheory for the Masses: The POPLMARK Challenge. In: Eighteenth International Conference on
Theorem Proving in Higher Order Logics, LNCS 3603, Springer, pp. 50–65, doi:10.1007/11541868 4.

[3] Christoph Benzmüller, Florian Rabe & Geoff Sutcliffe (2008): THF0—The Core of the TPTP Language
for Higher-Order Logic. In: Fourth International Joint Conference on Automated Reasoning, LNCS 5195,
Springer, pp. 491–506, doi:10.1007/978-3-540-71070-7 41.

[4] Andrew Cave & Brigitte Pientka (2012): Programming with Binders and Indexed Data-Types. In: Thirty-
Ninth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM Press,
pp. 413–424, doi:10.1145/2103656.2103705.

[5] Matthias Felleisen, Robert Bruce Findler & Matthew Flatt (2009): Semantics Engineering with PLT Redex.
The MIT Press.

[6] Amy P. Felty & Alberto Momigliano (2012): Hybrid: A Definitional Two-Level Approach to Reasoning with
Higher-Order Abstract Syntax. Journal of Automated Reasoning 48(1), pp. 43–105, doi:10.1007/s10817-
010-9194-x.

[7] Amy P. Felty, Alberto Momigliano & Brigitte Pientka (2015): The Next 700 Challenge Problems for Reason-
ing with Higher-Order Abstract Syntax Representations: Part 1—A Common Infrastructure for Benchmarks.
CoRR abs/1503.06095. Available at http://arxiv.org/abs/1503.06095.

[8] Amy P. Felty, Alberto Momigliano & Brigitte Pientka (2015): The Next 700 Challenge Problems for Reason-
ing with Higher-Order Abstract Syntax Representations: Part 2—A Survey. Journal of Automated Reasoning.
(to appear).

http://dx.doi.org/10.1145/1411260.1411266
http://dx.doi.org/10.1007/11541868_4
http://dx.doi.org/10.1007/978-3-540-71070-7_41
http://dx.doi.org/10.1145/2103656.2103705
http://dx.doi.org/10.1007/s10817-010-9194-x
http://dx.doi.org/10.1007/s10817-010-9194-x
http://arxiv.org/abs/1503.06095

A. Felty, A. Momigliano & B. Pientka 15

[9] Jean-Christophe Filliâtre (2013): One Logic To Use Them All. In: Twenty-Fourth International Conference
on Automated Deduction, LNCS 7898, Springer, pp. 1–20, doi:10.1007/978-3-642-38574-2 1.

[10] Andrew Gacek (2008): The Abella Interactive Theorem Prover (System Description). In: Fourth International
Joint Conference on Automated Reasoning, LNCS 5195, Springer, pp. 154–161, doi:10.1007/978-3-540-
71070-7 13.

[11] Andrew Gacek, Dale Miller & Gopalan Nadathur (2012): A Two-Level Logic Approach to Reasoning About
Computations. Journal of Automated Reasoning 49(2), pp. 241–273, doi:10.1007/s10817-011-9218-1.

[12] J.-Y. Girard, Y. Lafont & P. Tayor (1990): Proofs and Types. Cambridge University Press.
[13] Nada Habli & Amy P. Felty (2013): Translating Higher-Order Specifications to Coq Libraries Supporting

Hybrid Proofs. In: Third International Workshop on Proof Exchange for Theorem Proving, EasyChair Pro-
ceedings in Computing 14, pp. 67–76.

[14] Holger H. Hoos & Thomas Stützle (2000): SATLIB: An Online Resource for Research on SAT. In: SAT 2000:
Highlights of Satisfiability Research in the Year 2000, Frontiers in Artificial Intelligence and Applications 63,
IOS Press, pp. 283–292.

[15] Alberto Momigliano, Alan J. Martin & Amy P. Felty (2008): Two-Level Hybrid: A System for Rea-
soning Using Higher-Order Abstract Syntax. In: Second International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice, LFMTP 2007, ENTCS 196, Elsevier, pp. 85–93,
doi:10.1016/j.entcs.2007.09.019.

[16] Brigitte Pientka (2007): Proof Pearl: The Power of Higher-Order Encodings in the Logical Framework LF.
In: Twentieth International Conference on Theorem Proving in Higher-Order Logics, LNCS, Springer, pp.
246–261, doi:10.1007/978-3-540-74591-4 19.

[17] Brigitte Pientka & Andrew Cave (2015): Inductive Beluga:Programming Proofs (System Description). In:
Twenty-Fifth International Conference on Automated Deduction, Springer.

[18] Brigitte Pientka & Joshua Dunfield (2010): Beluga: A Framework for Programming and Reasoning with
Deductive Systems (System Description). In: Fifth International Joint Conference on Automated Reasoning,
LNCS 6173, Springer, pp. 15–21, doi:10.1007/978-3-642-14203-1 2.

[19] Benjamin C. Pierce (2002): Types and Programming Languages. MIT Press.
[20] Adam Poswolsky & Carsten Schürmann (2009): System Description: Delphin—A Functional Pro-

gramming Language for Deductive Systems. In: Third International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP 2008), ENTCS 228, Elsevier, pp. 113–120,
doi:10.1016/j.entcs.2008.12.120.

[21] Florian Rabe & Carsten Schürmann (2009): A Practical Module System for LF. In: Fourth International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, ACM Press, pp. 40–48,
doi:10.1145/1577824.1577831.

[22] Grigore Roşu & Traian Florin Şerbănuţă (2010): An Overview of the K Semantic Framework. Journal of
Logic and Algebraic Programming 79(6), pp. 397–434, doi:10.1016/j.jlap.2010.03.012.

[23] Carsten Schürmann (2009): The Twelf Proof Assistant. In: Twenty-Second International Conference on
Theorem Proving in Higher Order Logics, LNCS 5674, Springer, pp. 79–83, doi:10.1007/978-3-642-03359-
9 7.

[24] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar & Rok
Strniša (2010): Ott: Effective Tool Support for the Working Semanticist. Journal of Functional Programming
20(1), pp. 71–122, doi:10.1017/S0956796809990293.

[25] Geoff Sutcliffe (2009): The TPTP Problem Library and Associated Infrastructure. Journal of Automated
Reasoning 43(4), pp. 337–362, doi:10.1007/s10817-009-9143-8.

[26] Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek & Gopalan Nadathur (2013): Reasoning About Higher-
Order Relational Specifications. In: Fifteenth International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, ACM Press, pp. 157–168, doi:10.1145/2505879.2505889.

http://dx.doi.org/10.1007/978-3-642-38574-2_1
http://dx.doi.org/10.1007/978-3-540-71070-7_13
http://dx.doi.org/10.1007/978-3-540-71070-7_13
http://dx.doi.org/10.1007/s10817-011-9218-1
http://dx.doi.org/10.1016/j.entcs.2007.09.019
http://dx.doi.org/10.1007/978-3-540-74591-4_19
http://dx.doi.org/10.1007/978-3-642-14203-1_2
http://dx.doi.org/10.1016/j.entcs.2008.12.120
http://dx.doi.org/10.1145/1577824.1577831
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1007/978-3-642-03359-9_7
http://dx.doi.org/10.1007/978-3-642-03359-9_7
http://dx.doi.org/10.1017/S0956796809990293
http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.1145/2505879.2505889

	Introduction
	A Running Example
	ORBI
	Problem Description in ORBI
	Theorems and Directives in ORBI
	Guidelines

	Related Work
	Conclusion

