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ABSTRACT

Modes of limited transposition are musical modes origi-
nally conceived by the French composer Olivier Messiaen
for a tempered system of 12 pitches per octave. They are
defined on the base of symmetry-related criteria used to
split an octave into a number of recurrent interval groups.
This paper describes an algorithm to automatically com-
pute the modes of limited transposition in a generic n-
tone equal temperament. After providing a pseudo-code
description of the process, a Web implementation will be
proposed.

1. INTRODUCTION

Olivier Messiaen is considered one of the most important
composers of the 20th Century. His production includes
not only music pieces, but also theoretical works about his
musical language. Concerning the latter aspect, the inter-
est in ancient Greek music and exotic modes was already
clear in his early compositions. For instance, while a stu-
dent he experimented with his theories about new music
modes in his first published works, Eight Preludes for pi-
ano, and throughout his life Messiaen continued to develop
and evolve new composition techniques, always integrat-
ing them into his musical style. In [1] Messiaen’s music
has been described as outside the Western musical tradi-
tion, although growing out of that tradition and being in-
fluenced by it.

With respect to music scales, the most relevant innova-
tion introduced by Messiaen is probably the definition and
adoption of modes of limited transposition (in French: modes
a transpositions limitées). In order to create new music re-
sources for harmony, he determined all the ways to split an
octave into recurrent groups of notes, where each group
was internally formed by the same intervals and groups
overlapped as regards their boundaries, namely the high-
est pitch of a group was the lowest of the following one.
The way to compute note groups for each mode will be
described in detail in next sections, and some clarifying
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examples will be provided too. For a formal description of
Messiaen’s mode, please refer to [2].

In his theoretical works and music pieces, Messiaen was
always referring to the equal division of an octave into
12 steps (12-EDQO), commonly in use in Western music.
Our goal is applying Messiaen’s theories to a generalized
n-tone equal temperament, where the original modes of
limited transposition represent a special case. In order to
achieve this goal, first we need to define some concepts,
since Western music theory and score representation can-
not be applied to this generalization in a straightforward
way.

2. GENERALIZATION TO N-TONE EQUAL
TEMPERAMENT

Even if Olivier Messiaen sought to overcome the limita-
tions imposed by Western music system, his works had
their roots in that musical culture and tradition. As regards
melodic and harmonic aspects, Western music is largely
based on 12-EDO. In this context, an octave is composed
of 12 steps, where every pair of adjacent pitches has an
identical frequency ratio, equal to /2. In this way, 12-
EDO divides the octave into 12 parts, known as semitones
or half tones, which are the smallest musical interval com-
monly used in Western tonal music. Adopting equal tem-
perament implies that all semitones are equal on a loga-
rithmic scale. Since pitch is (roughly) perceived as the
logarithm of frequency, the distance from every step to its
nearest neighbor is the same for every step in the system.
In general terms, equal temperament is not the only pos-
sibility. Well-known even in ancient times ! and far cul-
tures, 2 this kind of temperament was extensively used in
the European tradition only from the 16th Century, whereas

Pythagorean tuning, Ptolemaic sequence and Zarlinian modal-

ity had been mainly adopted in earlier music [3]; 5-, 7- and
9-EDO are fairly common in ethnomusicology. For exam-
ple, [4] discusses the issue of temperament in Thai music,
whereas [5] analyses Javanese gamelan.

! One of the earliest descriptions of equal temperament is contained in
the writing entitled Elements of Harmony by Aristoxenus, dating back to
the 4th Century BC.

2 For instance, in China an approximation for equal temperament was
described by He Chengtian around 400 AD, whereas the Complete Com-
pendium of Music and Pitch published by Zhu Zaiyu in 1584 contains a
detailed discussion of this pitch theory with a precise numerical specifi-
cation.
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Another possible generalization is the application of equal
temperament to non-octave intervals, thus passing from the
concept of equal division of an octave into n subparts (n-
EDO) to the n-tone equal temperament (n-TET). For in-
stance, the equal-tempered version of the Bohlen-Pierce
scale, described in [6] and [7], is based on the ratio 3:1.
Such an interval, corresponding to a perfect fifth plus an
octave in 12-EDO, is split into 13 equal parts. Conse-
quently, every pair of adjacent pitches presents a frequency
ratio equal to /3.

A great number of equal divisions either of the octave
or of other intervals have found use in microtonal music,
ethnic cultures, theoretical experiences, etc. An in-depth
discussion of tuning and temperament clearly goes beyond
the goals of this work. For further details, please refer to
[8] or [9].

Now we want to provide an extension of twelve-tone sys-
tem, thus defining a generic n-TET where a given inter-
val can be divided into n equally-spaced pitches. In order
to avoid ambiguity with in-use terminology, we will de-
fine any available pitch of the equal temperament as a step.
Each couple of adjacent steps presents a frequency ratio
equal to /7, where r is the frequency ratio of the interval
to be subdivided and n is the number of equal steps. Since
Messiaen defines his modes by splitting the octave, in the
following we will focus on that interval, nonetheless our
approach can be easily extended to any other interval.

Please note that reasoning in terms of steps instead of
fixed frequencies allows an abstract description of the pro-
cess. The modes defined in this way will be potentially
instanced starting from any frequency, either available in
the standard tuning system [10] or not.

3. INTRODUCTION TO MODES OF LIMITED
TRANSPOSITION

According to many musicologists and experts, Messiaen’s
modes of limited transposition are the most relevant re-
source he used to create melody and harmony in music.
The original idea was determining all the possible ways to
split the tempered twelve-tone octave in a number of recur-
rent and non-overlapping note groups. Each group has to
present the same internal pattern, made of a variable num-
ber of variable-size intervals. The smallest interval to build
structures is the tempered semitone, but semitones can be
aggregated to build bigger intervals.

In his theoretical works, Messiaen defines as modes the
recurring note groupings which are limited in the amount
of times they can be transposed, due to patterns within their
structures. Based on a tempered system of 12 pitches, these
modes are formed by several symmetrical groups, the last
note of each group always being common with the first of
the following group. At the end of a certain number of
chromatic transpositions that varies with each mode, they
are no longer transposable, giving exactly the same notes
as the first [2].

In mathematics, this problem recalls the concept of com-
position of an integer. A composition of an integer n is
a way of writing n as the sum of a sequence of (strictly)
positive integers. Two sequences that differ in the order

of their terms define different compositions of their sum,
while they are considered to define the same partition of
that number. Each positive integer n has 2”1 distinct
compositions.

In mathematical terms, the process adopted by Messiaen
allows to find all the compositions of 12 where 12 is the
number of semitones in an octave that match an additional
criterion, namely those presenting a pattern made of k rep-
etitions, with £ > 1. For example, both

12=14+3+14+3+1+3
and
12=34+14+3+14+3+1

satisfy this condition, since it is possible to recognize one
group that is repeated 3 times: in the former case, the re-
current group is [1, 3], in the latter [3, 1]. On the contrary,

12=14+3+3+1+1+3,

which in mathematical terms would be another composi-
tion of 12, does not match the condition, since we cannot
determine k£ > 1 repetitions of the same pattern inside the
composition.

A relevant property of this redefinition of the concept of
composition is cycle invariance. In other terms, if we con-
sider the interval sequence in a circular way, left- and right-
shifting do not introduce new models. Invariance can be
applied to the complete sequence as well as to groups.

4. REPRESENTATION ISSUES

A problem to face is the textual and score representation
of steps in a generic n-TET. In fact, both pitch names and
their corresponding staff position have been originally con-
ceived for a diatonic scale, namely a musical scale com-
posed of seven pitches. The granularity of semitones can
be textually and graphically rendered through the use of ac-
cidentals, a practice that however introduces ambiguity in
the spelling of enharmonic equivalents. Going deeply into
microtonal music language, commonly-accepted represen-
tations are available only for specific subdivisions, such as
quarter tones in 12-EDO.

Messiaen had to manipulate semitones and their possible
aggregations in the context of a 12-step chromatic scale. In
this context, a staff view could be provided - and actually
was provided by the author - but it would require spelling
notes and solving enharmonic ambiguities, which is not
strictly necessary.

In the generalized case we are addressing, the problem
is assigning a name and providing an effective graphical
representation to each of the n subdivisions of an arbitrary
interval. This issue will be discussed in the following sub-
sections.

4.1 Pitch Naming

A practical solution to naming problems is the adoption
of pitch classes as defined in [11]. Pitch classes are an
abstraction of pitches divorced from register, notation and
compositional realization [12], and they can be effectively
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Figure 1. An example of assignment of integers to pitch
classes. Any enharmonically-equivalent note spelling
would be represented by the same integer value.

Figure 2. A ring diagram that provides a cyclic represen-
tation of pitch classes in 4-TET. The numbering of sectors
is arbitrary as regards both the origin and the direction.

notated by assigning pc = 0 to a given step and consec-
utive integers to consecutive steps. Figure 1 shows one
of the 12 possible correspondences among semitones in
the 12-EDO and integer values, specifically the one where
pc = 0 is assigned to C. In the definition of pitch classes,
the octave is not relevant and the sequence of symbols can
be read in a circular way, or in other words the system is
modulo 12. This cyclic approach to pitch representation is
coherent with Messiaen’s one.

Please note that the adoption of pitch classes intrinsi-
cally solves the problem of score-spelling ambiguities: two
spellings - like Ef and F - that in an equal-tempered system
produce the same sound, namely correspond to the same
frequency, collapse into the same pitch class (e.g. pc = 5).

4.2 Ring Diagrams

As regards a graphical rendering suitable for our theoreti-
cal goals, we decided to represent tempered steps through
a periodic tiling (or tessellation) of an annulus. Figure 2
provides an example where a generic interval has been di-
vided into 4 equal steps. This diagram does not contain
references to in-use note names: conventionally, each adja-
cent sector can be identified through consecutive numbers,
and the origin can be set to any sector. Ring diagrams can
be read (and their sectors can be numbered) both clockwise
and counter clockwise.

A color code has been added to each sector, in order to vi-
sually mark both groups and intervals. Color combinations
mainly have two purposes:

e Making visible the sequence of groups, all character-
ized by the same internal layout. Groups constitute
the tessellation of the complete interval to be subdi-
vided;

e Highlighting the internal composition of each group,

in terms of intervals, i.e. step aggregations. The
same sequence of intervals can be found in any group.

This chromatic approach implies that each group is made
of one (consecutive) block per color, and when the color
sequence restarts a new instance of the group occurs, as
shown in Figure 3.

Please note that, inside a group, also intervals with the
same size have different colors. For example, let us con-
sider one of the possible subdivisions of the global interval,
say a specific subdivision of an octave into 12 steps which
originates three 4-step groups [1, 2, 1]. In our represen-
tation, the two single-step intervals inside the group have
different colors, whereas the color layout composed in
this case by 3 different colors is repeated group by group.
The letter sequence of a typical QWERTY layout has been
adopted in order to identify blocks and to play the corre-
sponding pitch, as explained in Section 8.

One of the advantages of ring diagrams is providing a
cyclic representation of groups, in accordance with the con-
cept of pitch class and Messiaen’s theory about modes. Be-
sides, this approach offers the possibility to read diagrams
either clockwise or counter clockwise, provided that the
same criterion is used for all diagrams. Finally, such a
graphical representation allows the reader to choose the
boundary of any colored block as the starting point, which
intrinsically solves the issue of equivalent group spellings.
For instance, a group made of 4 steps can be spelled as [3,
1] or equivalently as [1, 3], since the latter case simply im-
plies building the group from the second pitch, as shown
by the ring diagrams in Figure 4.

For the sake of clarity, in our diagrams the minimum

Figure 3. A ring diagram that highlights the [2,1,1,1,2,3,1]
spelling of an 11-transposition mode in 33-TET.

Figure 4. Ring diagrams for two equivalent spellings:
[3,1] and [1,3].



interval (namely the step) is always surrounded by radial
lines that delimit its extension. These lines are drown with
strong strokes where a step aggregation starts or ends, whereas
boundaries inside an aggregation are thin. However, colors
and thin lines simply provide graphic hints to the user: the
diagram’s semantics resides in the specific tessellation of
the annulus, which is different from a mode to another. As
mentioned above, different spellings of the same mode can
be obtained through suitable rotations of the diagram.

5. AN ALGORITHM TO CALCULATE
GENERALIZED MODES OF LIMITED
TRANSPOSITION

From a historical point of view, only some temperaments
have been considered, due to their application to specific
context (e.g. in ethnomusicology) or to theoretical reasons
(for instance, the adherence of a given interval in a temper-
ament to its theoretical value in terms of frequency ratio).
Our goal is investigating the generalized equal tempera-
ments by following an automatic approach.

In this section we will describe an algorithm to compute
all the possible modes emerging from a given subdivision
of an arbitrary interval. In order to perform calculations,
the only required input is the number of steps we want to
consider, i.e. the minimum granularity to build aggrega-
tions. If we need an audio rendering too, two more inputs
are necessary, namely the frequencies of the pitches that
delimit the global interval to be divided.

The algorithm can be decomposed into 3 steps:

1. Calculating all the integer divisors of the global in-
terval. The key requirement by Messiaen is covering
such an interval through a number £ > 1 of occur-
rences of the same pattern. This implies that each
group is made of an equal (integer) number of steps,
say s. Consequently, the size n of the global inter-
val is split into smaller groupings according to the
following equation: n = k- s. Since k > 1, n is
not considered a divisor of itself, which adheres to
Messiaen’s theories. Provided that n has been set,
the purpose of this step is finding all suitable val-
ues for k, and consequently for s. Please note that
s is also the number of transpositions for a given
mode, since after s 1-step transpositions pitches are
repeated. For example, a chromatic scale in 12-EDO
(n =12, k = 12, s = 1) is a mode presenting
only one transposition, whereas the whole-tone scale
(n =12, k = 6, s = 2) has two transpositions, mis-
aligned by one semitone;

2. For each grouping size s, finding all the composi-
tions of s, i.e. any way to write s as a sorted sum of
positive integers. If the algorithm goes from smaller
to bigger values, covering not only the mentioned di-
visors but any integer in the range [1. .. (s—1)], each
iteration can benefit from already available compo-
sitions. For instance, the fifth iteration aims at find-
ing the compositions of 5. One of them is 5 = 4+ 1,
but all the compositions of 4 have been already com-
puted during the fourth iteration and can be reused
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Table 1. The results for the computation of all available
modes in 12-EDO. Slashed values are the ones removed
by pruning. Intentionally the last row does not contain un-
wanted values since their number would be too high.

here. A well-known programming technique to im-
plement this behavior is recursion;

3. Pruning, i.e. removing unwanted values from data
structures. The algorithm does not produce wrong
results, nonetheless some values need to be purged.
First, as some compositions directly come from ag-
gregations of more atomic ones, in this context they
are redundant. For instance, [2, 2] is a spelling of
4, but the mode built through the repetition of [2, 2]
is indistinguishable from the mode made of single
[2], already available inside the data structures. Be-
sides, we have to manage the mentioned equivalent
spellings, like [1, 2, 3], [2, 3, 1] and [3, 1, 2], corre-
sponding to different ways to read the same interval
pattern.

The data structure used to contain final results is a dic-
tionary whose elements are dynamic arrays of dynamic ar-
rays. The dictionary is made of couples <K,V >, i.e. key-
value associations. In this case, the keys are the collection
of divisors s identified during Step 1. Each key is associ-
ated to a number of corresponding compositions, cleaned
from unwanted duplicates and redundant spellings at Step
3. The adoption of nested dynamic data structures for val-
ues comes from the fact that each s; potentially presents
a different number of compositions ¢; ;, and compositions
themselves are made of a variable number of addends.

Such an algorithm can be implemented in different pro-
gramming languages. An implementation based on HTML5
and JavaScript will be described in Section 8 and has been
made publicly available.

6. COMPUTATION AND REPRESENTATION OF
MESSIAEN’S MODES

In this section, we will apply the proposed algorithm to
the well-known domain discussed in Messiaen’s works,
namely modes of limited transposition in a 12-EDO. Ta-
ble 1 illustrates the results obtained through the algorithm,
which perfectly fit those described by Messiaen in his theo-
retical works. The corresponding ring diagrams are shown
in Figure 5.

From the contents of the data structure it is possible to
reconstruct the complete subdivision of the global interval.
For any value of s, it is necessary to replicate the interval
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Figure 6. Divisors available in n-TET for n € [2..21].

pattern k times, where k = n/s = 12/s. In the following
we will adopt the pitch class naming convention.

7. COMPUTATION AND REPRESENTATION OF
GENERALIZED MODES

The approach used to validate the algorithm in 12-EDO
can be easily extended to any other temperament and inter-
val.

First, it is possible to represent (and listen to) specific
temperaments that are relevant in musicology, ethnomu-
sicology and microtonal composition, such as 5-, 7-, 29-,
31-, 41- and 53-EDO. In all these cases, we are choos-
ing a prime® as the number of steps to divide the global
interval. Consequently, in order to obtain a tessellation
through repetitive patterns, only 1-step groupings are al-
lowed. Other temperaments, e.g. 24-TET, support multiple
modes and mode spellings, since they have many divisors
of the original step number and divisors are great enough
to allow many compositions.

The main advantage of an algorithmic approach is auto-
matically obtaining modes of limited transpositions even in
cases where their definition is difficult to obtain by hand.
As shown in Figure 6, the number of divisors available in
n-TET for n € [2..21] belongs to the range [1..5]; but
Figure 7 demonstrates that the number of corresponding
spellings rapidly grows.

8. WEB PROTOTYPE

The algorithm described above has been implemented in
HTMLS5 and JavaScript, and a Web prototype has been
released. The application is available at http://www.
lim.di.unimi.it/messiaen.

The main goal of this prototype is showing generalized
modes both from a graphical and from an audio point of
view. Colored ring diagrams are produced on-the-fly de-
pending by user’s inputs, and both groupings and internal
step aggregations are highlighted through the already men-
tioned graphical devices: colors selected from a chromatic
space and different line strokes. In order to produce a ring

3 A prime is a natural number greater than 1 that has no positive divi-
sors other than 1 and itself.
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Figure 7. Spellings of the divisors in n-TET for n €
[2..21].

diagram, it is sufficient to select one of the step number val-
ues (for computational reasons s € [2...52]), then one of
the available divisors for that number, and finally one of the
proposed groupings. Arrow-shaped controls are provided
to show different spellings of each group, which virtually
correspond to suitable rotations of the diagram.

The audio rendering of generalized modes requires some
additional inputs. Specifically, two controls let the user
set the start and end frequencies of the global interval to
be split.* Default values are 220 Hz and 440 Hz, cor-
responding to a 2:1 ratio, namely to the octave interval.
Changing this preset allows to subdivide any interval, thus
implementing a first degree of generalization with respect
to Messiaen’s theories. The resulting frequencies for any
pitch in the mode are shown to the side of the ring dia-
gram. A sort of circular keyboard has been implemented:
little circles can be mouse-clicked to produce the corre-
sponding frequency, and they have been associated also to
the keystrokes listed inside the black circles. Play, stop and
BPM controls let the user listen to the selected mode as a
perpetual scale.

A screenshot of the interface at the moment of writing is
shown in Figure 8.

9. CONCLUSIONS

In this paper we presented a generalized approach to the
theoretical work on modes by Olivier Messiaen. An algo-
rithm has been designed and implemented in order to com-
pute all possible groupings and interval patterns coming
from a subdivision of a given interval into a given number
of steps. Under this perspective, Olivier Messiaen’s modes
of limited transposition are one of the possible instances,
as well as Nicholas Mercator researches on 53-EDO and
other extensions of Pythagorean tuning. This work may
present multiple implications, ranging from music perfor-
mance to microtonal music theory, from tuning practice to
composition.

As regards future work, the prototype will be improved

4 Please note that timbre is also relevant to the dissonance levels for
intervals within different scales [13]. As a consequence, an additional
control to choose among different timbres would be desirable.
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Figure 5. Ring diagrams for Messiaen’s modes: Row i. (left) — Modes with 1 transposition; Row i. (right) — Modes with 2
transpositions; Row ii. — Modes with 3 transpositions; Row iii. — Modes with 4 transpositions; Rows iv-vi. — Modes with 6
transpositions.



by implementing controls of the timbre. Besides, the project

Base frequency: 220

E

End frequency: 440

Step number (2-52) 12

Divisors: |6 ¥ Groups: |[2.3.1] v

BPMs (40-240). 60

Play Stop

Group spelling: [2,3,1]

Figure 8. A Web interface to compute generalized Messiaen’s modes.

will include a Max/MSP and a PureData porting, so that

user-defined timbre generators will be able to interface with

the scales defined by the algorithm.
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