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Abstract

We present a method for incorporating the information contained in new datasets into an existing set of
parton distribution functions without the need for refitting. The method involves reweighting the ensemble
of parton densities through the computation of the χ2 to the new dataset. We explain how reweighting
may be used to assess the impact of any new data or pseudodata on parton densities and thus on their
predictions. We show that the method works by considering the addition of inclusive jet data to a DIS + DY
fit, and comparing to the refitted distribution. We then use reweighting to determine the impact of recent
high statistics lepton asymmetry data from the D0 experiment on the NNPDF2.0 parton set. We find that
the D0 inclusive muon and electron data are perfectly compatible with the rest of the data included in the
NNPDF2.0 analysis and impose additional constraints on the large-x d/u ratio. The more exclusive D0
electron datasets are however inconsistent both with the other datasets and among themselves, suggesting
that here the experimental uncertainties have been underestimated.
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1. Introduction

The determination of parton distribution functions (PDFs) and their uncertainties through
global fits to datasets taken in deep inelastic and hadronic collision experiments, analyzed using
perturbative QCD, is one of the key ingredients in the exploitation of future experiments, in
particular at LHC. Of course such fits can only be as good as the data that goes into them, so
whenever there is new data or new experiments, the fits have to be redone to take the new data
into account. This process is cumbersome and time consuming, and can only be performed using
the same software as in the previous fits, and thus by the fitting collaborations themselves.

In this paper we will show how, by using the ensembles of PDFs produced by the NNPDF
Collaboration [1–4], anyone can determine the effect of new data on the PDFs quickly and easily:
all that is required is a computation of the χ2 to the new data for each PDF in the ensemble [5].
With this information one can determine the overall impact of the new data on PDFs, their con-
sistency with the older data used in the fit, the effect the new data have on the shape and precision
of individual PDFs, and thus their effect on observables such as benchmark cross-sections or pre-
dictions for new physics. The same approach can be used just as easily to estimate the effects of
pseudodata from proposed experiments or machines on PDFs and thus on cross-sections.

The technique we use is based on statistical inference. In the NNPDF approach [1–4,6]
we generate through a Monte Carlo procedure an ensemble of N PDF replicas, E = {fk, k =
1, . . . ,N}, each fitted to a data replica generated according to the uncertainties and their correla-
tions as measured by the experimental collaborations. Each PDF is parametrized by a highly re-
dundant neural network in order to avoid parameterization bias which would otherwise spoil the
procedure, and the stopping point of the fit of each replica is determined using cross-validation to
prevent over-fitting. The final PDF ensemble then forms an accurate representation of the prob-
ability distribution of PDFs,1 conditional on the input data and the particular assumptions (such
as NLO QCD, a value of αs , etc.) used in the fits.

Given an NNPDF ensemble one can evaluate any quantity or experimental observable O[f ]
depending on the PDFs (such as the PDF mean, the variance, PDF correlations, or indeed the
mean, variance, etc., of any cross-section computed from them) by computing O[f ] for each of
the replicas, and averaging the results. This is because the integral in the space of functions is
well approximated by the average over the ensemble E , so that the mean value of O[f ] given by

〈O〉 =
∫

O[f ]P (f )Df = 1

N

N∑
k=1

O[fk]. (1)

Each of the replicas fk carries equal weight because they were generated through importance
sampling: the replicas were fitted to a data replica generated according to the probability distri-
bution of the experimental data, using a fitting procedure with no bias.

We can include the effects of a new independent dataset without performing a new fit if we
instead reweight the old fit according to weights wk , which assess the probability that each PDF
replica fk agrees with the new data. The reweighted ensemble then forms a representation of the
probability distribution of PDFs conditional on both the old data and the new. The weights are
computed straightforwardly by evaluating the χ2 of the new data to each of the replicas. The

1 Throughout this paper we will denote ‘parton distribution function’ by PDF, but write out ‘probability density func-
tion’ in full, in order to avoid any confusion: both are probability densities, but in very different spaces.
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mean value of the observable O[f ] taking account of the new data is then given by the weighted
average

〈O〉new =
∫

O[f ]Pnew(f )Df = 1

N

N∑
k=1

wk O
[
f (k)

]
. (2)

The usefulness of this method is clear: it becomes possible to test the impact of a new dataset,
or indeed the potential impact of MC data generated for a new experiment, quickly and simply
without the need for a new fit (or indeed without considering explicitly any other datasets except
the one under immediate consideration). This comes at a price: the effective number of replicas
will be reduced, either because the new data prove to be very constraining (good), or because
they are inconsistent with the old data (bad). We will provide a criterion to distinguish between
these two cases. Of course if the new data are both consistent and precise, the effective number
of replicas might be so reduced that a refit becomes necessary.

One of the advantages of the reweighting method is that it can be used to assess the impact
on the global fit of observables for which no fast code is available, and thus which cannot be
included without resorting to K-factor approximations. One such observable is the Tevatron
W lepton charge asymmetry. Recent measurements [7–10] of this quantity have attracted a lot
of attention, since sizable tension with other data in the global fit sensitive to the large-x d

quark distribution, such as DIS deuterium structure function data, has been reported [11,12]. It is
not clear from these studies whether this tension reflects an experimental problem of the recent
Tevatron data, or whether the problems are with the DIS deuterium data, perhaps indicating the
need for substantial nuclear corrections. With this motivation, armed with the statistical power
of reweighting, we will here study the incorporation of the D0 W lepton charge asymmetry data
on the NNPDF2.0 fit.

Reweighting is also important from a conceptual point of view. If more and more data are
included in the fit through reweighting, the resulting PDFs become less and less dependent on
the initial PDF. But PDFs obtained in this way then by construction satisfy the laws of statistical
inference — for example, uncertainties will automatically behave upon inclusion of new data
according to standard statistics.2 Hence, checking that the results obtained by reweighting coin-
cide with results obtained by simply including the new data in the global fit provides a highly
nontrivial check on the consistency of the NNPDF global fitting procedure.

The paper is organized as follows. In the next section, we will explain how the weights can be
computed, and give tests through which one can access quantitatively the impact of the new data
and their consistency with the old data. A detailed proof of these results, with a full discussion
of the subtleties, is given in Section 3: this is important because an earlier attempt to implement
a reweighting procedure [5] used an expression for the weights which differs from our result (a
detailed examination of the result of Ref. [5] is presented in Section 3.2).3 This section may be
skipped by readers only interested in applying the new technique. In Section 4 we show how
the method may be used in practice by applying it to inclusive jet data: since there are existing
NNPDF sets with and without this data, this allows us to check that reweighting works. Then in
Section 5 we illustrate the power of reweighting by using it to assess the impact of D0 W lepton

2 Indeed, it was suggested in Ref. [13] that a PDF fit might be performed by including all data through reweighting of
a first guess based on past experience.

3 A recent study by the LHCb Collaboration [14] using a reweighting technique to assess the impact of low pt Drell–
Yan pairs at the LHC on PDF determinations, also appears to use the incorrect formula derived in [5].
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charge asymmetry data on the NNPDF2.0 PDFs. The results are particularly interesting because
while the inclusive D0 asymmetry data is perfectly compatible with the NNPDF2.0 set and results
in a moderate improvement in the determination of the medium and large-x d quark PDF, the
more exclusive electron datasets turn out to be inconsistent both with other sets in the global
analysis and among them.

2. Reweighting

2.1. The weights

We consider the situation where a set of experimental data have been used to construct a
probability distribution for PDFs, Pold(f ). This probability distribution is delivered as a finite
ensemble of PDFs E = {f (k), k = 1, . . . ,N}. Any observable can be obtained performing aver-
ages over this ensemble as prescribed in Eq. (1), that is, equally weighting each PDF.

The problem we shall now address is how to update this probability distribution when new
experimental data are available. There are two options: either we can construct a new probability
distribution Pnew(f ) from scratch by including both old and new data in a new fit, or we can
update the old fit by computing a weight, wk , for each individual PDF fk in the ensemble E
according to the rules of statistical inference. Then, Pnew(f ) is simply understood as an update
(or reweighting) of the prior probability distribution Pold(f ).

Both methods incorporate the same information, the old and the new data, and we will show
below that when the weights are chosen correctly both techniques are statistically equivalent in
the sense that when the number of replicas is sufficiently large they both give representations
of the same probability distribution Pnew(f ). However to calculate the weights involves only
knowledge of the new data: all the relevant information about the old data is already contained
in Pold(f ). It is thus substantially easier to implement, since no refitting is necessary.

To be specific, we consider a set of n new data that have not been included in the determination
of the initial probability density distribution:

y = {y1, y2, . . . , yn}.
Clearly any instance of such a set of data can be seen as a point y in an n-dimensional real space.
The experimental uncertainties are summarized by the n×n experimental covariance matrix σij ,
which includes a term that incorporates the overall normalization uncertainty [15], but reduces
to a diagonal matrix in cases when experimentalists do not provide the correlated systematic
uncertainties. We assume throughout that these new data are statistically independent of any of
the data included in the original fit.

Using statistical inference we can update the initial probability density Pold(f ) by taking into
account the new data, thereby obtaining an improved probability density Pnew(f ). To do this we
need to know the relative probabilities of the new data for different choices of PDF. Since the
new data are assumed to have Gaussian errors, these probabilities will be directly proportional to
the probability density of the χ2 to the new data conditional on f :

P
(
χ2

∣∣f ) ∝ (
χ2(y, f )

)n/2−1
e− 1

2 χ2(y,f ), (3)

where if yi[f ] is the value predicted for the data yi using the PDF f ,

χ2(y, f ) =
n∑ (

yi − yi[f ])σ−1
ij

(
yj − yj [f ]). (4)
i,j=1
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It follows from the statistical independence of the old and new data that by the law of multi-
plication of probabilities:

Pnew(f ) = Nχ P
(
χ2

∣∣f )
Pold(f ), (5)

where Nχ is a normalization factor, independent of f .
Multiplying on both sides by some observable O[f ] and integrating over the PDFs,

〈O〉new =
∫

O[f ]Pnew(f )Df

= Nχ

∫
O[f ]P

(
χ2

∣∣f )
Pold(f )Df

= 1

N

N∑
k=1

Nχ P
(
χ2

∣∣fk

)
O[fk], (6)

where in the last line we used Eq. (1).
We can thus sample the probability density Pnew(f ) using the N replicas fk , but reweighted:

in place of Eq. (1) we now have

〈O〉new = 1

N

N∑
k=1

wk O[fk], (7)

where

wk = Nχ P
(
χ2

∣∣fk

) = N ′
χ

(
χ2

k

)n/2−1
e− 1

2 χ2
k , (8)

and χ2
k ≡ χ2(y, fk) is evaluated using Eq. (4). The normalization factor N ′

χ is fixed by nor-
malizing the new probability density Pnew(f ): taking the operator O[f ] to be the unit operator,
〈1〉new = 1, so from Eq. (7) this fixes

∑N
k=1 wk = N , and thus using Eq. (8)

wk = (χ2
k )n/2−1e− 1

2 χ2
k

1
N

∑N
k=1(χ

2
k )n/2−1e− 1

2 χ2
k

. (9)

The weights wk , when divided by N , are then simply the probabilities of the replicas fk , given
the χ2 to the new data.

Note that our formula (9) for the weights is different from the one derived in Ref. [5]. The
reason for this is that the use of Bayes theorem for multi-dimensional probability densities is
subtle, since without care one may fall foul of the Borel–Kolmogorov paradox (see for example
Ref. [16]). A careful proof of the weights equation (9) using the elementary rules of statistical
inference is given in Section 3.1: the subtle error in the argument used in Ref. [5] is explained in
Section 3.2.

2.2. Measuring information loss and consistency

The original ensemble of replicas E = {f (k), k = 1, . . . ,N} is constructed through impor-
tance sampling of the probability density Pold(f ), and thus each replica has equal weight. It is
maximally efficient, in the sense this is the best representation of the underlying density Pold(f )

for a given number of replicas N : the only way to improve it is by increasing N . After reweight-
ing, this will no longer be the case, since in fact the weights give the relative importance of the
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different replicas, and the replicas with very small weights will become almost irrelevant in en-
semble averages. The reweighted replicas will thus no longer be as efficient as the old: for a given
N , the accuracy of the representation of the underlying distribution Pnew(f ) will be less than it
would be in a new fit.

We can quantify this loss of efficiency by using the Shannon entropy to compute the effective
number of replicas left after reweighting:

Neff ≡ exp

{
1

N

N∑
k=1

wk ln(N/wk)

}
. (10)

Clearly 0 < Neff < N : the reweighted fit has the same accuracy as a refit with Neff replicas. Thus
if Neff becomes too low, the reweighting procedure will no longer be reliable, either because
the new data contain a lot of information on the PDFs, necessitating a full refitting with more
replicas, or because the new data are inconsistent with the old.

These two cases can be distinguished by examining the χ2 profile of the new data: if in the
reweighted fit there are very few replicas with a χ2 per data point of order unity, the errors in the
new dataset have probably been underestimated. This profile may be easily evaluated:

P
(
χ2) = 1

N

∑
k

wk, (11)

where the sum is over all replicas k such that χ2
k ∈ [χ2, χ2 + dχ2].

Alternatively, we consider inconsistent data as data whose errors have been underestimated.
If we rescale the covariance matrix of the data by a factor α, we can use inverse probability to
calculate the probability density for the rescaling parameter α:

P (α) ∝ 1

α

N∑
k=1

wkwk(α). (12)

Here wk(α) are the weights equation (9) evaluated by replacing χ2
k with χ2

k /α (and are thus
proportional to the probability of fk given the new data with rescaled errors): averaging them in
the reweighted fit thus gives the probability density for α. If this probability density peaks close
to one the new data are consistent, while if it peaks far above one, then it is likely that the errors
in the data have been underestimated.

If the new data are reasonably consistent, we can assess whether they should be included in
a new fit by calculating the χ2 distribution of the dataset that would be used in the new fit (i.e.
all the old data plus the new data), using the reweighting procedure as in Eq. (11). Comparison
to the old χ2 distribution then tells us whether the new data would improve the fit: if so the peak
should shift a little towards one, with a slight narrowing due to the increase in the total number
of data points. This may be quantified by comparing the area under the curves in a given range.

3. Statistical inference

3.1. Proof of the weight formula

Here we give a careful derivation of the rules for reweighting presented in the previous section.
Some readers may consider skipping this section and simply use the practical prescription as
given in Eq. (9). Our argument is based on the standard use of statistical inference. However
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some of the details are subtle, since we need to use probability densities in multi-dimensional
spaces, and thus need to take care with limits.

By the probability P(f ) for the PDF f what we actually mean is the probability P(f |K),
where K denotes all the data used in the determination and their associated errors, the values
of parameters such as αs and heavy quark masses used in the computation of the data expected
from the PDF, and finally also the theoretical framework used (for example NLO QCD). If we
then wish to extend the dataset by including new data y, the new probability Pnew(f ) is then
P(f |yK): besides K we now also assume the new data y.

The new probability is then determined from the old probability using the sampling distribu-
tion P(y|f K) and multiplicative rule for probabilities (often known as Bayes theorem):

P(AB|C) = P(A|BC)P (B|C) = P(B|AC)P (A|C), (13)

where P(A|C) is the probabilities of A given C, etc., and AB denotes A and B . Naively applying
this result in the present case we have

P(f |yK)P (y|K) = P(y|f K)P (f |K), (14)

whence (replacing P(f |K) with P (f |K)Df , P(f |yK) with P (f |yK)Df )

P (f |yK) = P(y|f K)P (f |K)/P (y|K). (15)

Note that P(y|K) does not depend on the PDF f , and can thus be determined simply by insisting
that P (f |yK) is properly normalized: we then find

P(y|K) =
∫

P(y|f K)P (f |K)Df, (16)

so

P (f |yK) = P(y|f K)P (f |K)
/∫

P(y|f K)P (f |K)Df, (17)

where everything on the right-hand side is now known.
This argument would work without problems if the data y could only take discrete values.

The difficulty in the present case is that our data are continuous, so rather than the probability
P(y|f K) we have to work with a multi-dimensional probability density P (y|f K)dny, in a limit
in which the volume element dny goes to zero. Of course in this limit the probabilities P(y|f K)

and P(y|K) also go to zero, and we find a ratio of two zeros in Eq. (15). The conditional proba-
bility P(f |yK) is then only well defined if we specify carefully the way in which the limit is to
be taken: probabilities conditional on sets of measure zero are ambiguous. Failure to specify the
limiting process can result in contradictions (the Borel–Kolmogorov paradox [16]).

Consider then the probability density for the data y. Assuming that the new experiments are
not correlated with any of the experiments used in the determination of the initial probability
density, the probability density of y is then given by Eq. (16):

P (y|K) =
∫

P (y|f K)P (f |K)Df = 1

N

N∑
k=1

P (y|fkK), (18)

where in the second step we used Eq. (1). The density P (y|f K) gives the probability that the
new data lie in an infinitesimal volume dny centred at y in the space of possible data given a
particular choice of PDF f : it is often called the sampling distribution or (when considered as
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a function of f ) the likelihood function. Assuming that the uncertainties in the data are purely
Gaussian,

P (y|f K)dny = (2π)−n/2(detσij )
−1/2e− 1

2 χ2(y,f ) dny, (19)

where χ2(y, f ) is calculated using Eq. (4) (and of course using the assumptions K in the com-
putation of the predictions yi[f ]).

Since to compute P (y|f K) it is sufficient to compute χ2(y, f ), it is sufficient for our pur-
poses to consider the probability density for the χ2 to the new dataset:

P
(
χ2

∣∣f K
)
dχ2 = 2−n/2(�(n/2)

)−1(
χ2(y, f )

)n/2−1
e− 1

2 χ2(y,f ) dχ2. (20)

This may be readily derived from Eq. (19) by diagonalizing the covariance matrix and rescal-
ing the data to a set {Yi} of independent Gaussian variables each with unit variance. Then
dny = (detσij )

1/2 dnY , and χ2 = ∑n
i=1 Y 2

i . Choosing n-dimensional spherical co-ordinates in

the space of data (with
√

χ2 as the radial co-ordinate, and thus y = y[f ] as the origin), we
may write dnY = An

1
2 (χ2)n/2−1 dχ2 dn−1Ω , where dn−1Ω is the measure on the sphere and

An = 2πn/2(�(n/2))−1 is the area of the unit sphere in n dimensions. The probability (19) may
thus be written

P (y|f K)dny = (2π)−n/2e− 1
2 χ2(y,f ) dnY

= 2−n/2(�(n/2)
)−1(

χ2(y, f )
)n/2−1

e− 1
2 χ2(y,f ) dχ2 dn−1Ω, (21)

in agreement with Eq. (20) provided

P (y|f K)dny = P
(
χ2

∣∣f K
)
dχ2 dn−1Ω. (22)

Again the probability density P (χ2|K) for the χ2 of the new dataset is obtained by averaging
over replicas:

P
(
χ2

∣∣K) =
∫

P
(
χ2

∣∣f K
)

P (f |K)Df = 1

N

N∑
k=1

P
(
χ2

∣∣fkK
); (23)

so combining Eqs. (18), (22), and (23)

P (y|K)dny = 1

N

N∑
k=1

P
(
χ2

∣∣fkK
)
dχ2 dn−1Ω = P

(
χ2

∣∣K)
dχ2 dn−1Ω, (24)

since both the volume factor dn−1Ω and the interval dχ2 are independent of the choice of replica,
and may thus be taken out of the sum.

The advantage of using P (χ2|f K) instead of P (y|f K) when evaluating Eq. (15) is that
P (χ2|f K) is only a one-dimensional density, so taking the limit in which the volume element
goes to zero is straightforward and unambiguous. We may write Eq. (15) as

P
(
f

∣∣χ2K
)
Df P

(
χ2

∣∣K)
dχ2 = P

(
χ2

∣∣f K
)
dχ2 P (f |K)Df. (25)

The marginalization equation (23) follows directly on integration over f , since if P (f |χ2) is
correctly normalized,

∫
P (f |χ2K)Df = 1. Now, cancelling the dχ2 from either side of Eq. (25)

(since this is just a pre-assigned interval),

P
(
f

∣∣χ2K
)
Df = P (χ2|f K)

2
P (f |K)Df. (26)
P (χ |K)
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Multiplying on both sides by some observable O[f ] and integrating over the PDFs,

〈O〉new =
∫

O[f ]P
(
f

∣∣χ2K
)
Df

=
∫

O[f ] P (χ2|f K)

P (χ2|K)
P (f |K)Df

= 1

N

N∑
k=1

P (χ2|fkK)

P (χ2|K)
O[fk], (27)

where in the last line we used Eq. (1). This corresponds to the reweighting Eq. (7) with weights

wk = P (χ2|fkK)

P (χ2|K)
. (28)

Combining Eq. (28) with Eqs. (20) and (23), we obtain Eq. (9).
Note that a further application of Bayes’ theorem to Eq. (28) gives the alternative form

wk = P(fk|χ2K)

P (fk|K)
= NP

(
fk

∣∣χ2K
)
, (29)

since because the replicas are uniformly distributed, P(fk|K) = 1/N . Thus wk/N is the proba-
bility of replica fk given the χ2 to the new data.

3.2. The naive prescription

It is instructive to also derive the weights working directly with the probability density
P (y|f K): using Bayes’ theorem we may write instead of Eq. (25)

P (f |yK)Df P (y|K)dny = P (y|f K)dny P (f |K)Df. (30)

Again, the marginalization equation (18) follows directly from the requirement that P (f |yK) be
normalized, i.e. that

∫
P (f |yK)Df = 1.

Naively cancelling the volume factor dny from either side, and pursuing the same argument
as before yields:

〈O〉Gnew =
∫

O[f ]P (f |yK)Df

=
∫

O[f ] P (y|f K)

P (y|K)
P (f |K)Df

= 1

N

N∑
k=1

P (y|fkK)

P (y|K)
O[fk]. (31)

This would then lead to the conclusion of Giele and Keller [5] that the weights are proportional
to P (y|fkK)/P (y|K), and thus (using Eq. (19)) are given by

wG
k = e− 1

2 χ2
k

1
N

∑N
k=1 e− 1

2 χ2
k

. (32)

This result is clearly different from our previous result (28). We see explicitly that the densities
P (f |χ2K) and P (f |yK) are not the same, despite the fact that when the data y take a given
value, the χ2 takes a corresponding value.
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It is also clear that the Gaussian weights equation (32) must be incorrect: in the limit where
the number of new (and consistent) data n becomes very large, χ2

k peaks around n, and only the
very few replicas in the tail of the distribution (χ2

k 	 n is very unlikely) will survive. By contrast
with the correct weights equation (28), replicas with χ2

k ∼ n will dominate the fit, replicas with
very small or very large χ2 being suppressed.

The reason for the difference between the results (28) and (32) is the Borel–Kolmogorov
paradox [16]: when dealing with multi-dimensional probability densities care must be taken with
limits, since a conditional probability on a set of measure zero is not well defined. Here the limits
used to derive P (f |χ2K) and P (f |yK) are different, and thus so are the results. The correct
result can only be obtained by taking the appropriate limit.

The probability density P (f |χ2K) is defined as the probability density for f given that the χ2

lies in the finite interval [χ2, χ2 + dχ2], in the limit dχ2 → 0. In this case the conditioning
variable spans a one-dimensional manifold, and therefore there is no freedom in the choice of
the limiting procedure. The definition of P (f |χ2K) is unique, and thus the argument which leads
to Eq. (28) unambiguous. However the probability density P (f |yK) is defined as the probability
density for f given that y lies in some volume Vn, in the limit Vn → 0. In a multi-dimensional
space such as this, the conditional probability density P (f |yK) is ambiguous, since it depends on
the way the volume element Vn is chosen, and then taken to zero. Different definitions correspond
to different physical settings. In the argument which led us to Eq. (32), we implicitly assumed
that Vn was the compact volume dny centred on y, so that as Vn → 0, the point y was uniquely
selected. However there are many points in the space of data which have the same χ2, and thus
the same effect on f . If we want to include all these points with equal weight when determining
the conditional probability density of f given y, as we surely must, we need to sum over all the
compact volumes dny that build the (n − 1)-dimensional level surfaces of χ2(y, f ) through the
point y. Thus Vn is a thin shell with thickness dχ2, and hence its total volume is Vn = An dχ2.
The limit Vn → 0 is then taken by letting dχ2 → 0. We should thus write Eq. (30) as (using
Eqs. (22) and (24))

P (f |yK)Df P
(
χ2

∣∣K)
An dχ2 = P

(
χ2

∣∣f K
)
An dχ2 P (f |K)Df. (33)

Cancelling the volume factor An dχ2, since this is independent of f , this definition is the same
as Eq. (26), and thus yields the correct weights equation (9) in the limit Vn → 0.

3.3. Derivation of the consistency tests

Finally we consider the derivation of the two diagnostic results (11) and (12). The first is
simply the ‘evidence’ (23), evaluated by binning in χ2. The second is more involved: using
Bayes theorem

P
(
α
∣∣χ2, fk,K

)
dα = P(fk|α,χ2,K)

P (fk|χ2,K)
P

(
α
∣∣χ2,K

)
dα. (34)

Now the probability P(fk|α,χ2,K) may be evaluated by noting that the effect of α is to rescale
χ2 → χ2/α, and P(fk|(χ2/α),K) is then simply proportional to the weights wk(α) evaluated
according to Eq. (9) with χ2 replaced by χ2/α. The prior density P (α|χ2,K) we assume is
uniform in lnα, since α is a scale parameter (this ensures that the results are invariant under
α → 1/α). We thus find
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P
(
α
∣∣χ2, fk,K

) = wk(α)

α
∫

d(lnα′)wk(α′)
, (35)

where the overall normalization has been fixed by integrating over α. Then as usual

P
(
α
∣∣χ2,K

) =
∫

Df P
(
α
∣∣χ2, f,K

)
P

(
f

∣∣χ2,K
)

= 1

N

N∑
k=1

wkwk(α)

α
∫

d(lnα′)wk(α′)
. (36)

It is easy to show by a change of variable that the integrals in the denominator are the same for
all k, whence we find Eq. (12).

4. Validation: Inclusive jets

As a demonstration of the effectiveness of our reweighting procedure, we first apply it to
a dataset that has already been included and studied in the NNPDF2.0 analysis [4]. We thus
start with the fit obtained including only the DIS and Drell–Yan data, call this NNPDF2.0
(DIS + DYP), and then add the inclusive jet data from Tevatron Run II [17,18], which were
included in the NNPDF2.0 analysis, through reweighting. The resulting reweighted fit can then
be compared directly with the NNPDF2.0 fit, which includes the same DIS, Drell–Yan and Teva-
tron inclusive jet data. Given the consistency of the inclusive jet data with the DIS and Drell–Yan
data demonstrated in Ref. [4], we expect the reweighted and refitted distributions to give results
that are equivalent up to statistical fluctuations.

Note that from this section on we will slightly change the notation to make it more similar to
that of previous NNPDF studies: Nrep will denote the number of replicas in the sample and Ndat
the number of data points in the set which is added through reweighting.

To obtain the reweighted PDFs, all that has to be done is to compute the χ2
k of replica k

to the inclusive jet data, using Eq. (4), for each of the Nrep = 1000 replicas of the NNPDF2.0
(DIS + DYP) parton set. For the inclusive jet data the total number of data points is Ndat = 186,
and the covariance matrices are as given by the CDF and D0 Collaborations, the normalization
uncertainty are incorporated using the t0-method, as discussed in Refs. [4,15]. The weight asso-
ciated with each replica in then computed according to Eq. (9): specifically we evaluate

ek ≡
(

1

2
Ndat − 1

)
logχ2

k − 1

2
χ2

k (37)

hence if 〈ek〉 ≡ 1
Nrep

∑Nrep
k=1 ek , the weights are given by

wk = N exp
[
ek − 〈ek〉

]
, N = Nrep

/Nrep∑
k=1

exp
[
ek − 〈ek〉

]
. (38)

The subtraction of 〈ek〉 in the exponent is introduced to avoid numerical problems. We set to zero
all weights for which exp[ek − 〈ek〉] < 10−12.

The χ2
k distributions for the jet data before and after reweighting, the P(α) estimator and the

distribution of weights are shown in Fig. 1. We notice that before reweighting the distribution
of χ2 per data point is peaked close to one, but with a long tail extending to higher values
of χ2. This has to be expected since the inclusive jet data are not included in the NNPDF2.0
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Fig. 1. Upper plots: distribution of χ2
k
/Ndat (the χ2 per data point) and the weights wk in the reweighting of the

NNPDF20 (DIS + DYP) set using the inclusive jet data. Lower plots: distribution of the reweighted χ2 distribution
of the inclusive jet data, and the probability distribution P(α) of the error rescaling parameter α.

(DIS + DYP) set. However 82% of the replicas have 0.5 < χ2
k < 2, confirming that the inclusive

jet data are likely to be consistent with the other data in the fit and their inclusion in the fit will
have only a moderate impact. Indeed a significant fraction of the weights are of order one, with
however a long tail of small weights for replicas which will be effectively eliminated once the
inclusive jet data are included.

To make these statements more quantitative, we can now evaluate the number of effective
replicas, determined through the Shannon entropy according to Eq. (10): the effective number of
replicas after reweighting using the jet data is Neff = 332, i.e. around a third of the replicas are
left.

To examine the consistency of the inclusive jet data with the DIS and Drell–Yan data used in
NNPDF20 (DIS + DYP), we show in Fig. 1 the reweighted χ2 distribution computed according
to Eq. (11). Clearly the replicas which gave a poor fit to the jet data have now been removed, and
the result is a distribution of χ2 peaked at one, which shows that the jet data are consistent with
the DIS and Drell–Yan data. This conclusion is reinforced by the probability distribution P (α),
plotted in Fig. 1: the most probable value for α is very close to one, showing that the overall size
of the experimental errors of these data have been perfectly estimated by CDF and D0.

In order to determine quantitatively if indeed the refitted and reweighted PDF sets represent
statistically identical distributions, we can compute the distances between central values and un-
certainties of different PDF combinations, as defined in Ref. [4] with the required modifications
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Fig. 2. Distances between PDFs (above) and uncertainties (below) for the NNPDF2.0 set and a set obtained adding the
Tevatron inclusive jet production data to the NNPDF2.0 (DIS + DY) fit using the reweighting technique. The distances
have been computed between sets of Nrep = 100 replicas.

to account for the individual weights of each replica.4 In Fig. 2 we plot the distances between
PDFs’ central values and uncertainties for the reweighted set and the (refitted) NNPDF2.0 set.
Note that distances have been computed between sets of Nrep = 100 replicas. The distance is
normalized such that distances d ∼ 1 correspond to statistically identical distributions. We see
that to a very good approximation the refitted and the reweighted sets are statistically equiva-
lent, both for central values and uncertainties. The very largest distances, d ∼ 2, corresponding a
difference of about one seventh of a standard deviation of the measured quantity.

Given that as shown in Fig. 2 the refitted and reweighted sets are statistically equivalent,
we know from [4] that inclusive jet data constrain only the large-x gluon, leaving virtually un-
changed all other distributions. The reweighted gluon distribution and its uncertainty are shown
in Fig. 3, compared with the original distribution, the NNPDF20 (DIS + DYP) fit, and with the
full NNPDF2.0 fit. On the left-hand side we plot the gluon distribution with its uncertainty band
and on the right-hand side the absolute value of the uncertainty. The reweighted and refitted dis-
tributions are indeed shown to be equivalent within errors. In particular the error of the medium
and large-x gluon is sensibly reduced by the inclusion of the Tevatron inclusive jet data while,
the other PDFs are essentially unchanged in both the refitted and the reweighted sets.

This statistical equivalence is an important check on the consistency of the NNPDF fitting
methodology and the reweighting method presented here. In particular, it shows that an NNPDF

4 The expressions for the distances for reweighted PDF sets are collected in Appendix A.
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Fig. 3. The gluon distribution (left) and its uncertainty (right) of the NNPDF2.0 (DIS + DY) fit before and after reweight-
ing with the inclusive jet data compared to the refitted gluon from NNPDF2.0 on a linear scale.

parton fit (at least in the case examined here) behaves in a way which is consistent with the laws
of statistical inference: since reweighting is simply an application of probability theory, and since
reweighting and refitting can be used interchangeably, the results obtained from the global fits
indeed behave as probability distributions.

5. Application: The W lepton asymmetry

Now that we have explicitly verified that reweighting works, we can use it to assess the impact
on PDF determination of data which were not included in the NNPDF2.0 fit. In this section we
consider the Tevatron D0 W lepton charge asymmetry high luminosity data from Run II [8,9].
This data have attracted a lot of interest recently because of their potential inconsistency with
other datasets which are traditionally included in the global fit like the deuterium DIS data [11,
12].

5.1. Motivation

In proton–antiproton scattering, W± bosons are mainly produced by the annihilation of a u

(d) quark in the proton with the d̄ (ū) in the antiproton. An asymmetry in the W+ and W−
rapidity distributions is the result of a difference between the u and d distributions in the proton.
Therefore, the information on the W charge asymmetry [19] provides a further constraint on the
u and d PDFs. However, due to the unknown longitudinal momentum of the neutrino, the vector
boson rapidity is difficult to determine directly. What is typically measured [7–10] is instead the
lepton charge asymmetry. The vector boson rapidity may then be deduced in terms of the pseudo-
rapidity of the charged lepton and its transverse energy El

T . Moreover, if the transverse energy
El

T of the outgoing lepton is relatively small, the leading sea contribution ū − d̄ is enhanced
relative to the valence–valence contributions, so the lepton charge asymmetry also probes the
separation into valence and sea quarks. For this reason in some experimental analysis [9,10], the
lepton asymmetry is measured in different bins of El

T .
Historically, the Tevatron W lepton charge asymmetry data have been used in global fits to-

gether with the deuterium DIS data from BCDMS and NMC to constrain the ratio of d to u

quarks at large-x. One advantage with respect DIS data is that theoretical uncertainties linked
to the deuterium target, like nuclear effects, are not present for the lepton asymmetries, where
only proton PDFs are involved. In Fig. 4 we show the d/u ratio computed using different recent
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Fig. 4. The d/u ratio at large x computed at Q2
0 = 2 GeV2 from the NNPDF2.0, MSTW08 and CT10 sets. We show the

results for the ratio normalized to NNPDF2.0 (left plot) and the relative PDF uncertainties in each case (right plot). All
uncertainties are 1σ .

PDF sets: NNPDF2.0, CT10 and MSTW08, together with the relative uncertainties. It is clear
that PDF uncertainties are sizable for this combination at large-x, thus additional precision mea-
surements of the W asymmetry are useful to reduce PDF errors in this region. We notice that in
the kinematic region probed by the Tevatron measurements (0.1 � x � 0.7) the predictions from
the three sets are in reasonable agreement within the respective uncertainties.

In the NNPDF2.0 analysis only the CDF W boson direct asymmetry data of Ref. [19] are
included. This observable is implemented in the fitting code at next-to-leading order, without
reverting to a K-factor approximation, using the FastKernel method described in [4]. The W
lepton asymmetry measurements, on the other hand, were not included in the analysis due to
the lack of a fast implementation. However, the recent development of the APPLGRID [20]
interface is likely to facilitate the future inclusion of these data directly in our fits. Thanks to the
reweighting technique presented earlier in this paper, we can now study the impact of the lepton
asymmetry data consistently in NLO QCD.

Here we will consider the electron and muon asymmetry measurements performed by the
D0 Collaboration at Run II of the Tevatron and published in Refs. [8,9]. The more recent D0
muon analysis of Ref. [10] has not been included since the data are still preliminary. The datasets
included in our analysis are the same as those included in the dedicated CT10W analysis [11].
The lepton asymmetry measurements from CDF [7] are not considered here since the direct CDF
W asymmetry data is already included in the NNPDF2.0 fit.

Let us discuss in more detail the lepton asymmetry data that we consider. In Ref. [8] a mea-
surement of the muon charge asymmetry based on 0.3 fb−1 of data is presented. The asymmetry
measurement is binned in ten bins in the muon pseudo-rapidity in the range |ημ| < 2, and cuts are
imposed on the transverse energy and mass of the muon: E

μ
T > 20 GeV and MT > 40 GeV. In

Ref. [9] a similar measurement of the electron charge asymmetry is presented based on 0.75 fb−1

of data. The asymmetry is binned in twelve bins in the electron pseudo-rapidity in the range
|ηe| < 3.2, and cuts are imposed on the missing energy and transverse mass: /E > 25 GeV and
MT > 50 GeV. Three sets of measurements are then given, which have different cuts in the
transverse energy of the electron: an ‘inclusive’ bin which has Ee

T > 25 GeV (which we refer to
here as bin A), and two less inclusive bins with more restrictive cuts on the transverse energy,
25 GeV < Ee

T < 35 GeV (bin B) and Ee
T > 35 GeV (bin C). Note that bins B and C together

cover the same kinematic range as the more inclusive bin A.
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Fig. 5. Predictions for the D0 W lepton charge asymmetry obtained with the DYNNLO code at next-to-leading order,
using the NNPDF2.0 [4], CT10 [11] and MSTW08 [21] parton sets. We show results for the muon charge asymmetry
(top left), and the electron charge asymmetry in the inclusive bin, Ee

T
> 25 GeV, bin A (top right), and then in less

inclusive bins, 25 GeV < Ee
T

< 35 GeV, bin B (bottom left), and Ee
T

> 35 GeV, bin C (bottom right).

To analyse these data using the reweighting technique we use the DYNNLO code [22] to
compute the theoretical predictions for the lepton asymmetries at NLO, using NNPDF2.0 as
input parton densities. This code is a parton level Monte Carlo program designed to compute
exclusive hadronic processes up to NNLO, and it enables the user to implement the same cuts
used in the experimental analyses.

Before considering reweighting, let us first compare in Fig. 5 the predictions obtained with
DYNNLO and different PDF sets at NLO, for the various D0 datasets. It is perhaps surprising
that, even though none of these data are included into the NNPDF2.0 fit, the prediction obtained
from the NNPDF2.0 is in general closer to the experimental data than the predictions obtained
with the other parton sets: the reason can be traced back to the somewhat larger d/u ratio in the
range 0.2 � x � 0.6 (Fig. 4) for the NNPDF2.0 set. The exception is bin B, for which MSTW08
provides the best description.

The quality of the comparison of various PDF sets with the asymmetry data can be quantified
by evaluating the χ2 to each data set. For all the Tevatron Run II D0 lepton asymmetry only
the statistical and uncorrelated systematic errors are quoted. The covariance matrix is therefore
diagonal and its elements are given by the sum in quadrature of the statistical and the uncorrelated
systematic errors. There is no normalization uncertainty since the asymmetry is a ratio of cross-
sections.
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Table 1
The D0 W lepton charge asymmetry datasets that are included in the present analysis, together with the χ2 per data point
obtained from the NLO predictions of various PDFs sets. The electron data of Ref. [9] is divided into three bins that we
denote by bin A, bin B and bin C.

Set Ndat NNPDF2.0 MSTW08 CT10

D0 μ (Eμ
T

> 20 GeV) [8] 10 0.62 1.51 0.70
D0 electron, Ee

T
> 25 GeV (bin A) [9] 12 2.12 9.20 4.07

D0 electron, 25 GeV < Ee
T

< 35 GeV (bin B) [9] 12 4.75 1.66 9.48
D0 electron, Ee

T
> 35 GeV (bin C) [9] 12 5.06 13.4 11.7

The value of the χ2 per data point and the number of data points for each set considered in the
present analysis are shown in Table 1. The results confirm the studies performed in Ref. [23]. In
particular, the less inclusive data (bins B and C) are rather poorly described by all the current PDF
fits, with the exception of bin B which MSTW08 describes reasonably well (though at the cost
of a very bad fit to bins A and C). Note however that Ref. [11] uses the RESBOS program [24]
to compute the predictions for the W lepton asymmetry. RESBOS computes on top of the NLO
higher order corrections from pT resummation. The differences between NLO and RESBOS are
maximal in the kinematics of the electron bin B data. This differences might explain, at least in
part, the values of the χ2 for CT10 obtained in Table 1 compared to those given in Ref. [11].

We now consider the effect of including the Run II D0 muon and electron asymmetry data in
the NNPDF2.0 analysis using reweighting. We will consider each dataset in turn, concentrating
first on the inclusive sets (muon and electron bin A), and turning later to the less inclusive data
sets (bins B and C). For each case we will proceed as follows: first we provide the distribution
of χ2

k before and after reweighting, the probability distribution P(αs) and the distribution of
weights. We then compare the reweighted PDFs to experimental data. Finally we compute the
distances between the original and the reweighted sets, and compare the corresponding PDFs
where they differ substantially from the original ones.

Unless otherwise stated, PDFs, their uncertainties will be plotted at the scale Q2 = Q2
0 =

2 GeV2. The Nrep = 1000 NNPDF2.0 set is used throughout, with the exception of the compu-
tation of distances, where we instead use sets of 100 replicas.

5.2. Inclusive data

Let us first consider the inclusion of the D0 muon charge asymmetry data [8]. The distribution
of the χ2

k and corresponding weights wk for these data is shown in the upper plots of Fig. 6.
Since the χ2-distribution is peaked close to one, the weights are also mostly of order unity. The
reweighted χ2, and probability density for the rescaling parameter α are shown in the lower
plots: they peak rather below one, suggesting that the errors on these data are actually likely to
be overestimated by D0 by around 20%. After reweighting the χ2 per data point drops from 0.62
to 0.51, and the number of effective replicas is Neff = 795.

On the left in Fig. 7 we show the muon charge asymmetry before and after the reweighting.
Indeed the predictions get closer to the data, once the PDFs are reweighted. We have also ex-
amined the effect on the shape of the PDFs, but the effects are negligible apart from a slight
reduction in the uncertainty of the total valence distribution, shown in Fig. 8. This is confirmed
by the distance analysis, Fig. 9, that shows that central values and uncertainties for all PDFs are
essentially unchanged, with the exception of the total valence PDF where the inclusion of muon
data has a moderate effect.
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Fig. 6. Distribution of the χ2
k

and the weights wk , the reweighted χ2-distribution and the probability distribution P(α)

in the reweighting of the NNPDF2.0 PDF set using the D0 muon asymmetry data [8].

Fig. 7. Left: W muon charge asymmetry computed for the NNPDF2.0 PDFs before and after the reweighting of these
data into the parton analysis. Right: W electron charge asymmetry (inclusive bin) computed with the NNPDF2.0 PDFs
before and after the reweighting of these data in the parton analysis.

To study the compatibility of these data with the data included in the NNPDF2.0 analysis, in
Table 2 we show the χ2 of each of the datasets included in the NNPDF2.0 analysis evaluated
with the original NNPDF2.0 PDFs and then with these PDFs reweighted by the inclusion of
the D0 muon asymmetry data. If anything, there is a slight improvement in the description of
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Fig. 8. Total valence PDF for the NNPDF2.0 and NNPDF2.0 + D0 muon data PDF sets.

Fig. 9. Distances between NNPDF2.0 and NNPDF2.0 + D0 W lepton asymmetry measurements from the muon dataset.
The NNPDF2.0 set with Nrep = 100 has been used in the computation of the distances.

most of the datasets. To summarize, the D0 muon asymmetry data [8] are perfectly consistent
with NNPDF2.0, but are not sufficiently precise to add much information to the PDFs. It will be
interesting to assess the impact of the higher statistics D0 Run II muon data set [10] once the
analysis is completed.

Next we consider the inclusive D0 electron data (bin A) with Ee
T > 25 GeV. The results are

shown in Fig. 10. Once included in the fit through reweighting the χ2 for this set drops from 2.12
to 1.55. While the distribution of the unweighted χ2

k is peaked above two and has a long tail to
higher values, after reweighting the peak is shifted much closer to one. This is achieved through a
substantial reduction in the effective number of replicas: after reweighting Neff = 262. However,
while before reweighting only 16% of replicas lie in the region 1

2 < χ2 < 2, after reweighting
this figure rises to 78%. This behavior is confirmed by the plot of P (α): the data indicate that
the most probable value of α is around 1.7, indicating that experimental errors on these data are
a little underestimated (by around 30%). Taken together, this shows that these data might have a
significant effect on constraining the PDFs, while still being broadly consistent with all the other
data included in the fit.

The improvement in the description of the electron asymmetry after reweighting in Fig. 7,
while the fit to the other datasets included in the NNPDF2.0 fit shows no significant deterioration:
if any change has to be noticed, is a slight improvement in particular in the fit to the CDF W
asymmetry data (see Table 2).
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Table 2
χ2 per data point of all the experiments included in the NNPDF2.0 fit evaluated before and after reweighting with the
various lepton asymmetry data sets. Note that here we use the t0 covariance matrix in the evaluation of the χ2: the
numbers are thus slightly different from those shown in Ref. [4]. The cases in which the χ2 varies significatively as
compared to the reference are highlighted in boldface.

Set χ2
2.0 χ2

2.0+μ
χ2

2.0+binA χ2
2.0+binA+μ

χ2
2.0+binB χ2

2.0+binC

NMC-pd 0.99 0.98 0.98 0.98 0.97 1.13
NMC 1.72 1.72 1.69 1.70 1.72 1.72
SLACp 1.55 1.55 1.53 1.54 1.50 1.63
SLACd 1.12 1.12 1.07 1.09 1.05 1.24
BCDMSp 1.35 1.35 1.33 1.34 1.41 1.35
BCDMSd 1.16 1.16 1.16 1.16 1.24 1.14
HERA1-NCep 1.35 1.35 1.34 1.34 1.33 1.35
HERA1-NCem 0.86 0.86 0.86 0.86 0.86 0.86
HERA1-CCep 0.96 0.96 0.94 0.94 1.02 0.92
HERA1-CCem 0.56 0.56 0.56 0.56 0.56 0.57
CHORUSnu 1.08 1.08 1.08 1.08 1.11 1.10
CHORUSnb 0.86 0.86 0.86 0.86 0.87 0.90
FLH108 1.50 1.50 1.50 1.50 1.47 1.50
NTVnuDMN 0.69 0.66 0.67 0.65 0.82 0.60
NTVnbDMN 0.70 0.70 0.69 0.69 0.72 0.81
Z06NC 1.24 1.24 1.24 1.24 1.23 1.26
Z06CC 1.19 1.19 1.19 1.19 1.15 1.21
DYE605 0.86 0.86 0.84 0.85 0.87 0.85
DYE886p 1.31 1.32 1.29 1.30 1.28 1.36
DYE886r 0.83 0.79 0.67 0.71 1.08 0.72
CDFWASY 1.88 1.88 1.78 1.82 2.05 1.60
CDFZRAP 1.74 1.77 1.75 1.77 1.37 1.97
D0ZRAP 0.59 0.59 0.59 0.59 0.60 0.61
CDFR2KT 1.02 1.02 0.95 0.97 1.21 0.93
D0R2CON 0.86 0.86 0.84 0.84 0.91 0.84

TOTAL 1.14 1.14 1.13 1.13 1.16 1.16

In Fig. 12 we plot the distances between the prior set NNPDF2.0 and the reweighted set: it is
clear that the most significant effect is on the uncertainty in the valence PDF. Indeed, in Fig. 11
we show the error reduction that comes from the inclusion of the inclusive D0 electron charge
asymmetry data on the valence PDF. While the central value remains essentially unchanged, the
uncertainty is significantly reduced. Small improvements in the precision of the singlet and triplet
quark distributions can also be observed, while other PDFs combination remain unchanged.

Having found that both the inclusive muon and electron (bin A) D0 asymmetry data are each
consistent with the datasets used in NNPDF2.0, it is interesting to ask whether they are also
consistent with each other. This is not obvious a priori: it is in principle possible for each dataset
to prefer a different subset of the NNPDF2.0 replicas.

To examine this question we performed a reweighting analysis with the combined dataset: the
χ2

k used to determine the weights are then the sum of those from the D0 muon asymmetry data
and the D0 electron asymmetry data, i.e. Ndat = 22 data points. The number of effective replicas
is then reduced to Neff = 356, actually a number larger than the case where electron data alone
were considered: the muon data soften the impact of these data. The combined χ2

k and α distri-
butions (see Fig. 13) are now better behaved: while before the reweighting only 49% of replicas
have a 1 < χ2 < 2, after reweighting this now rises to 99%. The peak of the α distribution is
2
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Fig. 10. Distribution of the χ2
k

and the weights wk , the reweighted χ2-distribution and the probability distribution P(α)

in the reweighting of the NNPDF2.0 PDF set using the D0 electron asymmetry data (bin A) [9].

Fig. 11. Total valence PDF for NNPDF2.0 and NNPDF2.0 + D0 electron data (bin A).

now quite close to one: the overestimated uncertainties of the muon data complement the under-
estimated uncertainties of the electron data. The quality of the fit to the other datasets included
in the NNPDF2.0 fit shows no significant deterioration, and again there is a slight improvement,
in the fit to the CDF W asymmetry data (see Table 2).

In Fig. 14 we show the effect of the addition of the D0 muon and the D0 electron inclusive
data on the valence distribution. The precision of the valence distribution is significantly im-
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Fig. 12. Distances between NNPDF2.0 and NNPDF2.0 + D0 W lepton charge asymmetry measurements from the elec-
tron bin A dataset. The NNPDF2.0 set with Nrep = 100 has been used in the computation of the distances.

Fig. 13. The reweighted χ2-distribution and the probability distribution P(α) in the reweighting of the NNPDF2.0 PDF
set using the combined D0 muon asymmetry data and electron asymmetry data (bin A).

Fig. 14. Total valence PDF for the NNPDF2.0 and NNPDF2.0 + D0 muon + D0 electron data (bin A) sets.

proved, though without shifting its central value significantly. This implies that the NNPDF2.0
set is quite consistent with the inclusive data, so that their addition entails only PDF uncertainty
reduction without affecting central values. It follows that the d/u ratio extracted from the DIS
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Table 3
A summary of the results of reweighting with the D0 W lepton asymmetry data: the fraction Neff/1000 of replicas left
after reweighting, the most probable value αopt of the error rescaling parameter α, the χ2 per data point to the D0

W lepton data evaluated before and after the reweighting, and the total χ2 per data point to all the other data in the
NNPDF2.0 fit.

Set Neff/1000 αopt χ2 χ2
rw χ2

tot-rw

D0 μ (ET > 20 GeV) 0.795 0.7 0.62 0.51 1.14
D0 ebin A (ET > 25 GeV) 0.262 1.7 2.12 1.55 1.13
D0 μ + ebin A 0.356 1.3 1.44 1.11 1.13
D0 ebin B (25 GeV < ET < 35 GeV) 0.061 1.3 4.75 1.12 1.16
D0 ebin C (ET > 35 GeV) 0.068 2.7 5.06 2.51 1.16

deuterium data and the CDF direct W charge asymmetry data will be consistent with the infor-
mation included in the D0 inclusive muon and electron data.

The main statistical estimators for the lepton charge asymmetry data sets are summarized in
Table 3. The two inclusive sets have a significant impact on PDFs, and are reasonably consis-
tent with themselves (though the experimental uncertainties on the inclusive D0 electron charge
asymmetry data, bin A, may be a little underestimated), with the other data used in the NNPDF2.0
fit, in particular the CDF W charge asymmetry data, and with each other.

The χ2 values for the total dataset and for the individual experiments in the NNPDF2.0 anal-
ysis are shown in Table 2. The sets that differ sizably from the reference results have been
highlighted in boldface in the different cases. As far as the inclusive muon and electron datasets
are concerned we notice that both are consistent with the NNPDF2.0 datasets, and their inclusion
improves the fit to the W asymmetry data. Furthermore they are both consistent with each other.
These conclusions do not support the conclusions of the MSTW08 analysis [12], which finds that
inclusion of the D0 electron inclusive bin in the global fit, without significant deterioration in the
fit to the other datasets, requires sizable nuclear corrections to deuterium data.

5.3. More exclusive data

We now turn to the less inclusive D0 electron charge asymmetry data (bin B and bin C),
where the transverse energy of the electron is restricted to the range 25 GeV < Ee

T < 35 GeV
and Ee

T > 35 GeV respectively.
We first consider each bin separately, and we turn then to their combination. Considering

first the lower Ee
T bin (bin B), the number of effective replicas is now reduced to Neff = 61,

indicating that, as expected, these data are more constraining than those of the inclusive bin. This
is so because the data binned in Ee

T probe a more localized region in x of the PDFs as compared
to the inclusive data. The χ2 for this set drops from 4.75 to 1.12 after the data is included. From
the plots in Fig. 15 we see that indeed there is now a significant fraction of very small weights,
because many of the replicas fit the new data rather badly. However after reweighting the χ2

distribution improves very significantly: while before reweighting only 4.8% of replicas were
in the range 1

2 < χ2 < 2, after reweighting this increases to 86.5%. The rescaling plot peaks at
around α ∼ 1.3 indicating that the errors on the data are reasonably well estimated.

The improvement in the fit to the lowest Ee
T bin charge asymmetry data is manifest on the

left of Fig. 18. However the fit to some of the other datasets in the NNPDF2.0 fit, in particular
BCDMSp and BCDMSd, becomes significantly worse (see Table 2). The fact that there is as
much tension here with the proton data as with the deuteron data suggests that it is unlikely
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Fig. 15. Distribution of the χ2
k

and the weights wk , the reweighted χ2-distribution and the probability distribution P(α)

in the reweighting of the NNPDF2.0 PDF set using the D0 electron asymmetry data bin B [9].

Fig. 16. Total valence PDF for NNPDF2.0 and NNPDF2.0 + D0 electron data (bin B).

that nuclear corrections to the deuteron target can help (contrary to the claim in Ref. [12]). The
overall χ2 per degree of freedom rises from 1.14 to 1.16: this is rather significant, given that we
are only adding 12 new data points to the 3415 used in NNPDF2.0. The decrease in the fit quality
is driven by the large weight that BCDMS carry in the global fit. It should be further noted that
the fit to the inclusive jet data and CDF W asymmetry also worsens.

These problems are also apparent when we look at the effect on individual PDFs: in particular
while the valence distribution, Fig. 16, is now better determined in some ranges of x, elsewhere
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Fig. 17. Distances between NNPDF2.0 and NNPDF2.0+D0 W lepton asymmetry measurements from the electron bin B
dataset. The NNPDF2.0 set with Nrep = 100 has been used in the computation of the distances.

Fig. 18. W electron asymmetry computed on the NNPDF2.0 set before and after the reweighting of the D0 W electron
asymmetry: bin B (on the left) and bin C (on the right).

the uncertainty increases. While this may in part be due to the rather limited statistics of the
reweighted distribution, it is probably also a sign of some inconsistency with the other data used
in the NNPDF2.0 fit. The statistical distances, plotted in Fig. 17, are also sizable for some PDFs,
especially the valence distribution.

We finally consider the remaining D0 electron asymmetry dataset at highest ET (bin C): the
results are displayed in Fig. 19. While the impact of these data is similar to that of the lowest
ET bin (bin B), with the effective number of replicas dropping to 68, the quality of the fit to
the unweighted replicas is so poor (there are no replicas with a χ2 below 2) that even after
reweighting the quality of the fit is still not very good, the average χ2 per data point dropping
from 5.06 to 2.51.

The rescaling plot shows a preferred value of α ∼ 2.7, suggesting that the experimental errors
in these data are seriously underestimated. This might be caused by some underestimated sys-
tematic uncertainties in the separation of the data into bins of different Ee

T . The poor quality of
the fit, even after reweighting, is again apparent in Fig. 18: it is clear that some of the bins simply
cannot be fitted with a reasonably smooth distribution. There is also tension between these data
and some of the other datasets included in NNPDF2.0 (see Table 2): in particular while BCDMS
is now fine, the fit to the NMC-pd ratio is spoiled.
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Fig. 19. Distribution of the χ2
k

and the weights wk , the reweighted χ2-distribution and the probability distribution P(α)

in the reweighting of the NNPDF2.0 PDF set using the D0 electron asymmetry data bin C [9].

Fig. 20. Total valence for NNPDF2.0 and NNPDF2.0 + D0 electron data (bin C).

When we examine the effect of these data on the PDFs, we see (Fig. 20) that rather than
making the PDFs more precise, in many regions of x the uncertainty increases substantially.
The enlarging of the uncertainty is of course what one would expect when inconsistent data are
combined, and it was previously seen to occur in NNPDF parton fits (see e.g. Section 3.4.1 of
Ref. [25]). Here, it is shown to occur as a consequence of standard statistical inference.

We also attempted a combined fit of the D0 electron asymmetry data bins B and C, but the
constraint imposed on PDFs by including these data together is so severe that the number of
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Fig. 21. The d/u ratio at large x computed at Q2
0 = 2 GeV2 from the original NNPDF2.0 sets and the various sets

obtained through reweighting of NNPDF2.0. We show the results for the ratio normalized to NNPDF2.0 (left plot) and
the relative PDF uncertainties in each case (right plot). All uncertainties are 1σ .

effective replicas is reduced to one. This shows that not only are these data each inconsistent
with other data included in the global fit, but they are also inconsistent with each other.

The main statistical estimators for the exclusive electron charge asymmetry data sets are sum-
marized in Table 3. In contrast to what we observe for the inclusive sets, these data sets, while
having an even greater effect on the PDFs, appear to be internally inconsistent (bin C), inconsis-
tent with other data used in NNPDF2.0, particularly BCDMS proton and deuteron data (bin B),
and also inconsistent with each other.

The results in the present study cannot be directly compared to the ones obtained in the CT10
analysis, because there the three electron Ee

T bins are added simultaneously to the fit. On top of
the double counting problem, this is problematic because internal tensions of experimental origin
between the different bins might be mistaken for a physical effect, such as nuclear corrections.
Indeed, we have shown that the more exclusive data sets are not only inconsistent with other sets
in the global analysis but also inconsistent among themselves, so that it is probably not a good
idea to include both in the fit simultaneously.

5.4. Implications for the d/u ratio, and LHC benchmarks

Up to now we have considered the impact of the D0 data on different PDF combinations,
noticing that the most relevant effect was on the total valence distribution. To conclude our anal-
ysis we assess the impact of W lepton charge asymmetry data on the d/u ratio. In Fig. 21 we
display the d/u ratio at large x computed at Q2

0 = 2 GeV2 from the original NNPDF2.0 set and
the four sets obtained through reweighting of NNPDF2.0 with the D0 lepton asymmetry data.
The effect of the inclusive datasets (muon and electron bin A) is rather small, even when they are
combined together. The less inclusive sets (bin B and bin C) have a rather larger effect, but pull
in opposite directions. Even so, the effect is only of the same order as the PDF uncertainty.

In Fig. 22 we compare the d/u ratio obtained with NNPDF2.0 and with NNPDF2.0
reweighted by the maximally consistent combination of the D0 data (muons and electrons bin A)
with the CT10 and CT10W results, normalized to NNPDF2.0. It can be seen that the combination
of D0 muon and electron bin A data leads to a substantial error reduction of ∼ 25% in the d/u

ratio in the 0.1 � x � 0.5 region, with almost no change in the central value. Note also that the
d/u ratio obtained from the NNPDF2.0 + D0 (ebin A + μ) set is rather more precise than that
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Fig. 22. Lower plots: The same d/u ratio from the original NNPDF2.0 sets, the NNPDF2.0 set reweighted by the max-
imally consistent combination of the D0 lepton asymmetry data (the muon data plus the inclusive electron data) and the
CT10 and CT10W sets.

Table 4
Cross sections for different Standard Candle processes at the LHC (7 TeV) computed using NNPDF2.0 reweighted PDFs
including D0 W lepton asymmetry data. The Higgs cross-section is computed for mh = 120 GeV.

σ(Z → ll−) σ (W− → lν) σ (W+ → lν) σ (h0) σt t̄

2.0 911 ± 16 pb 3.98±0.08 nb 5.80±0.12 nb 11.59±0.18 pb 169 ± 6 pb

2.0 + D0 (μ) 911 ± 16 pb 3.98±0.08 nb 5.80±0.12 nb 11.58±0.19 pb 169 ± 6 pb
2.0 + D0 (bin A) 914 ± 15 pb 4.00±0.07 nb 5.81±0.11 nb 11.58±0.22 pb 168 ± 6 pb
2.0 + D0 (μ + bin A) 913 ± 15 pb 4.00±0.07 nb 5.81±0.11 nb 11.58±0.20 pb 168 ± 5 pb

2.0 + D0 (bin B) 904 ± 15 pb 3.92±0.07 nb 5.78±0.11 nb 11.66±0.15 pb 172 ± 5 pb
2.0 + D0 (bin C) 913 ± 22 pb 4.01±0.10 nb 5.78±0.17 nb 11.52±0.28 pb 168 ± 8 pb

from CT10W, despite the fact that they include all the D0 lepton datasets, with larger weights
than the other datasets in the global analysis.

Finally, it is interesting to ask to what extent the inclusion of the W lepton charge asymmetry
data through reweighting affects the determination of some of the LHC standard cross-sections.
Results for vector boson production, Higgs and t t̄ at

√
s = 7 TeV are collected in Table 4. They

have been computed using MCFM [26–28] to determine the cross-section for each replica, and
then the weighted average of the results evaluated using Eq. (2). The uncertainties in each case
are purely PDF uncertainties obtained from a reweighted evaluation of the variance of the cross-
section. Clearly all these cross-sections are by and large insensitive to the addition of the D0
lepton charge asymmetry data, even those data (bins B and C) which show inconsistencies with
the global dataset and thus have the largest (though least reliable) effect. This is to be expected
since the LHC observables we have considered are not directly sensitive to large-x quarks, for
which the impact of the D0 data is the largest.

6. Conclusions

In this paper we have developed a method for determining the effect of new data on PDFs
without the need for a global refitting. The method relies on the existence of an ensemble of
PDFs, distributed according to the uncertainties in a global set of older data, and thus represent-
ing the prior probability distribution of the PDFs. Such ensembles are provided by the NNPDF
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Collaboration. The effect of new data is then accounted for by reweighting the PDF replicas in
the ensemble according to their relative probabilities given the new dataset. These probabilities
are determined simply and easily by computing the χ2 of the new data to the prediction obtained
using a given replica.

We have provided a careful derivation of our formula used to determine the weights. This is
important because our result differs from that obtained in a previous attempt to use a reweight-
ing method [5]. The derivation is subtle because it is necessary to deal with multi-dimensional
probability densities, where unless one is careful one can fall into inconsistencies due to the
Borel–Kolmogorov paradox [16].

The main advantage of the new method is clear: computing the weights is no more difficult or
computer intensive than the usual procedure of preparing a plot comparing the new dataset with
predictions from given PDFs. However the information provided is much more substantial – one
can assess quantitatively the impact of the new data on the PDFs, whether the new data are con-
sistent with all the older data encoded within the PDF ensemble and the theoretical assumptions
on which it was based, and then whether the new data have any effect on other observables of
interest such as benchmark cross-sections. Only when the impact of the new data is very large
does a full refitting of the PDF ensemble become necessary, due to the loss of efficiency in the
reweighted ensemble.

We thus envisage our method being useful to experimentalists in all sorts of situations: testing
the reliability of preliminary datasets and their uncertainties, assessing the credibility of possible
indications of new physics, or in optimizing the design of new experiments using pseudodata.

We have shown explicitly that the method works by considering the addition of Tevatron
inclusive jet data to a prior parton fit using only DIS and DY data. We have seen that when
reweighted by the inclusive jet data, this fit becomes statistically equivalent to a refitting using
all the data. The statistical equivalence has been quantified using the distance between prior
and reweighted sets. This confirms that the refitted and the reweighted PDF sets can be seen as
two samples of the same underlying probability distribution. This is simultaneously a validation
of the reweighting methodology, and an important a posteriori consistency check of the fitting
procedure: an explicit confirmation that reweighting is equivalent to refitting for all data included
in the global fit would amount to a proof that the fitted result is indeed that dictated by the laws
of statistical inference.

Using the reweighting formalism we have determined the impact of recent high luminosity
D0 Run II lepton asymmetry data on the NNPDF2.0 PDFs. The lepton asymmetry data has
been historically an important constraint on the large-x d/u ratio, but recent attempts [11,12]
to include the new D0 data into global fits have been problematic. We find instead that the data
which are inclusive in El

T , the muon asymmetry data [8] and electron asymmetry data [9] with
pt > 25 GeV, are fully consistent with the NNPDF2.0 predictions and have a moderate impact
on PDFs, showing up as a modest though noticeable reduction in the uncertainty of the valence
quark distribution. Moreover they are consistent with each other and with all the other datasets
included in NNPDF2.0.

The consistency of these data has been recently studied also by the MSTW and CTEQ Col-
laborations. In particular MSTW [12] finds that it is not possible to fit the inclusive D0 electron
dataset without affecting the description of the rest of the experiments in the global analysis un-
less large nuclear corrections for the DIS deuteron data are applied at the same time. The CT10
analysis [11] also suggests a sizable tension between the D0 lepton asymmetry data and the DIS
deuteron data. Our results do not support these conclusions. Since the predictions for the lepton
asymmetry depend strongly on the d/u slope, it is possible that the origin of the problems in the
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CT10 and MSTW analyses is that they are based on refitting using a fixed parametrization, and
are thus subject to the functional biases such a procedure necessarily entails.

We further find that the less inclusive electron asymmetry data [9] binned in Ee
T , the two

datasets with 25 GeV < Ee
T < 35 GeV and 35 GeV < Ee

T , while having potentially more impact
on the PDFs, are problematic: the former data set is inconsistent with some of the DIS data
(specifically BCDMS, both proton and deuteron), while the latter seems to have problems of
internal consistency.5 Consequently the effect on PDFs of including these datasets in the analysis
is to actually increase uncertainties in some regions of x. Furthermore, we find evidence that
these two datasets are also mutually inconsistent. We think it likely that the experimental errors
on these data have been substantially underestimated. Until these problems are better understood,
we believe that is safer to include in the global fit only the inclusive datasets, which even if less
constraining are more robust experimentally.

The reweighting methodology described here should allow anybody to perform their own
updates of NNPDF fits, to incorporate whatever new datasets they are interested in, by following
the same procedure we used here for the specific case of the W lepton asymmetry. We very much
hope that they will exploit this possibility.
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Appendix A. Distances between reweighted PDFs

Given two sets of N
(1)
rep and N

(2)
rep replicas, in general reweighted, it is possible to use the

distance estimators defined in Appendix A of Ref. [4] to determine whether they correspond to
different instances of the same underlying probability distribution, or whether instead they come
from different underlying distributions.

The discussion in Ref. [4] applies also to reweighted PDF sets with the corresponding mod-
ifications that we list below. For example, expectation values have to be computed with the
associated weights. For the first, second and fourth moments of the PDFs one then has to use

〈
q(k)

〉
(i)

= 1

N
(i)
rep

N
(i)
rep∑

k=1

w
(i)
k q

(i)
k , (39)

5 Similar difficulties in fitting these datasets have been reported by MSTW [12] and CTEQ [11], though it is not easy
to make a direct comparison since they attempt to fit all three D0 electron bins simultaneously.
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σ 2
(i)

[
q(i)

] = 1

N
(i)
rep − 1

N
(i)
rep∑

k=1

w
(i)
k

(
q

(i)
k − 〈

q(i)
〉)2

, (40)

m4
[
q(i)

] = 1

N
(i)
rep

N
(i)
rep∑

k=1

w
(i)
k

(
q

(i)
k − 〈

q(i)
〉)4

. (41)

Note that in the above equations the unweighted expressions are trivially reproduced setting
w

(i)
k = 1.
Another difference arises when computing the variance of the mean and the variance of the

variance with weighted PDF sets. In this case, this estimators scale not with the total number of
replicas but with an effective number of replicas after reweighting

N
(i)
rep,eff =

(∑N
(i)
rep

k=1 w
(i)
k

)2

∑N
(i)
rep

k=1 w
(i),2
k

= N2
rep

/(N
(i)
rep∑

k=1

w
(i),2
k

)
. (42)

that reduces to Nrep in the unweighted case (note that this is not the same as the Neff given by the
Shannon entropy (10).

The variance of the mean for reweighted sets is then given by

σ 2
(i)

[〈
q(i)

〉] = 1

N
(i)
rep,eff

σ 2
(i)

[
q(i)

]
(43)

while the variance of the sample variance is

σ 2
(i)

[
σ̄ 2

(i)

] = 1

N
(i)
rep,eff

[
m4

[
q(i)

] − N
(i)
rep − 3

N
(i)
rep − 1

(
σ̄ 2

(i)

)2
]
. (44)

Again in the unweighted case everything reduces to the expression in Ref. [4].
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