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Abstract 

We present here a teaching and learning sequence on oscillations entirely based on 
experiments and data logging techniques. The sequence has been proposed to three 
different groups of students during curricular and extracurricular lessons. The purpose of 
this paper is to discuss a way to introduce upper secondary school students to complicated 
topics, such as those of coupled oscillations, avoiding the use of too much mathematics and 
calculus, but with an intense use of data logging techniques. 
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Introduction 

In the Italian school students face the topic oscillations between the 11th and 12th grade, 
that is between the third and the fourth year of upper secondary school, as an introduction 
to the wider topic of waves. Generally, in teaching practice, only short time is devoted to 
harmonic motion, rarely coupled oscillators are treated and almost never normal modes of 
oscillation are presented. Moreover harmonic and coupled oscillations are rarely supported 
by experiments in lab activities. Not only in Italian school, but also in the literature it is 
difficult to find out teaching paths on normal modes for secondary school with a detailed 
analysis of disciplinary knots and learning problems. As harmonic oscillations and normal 
modes of oscillations have a great importance for the understanding of many fundamental 
topics such as acoustic and optics and, moreover, they are fundamental for the approach to 
modern physics [1], we present here a guided, inquiry based sequence on oscillations, 
together with some preliminary results coming from two experimentations. The path we 
have developed has been tested on three different groups of students. It is entirely based on 
an experimental approach using two different data logging and data analysis systems: the 
commercial Vernier Logger Pro system [2] and the Tracker video analysis free software 
[3]. 

The context 

The path on oscillation has been proposed to three different groups of students: two classes 
of 30 students each, during curricular lessons, and a group of 40 students during 
extracurricular activities in the framework of “Milan open labs” of PLS (Scientific Degrees 
Plan). PLS is an Italian national project that the Ministry of Education has created to 
promote the collaboration between upper secondary school and University in order to 
increase the interest of young students for science [4]. The curricular classes were 
composed of students attending the third year of scientific oriented high school. They had 
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only a relatively poor mathematical background (little trigonometry, second degree 
equations and no calculus) and they had not previously studied waves. 

A pre-test and a final questionnaire have been given to students. The final test has been 
administered five weeks after the end of the sequence, to verify medium term 
effectiveness. Due to the preliminary nature of the study, only qualitative research methods 
have been used to analyse the data [5]. 

The teaching and learning sequence 

The teaching and learning sequence is based on a number of experiments. The experiments 
are supported by the use of data logging [2,3], video analysis [3] and applet simulations  
[6,7]. For the sake of brevity we describe here only the most significant: the vertical  
mass-spring oscillator, the bouncing disk, the rotating disk, the coupled pendulums and the 
Shive wave machine (many coupled torsional pendulums). Each topic is introduced starting 
from a brainstorming in the form of interview where the teacher/interviewer tries to 
understand students’ individual conceptions as it is foreseen in teaching experiment design 
[8]. All these experiments are meant to introduce the harmonic oscillations and, through 
harmonic oscillations, the normal modes of oscillation of complex systems. In our path the 
harmonic oscillation is seen as a privileged type of oscillation among all the periodic 
oscillations [1,9,10,11]. It allows describing the motion of almost all oscillating systems 
provided you comply with some constraints [10]. In this context the harmonic motion is 
introduced from the dynamic point of view as the motion a body performs when it is 
subject to a restoring force [10]. That is, a force whose graph lies between the second and 
the fourth quadrant of the diagram force vs displacement, passing through the origin of the 
axes and that is differentiable in the origin. All these forces can be approximated to their 
tangent line in the origin provided the amplitude of oscillation is small enough. So the 
central point is that any body subject to a restoring force, for small amplitude of 
oscillation, is governed by forces of the kind F = -kx which generate harmonic motion. 

The vertical mass-spring oscillator and the bouncing disk are designed to investigate 
different types of periodic oscillations and to identify the characteristics of the harmonic 
motion. The rotating disk is used to solve graphically the equation of harmonic motion 
[10]. The coupled pendulums are designed to study the properties of simple systems of 
coupled oscillators and to introduce the normal modes of oscillation for such systems, with 
the aim of showing how every oscillation of a complex system can be seen as  
a superposition of simple harmonic oscillations at fixed frequencies: those of the normal 
modes of the system. The Shive wave machine, with so many coupled torsional pendulums, 
is designed to study the normal modes of a discrete but more complex system of 
oscillators. This may help the transition to a continuous system such as the vibrating string 
and the comprehension of stationary waves as normal modes of the string (instead of the 
more usual superposition of travelling waves). 

The experiments 

The vertical mass-spring oscillator and the bouncing disk (Figure 1). 
The vertical mass-spring oscillator is a typical example of harmonic oscillator while the 
bouncing disk is an example of periodic but non-harmonic oscillator. 

The mass-spring oscillator consists of a mass appended at the bottom of a vertical spring 
(see Figure 1). The vertical configuration avoids the problem of the friction with surfaces. 
The mass is chosen so as to have a stable vertical oscillation, that is: the system has an 
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almost linear behaviour and there is no coupling between the vertical spring mode and the 
transverse pendulum mode. Nonetheless, the same care must be taken in choosing the 
mass, because the spring mode and the pendulum mode do indeed become resonant when 
the spring oscillation frequency doubles that of the pendulum [12,13]. 

 

Figure 1. The vertical mass-spring system 

The bouncing disk consists of a disk moving on an air table, so to reduce friction, and 
bouncing between two elastic edges (see Figure 2). 

 

Figure 2. The bouncing disk on an air table, it is well visible the target object (black ball) 

At the very beginning some experiments, concerning periodic oscillations, have been 
shown to the students: a pendulum, a ball bouncing vertically on the floor, a slinky 
oscillating vertically, a rod tilting on a flat pivot, a ball running back and forth along  
a semi-circular rail and many other real periodic oscillations. A brainstorming on what 
students saw followed. Then the first task for students has been to describe and categorize 
the previous oscillating systems that they observed by the naked eye. The students have 
been asked to group the oscillating systems according to some properties they decided by 
themselves. In a second moment students, divided into small groups of three-four, have 
been asked to analyse the forces acting on oscillators. They had to provide some qualitative 
graphics to be discussed inside each student’s group, among different groups and with the 
teacher. This guided procedure, allowed the students to make a new categorization based 
on the analysis of the forces acting on each oscillator, thus giving the hint to define as 
harmonic oscillations those that are driven by a restoring force. At this point the students 
were ready to perform a quantitative analysis of the vertical mass-spring motion and of the 
bouncing disk motion, via two different data logging techniques. The goal, in first instance, 
was to verify that only the motion of the oscillator driven by a restoring force is harmonic 
like. In a second instance students could analyse the data and the graphics provided by the 
data logging to fix the properties of the harmonic motion. The students analysed the 
motion of the vertical mass-spring via the sonar detection and Logger Pro analysis while 
they studied the bouncing disk, after filming by smartphones the experiment, via the video 
analysis software Tracker. In Figure 3 are reported the graphs for the mass-spring provided 
by the logger pro: a) displacement vs time; b) velocity vs time and c) acceleration vs time. 
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 a) 

 b) 

 c) 

Figure 3. The mass-spring system: a) displacement, b) velocity, c) acceleration vs time 

Students were able to see that the motion law is sinusoidal-like. In fact position and 
velocity as functions of time have the same sinus-like shape, but they are shifted of  
a quarter of a period. Furthermore, the acceleration vs time graph is still a sinus-like 
function and results, at each time, opposite to the displacement one according to F = -kx 
law stating harmonic motion. Moreover, the Logger Pro provides also the acceleration 
versus position diagram (Figure 4) which results in a straight line lying in the second and 
fourth quadrant and passing through the origin of the axes. Using position vs time diagram 
(Figure 3a), students could verify the important property of harmonic motion that the 
frequency of the oscillation is amplitude independent, that is it is fixed by the parameters 
of the system. In fact the amplitude of oscillation registered by the sonar decreases with 
time due to the air friction. 

 

Figure 4. Acceleration vs position for the mass-spring oscillator 

In this case the restoring force no longer depends only on position, but also on velocity. 
This situation has not yet been faced by students. Nonetheless, from an experimental point 
of view, for small amplitudes and for not too large time intervals, the damping is very 
small so that we can neglect the dissipative contribution and consider the force as being 
dependent only on position thus giving a precise sense to measurements of the period. 
Obviously, waiting a long enough time, the amplitude of oscillations decreases and the 
damping becomes evident. One can thus perform a new measurement of the period of our 
motion in a new situation when the amplitude has diminished, but always remaining in the 
approximation of friction-less motion. The students could measure the period (and 
consequently the frequency) of the oscillation directly in different sections of the diagram 
with different amplitudes and verify it is constant. The Logger Pro provides another 
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powerful tool to confirm that the frequency of the harmonic oscillation is fixed: the FFT 
(Fast Fourier Transform). The FFT of the motion waveform results a sharp line (Figure 5) 
at the same frequency the students found directly by measuring the period on the diagram. 
Of course our students did not posses yet the mathematical background for understanding 
how FFT works. They just knew it is a tool, a kind of button to push, that is able to find all 
the frequencies present in a waveform. To make this clear to students we showed them, 
with a simulation, the complicated waveform resulting from the sum of two (and three) 
sinusoidal function with different frequency. Then applying the FFT to the waveform we 
obtained the frequencies we mixed. 

 
Figure 5. The Fast Fourier Transform of the waveform obtained for the mass-spring 

oscillator 

After this, the students analysed the motion of the bouncing disk. This requires the use of 
Tracker because it is difficult to target, by sonar, the motion of an object which can have 
two motion components. As shown in Figure 2, it is necessary to mark the tracked object 
by a well contrasted target. The Tracker software can provide the same diagram as the 
Logger Pro. This time the analysis of the diagrams as the ones of Figures 3 and 4, clearly 
shows that the motion is no more governed by a restoring force and it is no longer 
harmonic as in the previous case. See Figure 6: a) position vs time, b) velocity vs time and 
c) acceleration vs time. In Figure 7 it is reported the diagram of acceleration vs position 
that clearly does not represent a restoring force. 

 a) 

 b) 

 c) 

Figure 6. The bouncing disk of: a) displacement, b) velocity, c) acceleration vs time 
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Figure 7. The acceleration versus position for the bouncing disk 

The rotating disk 
Once the definition of harmonic motion, as the one ruled by the dynamical law F = -kx, 
has been given, one has to face the problem of finding a way to integrate the differential 
equation a = -k’x to obtain x as a function of t (with students that have no calculus 
background). Our strategy has been to use the projection on a diameter of a point-mass 
moving in circular motion. In fact, in this way it is easy to observe that the projection of 
the acceleration is given by a = -k’x and that the projected velocity and position have  
a sinusoidal dependence on time. 

Most of the Italian text-books define harmonic motion just as the projection of a circular 
motion over a diameter in a cinematic perspective. We, on the contrary, have chosen a very 
different dynamical approach and use circular motion only as a device to integrate  
a differential equation. 

Moreover this is quite simple to obtain tracking the motion of a target dot on a rotating 
disk. 
The coupled pendulums 

The system consists of two to five physical pendulums coupled by identical springs  
[1,9,11,14]. These experiments (and the following one), together with the data logging 
techniques, turn out to be particularly useful because they allow: i) to easily introduce 
some particular (a student said “spectacular”) motion configurations of the entire system: 
the normal modes; ii) to recognize that when such a complex system oscillates in one of its 
normal modes, there is no energy exchange between the single parts (oscillators) of the 
system; iii) to see that every casual motion configuration of the system is simply  
a superposition of its normal modes. 

Each pendulum consists of a plastic disc stuck to the terminal part of a metal rod. 
Quantitative measurements are taken by using Vernier Logger Pro and Tracker video 
analysis as well. Tracker is more suitable when there are more than two coupled 
pendulums because it allows tracking simultaneously any number of bodies while Logger 
pro is limited to two bodies at once. The setup used for this experiment is shown in  
Figure 9. 

 

Figure 9. The experimental setup with sonar motion detection e Logger Pro software 
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As a first step, the students were asked to try and guess to imagine some “special ways of 
movement” of the system of two and three coupled pendulums. Surprisingly most students 
were able to predict which are the two normal modes of the two coupled pendulums. On 
the contrary, most students found it difficult to predict which are the normal modes higher 
than the second one for more complex systems (three to five pendulums). To get through 
the difficulty of predicting the motion configuration of a given normal mode, we proposed, 
as a very useful strategy, an analogy with stationary waves on a string (see Figure 10): 

n coupled oscillators are represented by n equally spaced points on a string 

the nth normal mode configuration of the oscillators is recognizable by nth stationary waves 
on the string, as Figure 10 clearly shows. 

 

Figure 10. The sketch a student made to use the analogy with stationary waves to predict 
the shape of the four normal modes of a system with four coupled oscillators 

In the case of mass-spring oscillators, this graphic analogy allowed students not only to 
predict the motion configuration of each normal mode but also to have a hint of the relative 
amplitude of oscillators in that mode. The further step has been to let the students “play” 
with the two-coupled pendulums, trying with different initial conditions. They easily 
realized that if one starts with a normal mode, the system continues moving that way and, 
besides, that looking at just one oscillator, while hiding all the others, one can’t understand 
whether it is coupled or not. This happens because there is no energy transfer (some 
students used the expression: “the pendulums do not exchange motion to each other”). The 
further step has been to perform a quantitative analysis via the data logging. Students tried 
to put into motion the three coupled pendulums (Figure 11) in the first, the second and the 
third normal mode and obtained the respective frequencies via the FFT (Figure 12). Then 
they put into motion the system in many randomly chosen different ways. From the 
analysis of the waveform, in both cases of normal mode and random motion configuration, 
the students could see that when the system oscillates in one of its normal mode, each of its 
parts (pendulums in this case) oscillates with harmonic motion at the same frequency and 
with a fixed phase relation with the others. The amplitude of oscillation of each pendulums 
doesn’t change, except for friction with the air, to indicate that there is no energy exchange 
between parts of the system. In addition, the higher the mode is, the higher is the 
frequency. 
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Figure 11. The three coupled pendulums. From left to right: first mode, second mode and 
third mode configuration. 

 

Figure 12. The three coupled pendulums. From left to right: the frequencies of the first, the 
second and the third normal modes. 

On the other hand, if the system is put into motion randomly, we can see that there is 
energy exchange between the pendulums. In fact the motion waveform of each pendulum 
clearly presents the beat phenomenon and the amplitude of oscillation varies in time. The 
more relevant didactic issue here is that, if we perform the FFT of each pendulum 
waveform, we obtain exactly the same frequencies of the normal modes previously 
measured (see Figure 13). Each frequency peak, given by the FFT, has, in general,  
a different amplitude according to the way the normal modes superimpose, depending on 
the initial conditions. This allowed to show to the students that all the oscillations of the 
system are a linear combination of its normal modes. 

 

Figure 13. On the left: the waveform of a system of three coupled pendulums excited 
randomly, with the typical beats. On the right: the frequency of the normal modes 

superimposed. 

In Figure 14 is shown a system of five coupled pendulums together with the motion 
waveforms of each pendulum. It is also shown the FFT some students performed for one of 
these waveforms with the frequencies of the five normal modes mixing. 
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Figure 14. Five coupled pendulums. From top to bottom: the system, the waveform of each 
pendulum and the FFT related to one of the waveforms. 

These modes superimpose to give the motion of each pendulum. Moreover, when the 
system is excited randomly, the motion of each pendulum, being a linear combination of 
harmonic motions (the normal modes) is no more harmonic and generally neither periodic. 
In this case Tracker allows to plot the motion waveform of the centre of mass of the system 
which appear to be harmonic. See Figure 15. 

 

Figure 15. Five coupled pendulums: the waveform of the motion of the centre of mass 

The Shive wave machine 

The Shive machine is a system of many torsional pendulums, as in Figure 16. In our case 
we reduced the system to 18 pendulums to have them spaced enough. This was required 
for better data logging. In fact the sonar detector can’t distinguish between two objects if 
they are too close. This experiments turns out to be of didactic interest because it can 
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facilitate the conceptual transition from the discrete to the continuous case (for instance the 
vibrating string). In Figure17 it is reported the motion waveform obtained by a group of 
students tracking the complicated motion of one pendulum. This data collection has been 
performed with the sonar and the Logger Pro software, but comparable results have been 
obtained with Tracker as well. The FFT, as depicted in Figure 17, shows the frequencies of 
all the eighteen normal modes of the system. In this case it results evident that the first four 
normal modes are those that mostly contribute to the motion of the tracked pendulum. 
Furthermore, the more the number of pendulums the more the normal modes tend to be 
equally spaced in frequency. In fact, in the limit case of a continuous system, as the 
vibrating string, the frequency of each mode is an integer multiple of the frequency of the 
first normal mode. 

 

Figure 16. The Shive machine 

  

Figure 17. The Shive machine. From left to right: the waveform of one of the pendulums 
and its FFT. 

Results 

In the initial brainstorming, students were asked to group the oscillating systems they 
observed by the naked eye. Most of them decided to put together oscillators with similar 
trajectories. For instance, the vertical mass-spring, the ball bouncing on the floor and the 
bouncing disk were grouped together “because all move along a straight line”; the simple 
pendulum, the rod tilting on a flat pivot and the ball running along a semi-circular rail, 
were grouped together “because they describe an arc”. In the final test, on the contrary, 
over 60% of the students grouped oscillators taking into account the forces acting on the 
system, being them restoring forces or not. 
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Another interesting fact emerged from the initial brainstorming is that about 80% of the 
students thought that the oscillation frequency of a vertical mass-spring oscillator does 
depend on the initial displacement. In particular, they thought that the greater the initial 
amplitude, the greater the frequency. Some students said: “when the amplitude is bigger, 
the frequency is higher because the movement of the mass is faster”. A few students 
thought that the frequency of oscillation decreases with the initial displacement because: 
“the velocity is the same but the space is longer, so the oscillation takes more time”. Only 
less than 20% of the students decided that the frequency is constant, regardless the initial 
displacement. They stated this fact on the base of direct observation by naked eye: 
“looking at the oscillation I can’t see difference”. 
Analogous results and similar comments were obtained with the simple pendulum, despite 
the fact that almost all the students already knew the pendulum isochronism law. 

The situation greatly changed after the didactical intervention as at the end of the path 
nearly 90% of the students were able to recognize that the frequency of a harmonic 
oscillator does not depend on amplitude. 

Regarding normal modes, while many students were able to imagine “some special motion 
configurations” of a system of two coupled pendulums before the topic was introduced and 
the experiments performed, only a couple of them were also able to predict the motion of 
the third normal mode of a system of three coupled pendulums. None could predict higher 
modes in more complex systems (five pendulums). Anyway, after introducing the graphic 
technique (see Figure 13), the number of students able to predict the motion of all normal 
modes increased significantly. In the final test and in the interviews was proposed  
a question on a system of five coupled oscillators. All the students were able to describe 
the motion configuration of the first normal mode by words and/or by sketches. Over  
80% described correctly the second normal mode, over 60% the third and the fourth and 
nearly 50% the fifth one. Most of the wrong answers on higher normal modes were due to 
inaccuracy in drawing the sketches. 

Conclusions 

This experimental approach here described, allows to overcome most of the mathematical 
difficulties that one encounters in treating coupled oscillations with secondary school 
students. Moreover, the use of data logging software can also help students to get over 
some difficulties in representing and interpreting graphics. In addition, in our experience, 
we have noticed that the use of techniques, such as video-tracking generates great 
enthusiasm in students. In fact it needs only a smartphone as “probe”, and we all know that 
smartphones represent a technology very friendly to young students. This is further proved 
by the many works students performed at home, by themselves, even without having been 
asked. 
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