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SUMMARY

The Fragile X mental retardation protein (FMRP) reg-
ulates neuronal RNA metabolism, and its absence or
mutations leads to the Fragile X syndrome (FXS). The
b-amyloid precursor protein (APP) is involved in Alz-
heimer’s disease, plays a role in synapse formation,
and is upregulated in intellectual disabilities. Here,
we show that during mouse synaptogenesis and in
human FXS fibroblasts, a dual dysregulation of APP
and the a-secretase ADAM10 leads to the production
of an excess of soluble APPa (sAPPa). In FXS, sAPPa
signals through the metabotropic receptor that,
activating theMAPkinase pathway, leads to synaptic
and behavioral deficits. Modulation of ADAM10 ac-
tivity in FXS reduces sAPPa levels, restoring transla-
tional control, synaptic morphology, and behavioral
plasticity. Thus, proper control of ADAM10-mediated
APP processing during a specific developmental
postnatal stage is crucial for healthy spine formation
and function(s). Downregulation of ADAM10 activity
at synapses may be an effective strategy for amelio-
rating FXS phenotypes.

INTRODUCTION

Brain development is a life-long project. While it is well accepted

that the brain undergoes critical periods in its development, the
382 Neuron 87, 382–398, July 15, 2015 ª2015 Elsevier Inc.
molecular basis of these critical periods is not fully understood.

The events that shape the brain during development influence

processing of new information, acquisition of new skills, and for-

mation of memories throughout life. Proper synaptic contacts,

trans synaptic signaling, and structural remodeling are essential

aspects of synapse maturation and stabilization during post-

natal brain development (Grant, 2012; Yuste, 2013). Fine-tuned

expression of several proteins is fundamental for the synaptic

structure, the establishment of synaptic networks, and neuronal

plasticity (Sala and Segal, 2014). Changes in dendritic spine

morphology and plasticity are associated with various neurode-

velopmental diseases, such as Down syndrome, Rett syndrome,

autism spectrum disorder (ASD), and Fragile X syndrome (FXS)

(Sala and Segal, 2014).

FXS is themost common formof inherited intellectual disability

andabout 30%of FXSchildrenmeet the criteria for ASD (Jacque-

mont et al., 2007; Lozano et al., 2014). Patients with FXS have

cognitive and behavioral deficits, anxiety, and a susceptibility

to epilepsy (Jacquemont et al., 2007; Lozano et al., 2014).

At the cellular level, FXS neurons have an increased number of

dendritic spines that appear long, thin, and tortuous (Hinton

et al., 1991; Irwin et al., 2001). The mouse model of FXS (Fmr1

knockout [KO]) exhibits morphological, synaptic, and behavioral

alterations similar to human patients (Bakker, 1994; Comery

et al., 1997; Huber et al., 2002; Santos et al., 2014).

FXS is due to the absence of, or mutations in, the Fragile

X mental retardation protein, FMRP, an RNA-binding protein.

Through four RNA-binding domains, FMRP associates with

messenger RNAs (mRNAs) encoding pre- and postsynaptic pro-

teins and regulates multiple steps of mRNAmetabolism, such as

dendritic transport, stability, and translation (Darnell and Klann,
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2013; Pasciuto and Bagni, 2014a, 2014b). Loss of FMRP com-

promises the fine-tuned expression of a variety of proteins,

leading to deficits in embryonic and early postnatal brain wiring

networks (La Fata et al., 2014; Romano et al., 2014). Mutations

in several of the FMRP target mRNAs are associated with

different forms of intellectual disability such as ASD, mood

disorders, and schizophrenia (Pasciuto and Bagni, 2014b). A

mechanism through which FMRP inhibits translation of synaptic

mRNAs is via the cytoplasmic FMRP interacting protein 1

(CYFIP1) that acts as an eIF4E-binding protein (De Rubeis

et al., 2013; Genheden et al., 2015; Napoli et al., 2008; Panja

et al., 2014). Among the bona-fide mRNAs regulated by FMRP

(Pasciuto and Bagni, 2014b) is the transcript encoding the amy-

loid precursor protein (APP) (Napoli et al., 2008; Westmark and

Malter, 2007). APP is a type I transmembrane protein that plays

a central role in Alzheimer’s disease (AD) (Rajendran and An-

naert, 2012) and is also dysregulated in neurodevelopmental dis-

orders, such asDown syndrome (Glenner andWong, 1984), FXS,

and ASD (Ray et al., 2011; Westmark et al., 2011). APP was

initially described as a cell-surface receptor (Kang et al., 1987)

that interacts with a variety of molecules and some components

of the extracellular matrix (Reinhard et al., 2013), thus activating

transmembrane signal transduction, calcium metabolism, and/

or transcription (Müller and Zheng, 2012; Rice et al., 2013). A

wide range of APP functions have been described in both the

developing and adult brain, including neurite outgrowth, synap-

tic development and plasticity, cell adhesion, protein trafficking,

and cell migration (Hoe et al., 2012; Müller and Zheng, 2012).

Consistent with its functions, APP expression is high during

spine formation and progressively declines after synaptic matu-

ration (Moya et al., 1994). Alterations of synaptic structure and

function are therefore well established features of APP dysregu-

lation, although the underlying complex molecular mechanism(s)

are poorly understood.

While impaired learning and memory and reduced long-term

plasticity have been consistently found in aged App KO mice

(Ring et al., 2007; Tyan et al., 2012), the effects of APP deletion

on dendritic spine density are quite controversial (Hoe et al.,

2012). Both increased (Bittner et al., 2009) and reduced mature

spine density (Lee et al., 2010b; Tyan et al., 2012) have been re-

ported in the cortex of APP-deficient mice. Overexpression of

APP consistently increases spine number and promotes synap-

togenesis (Lee et al., 2010b).

On the cell surface, APP processing generates a secreted

form of APP (sAPPa) and a C-terminal fragment (CTFa). Solu-

ble APPa is upregulated during synaptogenesis and increases

synaptic density, cortical synaptogenesis, and memory reten-

tion in vivo (Bell et al., 2008; Hick et al., 2015; Roch et al.,

1994; Tyan et al., 2012), and it has been proposed to have

both a neurotrophic and neuroprotective effect (Milosch

et al., 2014; Müller and Zheng, 2012). The disintegrin metallo-

protease ADAM10 is the constitutive a-secretase required for

sAPPa generation (Kuhn et al., 2010). Its function is essential

for cortex formation and for spine morphology (Jorissen

et al., 2010; Malinverno et al., 2010). ADAM10 overexpression

promotes cortical synaptogenesis (Bell et al., 2008), whereas

its depletion causes synaptic defects and impaired learning

(Prox et al., 2013). A different APP processing pathway, medi-
ated by the b-secretase BACE1, cleaves APP, generating a

soluble form of APP (sAPPb) and a C-terminal membrane-

associated fragment (CTFb). The formation of b-amyloid

(Ab40-42) in the brain is critical for AD progression (Karran

et al., 2011; Selkoe, 2002).

Here, we highlight the critical role played by FMRP in coor-

dinating the production of sAPPa in the brain. Soluble APPa

accumulates in the FXS brain as a result of excessive synthe-

sis of APP and ADAM10 proteins during a critical postnatal

period. The excess of generated sAPPa drives an increase in

protein synthesis, formation of immature spines, and impaired

synaptic plasticity. This cascade of events requires the metab-

otropic glutamate receptor 5 signaling and activates the

mitogen-activated protein kinase (MAPK) pathway. Finally,

we show that modulation of ADAM10 activity at FXS synapses

ameliorates various molecular, synaptic, and behavioral de-

fects in FXS.

RESULTS

FMRP Regulates APP Protein Processing at Early
Postnatal Stages
The levels of APP are increased when FMRP is absent (West-

mark and Malter, 2007) or when CYFIP1 levels are decreased

in juvenile mice (Napoli et al., 2008). Because FXS is a neurode-

velopmental disorder, we characterized the changes of APP

expression during brain development in the Fmr1 KO mouse

model (Bakker, 1994). Whole brain extracts from wild-type

(WT) and Fmr1 KO mice were analyzed during early postnatal

stages (P7, P14, and P21) and adulthood (P30 and P90). No

differences in APP expression were observed between WT and

KO mice at P7 and P14, whereas a significant upregulation

was observed in the Fmr1 KOmice starting at 3 weeks after birth

(P21) and was maintained throughout adulthood (Figure 1A).

A similar dysregulation was observed at synapses (Figure 1B).

AppmRNA steady-state levels were not changed in the absence

of FMRP (Figure S1A).

Therefore, absence of FMRP leads to increased APP expres-

sion in the brain during a period critical for the stabilization of

synapses and development of brain functions (Grant, 2012;

Yuste, 2013).

It has been hypothesized that the excess of APP in FXS might

be pathogenic due to elevated Ab release (Westmark and Mal-

ter, 2007). We measured Ab levels in cortex during synaptogen-

esis and in adulthood. Unexpectedly, we observed a significant

decrease in Ab in juvenile Fmr1 KO mice compared to WT (Fig-

ure 2A). Only at the adult stage are Ab levels increased (Fig-

ure 2A). We next analyzed the production of secreted sAPP

and CTFs using specific antibodies (Figures S2A, S4B, and

S4C). Brains were fractionated (Figure S2B) and the levels of

sAPP (total sAPP, sAPPa, and sAPPb) quantified. Absence of

FMRP leads to a parallel increase of APP and sAPP protein

levels between the third and fifth postnatal week (P21–P30) (Fig-

ures 1A and 2B). Specifically, we found a rise in sAPPa levels in

juvenile (P21) Fmr1 KO mice and a decrease in b-cleavage (less

sAPPb; Figure 2C). We next investigated APP processing at FXS

synapses by measuring the CTFs generated in the synaptic

membrane. Using an established biochemical synaptosome
Neuron 87, 382–398, July 15, 2015 ª2015 Elsevier Inc. 383



Figure 1. FMRP Regulates APP Protein Level during Postnatal Development

(A) In Fmr1 KO mice, APP protein levels are upregulated during brain development. The protein expression was analyzed during development by WB in WT and

KO mouse brain. For APP antibody specificity see Figures S2, S4, and S6B. Representative western blot showing protein levels at P7, P14, P21, P30, and P90.

The histograms show quantified protein levels normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This ratio was set to 1 in the WT mice for

each developmental stage. The bars represent the SEM (*p < 0.05; **p < 0.01, Student’s t test) (n = 4 for each developmental stage).

(B) APP levels are increased in Fmr1 KO synaptoneurosomes. Representative western blot showing protein levels at P7, P14, P21, P30, and P90 in WT and Fmr1

KO mice. The histograms show quantified APP expression normalized to GAPDH. This ratio in WT mice was set to 1. The bars represent the SEM (*p < 0.05;

**p < 0.01, ***p < 0.001, Student’s t test) (n = 3–4).

See also Figure S1.
fractionation (Galli et al., 1996; Marcello et al., 2007), we isolated

detergent resistant membrane from synaptoneurosomes (DRM;

Figure S2C). These samples are enriched in membrane-associ-

ated proteins, such as Synaptophysin, PSD95, Flotillin, and

NMDA receptor subunits. We found that APP protein levels

were less abundant in the synaptic membranes isolated from

Fmr1 KO (Figure 2D). In the absence of FMRP, the levels of

CTFa (�10 kDa) generated by a-secretase activity were

increased, whereas CTFb (�12 kDa), the b-secretase product,

was decreased (Figure 2D). The altered CTFa/CTFb ratio sug-

gests that a-secretase activity is specifically upregulated in juve-

nile Fmr1 KO animals. Because a- and b-secretases compete to

cleave APP, the observed reduction of sAPPb, CTFb, and Ab

supports a skewed APP processing toward the non-amyloido-

genic pathway in the Fmr1 KO during early stages of develop-

ment and a possible switch toward the b-cleavage at later

stages.

Absence of FMRP Reduces Cell-Surface APP Protein
Levels
The concomitant increase in sAPPa and decrease of sAPPb

protein levels in the Fmr1 KO suggested that APP was highly

processed at the cell surface. First, we determined total and

surface APP levels in cortical neurons from WT and KO mice

by immunofluorescence (Figure 2E). Total APP levels were de-
384 Neuron 87, 382–398, July 15, 2015 ª2015 Elsevier Inc.
tected by an antibody against the cytoplasmic domain

(A8717; Figures S2A and S2B) and the surface level of APP us-

ing an antibody against its ectodomain (22C11; Figures S2A and

S2B). Total APP levels were higher in Fmr1 KO than in WT

cortical neurons, as in brain extracts, but the surface APP was

lower in the FMRP-deficient cells (Figure 2E). To corroborate

our data, we biotinylated and captured cell-surface proteins

and analyzed the precipitate by western blotting (WB) (Fig-

ure 2F). Although the total APP expression was increased in

Fmr1 KO mice, the surface APP was decreased. Both experi-

ments showed that, in FMRP-deficient neurons, the global

expression of APP is increased; however, there is a steep

decrease in full-length APP protein levels at the cell surface (Fig-

ures 2E and 2F). While we cannot rule out that a defect in APP

trafficking could also contribute to the reduced APP present at

the cell surface, the decrease in surface APP and the parallel in-

crease in sAPP released in the media of Fmr1 KO neurons (Fig-

ure 2G) strongly support that APP processing at the membrane

is upregulated.

ADAM10 Protein Levels Are Upregulated in the Absence
of FMRP
To identify the mechanisms underlying the decreased APP at

the cell surface and the increased sAPPa release in FXS,

we measured the expression levels of the constitutive APP



a-secretase ADAM10 (Jorissen et al., 2010). WB of cortical (Fig-

ure 3A) and synaptic lysates (Figure 3B) showed a parallel in-

crease in the expression of APP and mature ADAM10 in the

absence of FMRP, while the synaptic expression of two other

metalloproteases ADAM9 and 17 did not change (Figure 3B).

Furthermore, the absence of FMRP leads to a developmental

stage-specific increase of ADAM10 (Figure 3C), correlating

with the increased production of sAPPa between the third and

fourth postnatal week (Figure 2B). The increase of ADAM10 in

Fmr1 KO cortical neurons was confirmed by immunofluores-

cence (Figure 3D). Opposite distribution to APP was observed

for the mature ADAM10 protein, which was increased at the

cell-surface (Figure 3E), where it cleaves APP to generate sAPPa

(Lichtenthaler, 2011). The increased ADAM10 expression in the

Fmr1 KO mice, at this specific developmental stage, did not

result in a dysregulation of other protein targets such as Notch

and N-cadherin (Figure S3).

Overall, these observations support the conclusion that

FMRP, by coordinating both APP and ADAM10 expression, spe-

cifically regulates sAPPa generation during the critical period of

synaptogenesis.

FMRP Regulates the ADAM10-APP Pathway at the Level
of mRNA Translation
To test whether FMRP is directly involved in the generation of

excessive levels of sAPPa, we investigated if FMRP directly reg-

ulates App and Adam10 mRNA metabolism in juvenile mice.

FMRP was immunoprecipitated (IP) from brain extracts, and

the bound mRNAs were analyzed by RT-PCR. App and

Adam10 mRNAs were both associated with FMRP. The speci-

ficity of this interaction was confirmed by the absence of

Adam9 and Adam17 mRNAs and the non-target D2DR and

Cyp46 mRNAs (Figure 3F). App and Adam10 mRNA steady-

state levels did not significantly change between WT and

Fmr1 KO cortices (Figure S1B). Therefore, we assessed whether

FMRP controls APP and ADAM10 protein synthesis. The mouse

cortex was fractionated in translationally active polysomes and

silent mRNPs and the mRNA distribution was analyzed as pre-

viously described (Zalfa et al., 2007). As shown in Figure 3G,

App and Adam10 mRNAs co-fractionated with the polysomal

fraction more in the Fmr1 KO brain than in WT; in contrast,

the levels of b-actin mRNA were unchanged, consistent with

previous findings (Lee et al., 2010a).

Our data indicate that FMRP regulates App and Adam10

mRNA translation. In the FXS mouse model, the lack of FMRP-

mediated translational repression increases APP and ADAM10

protein levels and ultimately generates the excess of sAPPa.

sAPPa Contributes to the FXS Spine Phenotype
To address the contribution of excessive APP synthesis and pro-

cessing to the spine dysgenesis observed in FXS, we reduced

APP in Fmr1KOneurons (DIV 8), a stage inwhich neurons are still

immature and APP is not dysregulated (Figure S4A). We knocked

down APP using a lentiviral vector (Lee et al., 2010b) carrying

a short hairpin RNA directed specifically against App mRNA

(App short hairpin [sh]RNA-EGFP; Figures S4B and S4C).

Mean spine head and length measurements were used to cate-

gorize the spines into the following classes: mushroom and
stubby (mature); long thin and filopodia (immature) (Harris

et al., 1992) (Figure S5A). Reduction of APP in WT neurons

reduced spine density, while exogenous sAPPa increased the

number of immature spines (Figures S5B and S5C). The spine

number and distribution along the four morphological classes

significantly differed betweenWT and KO neurons, with the latter

showingmore immature spines (Figures 4 and S5C). Importantly,

when sAPPawas added to themedium ofWT and Fmr1 KO neu-

rons, in Fmr1 KO neurons, the APP-dependent rescue of the

spine density was abolished and the density of long thin spines

and filopodia increased (Figures 4A–4C), resulting in an

increased number of immature spines (Figures 4C and S5C). In

conclusion, these data support the hypothesis that concomitant

deregulation of both APP expression and processing during the

early stages of development contributes to immature spine for-

mation in FMRP-deficient neurons. Of note, similar effects

have been recently observed in ADAM10 heterozygous mice

(Prox et al., 2013), further supporting that the dual-level APP-

ADAM10 is necessary for proper spine development and

density.

Excessive ADAM10 Activity Causes Exaggerated
Protein Synthesis in the Fmr1 KO Mice
FXS mice have exaggerated protein synthesis (Bagni et al.,

2012). To explore whether sAPPa promotes protein synthesis

in FXS, we used the SUnSET technology, a non-radioactive

assay for labeling newly synthesized proteins (Schmidt et al.,

2009) (Figure S6A). The level of protein synthesis was moni-

tored in cortical neurons and synaptoneurosomes from WT,

Fmr1 KO, and Fmr1 KO/App heterozygous (Het) mice (Figures

5A and 5B) and in both cases protein synthesis was elevated

in the absence of FMRP. Genetic reduction of APP in Fmr1

KO/AppHet mice returned the protein synthesis rate to WT level

(Figure 5A). App KO mice also showed a reduced protein syn-

thesis at synapses, further supporting a role for APP in the

regulation of translation in neurons (Figure S6B). Furthermore,

treatment of WT and Fmr1 KO/AppHet neurons with sAPPa

led to an increase in protein synthesis (Figures 5C and 5D).

Treatment of WT neurons with sAPPb did not elicit protein syn-

thesis (data not shown). To finally relate the sAPPa-dependent

increase in protein synthesis to the excessive ADAM10 activity,

we crossed the Fmr1 KO with the Adam10Het mice and moni-

tored basal protein synthesis at synapses. Genetic reduction

of ADAM10 also lowered the rate of de novo protein synthesis

in the Fmr1 KO (Figure 5E). Similarly, absence of ADAM10 in

mouse embryonic fibroblasts (Figure S6C) and haploinsuffi-

ciency of ADAM10 in cortical neurons (Figure S6D) decreases

protein synthesis.

Taken together, these findings show that FXSmice have aber-

rant sAPPa-dependent de novo protein synthesis.

sAPPa Promotes Metabotropic Glutamate Receptor 5
Signaling
Metabotropic glutamate receptor 5 (mGluR5) and MAPK

signaling are affected in FXS (Osterweil et al., 2010). To investi-

gate a possible crosstalk between sAPPa-mediated increase in

protein synthesis and mGluR5 activation, we treated cortical

neurons with sAPPa and monitored the activation of the MAPK
Neuron 87, 382–398, July 15, 2015 ª2015 Elsevier Inc. 385



Figure 2. Impaired Processing of APP in Fmr1 KO Mice Leads to Enhanced sAPPa Release

(A) Ab40 levels in juvenile and aged Fmr1 KO cortices. The amount of Ab was measured by ELISA normalized to the brain’s weight and expressed as the

percentage of the WT. The bars represent the SEM (*p < 0.05, Student’s t test) (n = 4 for both P21 and P300).

(B) sAPP levels in KO brain cortices during postnatal development. The histograms show the quantification of sAPP protein levels normalized to Coomassie. The

bars represent the SEM (*p < 0.05, **p < 0.01, Student’s t test) (n = 3).

(C) APP processing in P21 KO brain cortices. Representative WB showing protein levels of sAPP (sAPPa + sAPPb), sAPPa, and sAPPb in the soluble fraction

(see also Figure S2) in WT and KO cortices. The histograms show the quantification of the three products normalized to Coomassie. The bars represent the SEM

(*p < 0.05, one-sample t test) (n = 4).

(D) a- and b-secretase products in WT and Fmr1 KO synaptic membranes. APP, APP CTFa (�10 kDa) and CTFb (�12 kDa), FMRP, and Vinculin protein levels

were analyzed byWB in the synaptic membranes of WT and KOmice. The histograms show quantified proteins normalized to Vinculin. This ratio in WTmice was

set to 1. The bars represent the SEM (*p < 0.05, **p < 0.01, one-sample t test) (n = 6). See also Figure S2.

(E) Cell-surface APP is reduced in Fmr1 KO cortical neurons. The WT and KO cortical neurons were stained for total APP (left) or surface APP (right). The repre-

sentative dendritic fragments (>50 mm distance from the cell body) are shown. The histograms show the total and surface protein levels as the mean fluorescence

intensity (Mean F.I.). The bars represent SEM (***p < 0.001, Student’s t test) (n = 8 cells, five dendritic fragments [20 mm/cell]). The scale bar corresponds to 5 mm.

(legend continued on next page)
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signaling cascade downstream of mGluR5. Soluble APPa

induced an increase in phosphorylated extracellular signal-

regulated kinase (ERK) 1/2 (Figure 5F). This was mediated via

the activation of the mGluR1/5 receptor, because its effect

was abolished by the mGluR5 antagonist MPEP (Figure 5F).

Rapamycin treatment, affecting mTOR and ERK phosphoryla-

tion in opposite directions, was used as control (Ma and Blenis,

2009). Interestingly, no effect on mTOR phosphorylation was

observed upon sAPPa treatment or mGluR5 inhibition, suggest-

ing that themTORpathway is not activated by sAPPa (Figure 5F).

Altogether, our data demonstrate that excessive production of

sAPPa sustains the increase in mGluR-dependent protein syn-

thesis observed in FXS, possibly through the MAPK signaling

pathway.

TAT-Pro ADAM10709–729 Peptide Normalizes Enhanced
Hippocampal mGluR-Long Term Depression, Memory,
and Hyperactivity in Fmr1 KO Mice
Wenext examinedwhether loweringADAM10activity inFmr1KO

neurons might ameliorate these aberrant phenotypes. To this

end, we used a cell-permeable peptide TAT-Pro ADAM10709–

729, which contains part of the intracellular domain of ADAM10;

it interferes with the interaction of ADAM10 and synapse-associ-

ated protein 97 (SAP97), thereby reducing the localization and

activity of ADAM10 specifically at the synapses (Marcello et al.,

2007). The treatment of WT and Fmr1 KO cortical neurons with

TAT-Pro peptide reduced sAPPa release (Figure 6A). Consis-

tently, we also reduced sAPP production in Fmr1KOneurons us-

ing the tissue inhibitor of metalloproteinases (TIMP-1) (Amour

et al., 2000) (Figure S7A). Furthermore, a treatment of the Fmr1

KO neurons with the TAT-Pro peptide increased the ratio of sur-

face versus total APP levels (Figure S7B).

We next examined APP processing in juvenile (P21) WT and

Fmr1 KOmice after intraperitoneal injection of the TAT-Pro pep-

tide (Figure 6B). Importantly, the excessive sAPPa production in

the Fmr1 KO mice, monitored by WB 18 hr after peptide injec-

tion, was no longer observed upon treatment with the peptide

(Figure 6B), suggesting that the excess is produced at FXS syn-

apses; a control peptide (TAT-Ala) had no effect.

Because one of the hallmarks of FXS is the enhanced mGluR-

dependent long-term depression (LTD) observed in Fmr1 KO

mice (Huber et al., 2002), and ADAM10 activity affects LTD (Mu-

sardo et al., 2013; Prox et al., 2013), we examined whether the

reduction of ADAM10 activity could ameliorate the mGluR-LTD

responses in Fmr1 KO mice. The effects of the TAT-Pro peptide

on (RS)-3,5-Dihydroxyphenylglycine (DHPG) induced LTD were

tested in juvenile (P18–25) WT and KO mice. Field excitatory

postsynaptic potentials (fEPSPs) were recorded from CA1 neu-

rons in hippocampal slices in response to Schaffer collateral

fiber stimulation 18 hr after treatment. A bath application of

DHPG (30 mM, 15 min) induced a robust LTD of fEPSPs in the
(F) Surface APP is decreased in the Fmr1 KO cortical neurons. Proteins were bi

surface ‘‘sur’’ lanes 3, 4, and 6). APP, GAPDH, NR2A, and FMRP levels were analyz

surface APP are expressed as ratio of the WT. The bars represent the SEM (*p <

(G) sAPP levels are increased in cortical neurons. sAPP levels were analyzed byW

show the quantification of APP protein levels normalized to the Coomassie. Th

Student’s t test) (n = 4).
WT slices (240 min: 53% ± 9% of baseline, n = 7). In agreement

with previous reports (Nosyreva and Huber, 2005), we observed

an enhanced DHPG-induced LTD in the Fmr1 KOmice (240 min:

28% ± 3%, n = 12) (Figure 6C). Exposure to TAT-Pro or TAT-Ala

peptides had no detectable effect on the ability of DHPG to elicit

LTD in the WT slices (65% ± 8%, n = 7 and 56% ± 5%, n = 6,

respectively) when compared with the untreated control

(Figure 6D). These data correlate with lack of reduction of sAPPa

levels upon TAT-Pro treatment in WT (Figure 6B). In contrast,

we found that treatment with the TAT-Pro peptide was sufficient

to prevent the enhanced LTD in the Fmr1 KO mice, indicating

that the exaggerated late LTD (>2 hr) in these mice (Figure 6E)

is a direct consequence of increased ADAM10 activity.

Peptide treatment did not affect basal transmission (Figures

S8A and S8B).

To further address whether targeting ADAM10 could rescue

the increased protein synthesis in FXS,WT and Fmr1KO animals

were treated in vivo with the TAT-Pro peptide. FMRP targets,

such as APP, ADAM10, as well as the activity-regulated cyto-

skeleton-associated protein (ARC) and the striatal-enriched pro-

tein tyrosine phosphatase (STEP) (Bagni et al., 2012) were de-

tected in synaptoneurosomes of treated animals (Figure 6F).

We observed that upon injection of the TAT-Pro peptide, the

excessive levels of APP, ADAM10, ARC, and STEP are restored

to normality. These findings are consistent with the reduction

of protein synthesis observed at the synapses of the Fmr1 KO/

Adam10Het and Fmr1 KO/AppHet mice (Figures 5B and 5E).

Finally, we monitored the effect of the peptide on working mem-

ory (T-maze) and hyperactivity (open field) (Figures 6G and 6H),

two behavioral features that have been consistently found

altered in FXS mice (Santos et al., 2014). Fmr1 KO mice move

faster and travel a longer distance in the open field, and they

fail more in the spontaneous alternation in the T-maze (Santos

et al., 2014). Nest building is a social behavior in mice impaired

in Fragile X and other models of autism (Udagawa et al., 2013).

Fmr1 KOmice used less material in nest construction compared

to WT animals (Figure 6I). Targeting ADAM10 trafficking with

the TAT-Pro peptide ameliorates the above-mentioned behav-

ioral deficits (Figures 6G–6I).

Together, these results demonstrate that blocking SAP97-

mediated ADAM10 trafficking to the synapses reduces sAPPa

production and reverses molecular, cellular, and behavioral

impairments that constitute the hallmarks of FXS.

FMRP Regulated APP and ADAM10 Protein Levels in
Humans
To address the relevance of our findings for the human disease,

APP and ADAM10 levels were analyzed in human samples.

We observed that APP is expressed at higher levels in lympho-

blastoid cell lines from patients with FXS compared to controls

(Figure 7A). In addition, the analysis of elderly human
otinylated and captured with streptavidin-beads (input 1/10, lanes 1, 2 and 5;

ed byWB. The histograms show the quantification. The changes of total versus

0.05, **p < 0.01, one-sample t test) (n = 4).

B in the conditionedmedium fromWT and KO cortical neurons. The histograms

is ratio was set to 1 in the WT mice. The bars represent the SEM (*p < 0.05,
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Figure 4. sAPPa Levels Are Crucial for

Spine Morphology in FXS

(A) Representative dendritic segments of cultured

cortical neurons transfected with lentiviral vectors

expressing EGFP-App shRNA or EGFP-CTRL

shRNA, treated with sAPPa at DIV8, and analyzed

at DIV14. The scale bar represents 5 mm.

(B) Spine density of the different spine types. The

bars represent the SEM (***p < 0.001, non-signifi-

cant = n.s., one-way ANOVA followed by post hoc

Bonferroni correction) (n = 10 neurons from at least

two different cultures). For each condition, 350–

500 spines were analyzed.

(C) Density of the mature and immature spines.

The spine morphology was used to discriminate

the spine types. See Figure S5. The bars represent

the SEM (***p < 0.001, one-way ANOVA followed

by post hoc Bonferroni correction) (n = 10 neurons

from at least two different cultures). For each

condition, 350–500 spines were analyzed.

See also Figures S4 and S5.
postmortem brains from FXS and control individuals revealed

that a reduction in the levels of FMRP alters APP expression in

the cortex (Figure 7B; Table S1) and cerebellum (data not

shown). APP mRNA levels did not change significantly (Figures

S1C and S1D). The dysregulation of APP protein levels are

consistent with our observation in adult Fmr1 KO brains (Fig-

ure 1). No significant changes were detected in ADAM10 levels

in human postmortem brains (average age of 60) or immortalized
Figure 3. FMRP Regulates the APP Processing Enzyme ADAM10

(A) ADAM10 expression is higher in Fmr1 KOmice than in WT. Representative WB showing the ADAM10 prote

mature proteins and white arrowheads: prodomain containing proteins). The histograms show the quantificatio

GAPDH levels expressed as ratio of the WT. The bars represent the SEM (*p < 0.05, **p < 0.01, Student’s t

(B) ADAM10 expression is increased in synaptoneurosomes (Syn) from KOmice. Representative WB showing

in the WT and the KO mice (black arrowheads: mature protein and white arrowhead: immature protein). The

levels normalized to GAPDH levels expressed as ratio of the WT. The bars represent the SEM (**p < 0.01, S

(C) ADAM10 expression during development. ADAM10 protein levels were detected in WT and KO brain corte

was used as normalizer. The bars represent the SEM ( **p < 0.01, Student’s t test) (n = 3).

(D) Immunofluorescence of ADAM10 in DIV14 cortical neurons. The left image shows representative dendritic

represent protein levels quantified as themean fluorescence intensity (Mean F.I.). The bars represent SEM (***p

fragments [20 mm/cell]). The scale bar represents 5 mm.

(E) Surface ADAM10 is increased in Fmr1 KO cortical neurons. Proteins were biotinylated and captured wit

were analyzed by WB. The histograms show the quantification of the protein levels. The bars represent the S

(F) Detection of FMRP-associatedmRNAs. The top panel shows a representativeWBof FMRP-IP frombrain e

Adam10, Adam9, and Adam17 mRNAs). Negative controls: dopamine receptor D2 (D2DR) and (Cyp46) mRN

(1/20); lane 2, aFMRP; and lane 3, control IgGs.

(G) Translational efficiency of App and Adam10mRNAs in WT and Fmr1 KO cortices. The extracts were fract

were 12 fractions that were collected while reading the absorbance at 254 nm. The amount ofAdam10,App an

RT-quantitative (q) PCR. A representative polysomal-mRNP profile is shown. Each fraction shows the quanti

b-actin mRNA in the WT and Fmr1 KO mice. The bars represent the SEM (*p < 0.05, **p < 0.01, Student’s t

Neuron 87, 382–
lymphoblastoid cells from FXS compared

to control individuals. These findings are

consistent to what we observed in the

mouse model where a development spe-

cific dysregulation of ADAM10 was

observed in juvenilemice only (Figure 3C).

Because human postmortem brains from

adolescent FXS were not available, we
analyzed APP and ADAM10 expression in primary fibroblasts

obtained from adolescent and adult patients with FXS. Impor-

tantly, in these cells, APP and ADAM10 were both upregulated

in FXS patients (average age of 25) (Figure 7C), and additionally,

the sAPPa product of ADAM10 activity was also increased in

cells from FXS patients (Figure 7D). Finally, FMRP was IP from

human control fibroblasts and the bound mRNAs were analyzed

by RT-PCR, confirming that APP and ADAM10 mRNAs are
in levels in WT and KO cortices (black arrowheads:

n of ADAM10 and APP protein levels normalized to

test) (n = 3).

ADAM10, ADAM9, and ADAM17 expression levels

histograms represent the quantification of protein

tudent’s t test) (n = 4).

x extracts at P14, P21, P30, and P90. The GAPDH

fragments (>50 mm from cell body). The histograms

< 0.001, Student’s t test) (n = 10 cells, five denditic

h streptavidin-Dynabeads; ADAM10 protein levels

EM (*p < 0.05, **p < 0.01, one-sample t test) (n = 4).

xtracts. Panels below show (RT-PCR to detectApp,

As. Positive control: aCaMKII mRNA. Lane 1, input

ionated along a 10%–60% sucrose gradient. There

d b-actinmRNAs in each fractionwas quantified by

fication of App and Adam10 mRNAs normalized to

test) (n = 4).
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Figure 5. Exaggerated Protein Synthesis in Fmr1 KO Depends on Excessive ADAM10 Activity and sAPPa Production

(A) Genetic reduction of APP in Fmr1 KO mice ameliorates the excessive protein synthesis in cortical neurons. Representative WB showing incorporated

puromycin in synaptoneurosomes. The histograms show the quantification of puromycin incorporation normalized to Coomassie. The bars represent the SEM

(*p < 0.05 KO versus WT, # p < 0.05 KO versus Fmr1 KO/AppHet, one-sample t test) (Holm’s correction) (n = 4 independent cultures).

(B) Protein synthesis in Fmr1 KO/AppHet mice in synaptoneurosomes. Representative WB showing incorporated puromycin. The histogram shows

a quantification of puromycin incorporation normalized to GAPDH. The bars represent the SEM. Kruskal-Wallis test followed by Dunn’s post hoc test. (*p < 0.05)

(n = 4 WT; n = 4 Fmr1 KO; and n = 3 Fmr1 KO/AppHet).

(C) sAPPa induces de novo protein synthesis. WT cortical neurons were treated with 1 nM sAPPa for 1 hr and analyzed as above. The bars represent the SEM

(*p < 0.05, one-sample t test) (n = 3).

(D) sAPPa increases translation in the Fmr1 KO/AppHet. Cortical neurons were treated with 1 nM sAPPa for 1 hr. The puromycin uptake was quantified byWB. The

bars represent the SEM (*p < 0.05, one-sample t test) (n = 3).

(legend continued on next page)
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associated to FMRP (Figure 7E). These findings demonstrate

that APP and ADAM10 are also dysregulated in FXS human pa-

tients, and that ADAM10 dysregulation is possibly under devel-

opmental regulation in human patients.

DISCUSSION

Despite significant interest in the physiological functions of APP

and its processed forms in the CNS, the mechanisms underlying

APP developmental regulation and function(s) remain elusive.

Dysregulation of APP and its metabolites, sAPPa and Ab, have

been observed in AD, autism, and Down syndrome (Glenner

andWong, 1984; Ray et al., 2011), suggesting that dysregulation

of APPmay have a key effect on neuronal pathologiesmarked by

neurodegeneration and deficits in neurodevelopment.

Here, we show that sAPPa contributes to the three major hall-

marks of FXS; namely, increased protein synthesis, aberrant

spine morphology, and altered synaptic function and behavior.

The expression of both APP and the a-secretase ADAM10 is

controlled by FMRP during synaptogenesis (Figures 1, 3, and

8). Both proteins are upregulated in the absence of FMRP due

to the lack of translational control on the respective mRNAs (Fig-

ures 3 and 8). Therefore, in FXS the unbalanced APP processing

elicits excessive production of sAPPa (Figures 2 and 8).

The impairment in protein synthesis is linked to aberrant syn-

aptic structure and plasticity in FXS (Bagni et al., 2012). We

now show that the a-secretase activity is needed for the APP-

mediated increase in protein synthesis, and administration of

sAPPa causes FXS-like deficits, such as spine formation, matu-

ration, and plasticity (Figures 4, 5, 6, and 8). Moreover, genetic

reduction of APP or ADAM10 activity is sufficient to reduce pro-

tein synthesis in Fmr1 KO neurons (Figure 6). Aberrant LTD in

FXS mice is also rescued by the genetic downregulation of

APP (Westmark et al., 2011), and ADAM10 activity has been

related to LTD and spine morphology (Musardo et al., 2013;

Prox et al., 2013), strongly suggesting that ADAM10-mediated

APP cleavage is required in synaptic plasticity. Moreover, sAPPa

is sufficient to rescue the anatomical, behavioral, and electro-

physiological abnormalities of APP-deficient mice (Ring et al.,

2007). Reduction of ADAM10 activity in vivo using a peptide

inhibitor (Marcello et al., 2007) in juvenile Fmr1 KO neurons

restored normal sAPPa levels, prevented the exaggerated

mGluR-LTD, and rescued behavioral deficits (Figures 6 and 8).

In conclusion, excessive sAPPa, rather than full-length APP or

Ab, is involved in the synaptic pathology in FXS. Of relevance

for the disease, we found that APP, ADAM10, and sAPPa levels

were dysregulated in human samples (Figure 7).

Exaggerated mGluR1/5-dependent protein synthesis is one

of the main features of FXS and is directly correlated to the

increased mGluR-LTD (Bear et al., 2004). Throughout our

studies, we have come full circle on a disease that over the
(E) Basal protein synthesis in Fmr1 KO/Adam10Het synaptoneurosomes. Repre

histograms show a quantification of puromycin incorporation normalized to GAPD

test. (*p < 0.05, ### p < 0.001 KO versus Fmr1 KO/Adam10Het) (n = 4 WT; n = 4

(F) sAPPa promotes mGluR1/5 signaling. Cortical neurons were treated for 1 hr

sentative WB showing ERK 1/2 and mTOR phosphorylation levels. The histogram

represent the SEM (*p < 0.05, one-way ANOVA followed by Dunnett’s multiple c
last two decades has confronted us with an endless complexity.

Lack of the translational repressor FMRP causes an increase of

the mGluR1/5 signaling that promotes sAPPa release; in turn,

sAPPa triggers ERK1/2 phosphorylation and sustains mGluR1/

5 activation and protein synthesis (Figures 5 and 8). Blockade

of the mGluR5 (Osterweil et al., 2010) or genetic reduction of

APP reduces protein synthesis in the Fmr1 KO (Figure 5).

Finally, our findings go beyond the role of APP and sAPPa in

FXS: we provide new insights into the regulation of the non-amy-

loidoigenic pathway and its role in synaptic function during a

critical developmental window. APP protein expression and pro-

cessing aredevelopmentally controlled, as levels are higher in the

second postnatal week during synaptogenesis and then decline

when mature connections are completed (Moya et al., 1994). We

demonstrate that FMRP regulates APP expression and process-

ing only after the second postnatal week (Figures 1 and 2),

concomitantly with the physiological decrease in APP. We pro-

pose that FMRP may intervene to avoid excessive APP and

ADAM10 expression and sAPPa production during a critical

period for synaptic stabilization and elimination (Yuste, 2013).

Our findings in humans (Figure 7) suggest that, similarly to the

mouse model, the excess of APP and sAPPa triggers excessive

protein synthesis, impaired synaptic LTD, leading to a detri-

mental effect on spine and brain function.

Considering the synaptic expression of APP, the neurotrophic

function suggested for sAPPa (Hoe et al., 2012; Müller and

Zheng, 2012) and its role in pruning (Olsen et al., 2014), the

increased expression of sAPPa during synaptogenesis (Moya

et al., 1994) could contribute to brain overgrowth and to defects

in net spine pruning responsible for the abnormally high synaptic

density observed in ASD (Tang et al., 2014). FXS is a neurodeve-

lopmental disorder and patients with FXS have a high incidence

of ASD. Children with severe autism and Fragile X express

elevated levels of sAPPa (Erickson et al., 2014; Ray et al.,

2011), consistent with the hypothesis for a sAPPa-mediated

anabolic pathway in ASD (Lahiri et al., 2013). Therefore, it is

tempting to hypothesize that alteration of the APP non-amyloi-

doigenic pathway might be a shared feature of several neurode-

velopmental disorders.

While the effect of sAPPa predominates, the excessive a-sec-

retase activity upregulates CTFa and downregulates Ab by

competing with the b-secretase pathway or directly inhibiting

BACE1 activity (Obregon et al., 2012). The APP CTFs can regu-

late signal transduction and apoptosis (Schettini et al., 2010) and

we cannot exclude the possibility that their dysregulation also

contributes to the FXS phenotypes. On the other hand, the amy-

loidogenic pathway is downregulated during synaptogenesis

and we can therefore exclude a pathogenic effect of Ab

accumulation (Figure 2). On the contrary, since Abmay stimulate

neurotransmission (Morley et al., 2010), lower Ab levels in FXS

could exacerbate intellectual deficits.
sentative WB showing incorporated puromycin in synaptoneurosomes. The

H. The bars represent the SEM. Kruskal-Wallis test followed byDunn’s post hoc

Fmr1 KO; and n = 3 Fmr1 KO/Adam10Het).

with sAPPa with or without MPEP 50 mM or with Rapamycin 200 nM. Repre-

s show a quantification of the protein levels normalized to Vinculin. The bars

omparisons test) (n = 5 independent cultures).
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Increased APP levels are correlated with Ab deposition in the

brain; however, a mild increase in APP expression contributes

to AD risk only at later ages (Brouwers et al., 2006). In old FXS

mice, the equilibrium of the amyloidoigenic and non-amyloidoi-

genic pathways changes and there is a mild accumulation of

Ab (Figure 2). Further studies are required to address if the in-

crease in APP levels observed in human FXS brains is sufficient

to cause AD symptoms. Of note, higher incidence of dementia

and cognitive deficits similar to those of AD was reported in

elderly FXTAS patients with a decrease in FMRP expression

(Seritan et al., 2008; Tassone et al., 2012).

Since the identification of the gene causing FXS in 1991, un-

derstanding and knowledge of the FMRP function(s) have

increased (Bassell and Warren, 2008), but to date an effective

therapy is still missing. Several therapeutic approaches for FXS

have been explored and taken into clinical trials, however,

several have been discontinued (https//:www.clinicaltrials.gov).

Over the past few years, the FXS features observed in mice

have been rescued through genetic reduction of single dysregu-

lated genes (Bagni et al., 2012). The consequence of FMRPbind-

ing to several mRNAs in the brain (Pasciuto and Bagni, 2014b) is

the impaired expression of a larger number of protein therefore

identification of a key pathway, deregulated during a critical

period of synaptic formation and brain connectivity, is therefore

of utmost importance.

Although there are no pharmacological approaches to reduce

APP expression, reduction of ADAM10 activity may provide an

alternative approach for modulating sAPPa levels at synapses.

We reduced ADAM10 synaptic localization and activity using

the TAT-Pro peptide, a treatment previously shown to affect syn-

aptic morphology and plasticity (Malinverno et al., 2010; Mar-

cello et al., 2007). Treatment of juvenile Fmr1 KO mice reduced

APP a-cleavage, normalized enhanced LTD, and some behav-

ioral deficits (Figures 6 and 8). Because of the high levels of
Figure 6. Modulation of ADAM10 Activity Reduces Excessive sAPPa a

(A) Left scheme: TAT-Pro (in black) perturbs the ADAM10/SAP97 association and

Pro reduces sAPP release in neurons. The DIV15 cortical neurons were treated w

sAPP levels weremeasured byWB (middle). The histograms show the quantificati

0.05, **p < 0.01, versus TAT-Ala WT; # p < 0.05, TAT-Pro KO versus TAT-Ala KO

(B) ADAM10 activity can be modulated in vivo in the Fmr1 KO. The juvenile mice (

TAT-Ala peptide (3 nmol/g). The effect on sAPPa release in the WT and KO brain

fication of sAPPa protein levels normalized to Coomassie. The bars represent the S

TAT-Ala KO, one-way ANOVA and Sidak’s multiple comparisons test) (n = 5).

(C) Fmr1 KO mice exhibit enhanced mGluR-LTD (n = 15 slices from nine mice/ge

(D) Themice (P18-P25) received a single intraperitoneal injection of either a Tat-Pro

impact LTD in theWTmice, whereas (E) TAT-Pro preventsmGluR-LTD in the Fmr1

n = 8 slices from four mice). Solid bars indicate the duration of the bath applicat

before (1), 10min after (2), and 240min after (3) DHPGapplication. The stimulus art

See also Figure S8.

(F) In vivo effects of TAT-Pro peptide treatment on protein expression in cortex.

represent the SEM (*p < 0.05, versus WT; #p < 0.05, TAT-Pro Ko versus KO, one

(G) Effect of the TAT-Pro peptide treatment on the performance of WT and F

2 consecutive days of treatment with the peptide (2 nmol/g). Histograms represen

followed by Sidak’s multiple comparisons test, and *p < 0.05). (n = 15 WT; n = 1

(H) Effect of the peptide in the T-maze. The table shows the preference index for th

preference for Familiar Arm. The histograms show the preference for the novel ar

Fmr1 KO; n = 9 TAT-Pro WT; and n = 12 TAT-Pro Fmr1 KO).

(I) Effect of the TAT-Pro peptide treatment on the nest building performance of W

cotton cylinders (one-way ANOVA followed by Sidak’s multiple comparisons test

n = 8 TAT-Pro Fmr1 KO). The right images show representative examples of nes
sAPPa found in the blood of autistic patients (Ray et al., 2011)

and in Fragile X children (Erickson et al., 2014), and the preva-

lence of autistic features in FXS, it is tempting to hypothesize

that the activation of the ADAM10 pathway, leading to an excess

of sAPPa production, is shared between patients with FXS and

ASD. Finally, FXS symptoms suggest an early postnatal/child-

hood disruption of the brain wiring that may underlie ASD like

features (La Fata et al., 2014; Romano et al., 2014). Based on

our studies, we believe that the developmental period around

synaptogenesis offers potentials for interventions to ameliorate

some of the deficits observed in patients with FXS.

EXPERIMENTAL PROCEDURES

Human Samples

Patients’ samples were received through clinical collaborators and co-authors

of this study. Informed consent and ethical approval are available on site and at

KU Leuven (Belgium).

Mice and Animal Care

Animal care was conducted conforming to institutional guidelines in compli-

ance with international laws and policies (DL N116, GU, suppl 40, 18-2-

1992; Belgian law KoninklijkBesluit (K.B.), 1993 and K.B, 2004; the European

Community Council Directive 86/609, OJa L 358, 1, 1987; the National Insti-

tutes of Health Guide for the Care and Use of Laboratory Animals, US National

Research Council, 1996). Studies were approved by the Institutional Ethical

Board at the University of Leuven, Belgium. P7, P14, P21, P30, and P90

C57BL/6 WT and Fmr1 KO male mice (Bakker, 1994), APP KO (Li et al.,

1996), and ADAM10Het (Jorissen et al., 2010) were used in this study.

Animal Treatment

P19 and 20 mice received a single intraperitoneal injection of either TAT-Pro

(2 or 3 nmol/g) or TAT-Ala peptide (2 or 3 nmol/g) diluted in sterile saline solu-

tion (Marcello et al., 2007). Animals were euthanized after 18 hr and the brains

were rapidly removed. The TAT-Pro709–729 ADAM10 inhibitory peptide (TAT-

Pro) and TAT-Ala709–729ADAM10 control peptide (TAT-Ala) were generated

as previously described (Marcello et al., 2007).
nd Ameliorates LTD and Behavior in the Fmr1 KO Mice

impairs ADAM10 (A10) localization at the cell surface. The treatment with TAT-

ith TAT-Ala and TAT-Pro peptides (10 mM, 18 hr). The media was collected and

on of sAPP normalized to Coomassie staining. The bars represent the SEM (*p <

, one-way ANOVA and Sidak’s multiple comparisons test) (n = 3).

P21) received a single intraperitoneal injection of either a TAT-Pro (3 nmol/g) or

cortices was monitored by WB after 18 hr. The histograms show the quanti-

EM (*p < 0.05, TAT-AlaWT versus TAT-Ala KO; ## p < 0.01, TAT-Pro KO versus

notype).

(2 nmol/g) or TAT-Ala peptide (2 nmol/g). TAT-Ala or TAT-Pro peptide does not

KOmice (F = 20, 75, p < 0.0002) (TAT-Pro n = 9 slices from sixmice and TAT-Ala

ion of DHPG (30 mM, 15 min). The representative traces (right) showing fEPSP

ifact is blanked to ease interpretation. The data are shown as themeans ± SEM.

APP, ADAM10, ARC, and STEP protein levels were analyzed by WB. The bars

-way ANOVA and Sidak’s multiple comparisons test) (n = 5).

mr1 KO mice in the open field. Juvenile mice (P21) have been tested after

t the distance and the speed of the animals in the open field. (one-way ANOVA

1 Fmr1 KO; n = 14 TAT-Pro WT; and n = 17 TAT-Pro Fmr1 KO).

e novel arm in test 2 (1, no preference; >1, preference for the Novel Arm; and <1

m in the test 2 of the T-maze test (***p < 0.001, Chi square test) (n = 9 WT; n = 9

T and Fmr1 KO after 48 hr. The left histogram show the measure of the unused

, *p < 0.05, and ***p < 0.001) (n = 8 WT; n = 8 Fmr1 KO; n = 5 TAT-Pro WT; and

t building in the tested conditions.
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Figure 7. APP and ADAM10 Expression in

Fragile X Patients

(A) APP and ADAM10 protein levels in human

lymphoblastoid cells. Representative WB of APP,

ADAM10, and FMRP protein levels in cell lines

from healthy controls and FXS. The images belong

to the same WB. The histograms show the quan-

tification of APP, ADAM10, and FMRP normalized

to Vinculin. The bars represent the SEM (*p < 0.05,

**p < 0.01, and Student’s t test) (n = 6 controls, 6

FXS).

(B) APP and ADAM10 levels in the cortex of FXS

patients. The upper images show representative

WB of APP and ADAM10 levels in the cortex of

healthy controls and FXS (Table S1). The histo-

grams show the quantification of APP, ADAM10,

and FMRP normalized to Vinculin. The bars

represent the SEM ( *p < 0.05, **p < 0.01, Student’s

t test the prefrontal cortex) (n = 8 controls, 7 FXS).

(C) APP and ADAM10 levels in human fibroblasts.

Shown are representative WBs detecting APP

and ADAM10 levels in cells from healthy controls

and FXS patients (left), and the quantification of

APP (middle) and ADAM10 (right), normalized

to GAPDH. The bars represent the SEM (*p < 0.05,

Mann-Whitney test) (n = 7 controls, 8 FXS, at least

three independent experiments shown in the

graph).

(D) sAPPa in human FXS fibroblasts. Represen-

tative WB shows the levels of sAPPa in the media

of control and FXS cells.

(E) IP of FMRP-associated mRNAs in human

fibroblasts. RT-qPCR was used to detect APP

and ADAM10 mRNAs. The histograms represent

the level of FMRP-bound mRNAs, the subtracted

background was obtained by the IgGs. The

average of the negative controls (CTRL): Vinculin

(VCL), b-Glucuronidase (GUSB), and Hypo-

xanthineribosyltransferase (HPRT) mRNAs was

set at 1 in each experiment (n = 3 controls, two

independent experiments). The bars represent the

SEM (*p < 0.05, one sample t test).
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Figure 8. Restoring Synaptic Homeostasis

in FXS

Left panel: in physiological conditions (WT) FMRP

regulates the expression of several synaptic

proteins downstream the mGluR1/5 signaling

pathway. Among them it regulates the expression

of APP and the a-secretase ADAM10. APP is

cleaved by ADAM10 to generate sAPPa. sAPPa

signals through the mGluR1/5 and activates the

MAPK pathway, ultimately regulating protein

translation affecting proper spine morphology,

synaptic plasticity, and behavior. The right image

shows that loss of FMRP (FXS) compromises the

fine-tuned expression of a variety of synaptic

proteins. This lack of translational control results in

combined upregulation of APP and ADAM10 and

accumulation of sAPPa. sAPPa triggers ERK1/2

phosphorylation and sustains mGluR1/5 activa-

tion and protein translation. Dysregulation of the APP-ADAM10 processing pathway leads to FXS deficits. Finally, reduction of ADAM10 trafficking/activity at

synapses, using the TAT-Pro peptide, restores sAPPa levels, mGluR-LTD, protein expression, and behavioral deficits in FXS mice.
Neuronal Culture Preparation and Treatments

Mouse primary cortical neurons were prepared as previously described

(De Rubeis et al., 2013). See Supplemental Information for details and

treatments.

Human Fibroblasts and Lymphoblastoid Cell Lines

Fibroblasts from FXS subjects (n = 8, age range 12–37 years) were obtained

from the University Hospital of Lausanne, while fibroblasts from healthy volun-

teers (n = 7, age range 15–42 years) were purchased from the Coriell Institute

for Medical Research and from Lonza. Lymphoblastoid cell lines (CTR n = 6

and FXS n = 6) were obtained from University of California, Davis (UC Davis)

(USA). See Supplemental Information for growth conditions.

Brain Protein Extracts

Brains lysates were prepared as previously described (Napoli et al., 2008). For

details see the Supplemental Information. For enriched membrane proteins,

1% sodium deoxycholate was added and the extracts were incubated for

30 min on ice and centrifuged. For total protein analysis, the brains or cells

were homogenized in Laemmli buffer as previously described (Napoli et al.,

2008).

Synaptoneurosomes

Synaptoneurosomes were prepared as previously described (Pilo Boyl et al.,

2007). For details see the Supplemental Information.

WB

Standard methodologies were used. Antibodies list and usage is described in

the Supplemental Information.

SUnSET

A protein synthesis assay was performed using the SUnSET method (Schmidt

et al., 2009). For details see the Supplemental Information.

DNA Constructs

ThepEGFPplasmidused iscommerciallyavailable (Clontech). ThepLentiLox3.7

(pLL3.7) vector containing the shRNA against APP (targeting nt 538-556 of

APP Genbank:X59379.1) has been previously described (Hoe et al., 2009); it is

specific for both mouse and rat APP and was kindly provided by Dr. Daniel

Pak (Georgetown University Medical Center).

Transfection

Neurons were transfected at 8 days in culture using the calcium phosphate

method as previously described (De Rubeis et al., 2013). Neurons were fixed

6 days later with 4% paraformaldehyde/sucrose EDTA magnesium PFA/
SEM (4% PFA, 0.12 M sucrose, 3 mM EGTA, and 2 mM MgCl2 in PBS).

Confocal images were acquired and analyzed as described in the Supple-

mental Information.

Immunofluorescence

For experimental details and antibodies list and usage see the Supplemental

Information.

IP and RT-PCR

IP protocol was modified from Napoli et al. (2008). For details see the Supple-

mental Information.

Polysome-mRNPs Analysis

Polysome-mRNPs have been isolated as previously described (Zalfa et al.,

2007). For details see the Supplemental Information.

RT-Quantitative PCR Using the SYBRGreen Method

Real-Time PCR was performed using the SYBRGreen mix and a Light Cycler

480 (Roche).

Biotinylation Assay

Biotinylation of cell surface proteins was performed as previously described

(Hiltunen et al., 2006). For details see the Supplemental Information.

Ab 40-42 ELISA

The brains were solubilized in guanidine hydrochloride, and Ab was detected

using a sandwich ELISA assay according to the manufacturer’s specifications

(WACO).

Brain Fractionation

See the Supplemental Information and Figure S2.

Electrophysiology

The mGluR mediated LTD was induced as previously described (Tambuyzer

et al., 2013). For details see the Supplemental Information.

Behavioral Tests

All behavioral experiments were performed with P24 and 25 male mice and

blind to the genotype and treatment. For experimental details see the Supple-

mental Information.

Statistics

Comparisons between the two groups were performed using one-sample

or two-sample two-tailed Student’s t tests. One-way ANOVA followed by a
Neuron 87, 382–398, July 15, 2015 ª2015 Elsevier Inc. 395



post hoc Holm’s, Bonferroni’s, or Sidak’s multiple comparisons test was per-

formed. Distributions were analyzed using the Pearson’s chi-square (c2) test.

Comparisons between the cumulative probability plots were performed using

a two-sample Kolmogorov-Smirnov (K-S) test. Significance was denoted as

p < 0.05. Bars represent the SEM. Electrophysiological data were analyzed

using repeated-measures ANOVA.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

eight figures, and one table, and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2015.06.032.
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