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ABSTRACT

The mid-Cretaceous was marked by emplacement of large igneous provinces 
(LIPs) that formed gigantic oceanic plateaus, affecting ecosystems on a global scale, 
with biota forced to face excess CO2 resulting in climate and ocean perturbations. Vol-
canic phases of the Ontong Java Plateau (OJP) and the southern Kerguelen Plateau 
(SKP) are radiometrically dated and correlate with paleoenvironmental changes, sug-
gesting causal links between LIPs and ecosystem responses. Aptian biocalcifi cation 
crises and recoveries are broadly coeval with C, Pb, and Os isotopic anomalies, trace 
metal infl uxes, global anoxia, and climate changes. Early Aptian greenhouse or super-
greenhouse conditions were followed by prolonged cooling during the late Aptian, 
when OJP and SKP developed, respectively. Massive volcanism occurring at equato-
rial versus high paleolatitudes and submarine versus subaerial settings triggered very 
different climate responses but similar disruptions in the marine carbonate system. 
Excess CO2 arguably induced episodic ocean acidifi cation that was detrimental to 
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INTRODUCTION

The construction of large igneous provinces (LIPs) (Coffi n 
and Eldholm, 1991, 1994) has the potential to signifi cantly affect 
environmental conditions and oceanographic and atmospheric 
processes on the Earth’s surface. Subaerial and/or submarine 
multiple eruptions of gigantic magmatic fl ows may alter the 
ocean-atmosphere system by introducing gases and particulates, 
potentially fostering warmer or cooler climates and perturbing 
the structure and chemistry of the oceans. Environmental conse-
quences of LIPs were reviewed and discussed by Wignall (2001, 
2005), Saunders (2005), and Neal et al. (2008). After two decades 
of studies dedicated to quantifi cation of changes in climatic con-
ditions, oceanic chemistry and fertility, and biotic responses, we 
can delineate the interactions between major igneous events and 
ecosystem dynamics.

Particular efforts have been applied to understanding bio-
sphere reactions and adaptations to mid-Cretaceous LIPs since 
this time interval is characterized by massive volcanism of gigan-
tic submarine plateaus (Larson, 1991a, 1991b), including the 
Ontong Java Plateau (OJP) (early Aptian), the Kerguelen Plateau 
(late Aptian–early Albian), and the Caribbean Plateau (Ceno-
manian–Santonian) (e.g., Leckie et al., 2002). The environmen-
tal perturbations associated with the greater Ontong Java event 
(GOJE; Ontong Java, Manihiki, and Hikurangi Plateaus; Taylor, 
2006, Chandler et al., 2012; Fig. 1) include global oceanic anoxia, 
major warming, crises in populations of many calcifying marine 
organisms, biotic evolutionary changes, isotopic anomalies, and 
changes in ocean chemistry. The GOJE played either a direct or 
indirect role in affecting the ocean–atmosphere system, probably 
causing different responses and reactions in different parts of 
the global ocean during the late Barremian through Aptian time. 

marine calcifi ers, regardless of hot or cool conditions. Global anoxia was reached 
only under extreme warming, whereas cold conditions kept the oceans well oxygen-
ated even at times of intensifi ed fertility. The environmental disruptions attributed 
to the OJP did not trigger a mass extinction: rock-forming nannoconids and benthic 
communities underwent a signifi cant decline during Oceanic Anoxic Event (OAE) 1a, 
but recovered when paroxysmal volcanism fi nished. Extinction of many planktonic 
foraminiferal and nannoplankton taxa, including most nannoconids, and most ara-
gonitic rudists in latest Aptian time was likely triggered by severe ocean acidifi cation. 
Upgraded dating of paleoceanographic events, improved radiometric ages of the OJP 
and SKP, and time-scale revision are needed to substantiate the links between mag-
matism and paleoenvironmental perturbations.
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Figure 1. Location map of studied sites at 120 Ma (modifi ed after Larson and Erba, 1999, and http://www2.nau.edu/rcb7/
globaltext2.html). Ocean currents modifi ed from Hay (2009). OJP—Ontong Java Plateau; KP—Kerguelen Plateau; SR—
Shatsky Rise; MPM—Mid-Pacifi c Mountains; MR—Magellan Rise; MP—Manihiki Plateau; HP—Hikurangi Plateau; 
DSDP—Deep Sea Drilling Project; ODP—Ocean Drilling Program. Cismon and Piobbico refer to locations of boreholes 
from which core was used in this study.
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Perhaps the most spectacular, and most studied, environmental 
change is regionally extensive oxygen depletion in bottom waters 
and/or within an expanded oxygen-minimum zone, promoting 
burial of large amounts of marine organic matter. This episode is 
called Oceanic Anoxic Event (OAE) 1a, and possibly represents 
the climax and/or threshold combination of complex paleoenvi-
ronmental changes during the early Aptian.  Table 1 summarizes 
available data for the OAE 1a time interval analyzed in various 
oceans and sedimentary basins.

In hemipelagic and pelagic successions, the upper-lower 
Aptian is represented by black shales, with locally intercalated 
limestones, marlstones, and/or radiolarian-rich layers. The Selli 
Level in the Umbria-Marche Basin (Coccioni et al., 1987, 1989) 
is the lithostratigraphic unit established to best typify OAE 1a. 
Selli Level equivalents have been described in other sedimentary 
basins where lithological characteristics are slightly to moderately 
different (e.g., Bersezio, 1993; Menegatti et al., 1998; Larson and 
Erba, 1999; Luciani et al., 2001, 2006; Bellanca et al., 2002). 
Coeval and lithologically similar intervals are the Goguel Level 
in southeastern France (Bréhéret, 1997), and the Fischschiefer in 
the Lower Saxony Basin (Kemper and Zimmerle, 1978; Gaida et 
al., 1981; Mutterlose, 1992).

Aptian carbonate platforms are punctuated by episodic 
demise and major changes in benthic communities (Föllmi et al., 
1994; Vahrenkamp, 1996, 2010; Grötsch et al., 1998; Weissert et 
al., 1998; Jenkyns and Wilson, 1999; Steuber, 2002; Wissler et al., 
2003; Immenhauser et al., 2004, 2005; Burla et al., 2008; Föllmi 
and Gainon, 2008; Föllmi, 2008, 2012; Huck et al., 2010, 2012; 
Rameil et al., 2010; Masse and Fenerci-Masse, 2011; Graziano, 
2013). As discussed by Yamamoto et al. (2013), early Aptian 
 shallow-water carbonates show different facies changes according 
to their paleogeographic position: the northern Tethyan platforms 
were episodically drowned, while in the central to southern Neo-
Tethys margins carbonate deposition continued, although affected 
by a profound faunal shift from rudist-coral- stromatoporoid com-
munities to Lithocodium-Bacinella dominance.

In Aptian sequences, major and minor fl uctuations of the 
carbon isotope record allow the subdivision of segments coded 
(C1–C11) by Menegatti et al. (1998) and Bralower et al. (1999). 
In particular, OAE 1a is marked by a complex C isotopic anom-
aly that has been recognized in the Tethys, North Atlantic, 
and Pacifi c Oceans (Weissert, 1989; Weissert and Lini, 1991; 
Grötsch, 1993; Bralower et al., 1994, 1999; Jenkyns, 1995; Vah-
renkamp, 1996, 2010; Ferreri et al., 1997; Menegatti et al., 1998; 
Erba et al., 1999; Jenkyns and Wilson, 1999; Luciani et al., 2001; 
Ando et al., 2002; Bellanca et al., 2002; Price, 2003; Immen-
hauser et al., 2005; Millán et al., 2009; Hu et al., 2012a; Huck 
et al., 2012; Bottini et al., 2014), and in terrestrial sequences 
(Gröcke et al., 1999; Hesselbo et al., 2000; Jahren et al., 2001; 
Heimhofer et al., 2003). An initial negative spike documented 
in marine and terrestrial records suggests a large input of iso-
topically light carbon into the ocean-atmosphere system, per-
haps due to intensifi ed volcanogenic CO

2
 emissions during the 

GOJE (Larson, 1991a; Weissert and Lini, 1991; Bralower et al., 

1994; Erba, 1994; Weissert et al., 1998; Menegatti et al., 1998; 
Larson and Erba, 1999; Price, 2003), methane liberation from 
gas-hydrate dissociation (Gröcke et al., 1999; Hesselbo et al., 
2000; Jahren et al., 2001; Beerling et al., 2002; Heimhofer et 
al., 2003; van Breugel et al., 2007), or a combination of excess 
volcanogenic CO

2
 and gas-hydrate dissociation (Bellanca et al., 

2002; Méhay et al., 2009).
During the late Aptian, massive eruptions related to early 

constructional phases of the Kerguelen LIP produced the south-
ern Kerguelen Plateau (SKP) (Fig. 1). Environmental changes 
linked to the SKP are less obvious in the sedimentary record, 
with subtle changes in lithology and absence of global anoxic 
episodes. Stable carbon isotopes display a large positive excur-
sion persisting after the end of OAE 1a in marine and terrestrial 
records, followed by an interlude of low δ13C values and later by 
another long-lived positive excursion in the late Aptian.

Short- and long-term temperature changes have been recon-
structed for the latest Barremian through Aptian time interval 
using micropaleontological proxies (e.g., Kemper, 1987; Premoli 
Silva et al., 1989a, 1999; Hochuli et al., 1999; Herrle and Mut-
terlose, 2003; Heimhofer et al., 2004; Rückheim et al., 2006a; 
Mutterlose et al., 2009; Keller et al., 2011; McAnena et al., 2013; 
Bottini et al., 2014, 2015), stable oxygen isotopes (Weissert and 
Lini, 1991; Jenkyns, 1995; Menegatti et al., 1998; Luciani et al., 
2001; Bellanca et al., 2002; Price, 2003; Ando et al., 2008; Mil-
lán et al., 2009; Kuhnt et al., 2011; Jenkyns et al., 2012; Hu et 
al., 2012a; Price et al., 2012; Maurer et al., 2012; Bottini et al., 
2014), and biomarkers (Schouten et al., 2003; Dumitrescu et al., 
2006; Mutterlose et al., 2010; Keller et al., 2011; McAnena et 
al., 2013; Bottini et al., 2014, 2015). A global warming marked 
OAE 1a, while generally cooler temperatures persisted in the late 
Aptian, as indicated by the presence of glendonites and possible 
ice-rafted debris at high latitudes (Kemper, 1987; Frakes and 
Francis, 1988; De Lurio and Frakes, 1999; Price, 1999).

Hong and Lee (2012) provided estimates of atmospheric 
CO

2
 concentrations during the Cretaceous and emphasized 

that in the Aptian values were oscillating from <500 ppmv to 
>1000 ppmv. After a peak of 1100–1300 ppmv at 115 Ma, a 
minimum of ~450 ppm is depicted in the late Aptian, although 
age attribution is affected by large errors (113.5 ± 5 Ma). The 
recent pCO

2
 reconstructions by Li et al. (2014) suggest Aptian 

values ranging from ~1000 to ~2000 ppmv, with minima 
ca. 124 Ma and 113 Ma and maximum values ca. 117 Ma, rela-
tive to the time scale of Gradstein et al. (2012).

Relatively unradiogenic seawater 87Sr/86Sr values across 
OAE 1a suggest fl uxes of hydrothermal Sr from intensifi ed ocean 
crust production, either from new or faster spreading systems or 
intraplate activity such as ocean plateaus (Ingram et al., 1994; 
Jones et al., 1994; McArthur, 1994; Bralower et al., 1997; Jones 
and Jenkyns, 2001; Burla et al., 2009). Low 87Sr/86Sr values per-
sisted through most of the late Aptian, but the long residence time 
of Sr in the ocean (~5 m.y.) hampers high-resolution character-
ization, which can instead be achieved using Os isotopes because 
of its much shorter residence time (10–40 k.y.). The Os isotopic 
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL

Marine 
record
area Locality Data* Reference
Tethys Gorgo a Cerbara (Umbria-Marche, central Italy) Calcareous nannofossils Coccioni et al. 1992

Planktonic foraminifera
Cyclostratigraphy Herbert 1992
Calcareous nannofossils Bralower et al. 1993
Planktonic foraminifera 
TOC
CaCO3

Calcareous nannofossils Bralower et al. 1994
Planktonic foraminifera 
Magnetostratigraphy
Calcareous nannofossils Erba 1994
Magnetostratigraphy Erba 1996
Radiolaria Erbacher et al. 1996
Rock-Eval pyrolosis
CaCO3 Baudin et al. 1998
TOC
Rock-Eval pyrolosis
Magnetostratigraphy Channell et al. 2000
Calcareous nannofossils
Biomarkers Pancost et al. 2004
Planktonic foraminifera Coccioni et al. 2006
Biomarkers Kashiyama et al. 2008
δ15N
δ13Corg

δ13Corg Tejada et al. 2009
Os isotope
Rock-Eval pyrolosis Gorin et al. 2009
Palynomorphs
TOC
Bacterial mats
Benthic foraminifera Patruno et al. 2011
Pb isotope Kuroda et al. 2011
δ13Ccarb δ13C, ,org δ18Ocarb Stein et al. 2011
TOC
Phosphorus
Redox trace elements
Ir and Pt Tejada et al. 2012
Redox trace elements Westerman et al. 2013

Piobbico core (Umbria-Marche, central Italy) Calcareous nannofossils Premoli Silva et al. 1989a
Radiolaria
Planktonic foraminifera
Planktonic foraminifera Premoli Silva et al. 1989b
Cyclostratigraphy
Calcareous nannofossils Erba 1994
Radiolaria Erbacher et al. 1996
Rock-Eval pyrolosis
Sea-level reconstruction
Radiolaria Erbacher and Thurow 1997
δ13Ccarb δ18Ocarb Bottini et al. 2014
Calcareous nannofossils
δ13Ccarb δ18Ocarb This work
Metals

Apecchiese Road (Umbria-Marche, central Italy) Calcareous nannofossils Erba et al. 1989
Planktonic foraminifera
Calcareous nannofossils Bralower et al. 1994
Planktonic foraminifera
CaCO3 Baudin et al. 1998
TOC
Rock-Eval pyrolosis

Poggio le Guaine (Umbria-Marche, central Italy) Lithostratigraphy Coccioni et al. 1987
Lithostratigraphy Coccioni et al. 1989

(Continued)

,

,
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

CaCO3 Baudin et al. 1998
TOC
Rock-Eval pyrolosis

Fiume Bosso (Umbria-Marche, central Italy) Lithostratigraphy Coccioni et al. 1987
Lithostratigraphy Coccioni et al. 1989

Cismon outcrop (southern Alps, Italy) Magnetostratigraphy Channell et al. 1979
Calcareous nannofossils
Lithostratigraphy Weissert et al. 1985
δ13Ccarb δ18Ocarb 

δ13Ccarb δ13Corg δ18Ocarb Weissert 1989
Cyclostratigraphy Herbert 1992
Calcareous nannofossils Bralower et al. 1993
Planktonic foraminifera 
TOC
CaCO3

Calcareous nannofossils Erba 1994
Calcareous nannofossils Bralower et al. 1994
Planktonic foraminifera
Magnetostratigraphy
δ13Ccarb δ13Corg δ18Ocarb Menegatti et al. 1998

Cismon core (southern Alps, Italy) Lithostratigraphy Erba and Larson 1998
Logs
Planktonic foraminifera Premoli Silva et al. 1999
Radiolaria
Calcareous nannofossils
δ13Ccarb Erba et al. 1999
Magnetostratigraphy
Sr isotope
TOC
Calcareous nannofossils
Radiolaria
Dinofl agellate cysts
Planktonic foraminifera
δ13Ccarb Larson and Erba 1999
TOC
Calcareous nannofossils
Palynomorphs Hochuli et al. 1999
Dinofl agellate cysts Torricelli 2000
Acritarch
Magnetostratigraphy Channell et al. 2000
Calcareous nannofossils
Calcareous nannofossils Tremolada and Erba 2002
Calcareous nannofossils Erba and Tremolada 2004
Biomarkers Kuypers et al. 2004
TOC
δ15N
Planktonic foraminifera Verga and Premoli 

Silva
2003

Planktonic foraminifera Verga and Premoli 
Silva

2005

δ13Ccarb δ13Corg van Breugel et al. 2007
Biomarkers
CaCO3

TOC
Cyclostratigraphy Li et al. 2008
δ13Ccarb Méhay et al. 2009
Biomarkers
Calcareous nannofossils
Calcareous nannofossils Erba et al. 2010
δ13Ccarb δ18Ocarb 

CaCO3

(Continued)
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

Cyclostratigraphy Malinverno et al. 2010
δ13Ccarb δ18Ocarb Keller et al. 2011
Palynomorphs
Os isotope Bottini et al. 2012
TOC
Calcareous nannofossils Bottini et al. 2014
TEX86
Trace metals This work

Piè del Dosso (southern Alps, Italy) Calcareous nannofossils Erba and Quadrio 1987
Planktonic foraminifera
Calcareous nannofossils Erba 1994
TOC Bersezio et al. 2002
Rock-Eval pyrolosis
Calcareous nannofossils

Cesana quarry (southern Alps, Italy) Lithostratigraphy Bersezio 1993
Lithostratigraphy Bersezio 1994

Pusiano-Cesana quarry (southern Alps, Italy) δ13Ccarb δ18Ocarb Keller et al. 2011
Palynomorphs

Rötel Sattel (Switzerland, northern Alps) δ13Ccarb δ13Corg δ18Ocarb Menegatti et al. 1998
Planktonic foraminifera
δ13Ccarb Strasser et al. 2001
Sequence stratigraphy
Planktonic foraminifera

Helvetic zone (eastern Switzerland, northern Alps) Microfacies Föllmi et al. 1994
δ13Ccarb

Carbonate platforms 
evolution

Col de la Plaine Morte (central Switzerland, northern Alps) δ13Ccarb δ18Ocarb Föllmi and Gainon 2008
Ammonites
Orbitolinids
Lithostratigraphy

Calabianca (Sicily, Italy) δ13Ccarb δ18Ocarb Bellanca et al. 2002
TOC
Calcareous nannofossils
Planktonic foraminifera
Trace elements
Planktonic foraminifera Verga and Premoli 

Silva 2003
Planktonic foraminifera Verga and Premoli 

Silva 2005
Planktonic foraminifera Coccioni et al. 2006

Montagna degli Angeli (Garagno, Italy) Brachiopods Motchurova-Dekova 
et al. 2009

Lithofacies Graziano 2013
Microfacies
Sequence stratigraphy

Valle Carbonara (Gargano, Italy) Lithofacies Graziano 2013
Microfacies
Sequence stratigraphy

Coppitella (Gargano, Italy) Calcareous nannofossils Cobianchi et al. 1999
Planktonic foraminifera
Calcareous nannofossils Luciani et al. 2001
Planktonic foraminifera
δ13Ccarb δ18Ocarb 

Planktonic foraminifera Coccioni et al. 2006
Calcareous nannofossils Luciani et al. 2006
Planktonic foraminifera 

Carbonero Formation (southern Spain) Calcareous nannofossils de Gea et al. 2008
Lithofacies
TOC
CaCO3

(Continued)
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

Igaratza, Iribas, and Ataun sections (Aralar Mountains, 
northern Spain)

Ammonites Garcia-Mondejar et al. 2009

TOC
δ13Ccarb

Igaratza and Iribas sections (Aralar Mountains, northern 
Spain)

δ13Ccarb δ13Corg δ18Ocarb Millan et al. 2009

Tejeria de Josa and Barranco Emilia sections (Aralar 
Mountains, northern Spain)

δ13Ccarb Moreno-Bedmar et al. 2009
Ammonites

Madotz section (Aralar Mountains, northern Spain) δ13Ccarb δ18Ocarb Millan et al. 2011
CaCO3

TOC
Microfacies
δ13Corg Gaona-Narvaez et al. 2013
TOC
CaCO3

Ammonites
Lithofacies
Benthic foraminifera

Río Nansa, Rábago, El Soplao, La Florida, Corona de Arnero, 
and Bustriguado sections (Basque-Cantabrian Basin, Spain)

Lithostratigraphy Najarro et al. 2011a
Microfacies
δ13Ccarb δ18Ocarb 

Carbonate platforms 
evolution

La Florida and Cuchìa sections (Basque-Cantabrian Basin, 
Spain)

δ13Ccarb δ13Corg Najarro et al. 2011b
CaCO3

TOC
Calcareous nannofossils
Planktonic foraminifera
Ammonites
Palynomorphs

North Cantabrian Basin (Spain) δ13Ccarb δ13Corg δ18Ocarb Quijano et al. 2012
TOC
Biomarkers
Calcareous nannofossils
Lithofacies
Inorganic geochemistry

Loma del Horcajo, Las Cubetas, Cabezos de las Hoyas, 
Esrecho de la Calzada Vieja, Alto del Collado, Camarillas, 
Loma del Morron, Barranco de las Calzadas, Barranco de 
las Corralizas, Barranco de la Serena, Barranco del Portoles,
and Villaroya de los Pinares sections (Maestrat Basin,
eastern Spain)

Sequence stratigraphy Bover-Arnal et al. 2010

Casa Cartujo, Loma del Horcajo, Las Cubetas, Cabezos de 
las Hoyas, Esrecho de la Calzada Vieja, Camarillas, Barranco 
de las Calzadas, Barranco de la Serena, Barranco de los 
Degollados, and Villaroya de los Pinares sections (Maestrat 
Basin, eastern Spain)

Ammonites Bover-Arnal et al. 2011
Corals
Microfacies

Sierra del Corque, Barranco de Cavila, and Cortijo del Hielo 
sections (Betic Cordillera, southern Spain)

Calcareous nannofossils Aguado et al. 1997
Ammonites

Cau (Betic Cordillera, southern Spain) Calcareous nannofossils Aguado et al. 1999
Planktonic foraminifera
Planktonic foraminifera Coccioni et al. 2006

Mas de Llopis, Cau, Racó Ample, Barranc de l’Almadich, 
Foncalent e Foncalent 1, Alcoraia (Betic Cordillera, southern 
Spain)

δ13Ccarb Moreno-Bedmar et al. 2012

Ammonites
La Frontera, Carbonero, Cau (Betic Cordillera, southern 
Spain)

δ13Ccarb δ13Corg δ18Ocarb Quijano et al. 2012

TOC
Biomarkers
Calcareous nannofossils
Lithofacies
Inorganic geochemistry

(Continued)
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

Galve subbasin (Spain) Sequence stratigraphy Peropadre et al. 2013
Cresmina, Ericeira, and São Juliao sections (Lusitanian Basin, 
Portugal)

δ13Ccarb δ18Ocarb Burla et al. 2008
Sr isotope Burla et al. 2009
Calcareous nannofossils Da Gama et al. 2009
δ13Ccarb δ18Ocarb Huck et al. 2012
Lithofacies
Lithocodium bacinella

Cresmina and Luz sections (Portugal) Palynomorphs Heimhofer et al. 2005
Lekhawair, Biladi, Al Huwaisa, and Quarn Alam sections 
(Arabian Gulf, Oman) 

δ13Ccarb δ18Ocarb Vahrenkamp 1996

Wadi Jarrah and Wadi Baw sections (Arabian Gulf, Oman) δ13Ccarb δ18Ocarb Immenhauser et al. 2005
Rudists
Sequence stratigraphy

Har Ramim, Rama, Ein Netofa, and Ein Quniya sections 
(Galilee, Arabia)

Orbitolinids Bachman and Hirsch 2006
Sequence stratigraphy
Shallow-water facies

Paliambela and Panaya sections (northwestern Greece) TOC Danelian et al. 2004
δ13Ccarb

Calcareous nannofossils
Planktonic foraminifera
Radiolaria

Rochovica section (Slovak Western Carpathians) δ13Ccarb δ18Ocarb Michalik et al. 2008
CaCO3

TOC
Planktonic foraminifera
Benthic foraminifera
Palynomorphs
Dinofl agellate cysts
Radiolaria

Kanfanar, Dvigrad, and Bale (Istria, northwestern Croatia) δ13Ccarb δ18Ocarb rudists Huck et al. 2010
Lithostratigraphy
Facies
Lithocodium bacinella
Sr isotope rudists
Trace elements

Jelsa, Èara, Pupnat, Kozje Ždrilo, Kozarica, and Sobra 
sections (Croatia)

Benthic foraminifera Husinec et al. 2012
Sedimentology
Sequence stratigraphy
δ13Ccarb

Chuprene, Lilyache, Chiren, Hubavene, Nikolaevo, Laskar, 
Butovo, Gorna Lipnitsa, Dolna Lipnitsa, Paskalevets, Beltsov-
Tsenovo, Byala-Starmen, Polski Trambesh, Karantsi, Stritsa, 
Katselovo, Kovachevets, and Opaka (northern Bulgaria)

Ammonites Ivanov and Idakieva 2013

Yenicesihlar (Turkey) δ13Ccarb δ18Ocarb Hu et al. 2012b
TOC
Microfacies
Cyclostratigraphy

Djebel Serdj (Tunisia) TOC Heldt et al. 2008
CaCO3

δ13Ccarb

Planktonic foraminifera
Microfacies
Ammonites Lehmann et al. 2009

Jebel Messella (northeastern Tunisia) Planktonic foraminifera Elkhazri et al. 2009
Rock-Eval pyrolosis
TOC
CaCO3

Jebel Ressas (northeastern Tunisia) Planktonic foraminifera Elkhazri et al. 2009
Rock-Eval pyrolosis
TOC
CaCO3

(Continued)

,

,

,

,

,

,

,

 

http://specialpapers.gsapubs.org/


 Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism 279

 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

Takal Kuh (northeastern Iran) δ13Ccarb Mahanipour et al. 2011
CaCO3

Calcareous nannofossils
Vocontian 
Basin

Serre Chaitieu δ13Ccarb δ18Ocarb Weissert and Bréhéret 1991
CaCO3

TOC
Lithostratigraphy Bréhéret 1997
Rock-Eval pyrolosis
TOC
CaCO3

Clay minerals
Planktonic foraminifera
Trace fossils
Phosphorus
Planktonic foraminifera Verga and Premoli 

Silva
2003

Calcareous nannofossils Herrle and Mutterlose 2003
Biomarkers Heimhofer et al. 2004
Palynomorphs
δ13Ccarb Herrle et al. 2004
Calcareous nannofossils
Planktonic foraminifera Verga and Premoli 

Silva 2005
Palynomorphs Heimhofer et al. 2006
Calcareous nannofossils 
Calcareous nannofossils Herrle et al. 2010

La Bédoule δ13Ccarb δ18Ocarb Moullade et al. 1998
Planktonic foraminifera
Calcareous nannofossils
Ammonites
Planktonic foraminifera Coccioni et al. 2006
δ13Ccarb δ18Ocarb Kuhnt et al. 2011
δ13Ccarb δ13Corg δ18Ocarb Stein et al. 2012
TOC
Phosphorus
Redox trace elements
Redox trace elements Westermann et al. 2013
Carbonate platforms 
evolution

Masse and Fenerci-
Masse

2011

Microfacies
Rudists
Ammonites
δ13Ccarb δ18Ocarb 

La Bédoule (core LB1) Lithostratigraphy Lorenzen et al. 2013
Logs
δ13Ccarb δ18Ocarb 

CaCO3

Planktonic foraminifera
Calcareous nannofossils
Ammonites

Vergons Calcareous nannofossils Bralower et al. 1994
Angles Dinofl agellate cysts Oosting et al. 2006

Rare earth elements Bodin et al. 2013
Ce/Ce*
Sequence stratigraphy

Nesque Aval, Rocher du Cire cliff, Rustrel, Lagarde d’Apt, 
Fontaine-de-Vaucluse cliff, Joucas, Col de la Ligne, Combe de 
Vaulongue, Col de Murs, and Font Jouval sections (Mont de 
Vaucluse region)

Rudists Leonide et al. 2012
Planktonic foraminifera
Sequence stratigraphy

Saint-Chamas sections, Ventoux-Rissas transect, Gard-
Ardèche transect, Roquemaure transect (Mont de Vaucluse 
region) 

Carbonate platforms 
evolution

Masse and Fenerci- 
Masse

2011

Microfacies

(Continued)
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

Rudists
Ammonites
δ13Ccarb δ18Ocarb 

Glaise (southeastern France) δ13Ccarb δ13Corg δ18Ocarb Westermann et al. 2013
TOC
Redox trace elements
Phosphorus
Rare earth elements Bodin et al. 2013
Ce/Ce*
Sequence stratigraphy

Boreal Realm Hoheneggelsen KB50 core (Lower Saxony Basin, Germany) Calcareous nannofossils Bischoff and Mutterlose 1998
Heligoland (Lower Saxony Basin, Germany) Calcareous nannofossils Bischoff and Mutterlose 1998
Hoheneggelsen KB40 core (Lower Saxony Basin, Germany) Major and minor elements Hild and Brumsack 1998

Calcareous nannofossils Habermann and 
Mutterlose

1999

δ13Ccarb δ13Corg δ18Ocarb Heldt et al. 2012
TOC
Calcareous nannofossils

Ahlum 1 core (Lower Saxony Basin, Germany) Calcareous nannofossils Habermann and 
Mutterlose

1999

Morgenstern (Lower Saxony Basin, Germany) δ13Cbel δ18Obel Malko  et al. 2010
Trace elements
Calcareous nannofossils
Ammonites
Belemnites

A39 (Lower Saxony Basin, Germany) TOC Mutterlose et al. 2009
CaCO3

δ13Cbel δ18Obel 

δ13Cbel δ18Obel Malko  et al. 2010
Trace elements
Calcareous nannofossils
Ammonites
Belemnites
TEX86 Mutterlose et al. 2010
δ13Ccarb δ13Corg Pauly et al. 2013
Calcareous nannofossils
Trace elements

Hoheneggelsen KB9 core (Lower Saxony Basin, Germany) Calcareous nannofossils Bottini and Mutterlose 2012
δ13Ccarb δ13Corg δ18Ocarb Heldt et al. 2012
CaCO3

TOC
Calcareous nannofossils
Planktonic foraminifera Weiß 2012

Alstätte 1 (Lower Saxony Basin, Germany) δ13Corg Bottini and Mutterlose 2012
CaCO3

TOC
Calcareous nannofossils
δ13Ccarb δ18Ocarb Lehmann et al. 2012
TOC
CaCO3

Ammonites
Belemnites
Bivalves
Brachiopods
Gastropods
Crustacean
Asteroids
Plants

Rethmar (Lower Saxony Basin, Germany) Calcareous nannofossils Bischoff and Mutterlose 1998
δ13Cbel δ18Obel Malko et al. 2010
Trace elements

(Continued)
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

Calcareous nannofossils
Ammonites
Belemnites
δ13Ccarb δ13Corg Bottini and Mutterlose 2012
CaCO3

TOC
Calcareous nannofossils

BP 15/30-3 (North Sea) Calcareous nannofossils Bischoff and Mutterlose 1998
BGS81/40 (North Sea) Calcareous nannofossils Erba 1994

Calcareous nannofossils Bischoff and Mutterlose 1998
Planktonic foraminifera Rückheim et al. 2006b
δ13Ccarb

Calcareous nannofossils Rückheim et al. 2006a
Planktonic foraminifera 

North Jens-1 and Nora-1 (North Sea) δ13Ccarb Mutterlose and Bottini 2013
CaCO3

TOC
Calcareous nannofossils

Pacifi c 
Ocean

DSDP Site 463 (Mid-Pacifi c Mountains) Lithology—black shales Sliter 1989
Planktonic foraminifera
Magnetostratigraphy Tarduno et al. 1989
Calcareous nannofossils
Planktonic foraminifera
Calcareous nannofossils Bralower et al. 1993
Planktonic foraminifera 
TOC
CaCO3

Calcareous nannofossils Erba 1994
Calcareous nannofossils Bralower et al. 1994
Magnetostratigraphy
TOC
Planktonic foraminifera
δ13Ccarb Larson and Erba 1999
Calcareous nannofossils
Calcareous nannofossils Tremolada and Erba 2002
δ13Ccarb δ18Ocarb Price and Hart 2002
δ13Ccarb δ18Ocarb Price 2003
TEX86 Schouten et al. 2003
δ13Ccarb δ13Corg van Breugel et al. 2007
Biomarkers
CaCO3

TOC
δ13Ccarb δ18Ocarb Ando et al. 2008
Calcareous nannofossils Erba et al. 2010
δ13Ccarb δ18Ocarb 

Os isotope Bottini et al. 2012
δ13Ccarb

CaCO3

TOC
Calcareous nannofossils Bottini et al. 2014
Trace metals This work

ODP Site 807 (Ontong Java Plateau) Calcareous nannofossils Erba 1994
ODP Site 866 (Resolution Guyot) δ13Ccarb δ18Ocarb Jenkyns 1995

Sr isotope Jenkyns et al. 1995
δ13Ccarb δ18Ocarb Jenkyns and Wilson 1999
Sr isotope
Ca isotope Blättler et al. 2011

ODP Site 1207 (Shatsky Rise) Biomarkers Dumitrescu and 
Brassell 2005

TEX86 Dumitrescu et al. 2006

(Continued)
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Locality Data* Reference

δ13Corg

TOC
δ13Corg Dumitrescu and 

Brassell 2006
δ15N
TOC
S, N content
Pb isotope Kuroda et al. 2011

DSDP Site 305 (Shatsky Rise) Lithology—black shales Sliter 1989
Planktonic foraminifera

DSDP Site 317 (Manihiki Plateau) Lithology—black shales Sliter 1989
Planktonic foraminifera

DSDP Site167 (Magellan Rise) Lithology—black shales Sliter 1989
Planktonic foraminifera
Magnetostratigraphy Tarduno et al. 1989
Calcareous nannofossils
Planktonic foraminifera
Calcareous nannofossils Bralower et al. 1994
Planktonic foraminifera
Magnetostratigraphy
Trace metals This work

Atlantic 
Ocean

ODP Site 641 (Galicia Bank) Calcareous nannofossils Bralower et al. 1993
Planktonic foraminifera 
TOC
CaCO3

Calcareous nannofossils Bralower et al. 1994
TOC
CaCO3

Magnetostratigraphy
Sr isotope Bralower et al. 1997
Calcareous nannofossils Tremolada et al. 2006

DSDP Site 417 (Bermuda Rise) Radiolaria Erbacher and Thurow 1997
Calcareous nannofossils
Lithology
Sr isotope Bralower et al. 1997

DSDP Site 545 (Morocco Basin) Sr isotope Bralower et al. 1997
DSDP Site 370 (Morocco Basin) Calcareous nannofossils Bralower et al. 1993

Planktonic foraminifera 
TOC
CaCO3

Russia Fedorovka, Guselka, Ulyanovsk, Senilei sections (Russian 
platform)

Trace metals Gavrilov et al. 2002
TOC
CaCO3

Ulyanovsk δ13C, δ18O Zakharov et al. 2013
Ammonites
Belemnites
Bivalves

California Pacifi ca Quarry Lithology—black shales Sliter 1989
Planktonic foraminifera

Permanente Quarry Planktonic foraminifera Robinson et al. 2008
TOC
CaCO3

δ13Ccarb δ18Ocarb 

Mexico La Boca Canyon, Canyon Los Chorros, Santa Rosa Canyon, 
and Cienega del Toro sections (Sierra Madre)

Lithostratigraphy Bralower et al. 1999
Calcareous nannofossils
δ13Corg

Rock-Eval pyrolosis
CaCO3

TOC

(Continued)
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 TABLE 1. COMPILATION OF PAPERS DOCUMENTING PALEONTOLOGICAL AND GEOCHEMICAL DATA FOR THE OAE 1a INTERVAL 
(Continued)

Marine 
record
area Localit y Data* Reference
Japan Yezo Group Lithostratigraphy Takashima et al. 2004

δ13Corg

Ammonites
Planktonic foraminifera

Ashibetsu area (central Hokkaido) δ13Corg WOOD Ando et al. 2002
Planktonic foraminifera
Lithostratigraphy

Nakatenguzawa, Soashibetsu-gawa, Ashibetsu-gawa, and 
Okusakai-nosawa (Ashibetsu area, central Hokkaido)

δ13Corg WOOD Ando et al. 2003
Lithostratigraphy
Sedimentary organic matter
TOC

 
Terrestrial record
area Locality Data Works
Isle of Wight 
(UK)

Chale Bay (southeast Isle of Wight) δ13Corg WOOD Gröcke et al. 1999
Ammonites

Atherfi eld Bay, Sandown Bay, BGS Borehole 75/35 Ostracods Wilkinson 2011
South 
America

Cordillera Oriental (Colombian Andes, South America) δ13Corg WOOD Jahren et al. 2001

Synthesis papers   
Topic   Works  
Climatic changes Weissert and Lini 1991
Western Tethys δ13C record and carbonate platforms drowning Weissert et al. 1998
Calcareous nannofossils in northwestern Germany Mutterlose and Böckel 1998
Plankton evolution Leckie et al. 2002
Methane gas-hydrate dissociation Beerling et al. 2002
Paleotemperatures Jenkyns 2003
Calcareous nannofossils Erba 2004
δ13C and δ18O records Weissert and Erba 2004
Shallow-water carbonates Föllmi et al. 2006
Calcareous nannofossils Tremolada et al. 2007
Geochemistry Jenkyns 2010
Climatic, biotic, and environmental changes Föllmi 2012
Rudists and carbonate platforms: climate and ocean chemistry Skelton and Gili 2012

Note: OAE—Oceanic Anoxic Event; DSDP—Deep Sea Drilling Project; ODP—Ocean Drilling Program; BGS—British Geological Survey; 
BP—British Petroleum. Data organized following the paleogeographic location of the analyzed sequences in the Tethys, Vocontian Basin, Boreal 
realm, Pacifi c Ocean, Atlantic Ocean, and Indian Ocean. Review papers are also reported.

*TOC—total organic carbon; TEX86—tetraether index of 86 carbon atoms. Subscripts: org—organic; carb—carbonate.

composition of seawater reconstructed for the Tethys and Pacifi c 
Oceans provides independent evidence of at least two major vol-
canic phases in the latest Barremian–early Aptian (Tejada et al., 
2009; Bottini et al., 2012). No Os data are available for the late 
Aptian seawater.

Sedimentary Pb isotopic values from the Pacifi c and 
Tethys Oceans document temporal variations through the late 
 Barremian–Aptian interval (Kuroda et al., 2011). The shift 
to unradiogenic Pb isotopic values in the Barremian-Aptian 
boundary interval is convincingly explained, as with Sr and Os 
isotopic profi les, by a signifi cant increase in supply of unradio-
genic lead from submarine volcanic eruptions and associated 
hydrothermal activity.

The major objective of this paper is to offer a comprehensive 
review of the micropaleontological, sedimentological, geochemi-
cal, and climatic changes during the latest Barremian–Aptian 
time interval. Moreover, we present new data for major, minor, 

and trace element abundances in sedimentary sections recovered 
from Deep Sea Drilling Project (DSDP) Sites 167 (Magellan 
Rise) and 463 (Mid-Pacifi c Mountains), Ocean Drilling Program 
(ODP) Site 866 (Resolution Guyot), and on land Cismon and 
Piobbico drill sites in Italy (Belluno and Umbria-Marche Basins, 
respectively) (Fig. 1). We test the proposal (Sinton and Duncan, 
1997) that magmatic degassing and hydrothermal exchange dur-
ing the formation of oceanic LIPs delivered buoyant, metal-rich 
plumes to the surface, and their subsequent distribution through 
the world oceans was governed by redox-related element solubil-
ity and water-mass circulation. These geochemical data are used 
to explore further the proposed links between submarine plateau 
volcanism associated with the GOJE (ca. 122 Ma) and OAE 1a. 
The patterns of metal abundance in the upper Aptian will pro-
vide the means to unravel submarine versus subaerial volcanic 
inputs during late phases of GOJE and/or early construction of 
the Kerguelen LIP. Analyzed sections are selected to quantify the

 

http://specialpapers.gsapubs.org/


284 Erba et al.

element distribution in near-fi eld and far-fi eld locations relative 
to these proposed sources.

The chronology of major changes in climate and biota and 
oceanic structure, fertility, and chemistry is used to explore the 
possible roles of the GOJE and SKP. Comparison of volcanism 
style and intensity relative to paleoenvironmental perturbations 
and biotic response is aimed at assessing the complex and diver-
sifi ed consequences of LIP emplacement.

TRACE METAL ABUNDANCES AS SIGNATURE OF 
LIP VOLCANISM

The evidence from Pb and Os isotopic profi les for increased 
submarine volcanic activity at discrete times in the early Aptian 
is strong. New or faster seafl oor spreading systems would not 
satisfy the observation that unradiogenic Pb inputs occurred (and 
then disappeared) over very brief intervals. However, the short 
time scales and enormous volumes of new crust in ocean plateau 
construction appear to satisfy the requirements of the isotopic 
data. Hydrothermal processes, in the form of both water-rock 
exchange and magmatic degassing during eruptions of single 
large lava fl ows on the seafl oor or subsurface dike injections, 
introduce large concentrations of some elements (especially trace 
metals) that are variably volatile (in the gas phase) and variably 
soluble (in water-rock reactions) in the ocean (Rubin, 1997).

The magmatic fl uids released during megaeruptions, mixed 
with ocean bottom water, have enough buoyancy to reach surface 
waters, especially if erupted from the shallow depths of ocean 
plateaus (Vogt, 1989). The element-enhanced waters could then 
be distributed throughout the oceans via surface circulation. 
Because many of these elements are biolimiting, their sudden 
appearance, especially in oligotrophic areas, would enhance (fer-
tilize) primary production. The subsequent rain of excess organic 
material would then draw down oxygen levels in the deep ocean, 
leading to dysoxia or anoxia.

Increased elemental abundances, and changes from long-
term seawater patterns, in sedimentary sections may also derive 
from enhanced terrigenous input, but the infl uence of factors such 
as spatial distribution, residence times, particle scavenging, and 
redox conditions must be also considered in any interpretation 
of sources. Hild and Brumsack (1998) documented Cd, Mo, Ni, 
Pb, and Se enrichments in the lower Aptian Fischschiefer inter-
val from the Hoheneggelsen KB 40 drill core (northwestern Ger-
many), and lower Aptian black shales from the Russian Platform 
of relatively similar facies show comparable metal abundances 
(Gavrilov et al., 2002). Such variations in major and minor ele-
ments are attributed to a change in the source area of the detri-
tal input and/or to accelerated weathering during OAE 1a. The 
onset of dysoxic to anoxic sedimentation and enhanced burial 
of organic matter might also be crucial for high concentrations 
of biophilic elements and some metals. The major, minor, and 
trace elements in oceanic settings during the early Aptian seem 
more related to large pulses of hydrothermal activity sourced 
in the Pacifi c and Indian Oceans, reaching the western Tethys 

Ocean and perhaps areas as distant as the Russian Platform and 
the Lower Saxony Basin.

If submarine volcanic activity occurred on a massive scale 
during OAE 1a, an increase in trace metals in the surface ocean 
water should be refl ected in element abundances well above 
background values in the sediments accumulating at that time. 
Conversely, subaerial LIPs might induce, via enhanced weather-
ing, detrital metal enrichments. To test this hypothesis, we ana-
lyzed major, minor, and trace elements in three Pacifi c and two 
Tethyan sequences of Aptian age. These sections are well con-
strained by integrated biostratigraphy, magnetostratigraphy, and 
chemostratigraphy, allowing precise dating of metal enrichments 
and correlations.

METHODS

We analyzed 851 bulk sediment samples from 5 different 
sites (DSDP Sites 463 and 167, ODP Site 866, Piobbico and Cis-
mon cores) for major, minor, and trace element (Sc, Cu, Co, Sn, 
Cr, Ni, V, Cd, Ag, Bi, Se, W, Mo, Sb) concentrations at the Keck 
Laboratory at the College of Earth, Ocean and Atmospheric Sci-
ences, Oregon State University (USA). Sample lithologies vary 
from carbonates (chalks and limestones) to marlstones, cherts, 
siltstones, and black shales (DSDP and ODP Scientifi c Results 
volumes for Sites 167, 463, and 866; Erba et al., 1999; Premoli 
Silva et al., 1989a; Tiraboschi et al., 2009). Bulk samples (2 cm3 
each) were fi rst crushed and powdered using an agate mortar and 
pestle, then ~50 mg of powder were dissolved with HF, HNO

3
, 

and HCl in a CEM Corporation MARS 5 microwave digester. 
This procedure included a high-heat, high-pressure protocol fol-
lowed by a sequence of chemical evaporations. The dissolved 
samples were then diluted in a HNO

3
 solution. We determined 

28 trace and minor element concentrations using an inductively 
coupled plasma–mass spectrometer (ICP-MS; a VG PQ-Excel) 
and 10 major element concentrations using ICP–atomic emission 
mass spectrometry (AES).

All elemental concentrations were normalized to Zr. The 
only signifi cant source of Zr to pelagic sediments is from ter-
rigenous material, thus normalizing to Zr removes the effect of 
variable terrigenous input to these sediments. On the basis of 
analyses of blind duplicates and standards, the average error for 
most elements analyzed by ICP-MS is ~10% (2σ). However, 
some elements (Sc, V, Ni, Sn, Sb, Cs, and Bi) exhibited errors of 
~15% and a group that includes Ag, Au, and Se exhibited errors 
of ~21%; because of this larger instrumental uncertainty, infer-
ences from this latter group should be treated with more caution. 
Errors for the ICP-AES analyses generally ranged from 3% to 
8%. Selected trace element (mainly trace metal) concentrations 
(ppb) are plotted against stratigraphic position in Figure 2; all 
variations are correlated with biostratigraphic, magnetostrati-
graphic, and chemostratigraphic data.

New C isotopic data are presented here for the Aptian inter-
val of the Piobbico core. Bulk samples were fi rst powdered, 
treated with acetone, and then dried at 60 °C. Powders were then 
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reacted with purifi ed orthophosphoric acid at 90 °C and analyzed 
online using a VG Isocarb device and Prism Mass Spectrometer 
at Oxford University. Normal corrections were applied and the 
results are reported, using the usual delta (δ) notation, in per mil 
deviation from the Vienna Peedee belemnite (VPDB) standard. 
Calibration to VPDB was performed via the laboratory Carrara 
marble standard. Reproducibility of replicate analyses of stan-
dards was generally better than 0.1‰ for both carbon and oxygen 
isotope ratios.

RESULTS

Major, minor, and trace element abundance peaks are 
observed at coeval stratigraphic intervals in the studied sequences, 
although abundances and relative proportions of these elements 
are quite different among the fi ve locations. Metal anomalies 
found in the Pacifi c sites are 10–1000 times higher than those 
detected in the Tethyan sites (Figs. 2 and 3). In the Pacifi c Ocean, 
element anomalies (mainly Ag, Ba, Cd, Cu, Cr, Ni, Pb, Sc, Se, 
and Zn) are detected in the interval between magnetochron CM0 
and the second carbon isotope maximum (C9). An older inter-
val of metal enrichment, from below CM0 into the Selli event 
(mainly Cr, Ni, Pb, Se, V, and Zn) is observed to varying extents 
at all three sites; a younger interval, from the Selli event through 
C isotope segments C7, C8, and at least C9 (tapering off in C10 
at DSDP Sites 463 and 167), shows strong peaks in Ag, Pb, Sc, 
Se, V, and Zn. In detail, the variations occur as in the following.

• At DSDP Site 463, high abundances are identifi ed in the 
lower Aptian (from the base of magnetochron CM0 up to 
the base of the Selli Level equivalent) and within the Selli 
Level equivalent (one peak in the central part and one at 
the top). The elements showing the highest abundances are 
V, Ni, Zn, Cr, Ba, Rb, Se, Cd, Ag, Hg, and Ti. The upper 
Aptian is characterized by high abundances in Ag, Pb, Sc, 
Se, V, and Zn. Small abundance peaks of Cu, Co, Cr, and 
Ni are also detected, corresponding with the top of seg-
ment C7 through to the lower part of segment C10.

• At ODP Site 866, the highest abundances (Ag, Cd, Co, 
Cu, Ni, Pb, Rb, Se, Rb, Th, U, and Hg) are identifi ed just 
before OAE 1a in the top part of C isotope segment C7 and 
through segment C8 (Ag, Co, Cu, Mo, Pb, Rb, Se, Th, Ti, 
U, Zn, and Hg).

• At DSDP Site 167, high abundances (Ag, Cs, Ni, Pb, 
Re, Rb, Sr, Ti, Th, and U) coincide with the uppermost 
 Barremian–lowermost Aptian interval, before OAE 1a. 
Higher peaks (Ba, Cs, Cu, Pb, Ni, Rb, Se, Sr, Ti, Th, U, 
V, and Zn) are detected in C isotope segments C8 and C9.

In the Tethys Ocean sites (Piobbico and Cismon), the dis-
tribution of elemental abundances shows similarities to and dif-
ferences from the Pacifi c sites. Abundance anomalies (mainly 
Zn, Co, V, and Mo) show peaks just below magnetochron CM0, 
within the Selli Level and up into C isotopic segments C7–C10. 
The interval of the late Aptian C isotopic excursion (segments 
C9, C10) is enriched in some metals (e.g., Cu, Co, and Bi), while 

near-background levels are observed through much of segments 
C7 and C8. In detail, the variations recorded in the Tethyan sec-
tions are described as in the following.

• In the Piobbico core, high abundances (Ag, Au, Ba, Cd, 
Co, Cr, Hg, Mo, Se, Sr, V, and Zn) are detected within and 
especially just above the Selli Level. The upper Aptian is 
characterized by low abundances except for peaks of Ag, 
As, Bi, Co, Cu, Pb, Ti, and U, correlating with the end of 
the Nannoconus truittii acme interval and the Killian event 
(C isotopic segments C9 and C10).

• In the Cismon core, a peak (Zn, Cu) occurs just below mag-
netochron CM0 and highest values continue through the 
top of the Selli Level. A signifi cant increase (in V and Zn) 
marks the onset and the middle part of OAE 1a. Above the 
Selli black shales up to segment C7, metal concentrations 
remain low. Segments C8–C10 are missing at this site.

Because these elements can be released during volcanic 
activity in two modes, high-temperature, discrete magmatic 
degassing associated with single large eruptions, or low- 
temperature, long-term water-rock reactions, we can expect dif-
ferent abundance patterns at different times depending on which 
process was dominant. According to Rubin (1997), highly vola-
tile elements such as B, Bi, Cd, Se, Hg, Ag, Pb, Au, Cu, As, 
Zn, Tl, In, Re, Sn, and Mo are concentrated in magmatically 
degassed fl uids released only during eruptions. Elements that 
are less volatile, such as Fe, Mn, Ba, V, Sr, Sc, Co, Cr, Ni, and 
Rb are more likely found in higher concentrations in water-rock 
exchange reactions of typical steady-state hydrothermal vents. 
Elemental abundance patterns at these fi ve sites reveal contribu-
tions from both nonvolatile and volatile elements. The presence 
of these abundance peaks (normalized to Zr) indicates that con-
centrations of metals in the ocean at these sites were increased 
by some mechanism other than infl ux of terrigenous sediment. 
The variation in total organic carbon (TOC), a function of local 
productivity and degree of ocean oxygenation, does not corre-
late with the position of the metal peaks (Fig. 3), suggesting that 
redox conditions at the sediment-water interface or increased 
scavenging of metals by sinking organic particles cannot explain 
all of the trace element abundance variability. Redox-sensitive 
elements can certainly be precipitated and retained at the sedi-
ment-water interface (Westermann et al., 2013). However, trace 
element abundances at northwestern Tethys locations (Gorgo 
a Cerbara, Glaise, and Cassis–La Bedoule) occur at the same 
intervals (preceding and within the Selli Level), but magnitudes 
correlate with degree of anoxia. Bodin et al. (2013) used Ce/Ce* 
anomalies observed in northwestern Tethys locations to track 
the rising ocean oxygen content from late Barremian to early 
Aptian time, followed by an interval of strong oxygen depletion. 
The fact that we observe the largest trace element abundance 
peaks before and after the interval of strongest oxygen depletion 
leads us to conclude that redox conditions exert only a second-
ary effect on these elemental variations.

An important aspect of the behavior of many trace ele-
ments is that once they enter the oceanic environment, they
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become biologically active (in metabolic processes) and chemi-
cally reactive (in inorganic reactions), and are removed from 
seawater by sinking organic matter (either bound or scavenged). 
Depending on how reactive they are, some will be removed very 
quickly, whereas others will remain in seawater much longer. 
This reactivity can be represented by the element’s mean ocean 
residence time. For example, the behavior of elements in the 
strong abundance peak just below magnetochron CM0 at DSDP 
Site 167 (Magellan Rise) can be evaluated in a plot of volatility 

Less Volatile More Volatile

Less Soluble

More Soluble

Hydrothermal Magmatic

O
ce

an
 R

es
id

en
ce

 T
im

e 
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Figure 4. Relative partitioning of trace elements into the gas phase 
released during magmatic events and water-rock hydrothermal ex-
change reactions (volatility) versus ocean residence times (solubility 
and bioreactivity) are used to track elements released during subma-
rine volcanism (after Rubin, 1997). Example shows the pattern of 
element concentration anomalies (above background levels) for bulk 
sediment at 920 m below seafl oor at Deep Sea Drilling Project Site 
167, Magellan Rise.
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versus residence time (Fig. 4). While all elements show some 
degree of enrichment, those that are more volatile are gener-
ally more enriched (abundances 20–40 times background lev-
els) compared with elements that are less volatile, <20 times 
background levels, which suggests the strong contribution of 
magmatic degassing in discrete submarine eruptions. The high 
abundance of elements with shorter residence times (e.g., Pb, 
Co, Zn) may indicate that this site was near the source rather 
than far fi eld in terms of geography.

The distribution of abundance peaks, especially for ele-
ments with shorter residence times, provides information about 
time and space variability to evaluate the proposal that the OJP 
is the source of volcanic activity related to OAE 1a. The effects 
of mixing and dilution, and removal of elements via primary 
production and scavenging, will produce a concentration gradi-
ent along surface circulation fl ow lines (Fig. 1). In Figure 5, we 
plot magnitude of element abundance peaks (peak/background) 
against distance measured along modeled mid-Cretaceous sur-
face ocean circulation paths (Hay, 2009). Clearly, the elemental 
abundance patterns for both short and long residence time geo-
chemical species are consistent with a Pacifi c source such as the 
GOJE. The strong anomalies for both volatile and nonvolatile 
elements indicate the contribution of magmatic degassing and 
hydrothermal exchange.

Differences exist principally between Pacifi c sites and 
Tethyan sites (Fig. 2), refl ecting the major effect of distance from 
source. There is a substantial degree of coherence among the 3 
Pacifi c sites close to the GOJE (Fig. 1), although peak magnitudes 
vary by a factor of 2–3 from Site 167 (larger) to 866 (smaller). 
These differences among nearby sites may be related to bioreac-
tivity and scavenging, and local environmental conditions such as 
water depth and redox chemistry at the sediment-water interface.
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DIRECT AND INDIRECT CONSEQUENCES OF LIP 
VOLCANISM ON ECOSYSTEM FUNCTIONING 
DURING THE APTIAN

A critical step in obtaining a reliable chronology of the 
paleoenvironmental and biospheric changes and the duration 
of various events is high-resolution integrated biostratigraphy, 
magnetostratigraphy, and chemostratigraphy. As synthesized in 
Table 1, several studies conducted on sedimentary sequences 
through OAE 1a are based on large amounts of stratigraphic data, 
resulting in accurate evaluation of synchroneity and diachrone-
ity of events and reproducibility of their relative timing. Some 
cyclostratigraphic studies of Barremian–Aptian sections have 
provided a quantitative estimate of durations of single events 
(Herbert et al., 1995; Li et al., 2008; Huang et al., 2010; Malin-
verno et al., 2010).

In Figure 6 we plot Aptian environmental changes against 
chronostratigraphy and geochronology according to the time 
scales of Malinverno et al. (2012) and Gradstein et al. (2012). 
Although these time scales provide ages for the base of the Aptian 
(equated to the base of magnetochron CM0) that are 4.8 m.y. 
apart, we decided to use both for comparison because they are 
constructed using different approaches. Malinverno et al. (2012) 
updated the Channell et al. (1995) M-sequence geomagnetic 
polarity time scale by incorporating marine magnetic anomaly 
records from several spreading centers worldwide (Tominaga 
and Sager, 2010), the radiometric age of magnetochron CM0 (He 
et al., 2008), and astrochronology-based estimates of the dura-
tion of the magnetochron CM0–CM3r interval (Fiet and Gorin, 
2000; Malinverno et al., 2010). The Gradstein et al. (2012) time 
scale represents a revision of the 2004 time scale (Gradstein et 
al., 2004), incorporating new methods and data, improved reso-
lution and accuracy of radiometric dating, and stratigraphic stan-
dardization of stage and series boundaries.

Neither of these time scales has been uncontrovertibly shown 
to be wrong or correct. We emphasize that, in our schemes, the 
durations of biozones and of the early Aptian C isotopic anom-
aly remain the same in the two time scales because we adopt 
the astrochronology resolved by Malinverno et al. (2010) that is 
independent of ages of stage boundaries. However, durations of 
the late Aptian as well as of biotic and geochemical anomalies are 
quite different due to considerable variance of ages attributed to 
the Barremian-Aptian and Aptian-Albian boundaries.

Fingerprints of LIP volcanism are preserved in sedimen-
tary sections and can be decoded using a variety of paleon-
tological, sedimentological, and geochemical proxies. Most 
important is the amount of CO

2
 emitted during the construction 

of gigantic plateaus that control climatic conditions and weath-
ering rates and extent. Moreover, the CO

2
 concentration in the 

ocean-atmosphere system affects biochemical processes dur-
ing calcifi cation and production of organic matter. In general, 
excess CO

2
 induces a decrease of carbonate saturation state in 

the oceans, affecting and perhaps hampering calcifi cation of 
benthic and planktonic organisms from shallow-water settings 

to the open ocean (Berner and Beerling, 2007; Hönish et al., 
2012). The complex sequence of paleoenvironmental and biotic 
changes detected in the latest Barremian through Aptian time 
interval are discussed in relation to the direct and indirect role 
of volcanism.

In uppermost Barremian sediments, calcareous nannofossil 
assemblages display an extensive decrease in abundance due to a 
worldwide nannoconid decline starting just before the beginning 
of magnetochron CM0 (Bralower et al., 1994; Erba, 1994, 2004; 
Erba and Tremolada, 2004; Tremolada et al., 2006, 2007; Erba 
et al., 2010), coeval with a substantial increase in trace element 
(particularly metal) concentrations (this study) and phosphorus 
abundance (Föllmi et al., 2006; Föllmi and Gainon, 2008). The 
drop in nannofossil abundance and paleofl uxes is paralleled by 
an evolutionary speciation episode, without extinctions (Erba, 
2004), with introduction of several new taxa, mostly represented 
by small coccoliths (e.g., Bown et al., 2004; Erba, 2006), perhaps 
refl ecting a calcifi cation strategy to survive harmful or simply 
rapidly varying water masses.

The coincidence of the nannoconid decline, the appearance 
of small taxa, and the metal enrichment is best explained by vol-
canic release of large quantities of CO

2
 and hydrothermal activ-

ity during the early phases of the GOJE. Metals might have addi-
tionally fertilized the oceans, contemporaneously favored by an 
increase in phosphorus, encouraging r-strategists and deleteri-
ously affecting k-strategists such as nannoconids (Erba, 1994, 
2004). A minor but well-defi ned δ13C decrease at the base of 
magnetochron CM0 is recorded globally and is taken as supple-
mentary evidence of volcanogenically derived, isotopically light 
carbon in the ocean-atmosphere system during the initial stage 
of the GOJE. At the stratigraphic level of the nannoconid decline 
and metal abundance peak, both Os and Sr isotopes record a 
temporary decrease, further suggestive of submarine volcanism 
and/or hydrothermal input outweighing the effects of continen-
tal weathering (Bralower et al., 1997; Jones and Jenkyns, 2001; 
Bottini et al., 2012). An extensive review of changes in shallow-
water platforms was provided by Skelton and Gili (2012), who 
explained the minor reduction of carbonate platforms in the lat-
est Barremian, possibly due to a kettle effect (the thermal expul-
sion of aqueous CO

2
 due to warming) effectively contrasting 

CO
2
 enrichments.
After magnetochron CM0 and prior to OAE 1a the onset of 

the nannoconid crisis (Erba 1994) corresponds to a large biocal-
cifi cation decrease, with a drop in pelagic biogenic calcite pro-
duction of ~80%. A coeval increase in the nannofossil fertility 
index (Fig. 6) suggests that nutrient availability in surface waters 
intensifi ed; this is supported by the phosphate curve (Föllmi et 
al., 2006; Föllmi and Gainon, 2008) and by radiolarite levels 
within OAE 1a (Coccioni et al., 1987). The response of benthic 
calcifi ers includes a major shift in rudist composition and gen-
eral dominance of microbial encrustations dominated by Lithoc-
odium-Bacinella, locally associated with condensed sequences 
and hiatuses on drowned platforms (see the extensive review by 
Skelton and Gili, 2012).
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Figure 6. Latest Barremian (BA.) to earliest Albian (AL.) biotic and geochemical changes plotted within the chronologic framework based on 
nannofossil and planktonic foraminiferal biostratigraphy and magnetostratigraphy (Weissert and Erba, 2004). C isotopic stratigraphy is after 
Menegatti et al. (1998) and Bralower et al. (1999). Numerical ages in schemes A and B are based on time scales of Malinverno et al. (2012) 
and the geologic time scale of Gradstein et al. (2012), respectively. In both schemes the durations across the latest Barremian to the top of the 
NC6 nannofossil zone is based on astrochronology of Malinverno et al. (2010). Carbon isotope data: simplifi ed composite curve is based on 
Erba et al. (1999), Weissert and Erba (2004), and Weissert et al. (2008). Total organic carbon (TOC) is after Bottini et al. (2012). Nannofossil 
calcite fl uxes are simplifi ed after Erba (1994), Erba and Tremolada (2004), and Erba et al. (2010). Trace metals: this work. Os isotopes are after 
Tejada et al. (2009) and Bottini et al. (2012). Sr isotopes are after Bralower et al. (1997) and Jones and Jenkyns (2001). Temperature curve 
is based on integrated oxygen isotopes (Weissert and Erba, 2004; Erba et al., 2010), nannofossil assemblages (Herrle and Mutterlose, 2003), 
palynomorphs (Hochuli et al., 1999; Keller et al., 2011), and TEX86 (tetraether index of tetraethers consisting of 86 carbon atoms; McAnena 
et al., 2013). Fertility: nannofossil assemblages (Tiraboschi, 2009; Erba et al., 2010). Phosphorus is after Föllmi (2012). Platform develop-
ment and drowning is from Skelton and Gili (2012). Ca isotopes are from Blättler et al. (2011). Pb isotopes are from Kuroda et al. (2011). 
Atmospheric CO

2
 is from Hong and Lee (2012). K—Niveau Kilian; 113—Livello 113; S—Selli Level (Oceanic Anoxic Event OAE 1a) is 

indicated by a gray band. N.d.—Nannoconid decline; N.c.—Nannoconid crisis; G. blowi—Globigerinelloides blowi; L. cabri—Leupoldina 
cabri; G. ferreolensis— Globigerinelloides ferreolensis; H. Trocoidea—Hedbergella trocoidea; G. algerianus—Globigerinelloides algerianus; 
T.  bejaouaensis—Ticinella bejaouaensis; H.  planispira—Hedbergella planispira.
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Evidence for a biocalcifi cation crisis followed by demise 
and drowning of the carbonate platform (sensu Schlager, 1981) 
is seen in the combined sedimentological and geochemical 
records from the Basque-Cantabrian Basin (Millán et al., 2009), 
an extended inner carbonate ramp succession (sensu Burchette 
and Wright, 1992) that underwent a temporary demise but not 
defi nitive drowning of the carbonate ramp. The negative spike in 
the carbon isotope record coincides with a change from neritic 
limestones to carbonate-poor shales deposited in a shallow ramp 
setting and refl ecting increased weathering at a time of reduced 
carbonate production. However, only a few meters above the 
demise level the fi rst occurrence of ammonites suggests that the 
calcifi cation crisis was of limited duration and that organisms not 
living close to surface waters were less affected by the calcifi -
cation crisis even if their shells were constructed of aragonite. 
Low carbonate content and elevated detrital material character-
ize the carbonate ramp succession of the Basque-Cantabrian 
Basin throughout OAE 1a. The carbonate ramp recovered after 
OAE1a and a few hundred meters of shallow-water limestones 
were accumulated during the time of the positive carbon isotope 
excursion (Millán et al., 2009).

Just below the stratigraphic level of OAE 1a, trace met-
als show an abundance peak and Os and Sr isotopes record a 
rapid change to less radiogenic values, while paleotemperatures 
rapidly increase. These proxies imply a likely major volcanic 
phase of the GOJE that introduced CO

2
 concentrations 3–6 times 

higher than before (e.g., Erba and Tremolada, 2004) and added 
biolimiting and/or toxic metals. The nannoconid crisis and the 
contemporaneous demise of carbonate platforms suggest that 
acidifi cation in addition to eutrophication of surface waters con-
tributed to a major biocalcifi cation failure, although low-latitude 
carbonate platforms were less affected (Di Lucia et al., 2012), 
perhaps because of the kettle effect in near-tropical settings, com-
pensating the impact of elevated atmospheric CO

2
 concentrations 

(Skelton and Gili, 2012).
The profound change in ocean chemistry, and specifi cally the 

decreased carbonate saturation state, is also recorded by conden-
sation and locally partial dissolution of carbonates at the seafl oor 
as a consequence of shoaling of the calcite lysocline, indicating 
a delay of several thousand years in the effects of volcanic CO

2
 

on surface- versus bottom-water acidifi cation (Erba et al., 2010).
Increased volcanic activity just before the onset of global 

anoxia and enhanced burial of organic matter is further dem-
onstrated by the Os isotopic records in the Tethys and Pacifi c 
Oceans (Tejada et al., 2009; Bottini et al., 2012) and Pb isotopic 
profi les (Kuroda et al., 2011) that unquestionably refl ect an OJP 
source. Unfortunately, the chronostratigraphic control of the Pb 
isotopic record at the Shatsky Rise is rather poor, mostly due to 
low recovery at ODP Site 1207. The shift to unradiogenic Pb iso-
topic values certainly precedes OAE 1a, but it is not possible to 
assign this Pb anomaly to either the nannoconid decline or the 
nannoconid crisis events.

Biomarker and nannofossil data allow the reconstruction of 
subsequent volcanic phases and stepwise accumulation of CO

2
 

in the ocean-atmosphere system, causing ephemeral biocalcifi -
cation changes and shoaling of the calcite compensation depth 
(CCD; Méhay et al., 2009, Erba et al., 2010; Bottini et al., 2012). 
The early phase of OAE 1a is marked by the fi nal crash of nan-
noconids and extremely low nannofossil calcite paleofl uxes, 
although total nannofossil abundance remained relatively high, 
with common mesotrophic taxa, substantial carbonate platform 
reduction, dissolution of carbonates at the seafl oor, extreme 
warmth, increased fertility, and abundance peak of metals.

A major shift in primary producers occurred during OAE 1a 
when nitrogen-fi xing cyanobacteria and/or upwelling of ammo-
nium ions may have provided and sustained the necessary nutri-
ent N for the functioning of the biological pump (Kuypers et al., 
2004; Dumitrescu and Brassell, 2006). Cyanobacteria require 
trace metals for N

2
 fi xation that is Fe limited and, therefore, illus-

trate a potential link between OAE 1a and submarine volcanism 
with metal fertilization (Larson and Erba, 1999; Leckie et al., 
2002; Zerkle et al., 2008).

The Os isotopic record shows a rapid decrease to exception-
ally unradiogenic values, most likely representing an intense 
phase of the GOJE. The occurrence of dwarf and malformed coc-
coliths in the restricted interval of negative C isotopic interval 
(Erba et al., 2010) is inferred to be the nannoplankton response to 
volcanically induced ocean acidifi cation.

The high-resolution record of the Tethys Ocean shows a 
positive spike of Os isotopic ratios at the beginning of the nega-
tive δ13C spike, but this feature is not unambiguously duplicated 
in the Pacifi c Ocean, possibly due to low core recovery at DSDP 
Site 463. The Os spike is suggestive of accelerated weathering 
rates and increased runoff, at least at marginal settings (Tejada 
et al., 2009; Bottini et al., 2012), immediately after an abrupt 
warming and inferred injection of methane into the atmosphere 
(Méhay et al., 2009). In the Sr isotopic record (Bralower et al., 
1997; Jones and Jenkyns, 2001) there is no evidence for a radio-
genic spike. However, at ODP Site 866 on the Resolution Guyot, 
a single relatively radiogenic Sr isotope data point is recorded 
within the negative δ13C negative spike (Jenkyns and Wilson, 
1999). It is interesting that Ca isotope data from the same site 
(Blättler et al., 2011) suggest an increase in weathering rates dur-
ing the equivalent time interval, consistent with the observation 
of increased quartz-sand shedding into the western Tethys during 
the Aptian (Wortmann et al., 2004). The effects of temporary CO

2
 

drawdown through (silicate) weathering are recorded by the brief 
cooling episode and relative nannofossil recovery immediately 
after the Os positive spike.

Within the Selli Level, the prolonged interval of unradio-
genic Os ratios, associated with metal abundance peaks, suggests 
a major volcanic phase and intense hydrothermal activity of the 
GOJE, persisting through most of OAE 1a. The submarine volca-
nism of the OJP, however, probably fl uctuated in intensity, which 
resulted in variable effects on weathering, temperatures, fertility, 
and organic matter accumulation. Soon after the negative δ13C 
spike, nannofossil total abundance and calcite paleofl uxes show 
a fi rst partial recovery, suggesting a progressive deepening of 
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the calcite lysocline and CCD. Mesotrophic taxa were no lon-
ger affected by dwarfi sm, but they were still abundant, refl ecting 
relatively high nutrient availability and reduced acidity of surface 
waters (Erba et al., 2010). These data suggest a general decrease 
in pCO

2
, favoring nannoplankton biocalcifi cation under less 

extreme climatic conditions. The inferred CO
2
 decrease might 

have been the result of effective organic matter burial as well as 
weathering, together offsetting the input of volcanogenic CO

2
. 

Limited production of shallow-water carbonates continued to the 
end of OAE 1a (Millán et al., 2009), possibly due to relatively 
elevated nutrient levels and episodic CO

2
 pulses.

The latest phase of OAE 1a was marked by the onset of a 
cooling episode that coincided with the increase in δ13C values, 
a decrease in TOC content, more radiogenic Os isotopic values, 
and lower CO

2
 levels (e.g., Heimhofer et al., 2004). Moreover, 

the lessening of anoxic bottom-water conditions was coeval with 
decreasing metal abundances, the partial recovery of nannofossil 
abundance and paleofl uxes, an increase of detrital phosphorus, 
and possibly enhanced weathering, as suggested by Ca isotopes. 
Burial of large amounts of organic matter and intensifi ed weath-
ering, perhaps during OJP quiescence, might have been crucial 
for considerable CO

2
 drawdown and atmospheric and seawater 

cooling. After OAE 1a, the relative recovery of carbonate plat-
forms was substantially limited to platforms affected only by 
demise and not by drowning, and seems to have been controlled 
by cooling following OAE 1a. In shallow-water ecosystems, 
the recovery phase after OAE 1a was associated with a distinct 
change in rudist communities, i.e., aragonite-dominated taxa 
being depauperated while the calcite-dominated forms were only 
marginally affected (Steuber, 2002).

Weissert and Erba (2004) suggested a crucial role for excess 
volcanogenic CO

2
 and subsequent ocean acidifi cation pulses for 

the carbonate crises through the late Aptian. During the time of 
the positive carbon isotope excursion following OAE 1a (seg-
ment C7), neritic carbonate production resumed in the Basque-
Cantabrian basin and as much as 400 m of shallow-water carbon-
ates were deposited (Millán et al., 2009). Outer carbonate ramp 
successions affected by calcifi cation crisis are preserved in Hel-
vetic nappe pile of the Alps; these successions were deposited 
along the northern margin of the Tethys Ocean where the demise 
of the outer carbonate ramp was followed by drowning (Wissler 
et al., 2003).

Immediately after OAE 1a, an ~1-m.y.-long cooling inter-
val was followed by warm conditions preceding unstable late 
Aptian climate punctuated by relatively cold pulses (McAnena et 
al., 2013). The early late Aptian transient warmth correlates with 
increased metal abundances, increased nannofossil fertility indi-
ces, and relatively high phosphorus (Fig. 6), suggesting effective 
hydrothermal nutrifi cation during a submarine volcanic episode.

The late Aptian N. truittii acme refl ects a period of effec-
tive calcifi cation under cooler conditions, suppressed fertility, 
and extremely low (close to background) metal abundances. Pre-
sumably, this was a time of quiescence in volcanism and reduced 
atmospheric CO

2
, promoting favorable conditions for heavily 

calcifi ed forms to thrive, as also recorded by the growth of shal-
low-water carbonate platforms.

In the proto–North Atlantic, minimum temperatures (McAn-
ena et al., 2013) were reached in the interval of moderate metal 
enrichment and increasing Sr isotopic values during the late 
Aptian. This was also the time of a fi nal reduction in calcifi cation 
and possibly extensive carbonate dissolution at the seafl oor, as 
evidenced by calcareous nannoplankton (Erba, 2006; Mc Anena 
et al., 2013) and planktonic foraminifera (Huber and Leckie, 
2011; Petrizzo et al., 2012), undergoing a major turnover in the 
Aptian-Albian boundary interval, possibly due to adverse chem-
istry of the ocean.

The occurrence of brief metal-rich intervals in late Aptian 
time suggests additional volcanic pulses during discrete con-
structional phases of submarine edifi ces, presumably releasing 
further large amounts of CO

2
 to the ocean-atmosphere system. 

The micropaleontological and geochemical anomalies detected 
in the interval encompassing the end of the Selli event and the 
Aptian-Albian boundary might be essentially or entirely related 
to early constructional phases of the Kerguelen LIP and major 
continental volcanism of the Rajmahal Traps of India (Coffi n et 
al., 2002; Duncan, 2002; Frey et al., 2003).

During the late Aptian, under relatively colder conditions, 
the surface ocean was prone to heightened absorption of both 
O

2
 and CO

2
, hampering anoxia but provoking ocean acidifi ca-

tion pulses and shallowing of the CCD. The late Aptian was 
characterized by a return to oxygenated bottom waters and a 
relative recovery of pelagic and neritic carbonate sedimenta-
tion. The latest Aptian nannoconid fi nal collapse, coeval with 
the abundance drop in planktonic foraminifers, might be viewed 
as biocalcifi cation failures under CO

2
-induced decreased calcite 

saturation state.

EXCESS CO2 DURING LIP EMPLACEMENT: 
CLIMATE CHANGE AND OCEAN CHEMISTRY

The earliest evidence of volcanism is observed just pre-
ceding magnetochron CM0, and intense volcanism continued 
through the early Aptian, with peaks at the onset of OAE 1a, fol-
lowed by an ~880-k.y.-long episode in the middle and upper parts 
of the Selli event. Pb isotopic profi les indicate the OJP, by far the 
largest oceanic LIP that formed rapidly at low latitudes in the 
Pacifi c Ocean, as the likely source of the geochemical anomalies 
detected in uppermost Barremian to lower Aptian sedimentary 
sequences in the Tethys and Pacifi c Oceans.

Evidence of large-scale volcanism during the late Aptian is 
less well documented, although three intervals of magmatic activ-
ity associated with suppressed biogenic carbonate production are 
inferred to be the result of signifi cant hydrothermal submarine 
activity and excess CO

2
. In late Aptian time, volcanic activity 

on a massive scale constructed most of the SKP in the incipient 
Indian Ocean opening between India, Australia, and Antarctica at 
high southern latitudes (Coffi n et al., 2002). The SKP volcanism 
was almost entirely subaerial, with a very early and short-lived 
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submarine phase found at ODP Site 1136. Possible sources of the 
upper Aptian metal anomalies are the Hikurangi Plateau (Hoernle 
et al., 2010) and/or younger, post-major constructional phases of 
the OJP and Manihiki Plateau (Timm et al., 2011). Concomi-
tantly, or alternatively, hydrothermal fi elds linked to the initial 
submarine volcanism of the SKP (Coffi n et al., 2002; Duncan, 
2002) might have been responsible for the metal enrichments.

GOJE and SKP magmatism would have released huge 
amounts of gases, major, minor, and trace elements, and par-
ticulates into the ocean-atmosphere system with impacts on cli-
matic conditions and variability. Volcanic CO

2
 generally induces 

warming over long time scales, whereas volcanic ash and gases 
injected into the atmosphere may trigger transient cooling. In the 
OAE 1a interval, a total of ~9600 Gt of CO

2
 has been estimated to 

have derived from subsequent volcanic pulses of the OJP (Méhay 
et al., 2009). In late Aptian time, the SKP volcanism correlated 
with a period of excess CO

2
 (Retallack, 2001), although magma 

fl uxes may have been an order of magnitude lower relative to the 
OJP emplacement (Eldholm and Coffi n, 2000). This difference 
might, at least partially, explain why greenhouse conditions were 
not reached. During the late Aptian a fi rst cool interlude corre-
lates with the Globigerinelloides algerianus planktonic forami-
niferal zone and another episode of colder conditions started in 
the Ticinella bejaouaensis planktonic foraminiferal zone, con-
tinuing up to the Aptian-Albian boundary (Figs. 6 and 7) with a 
total decrease of ~4 °C in the proto–North Atlantic (McAnena et 
al., 2013).

Was the late Aptian a time of persistent cold climate (e.g., 
Price et al., 2012; Maurer et al., 2012) or was the post-OAE 1a 
climate affected by discrete ice age interludes, as suggested by 
Weissert and Lini (1991)? Late Aptian cool climate lasting as 
much as a few million years is counterintuitive, given extensive 
and repeated volcanism during emplacement of the Kerguelen 
LIP. Chemical weathering of rocks exposed on land is a relatively 
slow process for pulling down excess CO

2
, especially under per-

sistent volcanic activity, and therefore alone seems an implau-
sible cause for the late-late Aptian global cooling (Bottini et al., 
2014, 2015). Burial of substantial amounts of organic matter in 
the Southern Ocean and in the South Atlantic over 2.5 m.y. has 
been postulated to have caused the late Aptian cooling (McAnena 
et al., 2013); however, organic carbon–rich black shales have not 
been documented, and well-oxygenated conditions characterized 
the late Aptian (e.g., Erba et al., 1989; Hu et al., 2012b).

Global climatic changes appear to be marginally signifi cant 
for production of marine calcifi ers, production that is remarkably 
buffered by the carbonate saturation state of the ocean. However, 
warm or cool climates control gas absorption in surface waters 
and, specifi cally, fl uxes of CO

2
 from the atmosphere into the 

ocean. In Aptian time, fl uctuations in volcanogenic CO
2
 in the 

ocean-atmosphere system affected marine biota; major changes 
in abundance and composition of calcifi ers are undeniably 
recorded in neritic and pelagic settings at global scale. In particu-
lar, an inverse relationship between nannoplankton and shallow-
water carbonates and LIP volcanism is documented through the 

latest Barremian–Aptian interval. We believe that major drops in 
biocalcifi cation of planktonic and benthic communities during 
the early Aptian were arguably controlled by huge amounts of 
GOJE volcanogenic CO

2
 and ocean acidifi cation. Likewise, in 

the late Aptian, resumptions and pauses in calcifi cation paralleled 
quiescence and activity of LIP construction. In particular, the N. 
truittii acme, the only period of substantial nannofossil carbonate 
production, correlates with the absence of (or minimal) LIP mag-
matism and, therefore, with inferred attenuated pCO

2
.

The late-late Aptian cooler conditions would have amplifi ed 
the absorption of CO

2
 in surface waters, promoting global acidi-

fi cation with suppressed carbonate production and shallowest 
CCD (Thierstein, 1979). However, the generally cooler climate 
of the late Aptian allowed amplifi ed O

2
 absorption in surface 

waters and greater latitudinal gradients, promoting increased 
oxygenation and more effi cient circulation of the oceans. This 
was a time without widespread anoxia.

GEOCHRONOLOGY OF VOLCANIC ACTIVITY AND 
OF PALEOCEANOGRAPHIC EVENTS

If there was a cause and consequence relationship between 
LIP construction and climatic-environmental changes, the timing 
of volcanic activity should match or be slightly older than the age 
of paleoceanographic events. The 40Ar/39Ar dating of the GOJE 
provides ages ranging from 126 to 117 Ma (Mahoney et al., 
1993; Tejada et al., 1996, 2002; Chambers et al., 2004; Hoernle 
et al., 2010; Timm et al., 2011). More specifi cally, a compila-
tion of radiometric ages from OJP basement lavas (Timm et al., 
2011, fi g. 2 therein) shows 19 of 24 dates (79%) in the interval 
124–120 Ma, which we take as the estimated age of the main pla-
teau-building phase. The Manihiki Plateau primarily formed ca. 
124.6 Ma, but later volcanic phases continued until ca. 117 Ma 
(Timm et al., 2011), and the Hikurangi Plateau shows construc-
tion ages of 118–96 Ma (Hoernle et al., 2010). The GOJE was 
essentially a submarine LIP, with local minor subaerial eruptions 
(e.g., Mahoney et al., 2001).

Geochronology of the uppermost igneous crust of the Ker-
guelen Plateau suggests that its older southern portion (the SKP) 
formed over a prolonged period, with a major peak in magmatic 
output from ca. 119 to ca. 110 Ma (Coffi n et al., 2002; Dun-
can, 2002; Frey et al., 2003) and 3 distinct ages at 119–118 Ma 
(ODP Site 1136), ca. 112 Ma (ODP Site 750), and ca. 110 Ma 
(ODP Site 749) (Frey et al., 2003). Based on the characteristics 
of the lava fl ows and of overlying sediments, large parts of the 
SKP erupted subaerially (Coffi n et al., 2002; Frey et al., 2003), 
although the very fi rst magmatic phase of SKP ca. 119–118 Ma 
was submarine (Duncan, 2002).

We note that these radiometric dates have large associated 
uncertainties: ±1.8 m.y. in the average ages reported by Cham-
bers et al. (2004) and ±1.6 m.y. in the average ages of Timm 
et al. (2011). A consequence is that the main plateau-building 
phase of the OJP may have lasted much less than the 124–
120 Ma interval defi ned earlier; a substantial portion of this
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apparent 4 m.y. duration could simply be due to the intrinsic 
uncertainties of radiometric dating. Absolute ages in available 
time scales also have uncertainties that are at least 0.5 m.y. (Hin-
nov and Ogg, 2007; Malinverno et al., 2012). These uncertainties 
need to be taken into account when comparing ages of events.

Figure 7 plots radiometric ages of GOJE and Kerguelen Pla-
teau LIPs against chronostratigraphic ages of major paleoenvi-
ronmental changes using two time scales available for the Aptian 
(Malinverno et al., 2012; Gradstein et al., 2012). In the Malin-
verno et al. (2012) time scale, paleoceanographic events in the 
C2–C6 isotopic segments take place ca. 121.5–120 Ma, which 
is at the younger end of the 124–120 Ma interval encompassing 
most of the OJP construction. However, using the Gradstein et al. 
(2012) time scale, paleoenvironmental perturbations in the lat-
est Barremian–early Aptian interval take place before rather than 
after the 124–120 Ma interval of OJP volcanism, and increased 
carbonate production in the late Aptian (N. truittii acme) coun-
terintuitively correlates with a major magmatic phase of the 
Kerguelen LIP. The Gradstein et al. (2012) time scale essentially 
implies that there cannot be a causal connection between LIP vol-
canism and the major paleoenvironmental changes observed in 
the Aptian. In spite of the dating uncertainties, there is a broad 
temporal consistency between the dates of OJP volcanism and 
latest Barremian–early Aptian paleoenvironmental perturbations 
with the Malinverno et al. (2012) time scale, which is also consis-
tent with the Re-Os age of 120.4 ± 3.4 Ma for the base of the Selli 
Level obtained by Bottini et al. (2012). On the contrary, in the 
Gradstein et al. (2012) time scale the entire Selli Level is older 
than 124 Ma (Fig. 7).

Establishing a more detailed correlation will require more 
precise radiometric dates and further revision of available time 
scales. One of the outstanding issues is the problematic duration 
of the Aptian stage. Huang et al. (2010) estimated total duration 
of the Aptian using Milankovitch cycles determined on lithologi-
cal changes in the Piobbico core; their results signifi cantly revise 
the durations previously obtained by Herbert et al. (1995) on the 
same lithostratigraphic interval (units 11–19 of the Piobbico core 
as defi ned by Erba, 1988). A puzzling implication of the orbital 
chronology determined by Huang et al. (2010) is the very low 
sedimentation rates of the upper Aptian calcareous interval of 
the Piobbico core. In particular, the sedimentation rates of the 
N. truittii acme interval seem unrealistically low given that the 
coeval nannoplankton carbonate production increased consider-
ably. Although we recognize the relevance of the work by Huang 
et al. (2010), it seems urgent to undertake independent evaluation 
of the astrochronology-based duration of the Aptian, possibly 
using independent methods (e.g., Meyers and Sageman, 2007; 
Malinverno et al., 2010) on sequences deposited in different sedi-
mentary basins.

CONCLUSIONS AND PERSPECTIVES

The Aptian was a time of major perturbations of the ocean-
atmosphere system, with the onset of greenhouse or supergreen-

house conditions followed by general prolonged cooling, and 
profound changes in chemistry of the surface- and deep-water 
masses, triggering differential responses of biota. Biocalcifi ca-
tion crises and success in pelagic and neritic ecosystems appear 
to be broadly correlative with, but not necessarily synchronous 
with, geochemical anomalies. The δ13C curve is characterized 
globally by a complex anomaly (a negative spike preceding an 
~2‰ positive excursion) in the early Aptian, followed by a sec-
ond positive excursion in the late Aptian. The GOJE formed over 
a 3–5 m.y. interval, with a paroxysmal phase at 125–121 Ma, 
broadly coincident with OAE 1a and a widespread drop in rela-
tive amount of biogenic carbonate in sediments, associated with 
excess volcanogenic CO

2
, extreme warming, and ocean acidifi -

cation. Causal links between the emplacement of the OJP and 
the environmental perturbations of the OAE 1a interval can be 
convincingly made by integrating multiple paleontological, sedi-
mentological, geochemical, and geochronologic data sets. After 
the most signifi cant events in the early Aptian, other biotic and 
geochemical changes are documented in the late Aptian, although 
the lithological expressions are subtle and there is an absence of 
anoxic conditions on a large scale: this was the time of major 
magmatism of the SKP and of late phases of the GOJE.

Submarine LIP magmatism (judging from the well-exposed 
and studied continental counterparts) must have discharged enor-
mous amounts of volatiles during single eruptions, and/or vola-
tiles and major, minor, and trace elements both through magmatic 
degassing and hydrothermal water-rock exchange. Huge quan-
tities of greenhouse gases and massive release of metals must 
have had an impact on climatic conditions and chemistry of the 
oceans, including the carbonate saturation state and trophic levels 
that directed the temporary dominance of bacterial versus algal 
phytoplankton. Ash dispersal from subaerial eruptions (SKP) 
might have even fertilized the oceans directly by greatly increas-
ing the supply of nutrients such as P and Fe (Anbar and Knoll, 
2002), stimulating specifi c marine phytoplankton that reduced 
atmospheric CO

2
 by accelerated photosynthetic processes and 

increased burial rates of organic matter.
The exceptionally massive outpouring of basalts dur-

ing emplacement of LIPs introduced excess CO
2
 in the ocean- 

atmosphere system; the almost exclusively submarine GOJE 
triggered greenhouse or supergreenhouse conditions, whereas 
extrusion of the subaerial Kerguelen LIP was associated with pro-
longed cooling, indicating that, in a global context, weathering 
processes must have been relatively more important than CO

2
-

induced warming. Climate variability is evident through OAE 1a, 
with at least two relative cooling episodes, perhaps caused by 
accelerated weathering and/or enhanced burial of organic matter, 
both resulting in severe CO

2
 drawdown.

Global anoxia was reached only when intense warming 
diminished O

2
 absorption in the ocean and changed circulation 

patterns; concomitant fertilization (nutrients recycled through 
accelerated weathering and runoff, and biolimiting metals 
released by hydrothermal plumes and in volcanic ash) triggered 
surplus primary productivity with subsequent consumption 

 

http://specialpapers.gsapubs.org/


296 Erba et al.

O
2
 through oxidation of organic matter. In addition, release of 

reduced metals contributed to near-source oxygen depletion. 
Under generally cool conditions, the oceans remained well oxy-
genated even at times of intensifi ed fertility, presumably because 
cold waters can absorb higher O

2
 concentrations and (thermoha-

line) circulation is more vigorous.
Exceptionally high mean CO

2
 concentrations (3–6 times 

higher than today) were deleterious to the marine carbonate sys-
tem regardless of climatic conditions, with evidence of calcifi ca-
tion crises and CCD shoaling under either warm or cold climates. 
Thus climate changes, even when extreme, seem not to have been 
decisive for biocalcifi cation. Conversely, calcareous nannoplank-
ton and shallow-water calcifi ers encountered major diffi culties in 
acidifi ed oceans when volcanogenic CO

2
 reached extreme con-

centrations. LIP-derived biolimiting and/or toxic metals possibly 
further stressed the oceanic biota, which was forced to adapt and 
survive under eutrophic conditions and/or selectively toxic waters.

The most striking paleoenvironmental perturbation is OAE 
1a, but several signs of change such as the nannoconid decline, 
the onset of the nannoplankton speciation, and the fi rst major 
peak in metal enrichment, preceded global anoxia by ~1 m.y. Are 
these environmental changes just before magnetochron CM0 the 
evidence of onset of OJP volcanism? Were these latest Barre-
mian perturbations related to the Manihiki Plateau emplacement? 
Was global anoxia reached only when threshold conditions were 
overtaken? Was accidental co-occurrence of multiple triggering 
events, after preconditioning of the oceans, the ultimate stimulus 
for a paleoenvironmental crash?

Future work on major, minor, and trace elements as well 
as Os and Pb isotopes might further identify the source area of 
release and time frame of magmatism. Highly resolved varia-
tions in metal concentrations at near-source locations would 
reveal eruption rates of outpouring lavas, which will be crucial 
for estimating the relative importance of LIP volcanism and its 
individual phases. Furthermore, evaluation of volatile outputs 
and their release rates would greatly improve our understanding 
of ecosystem changes in response to major magmatic events.

We stress the importance of improved chronology for both 
sedimentary sequences and LIP volcanism. This need is under-
scored by confl icting available Aptian time scales. One time scale 
implies that the GOJE LIP volcanism took place after the envi-
ronmental perturbations in the sedimentary record (Gradstein et 
al., 2012), meaning that there could be no cause and effect rela-
tionship. We favor the time scale of Malinverno et al. (2012) that 
makes volcanism occur before its inferred environmental conse-
quences and is consistent with the absolute age of magnetochron 
CM0 (He et al., 2008) and the Re-Os age of the base of the Selli 
Level (Bottini et al., 2012).

We emphasize the fact that the environmental disruptions 
caused by the GOJE did not trigger extinctions. On the contrary, 
a major evolutionary radiation of calcareous nannoplankton was 
perhaps the strategic response to adverse surface-water chemis-
try. The rock-forming nannoconids underwent a major temporary 
decline during OAE 1a but survived, presumably in suffi ciently 

protected ecological niches, to fl ourish when paroxysmal OJP 
volcanism ended. Likewise, the carbonate-producing rudists 
underwent a severe crisis during OAE 1a, and their subsequent 
partial recovery was marked by calcite-dominated forms and the 
failure of most aragonitic taxa.

The annihilation of most nannoconids and extinction of 
many nannoplankton and planktonic foraminiferal taxa occurred 
in late-late Aptian time, when the SKP formed. Perhaps pro-
longed conditions of cool or cold surface waters promoted ocean 
acidifi cation that severely affected and killed most of the heavily 
calcifi ed and long-ranging (stable) taxa.
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