Supporting Information

A collection of topological types of nanoclusters and its application to icosahedron-based intermetallics

Arina A. Pankova^a, Tatiana G. Akhmetshina^a, Vladislav A. Blatov^{a*}, Davide M. Proserpio^{a,b}

^a Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac. Pavlov St. 1, Samara 443011, Russia

^b Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, 20133 Milano, Italy

Table S1. The graphs of most abundant 0@12 and 1@12 nanocluster configurations and their occurrences in intermetallics.

0@12 graphs are subgraphs of the corresponding centered 1@12 graphs and always occur in all structures, where the 1@12 graph exists. For example, the 3543 1@ico structures contain also the 0@ico graph as a subgraph of 1@ico. Other 3600 - 3543 = 57 structures contain only 0@ico graphs, not 1@ico.

Nanocluster Symbol	Occurrence	Graph	Nanocluster Symbol	Occurrence	Graph
0@12_model1	27963		1@12_model24	6147	
0@12_model3	27760		1@12_model64	5892	
0@12_model5	25922		1@12_model68	4679	
0@12_model9	7827		1@12_model65	3945	
0@12_model8	6316		1@12_model42	3830	
0@12_model2	4313		1@12_model1 (1@ico)	3543	
0@12_model12 (0@ico)	3600		1@12_model25	3359	
0@12_model4	2739		1@12_model8	3123	
0@12_model13	2086		1@12_model6	2579	
0@12_model10	1263		1@12_model66	2290	<i>₽</i>
0@12_model11	585	i i i i i i i i i i i i i i i i i i i	1@12_model5	2102	
0@12_model6	23		1@12_model28	2078	
0@12_model14	9		1@12_model2	1413	
0@12_model7	2	0000	59 more models	1344-1	

Formul	a	Underlying net	Topological types	Number of structures	Form	ula	Underlying net	Topological types	Number of structures
$1@ico_{f_3^1+e^1}^{8+6}$		bcu-x	Mo ₃ Zr	427	$1@ico_{f_3^1+b^4}^{2+6}$		hex	Co ₂ Al ₅	2
$1@ico_{b^{6}+b^{2}}^{8+6}$		bcu-x	WAl ₁₂	9	$1@ico_{e^{1}+v^{1}}^{3+4}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(36.412.53)*	$NdTi_{3}(Sn_{0.1}Sb_{0.9})_{4}$	2
$1@ico_{e^{1}+b^{4}+b^{1}}^{2+8+4}$.	bcu-x	Nb(Cu _{0.5} Ga _{0.5})	1	$1@ico_{f_3^1}^6$		crs	Ti₂Ni, Gd₄RhIn	100
$1@ico_{v^1}^{12}$		fcu	CeRu ₂ Mg ₅	1	$1@ico_{f_3^1}^6$		рси	Ca ₃ Ag ₈	19
$1@ico_{f_3^2+e^1}^{6+6}$		fcu	Cu ₂ GaSr SrNi ₂ Ge BaNi ₂ Ge	4	$1@ico_{f_3^2}^6$		hxl*	Sr ₂ Ni ₃	1
$1@ico_{f_3^1+v^1}^{6+6}$		fcu	AlAu ₄	9	$1@ico_{v^1+e^1}^{4+2}$		hxl*	$\begin{array}{l} Yb_2Ag_7\\ Hf_2Co_7\\ Zr_2Ni_7 \end{array}$	4
$1@ico_{f_3^1+v^1+e^1}^{1+3+6}$		tca	TaCo ₂	81	$1@ico_{f_3^1+e^1}^{4+2}$		hxl*	$Al_{2.88}Ta_{2.66}V_{1.46}$	1
$1@ico_{f_3^1+v^1}^{3+6}$		ncb	$\begin{array}{c} Ni_4Zn_{22}\\ Cu_5Zn_8 \end{array}$	22	$1@ico_{f_3^2+e^1}^{2+4}$		hxl*	Sr ₂ Rh ₂ In ₃	1
$1@ico_{f_3^{1+e^1}}^{2+6}$		hex	WBe ₂ Fe ₂ Ta	766	$1@ico_{e^{1}+b^{7}}^{2+2}$		dia	Fe ₂ Ga ₆ Sc ₃ , Hf ₃ Cu ₈	5
$1@ico_{f_3^1+e^1+v^1}^{2+2+4}$		hex	PuCu ₆	39	$1@ico_{f_3^1+e^1}^{2+2}$		sql*	Cs ₃ NaPb ₄	1
$1@ico_{b^{12}+e^{1}}^{2+6}$		hex	K_2Hg_7	2	$0@ico_{f_3^1}^6$		lcy	$Y_5Ag_3Cu_{12}$	1
$0@ico_{e^{1}+b^{4}+b^{1}}^{2+8+4}$	\$	bcu-x	Nb ₂ Al	1	$0@ico_{f_3^1+e^1}^{2+6}$		hex	WBe ₂	7

Table S2. Distribution of local binding of icosahedra in the 1506 intermetallics assembled with one non-equivalent icosahedron

 \ast – ignoring bonds between icosahedra that unite layers into a 3D framework.

For	mula	Underlying net	Topological types	Number of structures
$2(1@ico_{f_3^{1+}v^1}^{3+6})$		ncb	Mn ₃ In, Ag ₉ Ca ₈ Hg ₉ , Cd ₄₃ Pd ₈	8
$2(1@ico_{f_3^1+e^1+v^1}^{1+6+3}) + 1@ico_{f_3^1+e^1}^{2+6}$		$(3^{15}.4^{24}.5^6)_2(3^6.4^{18}.5^3.6)$	(AlCu)Mg	3
$1@ico_{f_{3}^{1}+e^{1}}^{3+6} + 1@ico_{f_{3}^{1}+e^{1}}^{3+4}$		(3 ¹³ .4 ¹⁴ .5 ⁹)(3 ⁸ .4 ⁸ .5 ⁵)	$(Cr_9Mo_{21}Ni_{20})_{1.12}$	3
$2(1@ico_{f_{3}^{1}+v^{1}}^{3+6})$ $2(1@ico_{f_{3}^{1}+e^{1}+v^{1}}^{1+1+9})$		(3 ¹² .4 ¹² .5 ¹²)(3 ¹² .4 ¹⁴ .5 ¹⁰) (3 ¹⁸ .4 ²⁸ .5 ⁹)	MoNi	1
$1@ico_{f_3^1+v^1+e^1}^{1+3+6} + 1@ico_{f_3^1+e^1}^{2+6}$		(3 ¹⁵ .4 ²⁴ .5 ⁶)(3 ⁶ .4 ¹⁸ .5 ³ .6)	Mg ₁₆ Zn ₃₁ Cu	1
$1@ico_{f_{3}^{1}+\nu^{1}}^{6+2}+1@ico_{f_{3}^{1}+e^{1}+\nu^{1}}^{4+2+4}$		(3 ¹⁰ .4 ¹² .5 ⁶)(3 ¹¹ .4 ¹⁶ .5 ¹⁸)	HfCrGa ₂	3
$2(1@ico_{f_{3}^{1}+e^{1}+v^{1}}^{4+2+4})$		(3 ¹³ .4 ²¹ .5 ¹¹)(3 ¹⁷ .4 ²¹ .5 ⁷)	$Y_2Ni_7Sn_3$	1
$2(1@ico_{f_3^1+e^1+v^1}^{1+3+5})$		(3 ¹² .4 ¹⁹ .5 ⁵)(3 ⁹ .4 ¹⁹ .5 ⁸)	$\mathrm{Al}_7\mathrm{Nb}_{24}\mathrm{Ni}_{21}$	1
$\boxed{1@ico_{f_{3}^{1}+e^{1}+v^{1}}^{1+5+1} + 1@ico_{f_{3}^{1}+e^{1}}^{2+2} + 1@ico_{f_{3}^{1}+e^{1}+v^{1}}^{2+4+1}}$		(3 ⁴ .4 ⁸ .5 ⁷ .6 ²) ₂ (3 ⁵ .4 ⁹ .5 ⁷) ₂ (4 ⁴ .6 ²)	$Nb_{28}Ni_{33.56}Sb_{12.44}$	122

Table S3. Distribution of local binding of icosahedra in the 22 intermetallics assembled with two or three non-equivalent icosahedra

* – ignoring bonds between icosahedra that unite layers into a 3D framework.

Space group	Point group	Supracluster	Underlying net	Central atom (A)	Environment (M)	Structure topology	Number of structures
I m3m	$\overline{3}m$	$1@ico_{f_3^1}^6$	pcu	Ag	$A_6+M_6 (M=Ca)$	12,12,16T1	1
F d3m	3m	$1@ico_{f_3^1}^{6}$	crs/dia-e	Co Hf Mg Mn Na Ni Sc Ti Zr	$\begin{array}{l} A_{6}+M_{6} \ (M=Hf) \\ A_{6}+M_{6} \ (M=Fe, \ Ir, \ Mn, \ Os, \ Pd, \ Pt, \ Rh) \\ A_{6}+M_{6} \ (M=Pd) \\ A_{6}+M_{6} \ (M=Hf) \\ A_{6}+M_{6} \ (M=Cd); \ M12 \ (M=Nb, \ Ta) \\ A_{6}+M_{6} \ (M=Cd); \ M12 \ (M=Nb, \ Ta) \\ A_{6}+M_{6} \ (M=Co, \ Cu, \ Fe, \ Ni) \\ A_{6}+M_{6} \ (M=Cu, \ Co, \ Ir, \ Pt, \ Rh, \ Fe) \end{array}$	12,12,14T1	27
P m3n	m3	$1@ico_{f_3^1+e^1}^{8+6}$	bcu-x	Al Au Be Bi, Sn Cd, Co, Fe, Ni Ga, Ge Hg In Ir, Pt Os Pb Pd Re Rh Ru Sb Sn Tl V Zr	$ \begin{split} & M_{12} (M=Mo,Nb,V) \\ & M_{12} (M=Ta,Zr,Ti,V,Nb,Ti) \\ & M_{12} (M=Ta,Zr,Ti,V,Nb,Ti) \\ & M_{12} (M=Mo) \\ & M_{12} (M=Nb) \\ & M_{12} (M=V) \\ & M_{12} (M=Cr,Mo,Nb,V) \\ & M_{12} (M=Ti,Zr) \\ & M_{12} (M=Nb,Nb) \\ & M_{12} (M=Cr,Mo,Nb) \\ & M_{12} (M=Cr,Mo,Nb) \\ & M_{12} (M=Cr,Mo,Nb) \\ & M_{12} (M=Nb,V) \\ & M_{12} (M=Nb,V) \\ & M_{12} (M=Cr,Nb,V) \\ & M_{12} (M=Cr,Nb,V) \\ & M_{12} (M=Cr,Nb,Ta,Ti,V) \\ & M_{12} (M=Nb,Ta,Ti,V) \\ & M_{12} (M=Mo,Nb,Zr,Ta,V) \\ & M_{12} (M=Nb) \\ & M_{12} (M=Nb) \\ & M_{12} (M=Mo,Nb,Mb,$	bet	78
I 43m	3m	$1@ico_{f_3^1+v^1}^{3+6}$	ncb	Ni, Rh, Ir Cu Ag		12,12,13,13T1	5
I m3	m3	$1@ico_{b^6+b^2}^{8+6}$	bcu-x	Mo, Re, Tc, W	$\mathbf{M}_{12} \; (\mathbf{M} = \mathbf{A}\mathbf{l})$	11,12T1	5
P 2 ₁ 3	3	$1@ico_{f_3^2+e^1}^{6+6}$	fcu	Al Au Cu	$ \begin{array}{l} M_{12} \left(M = Au, Cu \right) \\ A_{9} + M_{3} \left(M = Al \right) \\ A_{9} + M_{3} \left(M = Al \right) \end{array} $	12,14T1	2
P 6 ₃ /mmc	3m	$1 @ ico_{f_3^1 + v^1 + e^1}^{1+3+6}$	tca	Al Co Cr Fe Mg Mn Mo Ni Zn	$\begin{array}{l} A_{6}+M_{6} (M=U) \\ \hline A_{6}+M_{6} (M=Nb, Ta, Ti) \\ A_{6}+M_{6} (M=Ti, Hf, Zr) \\ A_{6}+M_{6} (M=Nb, Hf, Sc, Zr) \\ \hline A_{6}+M_{6} (M=Th) \\ \hline A_{6}+M_{6} (M=Zr, Hf) \\ \hline A_{6}+M_{6} (M=Hf) \\ \hline A_{6}+M_{6} (M=Eu, Mg) \\ \hline A_{6}+M_{6} (M=Hf, Nb, Ta) \end{array}$	12,12,12,16,16T1	21

Table S4. Chemical composition of 324 binary intermetallics assembled with one non-equivalent icosahedron

Table S4 continuation

	$\overline{3}m$	$1@ico_{c1}^{2+6}$	hex	Ag, Au	A_6+M_6 (M = K)	mgz-x	153
		10 000 _{f3} +e1		Al	$A_6 + M_6$ (M = Hf, Zr, Co)	5	
				Be	$A_{\epsilon}+M_{\epsilon}$ (M = Cr. Fe. Mn. Mo. Ru. V. W. Re)		
				Cd	$A_{c}+M_{c}$ (M = Ca Yb)		
				Co	$A_{c}+M_{c}$ (M = Ta Nb Mg)		
				Cr.	$\Lambda_0 \mapsto (M - M, M)$		
				Cu	Δ_{0} TW ₀ (W = 100, III, 14, 11, 21) Δ_{1} (M = Cd Vb)		
				Eu	$A_6 + M_6 (M - Cu, 10)$ $A + M - (M - Er, Ev) H_6 Lv M_6$ The Track H H Mb S ₆ T; W T ₆)		
				ге	A_6+M_6 (M = EI, EU, HO, LU, MO, 10, 111, 10, HI, NO, SC, 11, W, 12)		
				lr V	A_6+M_6 (M = Mg)		
				K	A_6+M_6 (M = CS)		
				Li, Pt	A_6+M_6 (M = Ca)		
				Mg	A_6+M_6 (M = Ba, Ca, Dy, Er, Eu, Ho, Lu, Sr, Tb, Tm, Y, Yb)		
				Mn	A_6+M_6 (M = Dy, Er, Gd, Hf, Ho, Lu, Pr, Ta, Tm, Tb, Y, Nd, Yb, Sc, Sm, Th, Zr)		
				Na	A_6+M_6 (M = Ba, Cs, K)		
				Ni	A_6+M_6 (M = Nb, U)		
				Os	A_6+M_6 (M = Am, Dy, Er, Gd, Hf, Ho, La, Lu, Nd, Tb, Tm, U, Yb, Pr, Pu, Sc, Sm, Y, Zr)		
				Pb	$A_{6}+M_{6}(M=K)$		
				Re	A_6+M_6 (M = Dy, Er, Eu, Gd, Hf, Ho, Nd, Np, Pr, Pu, Sm, Tb, Th, Tm, U, W, Y, Sc, Zr)		
				Ru	A_6+M_6 (M = Dy, Er, Ho, Lu, Nd, Sm, Th, Tm, Yb, Sc, Y, Zt)		
				Тс	$A_{s+M_{6}}$ (M = Dy, Er, Gd, Hf, Ho, Tc, Tb, Th, Tm, Y, Zr)		
				V	$A_{c}+M_{c}$ (M = Zr)		
				Zn	$A_{c}+M_{c}$ (M = C_{a} Mg Sc Sr Ta Ti)		
		214		ZII	$n_0 + n_0 (n_1 - c_0, n_2, s_0, s_1, n_1, n_1)$		-
		$1@ico_{f_3^1+b^4}^{2+6}$	hex	Al	$A_6+M_6 (M = Cu, Rh)$	3-nodal net; 9,12,12- coordinated	2
P 6 ₃ mc	3m	$1@ico_{f_3^1+e^1}^{2+6}$	hex	Mn	$A_9 + M_3 (M = Lu)$	mgz-x	1
P 3m1	$\overline{3}m$	$1@ico_{b^{12}+e^1}^{2+6}$	hex	Hg	$A_6 + M_6 (M = K, Rb)$	11,12,18T2	2
P 4 ₂ /mmc	mmm	$1@ico^{8+6}_{f^1_3+e^1}$	bcu-x	Sn	$\mathbf{M}_{12} \ (\mathbf{M} = \mathbf{N}\mathbf{b})$	bet	1
C mam	m2m	$1@ico^{2+6}_{f^1_3+e^1}$	hex	Re	$A_6+M_6 (M=U)$	mgz-x	1
Ciliciii	mm2	$1@ico_{v^1+e^1}^{4+2}$	hxl	Ag	$A_8 + M_4 (M = Ca, Yb)$	12,12,12,16T1	2
		$1@ico_{f_3^1+e^1+v^1}^{2+2+4}$	hex	Cu	A_9+M_3 (M = Ce, La, Pr, Pu, Sm, Th, Nd)	12,12,12,13,14,19T1	7
P nma	m	$1@ico_{a^1+b^7}^{2+2}$	dia	Cu	A_9+M_3 (M = Hf)	11,12,12,12,12,13,13,14T1	2
		e +b			A_7+M_5 (M = Zr)		
P 2 ₁ /c	1	$1@ico^{2+2+4}_{f_3^1+e^1+v^1}$	hex	Cu	A_9+M_3 (M = Ce, La, Pr, Nd)	12,12,12,13,14,19T1	4
C 2/m	m	$1@ico^{4+2}$	hvl	Co	$\Delta \perp M \cdot (M - Hf)$	6-nodal net:	2
C 2/111	m	$1 @ i c 0_{v^1 + e^1}$	IIXI	Ni	A + M (M - Tr)	12 12 12 13 15 16 goordinated	2
				111	A_{8} T VI_{4} ($VI - LI$)	12,12,12,13,15,10-cool unlated	
	_	$0@ico_{f_{2}^{1}+e^{1}}^{2+6}$	hex	0	$M_{6}^{1}+M_{6}^{2}$ (M^{1} = Al, M^{2} = Er, Lu, U)	2-nodal net; 10,13-	7
P 6 ₃ /mmc	$\overline{3}m$	13.0			$M_{6}^{1}+M_{6}^{2}$ (M^{1} = Co, M^{2} = U)	coordinated	
					$M1_6+M_6^2$ (M ¹ = Be, M ² = V, W)		
P 4 ₂ /mnm	mmm	$0@ico_{e^1+b^4+b^1}^{2+8+4}$	bcu-x	0	$M_{8}^{1}+M_{4}^{2}$ (M^{1} = Nb, M^{2} = Al)	3-nodal net; 8,9,11- coordinated	1
1						coorumanu	

* – ignoring bonds between icosahedra that unite layers into a 3D framework.

Space group	Point group	Supracluster	Underlying net	Central atom (A)	Environment (M)	Structure topology	Number of structures
I m3m	$\overline{3}m$	$1@I_{\epsilon_1}^6$	pcu	Al	$M_{6}^{1}+M_{6}^{2}(M^{1} = Ni, M^{2} = Y, Sm, Gd, Dy, Ho, Er, Tb)$	12,12,16T1	17
		5 3	*	Ga	$M_{6}^{1}+M_{6}^{2}$ (M ¹ = Ni, M ² = Y, Sm, Gd, Dy, Ho, Er, Tb, Tm, Pr, Nd)		
F d3m	$\bar{3}m$	$1@I_{\epsilon^1}^6$	crs/dia-e	Ag	$M_{6}^{1}+M_{6}^{2}(M^{1} = Na, M2 = In)$	12,12,14T1	12
		J3		Al	$M_{6}^{1}+M_{6}^{2}(M^{1} = Mg, Hf, Zr, M^{2} = Ni, Au, Pt)$		
				Au	$M_{6}^{1}+M_{6}^{2}(M^{1} = Na, M^{2} = In)$		
				Ge	$M_{6}^{1}+M_{6}^{2}(M^{1} = Ni, M^{2} = Zn)$		
				Mn	$M_{6}^{1}+M_{6}^{2}(M_{1}^{1}=Mg, M_{2}^{2}=Ni)$		
				Ti	$M_{6}^{1}+M_{6}^{2}(M_{1}^{1}=Mg, M_{2}^{2}=Ni)$		
				Zn	$M_{6}^{1}+M_{6}^{2}(M^{1} = Cu, M^{2} = Hf, Zr)$		
F 43m	3m	$1@I_{f_3^1}^6$	crs/dia-e	Dy	$A_6 + M_3^1 + M_3^2 (M_1^1 = Cd, In, M_2^2 = Rh)$	9,12,12,14,14T1	17
		- 5		Er	$A_6 + M_3^1 + M_3^2 (M_1 = In, M_2 = Rh, Ir)$		
				Gd	$A_6 + M_3^1 + M_3^2 (M_1^2 = Cd, In, M_2^2 = Rh, Ni, Pd, Ir, Pt)$		
				Ho	$A_6 + M_3^1 + M_3^2 (M_1^2 = Cd, In, M_2^2 = Rh, Ir, Pt)$		
				Tm	$A_6 + M_3^1 + M_3^2 (M_1 = \ln, M_2^2 = Rh)$		
D 2 2	2	6±6	c	16	$A_6 + M_3^2 + M_3^2 (M_1^2 = ln, Cd, M_2^2 = lr, Rh)$	10.1401	
P 2 ₁ 3	3	$1@I_{f_3^1+v^1}^{0+0}$	fcu	Au	$M_{9}^{4}+M_{3}^{2}$ (M ⁴ = Cu, Nb, Ta, V, M ² = Sn, Ga)	12,1411	5
				Ga	$M_{9}^{4}+M_{3}^{2}$ (M ⁴ = Nb, Ta, V, M ² = Au)		
				Ge	$M_{9}^{-}+M_{3}^{-}(M_{1}^{-}-M_{1}^{-},M_{2}^{-}-M_{1}^{-})$		
				lf Sm	$M_{9}^{1}+M_{3}^{2}(M_{1}^{2}-M_{1}^{2}-M_{2}^{2})$		
				5n A1	$M_{9}^{-}+M_{3}^{-}(M_{1}^{-}=Cu, M_{1}^{-}=Au)$		19
				Al C-	$M_{6}^{+}+M_{6}^{-}(M_{1}^{-}=C_{0},M_{1}^{-}=U)$	mgz-x	18
				Co	$M_{6}^{1}+M_{6}^{2}(M^{1}=AI, M^{2}=LU, Er)$ $M_{1}^{1}+M_{2}^{2}(M^{1}=E_{0}, M^{2}=LU, Zr)$		
				Ga	$M_{6}^{1} + M_{6}^{2} (M_{1}^{1} - M_{2}, M_{1}^{2} - 0, Z_{1})$ $M_{1}^{1} + M_{2}^{2} (M_{1}^{1} - M_{2}, T_{1}^{2} - C_{2}, M_{2}^{2} - C_{2}, Z_{1}^{2}, U, C_{3})$		
		216		Ue Ir	$M_{6}^{1} + M_{6}^{2} (M_{1}^{1} - G_{0}, M_{2}^{2} - G_{0})$		
D.6. /mma	7	$1@I_{f_3^1+e^1}^{2+0}$	hov		$M_{6}^{1} + M_{6}^{2} (M^{1} - \Delta 1 M^{2} - U)$		
r Oymme	Sm		liex	Ru	$M_{6}^{1} + M_{6}^{2} (M^{1} - A) V M^{2} - Sc 7r)$		
				Li	$M_0^1 + M_0^2 + M_0^2 = M_0^2 + M_0^2 = M_0^2$		
				Ge	$M_{6}^{1} + M_{6}^{2} (M^{2} - M_{6}, M^{2} - M_{6})$ $M_{6}^{1} + M_{6}^{2} (M^{1} - V, M^{2} - Hf)$	12.12.15T2	1
		1@16+2		Ge	$M_{1}^{1} + M_{2}^{2} (M^{1} = N_{1} M^{2} = Sr)$	10.12.2011	1
P 6.mc	3m	$1@I_{f_3^2+f_3^1}$ $1@I^{2+6}$	hex	Cu	$A_{c+} M_{0}^{1} + M_{0}^{2} (M^{1} - Mn M^{2} - In)$	mg7-y	1
1 03mc		$\frac{100I_{f_3^1+e^1}}{100I_{f_3^1+e^1}}$	f	Ca	$\mathbf{M} = \mathbf{M}^2 \mathbf{M} = \mathbf{M}^2 \mathbf{M} = \mathbf{M}^2 \mathbf{M} = \mathbf{M}^2$	10.12.2072	1
R 3m	3m	$1@l_{f_3^2+e^1}^{3.10}$	lcu	Ga	$M_{6}^{-}+M_{6}^{-}(M^{-}=Cu, M^{-}=Sr, Ba)$	10,12,2012	2
P 42/ncm	2/m	$\frac{1@I_{v^1}^{12}}{1.0v^{2+6}}$	fcu	Mg	$A_8+M_2+M_2(M_1 = Ku, M_2 = Ce)$	10,12,15,1611	1
C mcm	2/m	$1@I_{f_3^1+e^1}^{210}$	nex	Ga	$A_4+M_6+M_2(M_1 = Mg, M_2 = Mn)$	mgz-x	1
C mcm	2/m	$1@I_{f_3^1+e^1}^{2+2}$	sql	Na	$M_{6}^{1}+M_{6}^{2}$ (M^{1} = Cs, M^{2} = Pb)	10,12,12,14,18T1	1
		$1@I_{e^1+b^7}^{2+2}$	dia	Fe	$A_3+M_5^1+M_4^2$ ($M_1^1 = Zr, M_2^2 = Sn$)	11,12,12,12,12,13,13,14T1	1
				Fe	$A+M_{5}^{1}+M_{6}^{2}(M^{1} = Sc, M^{2} = Ga)$	11,12,12,12,12,13,16,17T1	2
P nma	т			Mn	$A+M_{5}^{1}+M_{6}^{2}(M^{1} = Sc, M^{2} = Ga)$		
		$1@I_{f_1^1+e^1+v^1}^{2+2+4}$	hex	Cu	$A_7+M_2^1+M_3^2$ (M ¹ = In, Sn, Ag, Au, M ² = Ce, U, Th)	12,12,12,13,14,19T1	8
		15 1		Fe	$A_7 + M_2^1 + M_3^2 (M_1^1 = Sn, M_2^2 = U)$		
		-		Ni	$A_7 + M_2^1 + M_3^2 (M_1 = Sn, M_2 = Lu)$		
P mmn	mm2	$1@I_{f_3^2}^6$	hxl	Ge	$M_{6}^{1}+M_{6}^{2}(M^{1}=Ni, M^{2}=Ba)$	10,12,20T3	1
C 2/m	2/m	$1@I_{f_3^2+e^1}^{2+4}$	hxl	In	$A_2+M_4^1+M_6^2(M^1=Rh, M^2=Sr)$	10,12,12,17T1	1

Table S5. Chemical composition of 90 ternary intermetallics constructed by one nonequivalent icosahedron

* – ignoring bonds between icosahedra that unite layers into a 3D framework.

Central atom (A)	Environment (M)
Ag	Ag, Ca, Cd, K, Yb, Na, In
Al	Al, Mo, Nb, V, Au, Cu, U, Hf, Zr, Co, Rh, Ni, Y, Sm, Gd, Dy, Ho, Er, Tb, Mg, Pt
Au	Au, Ta, Zr, Ti, V, Nb, Al, K, Na, In, Cu, Sn, Ga
Be	Be, Mo, Cr, Fe, Mn, Ru, V, W, Re
Bi	Nb
Cd	Cd, V, Ca, Yb
Со	Co, Hf, V, Nb, Ta, Ti, Mg, Al, Lu, Er
Cr	Cr, Ti, Hf, Zr, Nb, Ta
Cu	Cu, Al, Cd, Yb, Ce, La, Pr, Pu, Sm, Th, Nd, Hf, Zr, Mn, In, Sn, Ag, Au, U, Zn
Dy	Dy, Cd, In, Rh
Er	Er, In, Rh, Ir
Fe	Fe, V, Nb, Hf, Sc, Zr, Er, Eu, Ho, Lu, Mo, Tb, Tm, Yb, Ti, W, Ta, Sn, Ga, U
Ga	Ga, Cr, Mo, Nb, V, Ni, Y, Sm, Gd, Dy, Ho, Er, Tb, Tm, Pr, Nd, Ta, Au, Fe, U, Zr, Cu, Sr, Ba, Mg, Mn
Gd	Gd, Cd, In, Rh, Ni, Pd, Ir, Pt
Ge	Cr, Mo, Nb, V, Ni, Zn, Mn, Ir, Ti, Fe, Co, Zr, U, Cu, Hf, Sr, Ba
Hf	Hf, Fe, Ir, Mn, Os, Pd, Pt, Rh
Hg	Hg, Ti, Zr, K, Rb
Но	Ho, Cd, In, Rh, Ir, Pt
In	In, Nb, Rh, Sr
Ir	Ir, V, Cr, Ti, Mo, Nb, Mg, Mn, Ge, Ga, Eu, Zn
K	K, Cs
Li	Li, Ca, Na, Au
Mg	Mg, Pd, Th, Ba, Ca, Dy, Er, Eu, Ho, Lu, Sr, Tb, Tm, Y, Yb, Cu, Ru, Ce
Mn	Mn, Hf, Zr, Dy, Er, Gd, Ho, Lu, Pr, Ta, Tm, Tb, Yb, Nd, Sc, Sm, Th, Cu, Rh, Mg, Ni, Ga, In, Ti, Al, Nb,
	Υ
Мо	Mo, Al, Hf
Na	Na, Ba, Cs, K, Pb
Ni	Ni, Cd, Nb, Ta, V, Zn, Eu, Mg, U, Zr, Sn, Lu
Os	Os, Cr, Mo, Nb, Am, Dy, Er, Gd, Hf, Ho, La, Lu, Nd, Tb, Tm, U, Yb, Pr, Pu, Sc, Sm, Zr, Al
Pb	Pb, Nb, V, K
Pd	Ti
Pt	Pt, V, Cr, Ti, Mo, Nb, Ca
Re	Re, W, Al, Dy, Er, Eu, Gd, Hf, Ho, Nd, Np, Pr, Pu, Sm, Tb, Th, Tm, U, Y, Sc, Zr, Y
Rh	Cr, Nb, V, Zn
Ru	Ru, Cr, Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, Yb, Sc, Y, Zr, Al, V
Sb	Nb, Ta, Ti, V
Sc	Sc, Ni, Pd, Ir
Sn	Nb, Mo, Zr, Ta, V, Cu, Au
Tb	Tb, In, Cd, Ir, Rh
Тс	Tc, Al, Dy, Er, Gd, Hf, Ho, Tb, Th, Tm, Y, Zr
Ti	Ti, Co, Cu, Fe, Ni, Mg
Tl	Nb
Tm	Tm, In, Rh
V	V, Ge, Re, Sb, Zr
W	Al
Zn	Zn, Nb, Hf, Ta, Ca, Mg, Sc, Sr, Ti, Cu, Zr
Zr	Zr, Cu, Co, Ir, Pt, Rh, Fe, Mo

Table S6. Central atoms and environment atoms in the centered icosahedra

Environment A/M ¹	Environment M ²
Li	Ca
Be	Cr. Fe. Mn. Mo. Ru. V. W. Re
Na	Ba, Cs, K. In, Au
Mg	Co. Ir. Pd. Th. Ba. Ca. Dv. Er. Eu. Ho. Lu. Sr. Tb. Tm. Yb. Ni. Pt. Ru. Ce. Mn. Zn. Y
Al	U. Hf. Zr. Co. Cu. Rh. Lu. Er. Sc. Er. Au. Nb
K	Ag. Au. Hg. Na. Pb
Ca	Ag. Cd. Li, Mg. Pt. Zn
Sc	Al, Fe, Mn, Os, Re, Ru, Ni, Pd, Ir, Ga, Zn
Ti	Co. Cr. Fe. Co. Cu. Fe. Ni. Zn
V	Zr. Hf
Cr	Ti, Hf, Zr, Nb, Ta
Mn	Cu, Ga, Hf, Mg, Zr, Dv, Er, Gd, Ho, Lu, Pr, Ta, Tm, Tb, Yb, Nd, Sc, Sm, Th, Ir, Ge, U, Co, In, Y
Fe	Nb. Hf. Sc. Zr. Er. Eu. Ho. Lu. Mo. Tb. Yb. Ti. W. Ta. U. Sn. Ga
Со	Al. Hf. Nb. Ta. Ti. Mg. U. Mn. Zr
Ni	Cd, Gd, Mg, Eu, Nb, U, Zr, Y, Sm, Dv, Ho, Er, Tb, Tm, Pr, Nd, Zn, Sr, Ba, Sc, Ti
Cu	Ag. Al, Cd, Yb, Ce, La, Pr, Pu, Sm, Th, Nd, Hf, Zr, Sn, Au, Mn, In, Sr, Ba, U, Ti
Zn	Ni, Hf, Nb, Ta, Ca, Mg, Sc, Sr, Ti
Ga	Fe, Eu, Mg, Mn, Mo, Nb, Sc, Ta
Ge	Mn
Rb	Hg
Sr	Cu, In, Mg, Ni, Rh, Zn
Y	Mg, Mn, Os, Re, Ru, Tc, Ni
Zr	Al, Cr, Cu, Fe, Mn, Ni, Os, Re, Ru, Tc, V, Co, Ir, Pt, Rh, Au, Sn
Nb	Al, Co, Cr, Fe, Ga, Au, Ni, Zn
Мо	Fe, Ga
Тс	Dy, Er, Gd, Hf, Ho, Tc, Tb, Th, Tm, Y, Zr,
Ru	Mg, Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, Yb, Sc, Zr, Ce, Y
Rh	Al, Cd, Dy, Er, Gd, Hf, Ho, In, Sr, Tm, Zr
Pd	Cd, Gd, Hf, Mg, Sc
Ag	Ca, K. Yb, Ce, Cu
Cd	Ca, Yb, Rh, Ni, Pd, Ir, Pt, Cu, Dy, Gd, Ho
In	Cu, Dy, Er, Gd, Ho, Rh, Ir, Th, U, Sr, Mn, Na, Tb, Tm
Sn	Cu, Fe, Ce, Th, Zr
Cs	Pb, Na
Ва	Cu, Mg, Na, Ni
La	Cu, Os
Ce	Ag, Au, Cu, Mg, Ru, Sn
Pr	Cu, Mn, Ni, Os, Re
Nd	Cu, Mn, Ni, Os, Re, Ru
Sm	Cu, Mn, Ni, Os, Re, Ru,
Eu	Fe, Ga, Mg, Ni, Re
Gd	Cd, In, Rh, Ni, Pd, Ir, Pt, Mn, Os, Re, Tc
Tb	Fe, Mg, Mn, Ni, Os, Re, Ru, In, Ir, Tc
Dy	Cd, In, Rh, Mg, Mn, Ni, Os, Re, Ru, Tc
Но	Fe, Cd, In, Rh, Ir, Mg, Mn, Ni, Os, Re, Ru, Tc
Er	Al, In, Rh, Ir, Fe, Mg, Mn, Ni, Os, Re, Ru, Tc
Tm	Mg, Mn, Ni, Os, Re, Ru, Tc, In, Rh,
Yb	Cd, Cu, Fe, Mg, Mn, Os, Ru, Ag
Lu	Al, Fe, Mg, Mn, Os, Ru
Hf	Al, Co, Cr, Cu, Fe, Ir, Mn, Os, Pd, Pt, Rh, Au, Re, Tc, V, Zn
Та	Co, Cr, Fe, Mn, Ga, Au, Zn
W	Fe, Re

Table S7. Central atoms and environment atoms in the centered icosahedra with a mixed M^1+M^2 shell.

Table S7 continuation

Re	Dy, Er, Eu, Gd, Hf, Ho, Nd, Np, Pr, Pu, Sm, Tb, Th, Tm, U, W, Y, Sc, Zr
Os	Am, Dy, Er, Gd, Hf, Ho, La, Lu, Nd, Tb, Tm, U, Yb, Pr, Pu, Sc, Sm, Zr, Y
Ir	Cd, Er, Gd, Hf, Ho, In, Mg, Mn, Sc, Tb, Zr
Pt	Cd, Gd, Hf, Mg, Ca, Zr
Au	Al, K, Ce, Cu, Hf, Na, Nb, Ta, Zr
Hg	K, Rb
Pb	Cs, K
Th	Cu, In, Mg, Mn, Re, Sm, Tc
U	Al, Co, Cu, Fe, In, Mn, Ni, Os, Re
Pu	Cu, Os, Re
Am	Os

Table S8. Distribu	tion of local bindin	g of Bergman and	d Bergman-base	d clusters
--------------------	----------------------	------------------	----------------	------------

Formul	a	Underlying net	Topological types	Number of structures	Formula		Underlying net	Topological types	Number of structures
$1@ico@D32^{8+6}_{f_3^6+f_3^2}$		bcu-x	$\begin{array}{l} K_{1.5}Na_{\cdot 396}Tl_6Cd_{\cdot 3137},\\ Rb_3Hg_{20} \end{array}$	10	$1@ico@D32_{b^1}^8$		bcu	$\begin{array}{l} Ho_{16}Mg_{24}Zn_{122},\\ K_{29}NaHg_{48}\\ Mg_{32}(Ag_{13}Al_{36}) \end{array}$	15
$1@ico@D32^{6+2+6}_{f_3^2+f_3^6+e^1}$		bcu-x	Cr ₅ Al ₈	16	$1@ico@D32^{6}_{f_{3}^{2}}$		рси	Na ₂ Au ₆ In ₅	14
1@ico@D32 ¹² _{v1}		fcu	$Cu_{12}K_{12}Sn_{21}$	2	$1@ico@D32^{6+2}_{f_3^2+f_3^5}$		hex	$Sm_{12}Fe_{14}Al_5$	1
$1@ico@D32^{12}_{f_3^2}$		fcu	Na ₃ K ₈ Tl1 ₃	1	1@ico@D32 _{mol}		Isolated**	$Li_{33.3}Ba_{13.08}Ca_{2.96}$	2
$1@ico@D32^{4+4+4}_{f_3^2+b^1+b^2}$		gsp1	$Li_5Ca_{18}In_{25.07}$	1	1@ico@D32@D98 ¹² 2		fcu	$Li_{33.3}Ba_{13.08}Ca_{2.96}$	2
$0@ico@D32^{2+8}_{f^2_8+b^{10}}$		bct	Na ₁₀ Ga ₆ Sn ₃	1	$0@ico@D32@D80_{b^{40}+v^2}^{4+2}$		hxl*	Na ₁₂₈ Au ₈₁ Ga ₂₇₅ ,	1
0@ico@D32 ⁸ _{b1}		ьси	$\begin{array}{l} K_{49}Tl_{108},K_{3}Na_{26}In_{48},\\ Al_{88.7}Cu_{19.3}Li_{52},Ga_{22.13}Li_{11.33}Zn_{2.66}, \end{array}$	36	0@ico@D32@D86 ⁶ _{v¹+ e⁴}		рси	$K_{49}Tl_{108}$	1
0@ico@D32 ⁶ _{b2}		hxl*	Na ₇ Ga ₁₃	1	0@ico@D32@D92 ⁶ _{v¹+ e⁴}	8	рси	K ₄₉ Tl ₁₀₈	1
0@ico@D32 ² _{b1}	000	chain*	$Na_{16}Zn_{13.54}Sn_{13.46}$	1	$0@ico@D32@D102^{8+6}_{f_3^{14}+f_3^2}$		bcu-x	CaCd ₆	17
0@ico@D32 _{mol}		Isolated**	$\begin{array}{l} Ga_{19,56}Li_3Na_5,K_{34}In_{89,95}Zn_{13,05},\\ (Cu_6Ga_{46,5})Na_{17},\\ Au_{115,29}Ca_{24}Sn_{34,81}, CaCd_6,\\ K_{34}In_{91,05}Mg_{13,95},K_{39}In_{80},\\ K_{14}Na_{21}Cd_{17}Ga_{82},Na_{128}Au_{81}Ga_{275} \end{array}$	36	$0@ico@D32@D110^{8+6}_{f_3^{14}+f_3^2}$		bcu-x	Au _{115.29} Ca ₂₄ Sn _{34.81}	1
0@ico@D32@D80 ⁶⁺⁶ b ⁴⁰ +1		fcu	$\begin{array}{l}(Cu_{6}Ga_{46.5})Na_{17},K_{14}Na_{21}Cd_{17}Ga_{82},\\K_{34}In_{89.95}Zn_{13.05},\\K_{34}In_{91.05}Mg_{13.95}\end{array}$	15	0@ico@D32@D98 ⁶ , _{J3}		hxl*	$\begin{array}{l}K_{39}In_{80},\\K_{34}In_{89,95}Zn_{13.05}\end{array}$	5
					0@ico@D32@D80 ⁶ _{b⁴⁰}		hxl*	(Cu ₆ Ga _{46.5})Na ₁₇	9

* – ignoring bonds between icosahedra that unite layers into a 3D framework; ** - all contacts of the nanocluster are with nanoclusters of other type.

Underlying net topology	Crystal System	Number of structures
bcu-x	Cubic	435
	Tetragonal	3
fcu	Tetragonal	1
	Trigonal	2
	Hexagonal	1
	Orthorhombic	1
	Cubic	9
tca	Hexagonal	81
ncb	Cubic	22
hex	Hexagonal	771
	Orthorhombic	38
	Monoclinic	5
	Trigonal	2
$(3^{6}.4^{12}.5^{3})$	Orthorhombic	2
crs	Cubic	100
рси	Cubic	19
hxl	Orthorhombic	3
	Monoclinic	3
	Trigonal	1
dia	Orthorhombic	5
sql	Orthorhombic	1
lcy	Cubic	1

Table S9. Correlations between the underlying net topology and the crystal system

Crystal System	Underlying net topology	Number of structures
Cubic	bcu-x	435
	crs	100
	ncb	22
	рси	19
	fcu	9
	lcy	1
Hexagonal	hex	771
	tca	81
	fcu	1
Trigonal	fcu	2
	hex	2
	hxl	1
Tetragonal	bcu-x	3
	fcu	1
Orthorhombic	hex	38
	dia	5
	hxl	3
	$(3^6.4^{12}.5^3)$	2
	fcu	1
	sql	1
Monoclinic	hex	5
	hxl	3

Table S10. Correlations between the crystal system and the underlying net topology